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RARITY OF EXTREMAL EDGES IN RANDOM SURFACES AND OTHER
THEORETICAL APPLICATIONS OF CLUSTER ALGORITHMS

BY OMRI COHEN-ALLORO* AND RON PELED†

School of Mathematical Sciences, Tel Aviv University, *omrialloro@gmail.com; †peledron@tauex.tau.ac.il

Motivated by questions on the delocalization of random surfaces, we
prove that random surfaces satisfying a Lipschitz constraint rarely develop
extremal gradients. Previous proofs of this fact relied on reflection positiv-
ity and were thus limited to random surfaces defined on highly symmetric
graphs, whereas our argument applies to general graphs. Our proof makes
use of a cluster algorithm and reflection transformation for random surfaces
of the type introduced by Swendsen–Wang, Wolff and Evertz et al. We dis-
cuss the general framework for such cluster algorithms, reviewing several
particular cases with emphasis on their use in obtaining theoretical results.
Two additional applications are presented: A reflection principle for random
surfaces and a proof that pair correlations in the spin O(n) model have mono-
tone densities, strengthening Griffiths’ first inequality for such correlations.

1. Introduction. Our purpose in this paper is two-fold. First, we consider random sur-
face models satisfying a Lipschitz constraint, that is, random surfaces whose gradients are
constrained to be at most 1. For such surfaces we prove that extremal gradients (close to 1 in
magnitude) are very unlikely to occur on any given set of edges. This is established for all
Lipschitz random surface models whose interaction potential is monotone. The question of
controlling the extremal gradients of random surfaces was explicitly asked in [27], Section 6,
where such control was a key ingredient in proving that Lipschitz (and more general) ran-
dom surfaces delocalize in two dimensions. Such a control was achieved in [27] via the use
of reflection positivity (through the chessboard estimate) and as such was limited to random
surfaces defined on a torus graph. In contrast, our result applies to random surfaces defined
on an arbitrary, bounded degree, graph. New delocalization results may be obtained as a
consequence as briefly discussed in Section 6. Our proof makes use of a cluster algorithm
and reflection transformation for random surfaces of the type introduced by Swendsen–Wang
[34], Wolff [40] (see also Brower and Tamayo [8]) and Evertz, Hasenbusch, Lana, Marcu,
Pinn and Solomon [19, 24].

Our second goal is to discuss cluster algorithms of the above type in some generality. Such
cluster algorithms, commonly used in Monte Carlo simulation of the models, rely on finding
a discrete, Ising-type, symmetry in the spin space of the corresponding model (unlike the
symmetries used in the reflection-positivity method which are symmetries of the underlying
graph on which the model is defined). In Section 2 we discuss their general framework, re-
viewing in detail the cases of the Potts model, random surfaces, spin O(n) model, Sheffield’s
cluster-swapping method and reversible Markov chains. Our review emphasizes the use of
the algorithms in obtaining theoretical results and we demonstrate such use in two additional
applications whose proof via the algorithms is relatively straightforward: A reflection prin-
ciple for random surfaces and a proof that pair correlations in the spin O(n) model have
monotone densities, strengthening Griffiths’ first inequality [21, 22] for such correlations.
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We are by no means the first to discuss theoretical applications of cluster algorithms.
Many such results are known in the literature including a work of Aizenman [1], follow-
ing Patrascioiu and Seiler [28], on decay of correlations in Lipschitz spin O(2) models, a
work of Burton and Steif [9], Section 2, on characterizing the translation-invariant Gibbs
states of a certain subshift of finite type, works of Chayes–Machta [14, 15], Chayes [13] and
Campbell–Chayes [10] relating phase transitions of spin systems with percolative properties
of the graphical representation defined by their cluster algorithm, Sheffield’s cluster swapping
algorithm [31], Chapter 8, used in the characterization of translation-invariant gradient Gibbs
states of random surfaces (see also van den Berg [37] for a related swapping idea used to
study uniqueness of Gibbs measures) and a recent work of Armendáriz, Ferrari and Soprano-
Loto [3] on phase transition in the dilute clock model. However, these works mostly make
use of ad-hoc transformations suitable to the task at hand and we feel that further emphasis
of the unifying framework may still be of interest.

1.1. Random surfaces. We begin by introducing the random surface model. Let G =
(V ,E) be a finite connected graph (all our graphs will be simple, undirected and without
self-loops or multiple edges) and V0 ⊆ V be a nonempty subset of the vertices. Let U be a
potential, defined to be a measurable function U : R → (−∞,∞] satisfying U(x) < ∞ on
a set of positive Lebesgue measure and U(x) = U(−x) for all x. The random surface model
with potential U , normalized to be 0 at the subset V0, is the probability measure μU,G,V0 on
functions ϕ : V →R defined by

(1) dμU,G,V0(ϕ) := 1

ZU,G,V0

exp
(
− ∑

{v,w}∈E

U(ϕv − ϕw)

) ∏
v∈V0

δ0(dϕv)
∏

v∈V \V0

dϕv,

where dϕv denotes the Lebesgue measure on ϕv , δ0 is a Dirac delta measure at 0 and

ZU,G,V0 :=
∫

exp
(
− ∑

{v,w}∈E

U(ϕv − ϕw)

) ∏
v∈V0

δ0(dϕv)
∏

v∈V \V0

dϕv

which we shall assume satisfies

(2) ZU,G,V0 < ∞
for μU,G,V0 to be well defined (the fact that ZU,G,V0 > 0 follows from our definition of
potential).

For our applications we restrict attention to monotone potentials, when U satisfies

(3) U(x) ≤ U(y), 0 ≤ x ≤ y.

This assumption implies that the density of a surface increases when its gradients are de-
creased (in absolute value). In addition, we often consider finitely-supported potentials in the
sense that

U(x) = ∞, x > 1.(4)

This assumption implies that a random surface configuration ϕ sampled from μU,G,V0 is a
Lipschitz function, almost surely, in the sense that

(5) |ϕv − ϕw| ≤ 1 for all adjacent v, w.

We note that assumption (2), that μU,G,V0 is well defined, is a consequence of (3) and (4).
An important example of a random surface satisfying (3) and (4) is the case that U is given

by the hammock potential,

(6) Uhammock(x) =
{

0 |x| ≤ 1,

∞ |x| > 1.

In this case, the random surface is sampled uniformly among all Lipschitz functions normal-
ized to be 0 on V0.
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1.1.1. Extremal gradients. Our main result deals with random Lipschitz functions in the
sense of (5). How rare are extremal gradients in such surfaces, edges {v,w} ∈ E on which
|ϕv − ϕw| ≥ 1 − ε for some small ε? In [27], Section 6, it was asked whether, under mild
assumptions on the potential U , such gradients are exponentially suppressed (“controlled
gradients property”) in the sense that for each δ > 0 there exists ε > 0, depending only on δ

and U (not on the graph G), such that for any distinct edges {{vi,wi}}1≤i≤k ⊆ E,

P
(|ϕvi

− ϕwi
| ≥ 1 − ε for all i

) ≤ δk.

A similar formulation was given for random surfaces with more general potentials. The con-
trolled gradients property was established in [27], for rather general potential functions, when
the graph G is a torus in Z

d (a box with periodic boundary conditions), using reflection pos-
itivity (via the chessboard estimate). This property was a key ingredient in showing that
two-dimensional random surfaces delocalize for a large class of potential functions including
the hammock potential (6). The work [27] continues the delocalization results of Brascamp,
Lieb and Lebowitz [5], Section V, and extends the class of potentials treated there, so it is
interesting to note that the arguments of [5] relied on a related property [5], inequality (16).
Our main result establishes the controlled gradients property for Lipschitz random surfaces
with monotone potentials on general, bounded degree, graphs.

THEOREM 1.1. Let G = (V ,E) be a finite connected graph with maximal degree �,
let V0 ⊆ V be nonempty, let U be a potential satisfying (3) and (4) and let ϕ be randomly
sampled from μU,G,V0 . Then for any 0 < ε ≤ 1

8 , k ∈ N and distinct {v1,w1}, . . . , {vk,wk} ∈ E,

(7) P
({|ϕvi

− ϕwi
| ≥ 1 − ε : 1 ≤ i ≤ k

}) ≤ (
C(�)δ(U, ε)

) k
C(�) ,

where

δ(U, ε) := ε · exp
(
−U(1 − ε) + U(0) + �

(
U

(
3

4

)
− U(0)

))
,

and where C(�) depends only on �.

To illustrate the result we note that when U = Uhammock we have δ(U, ε) = ε and, in
addition, that if G is a tree then the probability in (7) exactly equals εk .

We note that the dependence on the maximal degree � in (7) cannot be completely re-
moved. Indeed, suppose G = Kn,n is a complete bipartite graph with partite classes V1, V2.
Take the boundary set V0 = {v0} for some v0 ∈ V1, take U = Uhammock and let ϕ be randomly
sampled from μU,G,V0 . It is straightforward to check that for any 0 < ε < 1,

P
({|ϕvi

− ϕwi
| ≥ 1 − ε : vi ∈ V1,wi ∈ V2

})
≥ P

(
ϕ(V1) ⊆

[
0,

ε

2

]
, ϕ(V2) ⊆

[
1 − ε

2
,1

])
≥

(
ε

4

)2n−1
,

with the exponent 2n − 1 significantly smaller than the amount n2 of edges between V1 and
V2 in G.

Notwithstanding the above, we point out that Theorem 1.1 remains true if � is replaced by
the maximal degree over all vertices other than the vertices of V0. In fact, inequality (7) holds
for a given set of edges {v1,w1}, . . . , {vk,wk} when � is replaced by the maximal degree
of vertices in {v1,w1, . . . , vk,wk} \ V0, and this is the phrasing that we shall establish in the
proof. This fact will allow us to work with the graph in which the set V0 is contracted to a
single vertex.

In Section 6 we briefly discuss the consequences of Theorem 1.1 to the delocalization of
random surfaces.
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1.1.2. Reflection principle for random surfaces. Let us first remind the reflection princi-
ple for simple random walk, a fundamental relation between the distributions of the maximum
of the walk and the value at its endpoint. Let (Xj ), 0 ≤ j ≤ n, be a simple random walk. That
is, X0 = 0 and {Xj − Xj−1}, 1 ≤ j ≤ n, are independent increments, each uniformly dis-
tributed on {−1,1}. Then the reflection principle states that for all integer k, m satisfying
m ≥ max{0, k},
(8) P

(
max{Xj : 0 ≤ j ≤ n} ≥ m,Xn = k

) = P(Xn = 2m − k).

The law of the maximum of the walk is obtained as an immediate consequence,

(9)
P

(
max{Xj : 0 ≤ j ≤ n} ≥ m

)
= 2P(Xn ≥ m) − P(Xn = m) = P

(|Xn| ≥ m
) − P(Xn = m).

In the standard proof of the reflection principle one reflects the final segment of the walk
around height m and observes that this is a one-to-one transformation between the events in
the two sides of (8). As our main tool in this work is a reflection transformation for random
surfaces, one may naturally wonder whether it yields an analogue of (8). This turns out to be
the case, as we now proceed to describe. We mention that while our main interest is in random
surfaces, the result applies equally well to random walks (having symmetric increments with
monotone densities), as these can be seen as random surfaces on a line segment graph, and
yields a bound similar to that obtained from Doob’s maximal inequality.

We first describe what replaces the maximum in (8). Let G = (V ,E) be a graph, V0 ⊆ V

be nonempty and ϕ : V → R. Let us write {V0
ϕ<m←−→ v} for the event that there exists a path

v0, v1, . . . , vk in G such that v0 ∈ V0, vk = v and ϕvi
< m for all i. We write {V0 	ϕ<m←−→ v} for

the complementary event, that the “height barrier’ between V0 and v is at least m, meaning
that on any path from V0 to v there is some vertex w with ϕw ≥ m. We similarly define

{V0
ϕ>m←−→ v}, etcetera.

Observe that in the one-dimensional case, when V = {0,1, . . . , n} with E = {{i, i + 1} :
0 ≤ i < n} and V0 = {0}, we have {V0 	ϕ<m←−→ n} = {max{ϕi : 0 ≤ i ≤ n} ≥ m}, so that our
definition generalizes that of the maximum in (8).

THEOREM 1.2. Let G = (V ,E) be a finite connected graph, let V0 ⊆ V be nonempty,
let U be a potential satisfying the monotonicity condition (3) and the assumption (2) that
μU,G,V0 is well defined. Let ϕ be randomly sampled from μU,G,V0 . Then

(10)
1

2
P

(|ϕv| ≥ m
) ≤ P(V0 	ϕ<m←−→ v) ≤ P

(|ϕv| ≥ m
)

for all v ∈ V , m ≥ 0.

If, additionally, U satisfies the finite-support condition (4) then

(11) P(V0 	ϕ<m←−→ v) ≥ P
(|ϕv| ≥ m

) − P
(
ϕv ∈ (m,m + 1)

)
for all v ∈ V , m ≥ 0.

The above theorem gives an analogue of (9) for random surfaces and our proof proceeds
by first establishing an analogue of (8); see Section 3. We remark that the lower bound in (10)

is trivial, as 1
2P(|ϕv| ≥ m) = P(ϕv ≥ m) and {ϕv ≥ m} ⊆ {V0 	ϕ<m←−→ v}. The improved lower

bound (11) does not hold without additional assumptions (such as (4)) as one can check on
the example of the single-edge graph, V = {0,1}, E = {{0,1}}, V0 = {0} and v = 1, taking,
for example, U(x) = x2 and m large.

A discussion of the relation of the above results to the study of excursion-set percolation
of random surfaces appears in Section 6.
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1.2. Spin systems. Our final result concerns the monotonicity of densities in spin O(n)

models and is closely related to an inequality of Armendáriz, Ferrari and Soprano-Loto [3],
Lemma 2.4, and Soprano-Loto [33], Section 1.3.6.

Let G = (V ,E) be a finite graph and V0 ⊆ V be a (possibly empty) subset of its vertices.
Let U : [−1,1] → (−∞,∞] be a measurable function. The spin O(n) model with integer
n ≥ 1, potential function U and normalized to equal e1 := (1,0, . . . ,0) ∈ S

n−1 at the subset
V0, is the probability measure μU,G,n,V0 on functions ϕ : V → S

n−1 defined by

(12)

dμU,G,n,V0(ϕ)

:= 1

ZU,G,n,V0

exp
(
− ∑

{v,w}∈E

U
(〈ϕv,ϕw〉)) ∏

v∈V \V0

dμSn−1(ϕv)
∏

v∈V0

dδe1(ϕv),

where 〈·, ·〉 denotes the standard inner product in R
n, μSn−1 denotes the uniform measure on

S
n−1, δe1 is a Dirac delta measure at e1 and

ZU,G,n,V0 :=
∫

exp
(
− ∑

{v,w}∈E

U
(〈ϕv,ϕw〉)) ∏

v∈V \V0

dμSn−1(ϕv)
∏

v∈V0

dδe1(ϕv)

which we shall assume satisfies

(13) 0 < ZU,G,n,V0 < ∞
for μU,G,n,V0 to be well defined. The standard spin O(n) model is obtained as the special
case where U(r) = −βr , with β representing the inverse temperature. Special cases of the
standard spin O(n) model have names of their own: The case n = 1 is the Ising model, the
case n = 2 is the XY model, or plane rotator model, and the case n = 3 is the Heisenberg
model.

Observe that when ϕ is randomly sampled from μU,G,n,V0 , the distribution of ϕv is abso-
lutely continuous with respect to μSn−1 for each v ∈ V \ V0. Denote its density function by
dv , so that dv : Sn−1 → [0,∞). Note that dv is only defined up to a μSn−1 -null set and that, by
symmetry, there is a version of dv in which dv(b) is a function of 〈b, e1〉. The next theorem
states that monotonicity of the potential function implies monotonicity of the densities dv .

THEOREM 1.3. Let G = (V ,E) be a finite graph and V0 ⊆ V be a (possibly empty)
subset of its vertices. Let n ≥ 1 be an integer. Suppose that U : [−1,1] → (−∞,∞] is non-
increasing in the sense that

(14) U(r) ≥ U(s) for r ≤ s

and that (13) holds. Let ϕ be randomly sampled from μU,G,n,V0 . Then for any v ∈ V \ V0,
there exists a version of the density dv satisfying

(15) dv(b1) ≥ dv(b2) when 〈b1, e1〉 ≥ 〈b2, e1〉.

We make a few remarks regarding the theorem: The conclusion of the theorem implies
that E(〈σv, e1〉) ≥ 0 for all v ∈ V , as in Griffiths first inequality [21, 22]. However, we are
not aware that the monotonicity of the density has been noted in earlier works, even for the
standard ferromagnetic spin O(n) model (when U(r) = −βr with β > 0) with n ≥ 2.

The result need not hold without the monotonicity condition (14). Indeed, monotonicity is
a necessary condition when G is the single-edge graph V = {0,1}, E = {{0,1}} with x = 0,
y = 1.

An analogous result holds for random surface models of the type (1) as we now state. This
result, however, follows easily from convexity considerations as explained in Section 4.
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THEOREM 1.4. Let G = (V ,E) be a finite connected graph, let V0 ⊆ V be nonempty,
let U be a potential satisfying the monotonicity condition (3) and the assumption (2) that
μU,G,V0 is well defined. Let ϕ be randomly sampled from μU,G,V0 . Then for any x ∈ V ,

|ϕx | has a nonincreasing density with respect to Lebesgue measure on [0,∞).

We mention that analogous results to Theorem 1.3 and Theorem 1.4 remain valid for clock
models (spins on equally spaced points of S1) and integer-valued height functions, respec-
tively, and that our proofs apply to this setup without change.

2. Cluster algorithms and reflection transformations. In this section we describe the
cluster algorithms and reflection transformations on which our results are based. As men-
tioned in the Introduction, such ideas are not new, starting with the pioneering works of
Swendsen–Wang [34] and Wolff [40], they have been developed by many authors, mostly in
the context of fast simulation algorithms (cluster algorithms) but also in theoretical contexts;
see [11, 14, 15, 25, 32, 33] for surveys and some recent results. Nevertheless, we believe
that there is still room for presenting the special case that we rely upon in some general-
ity, highlighting connections with previous works, to raise further awareness to the general
framework and its potential theoretical use. The general description below is followed by
specific examples.

Let (S,S) be a measurable space and let G = (V ,E) be a finite graph. Let E� be an arbitrary
orientation of the edges, that is, E� consists of either (v,w) or (w, v), but not both, for each
edge {v,w} ∈ E. For each vertex v ∈ V , let λv be a (finite or infinite) measure on (S,S) and
for each directed edge (v,w) ∈ E� , let h(v,w) : S ×S → [0,∞) be a measurable function. The
model is defined by the probability measure μλ,h,G on configurations ϕ : V → S given by

(16) dμλ,h,G(ϕ) = 1

Zλ,h,G

∏
(v,w)∈E�

h(v,w)(ϕv,ϕw)
∏
v∈V

dλv(ϕv),

where

Zλ,h,G =
∫ ∏

(v,w)∈E�

h(v,w)(ϕv,ϕw)
∏
v∈V

dλv(ϕv)

and we make the assumption that

(17) 0 < Zλ,h,G < ∞.

In many of our examples h will be specified on the undirected edge set E but the possibility
to define it on directed edges gives the model extra flexibility.

The reflection transformation is based on a function τ : S → S with the following proper-
ties: For some set V0 ⊆ V ,

τ is an involution: τ
(
τ(s)

) = s for all s ∈ S,(18)

τ preserves λ for v /∈ V0: λv ◦ τ−1 = λv for all v ∈ V \ V0,(19)

τ preserves h: h(v,w)

(
τ(a), τ (b)

) = h(v,w)(a, b) for all (v,w) ∈ E� , a, b ∈ S.(20)

Here V0 plays the role of the “boundary” of G in the sense that we think of (λv), v ∈ V0,
which are possibly concentrated on a single value, as prescribing boundary conditions for
the measure μλ,h,G. We allow the possibility that V0 = ∅ corresponding to free boundary
conditions (but in any case we require (17)). We call a τ satisfying the above properties a
reflection.
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The reflection τ identifies “embedded Ising spins” in the model in the following sense.
Suppose ϕ is randomly sampled from μλ,h,G and define ψv := {ϕv, τ (ϕv)}, v ∈ V . Then,
conditioned on ψ , each ϕv has at most two possible values, and the joint distribution of these
new “binary spins” is that of an Ising model (with general coupling constants, not necessarily
of one sign, and zero magnetic field).

Fix a reflection τ . We define a joint probability distribution, the τ -Edwards–Sokal cou-
pling, on pairs (ϕ,ω) where ϕ : V → S is a configuration and ω : E → {0,1} may be thought
of as a set of edges, by the following prescription: The marginal distribution of ϕ is μλ,h,G.

(21)
Given ϕ, the (ω{v,w}) are independent and satisfy

P(ω{v,w} = 1 | ϕ) = p{v,w}(ϕ), {v,w} ∈ E,

where, letting (v,w) ∈ E� be the directed version of {v,w},
(22) p{v,w}(ϕ) := max

(
1 − h(v,w)(τ (ϕv), ϕw)

h(v,w)(ϕv,ϕw)
,0

)
,

where we set 0
0 := 1, t

0 = ∞ for t > 0 and we note that h(v,w)(τ (ϕv), ϕw) equals
h(v,w)(ϕv, τ (ϕw)) due to the assumptions (18) and (20) so the latter expression can be used
instead of the former in (22). Unfortunately, the marginal distribution of ω does not seem to
have a simple formula in general. We note for later use the following immediate property,

(23)
Conditioned on ϕ, ω{v,w} = 0 almost surely for each (v,w) ∈ E�

with h(v,w)

(
τ(ϕv), ϕw

) ≥ h(v,w)(ϕv,ϕw).

In particular, if τ(ϕv) = ϕv then ω{v,w} = 0 for all edges {v,w} incident to v. We also observe
that if h(v,w) takes values in {0,1}, as in the case of the hammock potential (see (6)), then
p{v,w}(ϕ) also belongs to {0,1}, almost surely, so that ω is a deterministic function of ϕ.

We proceed to describe the reflection transformation. Let (ϕ,ω) ∈ SV × {0,1}E and let
x ∈ V . Write x

ω←→ v if there is a path from x to v with ω{u,u′} = 1 for all edges {u,u′} along

the path. Similarly write x
ω←→ V0 if there is some v0 ∈ V0 with x

ω←→ v0 and write x 	ω←→ v

or x 	ω←→ V0 for the nonexistence of such paths. The reflected configuration ϕω,x : V → S is
defined by:

(24) If x
ω←→ V0 then ϕω,x := ϕ. Otherwise, ϕω,x

v :=
{
τ(ϕv) x

ω←→ v,

ϕv x 	ω←→ v.

That is, ϕω,x is formed by applying τ to all vertices in the ω-connected component of x,
unless this connected component intersects V0 in which case ϕω,x = ϕ. The following lemma
shows that this transformation preserves the distribution of the τ -Edwards–Sokal coupling.

LEMMA 2.1. Let (ϕ,ω) be randomly sampled from the τ -Edwards–Sokal coupling. For
each x ∈ V ,

(25)
(
ϕω,x,ω

)
has the same distribution as (ϕ,ω).

Of course, the equality in distribution (25) implies also that ϕω,x has the same distribution
as ϕ, leading to a natural Markov chain on configurations. In the context of the spin O(n)

model (see also below), the fact that τ is applied to a single connected component of ω in each
update is one of the innovations introduced by Wolff in his pioneering work [40]. We remark,
however, that the equality in distribution (25) remains true when the vertex x is chosen as a
function of ω. That is, for any function x : {0,1}E → V ,(

ϕω,x(ω),ω
)

has the same distribution as (ϕ,ω).
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More generally, (ϕ,ω) has the same distribution as (ψ,ω) where ω determines whether
ψ = ϕ or ψ = ϕω,x(ω). These facts can be deduced in a straightforward manner from (25)
itself. By composing several operations of this type one may define various other measure-
preserving transformations. For instance, in a Swendsen–Wang-type update, one applies τ

with probability 1/2 independently to each of the ω-connected components which do not in-
tersect V0. Another possibility, when V0 is a singleton, is to either apply τ to the ω-connected
component of x, or to the complement of this connected component, according to whether
the component intersects V0. We use a variant of this latter choice in Section 5 below.

One typical use of the reflection transformation described above and Lemma 2.1 is to
define a reversible Markov chain (a “cluster algorithm”) on the set of configurations with
stationary distribution μλ,h,G. A step of this chain starting at ϕ is conducted by deciding
on some x ∈ V (possibly randomly), then sampling ω : E → {0,1} from the conditional
distribution (21) and finally outputting ϕω,x . Such Markov chains sometimes mix faster than
the more traditional Glauber dynamics, especially near critical points of the model, and are
used in practice in Monte Carlo simulations of the model (e.g., for Ising and spin O(n)

models following Swendsen–Wang [34] and Wolff [40]. See [23, 36] for recent polynomial-
time mixing bounds). Our emphasis, however, will be on theoretical applications.

The reflection transformation is defined above on a finite graph. It is also natural to work on
infinite graphs, with the configuration ϕ sampled from a Gibbs measure, which is specified on
finite graphs by distributions of the form (16), and with the distribution of ω given ϕ specified
by (21) and (22). In this case it may be shown, using Lemma 2.1, that reflections of finite ω-
connected components preserve the joint distribution of (ϕ,ω). This may fail, however, when
reflecting infinite ω-connected components. Still, it may be shown that reflections of infinite
ω-connected components transform the distribution of ϕ to that of another Gibbs measure,
with the same underlying specification, while the distribution of ω given ϕ continues to be
specified by (21) and (22) (in the context of the cluster swapping reflection applied to random
surfaces, see below, this was shown by Sheffield [31]; see also [12], Lemma 4.2). We do not
discuss this further here.

PROOF OF LEMMA 2.1. It is sufficient to prove that

(26) P

( ⋂
v∈V

{
ϕω,x

v ∈ Av

} ∩ {ω = ω0}
)

= P

( ⋂
v∈V

{ϕv ∈ Av} ∩ {ω = ω0}
)
,

for all choices of Av ∈ S for v ∈ V and ω0 : E → {0,1}. Fix such (Av) and ω0. For brevity,
we introduce the notation

f(v,w)(ϕ) := h(v,w)(ϕv,ϕw)p{v,w}(ϕ)ω0({v,w})(1 − p{v,w}(ϕ)
)1−ω0({v,w})

, (v,w) ∈ E� ,

with 00 := 1. Our definitions yield the following formula for the right-hand side of (26),

(27) P

( ⋂
v∈V

{ϕv ∈ Av} ∩ {ω = ω0}
)

= 1

Zλ,h,G

∫ ∏
v∈V

dλv(ϕv)1ϕv∈Av

∏
(v,w)∈E�

f(v,w)(ϕ).

We proceed to evaluate the left-hand side of (26). Define Vω0,x to be the set of vertices on
which τ is applied in the definition of ϕω0,x . Precisely,

If x
ω←→ V0 then Vω0,x := ∅. Otherwise, Vω0,x := {v ∈ V : x

ω←→ v}.
With this definition,⋂

v∈V

{
ϕω,x

v ∈ Av

} ∩ {ω = ω0} = ⋂
v∈Vω0,x

{
τ(ϕv) ∈ Av

} ⋂
v∈V \Vω0,x

{ϕv ∈ Av} ∩ {ω = ω0},
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whence the left-hand side of (26) satisfies

P

( ⋂
v∈V

{
ϕω,x

v ∈ Av

} ∩ {ω = ω0}
)

= 1

Zλ,h,G

∫ ∏
v∈V

dλv(ϕv)
∏

v∈Vω0,x

1τ(ϕv)∈Av

∏
v∈V \Vω0,x

1ϕv∈Av

∏
(v,w)∈E�

f(v,w)(ϕ).

To simplify the last integral, we make the change of variables ϕ �→ ψ where

ψv :=
{
τ(ϕv) v ∈ Vω0,x,

ϕv v /∈ Vω0,x .

This mapping is one-to-one as τ is invertible by (18). In addition, it preserves the measure∏
v∈V λv by (19) and the fact that V0 ∩ Vω0,x = ∅. Thus,

(28) P

( ⋂
v∈V

{
ϕω,x

v ∈ Av

} ∩ {ω = ω0}
)

= 1

Zλ,h,G

∫ ∏
v∈V

dλv(ψv)1ψv∈Av

∏
(v,w)∈E�

f(v,w)(ϕ).

Comparing (27) and (28) we see that (26) is a consequence of

(29) f(v,w)(ϕ) = f(v,w)(ψ)

for all (v,w) ∈ E� . The equality (29) is trivial in the case that v,w /∈ Vω0,x . In the case that
v,w ∈ Vω0,x it follows from (20) by using that

h(v,w)(ψv,ψw) = h(v,w)

(
τ(ϕv), τ (ϕw)

) = h(v,w)(ϕv,ϕw),

p{v,w}(ψ) = max
(

1 − h(v,w)(τ (τ (ϕv)), τ (ϕw))

h(v,w)(τ (ϕv), τ (ϕw))
,0

)

= max
(

1 − h(v,w)(τ (ϕv), ϕw)

h(v,w)(ϕv,ϕw)
,0

)
= p{v,w}(ϕ).

Lastly, in the case that, say, v ∈ Vω0,x and w /∈ Vω0,x , using now the involution property (18),

f(v,w)(ψ) = h(v,w)(ψv,ψw)
(
1 − p{v,w}(ψ)

)
= h(v,w)

(
τ(ϕv), ϕw

)
min

(
h(v,w)(τ (τ (ϕv)), ϕw)

h(v,w)(τ (ϕv), ϕw)
,1

)

= h(v,w)

(
τ(ϕv), ϕw

)
min

(
h(v,w)(ϕv,ϕw)

h(v,w)(τ (ϕv), ϕw)
,1

)

(∗)= h(v,w)(ϕv,ϕw)min
(

h(v,w)(τ (ϕv), ϕw)

h(v,w)(ϕv,ϕw)
,1

)

= h(v,w)(ϕv,ϕw)
(
1 − p{v,w}(ϕ)

) = f(v,w)(ϕ),

where the equality (∗) follows by separately considering the two cases h(v,w)(τ (ϕv), ϕw) ≥
h(v,w)(ϕv,ϕw) and h(v,w)(τ (ϕv), ϕw) < h(v,w)(ϕv,ϕw). This finishes the proof of the lemma.

�

We now illustrate the general construction above with specific examples:

Potts model: The q-state Potts model (with free boundary conditions) is obtained by taking
S = {1,2, . . . , q} (with the discrete sigma algebra), all λv equal to the counting measure,
V0 = ∅ and

h{v,w}(a, b) = exp(βδa,b), {v,w} ∈ E,a, b ∈ S,
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where δa,b is the Kronecker delta function. Let τ : S → S be any involution. One checks
simply that τ satisfies (19) and (20) so that τ is a reflection.

The model is called ferromagnetic when the parameter β is nonnegative. In this case, the
general prescription (21) for the distribution of ω becomes

P(ω{v,w} = 1 | ϕ) =
{

1 − exp(−β) ϕv = ϕw and τ(ϕv) 	= ϕv,

0 otherwise.

In particular, the value of ϕ is constant on each ω-connected component. Applying τ to
the values of ϕ on ω-connected components leads to a variant of the Swendsen–Wang
Markov chain (the original Markov chain is obtained by setting ω{v,w} = 1 with probabil-
ity 1 − exp(−β), independently, for each {v,w} ∈ E with ϕv = ϕw and ω{v,w} = 0 for other
edges. Then updating ϕ by assigning it a uniform value in S on each ω-connected compo-
nent, independently. In this case the marginal distribution of ω is explicit and given by the
q-random cluster model).

The model is called anti-ferromagnetic when β is negative. In this case, the general pre-
scription (21) becomes

P(ω{v,w} = 1 | ϕ) =
{

1 − exp(β) τ (ϕv) = ϕw and ϕv 	= ϕw,

0 otherwise.

In particular, on each path in the subgraph given by ω−1(1) the value of ϕ alternates between
two distinct values a, b ∈ S with b = τ(a). We note in passing that in the limiting case β =
−∞, corresponding to ϕ being a uniformly sampled proper q-coloring, the ω-connected
components are exactly the Kempe chains of the pairs a, b ∈ S with b = τ(a). In the anti-
ferromagnetic case, applying τ to the values of ϕ on ω-connected components leads to the
Wang–Swendsen–Kotecký [39] Markov chain.

Random surfaces: The random surface measure μU,G,V0 defined in (1), having potential
U and normalized to be 0 on V0, fits the framework (16) by taking S = R (with the Borel
sigma algebra), λv to be Lebesgue measure for v /∈ V0, λv = δ0 for v ∈ V0 and h{v,w}(a, b) =
exp(−U(a − b)) for all {v,w} ∈ E.

For each m ∈ R let τm :R→R be the “reflection around m” mapping. That is,

(30) τm(a) = 2m − a.

It is straightforward to check the conditions (18), (19) and (20), using that U(x) = U(−x)

for all x, and conclude that τm is a reflection for any random surface measure μU,G,V0 . In this
case, the general prescription (21) for the distribution of ω becomes

(31) P(ω{v,w} = 1 | ϕ) = max
(
1 − exp

(
U(ϕv − ϕw) − U(2m − ϕv − ϕw)

)
,0

)
.

The following consequence plays a central role in the proofs of our main theorems:

If U is monotone in the sense of (3) then, almost surely,

on each ω-connected component C

either ϕv > m for all v ∈ C, or ϕv < m for all v ∈ C, or C = {v} and ϕv = m.

(32)

This follows from (31) by noting that if U is monotone and ϕv ≥ m ≥ ϕw then ϕv − ϕw ≥
|2m − ϕv − ϕw| whence U(ϕv − ϕw) ≥ U(2m − ϕv − ϕw).

Extensions of the above ideas to integer-valued random surfaces (when a measure on
ϕ : S → Z is defined analogously) follow in a similar manner, with the reflection height
m restricted to Z ∪ (Z + 1

2). The reflection principle for simple random walk (see (8))
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can be seen as a reflection transformation of an integer-valued random surface on a one-
dimensional graph (see also the discussion of reflection transformations for Markov chains
below). Markov chain algorithms for simulating random surfaces based on the above ideas
were developed by Evertz, Hasenbusch, Lana, Marcu, Pinn and Solomon [19, 24].

We are not aware of a simple expression for the marginal distribution of ω.

Spin O(n) model: The spin O(n) measure μU,G,n,V0 defined in (12), having integer n ≥ 1,
potential U and normalized to equal e1 = (1,0, . . . ,0) on V0, fits the framework (16) by
taking S = S

n−1 ⊆ R
n (with the sigma algebra inherited from R

n), dλv = dϕv for v ∈ V \V0,
λv = δe1 for v ∈ V0 and h{v,w}(a, b) = exp(−U(〈a, b〉)) for all {v,w} ∈ E.

For each a ∈ S
n−1 let τa : Sn−1 → S

n−1 be the “reflection around the hyperplane orthogo-
nal to a” mapping. That is,

(33) τa(b) = b − 2〈a, b〉 · a.

It is straightforward to check the conditions (18), (19) and (20), verifying along the way that
τa is an isometry, and conclude that τa is a reflection for any spin O(n) measure μU,G,n,V0 .
In this case, the general prescription (21) for the distribution of ω becomes

(34) P(ω{v,w} = 1 | ϕ) = max
(
1 − exp

(
U

(〈ϕv,ϕw〉) − U
(〈
ϕv − 2〈a,ϕv〉a,ϕw

〉))
,0

)
.

Again, the following consequence plays a central role in our proof of Theorem 1.3:

If U is nonincreasing in the sense of (14) then, almost surely,

on each ω-connected component C

either 〈a,ϕv〉 > 0 for all v ∈ C, or 〈a,ϕv〉 < 0

for all v ∈ C, or C = {v} and 〈a,ϕv〉 = 0.

(35)

This follows from (34) by noting that if U is nonincreasing and 〈a,ϕv〉〈a,ϕw〉 ≤ 0 then
〈ϕv,ϕw〉 ≤ 〈ϕv − 2〈a,ϕv〉a,ϕw〉 whence U(〈ϕv,ϕw〉) ≥ U(〈ϕv − 2〈a,ϕv〉a,ϕw〉).

Extensions of the above ideas to clock models (when ϕ takes values in a set of q equally-
spaced marks on S

1) follow in a similar manner, with the vector a restricted to be one of
the marks or exactly in between two marks. Wolff’s algorithm [40] pioneered the use of the
above ideas to fast simulation algorithms for the spin O(n) model.

We are not aware of a simple expression for the marginal distribution of ω. Nevertheless,
Chayes [13], Chayes–Campbell [10], following Chayes–Machta [14, 15], have considered the
standard spin O(n) model with n ∈ {2,3} and proved that the distribution of ω has positive
association (every two monotone increasing functions of ω are nonnegatively correlated), that
an infinite ω-connected component (in a suitable infinite-volume limit) arises if and only if
there is positive magnetization in the spin model and related results.

Cluster swapping: The term cluster swapping was coined by Sheffield [31], Chapter 8, for
the following setup, in the special setting of random surfaces. A related swapping idea was
used by van den Berg [37] to study uniqueness of Gibbs measures (see also van den Berg and
Steif [38], Proof of Theorem 2.4). Let V0 ⊆ V . Let μλ1,h,G, μλ2,h,G be general measures of
the type (16), with the same h and with λ1

v = λ2
v for all v ∈ V \V0. Let ϕ1, ϕ2 be independent

samples from μλ1,h,G and μλ2,h,G respectively. We regard the pair (ϕ1, ϕ2) as a configuration
(ϕ1, ϕ2) : V → S × S which is sampled from the measure μλ1×λ2,h×h,G, where(

λ1 × λ2)
v := λ1

v × λ2
v, v ∈ V

and

(h × h)(v,w)

(
(a1, a2), (b1, b2)

)
:= h(v,w)(a1, b1) · h(v,w)(a2, b2), (v,w) ∈ E� , a1, a2, b1, b2 ∈ S.
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Let τ : S × S → S × S be the “swap” mapping, defined by

(36) τ
(
(a1, a2)

) = (a2, a1).

It is straightforward to check the conditions (18), (19) and (20) and conclude that τ is a
reflection for μλ1×λ2,h×h,G. In this case, the general prescription (21) for the distribution of
ω becomes

(37) P(ω{v,w} = 1 | ϕ) = max
(

1 − h(v,w)(ϕ
2
v, ϕ

1
w) · h(v,w)(ϕ

1
v , ϕ

2
w)

h(v,w)(ϕ1
v, ϕ

1
w) · h(v,w)(ϕ2

v , ϕ
2
w)

,0
)
.

We see that, as remarked before, if ϕ1
v = ϕ2

v then ω{v,w} = 0 for all w adjacent to v. Thus,
an ω-connected component is ‘blocked’ by places where the two coordinates of (ϕ1, ϕ2) are
equal. This observation is closely related to the theorem of van den Berg [37], Theorem 1,
showing the equality of two Gibbs measures under the assumption that there is no ‘disagree-
ment percolation’ between independent samples from the measures.

Sheffield [31], Lemma 8.1.3, made an additional important observation in the context of
random surfaces. The setup considered there allows for both integer-valued and real-valued
surfaces, and also for surfaces whose potential U is not required to satisfy the restriction
U(x) = U(−x) (allowing to introduce a slope to the surface). We explain Sheffield’s obser-
vation in the real-valued case: Take S = R, λ1

v , λ2
v to be Lebesgue measure for v ∈ V \ V0

and h(v,w)(a, b) = exp(−U(a − b)) for a measurable U :R → (−∞,∞] and all (v,w) ∈ E� .
Then,

if U is convex then, almost surely, on each ω-connected component C

either ϕ1
v > ϕ2

v for all v ∈ C, or ϕ1
v < ϕ2

v for all v ∈ C, or C = {v} and ϕ1
v = ϕ2

v .

This follows from (37) by noting that,

h(v,w)(ϕ
2
v , ϕ

1
w) · h(v,w)(ϕ

1
v, ϕ

2
w)

h(v,w)(ϕ1
v , ϕ

1
w) · h(v,w)(ϕ2

v, ϕ
2
w)

= exp
(
U

(
ϕ1

v − ϕ1
w

) + U
(
ϕ2

v − ϕ2
w

) − U
(
ϕ2

v − ϕ1
w

) − U
(
ϕ1

v − ϕ2
w

))
.

Writing

ϕ2
v − ϕ1

w = p
(
ϕ1

v − ϕ1
w

) + (1 − p)
(
ϕ2

v − ϕ2
w

)
,

ϕ1
v − ϕ2

w = (1 − p)
(
ϕ1

v − ϕ1
w

) + p
(
ϕ2

v − ϕ2
w

)
,

where

p := ϕ2
w − ϕ1

w

ϕ1
v − ϕ2

v + ϕ2
w − ϕ1

w

,

so that if either ϕ1
v ≥ ϕ2

v and ϕ1
w ≤ ϕ2

w , or ϕ1
v ≤ ϕ2

v and ϕ1
w ≥ ϕ2

w (but at least one inequality is
strict) then p ∈ [0,1] whence convexity of U implies that

U
(
ϕ2

v − ϕ1
w

) + U
(
ϕ1

v − ϕ2
w

) ≤ U
(
ϕ1

v − ϕ1
w

) + U
(
ϕ2

v − ϕ2
w

)
.

Sheffield [31] used the cluster swapping idea in his investigation of the translation-invariant
gradient Gibbs measures of random surfaces, in the real- and integer-valued cases, with con-
vex potentials (following Funaki–Spohn [20] for the real-valued case). Along the way, he
uses cluster swapping in a beautifully simple manner to obtain monotnicity in boundary con-
ditions and log-concavity of the single-site marginal distributions in random surfaces with
convex potentials [31], Section 8.2.
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Lastly, we remark that cluster swapping may sometimes be given a fruitful interpretation
as the swapping of disagreement sets between configurations of an extended model. Such
an interpretation was provided in [2] for the random-field Ising model where, rather than
defining ω, configurations of the model were extended to continuous functions on the metric
graph—the metric space obtained by replacing edges with continuous segments—and swaps
were made on connected components of the disagreement set of two extended configurations.

Markov chains: We point out that Markov chains in discrete time also fit the framework
(16). For simplicity, we discuss the case where the state space of the chain is countable. Let
S be a finite or countable set (with the discrete sigma algebra) and let P = (P (a, b))a,b∈S be
the transition probabilities for a Markov chain on S. Thus we assume that

P(a, b) ≥ 0 for all a, b ∈ S and
∑
b∈S

P (a, b) = 1 for all a ∈ S.

A finite sequence X0,X1, . . . ,Xn of S-valued random variables is a sample of the Markov
chain if

(38) P(X0 = x0,X1 = x1, . . . ,Xn = xn) = μ(x0)P (x0, x1) · · ·P(xn−1, xn),

for some initial probability distribution μ on S. The distribution of the sequence thus
fits the framework (16) with the graph G = (V ,E) having V = {0,1, . . . , n} and E =
{{0,1}, . . . , {n − 1, n}}, with the single-site measures λ0 := μ and λj being the counting
measure on S for 1 ≤ j ≤ n and the interaction functions h(j−1,j) = P for 1 ≤ j ≤ n.

Thus, if one has in hand a reflection τ : S → S, one may apply the general reflection
transformation procedure to the Markov chain. In this setting, letting V0 := {0}, the con-
ditions (18), (19) and (20) defining a reflection translate to τ(τ (a)) = a for a ∈ S and
P(τ(a), τ (b)) = P(a, b) for a, b ∈ S. As already mentioned, the reflection principle for sim-
ple random walk (see (8)) can be seen as a special case of this setup.

In most of the discussion above, the functions h(v,w) were chosen the same for all (v,w) ∈
E� . We point out that nonhomogeneous setups, with h(v,w) depending on (v,w), may arise
even in the investigation of homogeneous models, as in the discussion at the end of Section 4.
The use of nonhomogeneous (λv) may also be natural in some, otherwise homogeneous,
contexts. For instance, the height function of the dimer model on the triangular lattice has the
modulo 3 of the heights fixed on each of the three sub-lattices, and this restriction may be
imposed with a suitable choice of (λv) (or, alternatively, with a suitable choice of (h(v,w))).

The usefulness of the above discussion is demonstrated in the next sections where we
prove our main theorems, with the proofs in Section 3 and Section 4 being particularly short.

3. Sublevel set connectivity for random surfaces. In this section we prove Theo-
rem 1.2. As remarked there, the lower bound in (10) is trivial so we focus here on proving the
upper bound and (11).

As in the theorem, let G = (V ,E) be a finite connected graph, let V0 ⊆ V be nonempty,
let U be a potential satisfying the monotonicity condition (3) and the assumption (2) that
μU,G,V0 is well defined. Let ϕ be randomly sampled from μU,G,V0 . We first prove a more
general inequality than the upper bound in (10),

(39) P(V0 	ϕ<m←−→ v,ϕv ∈ D) ≤ P(ϕv ∈ 2m − D) for all v ∈ V , m ≥ 0 and Borel D ⊆ R,

where 2m − D := {2m − t : t ∈ D}. The upper bound in (10) follows since

P(V0 	ϕ<m←−→ v) = P(V0 	ϕ<m←−→ v,ϕv < m) + P(ϕv ≥ m) ≤ 2P(ϕv ≥ m) = P
(|ϕv| ≥ m

)
.
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We proceed to prove (39). Let τm be the reflection introduced in (30). Let ω : E → {0,1} be
sampled according to (31) and note that, as a consequence of (32), we have

{V0 	ϕ<m←−→ v,ϕv ∈ D} ⊆ {v 	ω←→ V0} (mod P),

where we write A1 ⊆ A2 (mod P), for events A1, A2, to indicate that P(A1 \ A2) = 0. Thus

{V0 	ϕ<m←−→ v,ϕv ∈ D} ⊆ {
ϕω,v

v ∈ 2m − D
}

(mod P),

where we recall the definition of ϕω,v from (24). Thus,

P(V0 	ϕ<m←−→ v,ϕv ∈ D) ≤ P
(
ϕω,v

v ∈ 2m − D
) = P(ϕv ∈ 2m − D),

where the last equality follows from Lemma 2.1. This establishes (39).
Now suppose, additionally, that U satisfies the finite-support condition (4). We again prove

a more general inequality than needed,

(40)
P(V0 	ϕ<m←−→ v,ϕv ∈ D) ≥ P(ϕv ∈ 2m + 1 − D)

for all v ∈ V , m ≥ 0 and Borel D ⊆ (−∞,m].
The inequality (11) is a consequence of (40) and the symmetry of ϕv as

P(V0 	ϕ<m←−→ v) = P(V0 	ϕ<m←−→ v,ϕv < m) + P(ϕv ≥ m) ≥ P(ϕv > m + 1) + P(ϕv ≥ m)

= P
(|ϕv| ≥ m

) − P
(
ϕv ∈ (m,m + 1)

)
.

To see (40), we now consider the reflection τ
m+ 1

2
. Again, we let ω : E → {0,1} be sampled

according to (31) (with respect to τ
m+ 1

2
) and note that, by (32),

{ϕv ≥ m + 1} ⊆ {v 	ω←→ V0} (mod P).

Additionally, the finite-support condition (4) implies that on the event {ϕv ≥ m + 1} any path
connecting V0 and v must pass through a vertex w on which ϕw ∈ [m,m + 1]. Since τ

m+ 1
2

preserves the interval [m,m + 1] we conclude that

{ϕv ≥ m + 1} ⊆ {
V0 	ϕω,v<m←−−−→ v

}
(mod P).

Altogether, we conclude that, for each Borel D ⊆ (−∞,m],
P(ϕv ∈ 2m + 1 − D) ≤ P

(
V0 	ϕω,v<m←−−−→ v,ϕω,v

v ∈ D
) = P(V0 	ϕ<m←−→ v,ϕv ∈ D),

where we used Lemma 2.1 in the last step. This concludes the proof of (40).

4. Monotonicity of pair correlations in spin O(n) models. In this section we prove
Theorem 1.3. Let v ∈ V \ V0. Let b1, b2 ∈ S

n−1 be such that 〈b1, e1〉 ≥ 〈b2, e1〉 and b1 	= b2.
Define

a := b2 − b1

‖b2 − b1‖
and consider the reflection along the hyperplane orthogonal to a, as defined in (33),

τa(b) = b − 2〈a, b〉 · a.

As explained, τa is a reflection for the spin O(n) model with potential U . In addition τa(b2) =
b1. Moreover, we observe that

(41) 〈e1, a〉 = ‖b2 − b1‖−1(〈e1, b2〉 − 〈e1, b1〉) ≤ 0,
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and that

〈b2, a〉 = ‖b2 − b1‖−1(〈b2, b2〉 − 〈b2, b1〉) > 0.

Choose r > 0 sufficiently small that

(42) 〈b, a〉 > 0 for all b ∈ B(b2, r),

where we write B(b2, r) := {b ∈ R
n | ‖b − b2‖2 ≤ r} for the closed Euclidean ball of radius

r around b.
As before, we let ω : E → {0,1} be sampled according to (34) (with respect to τa). The

relations (41) and (42) combined with the property (35) imply that
{
ϕv ∈ B(b2, r)

} ⊆ {v 	ω←→ V0} (mod P).

Consequently, recalling the definition of ϕω,v from (24) and the fact that τa(b2) = b1 and τa

is an isometry, {
ϕv ∈ B(b2, r)

} ⊆ {
ϕω,v

v ∈ B(b1, r)
}

(mod P).

Since ϕω,v has the same distribution as ϕ, we have

P
(
ϕv ∈ B(b2, r)

) ≤ P
(
ϕω,v

v ∈ B(b1, r)
) = P

(
ϕv ∈ B(b1, r)

)
.

Fix a version dv of the density of ϕv with respect to μSn−1 , which we assume is rotationally
symmetric in the sense that dv(b) is a function of 〈b, e1〉. As

(43)
P(ϕv ∈ B(b, r))

μSn−1(B(b, r))
→ dv(b) as r ↓ 0

for μSn−1 -almost every b, we conclude that dv(b) is a monotone increasing function of 〈b, e1〉
except on the μSn−1 -null set of b’s for which the convergence in (43) fails. We may then
redefine dv(b) on this null set to make dv(b) monotone for all b, as we wanted to show.

We may prove Theorem 1.4, regarding the monotonicity of marginal densities in random
surfaces, in exactly the same manner, replacing the reflection τa on S

n−1 by the reflection τm

on R. For variety (and possible interest in other contexts), we briefly explain an alternative
route to the proof of Theorem 1.4 via convexity considerations (we are not aware of such an
alternative for proving Theorem 1.3).

When the potential U is a convex function, the distribution of μU,G,V0 is log-concave and
centrally symmetric (invariant to a global sign flip), whence the marginal distribution of ϕx is
also log-concave and centrally symmetric so that |ϕx | has a nonincreasing density. While our
assumption that U is monotone does not imply that U is convex, it allows us to decompose
the distribution of μU,G,V0 as a mixture of centrally-symmetric log-concave distributions and
deduce Theorem 1.4 as before. The decomposition is a special case of the Edwards–Sokal
decomposition [18] and we briefly describe it next.

Let t = (te)e∈E ∈ (0,∞)E and define the measure μt,G,V0 by

(44) dμt,G,V0(ϕ) := 1

Zt,G,V0

∏
{v,w}∈E

1[−t{v,w},t{v,w}](ϕv − ϕw)
∏

v∈V0

δ0(dϕv)
∏

v∈V \V0

dϕv,

where Zt,G,V0 is a normalizing constant. In other words, the measure μt,G,V0 is uniform on
the set of all t-Lipschitz functions, functions changing by at most t{v,w} on the edge {v,w},
normalized to be 0 at V0. In particular, μt,G,V0 is log-concave and centrally-symmetric. We
say that μt,G,V0 is the measure of a random surface with inhomogeneous hammock potentials.
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Recalling our assumption that U is monotone in the sense (3), let us suppose, for conve-
nience, that e−U is right continuous on [0,∞) (noting that the measure μU,G,V0 is invari-
ant to changing the value of U at countably many points). Define the measure λU with the
Lebesgue–Stieltjes differential, dλU(t) := −d exp(−U(t)) on [0,∞), that is,∫

(a,b]
dλU(s) := exp

(−U(a)
) − exp

(−U(b)
)
, 0 < a < b and λU

({0}) := 0.

Since U is symmetric, we can write

exp
(−U(x)

) =
∫
(|x|,∞)

dλU(s) =
∫
[0,∞)

1[−s,s](x) dλU(s).

Substituting this expression for exp(−U(x)) in the density of μU,G,V0 given in (1) shows,
after a short calculation, that μU,G,V0 is a mixture, with respect to t , of measures of the form
μt,G,V0 .

As remarked in Section 1.2, analogs of Theorem 1.3 and Theorem 1.4 continue to hold
for clock models and integer-valued random surfaces, with the same proofs. To prove the
analog of Theorem 1.4 via the convexity approach, one needs to know that if the potential U ,
now defined on integers, is convex in a suitable sense then the marginal distribution of ϕx is
log-concave (in a suitable sense). Such a result was proved by Sheffield [31], Lemma 8.2.4,
(using the cluster-swapping method described in Section 2).

5. Estimating the probability of having extremal gradients. In this section we prove
Theorem 1.1.

Let G = (V ,E) be a finite connected graph and let V0 ⊆ V be nonempty. Let U be a poten-
tial satisfying assumptions (3) and (4), and recall from Section 1 the random surface measure
μU,G,V0 . Observe that if any of the given edges {v1,w1}, . . . , {vk,wk} has both endpoints in
V0 then the conclusion (7) of Theorem 1.1 follows trivially as the gradient of ϕ on that edge
is zero almost surely. We assume henceforth that each of the given edges has at most one
endpoint in V0. Without loss of generality, we now assume that V0 is a singleton, that is,

V0 = {v0},
as we can replace our graph with the graph in which all vertices in V0 have been identified
to a single vertex v0, erasing self-loops and keeping a single representative of each multiple
edge, and note that the random surface measure is naturally preserved under this operation.
This identification operation may substantially increase the degree of v0, possibly beyond the
maximal degree in the original graph. Thus, we will take care not to rely on the degree of
v0 in our proofs. The degrees of all other vertices cannot increase under the identification
operation. To address these issues it is convenient to define, for a given set of edges F ⊆ E,

�(F) := max
{
deg(w) : ∃{v,w} ∈ F,w 	= v0

}
,

where we write deg(w) for the degree of w in the graph G, so that �(F) is the maximal
degree of a vertex other than v0 in one of the edges of F . For brevity we write

μU,G,v0 := μU,G,{v0}.
We start with several definitions which will be used throughout the section. For a given set

of edges H ⊆ E, let

Orient(H) := {
(v,w) : {v,w} ∈ H

}
stand for all orientations of the edges of H (each undirected edge appears with both orienta-
tions in Orient(H)). For brevity, we denote the set of all oriented edges by

E

�

� := Orient(E).



EXTREMAL EDGES IN RANDOM SURFACES 2455

We will frequently reference the event that the random surface has extremal gradients on a
given set of edges. This event will be used both for oriented and for unoriented sets of edges
and thus we define, for each 0 < ε < 1,

Ext(H, ε) := {|ϕv − ϕw| ≥ 1 − ε for all {v,w} ∈ H
}
, H ⊆ E,

Ext(H

�

� , ε) := {|ϕv − ϕw| ≥ 1 − ε for all (v,w) ∈ H

�

�
}
, H

�

� ⊆ E

�

� .
(45)

Theorem 1.1 is proved as a consequence of three lemmas which we now proceed to describe.

Diluting the given edge set. We partition the real line into 9 sets, each of which is an
arithmetic progression of intervals, as follows

(46) Dj := j

4
+

[
−1

8
,

1

8

)
+ 2

1

4
Z =

{
j

4
+ x + 2

1

4
k : −1

8
≤ x <

1

8
, k ∈ Z

}
, 1 ≤ j ≤ 9,

(the shorthand k �
m

means k + �
m

). The main property of these domains which we shall make
use of is that, for each j , the set Dj is invariant to reflection with respect to numbers in
j
4 + 11

8 + 21
4Z. In other words, for any 1 ≤ j ≤ 9,

(47) if y ∈ Dj then also 2m − y ∈ Dj for any m ∈ j

4
+ 1

1

8
+ 2

1

4
Z.

The sets Dj are in fact invariant to reflections with respect to numbers in the larger set j
4 +

11
8Z but this will not be used in our proof.
Given a set of oriented edges, we define the event that the value of the surface on the first

vertex of each oriented edge belongs to Dj ,

j(H
�

� ) := {
ϕv ∈ Dj for all (v,w) ∈ H

�
�

}
, 1 ≤ j ≤ 9

and also

(H

�

� ) :=
9⋃

j=1

j(H

�

� ).

We will make use of certain separation properties between oriented edges as given in the
following definition.

DEFINITION 5.1 (Separated set). A subset of oriented edges H

�

� ⊆ E

�

� is said to be sepa-
rated if:

(i) for every distinct (v1,w1), (v2,w2) ∈ H

�

� , w1 	= w2, v1 	= w2 and v2 	= w1,
(ii) for all (v,w) ∈ H

�

� , w 	= v0.

In words, a separated set of oriented edges is a set in which every two edges are either
disjoint or coincide in their first vertex and in which no edge is oriented towards v0.

Our first lemma shows that the probability of Ext(F, ε), for a given F ⊆ E, may be
bounded in terms of the probability of Ext(H

�

� , ε) ∩ (H

�

� ), for some large separated H

�

� ⊆
Orient(F ).

LEMMA 5.2. Let 0 < ε < 1, let F ⊆ E be a nonempty set of edges and let ϕ be randomly
sampled from μU,G,v0 . Then there exists a separated set H

�

� ⊆ Orient(F ) satisfying |H

�

� | ≥
|F |

9�(F)
and

(48) P
(
Ext(F, ε)

) ≤ 2|F | · P(
Ext(H

�

� , ε) ∩ (H

�

� )
)
.
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Unlocking edges. We now describe the key step in our proof. Suppose that the random
surface ϕ has an extremal gradient on the oriented edge e� = (v,w), oriented towards w,
say, in the sense that ϕw − ϕv ≥ 1 − ε. If ϕu is not much higher than ϕw for all neighbors
u of w, then we may change the value of the surface on w, thereby reducing the gradient
on (v,w) without reducing significantly the density under the random surface measure (see
Lemma 5.5 below). Therefore, the difficulty in showing that extremal gradients are rare lies
in the possibility that the edge with the extremal gradient is being “locked” into this extreme
position by a neighbor of one of its endpoints. Our next definition quantifies the notion that
an edge is not locked in such a manner.

DEFINITION 5.3. An oriented edge e� = (v,w) ∈ E

�

� is called unlocked in ϕ ∈ R
V if

(49) max
u:{u,w}∈E

|ϕu − ϕv| ≤ 1
1

4
.

We define the corresponding event as

Ue� := {e� is unlocked in ϕ}.

The following key lemma will allow us to reduce our study of extremal edges to the case
that these edges are unlocked.

LEMMA 5.4. Let 0 < ε < 1, let H

�

� ⊆ E

�

� be a nonempty, separated set of oriented edges,
let e� = (v,w) ∈ H

�

� and let ϕ be randomly sampled from μU,G,v0 . Then

P
(
Ext(H

�
� , ε) ∩ (H

�
� )

) ≤ 2deg(w)−1 · P(
Ext(H

�
� , ε) ∩ (H

�
� ) ∩ Ue�

)
.

The proof of the lemma uses the reflection transformation described in Section 2.

The probability that an unlocked edge is extremal. As noted above, if an edge (v,w) ∈ E

�

�

has an extremal gradient and is unlocked in the surface ϕ, then we may change ϕw to reduce
the gradient on the edge while controlling the change in the density of the surface under the
measure μU,G,v0 . This idea is quantified by the next lemma.

LEMMA 5.5. Let 0 < ε ≤ 1
8 , let e� = (v,w) ∈ E

�

� with w 	= v0 and let ϕ be randomly
sampled from μU,G,v0 . Then

P
(|ϕw − ϕv| ≥ 1 − ε | (ϕu)u∈V \{w}

) · 1Ue�
≤ δ(U, e� , ε) almost surely,

where 1A denotes the indicator random variable of the event A and where we write

δ(U, e� , ε) := 8ε · exp
(
−U(1 − ε) + U(0) + deg(w)

(
U

(
3

4

)
− U(0)

))
.

The above three lemmas are proved in the next section. We now explain how Theorem 1.1
follows as a consequence of them.

PROOF OF THEOREM 1.1. Let 0 < ε ≤ 1
8 , let F ⊆ E be a nonempty set of edges and let

ϕ be randomly sampled from μU,G,v0 . Our goal is to estimate the probability of Ext(F, ε).
Using Lemma 5.2, let H

�

� ⊆ Orient(F ) be a separated set satisfying |H

�

� | ≥ |F |
9�(F)

and

(50) P
(
Ext(F, ε)

) ≤ 2|F |
P

(
Ext(H

�

� , ε) ∩ (H

�

� )
)
.
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Let e� = (v,w) ∈ H

�

� . By Lemma 5.4, we have

P
(
Ext(H

�

� , ε) ∩ (H

�

� )
)

≤ 2deg(w)−1
P

(
Ext(H

�

� , ε) ∩ (H

�

� ) ∩ Ue�

)
≤ 2deg(w)−1

P
({|ϕv − ϕw| ≥ 1 − ε

} ∩ Ext
(
H

�

� \ {e� }, ε) ∩ 
(
H

�

� \ {e� }) ∩ Ue�

)
.

(51)

We note that, as H

�

� is a separated set, the events Ext(H

�

� \ {e� }, ε), (H

�

� \ {e� }) and Ue� are
measurable with respect to the random variables (ϕu)u∈V \{w}. Thus, using Lemma 5.5, we
may estimate

P
({|ϕv − ϕw| ≥ 1 − ε

} ∩ Ext
(
H

�

� \ {e� }, ε) ∩ 
(
H

�

� \ {e� }) ∩ Ue�

)
= E

[
P

(|ϕw − ϕv| ≥ 1 − ε | (ϕu)u∈V \{w}
)
1Ext(H

�

� \{e� },ε)∩(H

�

� \{e� })∩Ue�

]
≤ δ(U, e� , ε)P

(
Ext

(
H

�

� \ {e� }, ε) ∩ 
(
H

�

� \ {e� })).
(52)

Recall from the statement of Theorem 1.1 that

δ(U, ε) = ε · exp
(
−U(1 − ε) + U(0) + �(F)

(
U

(
3

4

)
− U(0)

))

and observe that, as w 	= v0 since H

�

� is separated and as U(3/4) ≥ U(0) by our assumption
that U is nondecreasing on [0,∞),

(53) deg(w) ≤ �(F) and δ(U, e� , ε) ≤ 8δ(U, ε).

Putting together (51), (52) and (53), we conclude that

P
(
Ext(H

�
� , ε) ∩ (H

�
� )

) ≤ 2�(F)−1 · 8δ(U, ε)P
(
Ext

(
H

�
� \ {e� }, ε) ∩ 

(
H

�
� \ {e� })).

Iterating this estimate over all edges in H

�

� shows that

P
(
Ext(H

�

� , ε) ∩ (H

�

� )
) ≤ (

2�(F)+2δ(U, ε)
)|H�

� |
.

Substituting this estimate into (50) and using the fact that |H

�

� | ≥ |F |
9�(F)

, we have

P
(
Ext(F, ε)

) ≤ min
(
2|F |(2�(F)+2δ(U, ε)

)|H�

� |
,1

) ≤ min
((

210�(F)+2δ(U, ε)
) |F |

9�(F) ,1
)
.

This concludes the proof of Theorem 1.1, given the above lemmas, with the constant C(�) =
210�+2. �

5.1. Proof of Lemma 5.2.

PROOF. Assign an orientation to the edges of F , chosen arbitrarily except for the rule
that edges having v0 as an endpoint are oriented to have v0 as their first vertex. Denote the
resulting set of oriented edges by F

�

� .
Let ϕ be randomly sampled from μU,G,v0 . Observe that there is a 1 ≤ j ≤ 9 and a (ran-

dom) subset F

�

� ′ ⊆ F

�

� satisfying |F

�

� ′| ≥ 1
9 |F

�

� | such that ϕv ∈ Dj for all (v,w) ∈ F

�

� ′
(as each

edge satisfies ϕv ∈ Dj for a unique j ). In addition, we may choose a (random) separated
subset H

�

� ⊆ F

�

� ′
satisfying |H

�

� | ≥ 1
�(F)

|F

�

� ′|. Indeed, this may be done in a greedy manner:

Sequentially, for each edge (v,w) still in F

�

� ′
, we discard from F

�

� ′
all edges (x, y) with either

x = w or y = w, discarding in this way at most deg(w)−1 ≤ �(F)−1 edges. In conclusion,
defining

(54) H :=
{
H

�

� ⊆ F

�

� : |H

�

� | ≥ |F |
9�(F)

,H

�

� is separated
}
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we have shown that, almost surely, ϕ ∈ (H

�

� ) for some H

�

� ∈H. Thus, using that |H| ≤ 2|F

�

� | =
2|F |,

P
(
Ext(F, ε)

) ≤ ∑
H

�

�∈H
P

(
Ext(H

�

� , ε) ∩ (H

�

� )
) ≤ 2|F | max

H

�

�∈H
P

(
Ext(H

�

� , ε) ∩ (H

�

� )
)
.

�

5.2. Proof of Lemma 5.4. Fix 0 < ε < 1, a nonempty, separated set of oriented edges
H

�

� ⊆ E

�

� and an oriented edge e� = (v,w) ∈ H

�

� . Let ϕ be randomly sampled from μU,G,v0 . As
the events j(H

�

� ) which comprise (H

�

� ) are disjoint, it suffices to prove that

(55) P
(
Ext(H

�

� , ε) ∩ j(H

�

� )
) ≤ 2deg(w)−1 · P(

Ext(H

�

� , ε) ∩ j(H

�

� ) ∩ Ue�

)
, 1 ≤ j ≤ 9.

Thus we also fix 1 ≤ j ≤ 9. Define the subset Mj of the real line by

Mj := j

4
+ 1

1

8
+ 2

1

4
Z.

Now define

m(ϕ) :=
{

min(m ∈ Mj : m ≥ ϕv) ϕw ≥ ϕv,

max(m ∈ Mj : m ≤ ϕv) ϕw < ϕv,

so that m(ϕ) is on the same side of ϕv as ϕw and m(ϕ) 	= ϕv on the event j(H

�

� ). Define also

(56) W(ϕ) := {
u ∈ V : {u,w} ∈ E, sign

(
ϕu − m(ϕ)

) = sign
(
m(ϕ) − ϕv

)}
,

where, as usual, sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0. We
shall prove that for each W ⊆ V and m ∈ Mj ,

(57)
P

(
Ext(H

�
� , ε) ∩ j(H

�
� ) ∩ {

W(ϕ) = W
} ∩ {

m(ϕ) = m
})

≤ P
(
Ext(H

�

� , ε) ∩ j(H

�

� ) ∩ Ue� ∩ {
m(ϕ) = m

})
.

This relation implies (55), and hence the lemma, by summing over all possible values of W

and m, and using the fact that P(W(ϕ) = W) = 0 unless W is a subset of {u ∈ V : {u,w} ∈
E,u 	= v}.

We proceed to prove (57) and it is here that we make use of the reflection transformation
described in Section 2. Fix W ⊆ V and m ∈ Mj satisfying

P
(
W(ϕ) = W,m(ϕ) = m

)
> 0

(as the relation (57) is trivial if this probability is zero). Recall the “reflection around m”
mapping τm : R → R given by τm(a) = 2m − a, as in (30). Let (ϕ,ω) be randomly sampled
from the τm-Edwards–Sokal coupling defined in (31). We define the reflected configuration
ϕω,W : V →R as follows: If W =∅ then we set ϕω,W := ϕ. Otherwise,

(58)

if W 	ω←→ v0 then ϕω,W
v :=

{
τm(ϕv) W

ω←→ v,

ϕv W 	ω←→ v.

If W
ω←→ v0 then ϕω,W

v :=
{
ϕv W

ω←→ v,

τm(ϕv) W 	ω←→ v.

It then follows from the discussion after Lemma 2.1 that (ϕω,W ,ω) has the same distribution
as (ϕ,ω). The equality in distribution shows that (57) is a consequence of the following
relation:

(59)

{
ϕ ∈ Ext(H

�

� , ε) ∩ j(H

�

� )
} ∩ {

W(ϕ) = W
} ∩ {

m(ϕ) = m
}

⊆ {
ϕω,W ∈ Ext(H

�

� , ε) ∩ j(H

�

� ) ∩ Ue�

} ∩ {
m

(
ϕω,W ) = m

}
(mod P)
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(as before, we write (mod P) to indicate that the containment is in the sense of the differ-
ence having zero probability), where, with a slight abuse of notation, we consider the events
Ext(H

�

� , ε), j(H

�

� ) and Ue� as subsets of the space R
V of configurations. Thus, it remains to

prove (59), which is a consequence of the following three claims.

CLAIM 5.6. Almost surely, if ϕ ∈ Ext(H

�

� , ε) ∩ j(H

�

� ) then ϕω,W ∈ Ext(H

�

� , ε).

PROOF. We will prove the stronger consequence that, under the given assumptions,

(60) |ϕx − ϕy | =
∣∣ϕω,W

x − ϕω,W
y

∣∣ for all (x, y) ∈ H

�

� .

Fix (x, y) ∈ H

�

� . Observe that, by definition of the reflection operation,∣∣ϕω,W
x − ϕω,W

y

∣∣ ∈ {|ϕx − ϕy |, |2m − ϕx − ϕy |}.
Suppose that

(61)
∣∣ϕω,W

x − ϕω,W
y

∣∣ = |2m − ϕx − ϕy |
as in the other case (60) is clearly satisfied. Since ϕ ∈ j(H

�

� ) it follows that ϕx ∈ Dj . Thus,
recalling the definition (46) of Dj and the fact that m ∈ Mj we see that

(62) |m − ϕx | ≥ dist(Mj ,Dj ) = 1.

Since |ϕx −ϕy | ≤ 1 it implies that either m ≥ max(ϕx,ϕy) or m ≤ min(ϕx,ϕy). In both cases,

(63) |2m − ϕx − ϕy | = |m − ϕx | + |m − ϕy | ≥ 1.

Since ϕω,W is a Lipschitz function almost surely, we conclude from (61) that equality must
hold in (63). Taking into account (62), this implies that ϕy = m and |m − ϕx | = 1, in which
case |2m − ϕx − ϕy | = |ϕx − ϕy | so that (60) holds. �

CLAIM 5.7. If ϕ ∈ j(H

�

� ) then ϕω,W ∈ j(H

�

� ).

PROOF. The claim follows from the fact that τm(Dj ) ⊆ Dj since m ∈ Mj , as noted in
(47). �

CLAIM 5.8. Almost surely, if ϕ ∈ Ext(H

�

� , ε) ∩ j(H

�

� ), W(ϕ) = W and m(ϕ) = m then
m(ϕω,W ) = m and ϕω,W ∈ Ue� .

PROOF. Let k ∈ Z be such that ϕv ∈ j
4 + [−1

8 , 1
8) + 21

4k, using that ϕ ∈ j(H

�

� ). As
ϕ ∈ Ext(H

�

� , ε) we have that ϕw 	= ϕv . For concreteness, assume that ϕw > ϕv with the other
case being treated similarly. Thus m = j

4 +11
8 +21

4k and note that ϕw ≤ m as ϕ is a Lipschitz
function.

The definition of ϕω,W implies that ϕω,W
v ∈ {ϕv,2m − ϕv} and ϕω,W

w ∈ {ϕw,2m − ϕw}.
The fact that both ϕv ≤ m and ϕw ≤ m imply that in all four possibilities for the values of
ϕω,W

v and ϕω,W
w we have m(ϕω,W ) = m.

Fix u with {u,w} ∈ E. If u ∈ W , that is ϕu > m, the definition of ϕω,W and property (32)
imply that, almost surely,

if W 	ω←→ v0 then ϕω,W
v = ϕv , ϕω,W

u = 2m − ϕu and

if W
ω←→ v0 then ϕω,W

v = 2m − ϕv , ϕω,W
u = ϕu.

In both cases ∣∣ϕω,W
v − ϕω,W

u

∣∣ = |ϕv + ϕu − 2m| ≤ max(m − ϕv,ϕu − m) ≤ 1
1

4
,

where we used that ϕu − m ≤ ϕu − ϕw ≤ 1 as ϕ is a Lipschitz function.
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If u /∈ W , that is ϕu ≤ m, then ϕu −ϕv ∈ (−1,11
4 ] as ϕ is a Lipschitz function. As ϕv,ϕu ≤

m we conclude from the definition of ϕω,W , the fact that ϕx > m for all x ∈ W and property
(32) that, almost surely, |ϕω,W

u − ϕω,W
v | = |ϕu − ϕv|, whence |ϕω,W

u − ϕω,W
v | ≤ 11

4 .
Thus, maxu:{u,w}∈E |ϕω,W

u − ϕω,W
v | ≤ 11

4 , from which it follows that ϕω,W ∈ Ue� . �

5.3. Proof of Lemma 5.5. Fix 0 < ε ≤ 1
8 and e� = (v,w) ∈ E

�

� with w 	= v0. Let ϕ be
randomly sampled from μU,G,v0 . The conditional density of ϕw given (ϕu)u∈V \{w} equals

exp(−∑
u:{u,w}∈E U(ϕu − ϕw))∫ ∞

−∞ exp(−∑
u:{u,w}∈E U(ϕu − x)) dx

.

Thus, the lemma will follow by showing that∫
(−∞,−(1−ε)]∪[1−ε,∞)

e−∑
u:{u,w}∈E U(ϕu−(ϕv+t)) dt · 1Ue�

≤ δ(U, e� , ε)

∫ ∞
−∞

e−∑
u:{u,w}∈E U(ϕu−(ϕv+t)) dt.

Taking into account the Lipschitz assumption (4), we see it suffices to prove the pair of
inequalities, ∫ −(1−ε)

−1
e−∑

u:{u,w}∈E U(ϕu−(ϕv+t)) dt · 1Ue�

≤ δ(U, e� , ε)

∫ −1/2

−(3/4−ε)
e−∑

u:{u,w}∈E U(ϕu−(ϕv+t)) dt,

(64)

∫ 1

1−ε
e−∑

u:{u,w}∈E U(ϕu−(ϕv+t)) dt · 1Ue�

≤ δ(U, e� , ε)

∫ 3/4−ε

1/2
e−∑

u:{u,w}∈E U(ϕu−(ϕv+t)) dt.

(65)

We prove only inequality (65) as inequality (64) follows from it by applying a global sign
change to ϕ. We assume that Ue� holds as (65) is trivially verified otherwise. In addition, we
assume that

(66) min
{
ϕu : {u,w} ∈ E

} ≥ ϕv − ε

as otherwise, using the Lipschitz assumption (4), the left-hand side of (65) is zero, again
verifying (65) trivially. We proceed to estimate separately the two integrals in (65). First,
using the assumption (3) that U is nondecreasing on [0,∞),

(67)
∫ 1

1−ε
exp

(
− ∑

u:{u,w}∈E

U
(
ϕu − (ϕv + t)

))
dt ≤ ε exp

(−U(1 − ε)− (
deg(w)− 1

)
U(0)

)
.

Second, observe that maxu:{u,w}∈E |ϕu − ϕv| ≤ 11
4 as Ue� holds and therefore, using also (66),

ϕw − ϕv ∈ [1/2,3/4 − ε] implies that max
u:{u,w}∈E

|ϕu − ϕw| ≤ 3

4
.

Using again the nondecreasing assumption (3) and the assumption that ε ≤ 1
8 , we obtain

(68)
∫ 3/4−ε

1/2
exp

(
− ∑

u:{u,w}∈E

U
(
ϕu − (ϕv + t)

))
dt ≥ 1

8
exp

(
−deg(w)U

(
3

4

))
.

Plugging the inequalities (67) and (68) into (65) and comparing with the definition of
δ(U, e� , ε) verifies the inequality (65) and finishes the proof of the lemma.
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6. Discussion and open questions. Extremal gradients. Theorem 1.1 provides quanti-
tative estimates on the rarity of extremal gradients in random surfaces satisfying a Lipschitz
constraint and having a monotone interaction potential. Its proof makes use of a cluster algo-
rithm for random surfaces and thus provides an alternative to a previous approach via reflec-
tion positivity [27], Theorem 3.2. The main advantage of the cluster algorithm approach is
that it applies to random surfaces defined on general graphs and thus removes a chief limita-
tion of the reflection positivity proof which is restricted to torus graphs. However, the proof
presented in this paper introduces new limitations which it would be desirable to remove.
Specifically, the current proof applies only to Lipschitz surfaces with monotone interaction
potential whereas one may expect, as put forth explicitly in [27], Section 6, that results anal-
ogous to Theorem 1.1 should hold almost without restriction on the potential function (some
integrability conditions are required for the model to be well defined) and such a result indeed
holds on torus graphs as shown with the reflection positivity method [27], Theorem 3.2.

Theorem 1.1 may be used together with the arguments of [27] to prove the delocalization
of random surfaces in cases not previously known. For instance, delocalization would follow
for random surfaces whose potential satisfies (3) and (4) (such as the hammock potential (6))
on finite connected domains of Z2 with Dirichlet boundary conditions (when V0 is the set of
boundary vertices of the domain), or any other choice of the nonempty normalization set V0.
The same techniques should apply to show delocalization on many (finite domains in) infinite
graphs on which simple random walk is recurrent.

Extremal gradients in spin systems. Similarly to the previous point, it is also of interest to
extend the control of extremal gradients to the spin system setting. Bricmont and Fontaine
[6] show that extremal gradients are unlikely in the XY (spin O(2)) model (allowing even
for multi-body interactions and external magnetic fields). Their proof makes use of Ginibre’s
extension of Griffiths’ inequalities [21, 22] and thus does not extend to the spin O(n) model
with n ≥ 3, where they obtain somewhat weaker results instead. As cluster algorithms are
available in some generality for spin O(n) models (as reviewed in Section 2), it is possible
that our approach to the control of extremal gradients may be extended to the spin system
setting and provide additional results for models in which Ginibre’s inequality is unavailable.

Excursion-set percolation. The reflection principle for random surfaces given in Theo-
rem 1.2 may remind the reader of the study of excursion-set percolation in random surfaces.
Initiated by Lebowitz–Saleur [26] and Bricmont–Lebowitz–Maes [7], this line of investiga-
tion focuses on the percolative properties of the set {v ∈ V : ϕv ≥ h}. Triggered by its rela-
tions with the random interlacement model [30, 35] introduced by Sznitman, the subject has
recently seen significant activity; see [17] and references within. In these studies, one starts
with the infinite-volume limit of a random surface ϕ on Z

d , typically the Gaussian free field
with Dirichlet boundary conditions (see [7, 29] for an exception), and aims to study the set
of h ∈ R for which there is, almost surely, percolation in the set of vertices v with ϕv ≥ h

(i.e., there is an infinite connected component of vertices v with ϕv ≥ h). For the Gaussian
free field, it is known [7, 30] that for each d ≥ 3 there is an h∗(d) ∈ R such that percolation
occurs if h < h∗(d) and does not occur if h > h∗(d). Moreover, h∗(d) > 0 in any dimension
d ≥ 3; for high dimensions this was shown in [30] and was strengthened to every d ≥ 3 in
the very recent [17].

Theorem 1.2 seems far from the state-of-the-art of these studies but does provide an al-
ternative approach to one of the basic, simple, results in this direction. It was shown in [7]
that for any strictly convex potential U and any ε > 0, in the infinite-volume limit on Z

d of
the random surface measure with Dirichlet boundary conditions, the set of vertices x with
ϕx ≥ −ε percolates almost surely. We discuss this result in the context of Theorem 1.2. Let
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G = (V ,E) be a finite connected graph, let V0 ⊆ V be nonempty, let U be a potential satis-
fying the monotonicity condition (3) and the assumption (2) that μU,G,V0 is well defined and
let ϕ be randomly sampled from μU,G,V0 . Then, for any ε > 0 and v ∈ V \ V0, by (10),

(69) P(V0
ϕ>−ε←−−→ v) = P(V0

ϕ<ε←−→ v) = 1 − P(V0 	ϕ<ε←−→ v) ≥ P
(|ϕv| < ε

)
.

If, in addition, U satisfies the finite-support condition (4) then, relying now on (11), we obtain
an inequality in the opposite direction,

(70) P(V0
ϕ>−ε←−−→ v) ≤ P

(
ϕv ∈ (ε, ε + 1)

)
.

When the potential U is strictly convex, one has available the Brascamp–Lieb inequality
[4] which bounds the variance of ϕx by the variance of the Gaussian free field on the same
graph. Together with (69) this can be used to show that the probability that in a discrete cube
graph {−L, . . . ,L}d in Z

d , d ≥ 3, the origin is connected to the boundary of the cube via
vertices v with ϕv ≥ −ε is uniformly positive as L tends to infinity. Conversely, the same
probability in dimension d = 2 necessarily tends to zero as L increases when U satisfies the
finite-support condition and is twice-continuously differentiable on its support, by (70) and
the delocalization results of [27].

Correlation of gradients. One approach to bounding the fluctuations of random surfaces
proceeds via control of the correlations of gradients of the surface. Consider a random surface
ϕ sampled from the measure μU,G,V0 (see (1)) with G = (V ,E) a finite, connected graph and
V0 ⊆ V a nonempty set on which ϕ is set to zero. One may then express the height of the
surface at some vertex x /∈ V0 as a linear combination of the gradients of the surface. That is,
if E

�

� denotes the set of oriented edges of G (both orientations of each edge appear in E

�

� ) one
writes

ϕx = ∑
(u,v)∈E

�

�

c(u,v)(ϕu − ϕv)

for a suitable choice of coefficients c(u,v). Among the many possible choices of these coef-
ficients, Brascamp, Lieb and Lebowitz [5], Section VII, consider the one obtained from the
Green’s function g of the graph G by writing

(71) ϕx = 1

2

∑
(u,v)∈E

�

�

(gu − gv)(ϕu − ϕv),

where gy is the expected number of visits to x of a simple random walk on G started
at y and stopped when it first hits V0 (the factor 1

2 is needed since each edge is taken
with both orientations). The equality (71) is a consequence of the discrete Green’s identity∑

{u,v}∈E(au −av)(bu −bv) = −∑
u∈V au(�b)u, valid for any two functions a, b on G (with

(�b)u := ∑
v∈V : {u,v}∈E(bv − bu)), and the fact that (�g)y = −δx,y . The identity (71) shows

that

(72)

Var(ϕx) = ∑
{u,v}∈E

(gu − gv)
2 Var(ϕu − ϕv)

+ 1

4

∑
(u,v),(z,w)∈E

�

�
{u,v}	={z,w}

(gu − gv)(gz − gw)Cov(ϕu − ϕv,ϕz − ϕw)

and thus highlights how bounding the covariances Cov(ϕu − ϕv,ϕz − ϕw) implies an upper
bound on the fluctuations of the surface. Indeed, as pointed out in [5], when G is a discrete
cube {−L, . . . ,L}d in the lattice Zd , d ≥ 3, and V0 is the boundary of this cube, a decay of the
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covariances faster than ‖u − z‖−(2+ε)
2 for large ‖u − z‖ would imply that the fluctuations of

the surface at the origin remain bounded uniformly in L. Such decay is expected but seems
quite difficult to establish. Recently, Conlon and Fahim [16] used PDE tools to establish
asymptotic formulas for the covariance which imply such decay when the potential function
U satisfies 0 < infU ′′(x) ≤ supU ′′(x) < ∞ and certain additional assumptions.

The above discussion provides motivation for studying the gradient-gradient covariances
of random surfaces as appear in (72). It is interesting whether the cluster algorithms used
in this work (see Section 2) can provide additional tools for controlling such covariances.
Indeed, one may try to reflect the value of ϕ at v around the height ϕu, thus reversing the
gradient on the edge (u, v). The contribution to the covariance on the event that this reflection
leaves the gradient on the edge (z,w) unchanged is exactly zero as the reflection is a measure
preserving one-to-one mapping. Thus, this approach connects the problem of estimating the
gradient-gradient covariances to the problem of controlling properties of the reflected cluster
(of v, when reflecting around the height ϕu) in the cluster algorithm. Related connections in
the spin system settings were found by Chayes [13] and Campbell–Chayes [10]. It is unclear
whether this connection can simplify the problem.

Acknowledgements. Both authors were partially supported by ISF grant 861/15 and
ERC starting grant 678520 (LocalOrder). We thank Martin Tassy for helping to clarify the
connection between Sheffield’s cluster-swapping algorithm and the general cluster algorithms
discussed in Section 2. We also thank Nishant Chandgotia and Yinon Spinka for several use-
ful discussions.

REFERENCES

[1] AIZENMAN, M. (1994). On the slow decay of O(2) correlations in the absence of topological excitations:
Remark on the Patrascioiu–Seiler model. J. Stat. Phys. 77 351–359. MR1300539 https://doi.org/10.
1007/BF02186846

[2] AIZENMAN, M., HAREL, M. and PELED, R. (2019). Exponential decay of correlations in the 2D random
field Ising model. J. Stat. Phys. 1–28.

[3] ARMENDÁRIZ, I., FERRARI, P. A. and SOPRANO-LOTO, N. (2015). Phase transition for the dilute clock
model. Stochastic Process. Appl. 125 3879–3892. MR3373307 https://doi.org/10.1016/j.spa.2015.05.
010

[4] BRASCAMP, H. J. and LIEB, E. H. (1976). On extensions of the Brunn–Minkowski and Prékopa–Leindler
theorems, including inequalities for log concave functions, and with an application to the diffusion
equation. J. Funct. Anal. 22 366–389. MR0450480 https://doi.org/10.1016/0022-1236(76)90004-5

[5] BRASCAMP, H. J., LIEB, E. H. and LEBOWITZ, J. L. (1975). The statistical mechanics of anharmonic
lattices. In Statistical Mechanics 379–390. Springer.

[6] BRICMONT, J. and FONTAINE, J.-R. (1981). Correlation inequalities and contour estimates. J. Stat. Phys.
26 745–753. MR0648992 https://doi.org/10.1007/BF01010936

[7] BRICMONT, J., LEBOWITZ, J. L. and MAES, C. (1987). Percolation in strongly correlated systems:
The massless Gaussian field. J. Stat. Phys. 48 1249–1268. MR0914444 https://doi.org/10.1007/
BF01009544

[8] BROWER, R. C. and TAMAYO, P. (1989). Embedded dynamics for ϕ4 theory. Phys. Rev. Lett. 62 1087.
[9] BURTON, R. and STEIF, J. E. (1995). New results on measures of maximal entropy. Israel J. Math. 89

275–300. MR1324466 https://doi.org/10.1007/BF02808205
[10] CAMPBELL, M. and CHAYES, L. (1998). The isotropic O(3) model and the Wolff representation. J. Phys.

A 31 L255–L259. MR1621490 https://doi.org/10.1088/0305-4470/31/13/002
[11] CARACCIOLO, S., EDWARDS, R. G., PELISSETTO, A. and SOKAL, A. D. (1993). Wolff-type embedding

algorithms for general nonlinear σ -models. Nuclear Phys. B 403 475–541.
[12] CHANDGOTIA, N., PELED, R., SHEFFIELD, S. and TASSY, M. (2018). Delocalization of uniform graph

homomorphisms from Z2 to Z. arXiv preprint arXiv:1810.10124.
[13] CHAYES, L. (1998). Discontinuity of the spin-wave stiffness in the two-dimensional XY model. Comm.

Math. Phys. 197 623–640. MR1652795 https://doi.org/10.1007/s002200050466
[14] CHAYES, L. and MACHTA, J. (1997). Graphical representations and cluster algorithms I. Discrete spin

systems. Phys. A 239 542–601.

http://www.ams.org/mathscinet-getitem?mr=1300539
https://doi.org/10.1007/BF02186846
http://www.ams.org/mathscinet-getitem?mr=3373307
https://doi.org/10.1016/j.spa.2015.05.010
http://www.ams.org/mathscinet-getitem?mr=0450480
https://doi.org/10.1016/0022-1236(76)90004-5
http://www.ams.org/mathscinet-getitem?mr=0648992
https://doi.org/10.1007/BF01010936
http://www.ams.org/mathscinet-getitem?mr=0914444
https://doi.org/10.1007/BF01009544
http://www.ams.org/mathscinet-getitem?mr=1324466
https://doi.org/10.1007/BF02808205
http://www.ams.org/mathscinet-getitem?mr=1621490
https://doi.org/10.1088/0305-4470/31/13/002
http://arxiv.org/abs/arXiv:1810.10124
http://www.ams.org/mathscinet-getitem?mr=1652795
https://doi.org/10.1007/s002200050466
https://doi.org/10.1007/BF02186846
https://doi.org/10.1016/j.spa.2015.05.010
https://doi.org/10.1007/BF01009544


2464 O. COHEN-ALLORO AND R. PELED

[15] CHAYES, L. and MACHTA, J. (1998). Graphical representations and cluster algorithms II. Phys. A 254
477–516.

[16] CONLON, J. G. and FAHIM, A. (2015). Long range correlation inequalities for massless Euclidean fields.
Illinois J. Math. 59 143–187. MR3459632

[17] DREWITZ, A., PRÉVOST, A. and RODRIGUEZ, P.-F. (2018). The sign clusters of the massless Gaus-
sian free field percolate on Z

d , d ≥ 3 (and more). Comm. Math. Phys. 362 513–546. MR3843421
https://doi.org/10.1007/s00220-018-3209-6

[18] EDWARDS, R. G. and SOKAL, A. D. (1988). Generalization of the Fortuin–Kasteleyn–Swendsen–Wang
representation and Monte Carlo algorithm. Phys. Rev. D 38 2009–2012. MR0965465 https://doi.org/10.
1103/PhysRevD.38.2009

[19] EVERTZ, H. G., HASENBUSCH, M., MARCU, M., PINN, K. and SOLOMON, S. (1991). Stochastic cluster
algorithms for discrete Gaussian (SOS) models. Phys. Lett. B 254 185–191.

[20] FUNAKI, T. and SPOHN, H. (1997). Motion by mean curvature from the Ginzburg–Landau ∇φ interface
model. Comm. Math. Phys. 185 1–36. MR1463032 https://doi.org/10.1007/s002200050080

[21] GINIBRE, J. (1970). General formulation of Griffiths’ inequalities. Comm. Math. Phys. 16 310–328.
MR0269252

[22] GRIFFITHS, R. B. (1967). Correlation in Ising ferromagnets I, II. J. Math. Phys. 8 478–489.
[23] GUO, H. and JERRUM, M. (2017). Random cluster dynamics for the Ising model is rapidly mixing. In

Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms 1818–1827.
SIAM, Philadelphia, PA. MR3627847 https://doi.org/10.1137/1.9781611974782.118

[24] HASENBUSCH, M., LANA, G., MARCU, M. and PINN, K. (1992). Cluster algorithm for a solid-on-solid
model with constraints. Phys. Rev. B 46 10472.

[25] KANDEL, D. and DOMANY, E. (1991). General cluster Monte Carlo dynamics. Phys. Rev. B 43 8539.
[26] LEBOWITZ, J. L. and SALEUR, H. (1986). Percolation in strongly correlated systems. Phys. A 138 194–205.

MR0865243 https://doi.org/10.1016/0378-4371(86)90180-9
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