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This work is devoted to the study of conservative affine processes on
the canonical state space D = R’} x R", where m + n > 0. We show that
each affine process can be obtained as the pathwise unique strong solution
to a stochastic equation driven by Brownian motions and Poisson random
measures. Then we study the long-time behavior of affine processes, that
is, we show that under first moment condition on the state-dependent and
log-moment conditions on the state-independent jump measures, respectively,
each subcritical affine process is exponentially ergodic in a suitably chosen
Wasserstein distance. Moments of affine processes are studied as well.

1. Introduction and statement of the result.

1.1. General introduction. A time-homogeneous Markov processes X = (X;);>0 i
called affine process, if its characteristic function satisfies

By (e'“X)) = exp(p (¢, iu) + (x, ¥ (2, iw))),

where ¢ > 0 is the time and Xy = x the starting point of the process. The general theory of
affine processes, including a full characterization on the canonical state space D = R x R"
where m, n € Ng and m +n > 0, was discussed in [16]. In particular, it is shown that the func-
tions ¢ and v should satisfy certain generalized Riccati equations. Common applications of
affine processes in mathematical finance are interest rate models (e.g., the Cox—Ingersoll—
Ross [13], Vasicek [56] or general affine term structure short rate models), option pricing
(e.g., the Heston model [29]) and credit risk models, see also [1] and the references therein.
After [16], the mathematical theory of affine processes was developed in various directions.
Regularity of affine processes was studied in [40] and [41]. Based on a Hormander-type con-
dition, existence and smoothness of transition densities were obtained in [20]. Exponential
moments for affine processes were studied in [31] and [38]. The theory of affine diffusions,
that is, processes without jumps, was developed in [19], while its application to large devi-
ations for affine diffusions was studied in [36]. The possibility to obtain affine processes as
multiparameter time changes of Lévy processes was recently discussed in [11]. It is worth-
while to mention that the above list is, by far, not complete. For further references and addi-
tional details on the general theory of affine processes, we refer to the book [1].

Below we briefly comment on two important sub-classes of affine processes. Continuous-
state branching processes with immigration (shorted as CBI processes) are affine processes
with state-space D = R'}'. Such processes have been first introduced in 1958 by Jifina [35]
and then studied in [37, 55, 59], where it was also shown that these processes arise as scal-
ing limits of Galton—Watson processes. Various properties of one-dimensional CBI processes
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were studied in [10, 17, 21, 22, 27, 39] and [12]. For results applicable in arbitrary dimen-
sion we refer to [5, 7] and [25]. Let us mention that CBI processes are also measure-valued
Markov processes as studied in [46]. Another important class of affine processes corresponds
to the state-space D = R" and consists of processes of Ornstein—Uhlenbeck (OU) type. These
processes include also Lévy processes as a particular case.

1.2. Affine processes. Let us describe affine processes in more detail. For m, n € Ny let
d = n + m, and suppose that d > 0. In this work we study affine processes on the canonical
state space D =R’} x R". Let

I1={1,...,m}, J={m+1,...,d}.

If x € D, then let x; = (x;)ije; and x; = (x;)jes. Denote by R9%d the space of d x d-

matrices. For A € R4 we write
A (AII Au)
Ajgr Ayg)’

where A;; = (aij)i jer, A1 = (@ij)iel,jes,» Asr = (Gij)ics, jer> and Ay = (a;j)i jes. De-
note by S; the space of symmetric and positive semidefinite d x d-matrices. Finally, let 8;;,
k,l e{l,...,d}, stand for the Kronecker-Delta.

DEFINITION 1.1. We call a tuple (a, o, b, B, v, 1) admissible parameters, if they satisfy
the following conditions:

(i) ae S, witha;;=0,a;;=0and a;; =0.

(i) o = (a1,...,0n,) With o = (o k1) 1<k.i<d € S; and o; y =0if kel \{i}orle
I\ {i}.
(iii) b € D.

(iv) B € R¥*is such that By — [p &pi(d&) > Oforalli € I andk € I\ {i},and B;; = 0.
(v) v is a Borel measure on D such that v({0}) =0 and

L(l AEIR + Z(l A Sﬂ)v(d&) < 0.

iel

(vi) w=(u1,..., wy) where uy, ..., U, are Borel measures on D such that

1i({0}) = 0, fD<|5|A|s|2+ ) sk>m(ds)<oo, il

kel\{i}

In contrast to [16], we do not consider Kkilling for affine processes and, moreover, we
suppose that (1, ..., w, integrate 1y>1|&/|, that is, the first moment for big jumps is finite.
It is well known that without killing and under first moment condition for the big jumps of
U1, ..., Um, the corresponding affine process (introduced below) is conservative (see [16],
Lemma 9.2). Moreover, it was shown in [49], Example 3.6, that such a moment condition is
sufficient but not necessary for an affine process to be conservative. In this paper we work
with Definition 1.1 and thus restrict our study to conservative affine processes satisfying a
mild moment condition on the measures (1, ..., ;. In order to simplify the notation, we
have also set v({0}) =0 and w; ({0}) =0, for i € I. Hence all integrals with respect to the
measures 1, ..., im, vV can be taken over D instead of D \ {0}.

Denote by B (D) the Banach space of bounded measurable functions over D. This space
is equipped with the supremum norm || f|lcoc = sup,cp | f(x)|. Similarly, let Co(D) be the
Banach space of continuous functions f : D — R vanishing at infinity. Define

U=CZy xiR" ={u=(us,u;) € C" x C" |Re(us) < 0,Re(u;) =0}.
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Note that D 5 x —> ¥ is bounded for any u € U. Here (-, -) denotes the Euclidean scalar
product on R?. By abuse of notation, we later also use (-, -) for the scalar product on R” or
R”". The following is due to [16].

THEOREM 1.2. Let (a,a,b, B,v, ) be admissible parameters. Then there exists a
unique conservative transition semigroup (Py);=0 on Bp(D) which is Co(D)-Feller and its
generator (L, D(L)) satisfies Cg(D) C D(L) and, for f € C?(D) and x € D,

9 f (x)
0x0x;

(LH)(x)=(b+ Bx,V f(x))+ Z (akz +Zai,k1xi

k=1 i=1

+ f (fx 1) — F() = (E7. Vs F O 1)) v(dE)
Zx, [ e+ = e~ (6. F ) s).

where Vj = (8 )]ej Moreover, C2°(D) is a core for the generator. Let P;(x,dx") be the
transition probabzlltles Then

(1.1) _/Dew’x/)Pt(x,dx/)=exp(¢(t,u)+(x,w(t,u))), ucl,

where ¢ : Ry xU —> C and  : Ry xU —> C? are uniquely determined by the generalized
Riccati differential equations: for u = (uy,uy) € CZj x iR",

al¢(tvu):F(w(tvu))v (f)(O,u):O
(1.2) 3zlﬁ1(f,u)=R(lﬁ1(f,u),et’3;fu1), V10, u) =uj,

.
Vit,u)=ePriuy,

and F, R are of Lévy—Khintchine form

F(u) = (u, au) + (b, u) +/ ("5 — 1 — 1yg)<1)(Es, us))v(dE),

Ri () = (u, ciju) +Zﬂkluk+/ (8 —1— (u,€))i(d8), iel.

k=1

Consequently, there exists a unique Feller process X with generator L called affine process
with admissible parameters (a, «, b, 8, v, ).

REMARK 1.3. Let (a,«,b,B,v, ) be admissible parameters. According to [16],
Lemma 10.1 and Lemma 10.2, the martingale problem with generator L and domain C2°(D)
is well-posed in the Skorokhod space over D equipped with the usual Skorokhod topology.
Hence, we can characterise an affine process with admissible parameters (a, «, b, 8, v, ) as
the unique solution to the martingale problem with generator L and domain CZ°(D). In any
case, it can be constructed as a Markov process on the Skorokhod space over D.

Affine processes are thus constructed on the canonical state space. In order to prove the
main result of this work, we provide in Section 4 a pathwise construction of affine processes.
The latter one extends previous cases from the literature such as [15, 19, 48] and [5].
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1.3. Ergodicity in Wasserstein distance for affine processes. Let P (D) be the space of all
Borel probability measures over D. By abuse of notation, we extend the transition semigroup
(Py)r=0 (given by Theorem 1.2) onto P(D) via

(1.3) (Pip)(dx) = /D Pi(X,dx)p(dx), 1=0,peP(D).

Then P;p describes the distribution of the affine process at time ¢ > 0 such that it has at
initial time ¢ = 0 law p. Note that P;§, = P;(x, -), and (P);>0 is a semigroup on P (D) in
the sense that P,4s0 = P; Psp, for any ¢, s > 0 and p € P(D). Such semigroup property is
simply a compact notation for the Chapman—Kolmogorov equations satisfied by P:(x, -).
Since the martingale problem with generator L and domain CZ°(D) is well-posed, and
C°(D) C D(L) is a core (see Theorem 1.2 and Remark 1.3), it follows from [18], Proposi-
tion 9.2, that, for some given = € P (D), the following properties are equivalent:

(i) Piwr =m,forallt > 0.
(i) [, (Lf)(x)7(dx) =0, forall f € C®(D).
(i) [p(P f)(x)m(dx)= [ f(x)m(dx), forallt >0 andall f € B(D).

A distribution 7w € P(D) which satisfies one of these properties (i)—(iii) is called invariant
distribution for the semigroup (Ps);>¢. In this work we will prove that, under some appro-
priate assumptions, (P;);>o has a unique invariant distribution s, this distribution has some
finite log-moment and, moreover, P;(x, -) —> m with exponential rate. For this purpose we
use the Wasserstein distance on P (D) introduced below. Given p, g € P(D), a coupling H
of (p, p) is a Borel probability measure on D x D which has marginals p and p, respectively,
that is, for f, g € B(D) it holds that

[ (@ +s@ @ = [ fopao+ [ gwpn.
DxD D D
Denote by H(p, p) the collection of all such couplings. Let us now introduce two difterent
metrics on D as follows:

(a) Define, for k € (0,1] and x = (y, 2), ¥ = (y,2) € R} x R",

de (x, %) = (Lp=0yly — F1V? + |x = 7))",
and let

PuD)=Pu (D)= p e PD)| [ 1x1*p(dx) <0},
(b) Introduce, for x = (y,2), X = (¥,2) e R} x R",

dlog(X, 55) = log(l + ]l{n>0}|y - 5;|1/2 + |x - ’f|),
and let

Piog(D) = P, (D) = {p ePD) | [ 10g(1 + xl)piax) < oo}.

Let d € {djog, d\.}. The Wasserstein distance on P, (D) is defined by

(1.4) Wa(p, 7) = inf{/D _d(x. DH(dx. dF) \ HeHp, ,5)}.

X

The appearance of the additional factor 1y,~0)|y — y|'/2 is purely technical, it is a conse-

quence of the estimates proved in Section 6. By general theory of Wasserstein distances we
see that (P;(D), W;) is a complete seperable metric space, see, for example, [57], Theo-
rem 6.18. A characterization of convergence with respect to Wy, and Wy, is given in the
following remark, see also [57], Theorem 6.9.
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REMARK 1.4. Letd € {diog, dic}, (Pn)nen C Pa(D) and p € Py(D). The following are
equivalent:

(i) Wa(pn, p) — 0asn — oo.
(ii) For each continuous function f : D — R with | f(x)| < C¢(1 4+ d(x,0)), it holds
that

/ FO)pn(dx) —> / FOpdx), n— .
D D

(iii) p, —> p weakly as n — oo, and

/d(x,O)p,,(dx)—>f d(x,0)p(dx), n— oc.
D D
(iv) p, —> p weakly as n — oo, and

lim limsup [ d(x,0)1gx,00>R}on(dx)=0.
D

R—00 n—oo

It is easy to see that P (D) C Piog(D) and Way,, < C, Wy, , for some constant C,c > 0, that
is, Wy, is stronger then Wy, .. The following is our main result.

THEOREM 1.5. Let (a,a, b, B, v, 1) be admissible parameters. Suppose that B has only
eigenvalues with strictily negative real parts, and

(1.5) /§|>110g(|f;‘|)v(d§) < 0.

Then (P:);>0 has a unique invariant distribution 7w and the following assertions hold:

(a) m € Piog(D) and there exist constants K, 5 > 0 such that, for all p € Piog(D) and
t>0,

(1.6) Wiaoo (Prp, ) < K min{e™?, Wiy, (0, )} + Ke_‘S’Wdlog(P, 7).
(b) If there exists k € (0, 1] satisfying
(1.7) fl‘§ 1€l v(ag) < ox.

then w € P (D) and there exists constants K', 8 > 0 such that, for all p € P.(D) and t > 0,

(1.8) Wa, (Pip.70) < K' Wy (p,)e ™"

It is worthwhile to mention that to our knowledge a convergence rate solely under a log-
moment condition on the state-independent jump measure was not even obtained for one-
dimensional CBI processes. In order that Wdlog(Pt po,m) and Wy (P:;p, ) are well defined,
we need to show that P;p belongs to Piog (D) or P, (D), respectively. This will be shown in
Section 5, where general moment estimates for affine processes are studied. Using P;éy =
P;(x, -) combined with Remark 1.4 we conclude the following.

REMARK 1.6. Under the conditions of Theorem 1.5, there exist constants §, K > 0 such
that

(1.9) Wa(Pi(x,), ) < Ke™® (1 + Wy(S, 7)), t>0,x€D,

where d € {dy, diog}. Let W1 be the Wasserstein distance given by (1.4) with d replaced by
d A 1. Then similarly to Remark 1.4, convergence with respect to Wy is equivalent to weak
convergence of probability measures on P(D). Since Wyn1 < Wy, we conclude from (1.9)
that P;(x, -) —> m weakly as t — oo with exponential rate.
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Let X = (X;):>0 be an affine process. For the parameter estimation of affine models, see,
for example, [3, 47] and [2], it is often necessary to prove a Birkhoff ergodic theorem, that is,

1 t
(1.10) ;/0 f(Xs)ds—>/Df(x)7r(dx), ¢ = 00

holds almost surely for sufficiently many test functions f. Using classical theory, see, for
example, [51], Theorem 17.1.7, and [53], such convergence is implied by the ergodicity in
the total variation distance, that is, by

(1.11) tl_i)IgOHP,(x,-)—n”TV:O, x €D,
where || - ||Tv denotes the total variation distance. Unfortunately, it is typically a very dif-

ficult mathematical task to prove (1.11) even for particular models. An extension of (1.10)
applicable in the case where P;(x,-) —> m holds in the Wasserstein distance generated by
the metric d(x,X) = 1 A |x — X| was recently studied in [53]. Applying the main result of
[53] to the case of affine processes and using the fact that each affine process can be obtained
as a pathwise unique strong solution to some stochastic equation with jumps (see Section 4),
yields the following corollary.

COROLLARY 1.7. Let (a,a,b, B, v, u) be admissible parameters. Suppose that B has
only eigenvalues with negative real parts, and (1.5) is satisfied. Let (X;);>0 be the corre-
sponding affine process constructed as the pathwise unique strong solution on a complete
probability space (2, F,P) in Section 4. Let f € LP (D, i) for some p € [1, 00), then (1.10)
holds in LP(Q2,P).

Although we have formulated (1.10) in continuous-time, the discrete-time analog can be
obtained in the same manner.

1.4. Comparison with related literature. Consider an Ornstein—Uhlenbeck process on
R", that is, an affine process on state space D = R" with admissible parameters (a, o =
0,b,8,v,u=0). If B has only eigenvalues with strictly negative real parts and (1.5) is
satisfied, then [54] is applicable and hence the corresponding Ornstein—Uhlenbeck process
satisfies, for all x € R", P,(x,-) —> m weakly as t — oo. Under additional technical con-
ditions on the measure v, it follows that the corresponding process also satisfies (1.11) with
an exponential rate, see [58]. Since in view of Theorem 1.5 the convergence (in the Wasser-
stein distance) has already exponential rate, we conclude that the additional restriction on v
imposed in [58] is only used to guarantee that convergence takes place in the stronger total
variation distance, that is, it is not necessary for the speed of convergence.

Consider a subcritical multitype CBI process on R"!, that is, an affine process on state space
D =R for which the parameter 8 has only eigenvalues with strictly negative real parts. In
dimension m = 1, Pinsky [52] announced (without proof) the existence of a limiting distribu-
tion under condition (1.5). A proof of this fact was then given in [42], Theorem 3.16, while
in [46], Theorem 3.20 and Corollary 3.21, it was shown that P;(x, -) — 7 is equivalent to
(1.5). Some properties of the invariant distribution 7 have been studied in [39]. In [47] expo-
nential ergodicity in total variation distance, see (1.11), was established for one-dimensional
subcritical CBI processes with v = 0, while some other related results for stochastic equa-
tions on R have been recently considered in [24]. An extension of the techniques from [47]
to arbitrary dimension m > 2 is still an interesting open problem. Recently, in [50] another
approach for the exponential ergodicity in the total variation distance for affine processes on
cones, which include multitype CBI processes as well as matrix-valued affine processes such
as the important case of the Wishart process, was provided. Their techniques were closely re-
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lated to stochastic stability properties of Markov processes in the sense of Meyn and Tweedie
[51], see also the references therein. More precisely, it was shown that each subcritical affine
process X on a proper closed convex cone which is p-irreducible, aperiodic and has finite
second moments, where p is a reference measure with its support having nonempty interior,
is exponentially ergodic in the total variation distance. As such a result is formulated in a
very general way, it becomes a delicate mathematical task to show that such conditions are
satisfied for affine processes with jumps of infinite activity or with degenerate diffusion com-
ponents. Moreover, assuming that X has at least finite second moments rules out some natural
examples as studied in [47] for m = 1 and in Section 2 of this work. In contrast, our results
can be applied in arbitrary dimension without the need to prove irreducibility or aperiodicity,
paying the price that we use the Wasserstein distance instead. Let us mention that recently
also asymptotic results for supercritical CBI processes have been obtained in [8, 9, 45].

Consider now the general case of an affine process on the canonical state space D = R’} x
R". Based on the stability theory of Markov chains in the sense of Meyn and Tweedie the
long-time behavior of some particular two-dimensional models on state-space D = R4 x R
was studied in [4, 33]. These results have been further developed in [60] for arbitrary dimen-
sions, where also functional limit theorems were obtained. In order to prove irreducibility
and aperiodicity, the authors supposed that the diffusion component is nondegenerate and
that v and w1, ..., Uy are probability measures, that is, the corresponding affine process has
only finitely many jumps on bounded time intervals [0, 7], T > 0. Independently in [34], the
following result was obtained.

THEOREM 1.8 ([34]). Let (a,a,b, B,v, 1) be admissible parameters. Suppose that B
has only eigenvalues with negative real parts and (1.5) is satisfied. Then there exists a unique
invariant distribution 7w for (P;);>0. Moreover, w has Laplace transform

(1.12) /De<“’x>7r(dx)=exp</oooF(1//(t,u))dt>, uel,

and one has, for all x € D, Pi(x, ) —> w weakly as t — o0.

The proof of Theorem 1.8 is based on a fine stability analysis of the Riccati equations
(1.2). Comparing with our main result Theorem 1.5, the authors have, in addition, established
a formula for the Laplace transform of s, but have not studied any convergence rate. We
emphasize that the main aim of our Theorem 1.5 is to establish the exponential convergence
speed (1.6) and (1.8) with respect to the corresponding Wasserstein metrics. However, in
the process of proving (1.6) we also obtain the existence and uniqueness of an invariant
distribution as a natural by-product. Moreover, in Theorem 1.5 and Theorem 1.8 existence
and uniqueness of an invariant distribution is shown by essentially different techniques.

1.5. Main idea of proof and structure of the work. The proof of Theorem 1.5 is divided
in four steps as explained below.

Step 1. Provide a stochastic description of conservative affine processes. More precisely,
in Section 3 we recall a stochastic equation for multitype CBI processes and a compari-
son principle due to [5]. In Section 4 we prove that each affine process can be obtained
as the pathwise unique strong solution (X;(x));>0 to a certain stochastic equation, where
x = (y,z) € R x R" denotes the initial condition. The particular structure of this equa-
tion shows that the process takes the form X;(x) = (Y;(y), Z;(x)), where (Y;(y));>0 C RY
is a CBI process with initial condition y and (Z;(x));>0 is an OU-type process with initial
condition z whose coefficients depend on the process (Y;(y)):>0-
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Step 2. Let (X;);>0 be an affine process. Based on the stochastic equation from the first
step, we study in Section 5 finiteness of the moments E(| X;|“) and E(log(1 + |X;|)). Since
the proofs in this section are rather standard, we only outline the main steps, while technical
details are postponed to the Appendix.

Step 3. Let (X;(x));>0 and (X;(X));>0 be the affine processes with initial states x,x €
R x R", respectively, obtained as the unique strong solutions to the stochastic equation
discussed in Section 4. Suppose that (1.7) is satisfied for k = 1. The following key estimate
is proved in Section 6:

(1.13) E(|X;(x) — X;®)|) < Ke ™ (Lpaoyly = FI'2 4+ |x = F]), >0,

where K,8 > 0 are some constants. Indeed, write X,;(x) = (¥;(y), Z;(x)) and X;(X) =
(Y;(3), Z;(X)), respectively. Using the comparison principle for the CBI component we prove
that

(1.14) E(Y:(x) = Y, (®)]) <dly — Fe™",

where 8’ > 0 is some constant. From this and the particular structure of the stochastic equa-
tion solved by (X;(x));>0 and (X,;(X));>0 we then easily deduce (1.13). In the literature
the proof of similar inequalities to (1.13) and (1.14) is often based on the construction of a
successfull coupling being typically a difficult task. In the framework of affine processes a
surprisingly simple proof of such estimates is given in Section 6 by using monotone couplings
as explained above.

Step 4. The results obtained in Steps 1-3 provide us all necessary tools to give a full proof
of Theorem 1.5 in Section 7. For the sake of simplicity, we explain below how (1.8) is shown.
Estimate (1.6) can be obtained in the same way. Using classical arguments, we may deduce
assertion (1.8) from the contraction estimate

(1.15) Wa, (Pip, Pp) < Ke™ "Wy (p,p), t>0.

Next observe that, by the convexity of the Wasserstein distance (see Lemma A.4) combined
with (1.3), property (1.15) is implied by

(1.16) Wy, (Pidy, Pi8z) < Ke ™ (Ljnmoyly — 312 4 |x = %)), t>0.

Let (Pto),zo be the transition semigroup for the affine process with admissible parameters
(a=0,a,b=0,8,m=0, u). In view of (1.1) one has P;(x, -) = Pto(x, 9% Py(0, ), where *
denotes the usual convolution of measures. A similar decomposition for affine processes was
also used in [34]. Applying now Lemma A.3 and the Jensen inequality gives

Wy, (Pi8y, P83) < Wa, (P8, P%)
< (Wa, (PP8y, P255))"
< K¥e ! (Lpmgyly — 1'% + |x — X|)",
where the last inequality follows from Step 3 applied to (P,O) >0-

2. Examples.

2.1. Anisotropic stable JCIR process. Let Z1, Z, be independent one-dimensional Lévy
processes with characteristic function

W‘(é):/w(eiéz—l—iéz)d—z Ee€R,j=1,2
J O Zl+y]’ ) k) )
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where y1, y» € (1,2). Let S = (51, S2) be another 2-dimensional Lévy process with charac-
teristic function

W@ = [, @~ ). ser,

where v is a measure on Ri with v({0}) =0 and

/Rz (1 A Jz])v(dz) < oc.

+

Suppose that Z and S are independent. Applying the results of [5] to this particular case
shows that, for each x € Ri, there exists a pathwise unique strong solution to

dX1(t) = (b1 + BuiX1(t) + B2 X2 (1)) dt + X1 =)/ d Zy (1) + d S (¢),
dX>(t) = (by + 21 X1(t) + P Xa(1)) dt + Xo(t—)"/"2 d Zy(t) + d Sa(2).

This process is an affine process on D = R%r with admissible parameters

=0 wmmmo b= (D). s (B B2)

and corresponding Lévy measures v,

d d
Ml(dé)zg%@)%(d&), MZ(dg):SO(dél)@)él%-
2

1
Applying our main result to this particular case gives the following.

COROLLARY 2.1. If B has only eigenvalues with negative real parts and v satisfies
[ toeiélvias) < oo,
&1>1
then the assertions of Theorem 1.5 are true.

Convergence in total variation distance for a similar one-dimensional model was studied
in [47]. Similar two-dimensional processes were also studied in [4] and [32]. In view of our
main result Theorem 1.5, it is straightforward to extend this model to arbitrary dimension
d > 2, with possibly nonvanishing diffusion part and more general driving noise of Lévy
type. It is also worth mentioning that the analogue of this model for dimension d > 2 was
recently studied in [23], where the strong Feller property and, combined with the results of
this work, exponential ergodicity in total variation were shown.

2.2. Stochastic volatility model. Let D =R, x R, thatis, m =n =1. Let (V,Y) be the
unique strong solution to

dV(t) = (b1 + V@) dt +V(t)dBi(t) +d (1),

dY(t) = (by + BnY (@) dt + V'V (1) (pdBi(t) + /1 — p2dBa(1)) + d 2 (1),

where by >0, by € R, B11, B2 € R, p € (—1, 1) is the correlation coefficient, B = (By, By) is
a two-dimensional Brownian motion, J; is a one-dimensional Lévy subordinator with Lévy
measure v, and J> a one-dimensional Lévy process with Lévy measure v,. Suppose that B,
J1 and J are mutually independent. It is not difficult to see that (V, Y) is an affine process
with admissible parameters

a=0, o) = (/1) /1)) : b= (Z;) ’ p= (/3(1)1 ﬂgz)
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and measures

v(d&) =v1(d&)) ® So(d&2) + d0(d&1) ® v2(dér), w1 = p2 =0.

Then we obtain the following.
COROLLARY 2.2. If B11, B2 <0 and

[( L Joovi@g + [ log(lal)valdé) < oo,

&2]>1

then the assertions of Theorem 1.5 are true.

It is straightforward to extend this model to higher dimensions and more general driving
noises.

3. Stochastic equation for multitype CBI processes. In this section we recall some
results for the particular case of multitype CBI processes, that is, affine processes on state
space D =R’} (i.e., n = 0). For further references and additional explanations we refer to [5]
and [8]. Let (2, F, P) be a complete probability space rich enough to support the following
objects:

(B1) A m-dimensional Brownian motion (W;);>0 1= (W;.1, ..., Wr.m)r>o0-
(B2) A Poisson random measure M;(ds,d&) on Ry x R’} with compensator M;(ds,
d&) =dsv;(d§), where vy is a Borel measure supported on R’} satisfying

w(o)=0. [ (1A lg)vidg) <oo.

+

(B3) Poisson random measures Nll(ds, d&,dr), ..., N,711(ds, d&,dr) on Ry x RY x Ry
with compensators Nl.[ (ds,d&,dr) = dsul.l (d&)dr,i € I, where ,u{ e, /L,In are Borel mea-
sures supported on R’} satisfying, fori € 1,

1l ({0}) =0, fR(|s|A|S|2+ > sj)u{<ds><oo.

¥ Jell,m\{i}

The objects W, My, N 1’ e N,fi are supposed to be mutually independent. The correspond-
ing compensated Poisson random measures are denoted by

M (ds,dg) = M;(ds,dg) — M (ds, dE)
and
N!(ds,d&,dr)= N} (ds,d&,dr) — N!(ds,d&,dr), iel.

Here and below we consider the natural augmented filtration generated by W, M;, N 11 AU
N . Finally let:

(@) beRY.
(b) B=(Bij)i,jer such that B;; — erﬁ Sj,ul-l(df) >0,forieland jel\{i}.
(c) Elements cq, ..., ¢, > 0 and a matrix

o(y) =diag(y/2¢1y1, -+ s/ 2Cm Ym) € R™™,
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For y € R™, consider the stochastic equation

t ~ t t
Yt=y+/0 (b+ﬁYs)ds+/() G(YS)dWS+/0 ]MSMI(ds,dé)
3.1 Zf /<1 1<y, N/ (ds,dg, dr)

Z/ / g:l].{rsti.i}NiI(dS,ds,dl"),
[E1>1 '

where B ji = Bji — flé\> 1Ejm; I (dg). Pathwise uniqueness for a slightly more complicated
equation was recently obtained in [5], while (3.1) in this form appeared first in [8]. The
following is essentially due to [5].

PROPOSITION 3.1. Let (b, B, 0) be as in (a)—(c), and consider objects W, My, N ey
N,il that are given in (B1)—(B3). Then the following assertions hold:

(a) Foreachy e R, there exists a pathwise unique strong solution Y = (Y;);>0 to (3.1).

(b) Let Y be any solution to (3.1). Then Y is a multitype CBI process starting from y, and
the generator Ly of Y is, for [ € C2(R "), of the following form

- Ff)

Ly YN =B+By, VW) + D civi——5—

i=1

i

+ [0+ = Fo)a@

+ Zyl / (f&+6) — () — (6. VFD) ! (@8).

Conversely, given any multitype CBI process IL with generator Ly and starting point y, we
can find a solution Y to (3.1) such that Y and Y have the same law.

The proof of the pathwise uniqueness is based on a comparison principle for multitype
CBI processes, see [5], Lemma 4.2. This comparison principle is stated below.

LEMMA 3.2 ([5], Lemma 4.2). Let (Y;);>0 be a weak solution to (3.1) with parameters
(b, B,0), let (Y/)i>0 be another weak solution to (3.1) with parameters (b', B, o), where
(b, B,0) and (b', B, o) satisfy (a)—(c). Both solutions are supposed to be defined on the same
probability space and with respect to the same noises W, My, N 11 yens Nn[1 that satisfy (B1)—
(B3). Suppose that, for all j € {1,...,m}, y; < y}- and bj < b/j. Then

P(Y;j, <Y, ¥je{l,...,m},Vt >0)=1.

4. Stochastic equation for affine processes. Below we show that any affine process can
also be obtained as the pathwise unique strong solution to a certain stochastic equation. In the
two-dimensinoal case D = R4 x R such a result was first obtained in [15]. Indepedently, the
case of affine diffusions on the canoncical state space D =R’} x R" (i.e., processes without
jumps) was studied in [19]. The main obstacle there is related with the diffusion component
which is degenerate at the boundary but also has a nontrival structure in higher dimensions.
In order to take this into account we use, compared to [19], another representation of the
diffusion matrix (see (AO) and (A1) below). Such a representation is used to decompose
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the corresponding affine process into a CBI and an OU component which are then treated
separately. Consequently, based on the available results for CBI processes, the proofs in this
section become relatively simple.

Let (a, a, b, B, v, ) be admissible parameters. For the parameters a and o = («, ..., ;)
consider the following objects:

(AO) An n x n-matrix o, such that aaaaT =ajj.

(A1) Matrices oy, ...,0, € R4*4 guch that, for all jel, ojajT =a; and
@D 0j= (Uj’” 0 ) ; ()10 = i1 3.
0jJ1 0jJJ ’ JoJJ

The first condition is simple to check. Indeed, by definition, one has a € S}, a;; = ay; =
aj; = 0. Thus ay; is symmetric and positive semidefinite. Hence o, denotes the nonnegative
square root of ayy. Concerning the second condition we use the following lemma.

LEMMA 4.1. Let ay,...,0, € S;}' be such that (a )k = aj jjéjd1j for 1 <k, <m.
Then there exist matrices o1, ...,0y € R9*d sych that condition (A1) is satisfied.

PROOF. Fix j €. Since «; € Sj has the block structure

_ <“j,11 Olj,u)
OtJ — ’
ajJr g
the characterization of positive semidefinite block matrices (see [26], Theorem 16.1) yields

i 1 n -1
4.2)  ajr€S,, g =0 JI0; o 1] €S, O 1] = Q110 1[0 1],

where ozj_ } ; denotes the pseudoinverse of «; ;7. Using the diagonal structure of «; ;; we find
that

(@) = s | S =0
G A1)kl kjOlj 0 J :
; ajjj =0,

Ifa; j; =0, then aj gy =a;}1 =0 and hence, by (4.2), o ;7 =0 and o y; = 0. Letting

o O’j,” 0
oj =\, .
OjJ1 0jJJ
. T _|_
be given such that 0jJI0; jj =0 JJ>0)11= Oand o j; =0, we find that 00 ;

J
the desired form (4.1).
Suppose now that « ;; > 0. Using the last equality in (4.2) we find that

4.3) @j1Du=0=(aj D, kel\{j},lel.

=« has

1/2 —-1/2
Put (Gj,ll)k,l :aj,/jjskj&j’ 0j1J =0, (Ujv_]])kJ :ozkjaj’jj/- 3/1, ke J,l el andlet 0j.JJ be
given such that

O'j,JJGjT,” =ajj]— Oéj,Jla;}IOéj,lj-
Note that the existence of such o ;; follows from (4.2). By direct computation one finds
that oy = Uj,IIU;j[’ o g1 = O_J'?J]Gjtl,—ll and aj,”aj_’}lozj,” = Jj,]IU;JI’ from which
we deduce o j5 = aj,”ajT” + O'j?JJO'jTJJ. This shows that UjajT =« and, moreover, it

is clear that o has the desired form (4.1). Since j € I was arbitrary, the assertion is proved.
O
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Note that (4.3) is already assumed in the definition of admissible parameters. The proof
shows that it is a simple consequence of the particular structure of «; ;7 and (4.2).

Below we describe the noises appearing in the stochastic equation for affine processes. Let
(2, F,P) be a complete probability space rich enough to support the following objects:

(A2) A n-dimensional Brownian motion B = (B;);>0.

(A3) Foreachi € I, a d-dimensional Brownian motion W/ = (W;i)zzo-

(A4) A Poisson random measure M (ds, d§) with compensator M (ds,d&) =dsv(d&) on
R4+ x D.

(AS5) For each i € I, a Poisson random measure N;(ds,d&,dr) with compensator
Ni(ds,d&, dr) =dsp;(dE)dr on Ry x D x R,

We suppose that all objects B, wl . ...wm M, Ny, ..., Ny, are mutually independent. The
corresponding compensated Poisson random measures are denoted by

M(ds,d&) = M(ds, d€) — M(ds, d€)
and
N;(ds,d&, dr) = N;(ds, d€,dr) — N;(ds, d&,dr), iel.

Here and below we consider the natural augmented filtration generated by these noise terms.
For x € D, consider the stochastic equation

t. 0 t ;
Xt:x+/0(b+ﬂxs)ds+ﬁ(aa3t)+§/0 J2Xs 01 dW!

+/Ot f|g|§1§mds’d§)+f0t f§|>léM(ds,dé)

(4.4) t )
+ // f E1(<x,_,)N;(ds, d&, dr)
; 0 Jigi=<t Jr, o0

t
+ ff Ely<x. Ni(ds, d&,dr),
Z0 g1 Jm, o)

iel

where b and E: (Eki)k,ie{l,...,d} are, fori,k € {1,...,d}, given by
4.5) bi =b; + ﬂl(i)/lélﬂ &iv(d§), Bri = Bri — 11(i) flél ISkMi(dS)-

Note that we have changed the drift coefficients to b and B in order to change the com-
pensators in the stochastic integrals. Such change is, under the given moment conditions on
w=(u,..., Ln), always possible and does not affect our results. Concerning existence and
uniqueness for (4.4), we obtain the following.

THEOREM 4.2. Let (a,a, b, B, v, i) be admissible parameters. Then, for each x € D,
there exists a pathwise unique D-valued strong solution X = (X;);>0 to (4.4).

This result will be proved later in this section. Let us first relate (4.4) to affine processes.
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PROPOSITION 4.3. Let (a,a, b, B, v, u) be admissible parameters. Then each solution
X to (4.4) is an affine process with admissible parameters (a, o, b, 8, v, u) and starting
point x.

PROOF. Let X be a solution to (4.4) and f € C g(D). Applying the It6 formula shows
that

t
M) = (X)) — Fx) — /0 (Lf)(Xs)ds, 120

is a local martingale. Note that Lf is bounded. Hence

t
B sup [M@)) <20 f e+ [ E(LF (X)) ds

s€[0,t

< 2[| flloo +£IILf lloo < 00,

for r > 0, and we conclude that (M ¢(2));>¢ is a true martingale. It follows from Remark 1.3
that X is an affine process with admissible parameters (a, «, b, 8, v, n). U

The rest of this section is devoted to the proof of Theorem 4.2. As often in the theory of
stochastic equations, existence of weak solutions is the easy part.

LEMMA 4.4. Let(a,a,b, B, v, i) be admissible parameters. Then, for each x € D, there
exists a weak solution X to (4.4).

PROOF. Since existence of a solution to the martingale problem with sample paths in
the Skorokhod space over D is known, the assertion is a consequence of [44], namely, the
equivalence between weak solutions to stochastic equations and martingale problems. Alter-
natively, following [16], page 993, we can show that each solution to the martingale problem
with generator L and domain CCZ(D) is a semimartingale and compute its semimartingale
characteristics (see [16], Theorem 2.12). The assertion is then a consequence of the equiva-
lence between weak solutions to stochastic equations and semimartingales (see [30], Chapter
III, Theorem 2.26). [

In view of the Yamada—Watanabe Theorem (see [6] or [43] for a more general account on
this topic), Theorem 4.2 is proved once we have shown pathwise uniqueness for (4.4). For
this purpose we rewrite (4.4) into its components X = (Y, Z), where Y € R and Z € R".
Introduce the notation § = (§7,&,) € D, where §; = (§;);c; and §; = (§;) jes. Moreover, let
W: = (Ws"’ I Ws"’ ;) and write for the initial condition x = (y, z) € D. Finally, let ey, ..., e4
denote the canonical basis vectors in R?. Then (4.4) is equivalent to the system of equations

t - t .
Y, =y+f0 (by + Br1Y¥y) ds +Z€i/0 Ve ¥ d W,

iel

t t ~
4.6) + /0 /DsIM<ds,d5)+i€Z[ /0 /M [ itpar, o Rias, g, an)

t
n // <y, yNi(ds, d&, dr),
> ) e R+51 r<v,_Ni(ds,d&,dr)

iel
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t ~ ~
Z; =12 +/(; (by+ Br1Ys + Br1Zs)ds +~20,B,

/ ) .
+ Z/(; 1/ZYSJ'((T,',J]CIVVSIJ +Ui,JJdW;,J)

iel
' . t
@) [ [ sdtasae+ [ [ ems.ag
0 Jigj<1 0 Jig/>1
t ~
+ // E1 1<y, Ni(ds, dE, dr)
; 0 Szt Jr, oSN
t
+ // Sjﬂr ys_l.N'(dS,dS,dr).
;0 i1 Jr, 77 TSI

Observe that the first equation for Y does not involve Z. We will show that (4.6) is precisely
(3.1), that is, Y is a multitype CBI process and pathwise uniqueness holds for Y. The second
equation for Z describes an OU-type process with random coefficients depending on Y. If we
regard Y as conditionally fixed, then pathwise uniqueness for (4.7) is obvious. These ideas
are summarized in the next lemma.

LEMMA 4.5. Let (a,a, b, B, v, u) be admissible parameters. Then pathwise uniqueness
holds for (4.6) and (4.7), and hence for (4.4).

PROOF. Let X = (Y, Z) and X' = (Y’, Z’) be two solutions to (4.4) with the same initial
condition x = (y, z) € D both defined on the same probability space. Then Y and Y’ both
satisfy (4.6). Let us show that (4.6) is precisely (3.1). Set pr; : D —> R, pr;(x) = (xi)ier,
and define:

e A m-dimensional Brownian motion W; := (th, [reens W[f’m).
e A Poisson random measure M;(ds, d§) on Ry x R"! by

M ([s, 1] x A) = M([s, 1] x prj ' (4)),

where 0 <s <t and A C R’} is a Borel set.
e Poisson random measures NII, el N,{,, on Ry x RY x Ry by

Nil([s, 11x A x [c,d]) = N;([s, 1] x prl_l(A) x [c,d]), i€l,
where 0 <s <7,0<c <d and A C R} is a Borel set.

Note that the random objects W, M;, N 11 e NnI1 are mutually independent. Moreover, it is
not difficult to see that M; and N 1’ e Nnﬁ have compensators

M;(ds, d€) = dsv;(d§), N!(ds,d&,dr) =dsul(dg)dr, iel,

where vy = v opr;1 and ,ul.l = i oprfl. Finally let ¢; =« j;, j €{l,...,m}, and

o (y) = diag(y/2¢1y1, ..., \2emym) € R,

Then (4.6) is precisely (3.1), and it follows from Proposition 3.1(a) that P(Y; = Y/, > 0) = 1.
It remains to prove pathwise uniqueness for (4.7). Define, for [ > 1, a stopping time inf{¢ >
0 | max{|Z;|, |Z;|} > I}. Since Z and Z’ both satisfy (4.7) for the same Y, we obtain

INT

Ziny = Zipg = A Bii(Zs — Z;)ds
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and hence, for some constant C > 0,
t
E(Zin = Zing) < C [ Bl1Zuns = Zin .

The Grownwall lemma gives P(Z;rr, = Z; M]) =1, forall t >0 and [/ > 1. Note that Z and

Z' have no explosion. Taking [ — oo proves the assertion. [

5. Moments for affine processes. The stochastic equation introduced in Section 4 can
be used to provide a simple proof for the finiteness of moments for affine processes. The
following is our main result for this section.

PROPOSITION 5.1. Let (a,a, b, B, v, u) be admissible parameters. For x € D, let X be
the unique solution to (4.4).

(a) Suppose that there exists k > 0 such that
[ lefwm@e+ [ 1ervas) <co, i€l
|E1>1 [E1>1
Then there exists a constant C,. > 0 (independent of x and X) such that
E(1X[*) < (14 [x[*)eS", t>0.

(b) Suppose that (1.5) is satisfied. Then there exists a constant C > 0 (independent of x
and X) such that

E(log(1 +|X;])) < (1 4+ log(1 + |x]))e¢’, >0.

PROOF. Define Vi (h) = (1+|h|*)*/? and Va(h) =log(1+ |h|?), where h € D. Applying
the It formula for V;, j € {1, 2}, gives

t
(5.1) vj(X,)va-(x)Jr/O Aj(Xg)ds + M, (1),
where (M (1));>0 and A;(-) are given by

32V (h)
dhidhy

d m
Aj(h) =(b+Bh, VV;(W)+ > (ak, + Za,-,k,x,)

k=1 i=1

+fD(Vj(h +&) = Vi(h) — (& VV;(W))ljg1<1y)v(dé)
+3 /D (V;(h + &) = Vi(h) — (&, VV; ()i (dE),
i=1
t m t .
./\/lj(l) 2\/5/0 <VJV/'(XS),O’ast,J>+Z‘/O ,/2XS,,-(VV,-(XS),al-dWs’)
i=1

4 —~
[ i+ = V(X Hds. de)

m t N
* ;fo /DX&(VJ (Xy— +ELp<x, ) — Vj(Xs2))Ni(ds, dE, dr),

where b was defined in (4.5). Define, for [ > 1, a stopping time 7; = inf{r > 0 | | X;| > [}.
Then it is not difficult to see that (M ;(t A 17));>0 is a martingale, for any / > 1. Moreover,
we will prove in the Appendix that there exists a constant C > 0 such that

(5.2) Aj(hy <C(1+V;(h)), heD.



EXPONENTIAL ERGODICITY IN WASSERSTEIN DISTANCES 2181

Hence taking expectations in (5.1) gives
t
E(V;(Xinm)) < Vj(x) +C /0 (1 +E(V; (Xyns))) ds.

Applying the Gronwall lemma gives E(V;(X,17,)) < (Vj(x) + C1)eC’ < (14 V;(x))eC", for
all t > 0 and some constant C’ > 0. Since (X;);>0 has cadlag paths and C’ is independent of
[, we may take the limit / — oo and conclude the assertion by the lemma of Fatou. [

We close this section with a formula for the first moment of general affine processes. The
particular case of multitype CBI processes was treated in [5], Lemma 3.4, while recursion
formulas for higher-order moments of multitype CBI processes were provided in [7]. At this
point it is worthwhile to mention [14] where polynomial processes (which include affine
processes on the canonical state space as a special case) are investigated. These processes are
characterized by the property that the moments up to a given order p € N can be computed
from an p-dimensional system of ordinary differential equations. For affine processes on the
canonical state space, such equations can be derived from the particular form of the extended
generator. Alternatively, the same equations could also be obtained from the It6 formula
using the stochastic equation presented in Section 4. The next lemma is a particular case
where p = 1.

LEMMA 5.2. Let (a,a, b, B, v, u) be admissible parameters and suppose that
(5.3) / |Elv(dE) < 0.
[El>1
Let (X;):>0 be an affine process obtained from (4.4) with Xo =x € D. Then
t [—
E(X,) =e’x +/ ePbds,
0

where b; = b; + f|§|>1 Ev(dE)+1,3) ﬁg\gléi‘)(dg) holds. Letting x = (y,z) € R x R"
and X = (Y, Z) € RY x R" we find that

t —_—
E(Y,) =Py + /0 ePip; ds,
t _ t
E(Z;) Ietﬂ”Z +/ Csﬂ”bj ds +/ e(tfs)ﬂ”ﬂjlesﬂ”yds
0 0

t s .
+ / / =981 8111l du ds.
0 JO

PROOF. First observe that, by definition of admissible parameters and (5.3), we may
apply Proposition 5.1(a) and deduce that X, has finite first moment. Taking expectations in
(4.4) gives

BX) =+ [ (b FEOX) s

Solving this equation gives the desired formula for E(X;). Taking expectations in (3.1) (or
(4.6)) gives

t J—
E(Y)=y+ /0 (B1 + BrE(Y)) ds,

which implies the desired formula for [E(Y;). Finally, taking expectations in (4.7) gives

r_
E(Z)=z+ fo By + B11E(Y,) + B1sE(Zs)) ds.

Solving this equation and using previous formula for E(Y;), we obtain the assertion. [
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6. Contraction estimate for trajectories of affine processes. The following is our main
estimate for this section.

PROPOSITION 6.1. Let (a,a, b, B,v, u) be admissible parameters, suppose that (5.3)
is satisfied, and assume that  has only eigenvalues with strictly negative real parts. Let
x=(y,2),xX=(y,2) e R xR", and let X (x) = (Y (y), Z(x)) and X (X) = (Y ()), Z(X)) be
the unique strong solutions to (4.4) with initial condition x and X, respectively. Then there
exist constants K, 8,8 > 0 independent of X (x) and X (X) such that, for all t > 0,

(6.1) E(|Y,(y) - Y;(3)|) <dK|y — Fle ™",
(6.2) E(|X;(x) = X, ®)|) < Ke ¥ (Liu=0yly — 31"/ + [x — F|).

PROOF. Here and below we denote by K > 0 a generic constant which may vary from
line to line. Let us first prove (6.1). Note that Y (y) and Y (y) are multi-type CBI processes
with the same parameters. If y; < y; forall j € {1, ..., m}, then we obtain from Lemma 3.2
and Lemma 5.2

m

E(|Y:(y) = (D)) < Y E(Ye; () — Ye j(P))
j=1

=Y E(Y;(») - Y. ;)
j=1

=Y "Gy -»);

j=1
< Vd[ePri(y —5)| < VdKe |y - 7,

where we have used that 8;; has only eigenvalues with negative real parts (since 8 has this
property and B;; = 0). For general y, ¥, let y0, ..., y" € R’ be such that

J m
YW=y, Y'=5 Y=Y ak+ Y awn. jell....m—1},
k=1 k=j+1
where ey, ..., e, denote the canonical basis vectors in R™. Then, for each j € {0, ..., m —1},

the elements y/, y/*! are comparable in the sense that y,{ = y;ﬁ itk # j + 1, and either
J J+l J J+l ; : ; :
Yj41 S Yjq1 O ¥jyq = ¥jy - Inany case, we obtain from the previous consideration

m—1

E(Y, () - Y3 = D E(%(7) = ("))
Jj=0

m—1
< VAKe™" Y |yl — it

j=0

m—1
=VdKe™" Y |yjp1 = Fjril <dKe |y =31,
j=0

where we have used |y/ — y/*!| = |¥j+1 — ¥j+1l. This completes the proof of (6.1).
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If n = 0, then (6.2) is trivial. Suppose that n > 0. Applying the Itd formula to e~# X, (x)
and e A X, (X), and then taking the difference, gives

X (x) = X (X) =eP(x - %)

Y /O I (28, ) — Y, (D)o W

iel

t ~
+y / f / IBey, (1, ) Ni (ds, d&, dr),
i1 70 DRy

where y; (r, ) = 1y <y,_;(0) — Lir<v,_;®)- We find 8o > 0 and 6 € (0, 8’) such that
t $ ,
(6.3) |etﬂ|2 < Ke %" and / e~ =T = gg <Ke ¥ t>0.
0

The stochastic integral against the Brownian motion is estimated by the Burkholder—Davis—

Gundy inequality (shortened to BDG-inequality) also making use of Jensen inequality, Fubini

Theorem and using the %—Hélder continuity of /-, which gives

)

K(fOtE(}e“—S)ﬂ(\/zn,i(x) - \/2Ys,i(f))ai12)ds)

, 1/2
K(/ e*‘s"(t*S)JE(|YS,i(x) — Ys?i(f)|)ds>
0

E(Vot 1P (J2Y, i (x) = \2Ys 1 (F)) o AW

12

A

IA

t , 1/2
< K(/ e—0(i—5)g=0's ds) ly — 5112 < Ke=®|y — 12,
0

where we have used (6.1) and (6.3). For the stochastic integral against ﬁi we consider the
cases |£] <1 and || > 1 separately. For |£| < 1 we apply first the BDG-inequality and then
the Jensen inequality combined with the Fubini Theorem to find, for each i € I,

!
t—$)B¢., ~
E(‘/O v/lé‘lsl /R+e Eyi(r,s)N;(ds,d&,dr) )

t
/0 /|§|<1/R |e(t_smg|2|7’i(r’ S)|2Ni(dl’, dg, ds)
= +

SKE(

1 /2>

' 1/2
(t—s)Bg|2 ] 2 A
K</0 /§|51/R+|e SIE(yi(r ) )dml(dé)ds)

' 1/2
< K(/O e UTINE(| Yy (x) — Y1 (®)]) ds>

A

t ) 172
< Kly =312 ( [ e as) < ke My - 31
0
where we have used (6.1), (6.3) and the identity

o0
/O 1<y} — Lr<y}|* dr = max(x, y) — min(x, y) =[x — y|.
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For |&| > 1, we apply first the BDG-inequality and then use the sub-additivity of a — a'/2

to obtain
t ~
E( / f f e“‘”ﬁsn(r,s)N,-(ds,ds,dw)
0 Jigl=1Jr,

t
§KE(‘// / =B 2]y (r, 5) PN (dr, dE, ds)
0 JIgI>1 /Ry

1/2)

t
(t—s)B i 2 '
SK/O /|$|>1A;+E(|e Ellyi(r,9)[7) drpi(dg) ds
=K / t e UIPE(Y, () — ¥y 4 ()] ds
0

t S ,
<Kl|y— il/ e (=) T e8's g <Ke |x —%|,
0
where we have used |y — | < |x — X|. Collecting all estimates proves the assertion. [
7. Proof of Theorem 1.5.

7.1. The W, -Wasserstein estimate. Based on the results of Section 6, we first deduce
the following estimate with respect to the log-Wasserstein distance.

PROPOSITION 7.1.  Let (P;);>0 be the transition semigroup with admissible parameters
(a,a, b, B, v, 1), suppose that B has only eigenvalues with negative real parts, and (1.5) is
satisfied. Then there exist constants K, 8 > 0 such that, for any p, p € Piog(D), one has

Waoe (Pip, Pi) < K min{e ™ Wy, (p. D)} + Ke™* W, (0. ), >0,

PROOF. Let (Pto (x,-))r>0 be the transition semigroup with admissible parameters
(a,a,b=0,B,m =0, u) given by Theorem 1.2. Take x = (y,2), X = (§,2) € Rl x R"
and let XO(x) = (Y°(y), Z%x)) and X°X) = (Y°(9), Z°(X)), respectively, be the corre-
sponding affine processes obtained from (4.4) with admissible parameters (a = 0,a, b =
0,8,m =0, ). Since X°(x) has law P?(x,-) and X°(¥) has law PY(%, -), there exist by
Proposition 6.1 constants K, § > 0 such that

Way (PP (x, ), PP(X, ) < E(Lpn=0y| Y (1) = Y5
< L0y (E(Y () — Y D))
+E(X%x) — X°®)))

V2 1 1X00) — X0®)|)

12

1/2

< Ke " (Lp=oyly — 312 + |x — X))

Next observe that, for u € U4, one has
fD e PO(x dx') = exp((x, ¥ (¢, ).
/ )P, (0, dx") = exp(¢ (1, u)).
D

Combining this with (1.1) proves P;(x, -) = Pto (x,-) x P;(0, ), where * denotes the convolu-
tion of measures on D. Let us now prove the desired log-estimate. Using Lemma A.3 from
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the Appendix and then the Jensen inequality for the concave function R} 3 a —— log(1 +a),
gives for some generic constant K > 0

Waog (P8, Py8%) < Way, (P8, P)s%)
<log(1 4+ Wy, (P25, P)8%))
(7.1) <log(l1 + Ke " (Lpuaqyly — 51V/% + |x — 7))
< K min{e™*"  log(1 + Lju=oyly — 1'% + |x — %)}

V24 x —5),

+ Ke ' log(1 + Lgn=oyly — ¥
where we have used, for a, b > 0, the elementary inequality

log(1 4+ ab) < K min{log(1 + a), log(1 + b)} + K log(1 + a) log(1 + b)
< K min{a, log(1 + b)} + Kalog(1 + b),

which is proved in the Appendix. Applying now Lemma A.4 from the Appendix gives for
any H € H(p. p)

Wdl(,g(Pt,O, P;p)
<[ W (Psw PSO H . d)
DxD
<K min{e™, log(1 + L=y — ¥1'/? + |x — %)} H (dx, dX)
DxD
+ Ke_(”/ log(1 + Lusoyly — 512 4 |x — X|) H (dx, d¥)
DxD
< Kmin{e_‘”, / log(1 + Tu=oyly — 1'% + |x — X|) H (dx, dsc')}
DxD
+Ke [ tog(1+ Lymoily = 71"+ Ix - F) H(dx, d).
DxD
Choosing H as the optimal coupling of (p, p), that is,
Waoe (0, P) = /D Dlog(l + Lpuoyly — 312 + |x — X|)H (dx, dX),
X
proves the assertion. [

Based on previous proposition, the proof of Theorem 1.5 is easy. It is given below.

LEMMA 7.2. Let (P;);>0 be the transition semigroup with admissible parameters
(a,a,b, B,v, ). Suppose that B has only eigenvalues with negative real parts, and (1.5)
is satisfied. Then (P;);>0 has a unique invariant distribution . Moreover, this distribution
belongs to Piog(D) and, for any p € Piog(D), one has (1.6).

PROOF. Let us first prove existence of an invariant distribution 77 € Pjog(D). Observe
that, by Proposition 5.1, we easily deduce that P;Piog(D) C Piog(D), for any ¢ > 0. Fix any
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p € Plog(D) and let k, 1 € N with k > [. Then

k—1
Wao, (Pp. Pip) <Y Way, (Ps P1p, Psp)

s=I

<K Y min{e™®, Wy, (Pip. p)}

k—1
+K ) e Wy, (Pip, p).

Since the right-hand side tends to zero as k,/ — oo, we conclude that (Prp)ien is a
Cauchy sequence in (Piog(D), Wd]og)‘ In particular, there exists a limit 7 € Plog(D), that
is, Wdlog(Pkp, ) —> 0 as k — oo. Let us show that 7 is an invariant distribution for P;.
Indeed, take i > 0, then

Wayoo (Ph7t, 70) < Wapo, (Pp7t, PpPrp) + Wy, (P Prp, Prp) + Wy, (Prp, 70)
<K min{e_‘”’, Wy, (1, Pep)} + Ke0h Wao, (7T, Picp)
+ K minfe™, Wy, (Pup. p)} + Ke™* Wa,,(Pup, p)
+ Wy, (Prp, 70).

Since Wdlog(PkaT) —> 0 as k — oo, we conclude that all terms tend to zero. Hence
Wy, (Ppe, w) = 0, that is, P, = 7, for all & > 0. Next we prove that 7 is the unique

invariant distribution. Let mg, r; be any two invariant distributions and define Wd as in
(1.4) with dyog replaced by djog A 1. Then we obtain, for any # > 0 and all x, X € D, by the
proof of Proposition 7.1 (see (7.1))

u/dilotg(Pt(x7 .)’ Pt(jf’ )) = LA Wdlog(Pl(x9 ')’ P[(.’f, ))
<1 Alog(l+ Ke ™ (Lyumojly — F1 + Ix — ¥)).

Fix any H € H(mo, 71), then using the invariance of mp, 71 together with the convexity of
the Wasserstein distance gives

<1 _ w=l
Wi (0, 1) = Wy (Pro, Prrr)

<[ WEL(Px, ), PR, ) H (dx, dF)
DxD

< / min{1, log(1 +2Ke % |x — X|) H (dx, dX).
DxD

By dominated convergence we deduce that the right-hand side tends to zero as t — oo and
hence 7y = ;. The last assertion can now be deduced from

Waoy (Prp, 1) = Wdlog(Pt/Oa Py)
< Kmin{e™" Wy, (0. 7)} + Ke™* W, (0. 7).

where we have first used the invariance of 7 and then Proposition 7.1. [
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7.2. The W, _-Wasserstein estimate. As before, we start with an estimate with respect to
the Wasserstein distance Wy, .

PROPOSITION 7.3. Let (P;);>0 be the transition semigroup with admissible parameters
(a,o, b, B,v, ). Suppose that B has only eigenvalues with negative real parts, and (1.7) is
satisfied for some k € (0, 1]. Then there exist constants K, 5 > 0 such that, for any p, p €
P, (D), one has

Wa, (Pp. Pip) <Ke ™ Wy (p,p), 1>0.

PROOF. Let (PtO (x,-))r=0 be the transition semigroup with admissible parameters (a =
0,a,b=0,8,m=0, u) given by Theorem 1.2. Arguing as in the proof of Proposition 7.1,
we obtain

(7.2) Wa, (PP (x, ), YR, ) < Ke™® (Lmoyly — 512 + 1x = 7)),
and P;(x, ) = Pto (x, ) % P+(0, -). Then we obtain from Lemma A.3 from the Appendix
W, (Pidy, Pidz) < Wa (P25, P253)
= (Wdl (Ptoax’ Pto‘s)?))K
< K*e ! (Lpso)ly — F1'% + 1x — 7))",

where the second inequality follows from the Jensen inequality and the third is a consequence
of (7.2). Using now Lemma A.4 from the Appendix, we conclude for each H € H(p, p)

Wa (Pp. Pi) < /D  Wa (P8 P Hdx, d5)
X

< K"e_‘s"’/ (Lip=oyly — ¥| + |x — X1) H(dx, d%).
DxD
Letting H to be the optimal coupling gives
Wy, (Pip, P,p) < K<e "W, (p, B).

This proves the assertion. [

Based on the previous proposition, the proof of the W, -estimate in Theorem 1.5 can be
deduced by exactly the same arguments as in Lemma 7.2. So Theorem 1.5 is proved.

APPENDIX

A.1. Moment estimates for V; and V,. In this section we prove (5.2).

LEMMA A.1. Suppose that the same conditions as in Proposition 5.1(a) are satisfied.
Then there exists a constant C = C, > 0 such that

A1(x) <CVi(x), x=(y,2) eRY xR".

PROOF. Observe that VV;(x) = «x(1 + |x|?)*T". Using |x| < (I + [x|)!/? gives
IVVIi)| <«x(1+ |x|2)%, and hence we obtain for some generic constant C = C, > 0

(E—i- Bx, VVi(x)) <C(1+|x])|VVi(x)| < CVi(x).
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For the second order term we first observe that, for k,l € {1, ..., d},

32V (x k=4
1( )=K(K—2)xkx1(1+|x|2) 2

k=2
2

)
T + Sk (1 + [x]?)

2
where Jy; denotes the Kronecker—Delta symbol. Using xzx; < "er i < |x|2 <+ |x|2) gives
|2V | < 0 (1 4 |x[2) 5", This implies that

0x)0x]
d n 32V, (x) 5 k22
> aw + ) i <CA+x)(1+x]7) T <CVi(x).
Pyt — Xy 0x]
A= i=l
Let us now estimate the integrals against m and w1, ..., ;. Consider first the case |£| > 1.

The mean value theorem gives
1
Vit +8) = Vit = [ [ Vit +16)ds
1 e
:K/ & x 1+ 18)(1+ x + 16127 dr

<x|$|/ L+ |x +1£2)T dr

where we have used (£, x +1&) < |&||x + €] < |&|(1 + |x +1&|%)1/2 in the last inequality. If
k > 1, then

|§|(1+IX+I’§|2)K2;1SCIS|(1+|XI2+|€E|2)%

<CEEI(1+ER)T (1 +1xP)T
<C+IER) 21+ 1xP) T

If « € (0, 1], then |&|(1 + |x +t§|2)% < |&]. In any case, we obtain, for |£]| > 1,

Vit +8) = Vi) < Lo CIE |+ Lt.oo) () (14 52721+ k)T
< C(1 + 161+ 1EF) (1 + 1) 7.
Using (£, VVi(x)) < €]|VVi(x)] < CIE](L + [x[)*T and
Vit +6) = Vi) < Vilx +8)
< C(1+ kP + €D < cvi) (1 + [617)2,

for the integral against v, gives

/m (Vi +6) = Vie)v(de)
+3 x /s| (VG +6) = Vi) = {6 Vi) s ()
i=1 =

<CVi(v) /|s (+ IR



EXPONENTIAL ERGODICITY IN WASSERSTEIN DISTANCES 2189

+C(1+1xP) le/ L+ [6] + [£]) i (d€)

E]>1

SCV1(X)(/|§|>1(1+ISI )v(d$)+;/§>l(l+|§|+|§| )Mi(dé)>,

where we have used x; < |x| < (14 |x|®)/2,i € {1, ..., m}. It remains to estimate the corre-
sponding integrals for |£| < 1. Applying twice the mean value theorem gives

1
Vitx +&) = Vi(x) — (&, VVl(X))ZfO {(&, VVi(x +18)) — (6, VVi (1)} dt

d 2
(A1) —/ /0 IV 58 e dsar

oo 9xkdx

K=2
< C|a5|2/O /O (1 + |x + 58T ds,

2 2
where we have used £,& < @ < |&|%. Using, fori e I and |£| <1,

k=2 k=2
2 2

<(1+1y+s&?)Y ( + |x + s&1%)

K—

<(I+x+sE3) 7
< (1+x +s&)* <cvi),

(1+x;) (1 + |x + s&1%)

we conclude that

/W(vl(x +6) = Vi(x) — £, VVi(0)v(dé)
+3n /|§|<1(v1(x +6) = Vi(x) — &, VVI(0))) s (dE)
i=1 -

scvi ([ ePran+ [ ePuas)).
11=<1 1£1<1
Collecting all estimates proves the desired estimate for .A4;. [
Let us now prove the desired estimate for Aj.

LEMMA A.2. Suppose that the same conditions as in Proposition 5.1(b) are satisfied.
Then there exists a constant C > O such that

Ary(x) <C(1+ Va(x)), x€D.

PROOF. Observe that VV,(x) = 1+2|—’;‘2 Hence we obtain for some generic constant C >
0
~ 1+ |xD|x
(b4 Bx, VV2(x)) < C(1+ |x])|[VVa(x)| < C%IXDHZ' <

Observe that, fork,/ € {1, ...,d},

7Va(x) 20y 4xx;
axdx; 1+ 1x)2  (1+x]?)?
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(X)|
3Xk3X1 — 1+| 1z

d m 2
32V5(x) 1+ |x|
) (akl+zai,klxi) §C1+|x|2 =<C

Ki=1 i=1 0 dx;

Using xxx; < C(1 + 1x|2) gives | This implies that

Let us estimate the integrals against v and w1, ..., ;. Consider first the case |§| > 1. Then
Va(x +8) = Va(x) = Va(x +§)
< Clog(1+|x” +1£I%)
< Clog(1 + |x?) + Clog(1 + [§ %),
and hence we obtain

/|s|>1(V2(x +&) —Va())v(dé) <C \§|>1(V2(x) + V2(&))v(d§)
< C(1+ Va(x)).
From the mean value theorem we obtain
1
Volx + &) — Va(x) :/0 (&, VVa(x +1&))dt

Y x+rE)
_2/0 1+|x+t$|2dt

L x +1&]

<?2 R N—
=28 0 14 |x+t&)?

Inview of x; < x; +t& < |x; +t&f| <|x+t&| fori € I, we obtain x; (Vo (x + &) — Va(x)) <
2|1&|. Using (§, VVa(x)) < [§[IVVa(x)| < C|&] gives

>uf

It remains to estimate the corresponding integrals for |§] < 1. Asin (A.1), we get

E]>1

(Va(x + &) — Va(x) — (£, VVo(x))) i (dE) < CZfél | 1§ pi(dE).
i=17151=

Vax + ) — Va(x) — (£, VVa(x)) < CI&]| f/m sd.
This implies

/ (Va(x +8) — Va(x) — £, VVa)))v(dE) < C f 1€ [2v(dé).

|E1<1 |E1<1

Fori € I, by x; < |x + s&|, we get <1 and hence

Xi
1+|x+sE|?

> xi /I$ 1(Vz(x + &) — Va(x) — (£, VVo (X)) i (d§)
i=1 =

m 2
sc;/mfl 16 20 (dE).

Collecting all estimates proves the desired estimate for A,. [
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A.2. Some estimate on the Wasserstein distance. Here and below we letd € {d,, diog}-
Below we provide two simple and known estimates for Wasserstein distances.

LEMMA A.3. Let f, f,g € Py(D). Then

Wa(f % g. f*g) < Wa(f. f).
PROOF. Using the Kantorovich duality (see [57], Theorem 5.10, Case 5.16), we obtain

Wa(f xg f*g)= sup (/Dh(x)(f*g)(dx) —th(X)(f* g)(dX)),

A=<l

[h(x)—h(x)]

doa) - Using now the definition of the convolution on the right-

where ||| = SUP 2/
hand side gives

/ h@)(f * g)(dx) — f h)(F * g)(dx)

D D
=/‘D/Dh(x+x)f(dx)g(dx)—/D/Dh(x+x)f(dx)g(dx)
=/ l%c)f(dx)—/ () Fdx),

D D

where /i (x) = Jph(x+x")g(dx"). Since %]l < 1, we conclude that

Wa(f *g. f*g)= sup ( /D h(x) f(dx) — /D E(x)f(dx))

=1

< sup ( RS h(x)f(dx>)=wd(f, .

lhll<1

where we have used again the Kantorovich duality. This completes the proof. [

The next estimate shows that the Wasserstein distance is convex. For additional details we
refer to [57], Theorem 4.8.

LEMMA A.4. Let P(x,-) be a Markov transition function on D x Py(D). Then, for any
f, g € Pa(D) and any coupling H of (f, g), it holds that

Wd( [ P, [ P(x,->g<dx>)

< Wa(P(x,-), P(X,-))H (dx, dX).
DxD

A.3. Proof of the elementary inequality with respect to log. Below we prove the fol-
lowing inequality.

LEMMA A.5. Foranya,b >0 one has

log(1 + ab) <log(2e — 1) min{log(1 + a), log(1 + b)}
+ log(2e — 1) log(1 + a)log(1 + b).
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PROOF. Using the elementary inequality log(e 4+ ab) < log(e + a) log(e + b), see [28],
we easily obtain
log(1 +ab) =log(e™!) + log(e + eab)
<log(e +a)(log(e™") + log(e + eb)) < log(e + a) log(1 + b)
from which we readily deduce
log(1 + ab) < min{log(e + a) log(1 + b), log(e + b) log(1 +a)}.
Fix any ¢ > 0. If a > ¢, then we obtain

1
log(1 + ab) < log(e + a)log(1 + b) < 2ECTE 1001 4 a)log(1 + b).
log(1+¢)

The case b > ¢ can be treated in the same way. Finally, if 0 < a, b < ¢, then we obtain
log(1 4 ab) < min{log(e + a) log(1 + b), log(e + b) log(1 + a)}

log(e + ¢) }
log(1+¢))

Collecting both estimates gives, for all a, b > 0, the estimate

log(1 + ab) < g(¢) minf{log(1 + a), log(1 4+ b)} + g(&) log(1 + a) log(1 + b),

<log(e +¢) min{log(e + &),

where g(¢) = min{log(e+ ¢), };’ﬁﬁ?ﬁ%

its maximum at ¢ = e — 1 which gives inf,~gg(¢) = g(e — 1) =log(2e — 1). O

}. A simple extreme value analysis shows that g attains
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