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This paper is devoted to the study of reflected Stochastic Differential
Equations when the constraint is not on the paths of the solution but acts on its
law. These reflected equations have been introduced recently in a backward
form by Briand, Elie and Hu (Ann. Appl. Probab. 28 (2018) 482-510) in
the context of risk measures. We here focus on the forward version of such
reflected equations. Our main objective is to provide an approximation of the
solutions with the help of interacting particles systems. This approximation
allows to design a numerical scheme for this kind of equations.

1. Introduction. In this paper, we are concerned with a special type of reflected stochas-
tic differentials equations (SDEs for short in the sequel) in which the constraint is not directly
on the paths of the solution to the SDE as in the usual case but on the law of the solution.
Typically, the integral of a given function, say /A, with respect to the law of the solution to
the SDE is asked to be nonnegative. We call mean reflected stochastic differential equation
(MR-SDE) this kind of reflected SDEs which are described by the following system:

t t
x,:g+/ b(Xs)der/ 6(Xs)dBs + Ki, 130,
(1.1) 0 ¢ 70
E[h(X,)] = 0, /OIE[h(XS)]dKS:O, £ >0,

where b, o and h are given Lipschitz functions from R to R and where (B;,r > 0) stands
for a standard Brownian motion defined on some complete probability space (€2, F,P). We
will always assume that & is nondecreasing and that the law of £ is such that E[A(§)] > 0.
The solution to (1.1) is the couple of continuous processes (X, K), K being needed to ensure
that the constraint is satisfied, in a minimal way according to the last condition namely the
Skorokhod condition.

Reflected stochastic differential equations have been widely studied in the literature and we
refer to the works [8, 14] for an overview of this theory. As said before, the main particularity
comes here from the fact that the constraint acts on the law of the process X rather than on
its paths. To the best of our knowledge, Skorokhod problem on the law of type (1.1) have
been introduced by Briand, Elie and Hu in their backward forms in [3]. In that work, they
show that mean reflected backward stochastic processes exist and are uniquely defined by the
associated system of equations of the form of (1.1) under the same assumptions we use below.
The main requirement for uniqueness is to ask the process K to be a deterministic function.
They then show that such system is useful for super hedging of claims under running risk
management constraint.

In this paper, our main objectives are twofold. Due to the fact that the reflection process K
depends on the law of the position, it is hence nonlinear in the McKean—Vlasov’s terminology
(see [12] for an overview). It thus seems natural to investigate whether such a system can
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be seen as the asymptotic counterpart of a mean field Skorokhod problem that is, as the
asymptotic dynamic of particles system reflected in mean field. Having this counterpart at
hand, we then aim at designing a numerical scheme for computing solutions to (1.1). This
algorithm allows to solve asset management problems involving risk measure constraints.

Let us indeed consider an asset manager holding a number of stocks S = (S!, ..., S%) in
his portfolio and let 7 = (!, ..., 7%) denotes his investment strategy. When the investor
is allowed to choose his strategy as he wants, the value of his portfolio at time ¢, X; =
Xo + fot 7, - dS,, can become very negative. For regulation purpose, one can allow only
strategies such that X; remains nonnegative or above a certain level. We are interested here in
a weaker regulation constraint: the asset manager is allowed to hold its position X, at time ¢
only if it remains acceptable for a given risk measure p that is, it is such that p(X;) < 0. Such
a risk measure (see e.g., [1] or [5] for partial account on risk measures) could be for example,
a utility function u : R — R so that p(X) = inf{m : E[u(m + X)] > p}, which means that a
minimal profit is guaranteed.

In order to satisfy this constraint, the asset manager thus has to add some cash in the
portfolio through the time and the dynamic of its position becomes

dX; =T dSt +dK[,

where K; is the amount of cash added up to time ¢ in the portfolio to balance the “risk”
associated to X;. Of course, the agent wants to cover the risk in a minimal way, adding cash
only when needed: this leads to the Skorokhod condition E[2(X;)]dK; = 0.

Let us now consider the Black & Scholes model and suppose that the investment strategy
depends on the wealth of the portfolio. We end up with the following SDE:

dX;=b(X;)dt +o0(X;)dB; +dK;, t=>0.

Putting together all conditions on X, we end up with a dynamic of the form (1.1) for the
portfolio. This financial issue is close to the one studied in [3] but differs from the fact that,
here, the terminal value is not fixed. Indeed, in [3], the authors look for the initial amount
to invest and for the replicating strategy (7', ..., %) for a given terminal value, namely the
payoff, when the portfolio is also submitted to a risk measure constraint. From a practical
point a view, using a particle system (this seems to be a more involved problem in the back-
ward case) to approximate the solution to (1.1) leads to solve numerically a N-dimensional
stochastic equation, where N is the number of particles. Since solving numerically backward
SDE:s in high-dimension remains a difficult problem, to address the difficulties by increasing
order, we focus in this paper on mean reflected forward SDEs.

Let us eventually point out that, in his work [7], Jabir studies diffusion processes whose
time-marginal densities are constrained to belong to a given set at all time. By using a penal-
ization approach, he builds weak solutions and obtains only partial uniqueness results, leaving
the Skorokhod minimality condition and the approximation by particle systems open. Weak
conditioning involving path-distribution constraints of the form

Law(X;;0<7r<T)eK for K a given subset of P(C([0, T1; R%))

appears in various theoretical and applied situations such as stochastic mechanics (see [4]),
diffusion processes with conditioned initial-terminal distribution (see [2, 10] and [13]) and
for the modeling of crowd motion with congestion phenomenon (see [9]).

Organization of this paper. The paper is organized as follows. In Section 2, by letting the
coefficients satisfy the usual smoothness assumptions (say Lipschitz continuity) and adding a
structural assumption on the function 4 (say & bi-Lipschitz), we show that the system admits
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a unique strong solution that is, there exists a unique pair of process (X, K) satisfying sys-
tem (1.1) almost surely, the process K being an increasing and deterministic process. Then,
we show that, by adding some regularity on the function 4, the Stieljes measure dK is abso-
lutely continuous with respect to the Lebesgue measure and we give the explicit expression
of its density.

Having in mind the analogy with McKean—Vlasov processes, we also show in Section 3
that system (1.1) can be seen as the limit of an interacting particles system with oblique
reflection of mean field type. This could reflect a system of a large number of players whose
positions are constrained by the mean of the positions of the other players. If all the players
have the same dynamic, and if the interaction between the players is of mean field type, we
show that there is a propagation of chaos phenomenon so that when the number of players
tends to the infinity, the reflection no more depends on the other positions, but only on their
statistical distribution. This obviously comes from the law of large number and is what, in
fact, exactly happened in the classical McKean—Vlasov setting.

As an application, this result allows to define in Section 4 an algorithm based on this
interacting particle system together with a classical Euler scheme which gives a strong ap-
proximation of the solution of (1.1). This leads to an approximation error proportional, up to
a log factor, to the number of points of the discretization grid of the time interval (namely of
(logn/n)'/?, where n is the number of points of the discretization grid) and on the number of
particles (namely N ~!/4 when the function # is only bi-Lipschitz and N ~'/2 when the func-
tion A is smooth, N standing for the number of particles). Finally, we illustrate in Section 5
these results numerically.

2. Existence, uniqueness and properties of the solution. Throughout this paper, we
consider the following set of assumptions.

ASSUMPTION 2.1.

(1) The functions b : R+—— R and o : R — R are Lipschitz continuous.
(i) The random variable & is square integrable.

ASSUMPTION 2.2.
(i) The function & : R — R is an increasing function and there exist 0 < m < M such that
VxeR,VyeR, mlx—y|<|h(x)—h(y)|<M|x -yl
(i) The initial condition & satisfies: E[A(£)] > 0.

ASSUMPTION 2.3. 3dp > 4 such that & belongs to .”: E[|£]7] < oco.

ASSUMPTION 2.4. The mapping % is a twice continuously differentiable function with
bounded derivatives.

In the following, we make an intensive use of this representation formula of the process K.
Define the function

2.1 H:]RXPl(R)a(x,v)r—)H(x,v):/h(x+z)v(dz),

where P (R) denotes the set of probability measures on R with finite first moment. We will
need also the inverse function in space of H evaluated at 0 namely:

(2.2) Go:P1(R) > v inf{x e R: H(x,v) >0},
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as well as Gy, the positive part of Go:
(2.3) Go:Pi(R)> v inf{x >0: H(x,v) > 0}.

We start by studying some properties of H and Gy.

LEMMA 2.1. Under Assumption 2.2 we have:

(1) For all v in Pi(R), the mapping H(-,v) : R > x — H(x, V) is a bi-Lipschitz function,
namely:

(24) VX’YER» m|x_)’|S’H(X»V)_H(Y’V)‘§M|x_)7|

(i1) Forall x in R, the mapping H(x,-) : P1(R) 2 v~ H(x,v) satisfies the following Lips-
chitz estimate:

(2.5) vu,v € Pi(R), |H(x,v)—H(x,V)|< ‘/h(x +)(dv —dv')|.

PROOF. The proof is straightforward from the definition of H see (2.1). [

Note that thanks to the Monge—Kantorovitch theorem, assertion (2.5) implies that for all x
in R, the function H (x, -) is Lipschitz continuous w.r.t. the Wasserstein-1 distance. Indeed,
for two probability measures v and V', the Wasserstein-1 distance between v and v’ is defined

by:
Wi (v, ') sup /(p (dv —dv') inf E[|X —Y]]
gol Lipschitz XNV;Y"’V/
Therefore
(2.6) Vv, e PI(R), |H(x,v)— H(x,V)| < MW;(v,V').

Then, we have the following result about the regularity of G:

LEMMA 2.2. Under Assumption 2.2, the mapping Gqo : P1(R) > v+ Go(v) is Lipschitz-
continuous in the following sense:

1 _
|Go(v) — Go(V)] < Z’/h(GO(‘}) +)(dv — dv')|,
where we recall that Go(v) is the inverse of H(-,v) at point 0. In particular,

M
(2.7) |Go(v) — Go(V')| < ;Wl (v, V).

PROOF. Let v and v’ be two probability measures on R. From Lipschitz regularity of the
positive part, we have

|Go(v) — Go(V')| < |Go(v) — Go(V')].
Next, using the bi-Lipschitz in space property of H, we get that for any 1 in P(R):

- _ 1 - =
[Go) = Go(v)| = —[H (Go(v), n) = H(Go(v), n)]-
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By definitions of H and Gg we have, for all n in P{(R): H (Go(n), n) = 0. Hence, by choos-
ingn=1"

[ _
Go) = Go(v)| = —|H(Go(v), V') = H(Go(v), V)|

1 _ -
= E|H(G0(v), V') — H(Go(v), v)|

/h(Go(v) +)(dv —dv')|.

The last assertion immediately follows from (2.6). [

1
T om

We emphasize that existence and uniqueness results hold only under Assumption 2.1
which is the standard assumption for SDEs and Assumption 2.2 which is the assumption
used in [3]. The convergence of particle systems require only an additional integrability as-
sumption on the initial condition, namely Assumption 2.3. We sometimes add the smoothness
assumption (Assumption 2.4) on 4 in order to improve some of the results.

We first recall the existence and uniqueness result of [3] in the case of SDEs.

DEFINITION 2.3. A couple of continuous processes (X, K) is said to be a flat determin-
istic solution to (1.1) if (X, K) satisfy (1.1) with X such that E(sup,e[oj] |X;|?) < oo for
some p > 2 and K being a nondecreasing deterministic function with Ko = 0.

Given this definition, we have the following result.

THEOREM 2.4 (Briand, Elie and Hu, [3]). Under Assumptions 2.1 and 2.2, the mean
reflected SDE (1.1) has a unique deterministic flat solution (X, K). Moreover,

Vt >0, K,=supinf{x >0:E[h(x + Uy)] >0},

s<t

where (U;)o<i<T IS the process defined by:
t t
(2.8) U =§& +/(; b(Xs)ds +/0 o (Xs)dB;.

With these notations, denoting by (u;)o<;<7 the family of marginal laws of (U;)o<;<1 We
have

(2.9) K; = sup Go(,).

s<t

PROOF OF THEOREM 2.4. The proof for the case of backward SDEs is given in [3]. For
the ease of the reader, we sketch the proof for the forward case. ~

Let X be a given continuous process such that, for all 7 > 0, E[sup,, | X; 1’1 < 4+00. We
set

_ L r .
O, =&+ / b(Xy)ds + / o(X,)dB;,  Law(Ty) = fis,
0 0

and define the function K by setting
(2.10) K, = supinf{x > 0: E[hr(x + Us)] > 0} = Go(iiy).

§<t

The function K being given, let us define the process X by the formula

t ~ t -
Xt=5+/0 b(X_;JdS‘i‘\/(; U(XS)dBS+K[
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Let us check that (X, K) is the solution to (1.1). By definition of K, E[A(X;)] > 0 and we
have, d K almost everywhere,

K; =supinf{x > 0: E[h(x + 03)] >0} >0,
s<t
so that E[A(X;)] = IE[h(Ut + K;)] =0 dK-a.e. since h is continuous and nondecreasing.
Next, consider the map E which associates to X the solution X of (1.1). Let us show that
E is a contraction. Let X and X’ be given, and define U, K and U’, K’ as above, using the
same Brownian motion. We have from Cauchy—Schwarz and Doob inequality

T
E[sup\xt - X;|2] < (T|bllLip +2||a||Lip)EUO X, — X;|2ds] +2sup|K, — K/|*.
t<T

t<T

From the representation (2.10) of the process K we have that

sup| K, — K/ = sup = suplGo i) — Gofi) |-
t<T

t<T

sup Go(fis) — sup Golfis)

s<t

Then Lemma 2.2 gives
M .- T

sup|K; — K||* < —E[sup|Ut — U;|2] < C(T|bllLip + 2||o||Lip)E[/ X, — X;|2ds]
t<T m  Ly<r 0

Therefore,

712 T o 5712 oy 712
E[sup|X, - X;*] < ca+ T)EU X — X} ds} < C(1+ DTE[sup| X, - X/ ]
t<T 0 t<T

Hence, there exists a positive 7, depending on b, o and h only, such that forall T < T,
the map E is a contraction. We first deduce the existence and uniqueness of the solution on
[0, 7] and then on R by iterating the construction. [J

REMARK 2.5. Note that from this construction, we deduce that for all positive r:

t+s t+s
Kiir — Ki = sup inf{x zO:]E[h(x—l—X, —|—/ b(Xu)du—i-/ U(Xu)dBu)j| 20}.
t t

O<s<r

It then follows that the unique solution of (1.1) is a Markov process on the space R x P(R),
where P(R) denotes the space of probability measures on R.

PROPOSITION 2.6. Suppose that Assumptions 2.1 and 2.2 hold. Then, for all p > 1,
there exists a positive constant C,, depending on T, b, o and h such that

E[sup Ith”] < C,(1+E[&7]).

t<T
Moreover, there exists a positive constant C, depending on p, T, b, o and h such that
VO<s<t<T, |K, —K<Clt—s|'?
and for all p > 1 such that & € ILP we have
VOo<s<t<T, E[X,—XP]<Clt—s|P/?

PROOF. We have

E[sup|x,17] <47~ [E[je]

t<T
P
[sup([ |b(X )|ds> }+E[sup }4—1(7’3}.
t<T t<T

/Ot o (Xs)dB;g
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Let us first consider the last term K7 = sup,_7 |Go(us)|?. From the Lipschitz property of
Lemma 2.2 of G, and the definition of the Wasserstein metric we have

M
since Go(up) =0 as E[#(£)] > 0 and where U is defined by (2.8). Therefore

P <2r-l <K)p{E[sup(/t]b(Xs)}ds)p] —i—E[sup
m t<T \JO t<T

so that there exists C(p, M, m) > 0 such that

t
‘sup Go(its) fo o(X,)dB;

t<T

il
T

The first assertion of the result follows from standard computations since b and o are Lips-
chitz continuous.

For the second assertion, note that from the Lipschitz property of v — Go(v) (Lemma 2.2)
and of the supremum of a Lipschitz fonction, we have

/ "o (X,)dB,

t<T1J0

t p
B[sup|X,17] = C(p. M. mE| €17 + sup( ['[pX0)|ds) +sup

t<T t<T

M M
K; — K5 =sup Go(ur) —sup Go(iur) < — Wiur, pg) < ;E“Ur - Us|]’

r<t r<s m

so that the result follows from standard computations. The third assertion ensues from the
following decomposition: X; — Xy, =U; — U; + K; — K;. U

We close this section by giving some additional properties of the solution (X, K) of (1.1)
when £ is smooth.
Let £ be the linear partial operator of second order defined by

3 1,92
(2.11) Lf@x)=ba)—f(x) + 5077 f(x)

for any twice continuously differentiable function f.

PROPOSITION 2.7. Suppose that Assumptions 2.1, 2.2 and 2.4 hold and let (X, K) de-
notes the unique deterministic flat solution to (1.1). Then the process K is Lipschitz continu-
ous and the Stieljes measure dK has the following density w.r.t. the Lebesgue measure:

ELLAXDD™

2.12 k:t>RT
12) PR TR ()]

E[h(X)]=0-

_ PROOF.  Let us first prove that K is Lipschitz continuous. To do so, we prove that s —>
Go(ps) is Lipschitz continuous on [0, T]. Indeed, since by definition H (Go(u), ny) =0, if
s < t, using (2.4),

_ ) 1 _
|Go(us) — Golpr)| < %{H(GO(MS): )|
1 _
= %|E[h(Go(Ms) +Uy)]]

1 _ t t
=—‘E[h<G0(Ms)+Us+/ b(Xr)dr+/ a(xodBr)]’.
m Ky Ky
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We get from It6’s formula, setting

. a 1 , 02
Ly:=b(y)— + —0%>—,
Y (y)ax +26 ox2

_ _ t — _
E[(Go(s) + Up)] = E[h(GoGzs) + U]+ [ E[Lx,h(Golius) +Uy)]dr
— t = —
= H(Gols), ) + [ ELLx,h(Golus) +Uy)]dr

t - _
= / E[Lx,h(Go(us) + Uy)]dr.

Since & has bounded derivatives and sup, .7 | X;| is a square integrable random variable for
each T > 0 (see Corollary 2.6), the result follows easily.

The same is true for s —> Go(us) = (Go(,us))Jr; let L be the Lipschitz constant of this
last function. For 0 <s <t < T, we have

K, = sup Go(p,) = max(sup Go(r,), sup Go(u)) =max(Ky, sup Go(ur)),

r<t r<s S<r<t S<r<t
and, forany s <r <1, Go(u,) — Go(us) < |1Go(ir) — Go(is)| < L(r — s) so that
Go(ur) <Golus) + L(r —s) < Ky + L(t — ), sup Go(u,) < Ky + L(t —5).

s<r<t
It follows that, forO <s <t <T,
0<Ks;<K;<Ks+L(t—ys).

Therefore K is Lipschitz continuous and thus has a bounded density on [0, T'] for each T > 0.
Let us fix T > 0 and prove that (2.12) holds almost everywhere on [0, 7']. Let us consider
the compact set
K:={tr [0, T]:E[h(X,)] =0}.

Due to the Skorokhod condition, k, =0 a.e. on K¢ =[0, T] \ K.
Since k belongs to L! (0,7)and 0 <m <E[h'(X;)] < M, Lebesgue’s differentiation the-
orem implies that the function

t
u(t) = /O E[1 (X,)]ks ds

is differentiable almost everywhere on [0, T'], say differentiable for every ¢ in the measurable
set E C [0, T] with AL(E€) = 0 (on which k is nonnegative). Without loss of generality, we
can assume that {0, 7'} C E€ and we have

Vie E, u'(t)=E[h(X))]k-

Since A" is continuous and bounded and X is a continuous process, the function v given by
t
v(t) = / E[Lh(X,)]ds
0

is C! with v/ (r) = E[Lh(X})].
Let us observe, that if E[Lh(X;)] > 0 for some ¢t > 0, then E[A(X,)] > 0. Indeed, by
continuity, there exists 0 < s < ¢ such that E[Lh(X,)] > 0 on [s, ] and

E[h(X))] =E[h(X,)] + /IE[ﬁh(X,)]dr + /IIE[h/(Xr)]k, dr > /I]E[Eh(Xr)]dr > 0.

N

Thus, I N E is a subset of the compact set F' = {r € [0, T]: E[Lh(X;)] <0}
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Lett € KN E. Since K is a closed set, 7 is either an accumulation point or an isolated point
of KC. In the case of an accumulation point, there exists a sequence (#,),>0 of points of X such
that 7, % ¢ and lim, o, =¢. Since N={n e N:t, <t} U{n e N:t, > t}, one at least of
the two previous sets of integers is infinite and, as a byproduct, (¢,),>0 as a subsequence with
t, >t for all n or with #, <t for all n. We keep the notation (#,),>¢ for this subsequence and
deal with the case #,, > ¢ for all n (the other case can be treated in the same way). For each n,
the equality

th th
E[h(X,n)]:E[h(X,)]—kft E[L’h(Xr)]dr+ft E[h' (X,)]k-dr

rewrites, since ¢ and #, belong to /C,

f’" E[Lh(X,)]dr + /t" E[1 (X,)]k: dr =0.
t

t
Thus, dividing by ¢, — t and sending n to oo we get, since t € E and t € F,
We have proved that, for all € K N E such that ¢ is an accumulation point of /C,
E[Lh(X/)]™

E[h'(X)]
To conclude, let us recall that the set of isolated points of /X is at most countable and thus of
0 Lebesgue-measure so that, as AL(E€) =0,
_ E[LA(X)]
"R (X)1

t:

a.e.on K. 0

REMARK 2.8. This justifies, at least under the smoothness assumption (Assumption 2.4)
on the constraint function 4, the nonnegative hypothesis imposed on 4’'.

3. Mean reflected SDE as the limit of an interacting reflected particles system. Hav-
ing in mind the notations defined in the beginning of Section 2 and especially equation (2.9),
we can write the unique solution of the SDE (1.1) as:

t t
3.1 X,=-§+/0 b(Xs)ds—i-/O 0 (Xs)dBs +sup Go(is),

s<t

where u; stands for the law of

t t
Ut=§+/() b(XS)a’s—I—/0 o (X,)dB;.

We are here interested in the particle approximation of such a system. Our candidates are
the particles

. ~: t
(3.2) Xi=§ +f ds+/ ) dB! +squo(us ), 1<i<N,
0

where B are independent Brownian motions, §i =&+ Go(;ﬁ Ny, (E1); are independent
copies of &, u denotes the empirical distribution at time s of the particles

. A~ N 1 N
U;=g’+/0 dr—i—/ dB., 1<i<N, ,,Lf,V:NZ(SU;
i=1
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and pu5N = N Zl 1 8z . It is worth noticing that

1 .
Go(uMY=inf{x>0: =S "h U >o0!.
o) =i =0: 3 hts 1) 0]

We also denote, forall t € [0, T], K,N = Sup,, Go(uév).
REMARK 3.1. At first glance, we can ask why we need to introduce é ! in equation (3.2)

instead of using £’. If this had been the case, Kév would not be equal to 0. With this choice
of starting point we have

1Y :
Ké\/:inf x>0 NZh(x—i—Ué)zO}
i=1
1Y .
=inflx>0:— ) h N>0
inf{x > N; (x+&") > }
1Y ~
=inf{x >0 NZh(x+é’+Go(u§’N))zO}=O,
i=1

by definition of Go(uéN).

REMARK 3.2. Let us emphasize that the previous system of interacting particles can be
seen as a multidimensional reflected SDE with oblique reflection. Indeed, if /4 is concave, the
set

S:={(x1,....xn) RN :h(x1) + -+ + h(xy) > 0}

is convex and the system

N t . t . .
xlzs’+/b(X;)ds+/°"X’ )dB+ K", 1<i<N,
0

N
Do h(x]) 20, z/ X)) =0,
i=1

is nothing else but the SDE driven by b and o reflected in the convex S with oblique reflexion
in the direction (1, ..., 1). We refer to [8].

In order to prove that there is indeed a propagation of chaos effect, we introduce the fol-
lowing independent copies of X

. t . 4
=§’—|—f ds—l—/ dBl—i-Squ()([Ls) 1<i<N,
0 s<t
and we couple these particles with the previous ones by choosing the same Brownian motion.
We also introduce the decoupled particles U', 1 <i < N:

_ . t _. t _. .
Ui =¢'+ [ b(E)ds+ [ o(X)dBlL 1z0,

Note for instance that the particles U’ are i.i.d. and let us denote by " the empirical measure
associated with this system of particles.

We have the following result concerning the approximation (1.1) by the interacting parti-
cles system (3.2).
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THEOREM 3.3. Let Assumptions 2.1 and 2.2 hold and T > 0.

(1) Under Assumption 2.3, there exists a constant C depending on b and o such that, for
each je{l,...,N},

. _ . M2 M2
i vil? ” QT Ar—1/2
]ELSEI;IXS X/ ]§Cexp<C(1 + m2)(1 +T )) m2N :

(i1) If Assumption 2.4 is in force, then there exists a constant C depending on b and o such
that, for each j € {1,..., N},

Lo M? 1472
J_xi? el 2 2N\ -1
IELSISJI;IXS el ]§Cexp(C(1 + m2)(1 4T )) s (1 +E[§1;13|XT| vt

REMARK 3.4. As shown in [6], the rate in case (i) is optimal in full generality for the
control of the Wasserstein distance of the empirical measure of an i.i.d. sample of random

variables towards its own law. It is interesting to note that the supremum over time implies
no loss here, as the “propagation of chaos” is mainly herited from the reflection term through

SUPg < le(llév» Ws)-
PROOF OF THEOREM 3.3. Lett > 0. We have, forr <t,
X - %] < |8 &

+ [N = b(xids +| [ (0 (xd) o (1)) aB]

+

sup Go (1) — sup Go(es)
s<r

s<r

Let us study the first term:
§/ — &7 =[Go(u*")| = [Go(ug) — Goko)| < sup|Go(ny') — Go(s)|.

S<r

Taking into account the fact that

[sup Go(1d) — sup Go(1y)| < sup|Go(iY) = Go(ues)| < sup|Go(ud) — Go(uy)|
S<r S<r sS<r s<t

<sup|Go(ul) — Go(ia) )| +sup|Go()) — Golu)

s<t §S<t

El

we get the inequality
3.3)  sup|X] —X/| <1/ (1) + 2sg§}GO(MSN) — Go(aM)| + 25213|G0(;1§V) — Go(us)
s< §=

r<t

’

where we have set

H@) = /()t|b(X§)—b()?f)|ds+sup

r<t

r . P—— .
[ exh) =o(xi))asl].
On the one hand we have, using Doob and Cauchy—Schwarz inequalities

. f S
E[|I{ )] <ca +z)/ E[|x/ — X/[*]ds,
0

where C depends only on b and o.
On the other hand, by using (2.7),

N M TN e M i i
SUP|GO(M)—GO(MS)|§;§‘£WZ|US—US\SZNZf;‘iIﬂUs—Us}v
i=15=

s=t =tz
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and Cauchy—Schwarz inequality gives, since the variables are exchangeable,
21 N 2
N 2] Mol i_ il M J_i)?
EsuplGo(ie') — Go(i) ] =, 5 Ni§:1E[§l§;\Us Uif] = B[ supld = O]

Since,

vl -0l = [ ) - p&)dr + [ (0 (x)) - o (X)) dB]

the same computations as we did above lead to

M? t A
E[sup|Go(M§V)—Go(,1§V)|2]5C—2(1+z)/ E[|X] — X/|*]ds, C:=C(o,b)>0.
m 0

s<t

Hence, with the previous estimates we get, coming back to (3.3),

. _ . _ [t . _ .
E[sup|x/ — X/|*] < c/o E[|x] — X][*]ds + 6E[sup| Go (i) — Go(us)|’]
§s<t

r<t

_ [t . _ .
< cf E[sup|X{ — XJ|*|ds + 6E[sup| Go(2)) — Golus) ],
0 r<s s<t
where C =C(14+1)(1+ Mz/mz). Thanks to Gronwall’s lemma,
fsuplx/ — X/P*] = Ce B [suplGo(l) ~ Gouo ]
r<t s<t
By Lemma 2.2 we know that

/h Go(ps) + ) ([did — dus) 2}’

& sup|Go(a) ~ Gotuo) ] = [sup

s<t s<t

from which we deduce that
2_

o Ao 1
J_xi? Cr_—_
(3.4) E[§1;1;>|Xr X/ ] <Ce sz[s:;[t)

[ #Gotus) + )il = )

Since the function # is, at least, a Lipschitz function, we understand that the rate of conver-
gence follows from the convergence of empirical measure of i.i.d. diffusion processes.

Proof of (i). In full generality (i.e., if we only suppose that Assumption 2.2 holds) we get
that

)< s wita )

m2 s<t

—E |:sup

m? s<t

/ 1(Golus) + ) (di — duy)

The crucial point here is that we consider a uniform (in time) convergence, which may possi-
bly damage the usual rate of convergence. We however succeeded in preserving this optimal
rate.

Thanks to the additional Assumption 2.3 and to Proposition 2.6, we will adapt and simplify
the proof of Theorem 10.2.7 of [11] using recent results about the control of Wasserstein
distance of empirical measures of i.i.d. sample to the true law by [6], to obtain

E[sup Wiy, ,us)] <CN712,
s<T
Indeed, let n be a positive integer and set ty = k7 /n, 0 <k <n. Asin [11], denote

=S <lk+1
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Then
sup Wi (i, ) < 3[ml§x Zj + max WE(ip . ty) +max  sup Wi, Mr)]-

s<T k  f<t<tpi

Now, using the regularity properties of Proposition 2.6 and proceeding exactly as in [11],
Theorem 10.2.7, we have that there exists C > 0 such that

C C
W2 (s 11r) < p E[max Z;] < N

We are led to control [E[maxy le(/liz’ , Mg )]: first remark that

B[ max W7 () )| < x/ﬁ\/mng[Wf‘ (i - )]
Use now Assumption 2.3 and Theorem 2 (case (3)) in [6] to get

C
E[Wl (/'l’tk’ :“fk)] N2

from which we deduce that

N n

and optimization procedure on n finishes the proof. Let us emphasize that this result does
not care of the fact that % is an empirical measure associated to i.i.d. copies of a diffusion
process.

Proof of (ii). In the case where h is a twice continuously differentiable function with
bounded derivatives (i.e., under Assumption 2.4), we succeed in taking benefit from the fact
that 2"V is an empirical measure associated to i.i.d. copies of diffusion process, in particular
we can get rid of the supremum in time. In view of (3.4), we need a sharp estimate of

2
[sup }
s<t

Let us denote by 1 the Radon-Nikodym derivative of Go(u.) (we have proved in Proposi-
tion 2.7 that s —> Go(us) is Lipschitz continuous). By definition, we have, denoting by Vi
the semimartingale s —> Go(us) + Ui I since U' are independent copies of U,

Ru(s)i= [ h(Goluo) + ) — dis)

E[sup WE(al, Mv)] = C[ﬁ ; }

s<1

[ #(Gotus) + ) @i - dw)

N
= — > h(Go(us) + UY) —E[h(Go(es) + Us)]

- % ﬁ:{h(éo(us) +U;) = E[(Go(s) + Uy)]}

From It6’s formula we have

h(VE) = h(V)) +/ w,dr+/ Lg h(V, dr—i—/ o(X')dB!

h(VE) +/ VO + Lz h(V, dr—i—/ o(X')dB.,
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) +/
_0+/

We thus deduce immediately that

so that

E[h(Vi)] = Vi, + Ly h(V/)]dr

Vi, + Ly h(V))]dr.

| LR QLA
N(G)=— o) t = ryar + Mpy(s
Ru(s) = 37 32 h(V5) NZ/O Y (r)dr + My (s)

N
NZ (V§) +/< ZY’(r))dr+MN(s)

where we have set

Y'(r) =0 (Vi) + Lz, h(V}) = E[R' (V)Y + Ly h(V))].
My(s) = Z / o(X')dBi.
As a byproduct,
1 N
sup| Ry ()] < | 3 (V) ZY (r)|dr + sup| M (s)]
<t i=1 s<t
1 g i f1 i
— > h(V, — Y d M .
< N; (%) +/0 N; (r) r+§1;1[)| N ()|

We get, using Cauchy—Schwarz inequality, since U’ and X' are i.i.d,

E[sup|RN(s){2]

s<t

<3

=3

Var

Var

Var

Z|~

—_

| N:

M= i=

™=

h(Vs)

h(V)

h(Vé)

] o
_+E[<0 N:l
t
+tE[/ON
t
_+t/ (N

2
Y rie) dr) :|+E[sup|MN(s)|2]}
. S<t

zdr:| +E[sup|MN(s)| ]}

) |

> Yin

i=1

RLG!

i=1

dr +E[sup| My (5)[]

§S<t

Thus, we obtain defining accordingly to V'’ (resp. C?) the semimartingale V (resp. centered

r.v.Y)

E[sup\RN(s)|2]

s<t

=

le le

ar[h(Vo)] +

ar[2(Vo)] +

/ Var(Y (r) dr+3E[sup|MN(s)] ]

f Var(' (Vo)

<t

+ Lx, h(V,))dr + 3E[sup| My ()| ].

s<t
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Since My is a martingale with

Doob’s inequality leads to

E[sup| My (5)/*] < 4E[| My (1))

s<t

4 N

= 5 2 [ L (v)o (D) ]ar

4
== /0 E[(h (Vo) (X,))*]dr
Finally, using the fact that /2 has bounded derivatives, b and o are Lipschitz, we get

E[glig\RN(s)yz] <C(1+2)(1+E[sup X, P[)N".

S<t

This gives the result coming back to (3.4). [

4. A numerical scheme for MRSDE. We are interested in the numerical approximation
of the SDE (1.1) on [0, T']. Here are the main steps of the scheme. Let 0=Ty <71 < --- <
T, = T be a subdivision of [0, T']. Given this subdivision, we denote by *“_” the mapping
st>s =Ty if s € [Ty, Tr4+1), k €{0, ..., n — 1}. For simplicity, we consider only the case of
regular subdivisions: for a given integer n, Ty = kT /n, k=0,...,n

Let us recall that we proved in the previous section that particles system

. t
X;:§‘+/(; ds—i—f NdB! +supGo(ul), 1<i<N,

St

where we have set

. A s 1 N
U§=Sl+f0 dr—i—/ dB!, 1<i<N, M?’:NZ‘SU;"
i=1

B! being independent Brownian motions and éi =&+ Go(;ﬁ Ny, (ED; being independent
copies of &, converges toward the solution of (1.1). Thus, the numerical approximation is
obtained by an Euler scheme applied to this particles system. We introduce the following
discrete version of the particles system

N t .
=gl+/0 ’ids-i-/ ;dB’+squo( M, 1<i<N,

s<t

with the notation K¥' = sup, _, Go () and

L too .
U;=g’+/0 llds+_/ ’idB’ 1<i<N, AN =— Zé~,.
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Algorithm 1 Particle approximation
1: for1 <j<Ndo

2: Simulate (51 LENY, compute GO(MS’N) and (él, e éN).

v Xp=Oy=8. ) = 1 TN, 5

4: end for

5:for1 <k<ndo

6: for1 <j<Ndo

7. G/ ~N(©,1) ) )

8: (U1 = (Ug,_) + (T/mb(X1,_))) + VT o (X7,_))G
9: end for

100 g =N 8,

11: AKN = = sup; < GO(MTI) SUp;<x—1 Go(,ll%)
12: for1 <j<Ndo

13: X1 = (X7, )} + (T/n)b(X1,_)) + VT /o (X1, )G/ + A KN
14: end for
15: end for

4.1. Scheme. Using the notations given above, the result on the interacting system of
mean reflected particles of the MR-SDE of Section 3 and Remark 2.5, we deduce Algorithm 1
for the numerical approximation of the MR-SDE.

REMARK 4.1. We emphasize that, at each step k of the algorithm, we approximate the
increment of the reflection process K by the increment of this approximation:

A KN = Squo(ﬂ%) — sup Go(ﬁ%)-
I<k I<k—1

As suggested in Remark 2.5, this increment can be approached by:

SR it = 00 09 (s (81 4 o5 )+ (R 06) 20

i=1

Indeed, using the same kind of arguments as in the sketch of the proof of Theorem 2.4,
one can show that the increments of the approximated reflection process are equals to the
approximation of the increments:

Vkell,...n): MK =AKRN.
4.2. Scheme error. We recall that X’ denotes an i.i.d. copie of X:
— ¢! +/0tb()_(§)ds +/()to()?§)dB£ + K,
we have the following result.

THEOREM 4.2. Let T > 0, N and n be two nonnegative integers. Let Assumptions 2.1,
2.2 and 2.3 hold.

(1) There exists a constant C depending on T, b, o, h and & such that: foralli € {1,..., N},

. 1
E[sup]X; —XHZ]—FE[sup]K, KN|2] <C( 087 _1/2>.
t<T

t<T
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(i1) If in addition 2.4 hold, there exists a positive constant C depending on T, b, o, h and &
such that: foralli €{1, ..., N},

E[sup|X§—)~(§|2]+E[su[TJ|Kt— N ] <C<1 =1 —I—N_l).
1=

t<T

PROOF. Concerning X, the proof is straightforward. Write
|X; — X <X — X+ |X; — Xj .

We bound the first term in the above right-hand side by using the proof of Theorem 3.3 and
the second term with the following proposition, which gives the error approximation of the
Euler discretization.

PROPOSITION 4.3. Let T > 0, N and n be two nonnegative integers and let Assump-
tions 2.1, 2.2 and 2.3 hold. There exists a constant C, depending on T, b, o, h and & but
independent of N, such that: foralli =1,..., N,

E[sup|X§ —

s<T

~ 1
X;|2]§C%.

Concerning K, we write

K; — K =sup Go(s) — sup Go(ii))

s<t s<t

=sup Go(s) — Sup Go(ul) 4+ sup Go(u)') — sup Go(il).

s<t s<t s<t

Then

E[sup|K, — K" [*] < E[sup|Go(r) — Go(uy")[*] + E[sup|Go (1)) = Go(i) *].
t<T t<T

t<T

We bound the first term by using the proof of Theorem 3.3 and the second term by using the
proof of Proposition 4.3. [

PROOF OF PROPOSITION 4.3.  Let us admit for the moment the following result that will
be useful for our analysis and whose proof is postponed at the end of the current one.

LEMMA 4.4. There exists a constant C such that

1 2
E[sup |B, - Bl'] < C(%) .

s<T

We may now proceed to the proof of Proposition 4.3. Let us fixi € {1,..., N} and T > 0.
We have, fort < T,

. ~. t . . .
X = x| = [ b(xd) — (D s + | [ (0 (X)) — o (XD a,
+sup|Go (i) — Go(A))-
s<t

Hence, using Cauchy—Schwarz and Doob inequality we get

. -~ t . -~
@1 E[sup|xi - Xi] < c/ E[|X] — X} [*]ds + E[sup| Go(n)') — Go(id) ]
s<t 0 - s<t -
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We now deal with the last term in the above right-hand side: from Lemma 2.2 we have

elsplcat) - 6o = (3) Bl oy 1oz 00

§S<t §S<t

< 2(%>2E su L iHUj —UJ1>+ |0 =0/}
- m SSIt) N j=1 ’ ’ ’ > ’
and, by exchangeability of the particles,
- M\? T ~i i
4.2) E[sup|G0(,uf,V) — Go(uﬁv)|2] < 2<—) E[sup}US’ - U, ]2 + sup|U; — U; ]2]
s<t = m s<t s<t -

For the first term of the right-hand side, let us observe that, by exchangeability again,

E[ﬁg};lUﬁ - 0i°]
1]

@ <ol ([ e -s@lar) + | -t

< tlblR, [ EX: - XEP1ds + 20017, /0 B[} - %4 ds.
‘We have for the second term

E[sup|l~]si — ﬁé{z] < E[sglt){|b(}~(§_)|2(s — )2+ |a()?;)}2(BS — Bi)z}].

s<t

Since
elsuplb () P ~97] = 1+ 8fsupl P (5)

and

E[sup|a( ;_)| (Bs — By) ] [sup|0( ;){ ]I/ZE[sgngs —B£|4]1/2

s<t s<T -
~ . a11/2 1/2

< (1+E[sup|Xi[*] ")E|sup By — By|*] ",

= C(1+E[supl %3] )E[sup B, — 5]
we thus obtain

~ 1

4.4) E[sup|07 - 0! ] < =20

s<t = n
Using (4.4) and (4.3) with (4.2) we get

@5 E[swplGo() - Gol(i) ] = C{(log"> + [ mlxi- %[ ds}.

n

Plugging this estimate in (4.1) gives
4.6) E[|x! —;2;'|2]5c{(1"$)+/0t]a[yx;i—xg|2]ds}.
Since
E[|X{ — X, '] < 2E[|X] - X{["] + 2E[| X} - X, ']

X{[*]+2E[|0] - O[],

=2E[|X] —
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it follows from (4.4) and (4.6) that

. ~ . 1 ¢ . ~.
BlJx; - i) < of (<21 + [ Ellxi - %iP)as |,

n

and we conclude the proof with Gronwall’s lemma. [J

PROOF OF LEMMA 4.4. Let us start by observing that

sup |Bs — Bg| =  max sup  |By — By
s<T T k=0T < <Tiyy
= max sup max(By; — By, —(Bs — Bry))
k=0,...n=1 T} <s<Tjy
<  max sup (By— Br,) + max sup  (—(Bs — Bp)).
k=0,...n=1 T} <5 <Tpy k=0....n=1 T} <5 <Tpy
Since the random variables supy, <7, (Bs — Br), k =0, ..., n —1, as well as the variables
SuPkassTkH(_(BS — Br)), k=0,...,n — 1, are independent and have the same law as
|BT1 |7
4 T? 4 4
E[sup |B; — By|*] < 85 E[max(IG11*,..., 1G.l")],
s<T n
where G, k =1, ..., n are independent normal Gaussian random variables.

Let f be the function defined on R by f(x) = eV!T*/10; £ is convex, increasing with
values in [e, +oo[. The inverse of f is concave on [e, +00[, increasing and f _l(y) =
16[(log y)2 — 1]. We have, by Jensen inequality,

E[ max Ge*|=E[ max 770 f(1Gu")] < /7" (B[ max (1Gel*)]).

..........

from which we deduce that

Bl max 1Gyt*] < £~ (E[Z f (lel“)D = T E[f(IG1H)]) = £ (neB[el O F/4)).

,,,,, =1

Finally, we have
7 (neE[elO1/4]) = £~ (nev/2) = 16((1 + logn + log(2)/2)* — 1).

This concludes the proof of the lemma. [

5. Numerical illustrations. Throughout this section, we consider, on [0, T'], the follow-
ing type of processes:

t t
X, =& —/O B +asxs)ds+/0 (03 + 75 X,) dBy + Ki.

5.1
E[h(X))] =0, / E[h(Xs)]dK; =0,

0
where (8:)r>0, (ar)r>0, (01)r>0 and (y;);>0 are bounded adapted processes. This kind of
processes allow us to make some explicit computations which, in turn, allow to illustrate
the algorithm. Our results are then presented for different processes of the form of (5.1) and
functions /4. Associated computations are postponed to Section 5.2 below.
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5.1. Hllustrations. Let 0=Ty < Ty <--- < T, =T be a subdivision of [0, T] of step
size 1/n, n bemg a positive integer. Usmg Algorlthm 1 we draw L independent copies of
((X II<i<N, K 2 )0<k<n> with K]TV = Z[ | A¢K" and N is the number of path of particles

over the time 1nterva1 [0, T']. We denote it by (X nlgN N.by 1<i<N,1<i<L. We show in the plots
below the approximation of the reflection process K by the empirical mean of the i.i.d. copies
of our estimator K ]Tvk obtained by Algorithm 1. In order to illustrate the variance of the esti-
mation of the reflection process K, we plot the boxplots associated with (K ,N ’l) 1<i<L for five
arbitrary times ¢ in [0, T']. Indeed, apart from one example (case (iii) below), it appears that
the amplitude the empirical 95% confidence interval obtained from the (K tN ’1)1515 L 1s too
small to deserve the numerical illustrations.
When possible approximate the IL>-error in Theorem 4.2 by:

1/2
(5.2) ( Z max |XTk —XTk )

0<k<n
and
| L 1/2
53 EX == max |K KN .
5-3) (Ll_10<k§n| n— Kg,|

Every simulation are launched on Matlab and the minimisation used to compute the increment
of the reflection process Ay K N k=1,...,nis done through the Matlab function fsolve.

Linear constraint. We first consider cases where h : R x+——x — p e R.

Case (i) Drifted Brownian motion: ;=8> 0,a; =y, =0,0, =0 >0, =x90 > p. We
have

K= (p+Bt—xot.

Figure 1 represents the evolution of the empirical mean of the (IZ N.Iy 1<i<1 (circles) and K
(full line) with respect to time. We notice that the approximation of K is very close to the
exact solution with small variance. Figure 2 represents the evolution of log(E ) and log(E" Ky
w.r.t. log(N). We get a slope of 1/2, which is consistent with Theorem 4.2.

Empirical mean of estimated K, (circle) and true K, (full line) Boxplot of the estimated K'

15
T T T T T T T T T 16F T T T T T .
14 +
12 A
1 ‘%
1k * i
ES Sos 1
g S —+
——
06 [ T
05
04
02 q
oF — i
. L L L . L L 1 | I L I
0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1 0.192 0.394 0.596 0.798 1
time time
true values of K (respectively): 0 0.28788 0.69192  1.096 15

FI1G. 1. Case (i). Left: value of the empirical mean of KN 1 <1 <L and K; w.rt. time. Right: boxplots of es-
timated K; for five arbitrary times t. Data: n = 100, N =2000, L =1000, T =1,8=2,0 =1, xg=1,p=1/2.
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Regeression: Slope =-0.49688 Regeression: Slope = -0.46334

AN - - - - Slope & Intercept AN -~~~ Slope & Intercept
N 22
RIS S N
24
2}
26
‘o
25} & 28 )
3 . 3+ .
o, o
N 32+
351 8.
) -34 o o
o o,
a4l .
®. 36
© [}
45 \ L L . . . . 38 - - L L L L )
45 5 55 6 65 7 75 8 45 5 55 6 65 7 75 8

FI1G. 2. Case (i). Regression of log(E) and log(EK) w.r.t. log(N). Data: E when N varies Jfrom 100 to 2200
with step size 300. Parameters: n =100, T =1, =2,0 =1, x9g=1, p=1/2, L =1000.

Case (ii) Ornstein Uhlenbeck process: 8 = >0,a; =a >0,y =0,0, =0 >0, & =
xo with xg > p > —fB/a. We have

K;=(ap+B)(t —t*) ;> where * = é(ln(xo + B/a) —In(p + B/a)).
Figure 3 represents the evolution of of the empirical mean of the (Ig N, )1<i<1 (circles) and
K (full line) with respect to time. As in the previous example, the approximation of K is very
close to the exact solution with small variance. Figure 4 represents the evolution of log(ﬁ)
and log(E Ky w.rt. log(N). We get a slope of 1/2, which is consistent with Theorem 4.2.
Case (iii) Ornstein—Uhlenbeck process with stochastic mean parameter: 8 = 8 > 0, a; =
—€B;,e>0,7,=0,0, =0 >0,& =x0, x0> p. When e — 0"

2 2
‘ 8

K, = (p —xo+ Bi— oe—)l[,*,;[a) + (—(xo 4 _)1,2,-+0<e>,
2 2eo

where 7 = /(eo) and t* = (B — |/ B2 — 2(xo — p)o€)/(€0).

Mean of K {circle) and true K, (full line) Boxplot of the estimated K'
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2l 4
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+ 4
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| —= 4
. L I L .
0 0.1 0.192 0.394 0.596 0.798 1
time
true values of K (respectively): 0.083348 1.1339 21844  3.2349 4.2854

FI1G. 3. Case (ii). Left: value of the empirical mean of KNL 1 <1 <L and K; w.rt. time. Right: boxplots of
estimated K; for five arbitrary times t. Data: n = 100, N =2000, L =1000, T =1, =2.1,a=1,0 =1,
p=31l,xp=p+1.
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a- Regeression: Slope = -0.49494 o Regeression: Slope = -0.46143
Q O Daa Q O Data
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FIG. 4. Case (ii). Regression of log(E) and log(EX) w.rt. log(N). Data: E when N varies from 100 to 2200
with step size 300. Parameters: n =100, T =1,8=2,0 =1,x9 =1, p=3.1, L =1000.

Figure 5 represents the of the empirical mean of the (IE NI )1<i<L (circles) and K (full line)
with respect to time. The times 7* and ¢ are also ploted. We notice that the approximation of
K is biased on [#, T'], this may comes from the fact that we plot the first order approximation
of Kine.

REMARK 5.1. The reader may object that case (iii) is out of the scope of our theoretical
results, which is true. We nevertheless choose to give this example in order to illustrate,
numerically, the robustness of the method.

Case (iv) Black and Sholes process: gy = > 0,a; =a >0, 0 =0, y; = y > 0. Then
1
K= (ap+B)(t —t*) ;> wherer* = g(ln(xo + B/a) —In(p + B/a)).

Figure 6 represents the evolution of of the empirical mean of the (I% N ’1)1515 1. (circles)
and K (full line) with respect to time. We notice that the approximation of K is quite precise
with small variance. As in cases (i) and (ii) the coefficients a, 8, o and y are constants and
the constraint is linear, the numerical scheme is closer to the exact solution than in case (iii).

Mean of Kt (circle) and associated 95% centered Cl (dotted lines) and true K‘ (full line)
12 T T T T T T T T T

08 T

value
o
o
T
|

04 b

02 h

0 L L L I I I ! I
0 0.5 1 15 2 25 3 35 4 4.5 5

time

FIG. 5. Case (iii). Value of the empirical mean of KN 11 <1 < L and associated 95% approximated cen-
tered confidence interval and K; w.r.t. time. Data: n =200, N = 10,000, L =100, T =5, 8 =1, € =5/100,
o=1/Q2e),xg=1, p=0.9.
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Mean of K‘ (circle) and true K: (dotted line) Boxplot of the estimated Kt
45 T T T T T T T T T
+ i
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S
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P L 1 L 1 L 1 1 L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.192 0.394 0.596 0.798 1
time time
true values of K (respectively): 0.083348 1.1339 2.1844 3.2349 4.2854

FIG. 6. Case (iv). Left: value of the empirical mean of KN 1 <1< L and K; w.rt. time. Right: boxplots of
estimated K; for five arbitrary times t. Data: n = 100, N = 2000, L =1000,T =1,a=1,y =1, xg=4,p=1.

Nonlinear constraint. Second, we illustrate the case of nonlinear function 4:

h:Roxr—>x+4asinx)—pelR,—1<a<]l.

Case (v) Ornstein—Uhlenbeck process: a; =a >0, 8, =>0,y,=0,0, =0 >0,§ =
Xxo with xg > || + p. We obtain

dK; = e~ dsup(F,' (0))",

s<t

where for all 7 in [0, T'],

FF:Rox— {e_‘”<xo —,B(ema_ 1) +x>
+ aexp(—eat;—; sinh(at)) sin(e“’ <x0 - ﬁ(e‘”a— 1) +x)> - p}.

Figure 7 represents the evolution of of the empirical mean of the (I% NI )1<i<L (circles)
and K (full line) with respect to time. We notice that the approximation of K is precise with
a small variance, although the latter is higher than most of the previous examples. This is
obviously due to the nonlinearity of the /& constraint function.

5.2. Proofs of the numerical illustrations. In order to have closed, or almost closed, ex-
pression for the compensator K we introduce the process Y solution to the nonreflected SDE

t t
=t [ Btarods+ [ @+nras.
Letting A; = fot ay ds and applying Itd’s formula on e (X; — Y;), we get
Xi=Y + e_At /

0
Hence, the constraint E[/(X,)] > O rewrites

t t
eMdK +e A / ey (X5 — Yy) d By.
0

t t
(5.4) E[h(Yt + e A / eMdKg +e M / ey (X — Ys)stﬂ > 0.
0 0
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Empirical mean of estimated K‘ (circle) and true K‘ (full line) Boxplot of the estimated Kt
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true values of K (respectively): 0.44513 0.67611 0.7922 0.87995 0.9604

FIG. 7. Case (v). Left: value of true and empirical mean of estimated K; w.r.t. time. Right: boxplots of estimated
Ky for five arbitrary time t. Data: n =200, N = 10,000, L =100, T =15, 8 = 10_2, o=1,p=n/2,a=0.9,
X is the unique solution of x + a sin(x) — p =0 plus 101,

PROOF OF ASSERTIONS (i), (ii) AND (iv). The formula for K comes from the expres-
sion of its density given in Corollary 2.7 and the fact that in all these cases

E[Y,]—pze_m(xo-F'B)—<P+§)- O

a
PROOF OF (iii). Recall that we supposed /4 : R > x — x — p € R. In that case, since
y =0, the constraint (5.4) becomes

(5.5) E[e—/‘f f o dKS} > p —E[Y;],
0

so that K is nondecreasing with Ko = 0 and, for all ¢ in [0, T'],

t t
(5.6) E[e_A’/ efs sz} > p —E[Y,], f (E[X,] — p)dK; =0.
0 0
Note first that since

E[Y,] =E[e*]xo — IE[ / e~ As—Ag dr} + E[e—As / Ao dB,},
0 0

and using the integration by parts formula we have

N N N N
E[e_AS / Ao dBr] = O'E[/ D, (e_AS)eA’ dr:| = —O’E[/ / (Dyay) due™As—4r) dr].
0 0 0 Jr

Remember that, in this case, we supposed that T < 1, §; = 8 > O and a; = —€ B; fore > 0
supposed to be small enough. We here illustrate the dependence of the processes w.r.t. the
parameter € by adding a superscript € on Y and K. Since fs’ B, dr is a centered gaussian
random variable with variance (7 — 5)3 /3, we have

€1_ . €6 ! €2(1—5)3/6 ! €2 (t—5)3/6
E[Y]] = xpe Bl e ds+oe | (t—s)e ds,
0 0

t
E[Xf]=]E[Yt€]+/(; 652(t—s)3/6sze‘
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Therefore, for all s <¢,

2
E[X{] —P=Xo—p—ﬁs+ea% +o0(€) + K; (14 0(e)).

It follows that, up to o(¢),
s2\ T
K= sup(—(xo —p)+Bs — oe—> .
s<t 2

Since € — 07, we assume that 82 > 20 (xo — p) and we obtain Kf=0ift <t*,

12 B

Kf:—(xo—p)+,3t—aez ifr* <t <—,

€0
K i B

where 1* = (8 — /B2 — 2e0 (xo — p))/(e0). O

PROOF OF ASSERTION (v). In that case, we have

at_l t
Y,:e_‘”(xo—ﬁ<e - ))—i—ae_‘”fo e” dBs = f; + G,

and
_ _ t
Xt:Yt—i-e_ath, Kt:/ eades.
0
Hence
hX) =Y +e “K +asin(Y; +e “K,)—p
=Y, +e K, +a(sin(Y;) cos(e” K;) + cos(Y;) sin(e ' K,)) — p
=Y, +e YK, +afcos(e™™ K,){sin( f;) cos(G;) + sin(G;) cos(f3)}
+ sin(e~“" K;){cos(f;) cos(G;) — sin(f;) sin(Gy)}] — p.

21—¢ 20 o 2¢—at sinh(at)

Since G, is a centered gaussian random variable with variance 0~ ~—_— = R

2
E[sin(G;)]=0 and E[cos(G,)]= exp(—e_“’% sinh(at)) =:g(1),

we obtain that
E[h(X)] = f(t) + e K, +ag@)sin(f; + e ' K;) — p
= F,(K;).
Therefore,

K, =sup(F,71(0))" and dK,=e""dsup(F,'(0)".

S=t s<t O
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