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We study sample path large deviations for Lévy processes and random
walks with heavy-tailed jump-size distributions that are of Weibull type. The
sharpness and applicability of these results are illustrated by a counterexam-
ple proving the nonexistence of a full LDP in the J1 topology, and by an
application to a first passage problem.

1. Introduction. In this paper, we develop sample path large deviations for Lévy pro-
cesses and random walks, assuming the jump sizes have a semiexponential distribution.
Specifically, let X(t), t ≥ 0, be a centered Lévy process with positive jumps and Lévy mea-
sure ν which has nonnegative support. Assume that − logν[x,∞) is regularly varying of
index α ∈ (0,1) and define X̄n = {X̄n(t), t ∈ [0,1]}, with X̄n(t) = X(nt)/n. We are inter-
ested in large deviations of X̄n.

The investigation of tail estimates of the one-dimensional distributions of X̄n (or random
walks with heavy-tailed step size distribution) was initiated in Nagaev (1969, 1977). The state
of the art of such results is well summarized in Borovkov and Borovkov (2008), Denisov,
Dieker and Shneer (2008), Embrechts, Klüppelberg and Mikosch (1997), Foss, Korshunov
and Zachary (2011). In particular, Denisov, Dieker and Shneer (2008) describe in detail how
fast x needs to grow with n for the asymptotic relation

(1.1) P
(
X(n) > x

)= nP
(
X(1) > x

)(
1 + o(1)

)
to hold, as n → ∞. If (1.1) is valid, the so-called principle of one big jump is said to hold.
It turns out that, if x increases linearly with n, this principle holds if α < 1/2 and does not
hold if α > 1/2, and the asymptotic behavior of P(X(n) > x) becomes more complicated.
When studying more general functionals of X it becomes natural to consider logarithmic
asymptotics, as is common in large deviations theory; cf. Dembo and Zeitouni (2010), Gantert
(1998), Gantert, Ramanan and Rembart (2014).

The study of large deviations of sample paths of processes with Weibullian increments
is relatively limited. The only paper we are aware of is Gantert (1998), where the inverse
contraction principle is applied to obtain a large deviation principle in the L1 topology. As
noted in Duffy and Sapozhnikov (2008) this topology is not suitable for many applications—
ideally one would like to work with the J1 topology; see equation (2.2).

Let us now describe precisely our results. We first develop an extended LDP (large devia-
tions principle) in the J1 topology, that is, there exists a rate function I (·) such that

(1.2) lim inf
n→∞

log P(X̄n ∈ A)

L(n)nα
≥ − inf

x∈A
I (x),
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if A is open, and

(1.3) lim sup
n→∞

log P(X̄n ∈ A)

L(n)nα
≤ − lim

ε↓0
inf

x∈Aε
I (x),

if A is closed. Here Aε = {x : d(x,A) ≤ ε}. The rate function I is given by

I (ξ) =
⎧⎪⎨
⎪⎩
∑

t :ξ(t)�=ξ(t−)

(
ξ(t) − ξ(t−)

)α if ξ ∈ D�∞[0,1],

∞ otherwise,

where D�∞[0,1] is the subspace of D[0,1] consisting of nondecreasing pure jump functions
vanishing at the origin and continuous at 1. (As usual, D[0,1] is the space of càdlàg functions
from [0,1] to R.)

The notion of an extended large deviations principle has been introduced by Borovkov and
Mogul’skiı̆ (2010). We derive this result as follows: we use a suitable representation for the
Lévy process in terms of Poisson random measures, allowing us to decompose the process
into the contribution generated by the k largest jumps, and the remainder. The contribution
generated by the k largest jumps is a step function for which we obtain the large deviations be-
havior by Bryc’s inverse Varadhan lemma (see, e.g., Theorem 4.4.13 of Dembo and Zeitouni
(2010)). The remainder term is tamed by modifying a concentration bound due to Jelenković
and Momčilović (2003).

To combine both estimates we need to consider the ε-fattening Aε of the set A, which
precludes us from obtaining a full LDP. To show that our approach cannot be improved, we
construct a set A that is closed in the Skorokhod J1 topology for which the large deviation
upper bound does not hold. In this sense, our extended large deviations principle can be seen
as optimal. This is in line with the observation made for the regularly varying Lévy processes
and random walks Rhee, Blanchet and Zwart (2019), for which the full LDP w.r.t. J1 topology
in a classical sense is shown to be unobtainable as well.

Following a similar proof strategy, we also derive an extended sample path LDP for ran-
dom walks in D[0,1]. There are however also some differences. The distributional represen-
tation of our random walk is different from the continuous-time case. More importantly, the
resulting rate function differs at time 1, since the rescaled random walk always has a jump at
time 1. We present an exact formulation of this result in Theorem 2.2.

We derive several implications of our extended LDP that facilitate its use in applica-
tions. First of all, if a Lipschitz functional φ of X̄n is chosen for which the function
Iφ(y) = infx:φ(x)=y I (x) is a good rate function, then φ(Xn) satisfies an LDP. We illustrate
this procedure by considering an example concerning the probability of ruin for an insurance
company where large claims are reinsured.

A second implication is a sample path LDP in the M ′
1 topology. We show that the rate func-

tion I is good in this topology, allowing us to conclude limε↓0 infx∈Aε I (x) = infx∈A I (x), if
A is closed in the M ′

1 topology. An overview of the M ′
1 topology on D[0,1] can be seen in

Appendix A; for related results on the M ′
1 topology in D[0,∞) we refer to Puhalskii and

Whitt (1997). The LDP for the M ′
1 topology in this paper is applied in Bazhba et al. (2019)

to obtain tail asymptotics of the queue length in the multiple server queue with heavy tailed
Weibull service times. In that work, we show that the most likely number of big jobs that
cause a large queue length is determined by the solution of an Lα-norm minimization prob-
lem for α ∈ (0,1). This result essentially answers a question posed by Sergey Foss at the
Erlang Centennial conference in 2009. For earlier conjectures on this problem we refer to
Whitt (2000).

We note that both implications of our extended LDP constitute two complementary tools,
and that the two aforementioned applications are dealt with using precisely one of these tools.
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In particular, the functional in the reinsurance example is not continuous in the M ′
1 topology,

and the most likely paths in the queueing application are discontinuous at time 0, rendering
the J1 or M1 topologies useless.

Another application of our results, which will be pursued in detail elsewhere, arises
in the large deviations analysis of Markov random walks. More precisely, set Z̄n(t) =∑
nt�

k=1 f (Yk)/n, where Yk, k ≥ 0 is a geometrically ergodic Markov chain and f (·) is a given
measurable function. Classical large deviations results pioneered by Donsker and Varadhan
on this topic (see, e.g., Donsker and Varadhan (1976)) and the more recent treatment in
Kontoyiannis and Meyn (2005), impose certain Lyapunov-type assumptions involving the
underlying function f (·).

These assumptions are not merely technical requirements, but are needed for a large devi-
ations theory with a linear (in n) speed function (as opposed to sublinear as we obtain here).
Even in simple cases (e.g., Blanchet, Glynn and Meyn (2013), Duffy and Meyn (2014)) the
case of unbounded f (·) can result in a sublinear large deviations scaling of the type consid-
ered here. For Harris chains, this can be seen by splitting Z̄n(·) into cycles. Each term corre-
sponding to a cycle can be seen as the area under a curve generated by f (Y·). For linear f ,
this results in a contribution towards Z̄n(·) which often is roughly proportional to the square
of the cycle. Hence, the behavior of Z̄n(1) is close to that of a sum of i.i.d. Weibull-type ran-
dom variables. To summarize, the main results of this paper can be applied to significantly
extend the classical Donsker–Varadhan theory to unbounded functionals of Markov chains.

This paper is organized as follows. Section 2 introduces notation and presents extended
LDP’s. These are complemented in Section 3 by LDP’s of Lipschitz functionals, LDP’s in
the M ′

1 topology, and a counterexample. Section 4 is considering an application to boundary
crossing probabilities with moderate jumps. Additional proofs are presented in Section 5. The
Appendix develops further details about the M ′

1 topology that are needed in the body of the
paper.

2. Sample path LDPs. In this section, we discuss sample path large deviations for Lévy
processes and random walks. Before presenting our main results, we start with general back-
ground. Let (S, d) be a metric space, and T denote the topology induced by the metric d .
Let Xn be a sequence of S-valued random variables. Let Aε � {ξ ∈ S : d(ξ,A) ≤ ε} where
d(ξ,A) = infζ∈A d(ξ, ζ ), and A−ε � {ξ ∈ S : d(ξ, ζ ) ≤ ε implies ζ ∈ A}. Let I be a nonneg-
ative lower semicontinuous function on S, and (an) be a sequence of positive real numbers
that tends to infinity as n → ∞. We say that Xn satisfies the LDP in (S,T ) with speed an

and the rate function I if

− inf
x∈A◦ I (x) ≤ lim inf

n→∞
log P(Xn ∈ A)

an

≤ lim sup
n→∞

log P(Xn ∈ A)

an

≤ − inf
x∈A− I (x)

for any measurable set A. Here, A◦ and A− are respectively the interior and the closure of the
set A. We say that Xn satisfies the extended LDP in (S,T ) with speed an and rate function I

if

− inf
x∈A◦ I (x) ≤ lim inf

n→∞
log P(Xn ∈ A)

an

≤ lim sup
n→∞

log P(Xn ∈ A)

an

≤ − lim
ε→0

inf
x∈Aε

I (x)

for any measurable set A. The next proposition provides the key framework for proving our
main results.

PROPOSITION 2.1. Let I and Ik , k ≥ 1 be rate functions. Suppose that for each n, Xn

has a sequence of approximations {Y k
n }k=1,... such that:

(i) For each k, Y k
n satisfies the extended LDP in (S,T ) with speed an and rate function Ik .
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(ii) For each closed set F ,

lim
k→∞ inf

x∈F
Ik(x) ≥ inf

x∈F
I (x).

(iii) For each δ > 0 and each open set G, there exist ε > 0 and K ≥ 0 such that k ≥ K

implies

inf
x∈G−ε

Ik(x) ≤ inf
x∈G

I (x) + δ.

(iv) For every ε > 0 it holds that

(2.1) lim
k→∞ lim sup

n→∞
1

an

log P
(
d
(
Xn,Y

k
n

)
> ε
)= −∞.

Then, Xn satisfies the extended LDP in (S,T ) with speed an and rate function I .

The proof of this proposition is provided in Section 5. We conclude this section with an
immediate implication of Proposition 2.1.

COROLLARY 2.1. Suppose that Yn satisfies the extended LDP in (S,T ) with speed an

and rate function I . If for each ε > 0,

lim sup
n→∞

1

an

log P
(
d(Xn,Yn) > ε

)= −∞,

then Xn satisfies the extended LDP in (S,T ) with speed an and rate function I .

PROOF. Let Y k
n � Yn and Ik � I for k = 1,2, . . . . Then, (i) and (ii) of Proposition 2.1

are trivially satisfied. For (iii), we note that by the definition of G−ε , for each δ > 0 and G an
open set, there exists ε > 0 such that

inf
x∈G−ε

I (x) ≤ inf
x∈G

I (x) + δ,

and hence, (iii) are satisfied for Ik = I . Since (iv) is also satisfied by the assumption, all the
conditions of Proposition 2.1 are satisfied and the conclusion of the corollary follows. �

2.1. Extended sample path LDP for Lévy processes. Throughout the rest of this paper
we assume that:

A1. X is a real-valued Lévy process with Lévy measure ν which has nonnegative support
satisfying ν[x,∞) = exp(−L(x)xα) where α ∈ (0,1) and L(·) is slowly varying at infinity.

A2. The mapping x 
→ L(x)xα−1 is nonincreasing for sufficiently large x.

Let X̄n(t), t ∈ [0,1], denote the centered and scaled process:

X̄n(t) � 1

n
X(nt) − tEX(1).

Let D[0,1] denote the Skorokhod space—space of càdlàg functions from [0,1] to R—and
TJ1 denote the J1 Skorokhod topology on D[0,1]. That is, D[0,1] is metrized by the usual
Skorokhod metric

(2.2) dJ1(ξ, ζ ) � inf
λ∈


{
max
{∥∥ξ(t) − ζ

(
λ(t)
)∥∥∞,
∥∥λ(t) − e(t)

∥∥∞}},
where ξ, ζ ∈ D[0,1], λ is a nondecreasing homeomorphism of [0,1] onto itself, 
 is the set
of such homeomorphisms, e(t) = t is the identity map, and ‖ξ‖∞ = supt∈[0,1] |ξ(t)| is the
supremum norm. We say that ξ ∈ D[0,1] is a pure jump function if ξ =∑∞

i=1 xi1[ui,1] for
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some xi ’s and ui’s such that xi ∈ R and ui ∈ (0,1) for each i and ui’s are all distinct. Let
D�∞[0,1] denote the subspace of D[0,1] consisting of nondecreasing pure jump functions
vanishing at the origin and continuous at 1. For the rest of the paper, if there is no confusion
regarding the domain of a function space, we will omit the domain and simply write, for
example, D�∞ instead of D�∞[0,1]. The next theorem is the main result of this paper.

THEOREM 2.1. X̄n satisfies the extended large deviation principle in (D,TJ1) with speed
L(n)nα and rate function

(2.3) I (ξ) =
⎧⎪⎨
⎪⎩
∑

t :ξ(t)�=ξ(t−)

(
ξ(t) − ξ(t−)

)α if ξ ∈D�∞,

∞ otherwise.

That is, for any measurable A,

(2.4) − inf
ξ∈A◦ I (ξ) ≤ lim inf

n→∞
log P(X̄n ∈ A)

L(n)nα
≤ lim sup

n→∞
log P(X̄n ∈ A)

L(n)nα
≤ − lim

ε→0
inf

ξ∈Aε
I (ξ),

where Aε � {ξ ∈D : dJ1(ξ, ζ ) ≤ ε for some ζ ∈ A}.

REMARK 2.1. Note that it is straightforward to extend Theorem 2.1 to spectrally two-
sided Lévy processes. For instance, suppose that the Lévy measure ν of the process X has
Weibull tail ν[x,∞) = exp(−L(x)xα) where α ∈ (0,1), L(x)xα−1 satisfies Assumption A2,
and ν(−∞, x] is light-tailed. We can decompose X̄n into a centered spectrally positive part
Ȳn and a centered spectrally negative part X̄n − Ȳn. Then, Ȳn satisfies the extended LDP in
Theorem 2.1. On the other hand, observe that

P
(
d(X̄n, Ȳn) > ε

)≤ P
(‖X̄n − Ȳn‖∞ > ε

)≤ 3P
(∣∣X̄n(1) − Ȳn(1)

∣∣> ε/3
)
,

where we used Etemadi’s inequality for Lévy processes (see, e.g., Rhee, Blanchet and Zwart
(2019), Lemma A.4) in the last step. Since X̄n − Ȳn is light-tailed, the latter probability
vanishes at exponential rate due to Cramèrs theorem. This allows one to apply Corollary 2.1
with Yn and conclude that X̄n satisfies the same LDP as the one in Theorem 2.1.

Recall that Xn(·) � X(n·) has Itô representation

(2.5) Xn(s) = nsa+B(ns)+
∫
x<1

x
[
N̂
([0, ns]×dx

)−nsν(dx)
]+∫

x≥1
xN̂
([0, ns]×dx

)
,

with a a drift parameter, B a Brownian motion and N̂ a Poisson random measure with mean
measure Leb×ν on [0, n] × (0,∞); Leb here denotes the Lebesgue measure. All terms in
(2.5) are independent. We will see that the large deviation behavior is dominated by the last
term of (2.5). It turns out to be convenient to consider the following distributional represen-
tation of the centered and scaled version of the last term:

Ȳn(·) � 1

n

N(n·)∑
l=1

(Zl − EZ)
D= 1

n

∫
x≥1

xN̂
([0, n·] × dx

)− 1

n
(EZ)N̂

([0, n·] × [1,∞)),
where N(t) � N̂([0, t] × [1,∞)) is a Poisson process with arrival rate ν1 � ν[1,∞), and
the Zi’s are i.i.d. copies of Z such that P(Z ≥ x) = ν[x ∨ 1,∞)/ν1, independent of N .
To facilitate the proof of Theorem 2.1, we consider a further decomposition of Ȳn into two
pieces, one of which consists of the big increments, and the other one keeps the residual
fluctuations. To be more specific, we introduce an extra notation for the rank of the incre-
ments. Given N(n), define SN(n) to be the set of all permutations of {1, . . . ,N(n)}. Let
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Rn : {1, . . . ,N(n)} → {1, . . . ,N(n)} be a random permutation of {1, . . . ,N(n)} sampled uni-
formly from �n � {σ ∈ SN(n) : Zσ−1(1) ≥ · · · ≥ Zσ−1(N(n))}. In words, Rn(i) is the rank of
Zi among {Z1, . . . ,ZN(n)} when sorted in decreasing order with the ties broken uniformly.
Now, we see that

Ȳn(t) = 1

n

N(nt)∑
i=1

Zi1{Rn(i)≤k}
︸ ︷︷ ︸

�J̄ k
n (t)

+ 1

n

N(nt)∑
i=1

(Zi1{Rn(i)>k} − EZ)

︸ ︷︷ ︸
�H̄ k

n (t)

.

The proof of Theorem 2.1 is straightforward once the following technical lemmas are in our
hands; their proofs are provided in Section 5. Let D�k denote the subspace of D�∞ consisting
of paths that have less than or equal to k discontinuities.

LEMMA 2.1. For each fixed k, J̄ k
n satisfies the LDP in (D,TJ1) with speed L(n)nα and

rate function

(2.6) Ik(ξ) =
⎧⎪⎨
⎪⎩
∑

t∈[0,1]

(
ξ(t) − ξ(t−)

)α if ξ ∈ D�k,

∞ otherwise.

Recall that A−ε � {ξ ∈ D : dJ1(ξ, ζ ) ≤ ε implies ζ ∈ A}.

LEMMA 2.2. For each δ > 0 and each open set G, there exist ε > 0 and K ≥ 0 such that
for any k ≥ K

(2.7) inf
ξ∈G−ε

Ik(ξ) ≤ inf
ξ∈G

I (ξ) + δ.

Let BJ1(ξ, ε) be the open ball w.r.t. the J1 Skorokhod metric centered at ξ with radius ε

and Bε � BJ1(0, ε).

LEMMA 2.3. For every ε > 0 it holds that

(2.8) lim
k→∞ lim sup

n→∞
1

L(n)nα
log P
(∥∥H̄ k

n

∥∥∞ > ε
)= −∞.

PROOF OF THEOREM 2.1. For this proof, we use the following representation of X̄n:

(2.9) X̄n
D= Ȳn + R̄n = J̄ k

n + H̄ k
n + R̄n,

where R̄n(s) = 1
n
B(ns) + 1

n

∫
|x|≤1 x[N([0, ns] × dx) − nsν(dx)] + 1

n
(EZ)N̂([0, n·] ×

[1,∞)) − ν1s. Next, we verify the conditions of Proposition 2.1. Lemma 5.1 confirms
that I is lower semicontinuous. Lemma 2.1 verifies (i). To see that (ii) is satisfied, note
that Ik(ξ) ≥ I (ξ) for any ξ ∈ D. Lemma 2.2 verifies (iii). Since dJ1(X̄n, J̄

k
n ) ≤ ‖H̄ k

n‖∞ +
‖R̄n‖∞, Lemma 2.3 and lim supn→∞ 1

L(n)nα log P(‖R̄n‖∞ > ε) = −∞ implies (iv). Note

that R̄n is a Lévy process whose moment generating function is finite everywhere, and
hence, the LDP upper bound in Theorem 2.5 of Mogul’skiı̆ (1993) applies (in particu-
lar, his statement about the space Dc) to P(dJ1(0, R̄n) > ε). This, in turn, implies that
lim supn→∞ 1

L(n)nα log P(‖R̄n‖∞ > ε) = −∞. Now, the conclusion of the theorem follows
from Proposition 2.1. �
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2.2. Extended LDP for random walks. Let Sn � Z1 + · · · + Zn where the Zi’s are non-
negative random variables. Consider the centered and scaled process S̄n = {S̄n(t), t ∈ [0,1]}
where S̄n(t) � 1

n

∑[nt]
i=1(Zi − EZ), t ∈ [0,1]. We assume that P(Z ≥ x) = exp(−L(x)xα)

where α ∈ (0,1) and L(·) is a slowly varying function. We also assume A2 is in force as in
Section 2.1. The goal of this section is to prove an extended LDP for S̄n. Let D̃�∞ denote
the subspace of D consisting of nondecreasing pure jump functions vanishing at the origin
(not necessarily continuous at 1, though). Let D̃�k denote the subspace of D̃�∞ consisting of
paths that have less than or equal to k discontinuities. Define Ĩ as follows:

Ĩ (ξ) =
⎧⎪⎨
⎪⎩
∑

t :ξ(t)�=ξ(t−)

(
ξ(t) − ξ(t−)

)α if ξ ∈ D̃�∞,

∞ otherwise.

THEOREM 2.2. S̄n satisfies the extended large deviation principle in (D,TJ1) with speed
L(n)nα and rate function Ĩ .

Similarly to the case of Lévy processes, the proof of Theorem 2.2 is facilitated by
Lemma 2.4, Lemma 2.5 and Lemma 2.6; their proofs are deferred to Section 5.6. Let
Q̃←(x) = inf{y ≥ 0 : P(Z ≥ y) < x}. Set

J̃ k
n (t) � 1

n

k∑
i=1

Q̃←(V(i))1[Ui,1](t) + 1

n
Z1{1}(t)

and

H̃ k
n (t) � 1

n

n−1∑
i=k+1

Q̃←(V(i))1[Ui,1](t) − 1

n
EZ

n−1∑
i=1

1[Ui,1](t) − 1

n
EZ1{1}(t),

where V(1), V(2), . . . , V(n−1) are the order statistics (in ascending order) of V1,V2, . . . , Vn−1,
which are i.i.d. Uniform[0,1] and independent of Z. (In the proof of Theorem 2.2, we will
show that S̃n � J̃ k

n + H̃ k
n satisfies the extended LDP with speed L(n)nα and is exponen-

tially equivalent to S̄n so that Corollary 2.1 applies, and hence, in turn, S̄n satisfies the same
extended LDP.) Let Ĩk be defined as follows:

(2.10) Ĩk(ξ) =
⎧⎪⎨
⎪⎩
∑

t :ξ(t)�=ξ(t−)

(
ξ(t) − ξ(t−)

)α if ξ ∈ D̃�k,

∞ otherwise.

LEMMA 2.4. For each fixed k, J̃ k
n satisfies the LDP in (D,TJ1) with speed L(n)nα and

rate function Ĩk .

LEMMA 2.5. For each δ > 0 and each open set G, there exist ε > 0 and K ≥ 0 such that
for any k ≥ K

inf
ξ∈G−ε

Ĩk(ξ) ≤ inf
ξ∈G

Ĩ (ξ) + δ.

LEMMA 2.6. For every ε > 0 it holds that

lim
k→∞ lim sup

n→∞
1

L(n)nα
log P
(∥∥H̃ k

n

∥∥∞ > ε
)= −∞.
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With these lemmas in our hands, we are ready to prove Theorem 2.2.

PROOF OF THEOREM 2.2. Let R̃i � |{j ∈N : Uj ≤ Ui,1 ≤ j ≤ n − 1}|. Then, we claim
that

S̄n
D= 1

n

n−1∑
i=1

(
Q̃←(V(i)) − EZ

)
1[R̃i/n,1] + 1

n
(Z − EZ)1{1}.

To see why this distributional equality holds, note that {R̃1, . . . , R̃n−1} is a uniformly random
permutation of {1, . . . , n − 1}, and {Q̃←(V(1)), . . . , Q̃

←(V(n−1))} has the same distribution
as the order statistics (in descending order) of Z1, . . . ,Zn−1 since Q̃←(Vi) has the same
distribution as Z for each i. Now, we move on to showing that S̄n is close to S̃n—that is,
P(dJ1(S̃n, S̄n) > ε) is asymptotically negligible. Recall that

S̃n = 1

n

n−1∑
i=1

(
Q̃←(V(i)) − EZ

)
1[Ui,1] + 1

n
(Z − EZ)1{1}.

First, observe that R̃i is the rank of Ui among U1, . . . ,Un−1, and hence, the R̃i
th ear-

liest jump of both S̄n and S̃n equals Q̃←(V(i)). Therefore, the jumps associated with
Q̃←(V(1)), . . . , Q̃

←(V(n−1)),Z are arranged in the same order for S̄n and S̃n with probability
1. Moreover, the jump times of S̄n and S̃n are 1

n
, 2

n
, . . . , n−1

n
, n

n
and U(1),U(2), . . . ,U(n−1),1,

respectively. Since 0 < U(1) < · · · < U(n−1) < 1 with probability 1, the piecewise linear time
change λ : [0,1] → [0,1] defined by the linear interpolation of λ(0) = 0, λ(1) = 1, and
λ(i/n) = U(i) for i = 1, . . . , n − 1 is a homeomorphism with probability 1. Therefore, the
J1 distance between S̃n and S̄n is bounded by

sup
1≤i≤n−1

|i/n − U(i)|

with probability 1. The latter supremum can be bounded in terms of the Kolmogorov–
Smirnov statistic, and from the inequality (1.5) in Corollary 1 of Massart (1990), we obtain

P
(

sup
1≤i≤n−1

|i/n − U(i)| > ε
)

≤ P

(√
n sup

x∈[0,1]

∣∣∣∣∣1n
n∑

i=1

I (Ui ≤ x) − x

∣∣∣∣∣> ε
√

n

)
≤ 2e−2ε2n.

Hence,

lim sup
n→∞

1

L(n)nα
log P
(
dJ1(S̃n, S̄n) > ε

)≤ lim sup
n→∞

1

L(n)nα
log P
(

sup
1≤i≤n−1

|i/n − U(i)| > ε
)

= −∞.

In view of Corollary 2.1, the proof is done if we show that S̃n satisfies the extended LDP with
speed L(n)nα and rate function Ĩ . To do so, we apply Proposition 2.1. Note that Lemma 2.4
verifies condition (i) of Proposition 2.1; (ii) is trivially satisfied since Ĩk ≥ Ĩ ; Lemma 2.5
verifies (iii); Lemma 2.6 verifies (iv). Therefore Proposition 2.1 applies to J̃ k

n + H̃ k
n , and the

proof of Theorem 2.2 is complete. �

2.3. Multidimensional processes. Let X(1), . . . ,X(d) be independent processes satisfy-
ing Assumptions A1 and A2. Let X̄

(i)
n (t) denote the centered and scaled processes:

X̄(i)
n (t) � 1

n
X(i)(nt) − tEX(i)(1).

The next theorem establishes the extended LDP for (X̄
(1)
n , . . . , X̄

(d)
n ).
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THEOREM 2.3. (X̄
(1)
n , X̄

(2)
n , . . . , X̄

(d)
n ) satisfies the extended LDP in (

∏d
i=1 D([0,1],

R+),
∏d

i=1 TJ1) with speed L(n)nα and rate function

(2.11) I d(ξ1, . . . , ξd) =

⎧⎪⎪⎨
⎪⎪⎩

d∑
j=1

∑
t∈[0,1]

(
ξj (t) − ξj (t−)

)α if ξj ∈ D�∞ for each j = 1, . . . , d,

∞ otherwise.

For each i, we consider the same distributional decomposition of X̄
(i)
n as in Section 2.1:

X̄(i)
n

D= J̄ k(i)
n + H̄ k(i)

n + R̄(i)
n .

The proof of the theorem follows the same lines as in the one-dimensional case, from Propo-
sition 2.1, Lemma 2.3 and the following lemmas that parallel Lemma 2.1 and Lemma 2.2.

LEMMA 2.7. (J̄
k(1)
n , . . . , J̄

k(d)
n ) satisfies the LDP in (

∏d
i=1 D,

∏d
i=1 TJ1) with speed

L(n)nα and rate function I d
k :∏d

i=1 D → [0,∞]

(2.12) I d
k (ξ1, . . . , ξd) �

⎧⎪⎪⎨
⎪⎪⎩

d∑
i=1

∑
t∈[0,1]

(
ξi(t) − ξi(t−)

)α if ξi ∈ D�k for i = 1, . . . , d,

∞ otherwise.

LEMMA 2.8. For each δ > 0 and each open set G, there exists ε > 0 and K ≥ 0 such
that for any k ≥ K

(2.13) inf
(ξ1,...,ξd )∈G−ε

I d
k (ξ1, . . . , ξd) ≤ inf

(ξ1,...,ξd )∈G
Id(ξ1, . . . , ξd) + δ.

We conclude this section with the extended LDP for multidimensional random walks. Let
S

(i)
n = Z

(i)
1 +· · ·+Z

(i)
n be a random walk with nonnegative increments for each i = 1, . . . , d .

Consider S̄
(i)
n = {S̄(i)

n (t), t ∈ [0,1]} where S̄
(i)
n (t) = 1

n

∑[nt]
j=1(Z

(i)
j − EZ(i)). We assume that

P(Z
(i)
j ≥ x) = exp(−L(x)xα) where α ∈ (0,1) and L(·) is a slowly varying function, and A2

is in force. The following theorem can be obtained by “lifting” Lemma 2.4 and Lemma 2.5
to the multidimensional context—in the same way Lemma 2.1 and Lemma 2.2 were lifted to
the multidimensional counterparts in the proof of Theorem 2.3—and then applying Proposi-
tion 2.1. Let

(2.14) Ĩ d (ξ1, . . . , ξd) =

⎧⎪⎪⎨
⎪⎪⎩

d∑
j=1

∑
t∈[0,1]

(
ξj (t) − ξj (t−)

)α if ξj ∈ D̃�∞ for each j = 1, . . . , d,

∞ otherwise.

THEOREM 2.4. (S̄
(1)
n , S̄

(2)
n , . . . , S̄

(d)
n ) satisfies the extended LDP in (

∏d
i=1 D,

∏d
i=1 TJ1)

with speed L(n)nα and rate function Ĩ d .

REMARK 2.2. Note that Theorem 2.3 and Theorem 2.4 can be extended to heteroge-
neous processes. For example, if the Lévy measure ν(i) of the process X(i) has Weibull tail
distribution ν(i)[x,∞) = exp(−ciL(x)xα) where ci ∈ (0,∞) for each i ≤ d0 ≤ d , and all
the other processes have lighter tails—that is, L(x)xα = o(Li(x)xαi ) for i > d0—then it is
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straightforward to check that (X̄
(1)
n , . . . , X̄

(d)
n ) satisfies the extended LDP with rate function

I d(ξ1, . . . , ξd) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d0∑
j=1

cj

∑
t∈[0,1]

(
ξj (t) − ξj (t−)

)α if ξj ∈ D�∞[0,1] for j = 1, . . . , d0

and ξj ≡ 0 for j > d0,

∞ otherwise.

Similarly, (S̄
(1)
n , . . . , S̄

(d)
n ) satisfies the extended LDP with rate function Ĩ d defined by replac-

ing D�∞ with D̃�∞ in the definition of I d above under the corresponding conditions on the
tail distribution of the Z

(i)
1 ’s.

3. Implications and further discussions.

3.1. LDP for Lipschitz functions of Lévy processes. Let X̄n denote the scaled Lévy pro-
cesses (X̄

(1)
n , . . . , X̄

(d)
n ), and let S̄n denote the scaled random walks (S̄

(1)
n , . . . , S̄

(d)
n ) as defined

in Section 2. Recall also the rate functions I d defined in (2.11) and Ĩ d defined in (2.14).

COROLLARY 3.1. Let (S, d) be a metric space and φ :∏d
i=1 D → S be a Lipschitz con-

tinuous mapping w.r.t. the J1 Skorokhod metric. Set

I ′(x) � inf
φ(ξ)=x

I d(ξ) and Ĩ ′(x) � inf
φ(ξ)=x

Ĩ d(ξ)

and suppose that I ′ (or Ĩ ′) is a good rate function—that is, 
I ′(a) � {x ∈ S : I ′(s) ≤ a}
(or 


Ĩ ′(a) � {x ∈ S : Ĩ ′(s) ≤ a}) is compact for each a ∈ [0,∞). Then, φ(X̄n) (or φ(S̄n))
satisfies the large deviation principle in (S, d) with speed L(n)nα and good rate function I ′
(or Ĩ ′).

PROOF. Since the argument for φ(S̄n) is very similar, we only prove the LDP for
φ(X̄n). We start with the upper bound. Suppose that the Lipschitz constant of φ is ‖φ‖Lip.
Note that since the J1 distance is dominated by the supremum distance, ‖H̄k

n‖∞ ≤ ε and
‖R̄n‖∞ ≤ ε implies dJ1(φ(J̄k

n), φ(X̄n)) ≤ 2ε‖φ‖Lip, where J̄k
n � (J̄

k(1)
n , . . . , J̄

k(d)
n ), H̄k

n �
(H̄

k(1)
n , . . . , H̄

k(d)
n ) and R̄n � (R̄

(1)
n , . . . , R̄

(d)
n ). Therefore, for any closed set F ,

P
(
φ(X̄n) ∈ F

)
≤ P
(
φ(X̄n) ∈ F,dJ1

(
φ
(
J̄k
n

)
, φ(X̄n)

)≤ 2ε‖φ‖Lip
)+ P
(
dJ1

(
φ
(
J̄k
n

)
, φ(X̄n)

)
> 2ε‖φ‖Lip

)
≤ P
(
φ
(
J̄k
n

) ∈ F 2ε‖φ‖Lip
)+ P
(
dJ1

(
φ
(
J̄k
n

)
, φ(X̄n)

)
> 2ε‖φ‖Lip

)
≤ P
(
J̄k
n ∈ φ−1(F 2ε‖φ‖Lip

))+ P
(∥∥H̄k

n

∥∥∞ > ε
)+ P
(‖R̄n‖∞ > ε

)
.

Since P(‖R̄n‖∞ > ε) decays at an exponential rate and

P
(‖H̄k

n‖∞ > ε
)≤ d∑

i=1

P
(‖H̄ k(i)

n ‖∞ > ε/d
)
,

we get the following bound by applying the principle of the maximum term and Theorem 2.3:

lim sup
n→∞

1

L(n)nα
log P
(
φ(X̄n) ∈ F

)
≤ lim sup

n→∞
1

L(n)nα
log
{
P
(
J̄k
n ∈ φ−1(F 2ε‖φ‖Lip

))+ P
(∥∥H̄k

n

∥∥∞ > ε
)+ P
(‖R̄n‖∞ > ε

)}
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= max
{

lim sup
n→∞

log P(J̄k
n ∈ φ−1(F 2ε‖φ‖Lip))

L(n)nα
, lim sup

n→∞
log P(‖H̄k

n‖∞ > ε)

L(n)nα

}

≤ max
{
− inf

(ξ1,...,ξd )∈φ−1(F
2ε‖φ‖Lip )

I d
k (ξ1, . . . , ξd), max

i=1,...,d
lim sup
n→∞

log P(‖H̄ k(i)
n ‖∞ > ε/d)

L(n)nα

}

≤ max
{
− inf

(ξ1,...,ξd )∈φ−1(F
2ε‖φ‖Lip )

I d(ξ1, . . . , ξd), lim sup
n→∞

log P(‖H̄ k(1)
n ‖∞ > ε/d)

L(n)nα

}
.

From Lemma 2.3, we can take k → ∞ to get

lim sup
n→∞

log P(φ(X̄n) ∈ F)

L(n)nα
≤ − inf

(ξ1,...,ξd )∈φ−1(F
2ε‖φ‖Lip )

I d(ξ1, . . . , ξd)

= − inf
x∈F

2ε‖φ‖Lip
I ′(x).

(3.1)

From Lemma 4.1.6 of Dembo and Zeitouni (2010), limε→0 inf
x∈F

ε‖φ‖Lip I ′(x) = infx∈F I ′(x).
Letting ε → 0 in (3.1), we arrive at the desired large deviation upper bound.

Turning to the lower bound, consider an open set G. Since φ−1(G) is open, from Theo-
rem 2.3,

lim inf
n→∞

1

L(n)nα
log P
(
φ(X̄n) ∈ G

)= lim inf
n→∞

1

L(n)nα
log P
(
X̄n ∈ φ−1(G)

)
≥ − inf

(ξ1,...,ξd )∈φ−1(G)
I (ξ) = − inf

x∈G
I ′(x). �

3.2. Sample path LDP w.r.t. M ′
1 topology. Recall that X̄n(t) � 1

n
X(nt) − tEX(1) and

S̄n(t) = 1
n

∑[nt]
i=1(Zi − EZ). In this section, we establish the full LDP for X̄n and S̄n w.r.t. the

M ′
1 topology. For the definition of the M ′

1 topology, see Appendix A.

COROLLARY 3.2. X̄n and S̄n satisfy the LDP in (D,TM ′
1
) with speed L(n)nα and good

rate function IM ′
1
.

IM ′
1
(ξ) �

⎧⎪⎪⎨
⎪⎪⎩
∑

t∈[0,1]

(
ξ(t) − ξ(t−)

)α if ξ is a nondecreasing pure jump function

with ξ(0) ≥ 0,

∞ otherwise.

PROOF. Since the proof for S̄n is nearly identical, we only provide the proof for X̄n.
From Proposition A.3 we know that IM ′

1
is a good rate function. For the LDP upper bound,

suppose that F is a closed set w.r.t. the M ′
1 topology. Then, it is also closed w.r.t. the J1

topology. From the upper bound of Theorem 2.1 and the fact that IM ′
1
(ξ) ≤ I (ξ) for any

ξ ∈ D,

lim sup
n→∞

log P(X̄n ∈ F)

L(n)nα
≤ − lim

ε→0
inf

ξ∈Fε
I (ξ) ≤ − lim

ε→0
inf

ξ∈Fε
IM ′

1
(ξ) = − inf

ξ∈F
IM ′

1
(ξ).

Turning to the lower bound, suppose that G is an open set w.r.t. the M ′
1 topology. We claim

that

inf
ξ∈G

IM ′
1
(ξ) = inf

ξ∈G
I (ξ).
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To show this, we only have to show that the RHS is not strictly larger than the LHS. Suppose
that IM ′

1
(ξ) < I (ξ) for some ξ ∈ G. Since I and IM ′

1
differ only if the path has a jump at

either 0 or 1, this means that ξ is a nonnegative pure jump function of the following form:

ξ =
∞∑
i=1

zi1[ui,1],

where u1 = 0, u2 = 1, ui’s are all distinct in (0,1) for i ≥ 3 and zi ≥ 0 for all i’s. Note that
one can pick an arbitrarily small ε so that

∑
i∈{n:un<ε} zi < ε,

∑
i∈{n:un>1−ε} zi < ε, ε �= ui

for all i ≥ 2, and 1 − ε �= ui for all i ≥ 2. For such ε’s, if we set

ξε � z11[ε,1] + z21[1−ε,1] +
∞∑
i=3

zi1[ui,1],

then dM ′
1
(ξ, ξε) ≤ ε while I (ξε) = IM ′

1
(ξ). That is, we can find an arbitrarily close element

ξε from ξ w.r.t. the M ′
1 metric by pushing the jump times at 0 and 1 slightly to the inside of

(0,1); at such an element, I assumes the same value as IM ′
1
(ξ). Since G is open w.r.t. M ′

1,
one can choose ε small enough so that ξε ∈ G. This proves the claim. Now, the desired LDP
lower bound is immediate from the LDP lower bound in Theorem 2.1 since G is also an open
set in the J1 topology. �

3.3. Nonexistence of large deviation principle in the J1 topology. Consider a compound
Poisson process with arrival rate equal to 1 whose jump distribution is Weibull with shape
parameter 1/2. More specifically, X̄n(t) � 1

n

∑N(nt)
i=1 Zi − t with P(Zi ≥ x) ∼ exp(−xα),

EZi = 1 and α = 1/2. If X̄n satisfies a full LDP w.r.t. the J1 topology, the rate function that
controls the LDP (with speed nα) associated with X̄n should be of the same form as the one
that controls the extended LDP:

I (ξ) =
⎧⎪⎨
⎪⎩
∑

t∈[0,1]

(
ξ(t) − ξ(t−)

)α if ξ ∈ D�∞,

∞ otherwise.

To show that such a LDP is fundamentally impossible, we construct a closed set A for which

(3.2) lim sup
n→∞

log P(X̄n ∈ A)

nα
> − inf

ξ∈A
I (ξ).

Let

ϕs,t (ξ) � lim
ε→0

sup
0∨(s−ε)≤u≤v≤1∧(t+ε)

(
ξ(v) − ξ(u)

)
.

Let Ac;s,t � {ξ : ϕs,t (ξ) ≥ c} be (roughly speaking) the set of paths which increase at least by
c between time s and t . Then Ac;s,t is a closed set for each c, s and t . Next, define

Am � (A1;m+1
m+2 , m+1

m+2 +mhm
) ∩ (A1; m

m+2 , m
m+2 +mhm

) ∩
(

m−1⋂
j=0

A 1
m2 ; j

m+2 ,
j

m+2 +mhm

)
,

where hm = 1
(m+1)(m+2)

, and let

A �
∞⋃

m=1

Am.

To see that A is closed, we first claim that ζ ∈ D \ A implies the existence of ε > 0 and
N ≥ 0 such that B(ζ ; ε) ∩ Am = ∅ for all m ≥ N . To prove this claim, suppose not. It
is straightforward to check that for each n, there has to be sn, tn ∈ [1 − 1/n,1) such that
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sn ≤ tn and ζ(tn) − ζ(sn) ≥ 1/2, which in turn implies that ζ must possess infinite number of
increases of size at least 1/2 in [1 − δ,1) for any δ > 0. This implies that ζ cannot possess a
left limit, which is contradictory to the assumption that ζ ∈ D \ A. On the other hand, since
each Am is closed,

⋃N
i=1 Ai is also closed, and hence, there exists ε′ > 0 such that B(ζ ; ε′) ∩

Am = ∅ for m = 1, . . . ,N . Now, from the construction of ε and ε′, B(ζ, ε ∨ ε′) ∩ A = ∅,
proving that A is closed.

Next, we show that A satisfies (3.2). First note that if ξ is a pure jump function that belongs
to Am, ξ has to possess m upward jumps of size 1/m2 and 2 upward jumps of size 1, and
hence,

(3.3) inf
ξ∈A

I (ξ) ≥ inf
m

(
11/2 + 11/2 + m

(
1/m2)1/2)= 3.

On the other hand, letting �ξ(t) � ξ(t) − ξ(t−),

P(X̄(n+1)(n+2) ∈ An)

≥
n−1∏
j=0

P
(

sup
t∈[0,1]

{
X̄(n+1)(n+2)

(
(n + 1)j + nt

(n + 1)(n + 2)

)
− X̄(n+1)(n+2)

(
(n + 1)j

(n + 1)(n + 2)

)}
≥ 1

n2

)

· P
(

sup
t∈(0,1]

{
�X̄(n+1)(n+2)

(
(n + 1)n + nt

(n + 1)(n + 2)

)}
≥ 1
)

· P
(

sup
t∈(0,1]

{
�X̄(n+1)(n+2)

(
(n + 1)(n + 1) + nt

(n + 1)(n + 2)

)}
≥ 1
)

= P
(

sup
t∈[0,1]

{
X̄(n+1)(n+2)

(
nt

(n + 1)(n + 2)

)}
≥ 1

n2

)n

· P
(

sup
t∈[0,1]

{
�X̄(n+1)(n+2)

(
nt

(n + 1)(n + 2)

)}
≥ 1
)2

= P
(

sup
t∈[0,1]
{
X(nt)

}≥ (n + 1)(n + 2)

n2

)n

· P
(

sup
t∈[0,1]
{
�X(nt)

}≥ (n + 1)(n + 2)
)2

≥ P
(

sup
t∈[0,1]
{
X(nt)

}≥ 6
)n · P
(

sup
t∈[0,1]
{
�X(nt)

}≥ (n + 1)(n + 2)
)2

,

and hence,

(3.4)

lim sup
n→∞

log P(X̄n ∈ A)

nα
≥ lim sup

n→∞
log P(X̄(n+1)(n+2) ∈ An)

((n + 1)(n + 2))α

≥ lim sup
n→∞

log P(supt∈[0,1]{X(nt)} ≥ 6)n

((n + 1)(n + 2))α

+ 2 lim sup
n→∞

log P(supt∈[0,1]{�X(nt)} ≥ (n + 1)(n + 2))

((n + 1)(n + 2))α

= (I) + (II).

Letting pn � P(supt∈[0,n]{X(t)} < 6),

(I) = lim sup
n→∞

log(1 − pn)
n

((n + 1)(n + 2))α
= lim sup

n→∞
npn log(1 − pn)

1/pn

((n + 1)(n + 2))α

= lim sup
n→∞

−npn

((n + 1)(n + 2))α
= 0

(3.5)

since pn → 0 as n → ∞.
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Next, utilize {Z1 ≥ (n + 1)(n + 2)} =⇒ {supt∈[0,1]{�X(nt)} ≥ (n + 1)(n + 2)} to con-
clude

(II) = 2 lim sup
n→∞

log P(supt∈[0,1]{�X(nt)} ≥ (n + 1)(n + 2))

((n + 1)(n + 2))α

≥ 2 lim sup
n→∞

log P(Z1 ≥ (n + 1)(n + 2))

((n + 1)(n + 2))α
= 2 lim sup

n→∞
log e−((n+1)(n+2))α

((n + 1)(n + 2))α

= −2.

(3.6)

From (3.4), (3.5), (3.6),

(3.7) lim sup
n→∞

log P(X̄n ∈ A)

nα
≥ −2.

This along with (3.3),

lim sup
n→∞

log P(X̄n ∈ A)

nα
≥ −2 > −3 ≥ − inf

ξ∈A
I (ξ),

which means that A indeed is a counterexample for the desired LDP.
Note that a simpler counterexample can be constructed using the peculiarity of the J1

topology at the boundary of the domain; that is, jumps (of size 1, say) at time 0 are bounded
away from the jumps at arbitrarily close jump times. For example, if Ȳn(t) � 1

n

∑N(nt)
i=1 Zi + t

where the right tail of Z is Weibull and EZ = −1, then the set B = {x : x(t) ≥ t/2 for all t ∈
[0,1]} gives a counterexample for the LDP. Note that the M ′

1 topology we used in Section 3.2
is a treatment for the same peculiarity of the M1 topology at time 0. However, it should
be clear from the above counterexample X̄n and A that the LDP is fundamentally impossible
w.r.t. other J1-like topologies, that is, topologies that do not allow merging two or more jumps
to approximate a single jump at any time.

4. Boundary crossing with moderate jumps. In this section, we illustrate the value
of Corollary 3.1; for an application of Corollary 3.2 we refer to Bazhba et al. (2019). We
consider level crossing probabilities of Lévy processes where the jump sizes are conditioned
to be moderate. Specifically, we apply Corollary 3.1 in order to provide large deviations
estimates for

(4.1) P
(

sup
t∈[0,1]

X̄n(t) ≥ c, sup
t∈[0,1]
∣∣X̄n(t) − X̄n(t−)

∣∣≤ b
)
.

We emphasize that these types of rare events are difficult to analyze with the tools developed
previously. In particular, the sample path LDP proved in Gantert (1998) is w.r.t. the L1 topol-
ogy. Since the closure of the sets in (4.1) w.r.t. the L1 topology contains the zero function,
the LDP upper bound would not provide any information.

Functionals like (4.1) appear in actuarial models, in case excessively large insurance claims
are reinsured and therefore do not play a role in the ruin of an insurance company. Asmussen
and Pihlsgård (2005), for example, studied various estimates of infinite-time ruin probabil-
ities with analytic methods. Rhee, Blanchet and Zwart (2019) studied the finite-time ruin
probability, using probabilistic techniques in case of regularly varying Lévy measures and
confirmed that the conventional wisdom “the principle of a single big jump” can be extended
to “the principle of the minimal number of big jumps” in such a context. Here we show that
a similar result—with subtle differences—can be obtained in case the Lévy measure has a
Weibull tail.
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Define the function φ :D →R
2 as

φ(ξ) = (φ1(ξ), φ2(ξ)
)
�
(

sup
t∈[0,1]

ξ(t), sup
t∈[0,1]
∣∣ξ(t) − ξ(t−)

∣∣).
In order to apply Corollary 3.1, we will validate that φ is Lipschitz continuous and that
I ′(x, y) � inf{ξ∈D:φ(ξ)=(x,y)} I (ξ) is a good rate function.

For the Lipschitz continuity of φ, we claim that each component of φ is Lipschitz
continuous. We first examine φ1. Let ξ, ζ ∈ D and suppose w.l.o.g. that supt∈[0,1] ξ(t) >

supt∈[0,1] ζ(t). For an arbitrary nondecreasing homeomorphism λ : [0,1] → [0,1],∣∣φ1(ξ) − φ1(ζ )
∣∣= ∣∣∣ sup

t∈[0,1]
ξ(t) − sup

t∈[0,1]
ζ(t)
∣∣∣= ∣∣∣ sup

t∈[0,1]
ξ(t) − sup

t∈[0,1]
ζ ◦ λ(t)

∣∣∣
≤ sup

t∈[0,1]
∣∣ξ(t) − ζ ◦ λ(t)

∣∣≤ sup
t∈[0,1]
∣∣ξ(t) − ζ ◦ λ(t)

∣∣∨ ∣∣λ(t) − t
∣∣.(4.2)

Taking the infimum over λ, we conclude that∣∣φ1(ξ) − φ1(ζ )
∣∣≤ inf

λ∈

sup

t∈[0,1]
{∣∣ξ(t) − ζ

(
λ(t)
)∣∣∨ ∣∣λ(t) − t

∣∣}= dJ1(ξ, ζ ).

Therefore, φ1 is Lipschitz with the Lipschitz constant 1.
Now, in order to prove that φ2(ξ) is Lipschitz, fix two distinct paths ξ, ζ ∈ D and assume

w.l.o.g. that φ2(ζ ) > φ2(ξ). Let c � φ2(ζ ) − φ2(ξ) > 0, and let t∗ ∈ [0,1] be the maximum
jump time of ξ , that is, φ2(ξ) = |ξ(t∗) − ξ(t∗−)|. For any ε > 0 there exists λ∗ so that

(4.3)
dJ1(ξ, ζ ) � inf

λ∈


{‖ξ − ζ ◦ λ‖∞ ∨ ‖λ − e‖∞
}≥ ∥∥ξ − ζ ◦ λ∗∥∥∞ ∨ ∥∥λ∗ − e

∥∥∞ − ε.

≥ ∣∣ξ (t∗)− ζ ◦ λ∗(t∗)∣∣∨ ∣∣ξ (t∗−)− ζ ◦ λ∗(t∗−)∣∣− ε.

From the general inequality |a − b| ∨ |c − d| ≥ 1
2(|a − c| − |b − d|),∣∣ξ (t∗)− ζ ◦ λ∗(t∗)∣∣∨ ∣∣ξ(t1−) − ζ ◦ λ∗(t∗−)∣∣

≥ 1

2

(∣∣ξ (t∗)− ξ
(
t∗−)∣∣− ∣∣ζ ◦ λ∗(t∗)− ζ ◦ λ∗(t∗−)∣∣)

= 1

2

(
φ2(ξ) − φ2(ζ )

)= c/2.

(4.4)

In view of (4.3) and (4.4), dJ1(ξ, ζ ) ≥ 1
2 |φ(ξ) − φ(ζ )| − ε. Since ε is arbitrary, we get the

desired Lipschitz bound with Lipschitz constant 2. Therefore, |φ(ξ) − φ(ζ )| = |φ1(ξ) −
φ1(ζ )| ∨ |φ2(ξ) − φ2(ζ )| ≤ 2dJ1(ξ, ζ ) and hence, φ is Lipschitz with Lipschitz constant 2.

Now, we claim that I ′ is of the following form:

(4.5) I ′(c, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌊
c

b

⌋
bα +
(
c −
⌊

c

b

⌋
b

)α

if 0 < b ≤ c,

0 if b = c = 0,

∞ otherwise.

Note first that (4.5) is obvious except for the first case, and hence, we will assume that 0 < b ≤
c from now on. Note also that I ′(c, b) = inf{I (ξ) : ξ ∈ D�∞, φ(ξ) = (c, b)} since I (ξ) = ∞
if ξ /∈ D�∞. Set C � {ξ ∈ D�∞, (c, b) = φ(ξ)} and remember that any ξ ∈ D�∞ admits the
following representation:

(4.6) ξ =
∞∑
i=1

xi1[ui,1],
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where ui’s are distinct in (0,1) and xi ’s are nonnegative and sorted in a decreasing order.
Consider a step function ξ0 ∈ C, with 
 c

b
� jumps of size b and one jump of size c − 
 c

b
�b, so

that ξ0 =∑
 c
b
�

i=1 b1[ui,1] + (c − 
 c
b
�)1[u
 c

b
�+1,1]. Clearly, φ(ξ0) = (c, b) and I (ξ0) = 
 c

b
�bα +

(c − 
 c
b
�b)α . Since ξ0 ∈ C, the infimum of I over C should be at most I (ξ0) that is, I (ξ0) ≥

I ′(c, b).
To prove that ξ0 is the minimizer of I over C, we will show that I (ξ) ≥ I (ξ0) for any

ξ =∑∞
i=1 xi1[ui,1] ∈ C by constructing ξ ′ such that I (ξ) ≥ I (ξ ′) while I (ξ ′) = I (ξ0). There

has to be an integer k such that x′
k �∑∞

i=k xi ≤ b. Let ξ1 �∑k
i=1 x1

i 1[ui,1] where x1
i is the

ith largest element of {x1, . . . , xk−1, x
′
k}. Then, ξ1 ∈ C and I (ξ1) ≤ I (ξ) due to the sub-

additivity of x 
→ xα . Now, given ξj =∑k
i=1 x

j
i 1[ui,1], we construct ξj+1 as follows. Find

the first l such that x
j
l < b. If x

j
l = 0 or x

j
l+1 = 0, set ξj+1 � ξj . Otherwise, find the first

m such that x
j
m+1 = 0 and merge the lth jump and the mth jump. More specifically, set

x
j+1
l � x

j
l + x

j
m ∧ (b − x

j
l ), x

j+1
m � x

j
m − x

j
m ∧ (b − x

j
l ), x

j+1
i � x

j
i for i �= l,m and ξj+1 �∑k

i=1 x
j+1
i 1[ui,1]. Note that x

j+1
l + x

j+1
m = x

j
l + x

j
m while either x

j+1
l = b or x

j+1
m = 0. That

is, compared to ξj , ξj+1 has either one less jump or one more jump with size b, while the total
sum of the jump sizes and the maximum jump size remain the same. From this observation
and the concavity of x 
→ xα , it is straightforward to check that I (ξj+1) ≤ I (ξ j ). By iterating
this procedure k times, we arrive at ξ ′ � ξk such that all the jump sizes of ξ ′ are b, or there
is only one jump whose size is not b. From this, we see that ξk has to coincide with ξ0.
We conclude that I (ξ) ≥ I (ξ1) ≥ · · · ≥ I (ξk) = I (ξ ′) = I (ξ0), proving that ξ0 is indeed a
minimizer.

Now we check that 
I ′(γ ) � {(c, b) : I ′(c, b) ≤ γ } is compact for each γ ∈ [0,∞) so
that I ′ is a good rate function. It is clear that 
I ′(γ ) is bounded. To see that 
I ′(γ ) is
closed, suppose that (c1, b1) /∈ 
I ′(γ ). In case 0 < b1 < c1, note that I ′ can be written as
I ′(c, b) = bα{(c/b − 
c/b�)α + 
c/b�}, from which it is easy to see that I ′ is continuous at
such (c1, b1)’s. Therefore, one can find an open ball around (c1, b1) in such a way that it
doesn’t intersect with 
I ′(γ ). By considering the cases c1 < b1, b1 = 0, b1 = c1 separately,
the rest of the cases are straightforward to check. We thus conclude that I ′ is a good rate
function. Now we can apply Corollary 3.1. Note that

inf
(x,y)∈[c,∞)×[0,b] I

′(x, y) = inf
(x,y)∈(c,∞)×[0,b)

I ′(x, y) = I ′(c, b).

That is, the large deviation lower and upper bound coincide and hence,

lim
n→∞

log P(supt∈[0,1] X̄n(t) ≥ c, supt∈[0,1] |X̄n(t) − X̄n(t−)| ≤ b)

L(n)nα

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⌊
c

b

⌋
bα +
(
c −
⌊

c

b

⌋
b

)α

if 0 < b ≤ c,

0 if b = c = 0,

∞ otherwise.

From the expression of the rate function, it can be inferred that the most likely way level c is
reached is due to 
 c

b
� jumps of size b and one jump of size (c − 
 c

b
�b). If we compare this

with the insights obtained from the case of truncated regularly varying tails in Rhee, Blanchet
and Zwart (2019), we see that the total number of jumps is identical, but the size of the jumps
are deterministic and nonidentical, while in the regularly varying case, they are random and
identically distributed.

5. Proofs. This section provides technical proofs.
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5.1. Lower semicontinuity of I and I d . Recall the definition of I in (2.3) and I d in
(2.11).

LEMMA 5.1. I and I d are lower semicontinuous, and hence, rate functions.

PROOF. We start with I . To show that the sub-level sets 
I(γ ) are closed for each γ <

∞, let ξ be any given path that does not belong to 
I(γ ). We will show that there exists an
ε > 0 such that dJ1(ξ,
I (γ )) ≥ ε. Note that 
I(γ )c = (A ∩ B ∩ C ∩ D)c = (Ac) ∪ (A ∩
Bc) ∪ (A ∩ B ∩ Cc) ∪ (A ∩ B ∩ C ∩ Dc) where

A = {ξ ∈D : ξ(0) = 0 and ξ(1) = ξ(1−)
}
, B = {ξ ∈ D : ξ is nondecreasing},

C = {ξ ∈ D : ξ is a pure jump function}, D =
{
ξ ∈ D : ∑

t∈[0,1]

(
ξ(t) − ξ(t−)

)α ≤ γ

}
.

For ξ ∈ Ac, we will show that dJ1(ξ,
I (γ )) ≥ δ where δ = 1
2 max{|ξ(0)|, |ξ(1) − ξ(1−)|}.

Suppose not so that there exists ζ ∈ 
I (γ ) such that dJ1(ξ, ζ ) < δ. Then |ζ(0)| > |ξ(0)| −
2δ and |ζ(1) − ζ(1−)| > |ξ(1) − ξ(1−)| − 2δ. That is, max{|ζ(0)|, |ζ(1) − ζ(1−)|} >

max{|ξ(0)| − 2δ, |ξ(1) − ξ(1−)| − 2δ} = 0. Therefore, ζ ∈ Ac, and hence, I (ζ ) = ∞, which
contradicts the assumption that ζ ∈ 
I (γ ).

If ξ ∈ A∩Bc, there are Ts < Tt such that c � ξ(Ts)− ξ(Tt ) > 0. We claim that dJ1(ξ, ζ ) ≥
c/2 if ζ ∈ 
I (γ ). Suppose that this is not the case and there exists ζ ∈ 
I(γ ) such that
dJ1(ξ, ζ ) < c/2. Let λ be a nondecreasing homeomorphism λ : [0,1] → [0,1] such that ‖ζ ◦
λ−ξ‖∞ < c/2, in particular, ζ ◦λ(Ts) > ξ(Ts)−c/2 and ζ ◦λ(Tt ) < ξ(Tt )+c/2. Subtracting
the latter inequality from the former, we get ζ ◦λ(Ts)−ζ ◦λ(Tt ) > ξ(Ts)−ξ(Tt )−c = 0. That
is, ζ is not nondecreasing, which is contradictory to the assumption ζ ∈ 
I(γ ). Therefore,
the claim has to be the case.

If ξ ∈ A ∩ B ∩ Cc, there exists an interval [Ts, Tt ] so that ξ is continuous and c �
ξ(Tt ) − ξ(Ts) > 0. Pick δ small enough so that (c − 2δ)(2δ)α−1 > γ . We will show that
dJ1(ξ,
I (γ )) ≥ δ. Suppose that ζ ∈ 
I (γ ) and dJ1(ζ, ξ) < δ, and let λ be a nondecreasing
homeomorphism such that ‖ζ ◦ λ − ξ‖∞ < δ. Note that this implies that each of the jump
sizes of ζ ◦ λ in [Ts, Tt ] has to be less than 2δ. On the other hand, ζ ◦ λ(Tt ) ≥ ξ(Tt ) − δ and
ζ ◦ λ(Ts) ≤ ξ(Ts) + δ, which in turn implies that ζ ◦ λ(Tt ) − ζ ◦ λ(Ts) ≥ c − 2δ. Since ζ ◦ λ

is a nondecreasing pure jump function,

c − 2δ ≤ ζ ◦ λ(Tt ) − ζ ◦ λ(Ts)

= ∑
t∈(Ts,Tt ]

(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)

= ∑
t∈(Ts,Tt ]

(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)α(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)1−α

≤ ∑
t∈(Ts,Tt ]

(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)α
(2δ)1−α.

That is,
∑

t∈(Ts,Tt ](ζ ◦ λ(t) − ζ ◦ λ(t−))α ≥ (2δ)α−1(c − 2δ) > γ , which is contradictory to
our assumption that ζ ∈ 
I(γ ). Therefore, dJ1(ξ,
I (γ )) ≥ δ.

Finally, let ξ ∈ A ∩ B ∩ C ∩ Dc. This implies that ξ admits the following represen-
tation: ξ = ∑∞

i=1 xi1[ui,1] where ui’s are all distinct in (0,1) and
∑∞

i=1 xα
i > γ . Choose

k large enough and δ small enough so that
∑k

i=1(xi − 2δ)α > γ . We will show that
dJ1(ξ,
I (γ )) ≥ δ. Suppose that this is not the case. That is, there exists ζ ∈ 
I(γ ) so that
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dJ1(ξ, ζ ) < δ. Let λ be a nondecreasing homeomorphism such that ‖ζ ◦ λ − ξ‖∞ < δ. Thus
for each i ∈ {1, . . . , k}, ζ ◦ λ(ui) − ζ ◦ λ(ui−) ≥ ξ(ui) − ξ(ui−) − 2δ = xi − 2δ, and hence,

I (ζ ) = ∑
t∈[0,1]

(
ζ ◦ λ(ti) − ζ ◦ λ(ti−)

)α ≥
k∑

i=1

(
ζ ◦ λ(ui) − ζ ◦ λ(ui−)

)≥ k∑
i=1

(xi − 2δ)α > γ,

which contradicts the assumption that ζ ∈ 
I(γ ).
I d is lower semicontinuous since it is a sum of lower semicontinuous functions. �

5.2. Proof of Proposition 2.1. PROOF OF PROPOSITION 2.1. We start with the ex-
tended large deviation upper bound. For any measurable set A,

P(Xn ∈ A) = P
(
Xn ∈ A,d

(
Xn,Y

k
n

)≤ ε
)+ P
(
Xn ∈ A,d

(
Xn,Y

k
n

)
> ε
)

≤ P
(
Y k

n ∈ Aε)︸ ︷︷ ︸
�(I)

+P
(
d
(
Xn,Y

k
n

)
> ε
)︸ ︷︷ ︸

�(II)

.(5.1)

From the principle of the largest term and (i),

lim sup
n→∞

log P(Xn ∈ A)

an

≤ max
{
− inf

x∈A2ε
Ik(x), lim sup

n→∞
1

an

log P
(
d
(
Xn,Y

k
n

)
> ε
)}

.

Now letting k → ∞ and then ε → 0, (ii) and (iv) lead to

lim sup
n→∞

1

an

log P(Xn ∈ A) ≤ − lim
ε→0

inf
x∈Aε

I (x),

which is the upper bound of the extended LDP.
Turning to the lower bound, note that the lower bound is trivial if infx∈A◦ I (x) = ∞. There-

fore, we focus on the case infx∈A◦ I (x) < ∞. Consider an arbitrary but fixed δ ∈ (0,1). In
view of (iii) and (iv), one can pick ε > 0 and k ≥ 1 in such a way that

(5.2)

− inf
x∈A◦ I (x) ≤ − inf

x∈A−ε
Ik(x) + δ and

lim sup
n→∞

log P(d(Xn,Y
k
n ) > ε)

an

≤ − inf
x∈A◦ I (x) − 1.

Hence

(5.3) lim sup
n→∞

log P(d(Xn,Y
k
n ) > ε)

an

≤ − inf
x∈A−ε

Ik(x) + δ − 1.

Now, from (5.3) and the lower bound of the assumed extended LDP for Y k
n , one can easily

verify that

(5.4)
P(d(Xn,Y

k
n ) > ε)

P(Y k
n ∈ A−ε)

→ 0

as n → ∞. Using (5.4) and the first inequality of (5.2),

lim inf
n→∞

1

an

log P(Xn ∈ A) ≥ lim inf
n→∞

1

an

log P
(
Y k

n ∈ A−ε, d
(
Xn,Y

k
n

)≤ ε
)

≥ lim inf
n→∞

1

an

log
(
P
(
Y k

n ∈ A−ε)− P
(
d
(
Xn,Y

k
n

)
> ε
))

= lim inf
n→∞

1

an

log
(

P
(
Y k

n ∈ A−ε)(1 − P(d(Xn,Y
k
n ) > ε)

P(Y k
n ∈ A−ε)

))
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= lim inf
n→∞

1

an

log P
(
Y k

n ∈ A−ε)
≥ − inf

x∈A−ε
Ik(x) ≥ − inf

x∈A
I (x) − δ.

Since δ was arbitrary in (0,1), the lower bound is proved by letting δ → 0. �

5.3. Proof of Lemma 2.1. We prove Lemma 2.1 in several steps. Before we proceed,
we introduce some notation and a distributional representation of the compound Poisson
processes Yn. The following representation for the time-scaled compound Poisson process is
a straightforward modification of the distributional representation on page 305 of Lindskog,
Resnick and Roy (2014); see also exercise 5.4 on page 163 of Resnick (2007):

∫
x≥1

xN
([0, n·] × dx

) D= Ñn∑
l=1

Q←
n (�l)1[Ul,1](·),

where �l = E1 +E2 +· · ·+El ; Ei ’s are i.i.d. and standard exponential random variables; Ul’s
are i.i.d. and uniform variables in [0,1]; Ñn = Nn([0,1] × [1,∞)); Nn =∑∞

l=1 δ(Ul,Q
←
n (�l)),

where δ(x,y) is the Dirac measure concentrated on (x, y); Qn(x) � nν[x,∞), and Q←
n (y) �

inf{s > 0 : nν[s,∞) < y}. It should be noted that Ñn is the largest l such that �l ≤ nν1,
where ν1 � ν[1,∞), and hence, Ñn ∼ Poisson(nν1). Recall the definition of J̄ k

n —the pro-
cess which keeps (up to) the k biggest Zi’s among Z1, . . . ,ZN(n). From this and the obser-
vation that Q←

n (�l) is decreasing in l, we conclude that J̄ k
n has the following distributional

representation:

J̄ k
n (·) D= 1

n

k∑
i=1

Q←
n (�i)1[Ui,1](·)

︸ ︷︷ ︸
�Ĵ

�k
n (·)

− 1

n
1{Ñn < k}

k∑
i=Ñn+1

Q←
n (�i)1[Ui,1](·)

︸ ︷︷ ︸
�J̌

�k
n (·)

.

Roughly speaking, (Q←
n (�1)/n, . . . ,Q←

n (�k)/n) represents the k largest jump sizes of
Ȳn, and Ĵ�k

n can be regarded as the process obtained by keeping only the k largest
jumps of Ȳn while disregarding the rest. Lemma 5.2 and Corollary 5.1 prove an LDP for
(Q←

n (�1)/n, . . . ,Q←
n (�k)/n,U1, . . . ,Uk). Subsequently, Lemma 5.3 yields a sample path

LDP for Ĵ�k
n . Finally, Lemma 2.1 is proved by showing that J̄ k

n satisfies the same LDP as the
one satisfied by Ĵ�k

n .

LEMMA 5.2. (Q←
n (�1)/n,Q←

n (�2)/n, . . . ,Q←
n (�k)/n) satisfies a large deviation

principle in R
k+ with normalization L(n)nα , and with good rate function

(5.5) Ǐk(x1, . . . xk) =

⎧⎪⎪⎨
⎪⎪⎩

k∑
i=1

xα
i if x1 ≥ x2 ≥ · · · ≥ xk ≥ 0,

∞ otherwise.

PROOF. It is straightforward to check that Ǐk is a good rate function. For each f ∈
Cb(R

k+), let

(5.6) 
∗
f � lim

n→∞
1

L(n)nα
log
(
EeL(n)nαf (Q←

n (�1)/n,Q←
n (�2)/n,...,Q←

n (�k)/n)).
Applying Bryc’s inverse Varadhan lemma (see, e.g., Theorem 4.4.13 of Dembo and Zeitouni
(2010)), we can show that (Q←

n (�1)/n, . . . ,Q←
n (�k)/n) satisfies a large deviation principle
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with speed L(n)nα and good rate function Ǐk(x) if

(5.7) 
∗
f = sup

x∈Rk+

{
f (x) − Ǐk(x)

}

for every f ∈ Cb(R
k+).

To prove (5.7), fix f ∈ Cb(R
k+) and let M be a constant such that |f (x)| ≤ M for all x ∈

R
k+. We first claim that the supremum of 
f � f − Ǐk is finite and attained. Pick a constant

R so that Rα > 2M . Since 
f is upper semicontinuous on [0,R]k , which is compact, there
exists a maximizer x̂ � (x̂1, . . . , x̂k) of 
f on [0,R]k . Since

sup
x∈[0,R]k

{
f (x) − Ǐk(x)

}≥ sup
x∈[0,R]k

f (x) ≥ −M

and

sup
x∈Rk+\[0,R]k

{
f (x) − Ǐk(x)

}
< sup

x∈Rk+\[0,R]k
{
f (x) − 2M

}≤ −M,

x̂ is, in fact, a global maximizer. Now, it is enough to prove that

(5.8) 
f (x̂) ≤ lim inf
n→∞

1

L(n)nα
logϒf (n) and lim sup

n→∞
1

L(n)nα
logϒf (n) ≤ 
f (x̂),

where

ϒf (n) �
∫
R

k+
eL(n)nαf (Q←

n (y1)/n,...,Q←
n (y1+···+yk)/n)e−∑k

i=1 yi dy1 · · ·dyk.

We start with the lower bound—that is, the first inequality of (5.8). Fix an arbitrary ε > 0.
Since 
f is continuous on A∞ � {(x1, . . . , xk) ∈ R

k+ : x1 ≥ · · · ≥ xk}, there exists δ > 0 such
that x ∈ B(x̂;2

√
kδ) ∩ A∞ implies 
f (x) ≥ 
f (x̂) − ε. Since

∏k
j=1[x̂j + δ, x̂j + 2δ] ⊆

B(x̂;2
√

kδ) and Q←
n (·) is nonincreasing, Q←

n (
∑j

i=1 yi)/n ∈ [x̂j + δ, x̂j + 2δ] for all j =
1, . . . , k implies (Q←

n (y1)/n, . . . ,Q←
n (y1 + · · · + yk)/n) ∈ B(x̂;2

√
kδ), and hence,

(5.9) 
f

(
Q←

n (y1)/n, . . . ,Q←
n (y1 + · · · + yk)/n

)≥ 
f (x̂) − ε.

That is, if we define D
j
n(= D

y1,...,yj−1
n ) as

Dj
n �
{
yj ∈ R+ : Q←

n

( j∑
i=1

yi

)/
n ∈ [x̂j + δ, x̂j + 2δ]

}
,

then (5.9) holds for (y1, . . . , yk)’s such that yj ∈ D
j
n for j = 1, . . . , k. Therefore,

ϒf (n) =
∫
R

k+
e
L(n)nα
f (Q←

n (y1)/n,...,Q←
n (y1+···+yk)/n)+L(n)

∑k
i=1 Q←

n (
∑i

j=1 yj )α−∑k
i=1 yi dy1 · · ·dyk

≥
∫
D1

n

· · ·
∫
Dk

n

e
L(n)nα
f (Q←

n (y1)/n,...,Q←
n (y1+···+yk)/n)+L(n)

∑k
i=1 Q←

n (
∑i

j=1 yj )α−∑k
i=1 yi dyk · · ·dy1

≥
∫
D1

n

· · ·
∫
Dk

n

eL(n)nα(
f (x̂1,...,x̂k)−ε)e
L(n)
∑k

i=1 Q←
n (
∑i

j=1 yj )α−∑k
i=1 yi dyk · · ·dy1

≥
∫
D1

n

· · ·
∫
Dk

n

eL(n)nα(
f (x̂1,...,x̂k)−ε)eL(n)
∑k

i=1(n(x̂i+δ))α−∑k
i=1 yi dyk · · ·dy1

= eL(n)nα(
f (x̂1,...,x̂k)−ε)︸ ︷︷ ︸
�(I)n

eL(n)
∑k

i=1(n(x̂i+δ))α︸ ︷︷ ︸
�(II)n

∫
D1

n

· · ·
∫
Dk

n

e−∑k
i=1 yi dyk · · ·dy1︸ ︷︷ ︸

�(III)n

,

(5.10)
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where the first equality is obtained by adding and subtracting L(n)
∑k

i=1 Q←
n (
∑i

j=1 yj )
α to

the exponent of the integrand. Note that by the construction of the D
j
n’s,

Qn

(
n(x̂j + 2δ)

)≤ y1 + · · · + yj ≤ Qn

(
n(x̂j + δ)

)
on the domain of the integral in (III)n, and hence,

(5.11) (III)n ≥ e−Qn(n(x̂k+δ))
k∏

i=1

(
Qn

(
n(x̂i + δ)

)− Qn

(
n(x̂i + 2δ)

))
.

Since Qn(n(x̂k + δ)) → 0 and L(n(x̂i + δ))nα(x̂i + δ)α − L(n(x̂i + 2δ))nα(x̂i + 2δ)α →
−∞ for each i,

(5.12)

lim inf
n→∞

1

L(n)nα
log (III)n

≥ lim inf
n→∞

1

L(n)nα

(−Qn

(
n(x̂k + δ)

))

+
k∑

i=1

lim inf
n→∞

1

L(n)nα
log
(
Qn

(
n(x̂i + δ)

)− Qn

(
n(x̂i + 2δ)

))

=
k∑

i=1

lim inf
n→∞

1

L(n)nα

× log
(
ne−L(n(x̂i+δ))nα(x̂i+δ)α (1 − eL(n(x̂i+δ))nα(x̂i+δ)α−L(n(x̂i+2δ))nα(x̂i+2δ)α ))

=
k∑

i=1

lim inf
n→∞

(−L(n(x̂i + δ))nα(x̂i + δ)α

L(n)nα

+ log(1 − eL(n(x̂i+δ))nα(x̂i+δ)α−L(n(x̂i+2δ))nα(x̂i+2δ)α )

L(n)nα

)

= −
k∑

i=1

(x̂i + δ)α.

From this, along with

lim inf
n→∞

1

nαL(n)
log (I)n = lim inf

n→∞
1

nαL(n)
log
(
enαL(n)(
f (x̂1,...,x̂k)−ε))= 
f (x̂1, . . . , x̂k) − ε

and

lim inf
n→∞

1

nαL(n)
log (II)n = lim inf

n→∞
1

nαL(n)
log
(
eL(n)

∑k
i=1(n(x̂i+δ))α )= k∑

i=1

(x̂i + δ)α,

we arrive at

(5.13) 
f (x̂) − ε ≤ lim inf
n→∞

1

L(n)nα
logϒf (n).

Letting ε → 0, we obtain the lower bound of (5.8).
Turning to the upper bound, consider

DR,n �
{
(y1, y2, . . . , yk) : Q←

n (y1)/n ≤ R
}
,



2716 BAZHBA, BLANCHET, RHEE AND ZWART

and decompose ϒf (n) into two parts:

ϒf (n) =
∫
DR,n

eL(n)nαf (Q←
n (x1)/n,...,Q←

n (x1+···+xk)/n)e−∑k
i=1 xi dx1 . . . dxk

+
∫
Dc

R,n

eL(n)nαf (Q←
n (x1)/n,...,Q←

n (x1+···+xk)/n)e−∑k
i=1 xi dx1 . . . dxk.

We first evaluate the integral over Dc
R,n. Since |f | ≤ M ,

(5.14)

∫
Dc

R,n

eL(n)nαf (Q←
n (x1)/n,...,Q←

n (x1+···+xk)/n)e−∑k
i=1 xi dx1 · · ·dxk

=
∫

eL(n)nαf (Q←
n (x1)/n,...,Q←

n (x1+···+xk)/n)e−∑k
i=1 xi1{Q←

n (x1)/n>R} dx1 · · ·dxk

=
∫

eL(n)nαf (Q←
n (x1)/n,...,Q←

n (x1+···+xk)/n)e−∑k
i=1 xi1{x1≤Qn(nR)} dx1 · · ·dxk

≤
∫

eL(n)nαMe−∑k
i=1 xi1{x1≤Qn(nR)} dx1 · · ·dxk ≤ eL(n)nαM(1 − e−Qn(nR))

≤ eL(n)nαMQn(nR).

Turning to the integral over DR,n, fix ε > 0 and pick {x̌(1), . . . , x̌(m)} ⊂ R
k+ in such a way

that {∏k
j=1[x̌(l)

j − ε, x̌
(l)
j + ε]}l=1,...,m covers AR . Set

HR,n,l �
{
(y1, . . . , yk) ∈ R

k+ :
Q←

n (y1)/n ∈ [x̌(l)
1 − ε, x̌

(l)
1 + ε

]
, . . . ,Q←

n (y1 + · · · + yk)/n ∈ [x̌(l)
k − ε, x̌

(l)
k + ε

]}
.

We see that DR,n ⊆⋃m
l=1 HR,n,l , and hence,∫

DR,n

eL(n)nαf (Q←
n (y1)/n,...,Q←

n (y1+···+yk)/n)e−∑k
i=1 yi dy1 · · ·dyk

≤
m∑

l=1

∫
HR,n,l

eL(n)nαf (Q←
n (y1)/n,...,Q←

n (y1+···+yk)/n)e−∑k
i=1 yi dy1 · · ·dyk

=
m∑

l=1

∫
HR,n,l

eL(n)nα
f (Q←
n (y1)/n,...,Q←

n (y1+···+yk)/n)

× e
L(n)
∑k

i=1 Q←
n (
∑i

j=1 yj )α−∑k
i=1 yi dy1 · · ·dyk

≤
m∑

l=1

∫
HR,n,l

eL(n)nα
f (x̂1,x̂2,...,x̂k)e
L(n)
∑k

i=1 Q←
n (
∑i

j=1 yj )α−∑k
i=1 yi dy1 · · ·dyk

=
m∑

l=1

eL(n)nα
f (x̂1,x̂2,...x̂k)
∫
HR,n,l

e
L(n)
∑k

i=1 Q←
n (
∑i

j=1 yj )α−∑k
i=1 yi dy1 · · ·dyk︸ ︷︷ ︸

�H(R,n,l)

,

(5.15)

where the first equality is obtained by adding and subtracting L(n)
∑k

i=1 Q←
n (
∑i

j=1 yj )
α to

the exponent of the integrand. Since

Q←
n

(
i∑

j=1

yj

)/
n ∈ [x̌(l)

i − ε, x̌
(l)
i + ε

] =⇒ Qn

(
n
(
x̌

(l)
i + ε

))≤ i∑
j=1

yj ≤ Qn

(
n
(
x̌

(l)
i − ε

))
,
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we can bound the integral in (5.15) as follows:

(5.16)

∫
HR,n,l

e
L(n)
∑k

i=1 Q←
n (
∑i

j=1yj )α−∑k
i=1 yi dy1 · · ·dyk

≤
∫
HR,n,l

eL(n)
∑k

i=1(n(x̌
(l)
i −ε))α−∑k

i=1 yi dy1 . . . dyk

≤
∫
HR,n,l

eL(n)
∑k

i=1(n(x̌
(l)
i −ε))α−Qn(n(x̌

(l)
k +ε)) dy1 . . . dyk

= eL(n)
∑k

i=1(n(x̌
(l)
i −ε))α−Qn(n(x̌

(l)
k +ε))

∫
HR,n,l

dy1 . . . dyk

= eL(n)nα∑k
i=1(x̌

(l)
i −ε)α−Qn(n(x̌

(l)
k +ε))

k∏
i=1

(
Qn

(
n
(
x̌

(l)
i − ε

))− Qn

(
n
(
x̌

(l)
i + ε

)))
.

With (5.15) and (5.16), a straightforward calculation as in the lower bound leads to

lim sup
n→∞

1

L(n)nα
log H(R,n, l)

≤ lim sup
n→∞

1

L(n)nα
log
(
eL(n)nα
f (x̂1,x̂2,...x̂k)

)
+ lim sup

n→∞
1

L(n)nα
log
(
eL(n)nα∑k

i=1(x̂
(l)
i −ε)α−Qn(n(x̂

(l)
k +ε)))

+
k∑

i=1

lim sup
n→∞

1

L(n)nα
log
(
Qn

(
n
(
x̂

(l)
i − ε

))− Qn

(
n
(
x̂

(l)
i + ε

)))
= 
f (x̂1, . . . , x̂k).

Therefore,

lim sup
n→∞

1

L(n)nα
logϒf (n)

= lim sup
n→∞

1

L(n)nα
log
(
eL(n)nαMQn(nR)

)∨ max
{

lim sup
n→∞

1

L(n)nα
log H(R,n, l)

}

≤ (M − Rα)∨ 
f (x̂1, . . . , x̂k) = (M − Rα)∨ sup
x∈Rk+

{
f (x) − Ǐk(x)

}
.

Since R was arbitrary, we can send R → ∞ to arrive at the desired upper bound of (5.8). �

The following corollary is immediate from Lemma 5.2 and Theorem 4.14 of Ganesh,
O’Connell and Wischik (2004).

COROLLARY 5.1. (Q←
n (�1)/n, . . . ,Q←

n (�k)/n,U1, . . . ,Uk) satisfies a large deviation
principle in R

k+ × [0,1]k with speed L(n)nα and good rate function

(5.17) Îk(x1, . . . , xk, u1, . . . , uk) �

⎧⎪⎪⎨
⎪⎪⎩

k∑
i=1

xα
i if x1 ≥ x2 ≥ · · · ≥ xk and u1, . . . , uk ∈ [0,1],

∞ otherwise.

Recall that Ĵ�k
n = 1

n

∑k
i=1 Q←

n (�i)1[Ui,1] and rate function Ik defined in (2.6). We next

prove a sample path LDP for Ĵ�k
n .
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LEMMA 5.3. Ĵ�k
n satisfies the LDP in (D,TJ1) with speed L(n)nα and rate function Ik .

PROOF. First, we note that Ik is indeed a rate function since the sublevel sets of Ik equal
the intersection between the sublevel sets of I and a closed set D�k , and I is a rate function
(Lemma 5.1).

Next, we prove the LDP in D�k w.r.t. the relative topology induced by TJ1 . (Note that Ik

is a rate function in D�k as well.) Set Tk(x,u) �∑k
i=1 xi1[ui,1]. Since

inf
(x,u)∈T −1

k (ξ)

Îk(x, u) = Ik(ξ)

for ξ ∈ D�k , the LDP in D�k is established once we show that for any closed set F ⊆D�k ,

(5.18) lim sup
n→∞

1

L(n)nα
log P
(
Ĵ�k

n ∈ F
)≤ − inf

(x,u)∈T −1
k (F )

Îk(x, u),

and for any open set G ⊆ D�k ,

(5.19) − inf
(x,u)∈T −1

k (G)

Îk(x, u) ≤ lim inf
n→∞

1

L(n)nα
log P
(
Ĵ�k

n ∈ G
)
.

We start with the upper bound. Note that

lim sup
n→∞

1

L(n)nα
log P
(
Ĵ�k

n ∈ F
)

= lim sup
n→∞

1

L(n)nα
log P
((

Q←
n (�1), . . . ,Q

←
n (�k),U1, . . . ,Uk

) ∈ T −1
k (F )

)
≤ lim sup

n→∞
1

L(n)nα
log P
((

Q←
n (�1), . . . ,Q

←
n (�k),U1, . . . ,Uk

) ∈ T −1
k (F )−

)
≤ − inf

(x1,...,xk,u1,...,uk)∈T −1
k (F )−

Îk(x1, . . . , xk, u1, . . . , uk).

In view of (5.18), it is therefore enough for the upper bound to show that

inf
(x,u)∈T −1

k (F )

Îk(x, u) ≤ inf
(x,u)∈T −1

k (F )−
Îk(x, u).

To prove this, we proceed with proof by contradiction. Suppose that

(5.20) c � inf
(x,u)∈T −1

k (F )

Îk(x, u) > inf
(x,u)∈T −1

k (F )−
Îk(x, u).

Pick an ε > 0 in such a way that inf
(x,u)∈T −1

k (F )− Îk(x, u) < c − 2ε. Then there ex-

ists (x∗, u∗) ∈ T −1
k (F )− such that Îk(x

∗, u∗) < c − 2ε. Let Īk(x1, . . . , xk, u1, . . . , uk) �∑k
i=1 xα

i . Since Īk is continuous, one can find (x′, u′) = (x′
1, . . . , x

′
k, u

′
1, . . . , u

′
k) ∈ T −1

k (F )

sufficiently close to (x∗, u∗) so that Īk(x
′, u′) < c − ε. Note that for any permutation

p : {1, . . . , k} → {1, . . . , k}, (x′′, u′′) � (x′
p(1), . . . , x

′
p(k), u

′
p(1), . . . , u

′
p(k)) also belongs to

T −1
k (F ) and Īk(x

′′, u′′) = Īk(x
′, u′) due to the symmetric structure of Tk and Īk . If we pick

p so that x′
p(1) ≥ · · · ≥ x′

p(k), then Îk(x
′′, u′′) = Īk(x

′, u′) < c − ε ≤ inf
(x,u)∈T −1

k (F )
Îk(x, u),

which contradicts to (x′′, u′′) ∈ T −1
k (F ). Therefore, (5.20) cannot be the case, which proves

the upper bound.
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Turning to the lower bound, consider an open set G ⊆D�k .

lim inf
n→∞

1

L(n)nα
log P
(
Ĵ�k

n ∈ G
)

= lim inf
n→∞

1

L(n)nα
log P
((

Q←
n (�1), . . . ,Q

←
n (�k),U1, . . . ,Uk

) ∈ T −1
k (G)

)
≥ lim inf

n→∞
1

L(n)nα
log P
((

Q←
n (�1), . . . ,Q

←
n (�k),U1, . . . ,Uk

) ∈ T −1
k (G)◦

)
≥ − inf

(x1,...,xk,u1,...,uk)∈T −1
k (G)◦

Îk(x1, . . . , xk, u1, . . . , uk).

In view of (5.19), we are done if we prove that

(5.21) inf
(x,u)∈T −1

k (G)◦
Îk(x, u) ≤ inf

(x,u)∈T −1
k (G)

Îk(x, u).

Let (x, u) be an arbitrary point in T −1
k (G) so that Tk(x,u) ∈ G. We will show that there exists

(x∗, u∗) ∈ T −1
k (G)◦ such that Ik(x

∗, u∗) ≤ Ik(x, u). Note first that if ui ∈ {0,1} for some i,
then xi has to be 0 since G ⊆ D�k . This means that we can replace ui with an arbitrary
number in (0,1) without changing the value of Ik and Tk . Therefore, we assume w.l.o.g. that
ui > 0 for each i = 1, . . . , k. Now, suppose that ui = uj for some i �= j . Then one can find
(x′, u′) such that Tk(x

′, u′) = Tk(x,u) by setting(
x′, u′)� (x1, . . . , xi + xj︸ ︷︷ ︸, . . . , 0j︸︷︷︸, . . . , xk, u1, . . . , uij︸︷︷︸, . . . , u′

j︸︷︷︸, . . . , uk

)
,

ith coordinate j th coordinate k+ith coordinate k+j th coordinate

where u′
j is an arbitrary number in (0,1); in particular, we can choose u′

j so that u′
j �= ul

for l = 1, . . . , k. It is easy to see that Īk(x
′, u′) ≤ Îk(x, u). Now one can permute the coordi-

nates of (x′, u′) as in the upper bound to find (x′′, u′′) such that Tk(x
′′, u′′) = Tk(x,u) and

Îk(x
′′, u′′) ≤ Îk(x, u). Iterating this procedure until there is no i �= j for which ui = uj ,

we can find (x∗, u∗) such that Tk(x
∗, u∗) = Tk(x,u), u∗

i ’s are all distinct in (0,1), and
Ik(x

∗, u∗) ≤ Ik(x, u). Note that since Tk is continuous at (x∗, u∗), Tk(x
∗, u∗) ∈ G, and G

is open, we conclude that (x∗, u∗) ∈ T −1
k (G)◦. Therefore,

inf
(x,u)∈T −1

k (G)◦
Ik(x, u) ≤ Ik(x, u).

Since (x, u) was arbitrarily chosen in T −1
k (G), (5.21) is proved. Along with the upper bound,

this proves the LDP in D�k . Finally, since D�k is a closed subset of D, P(Ĵ�k
n /∈ D�k) = 0,

and Ik = ∞ on D \ D�k , Lemma 4.1.5 of Dembo and Zeitouni (2010) applies, proving the
desired LDP in D. �

Now we are ready to prove Lemma 2.1.

PROOF OF LEMMA 2.1. Recall that

J̄ k
n

D= 1

n

k∑
i=1

Q←
n (�i)1[Ui,1]

︸ ︷︷ ︸
=Ĵ

�k
n

− 1

n
1{Ñn < k}

k∑
i=Ñn+1

Q←
n (�i)1[Ui,1]

︸ ︷︷ ︸
=J̌

�k
n

.
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Let F be a closed set and note that

P
(
J̄ k

n ∈ F
)= P
(
Ĵ�k

n − J̌�k
n ∈ F

)
≤ P
(
Ĵ�k

n − J̌�k
n ∈ F,1

{
N(n) < k

}= 0
)+ P
(
1
{
N(n) < k

} �= 0
)

≤ P
(
Ĵ�k

n ∈ F
)+ P
(
N(n) < k

)
.

From Lemma 5.3,

lim sup
n→∞

log P(J̄ k
n ∈ F)

L(n)nα
≤ lim sup

n→∞
log P(Ĵ�k

n ∈ F)

L(n)nα
∨ lim sup

n→∞
log P(N(n) < k)

L(n)nα

≤ − inf
ξ∈F

Ik(ξ),

since lim supn→∞ 1
L(n)nα log P(N(n) < k) = −∞.

Turning to the lower bound, let G be an open set. Since the lower bound is trivial in case
infx∈G Ik(x) = ∞, we focus on the case infx∈G Ik(x) < ∞. In this case,

lim inf
n→∞

log P(J̄ k
n ∈ G)

L(n)nα
≥ lim inf

n→∞
log P(J̄ k

n ∈ G,N(n) ≥ k)

L(n)nα

= lim inf
n→∞

log P(Ĵ�k
n ∈ G,N(n) ≥ k)

L(n)nα

≥ lim inf
n→∞

1

L(n)nα
log
(
P
(
Ĵ�k

n ∈ G
)− P
(
N(n) < k

))

= lim inf
n→∞

1

L(n)nα
log
(

P
(
Ĵ�k

n ∈ G
)(

1 − P(N(n) < k)

P(Ĵ
�k
n ∈ G)

))

= lim inf
n→∞

1

L(n)nα

{
log
(
P
(
Ĵ�k

n ∈ G
))+ log

(
1 − P(N(n) < k)

P(Ĵ
�k
n ∈ G)

)}

= lim inf
n→∞

1

L(n)nα
log P
(
Ĵ�k

n ∈ G
)≥ − inf

ξ∈G
Ik(ξ).

The last equality holds since

(5.22) lim
n→∞

P(N(n) < k)

P(Ĵ
�k
n ∈ G)

= lim
n→∞

{
exp
(

log P(N(n) < k)

L(n)nα
− log P(Ĵ�k

n ∈ G)

L(n)nα

)}L(n)nα

= 0,

which in turn follows from

lim sup
n→∞

1

L(n)nα
log P
(
N(n) < k

)= −∞

and

lim sup
n→∞

−1

L(n)nα
log P
(
Ĵ�k

n ∈ G
)≤ inf

x∈G
Ik(x) < ∞. �

5.4. Proof of Lemma 2.2. PROOF OF LEMMA 2.2. Since the inequality is obvious if
infξ∈G I (ξ) = ∞, we assume that infξ∈G I (ξ) < ∞. Then, there exists a ξ0 ∈ G such that
I (ξ0) ≤ infξ∈G I (ξ)+δ. Since G is open, we can pick ε > 0 such that BJ1(ξ0;2ε) ⊆ G so that
BJ1(ξ0; ε) ⊆ G−ε . Note that since I (ξ0) < ∞, ξ0 has the representation ξ0 =∑∞

i=1 xi1[ui,1]
where xi ≥ 0 for all i = 1,2, . . ., and the ui’s all distinct in (0,1). Note also that since I (ξ0) =
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∑∞
i=1 xα

i < ∞ with α < 1,
∑∞

i=1 xi has to be finite as well. Thus, there exists K such that k ≥
K implies

∑∞
i=k+1 xi < ε. For these ε and K , we claim that (2.7) holds. For any given k ≥ K ,

let ξ1 �∑k
i=1 xi1[ui,1], then Ik(ξ1) ≤ I (ξ0) while dJ1(ξ0, ξ1) ≤ ‖ξ0 −ξ1‖∞ ≤∑∞

i=k+1 xi < ε.
That is, ξ1 ∈ BJ1(ξ0; ε) ⊆ G−ε . Therefore, infξ∈G−ε Ik(ξ) ≤ I (ξ1) ≤ I (ξ0) ≤ infξ∈G I (ξ)+δ.

�

5.5. Proof of Lemma 2.3. In our proof of Lemma 2.3, the following lemmas (Lemma 5.4
and Lemma 5.5) play key roles.

LEMMA 5.4. For each ε > δ > 0,

(5.23) lim sup
n→∞

1

L(n)nα
log P

(
max

1≤j≤2n

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)
≤ −(ε/3)α(ε/δ)1−α.

PROOF. We refine an argument developed in Jelenković and Momčilović (2003). Note
that for any s > 0 such that 1/s ≤ nδ,

(5.24) EesZ1{Z≤nδ} = EesZ1{Z≤nδ}1{Z≥ 1
s
} + EesZ1{Z≤nδ}1{Z< 1

s
} = (I ) + (II),

and

(5.25)

(I ) =
∫
[1/s,nδ]

esy dP(Z ≤ y) +
∫
(nδ,∞)

dP(Z ≤ y)

= [esyP(Z ≤ y)
](nδ)+
(1/s)− − s

∫
[1/s,nδ]

esyP(Z ≤ y)dy + P(Z > nδ)

= esnδP(Z ≤ nδ) − eP(Z < 1/s)

− s

∫
[1/s,nδ]

esy dy + s

∫
[1/s,nδ]

esyP(Z > y)dy + P(Z > nδ)

= esnδP(Z ≤ nδ) − eP(Z < 1/s) − esnδ + e

+ s

∫
[1/s,nδ]

esyP(Z > y)dy + P(Z > nδ)

= −esnδP(Z > nδ) + eP(Z ≥ 1/s) + s

∫
[1/s,nδ]

esyP(Z > y)dy + P(Z > nδ)

≤ s

∫
[1/s,nδ]

esyP(Z > y)dy + eP(Z ≥ 1/s) + P(Z > nδ)

≤ s

∫
[1/s,nδ]

esyP(Z > y)dy + s2(e + 1)EZ2,

where the last inequality is from P(Z ≥ nδ) ≤ P(Z ≥ 1/s) ≤ s2EZ2; while

(5.26) (II) ≤
∫ 1/s

0
esy dP(Z ≤ y) ≤

∫ 1/s

0

(
1 + sy + (sy)2)dP(Z ≤ y) ≤ 1 + sEZ + s2EZ2.

Therefore, from (5.24), (5.25) and (5.26), if 1/s ≤ nδ and s is sufficiently small,

EesZ1{Z≤nδ} ≤ s

∫ nδ

1
s

esyP(Z > y)dy + 1 + sEZ + s2(e + 2)EZ2

= s

∫ nδ

1
s

esy−q(y) dy + 1 + sEZ + s2(e + 2)EZ2

≤ snδesnδ−q(nδ) + 1 + sEZ + s2(e + 2)EZ2,

(5.27)
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where q(x) � − log P(X > x) = L(x)xα , and the last inequality is from the fact that esy−q(y)

is increasing over [1/s, nδ] due to the assumption that L(y)yα−1 is nonincreasing for suffi-
ciently large y’s. Now, from the Markov inequality,

P

( j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)

≤ P

(
exp

(
s

j∑
i=1

Zi1{Zi≤nδ}
)

> exp
(
s(nε + jEZ)

))

≤ exp
{−s(nε + jEZ) + j log

(
EesZ1{Z≤nδ})}

≤ exp
{−s(nε + jEZ) + j

(
snδesnδ−q(nδ) + sEZ + s2(e + 2)EZ2)}

= exp
{−snε + jsnδesnδ−q(nδ) + js2(e + 2)EZ2}

≤ exp
{−snε + 2n2sδesnδ−q(nδ) + 2ns2(e + 2)EZ2}

(5.28)

for j ≤ 2n, where the third inequality is from (5.27) and the generic inequality log(x+1) ≤ x.
Fix γ ∈ (0, (ε/δ)1−α) and set s = γ q(nε)

nε
. Note that 1/s → ∞ as n → ∞, while 1/s ≤ nδ for

sufficiently large n. From now on, we only consider sufficiently large n’s such that 1/s < nδ

and s is sufficiently small so that (5.27) and (5.28) are valid. To establish an upper bound for
(5.28), we next examine esnδ−q(nδ). Note that q(nε) = q(nδ)L(nε)

L(nδ)
(δ/ε)−α , and hence,

snδ − q(nδ) = γ q(nε)

nε
nδ − q(nδ) = −q(nδ)

(
1 − γ

L(nε)

L(nδ)
(δ/ε)1−α

)

and

(5.29) esnδ−q(nδ) ≤ e
−q(nδ)(1−γ

L(nε)
L(nδ)

(δ/ε)1−α)
.

Plugging this s(= γ q(nε)
nε

) into (5.28) along with (5.29),

max
0≤j≤2n

P

( j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)

≤ exp
{
−γ q(nε) + 2γ δnq(nε)

ε
e
−q(nδ)(1−γ

L(nε)
L(nδ)

(δ/ε)1−α) + 2γ 2(e + 2)EZ2

ε2

q(nε)2

n

}
.

Since

lim sup
n→∞

1

L(n)nα

2γ δnq(nε)

ε
e
−q(nδ)(1−γ

L(nε)
L(nδ)

(δ/ε)1−α) = 0

and

lim sup
n→∞

1

L(n)nα

2γ 2(e + 2)EZ2

ε2

q(nε)2

n
= 0,

we conclude that

lim sup
n→∞

1

L(n)nα
log max

0≤j≤2n
P

( j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)
= lim sup

n→∞
−γ q(nε)

L(n)nα
= −εαγ.
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From Etemadi’s inequality,

lim sup
n→∞

1

L(n)nα
log P

(
max

0≤j≤2n

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > 3nε

)

≤ lim sup
n→∞

1

L(n)nα
log

{
3 max

0≤j≤2n
P

( j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)}
= −εαγ.

Since this is true for any γ such that γ ∈ (0, (ε/δ)1−α), we arrive at the conclusion of the
lemma. �

LEMMA 5.5. For every ε, δ > 0,

lim sup
n→∞

1

L(n)nα
log P

(
sup

1≤j≤2n

j∑
i=1

(EZ − Zi1{Zi≤nδ}) > nε

)
= −∞.

PROOF. Note first that there is n0 such that E(Zi1{Zi>nδ}) ≤ ε
3 for n ≥ n0. For n ≥ n0

and j ≤ 2n,

P

( j∑
i=1

(EZ − Zi1{Zi≤nδ}) > nε

)
= P

( j∑
i=1

(EZ1{Z≤nδ} − Zi1{Zi≤nδ}) > nε − jEZ1{Z>nδ}
)

≤ P

( j∑
i=1

(EZ1{Z≤nδ} − Zi1{Zi≤nδ}) > nε − jε/3

)

≤ P

( j∑
i=1

(EZ1{Z≤nδ} − Zi1{Zi≤nδ}) >
nε

3

)
.

Let Y
(n)
i � E(Zi1{Zi≤nδ})−Zi1{Zi≤nδ}. Recall the definition of Z in Section 2.1 and note that

it is bounded from below. Furthermore, EY
(n)
i = 0, varY

(n)
i ≤ EZ2, and Y

(n)
i ≤ EZ almost

surely. From Bennet’s inequality,

P

( j∑
i=1

(EZ1{Zi≤nδ} − Zi1{Zi≤nδ}) >
nε

3

)

≤ exp
[
−j varY (n)

(EZ)2

{(
1 + nεEZ

3j varY (n)

)
log
(

1 + nεEZ

3j varY (n)

)
−
(

nεEZ

3j varY (n)

)}]

≤ exp
[
−j varY (n)

(EZ)2

{(
nεEZ

3j varY (n)

)
log
(

1 + nεEZ

3j varY (n)

)
−
(

nεEZ

3j varY (n)

)}]

≤ exp
[
−
{(

nε

3EZ

)
log
(

1 + nεEZ

3j varY (n)

)
−
(

nε

3EZ

)}]

≤ exp
[
−n

{(
ε

3EZ

)
log
(

1 + εEZ

6EZ2

)
−
(

ε

3EZ

)}]
for j ≤ 2n. Therefore, for n ≥ n0 and j ≤ 2n,

P

( j∑
i=1

(EZ − Zi1{Zi≤nδ}) > nε

)
≤ exp

[
−n

{(
ε

3EZ

)
log
(

1 + εEZ

6EZ2

)
−
(

ε

3EZ

)}]
.
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Now, from Etemadi’s inequality,

lim sup
n→∞

1

L(n)nα
log P

(
sup

1≤j≤2n

j∑
i=1

(EZ − Zi1{Zi≤nδ}) > 3nε

)

≤ lim sup
n→∞

1

L(n)nα
log

{
3 max

1≤j≤2n
P

( j∑
i=1

(EZ − Zi1{Zi≤nδ}) > nε

)}

≤ lim sup
n→∞

1

L(n)nα
log
{

3 exp
[
−n

{(
ε

3EZ

)
log
(

1 + εEZ

6EZ2

)
−
(

ε

3EZ

)}]}
= −∞.

Replacing ε with ε/3, we arrive at the conclusion of the lemma. �

Now we are ready to prove Lemma 2.3.

PROOF OF LEMMA 2.3.

P
(∥∥H̄ k

n

∥∥∞ > ε
)

≤ P
(∥∥H̄ k

n

∥∥∞ > ε,N(nt) ≥ k
)+ P
(∥∥H̄ k

n

∥∥∞ > ε,N(nt) < k
)

≤ P
(∥∥H̄ k

n

∥∥∞ > ε,N(nt) ≥ k,Z
R−1

n (k)
≤ nδ
)

(5.30)

+ P
(∥∥H̄ k

n

∥∥∞ > ε,N(nt) ≥ k,Z
R−1

n (k)
> nδ
)+ P
(
N(nt) < k

)
≤ P
(∥∥H̄ k

n

∥∥∞ > ε,N(nt) ≥ k,Z
R−1

n (k)
≤ nδ
)

(5.31)

+ P
(
N(nt) ≥ k,Z

R−1
n (k)

> nδ
)+ P
(
N(nt) < k

)
.

An explicit upper bound for the second term can be obtained:

P
(
N(nt) ≥ k,Z

R−1
n (k)

> nδ
)

≤ P
(
Q←

n (�k) > nδ
)≤ P
(
Q←

n (�k) ≥ nδ
)= P
(
�k ≤ Qn(nδ)

)
=
∫ Qn(nδ)

0

1

k! t
k−1e−t dt =

∫ nv[nδ,∞)

0

1

k! t
k−1e−t dt ≤

∫ nv(nδ,∞)

0
tk−1dt

= 1

k
nke−kL(nδ)nαδα

.

Therefore,

(5.32) lim sup
n→∞

1

L(n)nα
log P
(
Q←

n (�k)≥nδ
)≤ −kδα.

Turning to the first term of (5.30), we consider the following decomposition:

P
(∥∥H̄ k

n

∥∥∞ > ε,N(nt) ≥ k,Z
R−1

n (k)
≤ nδ
)

= P
(
N(nt) ≥ k,Z

R−1
n (k)

≤ nδ, sup
t∈[0,1]

H̄ k
n (t) > ε

)
︸ ︷︷ ︸

�(i)

+ P
(
N(nt) ≥ k,Z

R−1
n (k)

≤ nδ, sup
t∈[0,1]

−H̄ k
n (t) > ε

)
︸ ︷︷ ︸

�(ii)

.
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Since Z
R−1

n (k)
≤ nδ implies 1{Rn(i)>k} ≤ 1{Zi≤nδ},

(i) ≤ P

(
sup

t∈[0,1]

N(nt)∑
i=1

(Zi1{Rn(i)>k} − EZ) > nε,N(nt) ≥ k,Z
R−1

n (k)
≤ nδ

)

≤ P

(
sup

t∈[0,1]

N(nt)∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)
= P

(
sup

0≤j≤N(n)

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)

≤ P

(
sup

0≤j≤2n

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε,N(n) < 2n

)
+ P
(
N(n) ≥ 2n

)

≤ P

(
sup

0≤j≤2n

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)
+ P
(
N(n) ≥ 2n

)
.

From Lemma 5.4 and the fact that the second term decays at an exponential rate,

lim sup
n→∞

1

L(n)nα
P
(
Z

R−1
n (k)

≤ nδ, sup
t∈[0,1]

H̄ k
n (t) > ε

)
≤ −(ε/3)α(ε/δ)1−α.(5.33)

Turning to (ii),

(ii) ≤ P

(
sup

t∈[0,1]

N(nt)∑
i=1

(EZ − Zi1{Rn(i)>k}) > nε

)

= P

(
sup

t∈[0,1]

N(nt)∑
i=1

(
EZ − Zi1{Zi≤nδ} + Zi(1{Zi≤nδ} − 1{Rn(i)>k})

)
> nε

)

≤ P

(
sup

t∈[0,1]

N(nt)∑
i=1

(EZ − Zi1{Zi≤nδ} + Zi1{Zi≤nδ}∩{Rn(i)≤k}) > nε

)

≤ P

(
sup

t∈[0,1]

N(nt)∑
i=1

(EZ − Zi1{Zi≤nδ}) + knδ > nε

)

= P

(
sup

t∈[0,1]

N(nt)∑
i=1

(EZ − Zi1{Zi≤nδ}) > n(ε − kδ)

)

≤ P

(
sup

0≤j≤2n

j∑
i=1

(EZ − Zi1{Zi≤nδ}) > n(ε − kδ),N(nt) < 2n

)
+ P
(
N(nt) ≥ 2n

)

≤ P

(
sup

0≤j≤2n

j∑
i=1

(EZ − Zi1{Zi≤nδ}) > n(ε − kδ)

)
+ P
(
N(nt) ≥ 2n

)
.

Applying Lemma 5.5 to the first term and noticing that the second term vanishes at an expo-
nential rate, we conclude that for δ and k such that kδ < ε

(5.34) lim sup
n→∞

1

L(n)nα
log P
(
Z

R−1
n (k)

≤ nδ, sup
t∈[0,1]

−H̄ k
n (t) > ε

)
= −∞.

From (5.33) and (5.34),

(5.35) lim sup
n→∞

1

L(n)nα
log P
(
Z

R−1
n (k)

≤ nδ,
∥∥H̄ k

n

∥∥∞ > ε
)≤ −(ε/3)α(ε/δ)1−α.
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This, together with (5.30) and (5.32),

lim sup
n→∞

1

L(n)nα
P
(∥∥H̄ k

n

∥∥∞ > ε
)≤ max

{−(ε/3)α(ε/δ)1−α,−kδα}
for any δ and k such that kδ < ε. Choosing, for example, δ = ε

2k
and letting k → ∞, we

arrive at the conclusion of the lemma. �

5.6. Proof of Lemmas 2.4, 2.5 and 2.6. PROOF OF LEMMA 2.4. We follow a similar
program as in the proof of Lemma 2.1. Recall that Q̃←(x) = inf{s > 0 : P(Z ≥ s) < y}
and V(1), . . . , V(n−1) are the order statistics of n − 1 i.i.d. Uniform(0,1) random variables
V1, . . . , Vn−1. We first claim that (Q̃←(V(1))/n, . . . , Q̃←(V(k))/n) satisfies the LDP with
speed L(n)nα and good rate function Ǐk defined in (5.5). Let f be a bounded continuous
function such that |f (x)| < M , x ∈ R

k+ for some M ∈R. We want to prove that

lim
n→∞

1

L(n)nα
log E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}= sup
x


f (x),

where 
f = f − Ǐk , to invoke inverse Varadhan lemma and establish the LDP for
(Q̃←(V(1))/n, . . . , Q̃←(V(k))/n). Recall that in the proof of Lemma 5.2, we have shown
that the supremum of f (x) − Ǐk(x) over Rk+ is attained. Let x̂ denote one of the optimizers
that attain the supremum. Then, due to the form of Ǐk , for any given ε > 0, we can find δ > 0
and x̌ = (x̌1, . . . , x̌k) such that x̌i ≥ x̌i+1 + δ for i = 1, . . . , k − 1 and x ∈∏k

i=1[x̌i , x̌i + δ]
implies

Ǐk(x) ≥ Ǐk(x̂) − ε and f (x) − Ǐk(x) ≥ f (x̂) − Ǐk(x̂) − ε.

Therefore, if we set An(δ) � {(y1, . . . , yk) : Q̃←(yi)/n ∈ [x̌i , x̌i + δ], i = 1, . . . , k + 1}, then
y ∈ An(δ) implies

Ǐk

(
Q̃←(y1)/n, . . . , Q̃←(yk)/n

)≥ Ǐk(x̂) − ε

and

f
(
Q̃←(y1)/n, . . . , Q̃←(yk)/n

)− Ǐk

(
Q̃←(y1)/n, . . . , Q̃←(yk)/n

)≥ f (x̂) − Ǐk(x̂) − ε,

and hence,

f
(
Q̃←(y1)/n, . . . , Q̃←(yk)/n

)≥ f (x̂) − 2ε.

Note also that Q̃←(y) < x if and only if P(Z ≥ x) < y, and hence, P(Z ≥ n(x̌i + δ)) < yi ≤
P(Z ≥ nx̌i) implies Q̃←(yi)/n ∈ [x̌i , x̌i + δ]. We have that

1{Q̃←(yi )/n∈[x̌i ,x̌i+δ],i=1,...,k} ≥ 1{P(Z≥n(x̌i+δ))<yi≤P(Z≥nx̌i ),i=1,...,k},

and hence, for yk+1 ≥ P(Z ≥ nx̌i),∫ yk+1

0
· · ·
∫ y2

0
1{Q̃←(yi )/n∈[x̌i ,x̌i+δ],i=1,...,k} dy1 · · ·dyk

≥
∫ yk+1

0
· · ·
∫ y2

0
1{P(Z≥n(x̌i+δ))<yi≤P(Z≥nx̌i ),i=1,...,k} dy1 · · ·dyk

=
∫ 1

0
· · ·
∫ 1

0
1{P(Z≥n(x̌i+δ))<yi≤P(Z≥nx̌i ),i=1,...,k} dy1 · · ·dyk

=
k∏

i=1

(
P(Z ≥ nx̌i) − P(Z ≥ nx̌i + nδ)

)
.
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Therefore,

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
≥ E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{(V(1),...,V(k))∈An(δ)}

=
∫ 1

0

∫ yn−1

0
· · ·
∫ y2

0
eL(n)nαf (Q̃←(y1)/n,...,Q̃←(yk)/n)(n − 1)!

× 1{(y1,...,yk)∈An(δ)} dy1 · · ·dyn−2 dyn−1

≥ (n − 1)!eL(n)nα(f (x̂)−2ε)

×
∫ 1

0

∫ yn−1

0
· · ·
∫ y2

0
1{Q̃←(yi )/n∈[x̌i ,x̌i+δ],i=1,...,k} dy1 · · ·dyn−2 dyn−1

≥ (n − 1)!eL(n)nα(f (x̂)−2ε)

×
k∏

i=1

(
P(Z ≥ nx̌i) − P(Z ≥ nx̌i + nδ)

) ∫ 1

0

∫ yn−1

0
· · ·
∫ yk+2

P(Z≥nx̌i )
dyk+1 · · ·dyn−2 dyn−1

= (n − 1)!eL(n)nα(f (x̂)−2ε)

×
k∏

i=1

(
P(Z ≥ nx̌i) − P(Z ≥ nx̌i + nδ)

) 1

(n − k − 1)!
(
1 − P(Z ≥ nx̌i)

)n−k−1
.

Since

lim inf
n→∞

1

L(n)nα
log

k∏
i=1

(
P(Z ≥ nx̌i) − P(Z ≥ nx̌i + nδ)

)= −
k∑

i=1

x̂α = −Ǐk(x̂)

and

lim inf
n→∞

1

L(n)nα
log
(
1 − P(Z ≥ nx̌i)

)n−k−1 = 0,

we get

lim inf
n→∞

1

L(n)nα
log EeL(n)nαf (Q̃←(V(1))/n,...,Q̃←(V(k))/n) ≥ f (x̂) − 2ε − Ǐk(x̂)

= sup
x∈Rk+

{
f (x) − Ǐk(x)

}− 2ε.

Letting ε → 0, we arrive at the lower bound.
Turning to the upper bound,

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
= E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))/n>R}

+ E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))/n≤R}.

For the first term, note that

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))/n>R}

≤ E exp
{
L(n)nαM

}
1
{
Q̃←(V(1))/n > R

}
≤ exp

{
L(n)nαM

}
P
(
V(1) ≤ P(Z ≥ nR)

)
(5.36)
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= exp
{
L(n)nαM

}(
1 − (1 − P(Z ≥ nR)

)n−1)
= exp

{
L(n)nαM

}(
1 − (1 − exp

{−L(nR)(nR)α
})n−1)

.

Also, from the generic inequality 1 − exp(−z) ≤ z,

1 − (1 − 1/x)y = 1 − {(1 − 1/x)x
}y/x = 1 − exp log

{
(1 − 1/x)x

}y/x

= 1 − exp
{
(y/x) log(1 − 1/x)x

}≤ (y/x) log(1 − 1/x)−x

for any x, y > 0. Setting x = exp(L(nR)(nR)α) and y = n − 1, we get

1 − (1 − exp
{−L(nR)(nR)α

})n−1

≤ (n − 1) exp
{−L(nR)(nR)α

}
log
(
1 − 1/exp

{
L(nR)(nR)α

})− exp{L(nR)(nR)α}
.

Substituting this into (5.36), we arrive at the upper bound for the first term:

lim sup
n→∞

1

L(n)nα
log E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))/n>R}

≤ M − Rα.

For the second term, fix ε > 0 and pick {x̌(1), . . . , x̌(m)} ⊂R
k+ in such a way that

{
k∏

j=1

[
x̌

(l)
j − ε, x̌

(l)
j + ε

]}
l=1,...,m

covers {(x1, . . . , xk) : R ≥ x1 ≥ x2 ≥ · · · ≥ xk ≥ 0} and x̌
(l)
1 ≥ x̌

(l)
2 ≥ · · · ≥ x̌

(l)
k ≥ 0 for l =

1, . . . ,m. Set

An,l(R) �
{
(y1, . . . , yk) ∈ R

k+ : y1 ≤ · · · ≤ yk,Q
←(yj )/n ∈ [x̌(l)

j −ε, x̌
(l)
j +ε

]
, j = 1, . . . , k

}
.

Note that y1 ≤ · · · ≤ yk&Q←(y1)/n ≤ R implies R ≥ Q←(y1)/n ≥ Q←(y2)/n ≥ · · · ≥
Q←(yk)/n, which, in turn, implies Q←(yj )/n ∈ [x̌(l)

j −ε, x̌
(l)
j +ε], j = 1, . . . , k for some l ∈

{1, . . . ,m}. Therefore, {(y1, . . . , yk) ∈ R
k+ : y1 ≤ · · · ≤ yk,Q

←(y1)/n ≤ R} ⊆⋃m
l=1 An,l(R),

and hence,

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))≤R}

≤
m∑

i=1

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{(V(1),...,V(k))∈An,l(R)}.

Note that

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{(V(1),...,V(k))∈An,l(R)}

= EeL(n)nα
f (Q̃←(V(1))/n,...,Q̃←(V(k))/n)

× eL(n)nαǏk(Q̃
←(V(1))/n,...,Q̃←(V(k))/n)1{(V(1),...,V(k))∈An,l(R)}

≤ eL(n)nα
f (x̂1,...,x̂k)EeL(n)nαǏk(Q̃
←(V(1))/n,...,Q̃←(V(k))/n)1{(V(1),...,V(k))∈An,l(R)}

≤ eL(n)nα
f (x̂1,...,x̂k)eL(n)nαǏk(x̌
(l)
1 +ε,...,x̌

(l)
k +ε)E1{(V(1),...,V(k))∈An,l(R)}
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and

E1{(V(1),...,V(k))∈An,l(R)}

=
∫ 1

0

∫ yn−1

0
· · ·
∫ y2

0
(n − 1)!1{(y1,...,yk)∈An,l(R)} dy1 · · ·dyn−2 dyn−1

≤ (n − 1)!
∫ 1

0

∫ yn−1

0
· · ·
∫ y2

0
1{Q̃←(yi )/n∈[x̌(l)

i −ε,x̌
(l)
i +ε],i=1,...,k} dy1 · · ·dyn−2 dyn−1

≤ (n − 1)!
k∏

i=1

(
P
(
Z ≥ nx̌

(l)
i − nε

)− P
(
Z ≥ nx̌

(l)
i + nε

))

×
∫ 1

0

∫ yn−1

0
· · ·
∫ yk+2

0
dyk+1 · · ·dyn−2 dyn−1

= (n − 1)!
k∏

i=1

(
P
(
Z ≥ nx̌

(l)
i − nε

)− P
(
Z ≥ nx̌

(l)
i + nε

)) 1

(n − k − 1)! .

≤ nk
k∏

i=1

(
P
(
Z ≥ nx̌

(l)
i − nε

)− P
(
Z ≥ nx̌

(l)
i + nε

))
.

Therefore,

E exp
{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))≤R}

≤ nkeL(n)nα
f (x̂1,...,x̂k)
l∑

i=1

eL(n)nαǏk(x̌
(l)
1 +ε,...,x̌

(l)
k +ε)

×
k∏

i=1

(
P
(
Z ≥ nx̌

(l)
i − nε

)− P
(
Z ≥ nx̌

(l)
i + nε

))
.

Note that

lim sup
n→∞

1

L(n)nα
log

k∏
i=1

(
P
(
Z ≥ nx̌

(l)
i − nε

)− P
(
Z ≥ nx̌

(l)
i + nε

))

= −
k∑

i=1

(
x̌

(l)
i − ε

)α
+ = −Ǐk

((
x̌

(l)
1 − ε, . . . , x̌

(l)
k − ε

)
+
)
,

where (y)+ denotes max{y,0} and (y1, . . . , yk)+ denotes ((y1)+, . . . , (yk)+). This, along
with the principle of the largest term,

lim sup
n→∞

1

L(n)nα
log E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))≤R}

≤ max
l=1,...,m

(

f (x̂1, . . . , x̂k) + Ǐk

(
x̌

(l)
1 + ε, . . . , x̌

(l)
k + ε

)− Ǐk

((
x̌

(l)
1 − ε, . . . , x̌

(l)
k − ε

)
+
))

≤ max
l=1,...,m

(

f (x̂1, . . . , x̂k) + kεα).

Sending ε → 0, we get

lim sup
n→∞

1

L(n)nα
log E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
1{Q̃←(V(1))≤R}

≤ 
f (x̂1, . . . , x̂k).



2730 BAZHBA, BLANCHET, RHEE AND ZWART

Now, combining with the bound for the first term, and sending R → ∞, we get the upper
bound:

lim sup
n→∞

1

L(n)nα
log E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}
≤ max

{

f (x̂1, . . . , x̂k),M − Rα}→ 
f (x̂1, . . . , x̂k).

Together with the lower bound, we get

lim
n→∞

1

L(n)nα
log E exp

{
L(n)nαf

(
Q̃←(V(1))/n, . . . , Q̃←(V(k))/n

)}= 
f (x̂1, . . . , x̂k),

which in turn allows us to apply Bryc’s inverse Varadhan Lemma to prove that (Q̃←(V(1))/n,

. . . , Q̃←(V(k))/n) satisfies the LDP with rate function Ǐk . From Theorem 4.14 of Ganesh,
O’Connell and Wischik (2004), we see that (Q̃←(V(1))/n, . . . , Q̃←(V(k))/n,Z/n) satisfies
the LDP with rate function Ǐ ′

k given by

(5.37) Ǐ ′
k(x1, . . . , xk+1) =

⎧⎪⎪⎨
⎪⎪⎩

k+1∑
i=1

xα
i if x1 ≥ x2 ≥ · · · ≥ xk ≥ 0 and xk+1 ≥ 0,

∞ otherwise.

Proceeding with essentially the same argument as in Corollary 5.1 and Lemma 5.3—except
for considering a mapping T̃k : (x1, . . . , xk+1, u1, . . . , uk) 
→∑k

i=1 xi1[ui,1] + xk+11{1} in-
stead of the mapping Tk : (x1, . . . , xk, u1, . . . , uk) 
→ ∑k

i=1 xi1[ui,1]) and D̃�k instead of
D�k—we conclude that J̃ k

n (t) = 1
n

∑k
i=1 Q̃←(V(i))1[Ui,1](t) + 1

n
Z1{1}(t) satisfies the LDP

with speed L(n)nα and rate function Ĩk in (2.10). �

PROOF OF LEMMA 2.5. The proof is essentially identical to Lemma 2.2, and hence,
omitted. �

PROOF OF LEMMA 2.6. Let

Ȟ k
n (t) � H̃ k

n (t) + 1

n
EZ1{1}(t) = 1

n

n−1∑
i=k+1

Q̃←(V(i))1[Ui,1](t) − 1

n

n−1∑
i=1

EZ1[Ui,1](t).

Since P(‖H̃ k
n‖∞ ≥ ε) ≤ P(‖H̃ k

n‖∞ ≥ ε/2) + P(‖ 1
n

EZ
∑n−1

i=1 1[Ui,1] + 1
n

EZ1{1}‖∞ ≥ ε/2)

and P(‖ 1
n

EZ
∑n−1

i=1 1[Ui,1](t) + 1
n

EZ1{1}‖∞ > ε/2) = 0 for large enough n, we only need to
prove that

lim
k→∞ lim sup

n→∞
1

L(n)nα
log P
(∥∥Ȟ k

n

∥∥∞ > ε
)= −∞.

To show this, we fix an arbitrary δ ∈ (0, ε/k) and consider the following decomposition:

P
(∥∥Ȟ k

n

∥∥∞ > ε
)≤ P
(∥∥Ȟ k

n

∥∥∞ > ε, Q̃←(V(k)) < nδ
)+ P
(
Q̃←(V(k)) ≥ nδ

)
.

We first bound the second term. Since the density of the kth order statistic of the uniform
distribution on [0,1] is n

(n−1
k−1

)
xk−1(1 − x)n−k ,

P
(
Q̃←(V(k)) ≥ nδ

)= P
(
V(k) ≤ P(Z ≥ nδ)

)≤ ∫ P(Z≥nδ)

0
n

(
n − 1

k − 1

)
xk−1 dx

=
(
n

k

)(
P(Z ≥ nδ)

)k =
(
n

k

)
exp
(−kL(nδ)(nδ)α

)
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and hence, lim supn→∞ 1
L(n)nα log P(Q̃←

n (V(k)) > nδ) ≤ −kδα . For the first term,

P
(∥∥Ȟ k

n

∥∥∞ > ε, Q̃←(V(k)) < nδ
)

= P
(

sup
t∈[0,1]

Ȟ k
n (t) > ε, Q̃←(V(k)) ≤ nδ

)
+ P
(

sup
t∈[0,1]

−Ȟ k
n > ε, Q̃←(V(k)) ≤ nδ

)

≤ P

(
max

1≤j≤n−1

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)

+ P

(
max

1≤j≤n−1

j∑
i=1

(EZ − Zi1{Zi≤nδ}) + knδ > nε

)
.

Note that from Lemma 5.4,

lim sup
n→∞

1

L(n)nα
P

(
max

1≤j≤n−1

j∑
i=1

(Zi1{Zi≤nδ} − EZ) > nε

)
≤ −(ε/3)α(ε/δ)1−α

and from 5.5, since δ < ε/k,

lim sup
n→∞

1

L(n)nα
P

(
max

1≤j≤n−1

j∑
i=1

(EZ − Zi1{Zi≤nδ}) + knδ > nε

)
= −∞.

Therefore,

lim sup
n→∞

1

L(n)nα
P
(∥∥H̃ k

n

∥∥∞ > ε,Q←
n (V(k)) ≤ nδ

)≤ max
{−(ε/3)α(ε/δ)1−α,−∞}

= −(ε/3)α(ε/δ)1−α.

Applying the principle of the maximum term once again,

lim
k→∞ lim sup

n→∞
1

L(n)nα
P
(∥∥H̃ k

n

∥∥∞ > ε
)≤ lim

k→∞ max
{−(ε/3)α(ε/δ)1−α,−kδα}

= −(ε/3)α(ε/δ)1−α.

Since δ can be chosen arbitrarily small,

lim
k→∞ lim sup

n→∞
1

L(n)nα
P
(∥∥H̃ k

n

∥∥∞ > ε
)= −∞. �

5.7. Proof of Theorem 2.3. We follow a similar program as in Section 2.1 and the ear-
lier subsections of this section. Let Q̄

(i)
n (j) � Q←

n (�
(i)
j )/n where Q←

n (t) = inf{s > 0 :
nν[s,∞) < t} and �

(i)
l = E

(i)
1 + · · · + E

(i)
l where E

(i)
j ’s are independent standard expo-

nential random variables. Let U
(i)
j be independent uniform random variables in [0,1] and

Z
(i)
n � (Q̄

(i)
n (1), . . . , Q̄

(i)
n (k),U

(i)
1 , . . . ,U

(i)
k ). The following corollary is an immediate con-

sequence of Corollary 5.1 and Theorem 4.14 of Ganesh, O’Connell and Wischik (2004).

COROLLARY 5.2. (Z
(1)
n , . . . ,Z

(d)
n ) satisfies the LDP in

∏d
i=1(R

k+ × [0,1]k) with rate

function Î d
k (z(1), . . . , z(d)) � ∑d

j=1 Îk(z
(j)) where z(j) = (x

(j)
1 , . . . , x

(j)
k , u

(j)
1 , . . . , u

(j)
k ) for

each j ∈ {1, . . . , d}.

Let Ĵ
�k(i)
n �∑k

j=1 Q̄
(i)
n (j)1[U(i)

j ,1].
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LEMMA 5.6. (Ĵ
�k(1)
n , . . . , Ĵ

�k(d)
n ) satisfies the LDP in

∏d
i=1 D([0,1],R) with speed

L(n)nα and rate function

I d
k (ξ1, . . . ξd) �

d∑
i=1

Ik(ξi)

=

⎧⎪⎪⎨
⎪⎪⎩

d∑
i=1

∑
t :ξi(t) �=ξi(t−)

(
ξi(t) − ξi(t−)

)α if ξi ∈D�k for i = 1, . . . , d,

∞ otherwise.

PROOF. Since Iki
is lower semicontinuous in

∏d
i=1 D([0,1],R) for each i, Ik1,...,kd

is a
sum of lower semicontinuous functions, and hence, is lower semicontinuous itself. The rest of
the proof for the LDP upper bound and the lower bounds mirrors that of the one-dimensional
case (Lemma 5.3) closely, and hence, omitted. �

PROOF OF LEMMA 2.7. Again, we consider the same distributional relation for each
coordinate as in the one-dimensional case:

J̄ k(i)
n

D= 1

n

k∑
j=1

Q(i)
n (j)1[Uj ,1]

︸ ︷︷ ︸
=Ĵ

�k(i)
n

− 1

n
1
{
Ñ (i)

n < k
} k∑

j=Ñ
(i)
n +1

Q(i)
n (j)1[U(i)

j ,1]
︸ ︷︷ ︸

=J̌
�k(i)
n

.

Note that this distributional equality holds jointly w.r.t. i = 1, . . . , d due to the assumed inde-
pendence. Let F be a closed set and write

P
((

J̄ k(1)
n , . . . , J̄ k(d)

n

) ∈ F
)

≤ P

((
Ĵ�k(1)

n , . . . , Ĵ�k(d)
n

) ∈ F,

d∑
i=1

1
{
Ñ (i)

n < k
}= 0

)
+

d∑
i=1

P
(
1
{
N(i)

n < k
} �= 0
)

≤ P
((

Ĵ�k(1)
n , . . . , Ĵ�k(d)

n

) ∈ F
)+ d∑

i=1

P
(
1
{
N(i)

n < k
} �= 0
)
.

From Lemma 5.6 and the principle of the largest term,

lim sup
n→∞

log P((J̄
k(1)
n , . . . , J̄

k(d)
n ) ∈ F)

L(n)nα

≤ lim sup
n→∞

log P((Ĵ
�k(1)
n , . . . , Ĵ

�k(d)
n ) ∈ F)

L(n)nα
∨ max

i=1,...,d
lim sup
n→∞

log P(Ñ
(i)
n < k)

L(n)nα

≤ − inf
(ξ1,...,ξd )∈F

Id
k (ξ1, . . . , ξd).

Turning to the lower bound, let G be an open set. Since the lower bound is trivial in case
infx∈G Ik(x) = ∞, we focus on the case infx∈G Ik(x) < ∞. In this case, using a reasoning
similar to the one leading to (5.22),

lim inf
n→∞

log P((J̄
k(1)
n , . . . , J̄

k(d)
n ) ∈ G)

L(n)nα

≥ lim inf
n→∞

log P((J̄
k(1)
n , . . . , J̄

k(d)
n ) ∈ G,

∑d
i=1 1{Ñ (i)

n ≥ k} = 0)

L(n)nα
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= lim inf
n→∞

log P((Ĵ
�k(1)
n , . . . , Ĵ

�k(d)
n ) ∈ G,

∑d
i=1 1{Ñ (i)

n ≥ k} = 0)

L(n)nα

≥ lim inf
n→∞

1

L(n)nα
log
(
P
((

Ĵ�k(1)
n , . . . , Ĵ�k(d)

n

) ∈ G
)− dP

(
Ñ (1)

n < k
))

= lim inf
n→∞

1

L(n)nα
log P
((

Ĵ�k(1)
n , . . . , Ĵ�k(d)

n

) ∈ G
)

≥ − inf
(ξ1,...,ξd )∈G

Id
k (ξ1, . . . , ξd). �

The proof of Lemma 2.8 is completely analogous to the one-dimensional case, and there-
fore omitted.

APPENDIX A: M ′
1 TOPOLOGY AND GOODNESS OF THE RATE FUNCTION

Let D̃[0,1] be the space of functions from [0,1] to R such that the left limit exists at each
t ∈ (0,1], the right limit exists at each t ∈ [0,1), and

(A.1) ξ(t) ∈ [ξ(t−) ∧ ξ(t+), ξ(t−) ∨ ξ(t+)
]

for each t ∈ [0,1] where we interpret ξ(0−) as 0 and ξ(1+) as ξ(1).

DEFINITION 1. For ξ ∈ D̃, define the extended completed graph �′(ξ) of ξ as

�′(ξ) �
{
(u, t) ∈ R× [0,1] : u ∈ [ξ(t−) ∧ ξ(t+), ξ(t−) ∨ ξ(t+)

]}
,

where ξ(0−) � 0 and ξ(1+) � ξ(1). Define an order on the graph �′(ξ) by setting (u1, t1) <

(u2, t2) if either:

• t1 < t2; or
• t1 = t2 and |ξ(t1−) − u1| < |ξ(t2−) − u2|.

We call a continuous nondecreasing function (u, t) = ((u(s), t (s)), s ∈ [0,1]) from [0,1] to
R × [0,1] a parametrization of �′(ξ)—or a parametrization of ξ—if �′(ξ) = {(u(s), t (s)) :
s ∈ [0,1]}.

DEFINITION 2. Define the M ′
1 metric on D as follows:

dM ′
1
(ξ, ζ ) � inf

(u,t)∈�′(ξ)
(v,r)∈�′(ζ )

{‖u − v‖∞ + ‖t − r‖∞
}
.

Let D↑ � {ξ ∈D : ξ is nondecreasing and ξ(0) ≥ 0}.
PROPOSITION A.1. Suppose that ξ̂0 ∈ D̃ with ξ̂0(0) ≥ 0 and ξn ∈ D

↑ for each n ≥ 1.

If T � {t ∈ [0,1] : ξn(t) → ξ̂0(t)} is dense on [0,1] and 1 ∈ T , then ξn

M ′
1→ ξ0 ∈ D

↑ where
ξ0(t) � lims↓t ξ̂0(s) for t ∈ [0,1) and ξ0(1) � ξ̂0(1).

PROOF. It is easy to check that ξ̂0 has to be nonnegative and nondecreasing, and for such
ξ̂0, ξ0 should be in D

↑. Let (x, t) be a parametrization of �′(ξ̂0), and let ε > 0 be given. Note
that �′(ξ0) and �′(ξ̂0) coincide. Therefore, the proposition is proved if we show that there
exists an integer N0 such that for each n ≥ N0, �′(ξn) can be parametrized by some (y, r)

such that

(A.2) ‖x − y‖∞ + ‖t − r‖∞ ≤ ε.
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We start with making an observation that one can always construct a finite number of points
S = {si}i=0,1,...,m ⊆ [0,1] such that:

(S1) 0 = s0 < s1 < · · · < sm = 1;
(S2) t (si) − t (si−1) < ε/4 for i = 1, . . . ,m;
(S3) x(si) − x(si−1) < ε/8 for i = 1, . . . ,m;
(S4) if t (sk−1) < t(sk) < t(sk+1) then t (sk) ∈ T ;
(S5) if t (sk−1) < t(sk) = t (sk+1), then t (sk−1) ∈ T ; if, in addition, k − 1 > 0, then

t (sk−2) < t(sk−1);
(S6) if t (sk−1) = t (sk) < t(sk+1), then t (sk+1) ∈ T ; if, in addition, k + 1 < m, then

t (sk+1) < t(sk+2).

One way to construct such a set is to start with S such that (S1), (S2) and (S3) are satisfied.
This is always possible because x and t are continuous and nondecreasing. Suppose that (S4)
is violated for some three consecutive points in S, say sk−1, sk , sk+1. We argue that it is
always possible to eliminate this violation by either adding an additional point ŝk or moving
sk slightly. More specifically, if there exists ŝk ∈ (sk−1, sk+1) \ {sk} such that t (ŝk) = t (sk),
add ŝk to S. If there is no such ŝk , t (·) has to be strictly increasing at sk , and hence, from
the continuity of x and t along with the fact that T is dense, we can deduce that there has
to be s̃k ∈ (sk−1, sk+1) such that t (s̃k) ∈ T and |t (s̃k) − t (sk)| and |x(s̃k) − x(sk)| are small
enough so that (S2) and (S3) are still satisfied when we replace sk with s̃k in S. Iterating this
procedure, we can construct S so that (S1)–(S4) are satisfied. Now turning to (S5), suppose
that it is violated for three consecutive points sk−1, sk , sk+1 in S. Since T is dense and t

is continuous, one can find ŝk between sk−1 and sk such that t (sk−1) < t(ŝk) < t(sk) and
t (ŝk) ∈ T . Note that after adding ŝk to S, (S2), (S3) and (S4) should still hold while the
number of triplets that violate (S5) is reduced by one. Repeating this procedure for each triplet
that violates (S5), one can construct a new S which satisfies (S1)–(S5). One can also check
that the same procedure for the triplets that violate (S6) can reduce the number of triplets that
violate (S6) while not introducing any new violation for (S2), (S3), (S4) and (S5). Therefore,
S can be augmented so that the resulting finite set satisfies (S6) as well. Set Ŝ � {si ∈ S :
t (si) ∈ T , t (si−1) < t(si) in case i > 0, t (si) < t(si+1) in case i < m} and let N0 be such that
n ≥ N0 implies |ξn(t (si)) − ξ̂0(t (si))| < ε/8 for all si ∈ Ŝ. Now we will fix n ≥ N0 and
proceed to showing that we can re-parametrize an arbitrary parametrization (y′, r ′) of �(ξn)

to obtain a new parametrization (y, r) such that (A.2) is satisfied. Let (y′, r ′) be an arbitrary
parametrization of �(ξn). For each i such that si ∈ Ŝ, let s′

i � max{s ≥ 0 : r ′(s) = t (si)} so
that r ′(s′

i ) = t (si) and ξn(r
′(s′

i )) = y′(s′
i ). For i’s such that si ∈ S \ Ŝ, note that there are three

possible cases: t (si) ∈ (0,1), t (si) = 0 and t (si) = 1. Since the other cases can be handled
in similar (but simpler) manners, we focus on the case t (si) ∈ (0,1). In this case, one can
check that there exist k and j such that k ≤ i ≤ k + j , t (sk−1) < t(sk) = t (sk+j ) < t(sk+j+1)

and sk−1, sk+j+1 ∈ Ŝ. Here we assume that k > 1; the case k = 1 is essentially identical but
simpler—hence omitted. Note that from the monotonicity of ξ̂0 and (A.1),

x(sk−2) ≤ ξ̂0
(
t (sk−2)+)≤ ξ̂0

(
t (sk−1)−)≤ ξ̂0

(
t (sk−1)

)≤ ξ̂0
(
t (sk−1)+)

≤ ξ̂0
(
t (sk)−)≤ x(sk),

that is, ξ̂0(t (sk−1)) ∈ [x(sk−2), x(sk)], which along with (S3) implies |ξ̂0(t (sk−1)) −
x(sk−1)| < ε/8. From this, (S5) and the constructions of s′

k−1 and N0,∣∣y′(s′
k−1
)− x(sk−1)

∣∣= ∣∣ξn

(
r ′(s′

k−1
))− x(sk−1)

∣∣
= ∣∣ξn

(
r ′(s′

k−1
))− ξ̂0

(
t (sk−1)

)∣∣+ ∣∣ξ̂0
(
t (sk−1)

)− x(sk−1)
∣∣

= ∣∣ξn

(
t (sk−1)

)− ξ̂0
(
t (sk−1)

)∣∣+ ∣∣ξ̂0
(
t (sk−1)

)− x(sk−1)
∣∣< ε/4.
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Following the same line of reasoning, we can show that |y′(s′
k+j+1) − x(sk+j+1)| < ε/4.

Noting that both x and y′ are nondecreasing, there have to exist s′
k, s

′
k+1, . . . , s

′
k+j such that

s′
k−1 < s′

k < · · · < s′
k+j < s′

k+j+1 and |y′(s′
l ) − x(sl)| < ε/4 for l = k, k + 1, . . . , k + j . Note

also that from (S2)

t (sl) − ε/4 = t (sk) − ε/4 < t(sk−1) = r ′(s′
k−1
)≤ r ′(s′

l

)≤ r ′(s′
k+j+1

)
= t (sk+j+1) < t(sk+j ) + ε/4 = t (sl) + ε/4,

and hence, |r ′(s′
l )− t (sl)| < ε/4 for l = k, . . . , k + j as well. Repeating this procedure for the

i’s for which s′
i is not designated until there is no such i’s are left, we can construct s′

1, . . . , s
′
m

in such a way that ∣∣y′(s′
i

)− x(si)
∣∣< ε/4 and

∣∣r ′(s′
i

)− t (si)
∣∣< ε/4

for all i’s. Now, define a (piecewise linear) map λ : [0,1] → [0,1] by setting λ(si) = s′
i at

each si ’s and interpolating (si, s
′
i)’s in between. Then, y � y′ ◦ λ and r � r ′ ◦ λ consist a

parametrization (y, r) of �(ξn) such that |x(si) − y(si)| < ε/4 and |t (si) − r(si)| < ε/4 for
each i = 1, . . . ,m. Due to the monotonicity of x, y, t and r along with (S2) and (S3), we
conclude that ‖y − x‖∞ < ε/2 and ‖t − r‖∞ < ε/2, proving (A.2). �

PROPOSITION A.2. Let K be a subset of D↑. If M � supξ∈K ‖ξ‖∞ < ∞ then K is
relatively compact w.r.t. the M ′

1 topology.

PROOF. Let {ξn}n=1,2,... be a sequence in K . We prove that there exists a subsequence

{ξnk
}k=1,2,... and ξ0 ∈ D such that ξnk

M ′
1→ ξ0 as k → ∞. Let T � {tn}n=1,2,... be a dense subset

of [0,1] such that 1 ∈ T . By the assumption, supn=1,2,... |ξn(t1)| < M , and hence there is a

subsequence {n(1)
k }k=1,2,... of {1,2, . . .} such that ξ

n
(1)
k

(t1) converges to a real number x1 ∈
[−M,M]. For each i ≥ 1, given {n(i)

k }, one can find a further subsequence {n(i+1)
k }k=1,2,...

of {n(i)
k }k=1,2,... in such a way that ξ

n
(i+1)
k

(ti+1) converges to a real number xi+1. Let nk �
n

(k)
k for each k = 1,2, . . .. Then, ξnk

(ti) → xi as k → ∞ for each i = 1,2, . . .. Define a
function ξ̂0 : T → R on T so that ξ̂0(ti) = xi . We claim that ξ̂0 has left limit everywhere;
more precisely, we claim that for each s ∈ (0,1], if a sequence {sn} ⊆ T ∩ [0, s) is such that
sn → s as n → ∞, then ξ̂0(sn) converges as n → ∞. (With a similar argument, one can show
that ξ̂0 has right limit everywhere—that is, for each s ∈ [0,1), if a sequence {sn} ⊆ T ∩ (s,1]
is such that sn → s as n → ∞, then ξ̂0(sn) converges as n → ∞.) To prove this claim, we
proceed with proof by contradiction; suppose that the conclusion of the claim is not true—
that is, ξ̂0(sn) is not convergent. Then, there exist a ε > 0 and a subsequence rn of sn such
that

(A.3)
∣∣ξ̂0(rn+1) − ξ̂0(rn)

∣∣> ε.

Note that since ξ̂0 is a pointwise limit of nondecreasing functions {ξnk
} (restricted on T ):

• ξ̂0 is also nondecreasing on T , (monotonicity)
• supt∈T |ξ̂0(t)| < M . (boundedness)

However, these two are contradictory to each other since the monotonicity together with (A.3)
implies ξ̂0(rN0+j ) > ξ̂0(rN0) + jε, which leads to the contradiction to the boundedness for a
large enough j . This proves the claim.

Note that the above claim means that ξ̂0 has both left and right limit at each point of
T ∩ (0,1), and due to the monotonicity, the function value has to be between the left limit
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and the right limit. Since T is dense in [0,1], we can extend ξ̂ from T to [0,1] by setting
ξ̂0(t) � limti→t

ti>t
ξ̂0(ti) for t ∈ [0,1] \ T . Note that such ξ̂0 is an element of D̃ and satisfies the

conditions of Proposition A.1. We therefore conclude that ξnk
→ ξ0 ∈ D

↑ in M ′
1 as k → ∞,

where ξ0(t) � lims↓t ξ̂0(s) for t ∈ [0,1) and ξ0(1) � ξ̂0(1). This proves that K is indeed
relatively compact. �

Recall that our rate function for one-sided compound Poisson processes is as follows:

IM ′
1
(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
∑

t∈[0,1]

(
ξ(t) − ξ(t−)

)α if ξ is a nondecreasing pure jump function

with ξ(0) ≥ 0,

∞ otherwise.

PROPOSITION A.3. IM ′
1

is a good rate function w.r.t. the M ′
1 topology.

PROOF. In view of Proposition A.2, it is enough to show that the sublevel sets of IM ′
1

are

closed. Let a be an arbitrary finite constant, and consider the sublevel set 
IM′
1
(a) � {ξ ∈ D :

IM ′
1
(ξ) ≤ a}. Let ξc ∈ D be any given path that does not belong to 
IM′

1
(a). We will show

that there exists ε > 0 such that dM ′
1
(ξc,
IM′

1
(a)) ≥ ε. Note that 
IM′

1
(a)c = A ∪ B ∪ C ∪ D

where

A = {ξ ∈ D : ξ(0) < 0
}
,

B = {ξ ∈D : ξ is not a nondecreasing function},
C = {ξ ∈D : ξ is nondecreasing but not a pure jump function},

D =
{
ξ ∈ D : ξ is a nondecreasing pure jump function with ξ(0) ≥ 0

and
∑

t∈[0,1]

(
ξ(t) − ξ(t−)

)α
> a

}
.

In each case, we will show that ξc is bounded away from 
IM′
1
(a). In case ξc ∈ A, note that

for any parametrization (x, t) of ξc, there has to be s∗ ∈ [0,1] such that x(s∗) = ξc(0) < 0.
On the other hand, y(s) ≥ 0 for all s ∈ [0,1] for any parametrization (y, r) of ζ such that
ζ ∈ 
I(a), and hence, ‖x − y‖∞ ≥ ξc(0). Therefore,

dM ′
1

(
ξc, ζ
)≥ inf

(x,t)∈�(ξc)
(y,r)∈�(ζ )

‖x − y‖∞ ≥ ∣∣ξc(0)
∣∣.

Since ζ was an arbitrary element of 
IM′
1
(a), we conclude that dM ′

1
(ξc,
I (a)) ≥ ε with

ε = |ξc(0)|.
Using a similar argument, it is straightforward to show that any ξc ∈ B is bounded away

from 
I(a)c.
If ξc ∈ C, there has to be Ts and Tt such that 0 ≤ Ts < Tt ≤ 1, ξc is continuous on [Ts, Tt ]

and c � ξc(Tt ) − ξc(Ts) > 0. Pick a small enough ε ∈ (0,1) so that

(A.4) (4ε)α−1(c − 5ε) > a.

Note that since ξc is uniformly continuous on [Ts, Tt ], there exists δ > 0 such that |ξc(t) −
ξc(s)| < ε if |t − s| ≤ δ. In particular, we pick δ so that δ < ε and Ts + δ < Tt − δ. We claim
that

dM ′
1

(

IM′

1
(a), ξc)≥ δ.
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Suppose not. That is, there exists ζ ∈ 
IM′
1
(a) such that dM ′

1
(ζ, ξc) < δ. Let (x, t) ∈ �(ξc)

and (y, r) ∈ �(ζ ) be the parametrizations of ξc and ζ , respectively, such that ‖x − y‖∞ +
‖t − r‖∞ < δ. Since IM ′

1
(ζ ) ≤ a < ∞, one can find a finite set K ⊆ {t ∈ [0,1] : ζ(t) −

ζ(t−) > 0} of jump times of ζ in such a way that
∑

t /∈K(ζ(t) − ζ(t−))α < ε. Note that since
ε ∈ (0,1), this implies that

∑
t /∈K(ζ(t) − ζ(t−)) < ε. Let T1, . . . , Tk denote (the totality of)

the jump times of ζ in K ∩ (Ts + δ, Tt − δ], and let T0 � Ts + δ and Tk+1 � Tt − δ. That is,
{T1, . . . , Tk} = K ∩ (Ts + δ, Tt − δ] = K ∩ (T0, Tk+1]. Note that:

• There exist s0 and sk+1 in [0,1] such that

y(s0) = ζ(T0), r(s0) = T0, y(sk+1) = ζ(Tk+1), r(sk+1) = Tk+1.

• For each i = 1, . . . , k, there exists s+
i and s−

i such that

r
(
s+
i

)= r
(
s−
i

)= Ti, y
(
s+
i

)= ζ(Ti), y
(
s−
i

)= ζ(Ti−).

Since t (sk+1) ∈ [r(sk+1) − δ, r(sk+1) + δ] ⊆ [Ts, Tt ], and ξc is continuous on [Ts, Tt ] and
nondecreasing,

y(sk+1) ≥ x(sk+1) − δ = ξc(t (sk+1)
)− δ ≥ ξc(r(sk+1) − δ

)− δ = ξc(Tk+1 − δ) − δ

≥ ξc(Tk+1) − ε − δ ≥ ξc(Tk+1) − 2ε.

Similarly,

y(s0) ≤ x(s0) + δ = ξc(t (s0)
)+ δ ≤ ξc(r(s0) + δ

)+ δ

= ξc(T0 + δ) + δ ≤ ξc(T0) + ε + δ ≤ ξc(T0) + 2ε.

Subtracting the two equations,

y(sk+1) − y(s0) ≥ ξc(Tk+1) − ξc(T0) − 4ε = c − 4ε.

Note that
k∑

i=1

(
ζ(Ti) − ζ(Ti−)

)= ζ(Tk+1) − ζ(T0) − ∑
t∈(T0,Tk+1]∩Kc

(
ζ(t) − ζ(t−)

)
≥ ζ(Tk+1) − ζ(T0) − ε

= y(sk+1) − y(s0) − ε ≥ c − 5ε.

(A.5)

On the other hand,

y
(
s+
i

)− y
(
s−
i

)≤ (x(s+
i

)+ δ
)− (x(s−

i

)− δ
)= x
(
s+
i

)− x
(
s−
i

)+ 2δ

≤ ξc(t(s+
i

))− ξc(t(s−
i

))+ 2δ

≤ ξc(r(s+
i

)+ δ
)− ξc(r(s−

i

)− δ
)+ 2δ

≤ ξc(Ti + δ) − ξc(Ti − δ) + 2δ ≤ 2ε + 2δ ≤ 4ε.

That is, (ζ(Ti) − ζ(Ti−))α−1 = (y(s+
i ) − y(s−

i ))α−1 ≥ (4ε)α−1. Combining this with (A.5),

IM ′
1
(ζ ) ≥

k∑
i=1

(
ζ(Ti) − ζ(Ti−)

)α =
k∑

i=1

(
ζ(Ti) − ζ(Ti−)

)(
ζ(Ti) − ζ(Ti−)

)α−1

≥ (c − 5ε)(4ε)α−1 > a,

which is contradictory to the assumption that ζ ∈ 
IM′
1
(a). Therefore, the claim that ξc is

bounded away from 
IM′
1
(a) by δ is proved.
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Finally, suppose that ξc ∈ D. That is, there exists {(zi, ui) ∈ R+ × [0,1]}i=1,... such that
ξc =∑∞

i=1 zi1[ui,1] where ui’s are all distinct and
∑∞

i=1 zα
i > a. Pick sufficiently large k and

sufficiently small δ > 0 such that
∑k

i=1(zi −2δ)α > a and ui+1 −ui > 2δ for i = 1, . . . , k−1.
We claim that dM ′

1
(ζ, ξc) ≥ δ for any ζ ∈ 
IM′

1
(a). Suppose not and there is ζ ∈ 
IM′

1
(a) such

that ‖x − y‖∞ + ‖t − r‖∞ < δ for some parametrizations (x, t) ∈ �(ξc) and (y, r) ∈ �(ζ ).
Note first that there are s+

i ’s and s−
i ’s for each i = 1, . . . , k such that t (s−

i ) = t (s+
i ) = ui ,

x(s−
i ) = ξc(ui−) and x(s+

i ) = ξc(ui). Since y(s+
i ) ≥ x(s+

i ) − δ = ξc(ui) − δ and y(s−
i ) ≤

x(s−
i ) + δ = ξc(ui−) + δ,

ζ
(
r
(
s+
i

))− ζ
(
r
(
s−
i

))≥ y
(
s+
i

)− y
(
s−
i

)≥ ξc(ui) − ξc(u−
i

)− 2δ = zi − 2δ.

Note that by construction, r(s+
i ) < t (s+

i ) + δ = ui + δ < ui+1 − δ = t (s−
i+1) − δ < r(s−

i+1)

for each i = 1, . . . , k − 1, and hence, along with the subadditivity of x 
→ xα ,

IM ′
1
(ζ ) = ∑

t∈[0,1]

(
ζ(t) − ζ(t−)

)α ≥
k∑

i=1

[
ζ
(
r
(
s+
i

))− ζ
(
r
(
s−
i

))]α ≥
k∑

i=1

(zi − 2δ)α > a,

which is contradictory to the assumption ζ ∈ 
IM′
1
(a). �
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