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The neutron transport equation (NTE) describes the flux of neutrons
through an inhomogeneous fissile medium. In this paper, we reconnect the
NTE to the physical model of the spatial Markov branching process which
describes the process of nuclear fission, transport, scattering, and absorption.
By reformulating the NTE in its mild form and identifying its solution as
an expectation semigroup, we use modern techniques to develop a Perron–
Fröbenius (PF) type decomposition, showing that growth is dominated by a
leading eigenfunction and its associated left and right eigenfunctions. In the
spirit of results for spatial branching and fragmentation processes, we use
our PF decomposition to show the existence of an intrinsic martingale and
associated spine decomposition. Moreover, we show how criticality in the
PF decomposition dictates the convergence of the intrinsic martingale. The
mathematical difficulties in this context come about through unusual piece-
wise linear motion of particles coupled with an infinite type-space which is
taken as neutron velocity. The fundamental nature of our PF decomposition
also plays out in accompanying work (Harris, Horton and Kyprianou (2020),
Cox et al. (2020)).

1. Introduction. The neutron transport equation (NTE) describes the flux of neutrons
across a planar cross-section in an inhomogeneous fissile medium (measured in number of
neutrons per cm2 per second). Neutron flux is described as a function of time, t , Euclidian
location, r , direction, � and neutron energy E. It is not uncommon in the physics literature to
assume that velocity is a function of both direction and energy, thereby reducing the number
of variables by one. This allows us to describe the dependency of flux more simply in terms
of time and, what we call, the configuration variables (r, v) ∈ D × V where D ⊆ R

3 is
a nonempty, open, smooth, bounded and convex domain such that ∂D has zero Lebesgue
measure, and V is the velocity space, which we take to be the three-dimensional annulus
V = {υ ∈ R

3 : vmin ≤ |υ| ≤ vmax}, where 0 < vmin < vmax < ∞.
As a backward equation, the NTE is written in the form

∂

∂t
ψt (r, υ) = υ · ∇ψt(r, υ) − σ(r, υ)ψt (r, υ)

+ σs(r, υ)

∫
V

ψt

(
r, υ ′)πs(r, υ,υ ′)dυ ′

+ σf(r, υ)

∫
V

ψt

(
r, υ ′)πf(r, υ,υ ′)dυ ′,

(1.1)

where the different components (or cross-sections as they are known in the nuclear physics
literature) have the following interpretation:

σs(r, υ) : the rate at which scattering occurs from incoming velocity υ,

Received January 2019; revised November 2019.
MSC2020 subject classifications. Primary 82D75, 60J80, 60J75; secondary 60J99.
Key words and phrases. Neutron transport equation, branching Markov process, principal eigenvalue, semi-

group theory, Perron–Frobenius decomposition.

2573

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/20-AAP1567
http://www.imstat.org
mailto:emma.horton94@gmail.com
mailto:denisvillemonais@gmail.com
mailto:a.kyprianou@bath.ac.uk
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2574 E. HORTON, A. E. KYPRIANOU AND D. VILLEMONAIS

σf(r, υ) : the rate at which fission occurs from incoming velocity υ,

σ(r, υ) : the sum of the rates σf + σs and is known as the total cross section,

πs
(
r, υ,υ ′)dυ ′ : the scattering yield at velocity υ ′ from incoming velocity υ,

satisfying
∫
V πs(r, υ,υ ′)dυ ′ = 1, and

πf
(
r, υ,υ ′)dυ ′ : the neutron yield at velocity υ ′ from fission with incoming velocity υ,

satisfying
∫
V πf(r, υ,υ ′)dυ ′ < ∞.

Some or all of the three assumptions below will be used from time to time in our main results.

(H1): Cross-sections σs, σf, πs and πf are uniformly bounded away from infinity.
(H2): We have σsπs + σfπf > 0 on D × V × V .
(H3): There is an open ball B compactly embedded in D such that σfπf > 0 on

B × V × V .

It is also usual to insist on the physical boundary conditions

(1.2)

{
ψ0(r, υ) = g(r, υ) for r ∈ D,υ ∈ V,

ψt(r, υ) = 0 for t ≥ 0 and r ∈ ∂D if υ · nr > 0,

where nr is the outward unit normal at r ∈ ∂D and g : D × V → [0,∞) is a bounded, mea-
surable function on which we will later impose further conditions. Physically, this boundary
condition mean that any neutron starting on the boundary of the reactor with velocity pointing
outwards will be “killed”.

Formally speaking, (1.1) as stated is ill defined (because of regularity issues associated to
the transport operator υ · ∇) and has traditionally otherwise appeared in applied mathematics
and physics literature in the form of an abstract Cauchy problem on L2(D ×V ), the space of
square integrable functions on D ×V . This has formed the principle historical outlook of the
analysis of the NTE, appealing to c0-semigroup theory; see, for example, the classical works
of [2, 11–13, 21, 25, 27–30, 36–38].

The connection of the NTE via semigroup theory to an underlying stochastic process has,
in contrast, received a very limited amount of attention; cf [11, 27, 32]. Accordingly the
stochastic analysis of (1.1) has seen very little development in light of recent innovations in
the relevant theory of stochastic processes.

In the current article, we are more interested in exploring how NTE can be interpreted
as a mild equation, describing the mean semigroup evolution of the stochastic process that
models the underlying physical process of neutron fission, transport, scatter and absorption.
More precisely, we have two main contributions: (i) to develop a new precise statement of
the form ψt = eλ∗t cgϕ + o(eλ∗t ), where λ∗ and ϕ are a leading eigenvalue and eigenfunction
associated to the NTE and cg is a constant that depends on the initial data g; (ii) to make
the first step in understanding how the growth of the solution to the NTE relative to its lead
eigenfunction plays out in terms of the aforementioned physical stochastic process and an
associated martingale.

This paper follows the review article [10] which consolidates the existing c0-semigroup
approach and how it relates to the stochastic representation. A deeper subsequent analysis in
the direction of our second objective is continued in the accompanying paper [20]. Further
numerical and Monte Carlo considerations based on our stochastic approach will also appear
in forthcoming work [9].

In order to consider the probabilistic perspective, we start by defining the underlying
stochastic processes which mimics the physics of neutron fission, transport, scattering and
absorption.



STOCHASTIC METHODS FOR THE NEUTRON TRANSPORT EQUATION 2575

2. The physical process and the mild NTE. Consider a neutron branching process
(NBP), which at time t ≥ 0 is represented by a configuration of particles which are spec-
ified via their physical location and velocity in D × V , say {(ri(t), υi(t)) : i = 1, . . . ,Nt },
where Nt is the number of particles alive at time t ≥ 0. In order to describe the process, we
will represent it as a process in the space of finite atomic measures

(2.1) Xt(A) =
Nt∑
i=1

δ(ri(t),υi(t))(A), A ∈ B(D × V ), t ≥ 0,

where δ is the Dirac measure, defined on B(D × V ), the Borel subsets of D × V . The
evolution of (Xt , t ≥ 0) is a stochastic process valued in the space of atomic measures
M(D × V ) := {∑n

i=1δ(ri ,υi) : n ∈ N, (ri, υi) ∈ D × V, i = 1, . . . , n} which evolves randomly
as follows.

A particle positioned at r with velocity υ will continue to move along the trajectory r +υt ,
until one of the following things happens.

(i) The particle leaves the physical domain D, in which case it is instantaneously killed.
(ii) Independently of all other neutrons, a scattering event occurs when a neutron comes

in close proximity to an atomic nucleus and, accordingly, makes an instantaneous change of
velocity. For a neutron in the system with position and velocity (r, υ), if we write Ts for the
random time that scattering may occur, then independently of any other physical event that
may affect the neutron, Pr(Ts > t) = exp{−∫ t

0σs(r + υs,υ)ds}, for t ≥ 0.
When scattering occurs at space-velocity (r, υ), the new velocity is selected in V indepen-

dently with probability πs(r, υ,υ ′)dυ ′.
(iii) Independently of all other neutrons, a fission event occurs when a neutron smashes

into an atomic nucleus. For a neutron in the system with initial position and velocity (r, υ),
if we write Tf for the random time that fission may occur, then independently of any other
physical event that may affect the neutron, Pr(Tf > t) = exp{−∫ t

0σf(r +υs,υ)ds}, for t ≥ 0.
When fission occurs, the smashing of the atomic nucleus produces lower mass isotopes

and releases a random number of neutrons, say N ≥ 0, which are ejected from the point of
impact with randomly distributed, and possibly correlated, velocities, say (υi : i = 1, . . . ,N).
The outgoing velocities are described by the atomic random measure

(2.2) Z(A) :=
N∑

i=1

δυi
(A), A ∈ B(V ).

When fission occurs at location r ∈ R
d from a particle with incoming velocity υ ∈ V , we

denote by P(r,υ) the law of Z . The probabilities P(r,υ) are such that, for υ ′ ∈ V , for bounded
and measurable g : V → [0,∞),∫

V
g
(
υ ′)πf(r, v, υ ′)dυ ′ = E(r,υ)

[∫
V

g
(
υ ′)Z(

dυ ′)] =: E(r,υ)

[〈g,Z〉].(2.3)

Note, the possibility that Pr(N = 0) > 0, which will be tantamount to neutron capture (that
is, where a neutron slams into a nucleus but no fission results and the neutron is absorbed into
the nucleus).

In essence, one may think of the process X := (Xt , t ≥ 0) as a typed spatial Markov branching
process, where the type of each particle is the velocity υ ∈ V and the underlying Markov
motion is nothing more than movement in a straight line at velocity υ .

REMARK 2.1. It is worth noting how the assumptions (H1)–(H3) play out in the con-
struction of the NBP. While they serve as sufficient conditions, they are not necessary. For
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example, one could equally assume that for example, there are two open domains Bs and
Bf (which may or may not intersect) contained in D on which σf(r, υ)πf(r, υ,υ ′) > 0, for
Bs × V × V and σf(r, υ)πf(r, υ,υ ′) > 0, for Bf × V × V , respectively. This would ensure
that, at least starting from some configurations (r, υ) ∈ D ×V , the NBP could access regions
where scatter or fission occurs with positive probability. From there, the particle system will
thus propagate by allowing further opportunities for scatter or fission. That said, there will
also be some initial configurations (r, υ) ∈ D × V for which the particles will neither scatter
nor undergo fission and head straight for the boundary ∂D, whereupon they are killed.

This example informally alerts us to the notion of “irreducibility” of the state space. For
contrast, and to highlight the issue further, it is worth comparing the situation to, for example,
a branching Brownian motion on a smooth, convex, bounded domain of D ⊆ R

d for which the
branching rate is supported only on a subdomain B strictly contained in D. In that setting, the
Brownian motion of a given particle would always be able to “find” the region B with positive
probability, where branching can occur (thus propagating the stochastic process in a nontrivial
way). Through this comparison, we see that the piecewise linear spatial paths of neutrons in
the NBP, although simpler to depict than the path of a Brownian motion, are significantly
more irregular. The assumption (H2) may thus be thought of as a sufficient condition to
ensure irreducibility of the state space by enforcing the possibility of either scatter or fission
(but not necessarily the possibility of both), whereas assumption (H3) ensures that there is
at least one area of the domain where fission occurs. The condition (H1) simply ensures that
activity (scatter and fission) cannot happen too fast, and hence the eventuality of explosion in
finite time does not appear in our forthcoming calculations.

REMARK 2.2. The NBP is parameterised by the quantities σs, πs, σf and the family
of measures P = (P(r,υ), r ∈ D,υ ∈ V ) and accordingly we refer to it as a (σs, πs, σf,P)-
NBP. It is associated to the NTE via the relation (2.3), and, although a (σs, πs, σf,P)-NBP
is uniquely defined, a NBP specified by (σs, πs, σf, πf) alone is not.

What is of importance for the purpose of our analysis, however, is that for the given quadru-
ple (σs, πs, σf, πf), at least one (σs, πs, σf,P)-NBP exists such that (2.3) holds. It is rela-
tively easy to construct an example of P as such.

Indeed, let us suppose (H1) and (H3) hold. Then, for a given πf, define

nmax = min
{
k ≥ 1 : sup

(r,υ)∈D×V

∫
V

πf
(
r, υ,υ ′)dυ ′ ≤ k

}
.

The ensemble (υi, i = 1, . . . ,N) is such that: (i) N ∈ {0, nmax}; (ii) the probability of the
event {N = nmax} under P(r,υ) is given by

∫
V πf(r, υ,υ ′′)dυ ′′/nmax; (iii) on the event {N =

nmax}, each of the nmax neutrons are released with the same velocities υ1 = · · · = υnmax ; (iv)
the distribution of this common velocity is given by

P(r,υ)

(
υi ∈ dυ ′|N = nmax

) = πf(r, υ,υ ′)∫
V πf(r, υ,υ ′′)dυ ′′ dυ ′,

for i = 1, . . . , nmax.
With the construction (i)–(iv) for P(r,υ), we have for bounded and measurable g : V →

[0,∞), ∫
V

g
(
υ ′)πf(r, v, υ ′)dυ ′

= 0 × (
1 −P(r,υ)(N = nmax)

)
+P(r,υ)(N = nmax)nmax

∫
V

g
(
υ ′)P(r,υ)

(
υi ∈ dυ ′|N = nmax

)
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=
∫
V πf(r, υ,υ ′′)dυ ′′

nmax
nmax

∫
V

g
(
υ ′) πf(r, υ,υ ′)∫

V πf(r, υ,υ ′′)dυ ′′ dυ ′

=
∫
V

g
(
υ ′)πf(r, v, υ ′)dυ ′,

thus matching (2.3), as required.
It is interesting to note that the construction above is precisely what happens in indus-

trial models of nuclear reactor cores (for which only the cross-sections (σs, πs, σf, πf) are
known) when it comes to Monte Carlo simulation; see further discussion below as well as
[9].

The maximum number of neutrons that can be emitted during a fission event with positive
probability (e.g., in an environment where the heaviest nucleus is Uranium-235, there are at
most 143 neutrons that can be released in a fission event, albeit, in reality it is more likely
that 2 or 3 are released). We will thus occasionally work with:

(H4): Fission offspring are bounded in number by the constant nmax > 1.

In particular this means that supr∈D,υ∈V

∫
V πf(r, υ,υ ′)dυ ′ ≤ nmax.

Write Pδ(r,υ)
for the the law of X when issued from a single particle with space-velocity

configuration (r, υ) ∈ D × V . More generally, for μ ∈ M(D × V ), we understand Pμ :=
Pδ(r1,υ1)

⊗ · · · ⊗ Pδ(rn,υn)
when μ = ∑n

i=1δ(ri ,υi ). In other words, the process X when issued
from initial configuration μ, is equivalent to issuing n independent copies of X, each with
configuration (ri, υi), i = 1, . . . , n.

Like all spatial Markov branching processes, (X,P), where P := (Pμ,μ ∈ M(D × V )),
respects the Markov branching property with respect to the filtration Ft := σ((ri(s), υi(s)) :
i = 1, . . . ,Ns, s ≤ t), t ≥ 0. That is to say, for all bounded and measurable g : D ×
V → [0,∞) and μ ∈ M(D × V ) written μ = ∑n

i=1 δ(ri ,υi), we have Eμ[∏n
i=1 g(ri, υi)] =∏n

i=1 ut [g](ri, υi), for t ≥ 0, r ∈ D, υ ∈ V , where ut [g](r, υ) := Eδ(r,υ)
[∏Nt

i=1 g(ri(t), υi(t))].
In this setting it is also customary to work with the notion that the empty product is valued as
unity; see [22–24].

What is of particular interest to us in the context of the NTE is the expectation semigroup
of the neutron branching process. More precisely, and with pre-emptive notation, we are
interested in

(2.4) ψt [g](r, υ) := Eδ(r,υ)

[〈g,Xt 〉], t ≥ 0, r ∈ D̄, υ ∈ V,

for g ∈ L+∞(D × V ), the space of nonnegative uniformly bounded measurable functions on
D × V . Here we have made a slight abuse of notation (see 〈·, ·〉 as it appears in (2.3)) and
written 〈g,Xt 〉 to mean

∫
D×V g(r, υ)Xt(dr,dυ).

To see why (ψt , t ≥ 0) deserves the name of expectation semigroup, it is a straightforward
exercise with the help of the Markov branching property to show that

(2.5) ψt+s[g](r, υ) = ψt

[
ψs[g]](r, υ), s, t ≥ 0.

The connection of the expectation semigroup (2.4) with the NTE (1.1) was explored
in the recent article [10] (see also older work in [11, 27]). In order to present the rel-
evant findings, let us momentarily introduce some notation. The deterministic evolution
Ut [g](r, υ) = g(r + υt, υ)1{t<κD

r,υ }, t ≥ 0, and κD
r,υ := inf{t > 0 : r + υt /∈ D}, represents

the advection semigroup associated with a single neutron travelling at velocity υ from r . The
backwards scatter operator is denoted by

(2.6) Sf (r, υ) = σs(r, υ)

∫
V

f
(
r, υ ′)πs(r, υ,υ ′)dυ ′ − σs(r, υ)f (r, υ)
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and the backwards fission operator is given by

(2.7) Ff (r, υ) = σf(r, υ)

∫
V

f
(
r, υ ′)πf(r, υ,υ ′)dυ ′ − σf(r, υ)f (r, υ),

for f ∈ L+∞(D × V ), such that both S and F are defined on D × V and zero otherwise.

LEMMA 2.1 ([10]). Under (H1) and (H2), for g ∈ L+∞(D × V ), there exist constants
C1,C2 > 0 such that ψt [g], as given in (2.4), is uniformly bounded by C1 exp(C2t), for all
t ≥ 0. Moreover, (ψt [g], t ≥ 0) is the unique solution, which is bounded in time, to the so-
called mild equation (also called a Duhamel solution in the PDE literature):

(2.8) ψt [g] = Ut [g] +
∫ t

0
Us

[
(S+ F)ψt−s[g]]ds, t ≥ 0,

for which (1.2) holds.

The fact that (2.4) solves (2.8) is a simple matter of conditioning the expression in (2.4) on
the first fission or scatter event (whichever occurs first) and rearranging the resulting equation.
Uniqueness is a matter of working in the right way with Grönwall’s Lemma. The association
of (2.8) with (1.1) in this way was also explored in Theorem 7.1 [10], where it was shown
that the unique solution to (1.1) when seen as an abstract Cauchy problem on L2(D × V )

agrees with the unique solution to (2.8) in the L2(D × V ) norm.
The reader should note that we do not need (H3) or (H4) as the result does not require

information about the pathwise behaviour of any associated underlying stochastic processes.
Nor does it distinguish between the settings that F is present or not.

3. Perron–Frobenius asymptotics. As alluded to above, one of the classical ways
in which neutron flux is understood is to look for the leading eigenvalue and associated
ground state eigenfunction. Roughly speaking, this means looking for an associated triple
of eigenvalue λ∗ ∈ R, positive right eigenfunction ϕ : D × V → [0,∞), a left eigenmeasure
ϕ̃(r, υ)dr dυ on D × V in L+

2 (D × V ) (the cone of nonnegative square integrable func-
tions on D × V ) such that 〈f,ψt [ϕ]〉 = eλ∗t 〈f,ϕ〉 and 〈ϕ̃,ψt [f ]〉 = eλ∗t 〈ϕ̃, f 〉, for t ≥ 0.
Here, we again abuse our notation (see the use of 〈·, ·〉 in (2.3) and (2.4)) and write, for
f,g ∈ L+

2 (D × V ), 〈f,g〉 = ∫
D×V f (r, υ)g(r, υ)dr dυ . With the eigentriple in hand, it is a

common point of analysis that, to leading order, the NTE (1.1) is solved through the approx-
imation

(3.1) ψt(r, υ) = eλ∗t 〈g, ϕ̃〉ϕ(r,υ) + o
(
eλ∗t ), t ≥ 0, r ∈ D,υ ∈ V,

where the sense of the equality depends on how one interprets the NTE (i.e., as an abstract
Cauchy problem or in its mild form).

The eigenfunction ϕ̃ is called the importance map and offers a quasi-stationary profile of
radioactive activity (unless λ∗ = 0, in which case it is a stationary profile). Indeed, in modern
nuclear reactor design and safety regulation, it is usually the case that virtual reactor models
such as the one seen in Figure 1 (an example of a uranium pebble bed reactor) are designed
such that λ∗ = 0 and the behaviour of ϕ̃ within spatial domains on the human scale remains
within regulated levels. Existing physics and engineering literature with focus on applica-
tions in the nuclear regulation industry, has largely been concerned with different numerical
methods for estimating the value of the eigenvalue λ∗ as well as the eigenfunction ϕ and
eigenmeasure ϕ̃(r, υ)dr dυ . Giving a sensible meaning to (3.1) will play an important part in
unraveling the analysis of stochastic representations of solutions to the NTE as well. More-
over, in additional forthcoming work [9], we will also see that our asymptotic (3.1), together
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FIG. 1. Zooming into a virtual model of a pebble bed nuclear reactor core made from tennis ball sized orbs
which encapsulate uranium pellets. From left to right, the diagrams illustrate detail from metres down to mil-
limetres. Colour indicating the different regions in which the cross sections σs, σf, πs, πf are constant. The
structural design of such a reactor can easily be stored as a virtual environment (i.e., storing the coordinates of
the different geometrical domains and the material properties in each domain) with just circa 150 MB of data, on
to which extensive data libraries of industrial numerical values for the respective quantities σs, σf, πs, πf can
be mapped.

with the accompanying stochastic analysis developed here, has influence on a number of
completely new Monte Carlo methods associated with the NTE that, in turn, bears relevance
to the applied NTE literature.

The approximation (3.1) can be seen as a functional version of the Perron–Frobenius The-
orem, in particular when noting via (2.8) that we can understand ψt [g] as a semigroup. Many
attempts have been made to generalise the notion of the Perron–Frobenius decomposition
to semigroups of Markov processes with countable and uncountable state spaces, as well as
with killing and mass creation (see e.g., [14, 33–35]), using what has come to be known as
R-theory. The conditions there seem difficult to verify in the current setting.

More recently, [7, 8] have provided an alternative approach to the R-theory presented in
aforementioned works. In the current context, Theorem 2.1 and Proposition 2.3 of [7] will
help us to achieve the global result, given below. To state it we need to introduce the quantity

(3.2) α(r,υ)π
(
r, υ,υ ′) = σs(r, υ)πs

(
r, υ,υ ′)+ σf(r, υ)πf

(
r, υ,υ ′), r ∈ D,υ,υ ′ ∈ V,

where π is taken to be a probability density. As such it necessarily follows that

(3.3) α(r,υ) = σs(r, υ) + σf(r, υ)

∫
V

πf
(
r, υ,υ ′)dυ ′.

THEOREM 3.1. Suppose that (H1) holds as well as

(H2)∗: infr∈D,υ,υ ′∈V α(r, υ)π(r, υ,υ ′) > 0.

Then, for the semigroup (ψt , t ≥ 0) identified by (2.8), there exists a λ∗ ∈ R, a positive1 right
eigenfunction ϕ ∈ L+∞(D × V ) and a left eigenmeasure which is absolutely continuous with
respect to Lebesgue measure on D ×V with density ϕ̃ ∈ L+∞(D ×V ), both having associated
eigenvalue eλ∗t , and such that ϕ (resp. ϕ̃) is uniformly (resp. a.e. uniformly) bounded away
from zero on each compactly embedded subset of D × V . In particular, for all g ∈ L+∞(D ×
V ),

(3.4)
〈
ϕ̃,ψt [g]〉 = eλ∗t 〈ϕ̃, g〉 (resp. ψt [ϕ] = eλ∗tϕ), t ≥ 0.

Moreover, there exists ε > 0 such that

(3.5) sup
g∈L+∞(D×V ):‖g‖∞≤1

∥∥e−λ∗tϕ−1ψt [g] − 〈ϕ̃, g〉∥∥∞ = O
(
e−εt ) as t → ∞.

1To be precise, by a positive eigenfunction, we mean a mapping from D × V → (0,∞). This does not prevent
it being valued zero on ∂D, as D is an open bounded, convex domain.
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This result differs significantly from what is already in the literature principally through
the assumptions on the cross-sections, the strict positivity properties and the uniform bound-
edness of ϕ, ϕ̃ and uniformity in the mode of convergence. In existing literature (3.5) is
usually given in the Lp setting, where 1 < p < ∞ is strictly enforced due to the nature of the
c0-semigroup perturbation analysis; cf. [12, 36] and the discussion in [10].

The proof of Theorem 3.1 is a nontrivial application of the recent theory of [7, 8] in that
verifying their assumptions (which essentially leads to the full statement of Theorem 3.1) is
highly technical, taking account of the dimension of the system and the piecewise linear (and
hence irregular) nature of the neutron paths in the underlying NBP.

Once again the assumptions (H3) and (H4) are unnecessary. As we shall shortly see, the
result relies on the treatment of the sum of the operators S+ F as a single object, re-written
as a scattering generator with action

S′f (r, υ) =
∫
V

(
f
(
r, υ ′)− f (r, υ)

)
α(r,υ)π

(
r, υ,υ ′)dυ ′, r ∈ D,υ ∈ V.

The assumption (H2)∗ is a condition on the intensity of this new generator. In this sense, the
need for fission or for control of the pathwise behaviour of number of offspring (other than
through their mean) is not needed.

4. Neutron random walk and many-to-one methodology. There is a second stochas-
tic representation of the unique solution to (2.8) which will form the basis of our proof of
Theorem 3.1. In order to describe it, we need to introduce the notion of a neutron random
walk (NRW).

A NRW on D is defined by its scatter rates, ς(r, υ), r ∈ D, υ ∈ V , and scatter probability
densities �(r,υ,υ ′), r ∈ D, υ,υ ′ ∈ V such that

∫
V �(r,υ,υ ′)dυ ′ = 1 for all r ∈ D, υ ∈ V .

Simply, when issued from r with a velocity υ , the NRW will propagate linearly with that
velocity until either it exits the domain D, in which case it is killed, or at the random time
Ts a scattering occurs, where Pr(Ts > t) = exp{−∫ t

0ς(r + υs,υ)ds}, for t ≥ 0. When the
scattering event occurs in position-velocity configuration (r, υ), a new velocity υ ′ is selected
with probability �(r,υ,υ ′)dυ ′. If we denote by (R,ϒ) = ((Rt ,ϒt), t ≥ 0), the position-
velocity of the resulting continuous-time random walk on D ×V with an additional cemetery
state {†} for when it leaves the domain D, then it is easy to show that (R,ϒ) is a Markov
process. Note, neither R nor ϒ alone is Markovian. We call the process (R,ϒ) an ς� -
NRW. It is worth remarking that when ς� is given as a single rate function, the density � ,
and hence the rate ς , is uniquely identified by normalising of the given product from ς� to
make it a probability distribution.

To describe the second stochastic representation of (2.8), we define

(4.1) β(r, υ) = σf(r, υ)

(∫
V

πf
(
r, υ,υ ′)dυ ′ − 1

)
≥ − sup

r∈D,υ∈V

σf(r, υ) > −∞,

where the lower bound is due to assumption (H1). The following result was established in
Lemma 7.1 of [10].

LEMMA 4.1 (Many-to-one formula, [10]). Under the assumptions of Lemma 2.1, we
have the second representation

(4.2) ψt [g](r, υ) = E(r,υ)

[
e
∫ t

0 β(Rs,ϒs)dsg(Rt ,ϒt)1{t<τD}
]
, t ≥ 0, r ∈ D,υ ∈ V,

where τD = inf{t > 0 : Rt /∈ D} and P(r,v) for the law of the απ -NRW starting from a single
neutron with configuration (r, υ).
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Noting that β̄ := supr∈D,υ∈V β(r, υ) < ∞ thanks to (H1), let us introduce P† := (P†
t , t ≥

0) for the expectation semigroup of the απ -neutron random walk with potential β , such as
is represented by the semigroup (4.2), but now killed at rate (β̄ − β). More precisely, for
g ∈ L+∞(D × V ),

P†
t [g](r, υ) = ψt [g](r, υ)e−β̄t

= E(r,υ)

[
e
∫ t

0 (β(Rs,ϒs)−β̄)dsg(Rt ,ϒt)1{t<τD}
]

= E(r,υ)

[
g(Rt ,ϒt)1{t<k}

]
=: E†

(r,υ)

[
g(Rt ,ϒt)

]
, t ≥ 0, r ∈ D,υ ∈ V,

(4.3)

where

(4.4) k= inf
{
t > 0 :

∫ t

0

(
β̄ − β(Rs,ϒs)

)
ds > e

}
∧ τD,

and e is an independent exponentially distributed random variable with mean 1.
We will naturally write P†

(r,υ) for the (sub)probability measure associated to E†
(r,υ), r ∈ D̄,

υ ∈ V . The family P† := (P†
(r,υ), r ∈ D̄, υ ∈ V ) now defines a Markov family of probability

measures on the path space of the neutron random walk with cemetery state {†}, which is
where the path is sent when hitting the boundary ∂D or the clock associated to the killing
rate β̄ − β rings. We note for future calculations that we can extend the domain of functions
on D × V to accommodate taking a value on {†} by insisting that this value is always 0.

Our strategy for proving Theorem 3.1 thus boils down to understanding the evolution of the
semigroup of the NRW ((R,ϒ),P†). In this sense, we see that the essence of Theorem 3.1 is,
roughly speaking, a classical Perron–Frobenius-type problem for the semigroup of a Markov
process; namely ((R,ϒ),P†).

It is also worthy of note that, given the role the απ -NRW in the proof of Theorem 3.1, we
can also interpret the role of the assumptions (H1) and (H2)∗ in terms of this process. The
condition (H1) ensures that scattering cannot occur too fast. We can describe the condition
(H2)∗ by saying that it offers “strong irreducibility” of the απ -NRW (where e.g., we could
say that (H2) only offers “weak irreducibility”).

As alluded to previously, we can also see why the absence of the assumption (H3) is not a
problem. In the event that, for example, σfπf is identically zero, the original NBP is nothing
more than a σsπs-NRW, that is, απ = σsπs and β ≤ 0. As such the analysis in the proof of
Theorem 3.1, which fundamentally concerns a NRW with a “strictly irreducible” state space
and killing is still valid. Similarly, the inclusion of (H4) is not necessary as we only need
control over the kernel απ for the purpose of analysing the associated NRW and not the
pathwise behaviour of the otherwise associated NBP.

5. The ground state martingale. As an application of the Perron–Frobenius behaviour
of the linear semigroups discussed in Theorem 3.1, we complete the summary of the main re-
sults of this paper by discussing how the existence of the right eigenfunction ϕ plays directly
into the existence of a classical (ground state) martingale for the underlying physical process.
Analogues of this martingale appear in the setting of all spatial branching processes and is
sometimes referred to there as “the additive martingale” (see e.g., the recent monograph [39]
which discusses the analogous setting for branching random walks, or [3] for fragmentation
processes).

Under the assumptions of Theorem 3.1 thanks to the semigroup property of (2.4) and the
invariance of ϕ in Theorem 3.1, it is now easy to see that

(5.1) Wt := e−λ∗t 〈ϕ,Xt 〉
〈ϕ,μ〉 , t ≥ 0,
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is a unit mean martingale under Pμ where μ ∈ M(D×V ). It is worth noting that this claim is
not so easy to make under analogues of Theorem 3.1 found in previous literature (cf. [11, 12,
36]) as the setting of the eigenfunction ϕ in an Lp space would make it difficult to make sense
of expectations of inner product 〈ϕ,Xt 〉 without saying more about the mean semigroup of
(Xt , t ≥ 0).

As a nonnegative martingale, the almost sure limit of (5.1) is assured. Our second main
result tells us precisely when this martingale limit is nonzero. Before stating the theorem,
we require one more assumption on the fission rate and kernel, which is a stricter version of
(H3).

(H3)∗: There exists an open ball B , compactly embedded in D, such that

inf
r∈B,υ,υ ′∈V

σf(r, υ)πf
(
r, υ,υ ′) > 0.

THEOREM 5.1. For the (σs, πs, σf,P)-NBP satisfying (H1), (H2)∗ and (H4), we have
the following cases for the martingale W = (Wt , t ≥ 0):

(i) If λ∗ > 0 and (H3) holds, then W is L1(P) convergent;
(ii) If λ∗ < 0 and (H3) holds, then W∞ = 0 almost surely;

(iii) If λ∗ = 0 and (H3)∗ holds, then W∞ = 0 almost surely.

Although a subtle inclusion, the following theorem also frames Theorem 5.1 in a more
tidy way, showing the zero set of the martingale limit agrees with extinction.

THEOREM 5.2. In each of the three cases of Theorem 5.1, we also have that the events
{W∞ = 0} and {ζ < ∞} almost surely agree, where ζ = inf{t > 0 : 〈1,Xt 〉 = 0} is the time of
extinction of the NBP. In particular, there is almost sure extinction if and only if λ∗ ≤ 0.

As we can see from the above theorem, the critical case requires slightly more stringent
conditions than the super- or sub-critical cases. However, it we assume the conditions of the
critical case across the board, we get the aesthetically more pleasing corollary below.

COROLLARY 5.3. For the (σs, πs, σf,P)-NBP satisfying (H1), (H2)∗, (H3)∗ and (H4),
the martingale W is L1(P) convergent if and only if λ∗ > 0 and otherwise W∞ = 0. Irrespec-
tive of λ∗, {W∞ = 0} = {ζ < ∞} almost surely.

Note that, unlike many spatial branching process (e.g., the classical result of [6]), there is
no “x logx” condition thanks to the assumption (H2) and a precise dichotomy on λ∗ emerges.
The result mimics a behavioural trait that has been observed for branching diffusions in com-
pact domains in, for example, [18]. In essence it states that in the competing physical pro-
cesses of fission, transport, scattering and absorption, it is the lead eigenvalue which dictates
growth or decay of mass. In this respect we can also mimic other similar results in the spa-
tial branching process literature (cf. [1, 19, 26]), the proof of which falls out of the proof of
Theorem 5.1.

COROLLARY 5.4. For the (σs, πs, σf,P)-NBP satisfying the assumptions (H1), (H2)∗,
(H3) and (H4), when λ∗ > 0, the martingale (Wt , t ≥ 0) is L2(P) convergent.

It is particularly interesting to note that in the setting of a critical system, λ∗ = 0, which is
typically what is envisaged for a nuclear reactor, the above results evidences the hypothesis
that the fission process eventually dies out (similarly to other examples of critical branching
processes).
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To verify the aforementioned hypothesis rigorously, one needs an almost sure growth result
for the particle system which would take the format

(5.2) lim
t→∞ e−λ∗t 〈g,Xt 〉

〈ϕ,μ〉 = 〈g, ϕ̃〉W∞,

Pμ-almost surely, for all g ∈ L+∞(D × V ). This is a much more difficult result than the one
stated in Theorem 5.1 and is addressed in a second instalment to this paper; see [20]. The
reader should note that (5.2) verifies what has been known in the nuclear industry for a long
time. Namely that critical nuclear reactors will not persist in energy generation, but will
eventually cease working, corresponding to the case that W∞ = 0.

6. Neutron random walk and spine decomposition. As with many spatial branching
processes, the most efficient way to analyse martingale convergence is through the pathwise
behaviour of the particle system (known as a spine decomposition) when considered under a
change of measure induced by the martingale itself. While classical in the branching process
literature, it is unknown in the setting of neutron transport. We will devote the remainder of
this section to describing the pathwise spine decomposition of the physical process, our final
main contribution.

We are interested in the change of measure

(6.1)
dPϕ

μ

dPμ

∣∣∣∣
Ft

= Wt, t ≥ 0,

for the NBP with characteristics σs, πs, σf, P (cf. Remark 2.2), where μ belongs to the space
of finite atomic measures M(D × V ).

In the next theorem we will formalise an understanding of this change of measure in terms
of another M(D × V )-valued stochastic process

(6.2) Xϕ := (
X

ϕ
t , t ≥ 0

)
with probabilities P̃ϕ := (

P̃
ϕ
μ,μ ∈ M(D × V )

)
,

which we will now describe through an algorithmic construction.

1. From the initial configuration μ ∈ M(D × V ) with an arbitrary enumeration of parti-
cles, the ith neutron is selected and marked “spine” with empirical probability

ϕ(ri, υi)

〈ϕ,μ〉 .

2. The neutrons j �= i in the initial configuration that are not marked “spine’’, each issue
independent copies of (X,Pδ(rj ,υj )

) respectively.
3. For the marked neutron, issue a NRW characterised by the rate function

σs(r, υ)
ϕ(r, υ ′)
ϕ(r, υ)

πs
(
r, υ,υ ′), r ∈ D,υ,υ ′ ∈ V.

4. The marked neutron undergoes fission at the accelerated rate ϕ(r,υ)−1(F + σfI) ×
ϕ(r,υ), when in physical configuration (r, υ) ∈ D × V , at which point, it scatters a random
number of particles according to the random measure on V given by (Z,Pϕ

(r,υ)) where

(6.3)
dPϕ

(r,υ)

dP(r,υ)

= 〈ϕ,Z〉
E(r,υ)[〈ϕ,Z〉] .
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5. When fission of the marked neutron occurs in physical configuration (r, υ) ∈ D × V ,
set

μ =
n∑

i=1

δ(r,υi) where, in the previous step, Z =
n∑

i=1

δυi
,

and repeat step 1.

The process X
ϕ
t describes the physical configuration (position and velocity) of all the par-

ticles in the system at time t , for t ≥ 0 (i.e., ignoring the marked genealogy). We will
also be interested in the configuration of the single genealogical line of descent which has
been marked “spine”. This process, referred to simply as the spine, will be denoted by
(Rϕ,ϒϕ) := ((R

ϕ
t ,ϒ

ϕ
t ), t ≥ 0). Together, the processes (Xϕ, (Rϕ,ϒϕ)) make a Markov pair,

whose probabilities we will denote by (P̃
ϕ
μ,(r,υ),μ ∈ M(D × V ), (r, υ) ∈ V × D). Note in

particular that

P̃
ϕ
μ =

n∑
i=1

ϕ(ri, υi)

〈ϕ,μ〉 P̃
ϕ
μ,(ri ,υi )

when μ = ∑n
i=1 δ(ri ,υi).

THEOREM 6.1. Under assumptions (H1), (H2) and (H4), the process (Xϕ, P̃ϕ) is Marko-
vian and equal in law to (X,Pϕ), where P

ϕ = (P
ϕ
μ,μ ∈ M(D × V )).

It is also worth understanding the dynamics of the spine (Rϕ,ϒϕ). For convenience, let
us denote the family of probabilities of the latter by P̃ϕ = (P̃ϕ

(r,υ), (r, υ) ∈ D × V ), in other

words, the marginals of (P̃
ϕ
μ,(r,υ),μ ∈ M(D × V ), (r, υ) ∈ V × D).

Next we define the probabilities Pϕ := (Pϕ
(r,υ), (r, υ) ∈ D × V ) to describe the law of an

αϕπϕ-NRW, where

(6.4) αϕ(r, υ)πϕ(r, υ,υ ′) = ϕ(r,υ ′)
ϕ(r, υ)

(
σs(r, υ)πs

(
r, υ,υ ′)+ σf(r, υ)πf

(
r, υ,υ ′)),

for r ∈ D, υ,υ ′ ∈ V We are now ready to identify the spine.

LEMMA 6.1. Under assumptions (H1), (H2) and (H4), the process ((Rϕ,ϒϕ), P̃ϕ) is a
NRW equal in law to ((R,ϒ),Pϕ) and, moreover,

(6.5)
dPϕ

(r,υ)

dP(r,υ)

∣∣∣∣
Ft

= e−λ∗t+∫ t
0 β(Rs,ϒs)ds ϕ(Rt ,ϒt)

ϕ(r, υ)
1{t<τD}, t ≥ 0, r ∈ D,υ ∈ V,

from which we deduce that ((R,ϒ),Pϕ) is conservative with a stationary distribution
ϕϕ̃(r, υ)dr dυ on D × V . (Recall that (R,ϒ) under P is the απ -NRW that appears in the
many-to-one Lemma 4.1.)

Now that we have stated all of our main results, it is worth noting that, in places, the anal-
ysis echoes very similar issues that have very recently appeared in the analysis of growth-
fragmentation equations (see, e.g., [5] and [4]) and for good reason. Growth-fragmentation
equations, although dealing with a particle system in which particles’ mass is positive-valued
and for which there is no consideration of classical “velocity”, the dynamics of fragmenta-
tion shares the phenomenon of nonlocal branching. This explains the appearance of integral
operators. Moreover, a combination of Lévy-type and piecewise linear movement of particles
in the growth-fragmentation setting also mirrors the phenomenon of advection and scattering
in the NTE and the associated operators.

In the rest of the paper we prove Theorem 3.1, Theorem 6.1, Lemma 6.1, Theorem 5.1 and
Corollary 5.4 in that order.
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7. Proof of Theorem 3.1. Our approach to proving Theorem 3.1 will be to extract the
existence of the eigentriple λ∗, ϕ and ϕ̃ for the expectation semigroup (ψt , t ≥ 0) from the
existence of a similar triple of the semigroup (P†

t , t ≥ 0) defined in (4.3). Indeed, from (4.3),
it is clear that when the latter exists, the eigenfunctions of the former are the same and the
eigenvalues differ only by the constant β .

Throughout this section, we assume the assumptions of Theorem 3.1 are in force.
As alluded to earlier, what lies at the core of our proof is the general result of Theorem 2.1

and Proposition 2.3 of [7] and Theorem 2.1 and the discussion around (1.5) of [8], which,
combined in the current context, reads as follows.

THEOREM 7.1. Suppose that there exists a probability measure ν on D × V such that

(A1) there exist t0, c1 > 0 such that for each (r, υ) ∈ D × V ,

P(r,υ)

(
(Rt0,ϒt0) ∈ · |t0 < k

) ≥ c1ν(·);
(A2) there exists a constant c2 > 0 such that for each (r, υ) ∈ D × V and for every t ≥ 0,

Pν(t < k) ≥ c2P(r,υ)(t < k),

where k was defined in (4.4). Then, there exists λc < 0 such that, there exists an eigenmeasure
η on D × V and a positive right eigenfunction ϕ of P† with eigenvalue eλct , such that η is a
probability measure and ϕ ∈ L+∞(D × V ), that is, for all g ∈ L∞(D × V )

(7.1) η
[
P†

t [g]] = eλctη[g] and P†
t [ϕ] = eλctϕt ≥ 0.

Moreover, there exist C,ε > 0 such that, for g ∈ L+∞(D × V ) and t sufficiently large (which
does not depend on g),

(7.2)
∥∥e−λctϕ−1P†

t [g] − η[g]∥∥∞ ≤ Ce−εt‖g‖∞.

In particular, setting g ≡ 1, as t → ∞,

(7.3)
∥∥e−λctϕ−1P·(t < k) − 1

∥∥∞ ≤ Ce−εt .

We aim to prove that assumptions (A1) and (A2) are satisfied, so that the conclusions of
the above theorem hold. Then we prove that ϕ is uniformly bounded away from 0 on each
compactly embedded subset of D × V and that η admits a positive bounded density with
respect to the Lebesgue measure on D × V (see Lemma 7.4), which concludes the proof of
Theorem 3.1. In order to do so, we start by introducing two alternative assumptions to (A1)
and (A2):

There exists an ε > 0 such that

(B1) Dε := {r ∈ D : infy∈∂D |r − y| > εvmax} is nonempty and connected.
(B2) there exist 0 < sε < tε and γ > 0 such that, for all r ∈ D \ Dε , there exists Kr ⊂ V

measurable such that Vol(Kr) ≥ γ > 0 and for all υ ∈ Kr , r + υs ∈ Dε for every s ∈ [sε, tε]
and r + υs /∈ ∂D for all s ∈ [0, sε].
It is easy to verify that (B1) and (B2) are implied when we assume that D is a nonempty
convex domain, as we have done in the Introduction. They are also satisfied if, for example,
the boundary of D is a smooth, connected, compact manifold and ε is sufficiently small.
Geometrically, (B2) means that each of the sets

(7.4) Lr :=
{
z ∈ R

3 : ‖z − r‖
‖υ‖ ∈ [sε, tε], υ ∈ Kr

}
, r ∈ D \ Dε
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is included in Dε and has Lebesgue measure at least γ (t2
ε − s2

ε )/2. Roughly speaking, for
each r ∈ D which is within εvmax of the boundary ∂D, Lr is the set of points from which
one can issue a neutron with a velocity chosen from υ ∈ Kr such that (ignoring scattering
and fission) we can ensure that it passes through D \ Dε during the time interval [sε, tε].

Our proof of Theorem 3.1 thus consists of proving that assumptions (B1) and (B2) imply
assumptions (A1) and (A2). Our method is motivated by [7], Section 4.2, however, we note
that our approach accommodates for the more general setting we have here (e.g., V ⊂ R

3 is
bounded and d = 3) at the cost of greater technicalities.

We begin by considering several technical lemmas. The first is a straightforward conse-
quence of D being a bounded subset of R3.

LEMMA 7.1. Let B(r,υ) be the ball in R
3 centred at r with radius υ .

(i) There exists an integer n ≥ 1 and r1, . . . , rn ∈ Dε such that Dε ⊂ ⋃n
i=1 B(ri,vmaxε/

32) and Dε ∩ B(ri,vmaxε/32)�= ∅ for each i ∈ {1, . . . ,n}.
(ii) For all r, r ′ ∈ Dε , there exists m ≤ n and i1, . . . , im distinct in {1, . . . ,n} such that

r ∈ B(ri1,vmaxε/32), r ′ ∈ B(rim,vmaxε/32) and for all 1 ≤ j ≤ m − 1, B(rij ,vmaxε/32) ∩
B(rij+1,vmaxε/32) �= ∅.

Heuristically, the above lemma ensures that there is a universal covering of Dε by the balls
B(ri,vmaxε/32), 1 ≤ i ≤ n such that between any two points r , r ′ in Dε , there is a sequence
of overlapping balls B(ri1,vmaxε/32), . . . ,B(rim,vmaxε/32) that one may pass through in
order to get from r to r ′.

The next lemma provides a minorization of the law of (Rt ,ϒt) under P†. The result is
similar to [7], Lemma 4.5, however, we provide a less geometrical proof by considering a
change of variables from Cartesian to polar coordinates. In the statement of the lemma, we
use dist(r, ∂D) for the distance of r from the boundary ∂D.

Define α = infr∈D,υ∈V α(r, υ) > 0 and π = infr∈D,υ,υ ′∈V π(r, υ,υ ′). We will also simi-
larly write α and π with obvious meanings. We note that due to the assumption (H1) we have
α < ∞ and π < ∞ and hence, combining this with (H2)∗ it follows that,

α = 1

π
inf

r∈D,υ∈V
α(r, υ)π ≥ 1

π
inf

r∈D,υ,υ ′∈V
α(r, υ)π

(
r, υ,υ ′) > 0,

and a similar calculation shows that π > 0.

LEMMA 7.2. For all r ∈ D, υ ∈ V and t > 0 such that vmaxt < dist(r, ∂D), the law
of (Rt ,ϒt) under P†

(r,υ), defined in (4.3), satisfies

(7.5)
P†

(r,υ)(Rt ∈ dz,ϒt ∈ dυ) ≥ Ce−αt

t2

[
t

2

(
v2
max −

(
vmin ∨ |z − r|

t

)2)
− |z − r|

(
vmax − vmin ∨ |z − r|

t

)]
1{z∈B(r,vmaxt}) dz dυ,

where C > 0 is a positive constant.

PROOF. Fix r0 ∈ D. Let Jk denote the kth jump time of (Rt ,ϒt) under P†
(r,υ) and let

ϒ0 be uniformly distributed on V . Assuming that vmaxt < dist(r0, ∂D), we first give a
minorization of the density of (Rt ,ϒt), with initial configuration (r0,ϒ0), on the event {J1 ≤
t < J2}. Note that, on this event, we have

Rt = r0 + J1ϒ0 + (t − J1)ϒJ1,
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where ϒJ1 is the velocity of the process after the first jump. Then

(7.6)

E†
(r0,ϒ0)

[
f (Rt ,ϒt)1{J1≤t<J2}

]
=

∫ t

0
ds

∫
V

dυ0

∫
V

dυ1α(r0 + υ0s, υ0)e
− ∫ s

0 α(r0+υ0u,υ0)due− ∫ t−s
0 α(r0+υ0s+υ1u,υ1)du

× π(r0 + υ0s, υ0, υ1)f
(
r0 + υ0s + (t − s)υ0, υ1

)
≥ αe−αtπ

∫
V

dυ1

∫ t

0
ds

∫
V

dυ0f
(
r0 + sυ0 + (t − s)υ1, υ1

)
,

where we have used the bounds on α and π . We now make the change of variables υ0 �→
(ρ0, θ0, ϕ0) and υ1 �→ (ρ1, θ1, ϕ1) so that (7.6) becomes

(7.7)

E†
(r0,ϒ0)

[
f (Rt ,ϒt)1{J1≤t<J2}

]
≥ C1αe−αtπ

∫ t

0
ds

∫ vmax

vmin

dρ1

∫ π

0
dϕ1

∫ 2π

0
dθ1

∫ vmax

vmin

dρ0

∫ π

0
dϕ0

∫ 2π

0
dθ0

f
(
r0 + �ρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0), �̃(ρ1, θ1, ϕ1)

)
�(ρ0, θ0, ϕ0)�(ρ1, θ1, ϕ1),

where

�ρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0) =
⎡⎣sρ0 sinϕ0 cos θ0 + (t − s)ρ1 sinϕ1 cos θ1

sρ0 sinϕ0 sin θ0 + (t − s)ρ1 sinϕ1 sin θ1
sρ0 cosϕ0 + (t − s)ρ1 cosϕ1

⎤⎦ ,(7.8)

represents the spatial variable sυ0 + (t − s)υ1 in polar coordinates,

�̃(ρ1, θ1, ϕ1) =
⎡⎣ρ1 sinϕ1 cos θ1

ρ1 sinϕ1 sin θ1
ρ1 cosϕ1

⎤⎦(7.9)

represents υ1 in polar coordinates,

(7.10) �(ρ, θ,ϕ) = ρ2 sinϕ,

is the determinant of the Jacobian matrix for the change of variables from Cartesian to polar
coordinates, and C1 is an unimportant normalising constant.

For fixed ρ0, ρ1, θ1 and ϕ1, we first consider the part of (7.7) given by

(7.11)
(s, θ0, ϕ0)

�→
∫ t

0
ds

∫ π

0
dϕ0

∫ 2π

0
dθ0f

(
r0 + �ρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0), �̃(ρ1, θ1, ϕ1)

)
�(ρ0, θ0, ϕ0).

The Jacobian of �ρ0,ρ1,θ1,ϕ1 , as a function of (s, θ0, ϕ0), is given by⎡⎣ρ0 cos θ0 sinϕ0 − ρ1 cos θ1 sinϕ1 −sρ0 sin θ0 sinϕ0 sρ0 cosϕ0 cos θ0
ρ0 sin θ0 sinϕ0 − ρ1 sin θ1 sinϕ1 sρ0 cos θ0 sinϕ0 sρ0 cosϕ0 sin θ0

ρ0 cosϕ0 − ρ1 cosϕ1 0 −sρ0 sinϕ0

⎤⎦ ,

whose determinant, det(Dρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0)) satisfies

�(ρ0, θ0, ϕ0)

det(Dρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0))
≥ 1

4s2v3
max

≥ 1

4t2v3
max

, s ≤ t.
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We thus have the following lower bound for (7.11)

1

4t2v3
max

∫ t

0
ds

∫ π

0
dϕ0

∫ 2π

0
dθ0f

(
r0 + �ρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0), �̃(ρ1, θ1, ϕ1)

)
× det

(
Dρ0,ρ1,θ1,ϕ1(s, θ0, ϕ0)

)
.

(7.12)

Making another change of variables (s, θ0, ϕ0) �→ r ∈ R
3 and using the fact that, regardless

of the values of ρ1, θ1 and ϕ1, �ρ0,ρ1,θ1,ϕ1 maps (0, t) × (0, π) × (0,2π) surjectively onto a
set that contains B(ρ0t), where B(r) is the ball in R

3 of radius r centred at the origin, (7.12),
and hence (7.11), is bounded below by

(7.13)
1

4t2υ3
max

∫
B(ρ0t)

f
(
r, �̃(ρ1, θ1, ϕ1)

)
dr.

Substituting this equation back into (7.7) and changing (ρ1, θ1, ϕ1) back to Cartesian coordi-
nates, we have

(7.14) E†
(r0,ϒ0)

[
f (Rt ,ϒt)1{J1≤t<J2}

] ≥ C2e−αt

t2

∫ vmax

vmin
dρ0

∫
B(ρ0t)

dr

∫
V

dυ1f (r, υ1),

where C2 = απC1/(4v3
max).

Now suppose we fix an initial configuration (r0, υ0) ∈ D × V , with tvmax < dist(r0,

∂D). By considering the event {J2 ≤ t < J3} and noting that the scattering kernel is bounded
below by π , we may apply the Markov property together with (7.14) to the process at time
J1 before choosing the new velocity. Using the bounds on α and π as before, and recalling
that ϒ0 is uniformly distributed, we have

(7.15)

E†
(r0,υ0)

[
f (Rt ,ϒt)1{J2≤t<J3}

]
≥
∫ t

0
dsαe−αsπE†

(r0+sυ0,ϒ0)

[
f (Rt−s,ϒt−s)1{J1≤t−s<J2}

]
≥
∫ t

0
dsαe−αsπ

C2e−α(t−s)

(t − s)2

∫
V

dυ1

∫ vmax

vmin
dρ0

∫
ρ0(t−s)B

drf (r0 + sυ0 + r, υ1)

≥ C3e−αt

t2

∫ t

0
ds

∫
V

dυ1

∫ vmax

vmin
dρ0

∫
ρ0(t−s)B

drf (r0 + sυ0 + r, υ1)

= C3e−αt

t2

∫ t

0
ds

∫
V

dυ1

∫ vmax

vmin
dρ0

∫
r0+sυ0+ρ0(t−s)B

dyf (y,υ1),

where we have used the substitution y = r0 + sυ0 + r to obtain the final line and C3
is another constant in (0,∞). Now note that for s ≤ ρ0t/(ρ0 + vmax) we have r0 +
B(ρ0t − (ρ0 + vmax)s) ⊂ r0 + sυ0 + B(ρ0(t − s)). Combining this with (7.15) and using
Fubini, we have

(7.16)

E†
(r0,υ0)

[
f (Rt ,ϒt)1{J2≤t<J3}

]
≥ C3e−αt

t2

∫
V

dυ1

∫ vmax

vmin
dρ0

∫
R

1{0≤s≤ ρ0
ρ0+vmax t}ds

∫
R3

dy1{|y−r0|≤ρ0t−(ρ0+vmax)s}

× f (y,υ1)

= C3e−αt

t2

∫
V

dυ1

∫ vmax

vmin
dρ0

∫
R

ds

∫
R3

dy1{0≤s≤ ρ0t−|y−r0|
ρ0+vmax }f (y,υ1)

= C3e−αt

t2

∫
V

dυ1

∫ vmax

vmin
dρ0

∫
R3

dy1{|y−r0|≤ρ0t}
(

ρ0t − |y − r0|
ρ0 + vmax

)
f (y,υ1).
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We finally compute the integral with respect to ρ0 ∈ (vmin,vmax). In order to do so, we first
note that since ρ0 < vmax, the integrand in (7.16) is bounded below by

ρ0t − |y − r0|
2vmax

.

Absorbing 1/2vmax into the constant C3, applying Fubini and computing the ρ0 integral
yields

(7.17)
E†

(r0,υ0)

[
f (Rt ,ϒt)

] ≥ C3e−αt

t2

∫
V

dυ1

∫
R3

dy

[
t

2

(
v2
max −

(
vmin ∨ |y − r|

t

)2)
− |y − r|

(
vmax − vmin ∨ |y − r|

t

)]
1{|y−r0|≤vmaxt}f (y,υ1),

as required. �

We now turn to the proof of (A1) under the assumptions of (B1) and (B2).

PROOF OF (A1). In this proof, we will follow a similar strategy to the one presented in
[7], Section 4.2. We therefore start by proving (A1) for initial configurations in Dε × V .

To this end, fix (r, υ) ∈ Dε × V . From Lemma 7.1, there exists an i ∈ {1, . . . ,n} such that
r ∈ B(ri,vmaxε/32) ∩ Dε . Then, for each t ∈ [ε/2, ε), Lemma 7.2 yields

(7.18)

P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw) ≥ Ce−αt

t2

[
t

2

(
v2
max −

(
vmin ∨ |z − r|

t

)2)
− |z − r|

(
vmax − vmin ∨ |z − r|

t

)]
× 1{z∈B(r,vmaxt)} dz dw.

Now, if j ∈ {1, . . . ,n} is such that B(ri,vmaxε/32) ∩ B(rj ,vmaxε/32) �= ∅, the trian-
gle inequality implies that Dε ∩ (B(ri,vmaxε/32) ∪ B(rj ,vmaxε/32)) ⊂ B(r,vmaxε/8) ⊂
B(r,vmaxt), with the latter inclusion following from the fact that t ∈ [ε/2, ε).

Hence, for z ∈ B(ri,vmaxε/32) ∪ B(rj ,vmaxε/32) and t ∈ [ε/2, ε), the density on the
right-hand side of (7.18) is bounded below by a constant Cε > 0, which is independent of r ,
υ , i and j . Hence,

(7.19) P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw) ≥ Cε1{z∈Dε∩(B(ri ,ε/32)∪B(rj ,ε/32))} dz dw, z ∈ D,w ∈ V.

Now let t ≥ (n + 1)ε/2. By writing t = kε/2 + t ′, for some k ≥ n and t ′ ∈ [ε/2, ε). We
will demonstrate that a repeated application of (7.19) will lead to the inequality

(7.20) P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw) ≥ Cεc

k
ε1{z∈Dε} dz dw, z ∈ D,w ∈ V,

for (r, υ) ∈ Dε × V , where cε > 0 is another unimportant constant which depends only on ε

and is defined in the following analysis.
To this end, we start by noting that, since r ∈ Dε and υ ∈ V , there exists i0, i1 ∈ {1, . . . ,n}

such that r ∈ B(ri0,vmaxε/32) and B(ri0,vmaxε/32)∩B(ri1,vmaxε/32)∩Dε �= ∅. Applying
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(7.19) at time t ′ (recall that we have identified t = kε/2 + t ′ for some k ≥ n) we obtain,

(7.21)

P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw)

= P†
(r,υ)(Rt ′+kε/2 ∈ dz,ϒt ′+kε/2 ∈ dw)

≥ E†
(r,υ)

[
1{Rt ′∈B(ri1 ,vmaxε/32)∩Dε,ϒt ′∈V }P†

(Rt ′ ,ϒt ′ )(Rkε/2 ∈ dz,ϒkε/2 ∈ dw)
]

=
∫
B(ri1 ,vmaxε/32)∩Dε

∫
V

P†
(r ′,υ ′)(Rkε/2 ∈ dz,ϒkε/2 ∈ dw)

× P†
(r,υ)

(
Rt ′ ∈ dr ′,ϒt ′ ∈ dυ ′)

≥ Cε

∫
B(ri1 ,vmaxε/32)∩Dε

∫
V

P†
(r ′,υ ′)(Rkε/2 ∈ dz,ϒkε/2 ∈ dw)

× 1{r ′∈(B(ri0 ,vmaxε/32)∪B(ri1 ,vmaxε/32))∩Dε} dr ′ dυ ′

= Cε

∫
B(ri1 ,vmaxε/32)∩Dε

∫
V

P†
(r ′,υ ′)(Rkε/2 ∈ dz,ϒkε/2 ∈ dw)dr ′ dυ ′.

We now turn our attention to P†
(r ′,υ ′)(Rkε/2 ∈ dz,ϒkε/2 ∈ dw), for (r ′, υ ′) ∈ (B(ri1,vmaxε/

32) ∩ Dε) × V and k ≥ n. Thanks to Lemma 7.1, for all ik+1 ∈ {1, . . . ,n}, there exist
i2, . . . , ik ∈ {1, . . . ,n} such that B(rij , ε/32) ∩ B(rij+1, ε/32) �= ∅ for every j ∈ {1, . . . , k}.
Note, here we see the importance of choosing k ≥ n, to ensure the validity of the previous
statement.

Applying (7.19) and following the same steps that lead to (7.21), we obtain

(7.22)

P†
(r ′,υ ′)(Rkε/2 ∈ dz,ϒkε/2 ∈ dw)

≥ Cε

∫
B(ri2 ,ε/32)∩Dε

∫
V

P†
(r ′′,υ ′′)(R(k−1)ε/2 ∈ dz,ϒ(k−1)ε/2 ∈ dw)dr ′′ dυ ′′.

Iterating this step a further k − 2 times, we obtain

(7.23)

P†
(r ′,υ ′)(Rkε/2 ∈ dz,ϒkε/2 ∈ dw)

≥ Cεc
k−2
ε

∫
B(rik ,vmaxε/32)∩Dε

∫
V

P†
(r ′′,υ ′′)(Rε/2 ∈ dz,ϒε/2 ∈ dw)dr ′′ dυ ′′,

where cε = Cε Vol(V )mini=1,...,n Vol(B(ri,vmaxε/32)∩Dε). Using this inequality to bound
the right-hand side of (7.21) yields

(7.24)

P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw)

≥ Cεc
k−1
ε

∫
B(rik ,ε/32)∩Dε

∫
V

P†
(r ′,υ ′)(Rε/2 ∈ dz,ϒε/2 ∈ dw)dr ′ dυ ′.

We now apply (7.19) a final time at time ε/2 to obtain

(7.25) P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw) ≥ Cεc

k
ε1{z∈B(rik+1 ,ε/2)∩Dε} dz dw.

Since this inequality holds for every ik+1 ∈ {1, . . . ,n}, it also follows that

P†
(r,υ)(Rt ∈ dz,ϒt ∈ dw) ≥ Cεc

k
ε sup

ik+1∈{1,...,n}
1{z∈B(rik+1 ,ε/2)∩Dε} dz dw

≥ Cεc
k
ε1{z∈Dε} dz dw,
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where the final line follows from Lemma 7.1 since k+1 > n. This is the lower bound claimed
in (7.20).

Finally, noting that for any two events A, B , Pr(A|B) = Pr(A∩B)/Pr(B) ≥ Pr(A∩B), we
have that for initial conditions (r, υ) ∈ Dε × V , any t0 ≥ (n+ 1)ε/2 and ν equal to Lebesgue
measure on Dε × V , there exists a constant c1 ∈ (0,∞) such that

P(r,υ)

(
(Rt0,ϒt0) ∈ · |t0 < k

) ≥ c1ν(·),
as required by (A1).

We now prove (A1) for initial conditions in (D \ Dε) × V . Once again, we recall that
assumptions (B1) and (B2) are in force.

Choose r ∈ D \ Dε , υ ∈ V and define the (deterministic) time

κD\Dε
r,υ := inf{t > 0 : r + tυ /∈ ∂D \ Dε},

which is the time it would take a neutron released at r with velocity υ to hit the boundary of
D \ Dε if no scatter or fission took place. Note in particular that κ

D\Dε
r,υ is not a random time

but entirely deterministic. We first consider the case r + κ
D\Dε
r,υ υ ∈ ∂Dε

(7.26) P†
(r,υ)(Rκ

D\Dε
r,υ

∈ ∂Dε) ≥ e−ᾱκ
D\Dε
r,υ ≥ e−ᾱ diam(D)/vmin .

Combining this with (7.20) and the Markov property, for all t ≥ (n+ 1)ε/2

(7.27)

P(r,υ)

(
R

κ
D\Dε
r,υ +t

∈ dz,ϒ
κ

D\Dε
r,υ +t

∈ dw|κD\Dε
r,υ + t < k

)
≥ P†

(r,υ)(Rκ
D\Dε
r,υ +t

∈ dz,ϒ
κ

D\Dε
r,υ +t

∈ dw)

≥ e−ᾱ diam(D)/vminCεc
k
ε1{z∈Dε} dz dw,

where k ≥ n is such that t = kε/2 + t ′ for some t ′ ∈ [ε/2, ε).
On the other hand, suppose r + κ

D\Dε
r,υ υ ∈ ∂D. Then, recalling the assumptions (B1) and

(B2) it follows that {J1 < κ
D\Dε
r,υ ∧ (tε − sε),ϒJ1 ∈ Kr+υJ1, J2 > tε} ⊂ {Rtε ∈ Dε, tε < k}.

Heuristically speaking, this is because if the first jump occurs before time κ
D\Dε
r,υ ∧ (tε − sε),

then the process hasn’t hit the boundary and there are still (at least) sε units of time left until
tε . By then choosing the new velocity, ϒJ1 , from Kr+υJ1 , thanks to the assumption (B1) and
the remarks around (7.4), this implies that the process will remain in D \ Dε for sε units of
time, at some point in time after which, it will move into Dε , providing the process doesn’t
jump again before entering Dε . Combining this with the usual bounds on α, and recalling
from (B2) that Vol(Kr) > γ > 0 for all r ∈ D \ Dε and υ ∈ V , we have

(7.28)
P(r,υ)(Rtε ∈ Dε, tε < k) ≥ P†

(r,υ)

(
J1 < κD\Dε

r,υ ∧ (tε − sε),ϒJ1 ∈ Kr+υJ1, J2 > tε
)

≥ πγ e−αtεP†
(r,υ)

(
J1 < κD\Dε

r,υ ∧ (tε − sε)
)
.

Along with (7.20), this implies that, for all r ∈ D \ Dε , υ ∈ V and t ≥ (n + 1)ε/2 such that
t + tε ≥ κ

D\Dε
r,υ

P(r,υ)(Rt+tε ∈ dz,ϒt+tε ∈ dw|t + tε < k)

≥ P(r,υ)(Rtε ∈ Dε, tε < k,Rt+tε ∈ dz,ϒt+tε ∈ dw)

P(r,υ)(t + tε < k)

= P†
(r,υ)(Rt+tε ∈ dz;ϒt+tε ∈ dw|Rtε ∈ Dε, tε < k)P(r,υ)(Rtε ∈ Dε, tε < k)

P(r,υ)(t + tε < k)
(7.29)
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≥ inf
r∈Dε,υ∈V

P†
(r,υ)(Rt ∈ dz;ϒt ∈ dw)

× P†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(t + tε < k)
πγ e−αtεck

ε1{z∈Dε} dz dw

≥ P†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(t + tε < k)
πγ e−αtεCεc

k
ε1{z∈Dε} dz dw.

Now, since we are considering the case r + κ
D\Dε
r,υ υ ∈ ∂D and t + tε ≥ κ

D\Dε
r,υ , it follows that

{t + tε < k} ⊂ {J1 < κ
D\Dε
r,υ }. Then,

(7.30)

P†
(r,υ)(J1 < κ

D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(t + tε < k)
≥ P†

(r,υ)(J1 < κ
D\Dε
r,υ ∧ (tε − sε))

P(r,υ)(J1 < κ
D\Dε
r,υ )

≥ 1 − e−α(κ
D\Dε
r,υ ∧(tε−sε))

1 − e−ακ
D\Dε
r,υ

,

with the bound on the right-hand side above being itself bounded below by a constant that
does not depend on (r, υ). Substituting this back into (7.29), this proves (A1) with ν taken
as Lebesgue measure on Dε × V as before, t0 can be sufficiently taken as (n + 1)ε/2 +
diam(D)/vmin and we may start with any initial configurations in D \ Dε × V . �

In order to prove (A2) we require the following lemma, the proof of which will be given
after that of (A2).

LEMMA 7.3. For all r ∈ D and υ ∈ V , recalling that Jk denotes the kth jump time of the
process (R,ϒ), we have

(7.31) P†
(r,υ)(J7 < k,RJ7 ∈ dz) ≤ C1{z∈D} dz,

for some constant C > 0, and

(7.32) P†
ν(J1 < k,RJ1 ∈ dz) ≥ c1{z∈D} dz,

for another constant c > 0, where ν, from the proof of (A1), is Lebesgue measure on Dε ×V .

PROOF OF (A2). Again, we follow the proof given by the authors in [7]. Let t ≥
7 diam(D)/vmin and note that on the event {k > t}, we have J7 ≤ 7 diam(D)/vmin almost
surely. This inequality along with the strong Markov property imply that,

(7.33)

P(r,υ)(t < k) ≤ E†
(r,υ)

[
1{J7<t}P(RJ7 ,ϒJ7 )(t − s < k)s=J7

]
≤ E†

(r,υ)

[
P(RJ7 ,ϒJ7 )

(
t − 7 diam(D)

vmin
< k

)]
.

Since π is uniformly bounded above, conditional on {J7 < ∞,RJ7 ∈ dz}, the density of ϒJ7

is bounded above by π multiplied by Lebesgue measure on V . Combining this with (7.31)
and (7.33), we obtain

(7.34) P(r,υ)(t < k) ≤ C′
∫
D

∫
V

P(z,w)

(
t − 7 diam(D)

vmin
< k

)
dw dz,

for some C′ ∈ (0,∞) Similarly, for t ≥ diam(D)/vmin, equation (7.32), the fact that the
inclusion {t < k} ⊂ {J1 ≤ diam(D)/vmin}, the strong Markov property and the fact that π is
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uniformly bounded below entail that,

Pν(t < k) = E†
ν

[
1{J1≤k}P(RJ1 ,ϒJ1 )(t − s < k)s=J1

]
≥ E†

ν

[
1{J1≤k}P(RJ1 ,ϒJ1 )(t < k)

]
≥ c′

∫
D

∫
V

P(z,w)(t < k)dw dz,

for some c′ ∈ (0,∞), where ν is Lebesgue measure on Dε × V . Putting (7.33) and (7.34)
together, for all t ≥ 8 diam(D)/vmin, we have

(7.35) P(r,υ)(t < k) ≤ C′

c′ Pν

(
t − 7 diam(D)

vmin
< k

)
.

Now, recalling t0 and ν from the proof of (A1), it follows from (A1) that

(7.36) P†
ν

(
(Rt0,ϒt0) ∈ ·) ≥ c1Pν(t0 < k)ν(·).

The event {t < k} occurs if the particle has either been killed on the boundary of D or if it
has been absorbed by fissile material, which occurs at rate β̄ − β . Since t0 and ν are fixed,
and β − β ≤ β + 1 < ∞ by assumption, Pν(t0 < k) ≥ K for some constant K > 0. Thus,
keeping t ≥ 8 diam(D)/vmin, using (7.36)

(7.37)

Pν

(
t − 7 diam(D)

vmin
+ t0 < k

)
= Eν

[
1{t0<k}P†

(Rt0 ,ϒt0 )

(
t − 7 diam(D)

vmin
< k

)]

≥ c̃1Pν

(
t − 7 diam(D)

vmin
< k

)
,

where c̃1 = Kc1.
Now define N = �7 diam(D)/(vmint0)�. Then, for any t > 0, t −7 diam(D)/vmin+Nt0 ≥

t so that, trivially,

(7.38) Pν(t < k) ≥ Pν

(
t − 7 diam(D)

vmin
+ Nt0 < k

)
.

Applying (7.37) N times implies that

(7.39) Pν(t < k) ≥ c̃N
1 Pν

(
t − 4 diam(D)

vmin
< k

)
.

Combining this with (7.35) completes the proof of (A2). �

PROOF OF LEMMA 7.3. Let us first prove (7.31). Again, following the proof given in
[7], we couple the neutron transport random walk in D with one on the whole of R3. Denote
by (R̂t , ϒ̂t ) the neutron random walk in D̂ = R

3, coupled with (R,ϒ) such that R̂t = Rt

and ϒ̂t = ϒt for all t < k and (R0,ϒ0) = (R̂0, ϒ̂0) = (r, υ), for r ∈ D, υ ∈ V . Denote by
Ĵ1 < Ĵ2 < · · · the jump times of ϒ̂t . Then for each k ≥ 1 such that Jk < k, we have Ĵk = Jk .
Due to the inequality

(7.40) E†
(r,υ)

[
f (RJ7);J7 < k

] ≤ E(r,υ)

[
f (R̂

Ĵ7
)
]
, r ∈ D,υ ∈ V,

we will consider the distribution of R̂
Ĵi

for i ≥ 2. We first look at the case when i = 2. For
(r, υ) ∈ D × V and non-negative, bounded, measurable functions f ,

(7.41)
E(r,υ)

[
f (R̂

Ĵ2
)
] = E(r,υ)

[
f
(
r + υĴ1 + ϒ̂

Ĵ1
(Ĵ2 − Ĵ1)

)]
≤ ᾱ2π̄

∫ ∞
0

dj1

∫
V

dυ1

∫ ∞
0

dj2e−α(j1+j2)f (r + υj1 + υ1j2).
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For j1 fixed, we consider the integrals over υ1 and j2 in (7.41). Making the change of vari-
ables υ1 �→ (ρ,ϕ, θ), we have

(7.42)

∫
V

dυ1

∫ ∞
0

dj2e−αj2f (r + υj1 + υ1j2)

≤
∫ 1

vmin
dρ

∫ 2π

0
dθ

∫ π

0
dϕ

∫ ∞
0

dj2e−αj2f
(
r + υj1 + �̃(ρj2, θ, ϕ)

)
ρ2 sinϕ,

where �̃ was defined in (7.9). Now making the substitution u = ρj2 in (7.42),

(7.43)

∫
V

dυ1

∫ ∞
0

dj2e−αj2f (r + υj1 + υ1j2)

≤
∫ vmax

vmin
dρ

∫ 2π

0
dθ

∫ π

0
dϕ

∫ ∞
0

due−αu/ρf
(
r + υj1 + �̃(u, θ,ϕ)

)
ρ sinϕ

≤ C

∫ 2π

0
dθ

∫ π

0
dϕ

∫ ∞
0

due−αu/vmaxf
(
r + υj1 + �̃(u, θ,ϕ)

)
sinϕ,

where C = vmax(vmax − vmin). Making a final change of variables (u, θ,ϕ) �→ x ∈ R
3, we

have

(7.44)
∫
V

dυ1

∫ ∞
0

dj2e−αj2f (r + υj1 + υ1j2) ≤ C

∫
R3

dxf (r + υj1 + x)
e−α|x|/vmax

|x|2 .

Substituting this back into (7.41) yields

(7.45) E(r,υ)

[
f (R̂

Ĵ2
)
] ≤ ᾱK

∫ ∞
0

dj1e−αj1

∫
R3

dxf (r + υj1 + x)
e−α|x|/vmax

|x|2 ,

where K = ᾱπ̄C. Iterating this process over the next five jumps of the process gives

(7.46)
E(r,υ)

[
f (R̂

Ĵ7
)
]

≤ ᾱK6
∫ ∞

0
dj1e−αj1

∫
R3

dx1 · · ·
∫
R3

dx6f (r + υj1 + x1 + · · · + x6)g(x1) · · ·g(x6),

where g(x) = e−α|x|/vmax/|x|2, x ∈R
3. Now, g ∈ Lp(R3) for each p < 3/2 so that, in partic-

ular, g ∈ L6/5(R3). Hence, repeatedly applying Young’s inequality implies that the six-fold
convolution ∗6g ∈ L∞(R3). (The reader will note that this is the fundamental reason we have
focused our calculations around the 7th jump time J7, rather than it being an arbitrary choice.)
Making the substitution x = x1 + · · · + x6,

(7.47) E†
(r,υ)

[
f (R̂

Ĵ7
)
] ≤ ᾱK6‖ ∗6 g‖∞

∫ ∞
0

dj1e−αj1

∫
R3

dx1 · · ·
∫
R3

dx6f (r + υj1 + x).

Finally, setting z = r + υj1 + x yields

(7.48) E†
(r,υ)

[
f (RJ7);J7 < k

] ≤ E(r,υ)

[
f (R̂

Ĵ7
)
] ≤ C′

∫
R3

f (z)dz,

where C′ = ᾱK6‖g ∗ · · · ∗ g‖∞, which completes the proof of (7.31).
We now prove (7.32). For r, r ′ ∈ R

3, let [r, r ′] denote the line segment between r and r ′.
For all f ∈ B(R3), recalling the definition of ν from the proof of (A1) and using the usual
bounds on α,

(7.49)

Eν

[
f (RJ1);J1 < k

]
≥
∫
Dε

dr

Vol(Dε)

∫
V

dυ

Vol(V )

∫ ∞
0

ds1{[r,r+sυ]⊂D}αe−αsf (r + sυ),
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where Vol(Dε) = ∫
Dε

dr and Vol(V ) = ∫
V dυ . Following a similar method to those em-

ployed in the proof of Lemma 7.2 and (7.31) and changing first to polar coordinates via
υ �→ (ρ, θ,ϕ), followed by the substitution u = sρ, and finally changing back to Cartesian
coordinates via (u, θ,ϕ) �→ x, the right-hand side of (7.49) is bounded below by

(7.50) C

∫
Dε

dr

∫
R3

dx1{[r,r+x]⊂D}
αe−αs/vmin

|x|2 f (r + x),

where C > 0 is a constant. Making a final substitution of x = z − r , yields

(7.51)

Eν

[
f (RJ1);J1 < k

] ≥ C

∫
D

dz1[r,z]⊂D

αe−α|z−r|/vmin
|z − r|2 f (z)

≥ C
v2
minαe−α diam(D)/υ2

min

(diam(D))2

∫
D

dz1{[r,z]⊂D}f (z).

For all z ∈ D \ Dε , (B1) and the discussion thereafter now imply that

(7.52)
∫
Dε

1{[r,z]⊂D}dr ≥ Vol(Lz) ≥ γ

2

(
t2
ε − s2

ε

)
,

where sε and tε are defined in (B2), and Lz is defined in (7.4). On the other hand, for all
z ∈ Dε ,

(7.53)
∫
Dε

1{[r,z]⊂D}dr ≥ Vol
(
Dε ∩ B(r, ε)

)
.

Since the map z �→ Vol(Dε ∩ B(z, ε)) is continuous and positive on the compact set D̄ε , the
latter equation is uniformly bounded below by a strictly positive constant. It then follows that
for every z ∈ D, the integral

∫
Dε

dr1{[r,z]⊂D} is bounded below by a positive constant. Using
this to bound the right-hand side of (7.51) yields the result. �

We thus have proved that the conclusions of Theorem 7.1 are valid under our assumptions.
In order to conclude that Theorem 3.1 holds true, it remains to prove that ϕ is uniformly
bounded away from 0 on each compactly embedded subset of D × V and the existence of a
positive bounded density for the left eigenmeasure η.

LEMMA 7.4. The right eigenfunction ϕ is uniformly bounded away from 0 on each com-
pactly embedded subset of D×V and the probability measure η admits a positive density with
respect to the Lebesgue measure on D × V , which corresponds to the quantity ϕ̃ and which
is uniformly bounded from above and a.e. uniformly bounded from below on each compactly
embedded subset of D × V .

PROOF. For all ε > 0, we deduce from the eigenfunction property of ϕ (cf. Theorem 7.1)
and from (7.20) that there exist a time tε > 0 and a constant C̃ε > 0 such that

ϕ(r,υ) = e−λctεPtε [ϕ](r, υ) ≥ e−λtε C̃ε

∫
Dε×V

ϕ(z,w)dz dw > 0,

for all (r, υ) ∈ Dε ×V . It follows that ϕ is uniformly bounded away from 0 on each compactly
embedded domain of D × V .

Using the same notations as in the proof of Lemma 7.3, we consider the neutron transport
random walk (R̂t , ϒ̂t ) in D̂ = R

3, coupled with (R,ϒ) such that R̂t = Rt and ϒ̂t = ϒt for
all t < k. We also denote by Ĵ1 < Ĵ2 < · · · the jump times of (ϒ̂t )t≥0. Let T ≥ 0 be a
random time independent of (R̂, ϒ̂) with uniform law on [T , T̄ ], where T < T̄ are fixed and
T ≥ 7 diam(D)/vmin. We first prove that the law of (R̂T , ϒ̂T ) after the 7th jump admits a
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uniformly bounded density with respect to the Lebesgue measure. We conclude by using the
coupling with (R,ϒ) and the quasi-stationary property of η in (7.1).

For all k ≥ 7 and for any positive, bounded and measurable function f vanishing outside
of D × V , we have

E
[
f (R̂T , ϒ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, ϒ̂0, T

]
= E

[
f
(
R̂0 + Ĵ1ϒ̂0 + · · · + Ĵkϒ̂k−1 + (T − Ĵ1 − · · · − Ĵk)ϒ̂k, ϒ̂k

)
1{Ĵk≤T <Ĵk+1} |

R̂0, ϒ̂0, T
]

=
∫ T

0
ds1α(R̂0 + υ0s1, υ0)e

− ∫ s1
0 α(R̂0+υ0u,υ0)du

×
∫
V

dυ1π(r0 + υ0s1, υ0, υ1)

×
∫ T −s1

0
ds2α(R̂0 + υ0s1 + υ1s2, υ1)e

− ∫ s2
0 α(R̂0+υ0s1+υ1u,υ1)du

× · · ·
×
∫
V

dυk−1π(R̂0 + υ0s1 + · · · + υk−2sk−1, υk−2, υk−1)

×
∫ T −s1−···−sk−1

0
dskα(R̂0 + υ0s1 + · · · + υk−1sk, υk−1)

× e− ∫ sk
0 α(R̂0+υ0s1+···+υk−2sk−1+υk−1u,υk−1)du

×
∫
V

dυkπ(R̂0 + υ0s1 + · · · + υk−1sk, υk−1, υk)

× e− ∫ T −s1−···−sk
0 α(R̂0+υ0s1+···+υk−1sk+υku,υk)du

× f
(
R̂0 + υ0s1 + · · · + υk−1sk + υk(t − s1 − · · · − sk), υk

)
.

Henceforth

E
[
f (R̂T , ϒ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, ϒ̂0, T

]
≤ ᾱkπ̄ ke−T α

∫ T

0
ds1

∫
V

dυ1 · · ·
∫ T −s1−···−sk−1

0
dsk

∫
V

dυk

× f
(
R̂0 + υ0s1 + · · · + υk−1sk + υk(T − s1 − · · · − sk), υk

)
.

Taking the expectation with respect to T , we obtain

E
[
f (R̂T , ϒ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, ϒ̂0

]
≤ ᾱkπ̄ k

T̄

∫ T̄

0
dt

∫ t

0
ds1

∫
V

dυ1 · · ·
∫ t−s1−···−sk−1

0
dsk

∫
V

dυk

× f
(
R̂0 + υ0s1 + · · · + υk−1sk + υk(t − s1 − · · · − sk), υk

)
.
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Using the change of variable (u1, . . . , uk, uk+1) = (s1, . . . , sk, t − s1 − · · · − sk) yields

E
[
f (R̂T , ϒ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, ϒ̂0

]
≤ ᾱkπ̄ k

T̄

∫
[0,T̄ ]k+1

du10≤u1+···+uk+1≤T̄

∫
V k

dυ

× f (R̂0 + υ0u1 + · · · + υk−1uk + υkuk+1, υk).

The same approach as in Lemma 7.3 shows that there exists a constant C > 0 (which does
not depend on R̂0 nor on ϒ̂0) such that, for all measurable function g :R3 → [0,∞),∫

[0,T̄ ]7
du

∫
V 6

dυg(R̂0 + ϒ̂0u1 + · · · + υ6u7) ≤ C

∫
Rd

dxg(x).

Hence,

E
[
f (R̂T , ϒ̂T )1{Ĵk≤T <Ĵk+1} | R̂0, ϒ̂0

]
≤ Cᾱkπ̄k

T̄

∫
[0,T̄ ]k+1−7

du10≤u8+···+uk+1≤T̄

∫
V k−6

dυ

×
∫
R3

dxf (x + υ7u8 + · · · + υkuk+1, υk)

= Cᾱkπ̄k

T̄

∫
[0,T̄ ]k+1−7

du10≤u8+···+uk+1≤T̄

∫
V k−6

dυ

∫
R3

dyf (y,υk)

= Cᾱkπ̄k Vol(V )k−8 T̄ k+1−8

(k + 1 − 7)!
∫
D

dy

∫
V

dυkf (y,υk),

where we used the change of variable y = x + υ7u8 + · · · + υkuk+1 and the fact that f

vanishes outside D × V . Summing over k ≥ 7, we deduce that there exists a constant C′ > 0
(which only depends on C, ᾱ, π̄ and T̄ ) such that

E
[
f (R̂T , ϒ̂T )1{Ĵ7≤T } | R̂0, ϒ̂0

] ≤ C′
∫
D

dy

∫
V

dυf (y,υ).

Similarly as in the proof of (A2), we chose T ≥ 7 diam(D)/vmin, so that, on the event
{k > T }, we have J7 ≤ 7 diam(D)/vmin ≤ T almost surely. Hence, we obtain that, for any
(r0, υ0) ∈ D × V ,

E†
(r0,υ0)

[
f (RT ,ϒT );T < k

] = E†
(r0,υ0)

[
f (RT ,ϒT );T < k, J7 ≤ T

]
≤ E(r0,υ0)

[
f (R̂T , ϒ̂T ); Ĵ7 ≤ T

]
≤ C′

∫
D

dy

∫
V

dυf (y,υ).

Integrating with respect to η and using the quasi-stationary property (7.1) and Fubini’s The-
orem (recall that T and the process (R,ϒ) are independent), we obtain

1

T̄ − T

∫ T̄

T
dteλctη[f ] = 1

T̄ − T

∫ T̄

T
dt E†

η

[
f (Rt ,ϒt); t < k

]
= E†

η

[
f (RT ,ϒT );T < k

]
≤ C′

∫
D

dy

∫
V

dυf (y,υ).

(7.54)
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Since f was chosen arbitrarily, this proves that η admits a uniformly bounded density (from
above) with respect to the Lebesgue measure on D × V .

Finally, using the quasi-stationarity of η from (7.1) and integrating inequality (7.19) with
respect to η implies that (here the time t and the constants k, Cε , cε depend on ε as in
inequality (7.20)), for all bounded measurable functions f on D × E,

eλct
∫
D×V

f (x)η(dx) = E†
η

[
f (Rt ,ϒt); t < k

]
≥ η(Dε × V )Cεc

k
ε

∫
Dε×V

f (z,w)dz dw.

This implies that ϕ̃ is a.e. lower bounded by e−λctη(Dε × V )Cεc
k
ε on Dε × V . Since this

inequality can be proved for any ε > 0 small enough, one deduces that, on any subset Dε ×V

with ε > 0 and hence on any compactly embedded subset of D × V , ϕ̃ is a.e. uniformly
bounded away from zero. �

8. Proof of Theorem 6.1. There are three main steps to the proof. The first is to charac-
terise the law of transitions of the Markov process (X,Pϕ), defined in the change of measure
(6.1); note that the latter ensures the Markov property is preserved. The second step is to show
that they agree with those of (Xϕ, P̃ϕ). The third step is to show that (Xϕ, P̃ϕ) is Markovian.
Together these three imply the statement of the theorem.

Step 1. Next we look at the multiplicative semigroup which characterises uniquely the
transitions of (Xϕ,Pϕ) (cf. [22–24])

(8.1) u
ϕ
t [g](r, υ) := Eδ(r,υ)

[
Wt

Nt∏
i=1

g
(
Ri

t ,ϒ
i
t

)] = Eδ(r,υ)

[
e−λ∗t 〈ϕ,Xt 〉

ϕ(r,υ)
e〈logg,Xt 〉

]
for t ≥ 0 and g ∈ L+∞(D × V ) which is uniformly bounded by unity. Note, we keep to the
convention that an empty product is understood as 1, however we also define the empty
inner product as zero (corresponding to all functions scoring zero when particles arrive at the
cemetery state {†}). As such, if we are to extend the domain of test functions in the product to
include the cemetery state {†}, we need to insist on the default value g({†}) = 1; see [22–24].

We start in the usual way by splitting the expectation in the second equality of (8.1) ac-
cording to whether a scattering or fission event occurs. (The reader may wish to recall the
role of the quantities σs, σf, σ = σs + σf, πs and σf in (1.1)). We get

(8.2)

u
ϕ
t [g](r, υ) = g

(
r + υ

(
t ∧ κD

(r,υ)

)
, υ

)ϕ(r + υt, υ)

ϕ(r, υ)
e− ∫ t

0 λ∗+σ(r+υs,υ)ds1{t<κD
(r,υ)}

+
∫ t∧κD

(r,υ)

0
σs(r + υs,υ)e− ∫ s

0 λ∗+σ(r+υ�,υ)d� ϕ(r + υs,υ)

ϕ(r, υ)

×
∫
V

u
ϕ
t−s[g](r + υs,υ ′)ϕ(r + υs,υ ′)

ϕ(r + υs,υ)
πs

(
r + υs,υ,υ ′)dυ ′

+
∫ t∧κD

(r,υ)

0
σf(r + υs,υ)e− ∫ s

0 λ∗+σ(r+υ�,υ)d� ϕ(r + υs,υ)

ϕ(r, υ)
E(r+υs,υ)

⊗Eδ(r,υ)

[
N∑

i=1

ϕ(r + υs,υi)

ϕ(r + υs,υ)
Wi

t−s(r + υs,υi)

N∏
j=1

e〈logg,X
j
t−s (r+υs,υi)〉

]
,

where, for r ∈ D, v ∈ V , Wi(r, υ) and Xi(r, υ) are independent copies of the pair W and
X under Pδ(r,υ)

. Note that the first term on the right-hand side of (8.2) contains includes
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g(r + υ(t ∧ κD
(r,υ)), υ) to account for the fact that g({†}) = 1. Before developing the right-

hand side above any further, we need to make two additional observations and to introduce
some more notation.

The first observation is that, since W is a martingale, by sampling at the time of the first
scattering event, fission event or when it leaves the domain D, whichever happens first, thanks
to Doob’s Optional Sampling Theorem, its mean must remain equal to 1 and we get the
functional equation

(8.3)

ϕ(r,υ) = ϕ(r + υt, υ)e− ∫ t
0 λ∗+σ(r+υs,υ)ds1{t<κD

r,υ }

+
∫ t∧κD

r,υ

0
e− ∫ s

0 λ∗+σ(r+υ�,υ)d�σf(r + υs,υ)

×
∫
V

ϕ(r + υs,υ ′)
ϕ(r + υs,υ)

πf
(
r + υs,υ,υ ′)ϕ(r + υs,υ)ds

+
∫ t∧κD

r,υ

0
e− ∫ s

0 λ∗+σ(r+υ�,υ)d�σs(r + υs,υ)

×
∫
V

ϕ(r + υs,υ ′)
ϕ(r + υs,υ)

πs
(
r + υs,υ,υ ′)ϕ(r + υs,υ)ds

for r ∈ D, υ ∈ V . Now appealing to Lemma 1.2, Chapter 4 in [16], to treat the last two terms
of (8.3) as potentials, with a little bit of algebra we can otherwise write the above as

ϕ(r,υ) = ϕ(r + υt, υ) exp
{∫ t

0

(S+ F− λ∗I)ϕ(r + υs,υ)

ϕ(r + υs,υ)
ds

}
,

for t < κD
r,υ , where I is the identity operator, which is to say, for t < κD

r,υ ,

ϕ(r + υt, υ)

ϕ(r, υ)
e− ∫ t

0 λ∗+σ(r+υs,υ)ds

= exp
{
−
∫ t

0

(S+ F+ σI)ϕ(r + υs,υ)

ϕ(r + υs,υ)
ds

}
.

(8.4)

Our second observation pertains to the manipulation of the expectation on the right-hand
side of (8.2). Define for g ∈ L+∞(D × V ), (r, υ) ∈ D × V and t ≥ 0,

(8.5) ut [g](r, υ) := Eδ(r,υ)

[
Nt∏
i=1

g
(
Ri

t ,ϒ
i
t

)]
.

We have that for all (r, υ) ∈ D × V ,

σf(r, υ)E(r+υs,υ) ⊗Eδ(r,υ)

[
N∑

i=1

ϕ(r,υi)

ϕ(r, υ)
Wi

t−s(r, υi)

N∏
j=1

e〈logg,X
j
t−s (r,υi )〉

]

= σf(r, υ)E(r+υs,υ)

⊗Eδ(r,υ)

[ 〈ϕ,Z〉
ϕ(r,υ)

N∑
i=1

ϕ(r,υi)

〈ϕ,Z〉 Wi
t−s(r, υi)e

〈logg,Xi
t−s (r,υi )〉

N∏
j=1
i �=j

e〈logg,X
j
t−s (r,υi)〉

]
(8.6)

= σf(r, υ)
E(r,υ)[〈ϕ,Z〉]

ϕ(r,υ)
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× E(r,υ)

[ 〈ϕ,Z〉
E(r,υ)[〈ϕ,Z〉]

N∑
i=1

ϕ(r,υi)

〈ϕ,Z〉 u
ϕ
t−s[g](r, υi)

N∏
j=1
i �=j

ut−s[g](r, υj )

]

= G
ϕ
f

[
u

ϕ
t−s[g], ut−s[g]](r, υ) + (F+ σfI)ϕ(r, υ)

ϕ(r, υ)
u

ϕ
t−s[g](r, υ),

where in the penultimate equality we have taken expectations conditional on the fission event
and

(8.7)

G
ϕ
f[f,g](r, υ) := (F+ σfI)ϕ(r, υ)

ϕ(r, υ)
Eϕ

(r,υ)

[
N∑

i=1

ϕ(r,υi)

〈ϕ,Z〉 f (r, υi)

N∏
j=1
i �=j

g(r, υj )

]

− (F+ σfI)ϕ(r, υ)

ϕ(r, υ)
f (r, υ)

for f,g ∈ L+∞(D × V ), which are uniformly bounded by unity, and for r ∈ D, υ ∈ V , where
we recall that Pϕ

(r,υ) was defined in (6.3). Note in particular that

(8.8)
E(r,υ)[〈ϕ,Z〉]

ϕ(r,υ)
=

∫
V

ϕ(r, υ ′)
ϕ(r, υ)

πf
(
r, υ,υ ′)dυ ′ = (F+ σfI)ϕ(r, υ)

σf(r, υ)ϕ(r, υ)
.

We will also make use of the notation

(8.9) Gf[f ](r, υ) = σf(r, υ)E(r,υ)

[
N∏

j=1

g(r, υj ) − g(r, υ)

]
,

for r ∈ D, υ ∈ V and g ∈ L+∞(D × V ), which is uniformly bounded by unity. Recall that the
empty product in the definition (8.5) is defined as unity.

In a similar manner to (8.2) we can break the expectation over the event of scattering or
fission in (8.5), which defines of ut [g], to see that the operator Gf appears in the decomposi-
tion

(8.10) ut [g](r, υ) = Ût [g] +
∫ t

0
Us[Sut−s[g] + Gf

[
ut−s[g]]ds, t ≥ 0,

for g ∈ L+∞(D × V ), which is uniformly bounded by unity. Here, we have adjusted the defi-
nition of the semigroup U to

(8.11) Ût [g](r, υ) = g
(
r + υ

(
t ∧ κD

r,υ

)
, υ

)
, t ≥ 0, r ∈ D,υ ∈ V.

Now returning to (8.2) with the above observations and definitions in hand, while again
appealing to Lemma 1.2, Chapter 4 in [16], we have

u
ϕ
t [g](r, υ) = g

(
r + υ

(
t ∧ κD

r,υ

)
, υ

)
+
∫ t∧κD

(r,υ)

0
σs(r + υs,υ)

∫
V

u
ϕ
t−s[g](r + υs,υ ′)

× ϕ(r + υs,υ ′)
ϕ(r + υs,υ)

πs
(
r + υs,υ,υ ′)dυ ′ ds

+
∫ t∧κD

(r,υ)

0
G

ϕ
f

[
u

ϕ
t−s[g], ut−s[g]](r + υs,υ)

+ (F+ σfI)ϕ(r + υs,υ)

ϕ(r + υs,υ)
u

ϕ
t−s[g](r + υs,υ)ds
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−
∫ t∧κD

(r,υ)

0

(S+ F+ σI)ϕ(r + υs,υ)

ϕ(r + υs,υ)
u

ϕ
t−s[g](r + υs,υ)ds(8.12)

= Ût [g] +
∫ t

0
Us

[
Sϕu

ϕ
t−s[g]]ds +

∫ t

0
Us

[
G

ϕ
f

[
u

ϕ
t−s[g], ut−s[g]]]ds,(8.13)

where

Sϕf (r, v) :=
∫
V

[
f
(
r, υ ′)− f (r, υ)

]
σs(r, υ)

ϕ(r, υ ′)
ϕ(r, υ)

πs
(
r, υ,υ ′)dυ ′

on D × V and otherwise equal to zero,
Step 2. Define

(8.14) ũ
ϕ
t [g](r, υ) = Ẽ

ϕ
δ(r,υ)

[
Nt∏
i=1

g
(
Ri

t ,ϒ
i
t

)]
, t ≥ 0,

for g ∈ L+∞(D × V ), where {(Ri
t ,ϒ

i
t ) : i = 1, . . . ,Nt } are the physical configurations of the

particles alive in the system at time t ≥ 0 in Xϕ .
By conditioning ũ

ϕ
t on the first time a scattering of fission event occurs, it is a straightfor-

ward exercise to show that it also solves (8.13). For the sake of brevity, we leave this as an
exercise to the reader as the arguments are similar to those mentioned previously. In order to
show that (8.13) has a unique solution, we consider v

ϕ
t [g] := ϕu

ϕ
t [g] and ṽ

ϕ
t [g] := ϕũ

ϕ
t [g].

Since u
ϕ
t and ũ

ϕ
t both satisfy (8.12), applying [16], Lemma 1.2, Chapter 4, along with (8.4),

it is straightforward to show that v
ϕ
t and ṽ

ϕ
t both satisfy

(8.15)

vt [g](r, υ) = g
(
r + υ

(
t ∧ κD

(r,υ)

)
, υ

)
ϕ(r + υt, υ)e− ∫ t

0 λ∗+σ(r+υs,υ)ds1{t<κD
(r,υ)}

+
∫ t∧κD

(r,υ)

0
e− ∫ s

0 λ∗+σ(r+υl,υ)dlUs

[
(S+ σs)vt−s[g]]ds

+
∫ t∧κD

(r,υ))

0
e− ∫ s

0 λ∗+σ(r+υl,υ)dl

× Us

[
G̃f

[
vt−s[g], ut−s[g]]+ σfvt−s[g]]ds,

where

G̃f[f,g](r, υ) = σf(r, υ)

{
E(r,υ)

[
N∑

i=1

f (r, υi)

N∏
j=1
j �=i

g(r, υj )

]
− f (r, υ)

}
.

Due to the assumptions (H1) and (H4), an application of Grönwall’s inequality implies
uniqueness of (8.15), which in turn implies uniqueness of (8.13). We leave this as an exercise
to the reader as it is a relatively standard computation and very similar to the calculations
given in [10].

Step 3. We start by noting that the joint process (Xϕ, (Rϕ,ϒϕ)) is, by construction, Marko-
vian under P̃ϕ , we thus need to show that the marginalisation of the coupled system to just Xϕ

retains the Markov property. We do this by showing that for f ∈ L+∞(D×V ), μ ∈ M(D×V )

and (r, υ) ∈ D × V ,

(8.16) Ẽ
ϕ
μ

[
f
(
R

ϕ
t ,ϒ

ϕ
t

)|Xϕ
t

] = 〈f ϕ,X
ϕ
t 〉

〈ϕ,X
ϕ
t 〉 , t ≥ 0.

This says that knowing X
ϕ
t only allows one to construct the law of (R

ϕ
t ,ϒ

ϕ
t ) through an

empirical distribution using ϕ. Hence, for g ∈ L+∞(D × V ) which is bounded by unity and
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μ ∈ M(D × V ),

Ẽ
ϕ
μ

[
e〈logg,X

ϕ
t+s〉|Ft

] = Ẽ
ϕ
μ

[
Nt∑
i=1

ϕ(Ri
t ,ϒ

i
t )

〈ϕ,X
ϕ
t 〉 Ẽ

ϕ

μ′,(r,υ)

[
e〈logg,X

ϕ
s 〉]

μ′=X
ϕ
t ,(r,υ)(Ri

t ,ϒ
i
t )

]

= Ẽ
ϕ
μ

[
Ẽ

ϕ

μ′
[
e〈logg,X

ϕ
s 〉]

μ′=X
ϕ
t

]
,

where we have written X
ϕ
t = ∑Nt

i=1δ(Ri
t ,ϒ

i
t )

, and thus the Markov property of Xϕ , P̃ϕ follows.
We are thus left with proving (8.16) to complete this step. To do so we note that it suffices

to show that for f,g ∈ L+∞(D × V ) bounded by unity, μ ∈ M(D × V ) and (r, υ) ∈ D × V ,

(8.17) Ẽ
ϕ
μ

[
f
(
R

ϕ
t ,ϒ

ϕ
t

)
e〈logg,X

ϕ
t 〉] = Ẽ

ϕ
μ

[〈f ϕ,X
ϕ
t 〉

〈ϕ,X
ϕ
t 〉 e〈logg,X

ϕ
t 〉
]
, t ≥ 0.

On the left-hand side of (8.17), we have

Ẽ
ϕ
μ

[
f
(
R

ϕ
t ,ϒ

ϕ
t

)
e〈logg,X

ϕ
t 〉]

= Ẽ
ϕ
μ

[
Ẽ

ϕ
μ

[
f
(
R

ϕ
t ,ϒ

ϕ
t

)
e〈logg,X

ϕ
t 〉|Rϕ

t ,ϒ
ϕ
t

]]
=

n∑
k=1

ϕ(rk, υk)

〈ϕ,μ〉 Ẽ
ϕ
δ(rk,υk)

[
f
(
R

ϕ
t ,ϒ

ϕ
t

) ∏
i≥1:Ti≤t

Ni∏
j=1

ut−Ti
[g](Rϕ

Ti
, υi

j )

ut−Ti
[g](Rϕ

Ti
,ϒ

ϕ
Ti

)

]
,

where μ = ∑n
k=1δ(ri ,υi ), Ti , i ≥ 1 are the times of fission along the spine at which point Ni

particles are issued at υi
j , j = 1 · · · ,Ni

j . On the right-hand side of of (8.17), we may appeal
to Step 1 and Step 2 to deduce that

Ẽ
ϕ
μ

[〈f ϕ,X
ϕ
t 〉

〈ϕ,X
ϕ
t 〉 e〈logg,X

ϕ
t 〉
]

= e−λ∗tEμ

[〈f ϕ,Xt 〉
〈ϕ,μ〉 e〈logg,Xt 〉

]

=
n∑

i=1

ϕ(ri, υi)

〈ϕ,μ〉 e−λ∗tEδ(ri ,υi )

[〈f ϕ,Xt 〉
ϕ(ri, υi)

e〈logg,Xt 〉
]
.

The proof of this final step is thus complete as soon as we can show that

(8.18)

Ẽ
ϕ
δ(rk,υk)

[
f
(
R

ϕ
t ,ϒ

ϕ
t

) ∏
1≤i:Ti≤t

Ni∏
j=1

ut−Ti
[g](Rϕ

Ti
, υi

j )

ut−Ti
[g](Rϕ

Ti
,ϒ

ϕ
Ti

)

]

= e−λ∗tEδ(ri ,υi )

[〈f ϕ,Xt 〉
ϕ(ri, υi)

e〈logg,Xt 〉
]
.

To this end, we note that splitting the expectation on the right-hand of (8.18) side at either a
scattering or fission event results in a calculation that is almost identical to the one above that
concludes with (8.13). More precisely, the expectation on the right-hand side solves (8.13)
albeit the role of Ût [g] is replaced by Ut [fg]. Similarly splitting the expectation on the left-
hand side of (8.18) also results in a solution to (8.13) (with the aforementioned adjustment).
The uniqueness of (8.13), with Û replaced by U, follows from the same arguments and hence
the equality in (8.18) now follows, as required.

9. Proof of Lemma 6.1. The fact that the spine is Markovian is immediate from its
definition of (Rϕ,ϒϕ). Indeed, once given its initial configuration, it evolves as the NRW
associated to the rate ϕ−1(r, υ)σs(r, υ)ϕ(r, υ ′)πs(r, υ,υ ′). Moreover, when in configuration
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(r, υ) ∈ D × V , at rate ϕ(r,υ)−1(F+ σfI)ϕ(r, υ), it experiences an additionally scattering
with new velocity υ ′, with distribution

E(r,υ)

[ 〈ϕ,Z〉
E(r,υ)[〈ϕ,Z〉]

〈ϕ1(·∈dυ ′),Z〉
〈ϕ,Z〉

]
= σf(r, υ)

(F+ σfI)ϕ(r, υ)
ϕ
(
r, υ ′)πf(r, υ,υ ′)dυ ′,

for υ ′ ∈ V , where we have used (8.8). The total scatter rate is thus

σs(r, υ)
ϕ(r, υ ′)
ϕ(r, υ)

πs
(
r, υ,υ ′)+ σf(r, υ)

ϕ(r, υ ′)
ϕ(r, υ)

πf
(
r, υ,υ ′)dυ ′

= α(r,υ)
ϕ(r, υ ′)
ϕ(r, υ)

π
(
r, υ,υ ′)

= αϕ(r, υ)πϕ(r, υ,υ ′)
(9.1)

as required.
For the second statement, write

(9.2) ψ
ϕ
t [g](r, υ) := E(r,υ)

[
e−λ∗t+∫ t

0 β(Rs,ϒs)ds ϕ(Rt ,ϒt)

ϕ(r, υ)
g(Rt ,ϒt)1{t<τD}

]
.

By conditioning the expectation on the right-hand side on the first scattering event we
have, for t ≥ 0, r ∈ D and υ ∈ V ,

(9.3)

ψ
ϕ
t [g](r, υ) = e−λ∗t+∫ t

0 β(r+υ�,υ)−α(r+υ�,υ)d� ϕ(r + υt, υ)

ϕ(r, υ)
g(r + υt, υ)1(t<κD

r,υ)

+
∫ t∧κD

r,υ

0
α(r + υs,υ)e−λ∗s+∫ s

0 β(r+υ�,υ)−α(r+υ�,υ)d� ϕ(r + υs,υ)

ϕ(r, υ)

×
∫
V

ψ
ϕ
t−s[g](r + υs,υ ′)ϕ(r + υs,υ ′)

ϕ(r + υs,υ)
π
(
r + υs,υ,υ ′)dυ ′ ds.

Now appealing to (8.4), then using the standard trick of replacing the role of an additive po-
tential by the role of a multiplicative potential in such semigroup evolutions, see, for example,
Lemma 1.2, Chapter 4 in [16], and noting (9.2) we get

(9.4)
ψ

ϕ
t [g](r, υ) = Ut [g](r, υ)

+
∫ t

0
Us

[(
Lϕ + αϕI

)
ψ

ϕ
t−s[g] − (

ϕ−1(S+ F)ϕ + (β − α)I
)
ψ

ϕ
t−s[g]](r, υ)ds,

where

(9.5) Lϕf (r, υ) = αϕ(r, υ)

∫
V

[
f
(
r, υ ′)− f (r, υ)

]
πϕ(r, υ,υ ′)dυ ′,

for f ∈ L+∞(D × V ). Referring to (2.6), (2.7) and (4.1), we note that

αϕ(r, υ) − (S+ F)ϕ(r, υ)

ϕ(r, υ)
− β(r, υ) + α(r,υ)

=
∫
V

α(r, υ)
ϕ(r, υ ′)
ϕ(r, υ)

π
(
r, υ,υ ′)dυ ′

−
∫
V

ϕ(r, υ ′)
ϕ(r, υ)

(
σs(r, υ)πs

(
r, υ,υ ′)+ σf(r, υ)πf

(
r, υ,υ ′))dυ ′ − σs(r, υ) − σf(r, υ)

− σf(r, υ)

(∫
V

πf
(
r, υ,υ ′)dυ ′ − 1

)
+ σs(r, υ) + σf(r, υ)

∫
V

πf
(
r, υ,υ ′)dυ ′

= 0.
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Hence (9.4) reduces to the somewhat simpler recurrence equation

ψ
ϕ
t [g](r, υ) = Ut [g](r, υ) +

∫ t

0
Us

[
Lϕψ

ϕ
t−s[g]](r, υ)ds, t ≥ 0,

where we recall that Lϕ was defined in (9.5). This is nothing more than the mild equation for
the semigroup evolution Eϕ

(r,υ)[g(Rt ,ϒt)], t ≥ 0, which has a unique bounded solution from
the usual Grönwall arguments. Note that when g = 1, we see the solution is 1. This, together
with the Markov property implies that the right-hand side of (6.5) is a martingale. Moreover,
it follows that the martingale change of measure in (6.5) describes law of the αϕπϕ-NRW.

The fact that ψ
ϕ
t [1](r, υ) = 1 for all r ∈ D, υ ∈ V , implies that ((R,ϒ),Pϕ) is conserva-

tive. Moreover,

Pϕ
(r,υ)

[
g(Rt ,ϒt)

] = ψ
ϕ
t [g](r, υ) = e−λ∗t ψt [gϕ](r, υ)

ϕ(r, υ)
, r ∈ D,υ ∈ V,

where g ∈ L+∞(D × V ); cf. (9.2). Hence limt→∞P
ϕ
(r,υ)[g(Rt ,ϒt)] = 〈g, ϕ̃ϕ〉 for all g ∈

L+∞(D × V ). In other words, ϕ̃ϕ is the density of the stationary distribution of (R,ϒ) un-
der Pϕ .

10. Proof of Theorem 5.1. The proof we offer here is a variant of a standard one, which
has been used to analyse the convergence of many analogous martingales in the setting of
different spatial branching processes. We mention [3, 31, 39] and [17] to name but a few of
the contexts with similar results.

In the case that λ∗ < 0 and λ∗ > 0, we need (H3) to ensure that the NBP can undergo
fission. In the setting λ∗ = 0 we need the stricter condition (H3)∗ for technical reasons in the
proof to ensure a minimal rate of reproduction.

A standard measure theoretic result (cf. page 242 of [15]) tells us that the martingale
change of measure in (6.1) is uniformly integrable if and only if

P
ϕ
δ(r,υ)

(
lim sup
t→∞

Wt < ∞
)

= 1.

In the case that lim supt→∞ Wt = ∞, Pϕ almost surely, we have Pδ(r,υ)
(W∞ = 0) = 1.

(i) Let us first deal with the case that λ∗ > 0. To this end, let us define the sigma algebra
S = σ(Ti,Zi : i ≥ 0), where Ti , i ≥ 1, are the times at which the spine undergoes fission
and Zi , i ≥ 1, are point processes on V that describe the velocities of fission offspring (i.e.,
whose law is given by the family (2.2) under the change of measure (6.3)). For convenience
we will write T0 = 0.

Appealing to the pathwise spine decomposition in Theorem 6.1, we can write

(10.1)

E
ϕ
δ(r,υ)

[Wt ] = E
ϕ
δ(r,υ)

[
e−λ∗t ϕ(Rt ,ϒt)

ϕ(r, υ)

]

+E
ϕ
δ(r,υ)

[
E

ϕ
δ(r,υ)

[ ∞∑
j=1

e−λ∗Tj 1(Tj≤t)

Nj∑
i=1

ϕ(RTj
, υi)W

j
t−Tj

(RTj
, υi)

∣∣∣S]]

= E
ϕ
δ(r,υ)

[
e−λ∗t ϕ(Rt ,ϒt)

ϕ(r, υ)
+

∞∑
j=1

e−λ∗Tj 1(Tj≤t)Eϕ
(RTj

,ϒTj−1 )

[〈ϕ,Zj 〉]
]

= E
ϕ
δ(r,υ)

[
e−λ∗t ϕ(Rt ,ϒt)

ϕ(r, υ)
+

∞∑
j=1

e−λ∗Tj 1(Tj≤t)

E(RTj
,ϒTj−1 )[〈ϕ,Z〉2]

E(RTj
,ϒTj−1 )[〈ϕ,Z〉]

]
,

where, for a given (r, υ) ∈ D × V , the process W
j
s (r, υ) is an independent copy of (Ws, s ≥

0), under Pδ(r,υ)
(and consequently has unit mean, which is also used above). Our objective
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is to prove that the sum on the right-hand side of (10.1) is Pϕ
δ(r,υ)

-almost surely finite. In that
case, it will follow with the help of Fatou’s lemma that

(10.2) ∞ > lim sup
t→∞

E
ϕ
δ(r,υ)

[Wt ] ≥ E
ϕ
δ(r,υ)

[
lim inf
t→∞ Wt

]
.

Recalling that W is a nonnegative P-martingale, it holds that 1/W is a nonnegative P
ϕ-

supermartingale and thus its limit exists. The conditional expectation in (10.2) ensures that
lim inft→∞ Wt (and hence from the immediately preceding remarks lim supt→∞ Wt ) is Pϕ

δ(r,υ)
-

almost surely finite.
We must thus show that the upper bound on the right-hand side of (10.1) is Pϕ

δ(r,υ)
-almost

surely finite. To do so, we again recall the description of the pathwise spine decomposition
in Theorem 6.1 and note that fission along the spine occurs at the accelerated rate ϕ−1(F+
σfI)ϕ. Hence (recalling the generic point process Z defined in (2.2))

(10.3)

E
ϕ
δ(r,υ)

[ ∞∑
j=1

e−λ∗Tj 1{Tj≤t}
E(RTj

,ϒTj−1 )[〈ϕ,Z〉2]
E(RTj

,ϒTj−1 )[〈ϕ,Z〉]
]

≤ (‖ϕ‖∞nmax
)2
E

ϕ
δ(r,υ)

[ ∞∑
j=1

e−λ∗Tj
1

E(RTj
,ϒTj−1 )[〈ϕ,Z〉]

]

= (‖ϕ‖∞nmax
)2

× Eϕ
(r,υ)

[∫ ∞
0

e−λ∗t σf(Rt ,ϒt)

E(Rt ,ϒt )[〈ϕ,Z〉]
∫
V

ϕ(Rt , υ
′)

ϕ(Rt ,ϒt)
πf

(
Rt,ϒt , υ

′)dυ ′ dt

]

≤ σ̄f
(‖ϕ‖∞nmax

)2Eϕ
(r,υ)

[∫ ∞
0

e−λ∗t

ϕ(Rt ,ϒt)
dt

]

≤ σ̄f
(‖ϕ‖∞nmax)

2

ϕ(r,υ)
E(r,υ)

[∫ ∞
0

e−2λ∗t+∫ t
0 β(Rs,ϒs)ds1{t<τD} dt

]

≤ σ̄f
(‖ϕ‖∞nmax

)2
∫ ∞

0
e−2λ∗t ψt [1](r, υ)

ϕ(r, υ)
dt,

where we have used (H4) in the first inequality, features of the spine decomposition for the
first equality, (8.8) and (H1) in the second inequality, the change of measure (6.5) in the third
inequality and the semigroup (4.2) for the final line. Finally, note that since ϕ is uniformly
bounded above, the contribution from the spine term in (10.1) is zero in the limit t → ∞.
Now using Theorem 3.1, it follows that

lim sup
t→∞

E
ϕ
δ(r,υ)

[Wt ] < ∞

as required.
(ii) Next, for the case λ∗ < 0, it is easy to see that, on the event {Tj ≤ t < Tj+1},

Wt ≥ e−λ∗tϕ(Rt ,ϒTj−1)

which ensures that P
ϕ
δ(r,υ)

(lim supt→∞Wt = ∞) = 1 for all (r, υ) ∈ D × V and hence
Pδ(r,υ)

(W∞ = 0) = 1.
(iii) Finally, for the case λ∗ = 0, our aim is to show that, for each r ∈ D, υ ∈ V ,

P
ϕ
δ(r,υ)

(
lim sup
t→∞

Wt = ∞
)

= 1.
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We do this by constructing a random sequence of times (sn : n ≥ 0) such that

lim sup
n→∞

Wsn = ∞
almost surely with respect to P

ϕ .
Lemma 6.1 tells us that ϕ̃ϕ is the density of the stationary distribution of (R,ϒ) under Pϕ .

Moreover, thanks to Theorem 3.1, the density ϕ̃ϕ is a.e. uniformly bounded away from 0 on
each � ⊂⊂ D × V . It follows that 〈1�,ϕϕ̃〉 > 0 for all � ⊆ Dε × V and that the spine R

visits � infinitely often under Pϕ .
Fix k ∈ N. We want to show that there is an � ⊆ Dε × V such that

(10.4) inf
(r ′,υ ′)∈�

P
ϕ
δ(r′,υ′)

(
Xι(Dε × V ) ≥ k

)
> 0,

where ι = 2 diam(D)/vmin (note that ι is twice the time it would take a neutron to
cross the equivalent of the diameter of D, when moving at minimal speed). To this
end, fix r ∈ D, υ ∈ V and choose ε > 0 sufficiently small such that both r ∈ Dε :=
{r ∈ D : infy∈∂D |r − y| > εvmax} and B (introduced in the assumption (H3)∗) is in Dε . Then,
define

� = {
(r, υ) ∈ Dε × V : {r + υs : s ≥ 0} ∩ B �= ∅

}
.

Write m for the smallest natural number such that m(nmax − 1) + 1 ≥ k. Recalling from
Theorem 3.1 that infr∈D,υ,υ ′∈V α(r, υ)π(r, υ,υ ′) > 0, and taking account of the positivity
properties of ϕ, we can lower bound the probability that, from any (r, υ) ∈ �, the spine can
enter B . Moreover, on this event, due to (H3)∗, we can also lower bound the probability that
the spine immigrates nmax − 1 particles on m (evenly spaced in time) separate occasions, all
of which are still inside of B by time ι. The strategy for doing so is to head into B from
the given point of issue in � by travelling in a straight line within a small cone of possible
velocities (which would be guaranteed to happen within ι/2 units of time), and then for
neutrons to cycle around the perimeter of B in an annulus by scattering within a narrow cone
of velocities each time; see Figure 2. As such we can provide the lower bound desired in
(10.4). The technical details are tedious and left to the reader.

With (10.4) in hand, we can construct the sequence (tn : n ≥ 0) by defining t0 = 0 and
subsequently, for n ≥ 1,

tn = inf
{
s > tn−1 + (10m × ι) : (Rs,ϒs) ∈ �

}
.

Note that since (R,ϒ) visits � infinitely often under Pϕ we have that tn < ∞, Pϕ-almost
surely for n ≥ 0, and tn → ∞, Pϕ-almost surely. By applying the strong Markov property at

FIG. 2. There is a uniform lower bound on the probability that the spine issued from (r, υ) ∈ � heads directly
into the annulus contained in B and subsequently immigrates nmax−1 neutrons on each of m separate occasions,
which then cycle around the annulus, and all this is completed over the time horizon ι = 2 diam(D)/vmin elapses.
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the sequence of times (tn, n ≥ 0), it now follows from (10.4) that, in the spirit of a sequence
of independent Bernoulli trials, lim supn→∞ Xsn(Dε) ≥ k almost surely with respect to P

ϕ ,
where sn = tn + (m× ι). Since the integer k can be chosen arbitrarily large, we also have that
lim supn→∞ Xsn(Dε) = ∞ almost surely with respect to P

ϕ .
As ϕ is uniformly bounded below away from 0 on Dε × V (see Theorem 3.1), it follows

that

Wt ≥ cXt(Dε × V ), t ≥ 0,

for some constant c > 0. The analysis above, thus shows that Pϕ
δ(r,υ)

(lim supt→∞ Wt = ∞) >

0, as required, for each r ∈ D, υ ∈ V .

11. Proof of Theorem 5.2. We need to show that in all three cases, the event {ζ < ∞}
agrees almost surely with {W∞ = 0}. To this end, first note that {ζ < ∞} ⊆ {W∞ = 0} and
hence

(11.1) Pδ(r,υ)
(ζ < ∞) ≤ Pδ(r,υ)

(W∞ = 0),

for all r ∈ D, υ ∈ V . It thus suffices to show that (11.1) is in fact an equality.
We will give two preparatory technical lemmas before coming to the main part of the proof

of Theorem 5.2.

LEMMA 11.1. For all r ∈ D and υ ∈ V , we have Pδ(r,υ)
-almost surely that

lim
n→∞PXn(ζ ≤ t0) = 1{ζ<∞}.

PROOF. On the event {ζ < ∞}, it is immediate that, for all r ∈ D and υ ∈ V ,

(11.2) lim
t→∞PXt (ζ ≤ t0) = 1

Pδ(r,υ)
-almost surely. Let (Tn)n∈N be any increasing sequence of stopping times. Using the

strong Markov property and (11.2), we have that, for all n ∈ N,

Pδ(r,υ)
(ζ < ∞) = Eδ(r,υ)

[
PXTn

(ζ < ∞)
] ≥ Eδ(r,υ)

[
PXTn

(ζ ≤ t0)
]
.

Using this inequality and Fatou’s lemma, we deduce that

Pδ(r,υ)
(ζ < ∞) ≥ lim inf

n→∞ Eδ(r,υ)

[
PXTn

(ζ ≤ t0)
]

≥ Eδ(r,υ)

[
lim inf
n→∞ PXTn

(ζ ≤ t0)
]

≥ Eδ(r,υ)
[1{ζ<∞}] + δPδ(r,υ)

(
ζ = ∞ and lim inf

n→∞ PXTn
(ζ ≤ t0) ≥ δ

)
.

It follows that, for all δ ∈ (0,1], we have Pδ(r,υ)
(ζ = ∞ and lim infn→∞ PXTn

(ζ ≤ t0) ≥ δ) =
0. This implies that, on {ζ = ∞}, lim infn→∞PXTn

(ζ ≤ t0) = 0. Since this is true for any
sequence of increasing stopping times, we deduce that, on {ζ = ∞}, lim supn→∞ PXn(ζ ≤
t0) = 0. Together with (11.2), this gives us

lim
n→∞PXn(ζ ≤ t0) = 1{ζ<∞}

Pδ(r,υ)
-almost surely, as required. �
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LEMMA 11.2. For all r ∈ D and υ ∈ V , on {ζ = ∞}, we have Pδ(r,υ)
-almost surely that

(11.3) lim
t→∞〈ϕ,Xt 〉 = ∞.

PROOF. Recall that ζ is the time of extinction of the NBP. For any r ∈ D, υ ∈ V and
t ≥ 0, we have

Pδ(r,υ)
(t < ζ ) ≤ Eδ(r,υ)

[Nt ] = ψt [1{D×V }](r, υ).

Using (3.5), we deduce that there exists a t0 > 0 such that, for all r ∈ D, υ ∈ V ,

Pδ(r,υ)
(t0 < ζ) ≤ ψt0[1{D×V }](r, υ) ≤ 2eλ∗t0ϕ(r,υ).

It is straightforward to show that supx∈E Px(t0 < ζ) < 1. Hence, there exists a constant c0 ∈
(0,1) such that, uniformly for all r ∈ D and υ ∈ V ,

Pδ(r,υ)
(t0 < ζ) ≤ c0 ∧ [

2eλ∗t0ϕ(r,υ)
]
.

Using the branching property, we deduce that, for all μ = ∑n
i=1 δ(ri ,υi ) ∈ M(D × V ),

Pμ(ζ ≤ t0) ≥
n∏

i=1

(
1 − c0 ∧ [

2eλ∗t0ϕ(ri, υi)
])

.

Now, using the Lemma 11.1 we have, taking the limit in n ∈ N, we obtain

(11.4) 1{ζ<∞} = lim sup
n→∞

PXn(ζ ≤ t0) ≥ lim sup
n→∞

Nn∏
i=1

(
1 − c0 ∧ [

2eλ0t0ϕ
(
ri(n), υi(n)

)])
,

where we have used the notation from (2.1). Since c0 < 1, taking logarithms in (11.4) and
using logx ≤ x − 1, we deduce that, on {ζ = ∞}, again taking limits on N,

lim
n→∞

Nn∑
i=1

(
c0 ∧ [

2eλ0t0ϕ
(
ri(n), υi(n)

)]) = ∞

and hence the statement of the lemma follows. �

Let us now return to the proof of Theorem 5.2. First we consider the setting that λ∗ ≤ 0.
Noting that, up to a normalising constant Wt = e−λ∗t 〈ϕ,Xt 〉 ≥ 〈ϕ,Xt 〉, as W is almost surely
convergent, the conclusion of Lemma 11.2 forces us to deduce that {ζ < ∞} almost surely in
order to avoid a contradiction. Hence, from (11.1), we have that {ζ < ∞} = {W∞ = 0} and
both occur with probability one (irrespective of the starting configuration of X).

Next we consider the setting that λ∗ > 0. Due to our assumptions and the boundedness of
ϕ, we have uniformly, for all r ∈ D, υ ∈ D and all times t such that there is a discontinuity
in W , |Wt − Wt−| is uniformly bounded by some constant M > 0, Pδ(r,υ)

almost surely.
Defining the stopping time T1 = inf{t ≥ 0,Wt ≥ 1}, using the fact that W is a nonnegative,
L1, and hence uniformly integrable martingale, and using Doob’s optional stopping theorem,
we deduce that, for all r ∈ D, υ ∈ V ,

1 = Eδ(r,υ)
[WT1] = Eδ(r,υ)

[WT11{W∞>0}] ≤ 1

ϕ(r,υ)
Eδ(r,υ)

(
(1 + M)1{W∞>0}

)
.
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It follows that, for all r ∈ D and υ ∈ V , Pδ(r,υ)
(W∞ > 0) ≥ ϕ(r, υ)/M . Hence that there exists

c1 > 0 such that

Pδ(r,υ)
(W∞ = 0) ≤ 1 − c1ϕ(r,υ), r ∈ D,υ ∈ V.

Now, using the branching property, we obtain for all μ = ∑n
i=1 δ(ri ,υi ) ∈ M(D × V ),

logPμ(W∞ = 0) ≤
n∑

i=1

log
(
1 − c1ϕ(xi)

) ≤ −c1

n∑
i=1

ϕ(xi).

Due to the conclusion of Lemma 11.2 we have, on {ζ = ∞},
lim sup
n→∞

logPXn(W∞ = 0) ≤ −c1 lim
n→∞〈ϕ,Xn〉 = −∞.

With the upper bound of any probability being unity, we can thus write

lim sup
n→∞

PXn(W∞ = 0) ≤ 1{ζ<∞}.

Markov’s property now entails, for r ∈ D, υ ∈ V ,

Pδ(r,υ)
(W∞ = 0) = Eδ(r,υ)

[
PXn(W∞ = 0)

] ∀n ∈ N,

so that, by the reverse Fatou’s lemma,

Pδ(r,υ)
(W∞ = 0) = lim sup

n→∞
Eδ(r,υ)

[
PXn(W∞ = 0)

]
≤ Eδ(r,υ)

[
lim sup
n→∞

PXn(W∞ = 0)
]

≤ Eδ(r,υ)
[1{ζ<∞}]

= Pδ(r,υ)
(ζ < ∞).

Together with (11.1), this completes the proof of the theorem.

12. Proof of Corollary 5.4. Doob’s martingale inequality ensures that, for μ ∈ M(D ×
V )

Eμ

[(
sup
t≥0

Wt

)2] ≤ lim inf
s→∞ 4Eμ

[
(Ws)

2].
Showing that the right-hand side above is finite is sufficient to obtain L2(P) convergence.
Note, however, that Eμ[(Ws)

2] = E
ϕ
μ[Wt ], t ≥ 0, and hence, from (10.2), the desired upper

bound is proved.
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Glossary of some commonly used notation
(Th. = Th., a. = above, b. = below)

Notation Description Introduced

(ψt , t ≥ 0) Solution to mild NTE/NBP expectation semigroup (2.4), (2.8)
D and V Physical and velocity domain Section 1
σs, σf and σ Scatter, fission and total cross-sections b. (1.1)
πs and πf Scatter and fission kernels b. (1.1)
S and F Scatter and fission operators (2.6), (2.7)
P(r,υ) Offspring law of X when parent at (r, υ) ∈ D × V (2.3)
((ri , υi), i = 1, . . . ,N) Position and number of offspring positions of a family in X a. (2.2)
(X,Pμ) NBP when issued from μ Section 2.2
Ut Linear advection semigroup b. (2.5), (2.8)
Gf Branching generator of (X,Pμ) (8.9)
(ut , t ≥ 0) Nonlinear semigroup of X (8.5)
Ût Nonlinear advection semigroup (8.11)
nmax Maximum number of neutrons in a fission event b. (2.3), (H4)
λ∗, ϕ and ϕ̃ Leading eigenvalue, right- and left-eigenfunctions Th. 3.1
(Wt , t ≥ 0) Additive martingale (5.1)
ζ Extinction time Th. 5.1

((R,ϒ),P) Many-to-one NRW Lemma 4.1
α and π Scatter rate and kernel for many-to-one NRW (3.2), (3.3)
τD First exit time of spatial component of απ -NRW from D Lemma 4.1
((R,ϒ),P†) Killed απ -NRW (4.3)
P† Semigroup of killed απ -NRW (4.3)
β Many-to-one potential (4.1), (4.2)
k Killing time of απ -NRW (4.4)
(Jk, k ≥ 1) Ordered jump times of killed απ -NRW b. (7.5)

(X,P
ϕ
μ) NBP after change of measure with W when issued from μ (6.1)

G
ϕ
f Branching generator of (X,P

ϕ
μ) (8.7), (8.13)

(u
ϕ
t , t ≥ 0) Nonlinear semigroup of (X,P

ϕ
μ) (8.1)

(ψ
ϕ
t , t ≥ 0) Linear semigroup of (X,P

ϕ
μ) (9.2)

(Xϕ, P̃
ϕ
μ) Dressed spine when issued from configuration μ (6.2)

(ũ
ϕ
t , t ≥ 0) Nonlinear semigroup of (Xϕ, P̃

ϕ
μ) (8.14)

((Rϕ,ϒϕ), P̃ϕ) Marginal of P̃ϕ giving law of spine NRW Th. 6.1, (6.5)
αϕ and πϕ Scatter rate and kernel of auxiliary NRW (6.4)
Pϕ

(r,υ)
Scattering of velocities along the spine (6.3)

Pϕ Law of αϕπϕ-NRW that agrees with P̃ϕ a. (6.4)
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