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APPROXIMATION SCHEMES FOR VISCOSITY SOLUTIONS OF FULLY
NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

BY BENJAMIN SEEGER

CEREMADE, Université Paris-Dauphine and Collège de France seeger@ceremade.dauphine.fr

The aim of this paper is to develop a general method for construct-
ing approximation schemes for viscosity solutions of fully nonlinear path-
wise stochastic partial differential equations, and for proving their conver-
gence. Our results apply to approximations such as explicit finite difference
schemes and Trotter–Kato type mixing formulas. The irregular time depen-
dence disrupts the usual methods from the classical viscosity theory for creat-
ing schemes that are both monotone and convergent, an obstacle that cannot
be overcome by incorporating higher order correction terms, as is done for
numerical approximations of stochastic or rough ordinary differential equa-
tions. The novelty here is to regularize those driving paths with nontrivial
quadratic variation in order to guarantee both monotonicity and convergence.

We present qualitative and quantitative results, the former covering a wide
variety of schemes for second-order equations. An error estimate is estab-
lished in the Hamilton–Jacobi case, its merit being that it depends on the path
only through the modulus of continuity, and not on the derivatives or total
variation. As a result, it is possible to choose a regularization of the path so as
to obtain efficient rates of convergence. This is demonstrated in the specific
setting of equations with multiplicative white noise in time, in which case the
convergence holds with probability one. We also present an example using
scaled random walks that exhibits convergence in distribution.

1. Introduction. We construct numerical schemes to approximate viscosity solutions of
fully nonlinear pathwise stochastic partial differential equations, and prove that they con-
verge under quite general assumptions. Among the approximations that we study are finite-
difference schemes and Trotter–Kato type product formulas. The former raise the possibility
of numerical implementation, which we justify with precise error estimates in the first-order
setting.

More precisely, given a finite horizon T > 0, we consider pathwise viscosity solutions of
the initial value problem

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

du = F
(
D2u,Du

)
dt +

m∑
i=1

Hi(Du) ◦ dWi in R
d × (0, T ] and

u(·,0) = u0 in R
d,

where W = (W 1,W 2, . . . ,Wm) : [0, T ] → R
m is a continuous path and the initial da-

tum u0 : Rd → R is bounded and uniformly continuous. The precise assumptions on H =
(H 1,H 2, . . . ,Hm) : Rd → R

m and F : Sd × R
d → R, where Sd is the space of symmetric

matrices, are specified later. We emphasize here that F is assumed to be degenerate elliptic,
that is, F(X,p) ≤ F(Y,p) whenever p ∈ R

d and X,Y ∈ Sd satisfy X ≤ Y .
The technical assumptions and theorems are stated in full generality later in the paper.

First, we describe the main results in a simplified context to provide a flavor for what is to
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follow. Afterwards, we provide some background on the notion of pathwise viscosity solu-
tions, the history of the study of the equation, and its applications. The Introduction concludes
with a description of the organization of the rest of the paper.

We note that, in the sequel, the term “classical viscosity theory” refers to the Crandall–
Ishii–Lions [10] theory of viscosity solutions, which applies to (1.1) when W is continuously
differentiable, or to the theory of equations with L1-time dependence put forth by Ishii [16]
and Lions and Perthame [22] for Hamilton–Jacobi equations, and by Nunziante [28] in the
second order case, which includes (1.1) when W has bounded variation.

1.1. The main results. Assume for now that d = m = 1, F and H are both smooth, and
F depends only on uxx , so that (1.1) becomes

(1.2) du = F(uxx) dt + H(ux) ◦ dW in R× (0, T ] and u(·,0) = u0 in R,

or, in the first order case, when F ≡ 0,

(1.3) du = H(ux) ◦ dW in R× (0, T ] and u(·,0) = u0 in R.

Here and throughout the paper, the solutions of equations like (1.1), (1.2), and (1.3) are to be
understood in the pathwise, or stochastic, viscosity sense (see Definitions 3.1 and 3.2 below).

The approximations are constructed through the use of a scheme operator, which, for h >

0, 0 ≤ s ≤ t ≤ T , and ζ ∈ C([0, T ];R), is a map Sh(t, s; ζ ) : BUC(R) → BUC(R), whose
properties will be made more precise in Section 4. Here, BUC(Rd) is the space of bounded,
uniformly continuous functions on R

d .
Throughout the paper, the symbol P denotes a partition of [0, T ] and |P| its mesh size,

that is,

P := {0 = t0 < t1 < · · · < tN = T } and |P| := max
n=0,1,...,N−1

(tn+1 − tn).

Given such a partition P and a path ζ ∈ C([0, T ];R), usually a piecewise linear approxi-
mation of W , we first define the function vh(·; ζ,P) by

(1.4)

⎧⎪⎪⎨
⎪⎪⎩

vh(·,0; ζ,P) := u0,

vh(·, t; ζ,P) := Sh(t, tn; ζ )vh(·, tn; ζ,P)

for n = 0,1, . . . ,N − 1 and t ∈ (tn, tn+1].
The strategy is to choose families of approximating paths {Wh}h>0 and partitions {Ph}h>0

satisfying

(1.5) lim
h→0+ ‖Wh − W‖∞ = 0 = lim

h→0+ |Ph|,
in such a way that the function

(1.6) uh(x, t) := vh(x, t;Wh,Ph)

is an efficient approximation of the solution of (1.1).
As an example of the types of schemes studied in this paper, we consider here the following

adaptation of the Lax–Friedrichs finite difference approximation, a formulation for which can
be found in the work of Crandall and Lions [11] in the classical viscosity setting.

For some εh > 0, define

Sh(t, s; ζ )u(x) := u(x) + H

(
u(x + h) − u(x − h)

2h

)(
ζ(t) − ζ(s)

)
+

(
F

(
u(x + h) + u(x − h) − 2u(x)

h2

)
(1.7)

+ εh

(
u(x + h) + u(x − h) − 2u(x)

h2

))
(t − s).
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The first result, which is qualitative in nature, applies to the simple setting above as follows:

THEOREM 1.1. Assume that, in addition to (1.5), Wh and Ph satisfy

|Ph| ≤ h2

‖F ′‖∞
and εh := h‖Ẇh‖∞

h→0−−−→ 0.

Then, as h → 0, the function uh defined by (1.6) using the scheme operator (1.7) converges
locally uniformly to the solution u of (1.2).

We obtain explicit error estimates for finite difference approximations of the stochastic
Hamilton–Jacobi equation (1.3). The results below are stated for the following scheme, which
is defined, for some θ ∈ (0,1], by

Sh(t, s; ζ )u(x) := u(x) + H

(
u(x + h) − u(x − h)

2h

)(
ζ(t) − ζ(s)

)
+ θ

2

(
u(x + h) + u(x − h) − 2u(x)

)
.

(1.8)

Note that this corresponds to choosing εh := θh2

2(t−s)
in (1.7).

The main tool for proving rates of convergence is the following pathwise estimate. For the
remaining results in the Introduction, it is assumed that, for some L > 0, the initial datum u0
is Lipschitz continuous with ‖u′

0‖∞ ≤ L.

THEOREM 1.2. There exists C > 0 depending only on the Lipschitz constant L such that,
if h > 0, ζ ∈ C([0, T ],R) is piecewise linear over the partition P such that

max
n=0,1,...,N−1

∣∣ζ(tn+1) − ζ(tn)
∣∣ ≤ θ

‖H ′‖∞
h,

and v solves (1.3) with the path ζ , then, for all ε > 0,

sup
(x,t)∈R×[0,T ]

∣∣vh(x, t; ζ,P) − v(x, t)
∣∣

≤ 1

ε

N−1∑
n=0

(tn+1 − tn)
2 + C

√
Nh + max

s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}
.

The rates of convergence are then established by choosing families of paths {Wh}h>0 and
partitions {Ph}h>0 in order to optimize the estimate from Theorem 1.2.

We do so first for an arbitrary, fixed continuous path W with modulus of continuity ω :
[0,∞) → [0,∞). For h > 0, define ρh implicitly by

(1.9) λ := (ρh)
1/2ω((ρh)

1/2)

h
<

θ

‖H ′‖∞
,

and let the partition Ph and path Wh satisfy

(1.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ph := {nρh ∧ T }n∈N0, Mh := ⌊

(ρh)
−1/2⌋,

and, for k ∈ N0 and t ∈ [
kMhρh, (k + 1)Mhρh

)
,

Wh(t) := W(kMhρh) +
(

W((k + 1)Mhρh) − W(kMhρh)

Mhρh

)
(t − kMhρh).
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THEOREM 1.3. There exists C > 0 depending only on L such that, if uh is constructed
using (1.6) and (1.8) with Ph and Wh as in (1.9) and (1.10), and u is the pathwise viscosity
solution of (1.3), then

sup
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − u(x, t)
∣∣ ≤ C(1 + T )ω

(
(ρh)

1/2).
When W is a Brownian motion, we study the problem from different points of view, de-

pending on whether the focus is on almost-sure convergence or convergence in distribution.
As a special case of Theorem 1.3, the approximating paths and partitions may be taken to

satisfy (1.10) with ρh given by

(1.11) λ := (ρh)
3/4| logρh|1/2

h
<

θ

‖H ′‖∞
.

Alternatively, the constructions may be achieved through the use of certain stopping times:

(1.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0 := 0, Tk+1 := inf
{
t > Tk : max

r,s∈[Tk,t]
∣∣W(r) − W(s)

∣∣ > h1/3

| logh|2/3

}
,

Wh(t) := W(Tk) + W(Tk+1) − W(Tk)

Tk+1 − Tk

(t − Tk) for t ∈ [Tk, Tk+1),

Mh :=
⌈ ‖H ′‖∞
(h| logh|)2/3

⌉
,

and Ph :=
{
tn := Tk + (n − kMh)

Tk+1 − Tk

Mh

: kMh ≤ n < (k + 1)Mh,

k ∈N0

}
.

The various definitions for Ph and Wh above, while technical, are all made with the same
idea in mind, namely, to ensure that the approximation Wh is “mild” enough with respect to
the partition. In particular, for any consecutive points tn and tn+1 of the partition Ph, and for
sufficiently small h, the ratio

|Wh(tn+1) − Wh(tn)|
h

should be less than some fixed constant. This is a special case of the kind of Courant–Lewy–
Friedrichs (CFL) conditions required for the schemes in this paper, which are discussed in
more detail in the following sections.

THEOREM 1.4. Suppose that W is a Brownian motion, and assume either that Ph and
Wh are as in (1.10) with ρh defined by (1.11), or Ph and Wh are as in (1.12). If uh is con-
structed using (1.6) and (1.8), and u is the solution of (1.3), then there exists a deterministic
constant C > 0 depending only on L and λ such that, with probability one,

lim sup
h→0

sup
(x,t)∈Rd×[0,T ]

|uh(x, t) − u(x, t)|
h1/3| logh|1/3 ≤ C(1 + T ).

The final type of result involves convergence in distribution in the space BUC(Rd ×[0, T ]).
Here, the paths Wh are taken to be appropriately scaled simple random walks. More precisely,
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for some probability space (A,G,P),

(1.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ := (ρh)
3/4

h
≤ θ

‖H ′‖∞
, Mh := ⌊

(ρh)
−1/2⌋,

Ph := {tn}Nn=0 = {nρh ∧ T }n∈N0,

{ξn}∞n=1 : A → {−1,1} are independent,

P(ξn = 1) = P(ξn = −1) = 1

2
, W(0) = 0, and

Wh(t) := Wh(kMhρh) + ξk√
Mhρh

(t − kMhρh)

for k ∈ N0, t ∈ [
kMhρh, (k + 1)Mhρh

)
.

THEOREM 1.5. If uh is constructed using (1.6) and (1.8) with Wh and Ph as in (1.13),
and u is the solution of (1.3) with W equal to a Brownian motion, then, as h → 0, uh con-
verges to u in distribution.

1.2. Background for the study of (1.1). When W is continuously differentiable, or of
bounded variation, the symbol dWi in equation (1.1) stands for the time derivative d

dt
W i(t) =

Ẇ i(t) and “◦” denotes multiplication. As already noted, the classical viscosity theory applies
in this context.

The problem becomes more complicated when W is merely continuous, and therefore,
possibly nowhere differentiable or of infinite variation. In many examples of interest, W is
the sample path of a stochastic process, such as Brownian motion, and then the symbol “◦” is
regarded as the Stratonovich differential. More generally, W may be a geometric rough path,
a specific instance being a Brownian motion enhanced with its Stratonovich iterated integrals.

The notion of pathwise viscosity solutions for equations like (1.1) was developed by Lions
and Souganidis, first for Hamiltonians depending smoothly on the gradient Du [24], and
later for nonsmooth Hamiltonians [25]. The comparison principle was proved in [26], and
equations with Hamiltonians depending nonlinearly on u were considered in [27]. The theory
has since been extended to treat Hamiltonians with spatial dependence, as by Friz, Gassiat,
Lions, and Souganidis [12], or by the author [29]; these papers use techniques developed by
Lions and Souganidis for more general settings that appear in forthcoming works [23]. An
alternative existence result relying on Perron’s method can be found in the work of the author
[30]. Many more details and results are summarized in the notes of Souganidis [31].

The setting in which H depends linearly on the gradient has been explored from the point
of view of rough path theory by many authors, including, but not limited to, Caruana, Friz,
and Oberhauser [8] and Gubinelli, Tindel, and Torrecilla [14]. The semilinear problem was
also studied by Buckdahn and Ma [5, 6] using the pathwise control interpretation.

It is of particular interest to have a way to analyze (1.1) when H is nonlinear and not
necessarily C1, because of the application, via the level set method, to the theory of the
propagation of fronts with a stochastically perturbed normal velocity. For example, if, for
t > 0, 	t ⊂ R

d is a smooth, (d − 1)-dimensional surface moving with normal velocity

(1.14) V = −κ + α dW,

where κ is the mean curvature of the surface, α ∈ R is a constant, and dW is white noise in
time, and if 	t is the 0-level set of some function u(·, t), that is, 	t = {x ∈ R

d : u(x, t) = 0},
then, formally, u solves the equation

(1.15) du =
(
�u −

〈
D2u

Du

|Du| ,
Du

|Du|
〉)

dt + α|Du| ◦ dW in R
d × (0, T ].



APPROXIMATION SCHEMES FOR FULLY NONLINEAR SPDE 1789

This is a special case of (1.1) for which F is singular. The stochastic viscosity interpretation of
(1.15) has been used by Souganidis and Yip [34] to exhibit stochastic selection principles for
some examples of nonuniqueness in mean curvature flow, and by Lions and Souganidis [23]
to establish a sharp interface limit for the Allen–Cahn equation perturbed with an additive,
mild approximation of time-white noise. For the latter problem, it was proved that, for some
α ∈ R, the limiting front has a normal velocity as in (1.14).

As far as we know, the results in this paper on approximation schemes for stochastic vis-
cosity solutions are the first of their kind. We are also aware of a work by Hoel, Karlsen,
Risebro, and Storrøsten [15] using numerical methods to study a related class of equations,
namely, stochastic scalar conservation laws.

1.3. Organization of the paper. Section 2 begins with a discussion of the theory of mono-
tone approximation schemes in the classical viscosity setting, as well as the difficulties faced
for pathwise equations. In Section 3, we recall some definitions and results from the theory of
pathwise (stochastic) viscosity solutions. Some of the material may be found in [24, 25], or
[31], while other facts, whose proofs are given here, are developed by Lions and Souganidis
in a forthcoming work [23].

In Section 4, we make the notion of the scheme operator Sh more precise, and use the
method of half-relaxed limits to prove that, for an appropriate family of partitions {Ph}h>0

and paths {Wh}h>0 as in (1.5), if uh is defined by (1.4) and (1.6), then uh converges locally
uniformly to the solution of (1.1). Various examples are presented to which the general con-
vergence result may be applied.

Section 5 lays the framework for the quantitative analysis of schemes for stochastic
Hamilton–Jacobi equations by proving a generalization of the pathwise estimate in Theo-
rem 1.2. This result is then used in Section 6 to obtain explicit rates of convergence, such as
those stated in Theorems 1.3 and 1.4, as well as the result on convergence in distribution as
in Theorem 1.5.

1.4. Notation. Throughout most of the proofs in this paper, the symbol C will stand
for a generic constant that may change from line to line, and whose dependence will
be specified or made clear from context. C0,1(Rd) is the space of Lipschitz continu-
ous functions, and ‖Du‖∞ is the Lipschitz constant for a function u ∈ C0,1(Rd). For
α ∈ (0,1), Cα([0, T ]) denotes the space of α-Hölder continuous paths on [0, T ], and
[W ]α,T is defined to be the Hölder seminorm of W ∈ Cα([0, T ]). Given a continuous
path W and s, t ∈ [0, T ], the maximum oscillation of W between s and t is denoted
by

osc(W, s, t) := max
r1,r2∈Is,t

∣∣W(r1) − W(r2)
∣∣ = max

Is,t

W − min
Is,t

W,

where Is,t := [
min(s, t),max(s, t)

]
.

The spaces of upper- and lower-semicontinuous functions on R
d × [0, T ] are respectively

USC(Rd × [0, T ]) and LSC(Rd × [0, T ]), and (B)UC(U) is the space of (bounded) uni-
formly continuous functions on a domain U .

For a ∈ R, a� and �a� denote respectively the largest (smallest) integer k satisfying k ≤ a

(k ≥ a). The mesh-size of a partition P = {0 = t0 < t1 < t2 < · · · < tN = T } of [0, T ] is de-
fined by |P| := maxn=0,1,2,...,N−1(tn+1 − tn). Sd is the space of symmetric d-by-d matrices,
and, for X,Y ∈ Sd , the inequality X ≤ Y means ξ · Xξ ≤ ξ · Yξ for all ξ ∈ R

d . The set of
positive integers is written as N, and N0 := N∪ {0}.
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2. Monotone schemes for viscosity solutions.

2.1. The classical viscosity setting. It is well known that viscosity solutions of the non-
linear degenerate parabolic equation

(2.1) ut = F
(
D2u,Du

)
in R

d × (0, T ] and u(·,0) = u0 in R
d

satisfy a comparison principle. That is, if u and v are respectively a sub- and super-solution
of (2.1), then, for all t ∈ [0, T ],
(2.2) sup

x∈Rd

(
u(x, t) − v(x, t)

) ≤ sup
x∈Rd

(
u(x,0) − v(x,0)

)
.

In particular, if u(·,0) ≤ v(·,0), then u(·, t) ≤ v(·, t) for all future times t > 0.
Moreover, (2.1) is stable under local uniform convergence. That is, if, for n ≥ 0, u0,n, u0 ∈

BUC(Rd), Fn,F ∈ C(Rd), un ∈ BUC(Rd × [0, T ]) solves

(2.3) un,t = Fn

(
D2un,Dun

)
in R

d × (0, T ] and un(·,0) = u0,n in R
d,

and, as n → ∞,

(2.4) u0,n → u0 and Fn → F locally uniformly,

then, as n → ∞, un converges locally uniformly to u, the viscosity solution of (2.1).
These and other properties can be summarized in terms of the solution operators for (2.1),

which are, for t ≥ 0, the maps S(t) : BUC(Rd) → BUC(Rd) for which the solution u of (2.1)
is given by u(x, t) = S(t)u0(x). For all s, t ≥ 0, φ,ψ ∈ BUC(Rd), and k ∈R, these satisfy

(2.5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) S(0)φ = φ,

(b) S(t + s) = S(t)S(s),

(c) S(t)(φ + k) = S(t)φ + k, and

(d) sup
Rd

(
S(t)φ − S(t)ψ

) ≤ sup
Rd

(φ − ψ).

Property (2.5)(c) implies that (2.5)(d) is equivalent to the monotonicity of S(t). That is, if
φ ≤ ψ , then S(t)φ ≤ S(t)ψ for all t ≥ 0.

The stability property above can be rephrased as saying that, if (2.4) holds and if Sn(t) :
BUC(Rd) → BUC(Rd) is the family of solution operators corresponding to (2.3), then, as
n → ∞, Sn(t)u0,n(x) → S(t)u0(x) locally uniformly. The philosophy behind the creation
of approximation schemes is to generalize this result, by constructing, for h > 0 and ρ > 0,
suitable operators Sh(ρ) : BUC(Rd) → BUC(Rd) that satisfy properties similar to those in
(2.5). In particular, for all φ ∈ BUC(Rd) and k ∈ R, and for some increasing function h �→ ρh

satisfying limh→0 ρh = 0,

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) Sh(t)(φ + k) = Sh(t)φ + k for all h, t > 0,

(b) sup
Rd

(
Sh(ρ)φ − Sh(ρ)ψ

) ≤ sup
Rd

(φ − ψ)

whenever h > 0 and 0 < ρ ≤ ρh, and

(c) lim
h→0

sup
0<ρ≤ρh

∣∣∣∣Sh(ρ)φ − φ

ρ
− F

(
D2φ,Dφ

)∣∣∣∣ = 0 for all φ ∈ C2(
R

d).
Given a partition Ph satisfying |Ph| ≤ ρh, the approximate solution uh : BUC(Rd × [0, T ])
is assembled by first setting uh(·,0) := u0 and then iteratively defining

(2.7) uh(·, t) := Sh(t − tn)uh(·, tn) for n = 0,1,2, . . . ,N − 1 and t ∈ (tn, tn+1].
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One example of particular interest is the class of finite difference approximations, for
which Sh(ρ)u depends on the function u only through its values on the discrete lattice hZd .
A major consideration for such schemes is to establish a relationship between the resolutions
of the discrete grids in time and space, that is, to choose the map h �→ ρh in such a way that
the properties in (2.6) can be attained. Such a relationship is known as a Courant–Friedrichs–
Lewy (CFL) condition [9], and various examples will be studied throughout the paper.

As is well known, solutions of (1.1) are generally not C2 on all of Rd × [0, T ], even if F ,
H , and u0 are all smooth, and so (2.6)(c) alone is not enough to prove the convergence of uh

to u as h → 0. It is here that the monotonicity of Sh(ρ), which is implied by (2.6)(a) and (b),
is vital, since it allows the scheme operator to be applied to the smooth test functions coming
from the definition of viscosity solutions.

A finite difference scheme operator Sh, in its simplest form, when d = 1 (the last assump-
tion here made only to simplify the presentation), is given, for some Fh ∈ C0,1(R×R×R),
by

Sh(ρ)u(x) := u(x) + ρFh

(
u(x + h) + u(x − h) − 2u(x)

h2 ,
u(x + h) − u(x)

h
,

u(x) − u(x − h)

h

)
.

(2.8)

The scheme (2.8) automatically satisfies (2.6)(a), while (2.6)(b) holds if the function

(u,u−, u+) �→ u + ρFh

(
u+ + u− − 2u

h2 ,
u+ − u

h
,
u − u−

h

)
is nondecreasing in each argument when 0 < ρ ≤ ρh, which, in turn, calls for

(2.9) ρh := λh2

for some sufficiently small constant λ > 0. In the case of first-order equations, that is, for the
equation

(2.10) ut = H(Du) in R
d × (0, T ] and u(·,0) = u0 on R

d,

the CFL condition becomes

(2.11) ρh = λh.

The function Fh is related to F through a consistency requirement, which here means that,
for all X ∈ R and p ∈ R,

(2.12) lim
h→0

Fh(X,p,p) = F(X,p) and sup
h>0

‖DFh‖∞ < ∞.

Property (2.6)(c) can then be readily verified by using Taylor approximations to estimate the
finite differences of functions φ ∈ C2(Rd).

An instructive example in the first-order setting is the following analogue of the Lax–
Friedrichs scheme for scalar conservation laws. Let εh > 0 and define, for x ∈ R,

Sh(ρ)u(x) := u(x) + ρ

{
H

(
u(x + h) − u(x − h)

2h

)

+ εh

(
u(x + h) + u(x − h) − 2u(x)

h2

)}
.

(2.13)

Here, Hh is given by

Hh(p,q) = H

(
p + q

2

)
+ εh

h
(p − q).
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The final term in (2.13) is a discrete analogue of the method of vanishing viscosity, and is
used here to inject monotonicity into the scheme. Indeed, if, for some fixed θ > 0 and λ > 0,
the small parameter εh is defined by

(2.14) εh := θh

2λ
,

then (2.6)(b) is satisfied as long as (2.11) holds with θ ≤ 1 and λ ≤ θ
‖H ′‖∞ .

In [11], Crandall and Lions found explicit error estimates for this and and other explicit
finite difference schemes for homogenous Hamilton–Jacobi equations. More precisely, it was
proved for the above example that there exists a constant C > 0 depending only on ‖DH‖∞,
‖Du0‖∞, and λ such that, if uh is defined as in (2.7) and (2.13), and if u solves (2.10), then

sup
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − u(x, t)
∣∣ ≤ C(1 + T )h1/2.

This same rate was later established by Souganidis [32] for both explicit and implicit fi-
nite difference schemes for equations with Lipschitz spatial and time dependence, and the
same method was applied to study other approximations such as max-min representations
and Trotter–Kato product formulas [33].

Barles and Souganidis [4] considered schemes for second order equations, using a shorter,
qualitative proof of convergence relying on the method of half-relaxed limits. Kuo and
Trudinger [20, 21] also investigated such schemes in great detail and constructed several
examples. The question of estimating the rates of convergence for such approximations of
second order equations was analyzed from many points of view. Barles and Jakobsen [1–3]
achieved algebraic convergence rates for stochastic control problems, taking advantage of the
fact that F is convex in that setting. Jakobsen [17, 18] and Krylov [19] also established rates
of convergence for nonconvex problems under some restrictions on F . If F is uniformly ellip-
tic, then rates of convergence can be found under very general assumptions using techniques
from the regularity theory for fully nonlinear, uniformly elliptic equations, as exhibited by
Caffarelli and Souganidis [7], and later by Turanova [35] for inhomogenous equations.

2.2. Difficulties in the pathwise setting. The lack of regularity for W complicates the
task of constructing scheme operators for (1.1) that are both monotone and consistent.

Consider, for example, modifying the Lax–Friedrichs scheme (2.13) for the stochastic
Hamilton–Jacobi equation

(2.15) du = H(ux) ◦ dW in R× (0, T ] and u(·,0) = u0 in R.

If W is sufficiently regular, then it is reasonable to define a time-inhomogenous scheme op-
erator by

Sh(t, s)u(x) := u(x) + H

(
u(x + h) − u(x − h)

2h

)(
W(t) − W(s)

)
+ εh

(
u(x + h) + u(x − h) − 2u(x)

h2

)
(t − s).

(2.16)

Proceeding as in the previous subsection, a simple calculation reveals that Sh(t, s) is mono-
tone for 0 ≤ t − s ≤ ρh, if ρh and εh are such that, for some θ ∈ (0,1],

εh := θh2

2(t − s)

and

(2.17) λ := max|t−s|≤ρh

osc(W, s, t)

h
≤ λ0 := θ

‖H ′‖∞
.
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On the other hand, spatially smooth solutions � of (2.15) have the expansion, for any s, t ∈
[0, T ] with |s − t | sufficiently small,

�(x, t) = �(x, s) + H
(
�x(x, s)

)(
W(t) − W(s)

)
+ H ′(�x(x, s)

)2
�xx(x, s)

(
W(t) − W(s)

)2 + O
(∣∣W(t) − W(s)

∣∣3),(2.18)

so that, if 0 ≤ t − s ≤ ρh, for some C > 0 depending only on H ,

sup
R

∣∣Sh(t, s)�(·, s) − �(·, t)∣∣ ≤ C sup
r∈[s,t]

∥∥D2�(·, r)∥∥∞
(∣∣W(t) − W(s)

∣∣2 + h2)
≤ C sup

r∈[s,t]
∥∥D2�(·, r)∥∥∞

(
1 + λ2

0
)
h2.

(2.19)

Therefore, in order for the scheme to have a chance of converging, ρh should satisfy

(2.20) lim
h→0

h2

ρh

= 0.

Both (2.17) and (2.20) can be achieved when W is continuously differentiable, or merely
Lipschitz, by setting

ρh := λh

‖Ẇ‖∞
.

More generally, if W has Young–Hölder regularity, that is, W ∈ Cα([0, T ]) with α > 1
2 , and

if

(2.21) (ρh)
α := λh

[W ]α,T

,

then both (2.17) and (2.20) are satisfied, since

h2

ρh

=
( [W ]α,T h2α−1

λ

)1/α
h→0−−−→ 0.

However, this approach fails as soon as the quadratic variation

Q
([0, T ],W ) := lim|P|→0

N−1∑
n=0

∣∣W(tn+1) − W(tn)
∣∣2

is nonzero, as (2.17) and (2.20) together imply that Q([0, T ],W) = 0. This rules out, for in-
stance, the case where W is the sample path of a Brownian motion, for which Q([0, T ],W) =
T with probability one.

Motivated by the theory of rough differential equations, it is natural to explore whether the
scheme operator (2.16) can be altered in some way to refine the estimate in (2.19), potentially
allowing (2.20) to be relaxed and ρh to converge more quickly to zero as h → 0+. More
precisely, the next term in the expansion (2.18) suggests that, for W ∈ Cα([0, T ],R) with
α > 1

3 (or more generally, W with p-variation for p < 3), one should define

Sh(t, s)u(x)

:= u(x) + H

(
u(x + h) − u(x − h)

2h

)(
W(t) − W(s)

)

+ 1

2
H ′

(
u(x + h) − u(x − h)

2h

)2(u(x + h) + u(x − h) − 2u(x)

h2

)

× (
W(t) − W(s)

)2

+ θ

2

(
u(x + h) + u(x − h) − 2u(x)

)
.

(2.22)
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As can easily be checked, (2.22) is monotone as long as (2.17) holds,

‖Du‖∞ ≤ L, θ + ∥∥H ′∥∥∞λ2 ≤ 1 and λ ≤ θ

‖H ′‖∞(1 + 2L‖H ′′‖∞)
.

On the other hand, the error in (2.19) would then be of order h2 + |W(t) − W(s)|3, which
again leads to (2.20). This seems to indicate that we should also incorporate higher order
corrections in (2.22) to improve the order of the error in the h variable. However, this will
disrupt the monotonicity of the scheme in general. This is due to the fact that such terms
involve the discrete second derivative of u, and, thus, will counter the effect of the term

θ

2

(
u(x + h) + u(x − h) − 2u(x)

)
,

which is included precisely for the purpose of creating monotonicity.
For this reason, we develop a more effective strategy that works for any continuous path.

Namely, rather than modifying the scheme itself, we regularize the path W . If {Wh}h>0 is a
family of smooth paths converging uniformly, as h → 0, to W , then Q(Wh, [0, T ]) = 0 for
each fixed h > 0, and therefore, Wh and ρh can be chosen so that (2.17) and (2.20) hold for
Wh rather than W . Various methods for implementing this procedure, both qualitative and
quantitative, are explored throughout the paper.

3. The definition of pathwise viscosity solutions.

3.1. Assumptions on the nonlinearities. The nonlinear function F : Sd ×R
d → R is as-

sumed to be Lipschitz and degenerate elliptic; that is,

(3.1)

{
F ∈ C0,1(Sd ×R

d) and

F(X,p) ≤ F(Y,p) whenever p ∈ R
d and X ≤ Y.

The results of this paper may be extended to the case where F has additional dependence on
u, x, or t , in which case F requires additional structure in order for the comparison principle
to hold. To simplify the presentation, we take F as in (3.1). One consequence is that the solu-
tion operator for (1.1) is invariant under translations in both the independent and dependent
variables.

In order for (1.1) to be well-posed for all continuous W and uniformly continuous u0, the
Hamiltonians need to be more regular than what is required in the classical viscosity theory.
As explained in [25] and [31], it is necessary to assume that

(3.2) Hi = Hi
1 − Hi

2 for convex Hi
1,H

i
2 : Rd →R with Hi

1,H
i
2 ≥ 0.

The nonnegativity is imposed here only to simplify some arguments in what follows, and the
setting can be reduced to the general case by transforming the equation appropriately.

Letting H depend additionally on u or x makes the question of well-posedness for (1.1)
highly nontrivial. Indeed, there is no pathwise theory for equations of the form

du = F
(
D2u,Du

)
dt +

m∑
i=1

Hi(Du,u, x) ◦ dWi,

except for some special cases, for instance, if the dependence of H on Du is linear.
Under certain assumptions, (1.1) is well-posed for H depending nonlinearly on both Du

and x. In this case, the lack of uniform regularity estimates for the solutions becomes an
obstacle in the construction of schemes for (1.1). These issues will be the subject of a future
work.
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The homogeneity of H in space allows us to forego difficult questions about regularity,
because the spatial modulus of continuity for the solution of (1.1) is retained for all time. In
particular, throughout much of the paper, the initial condition u0 is fixed and satisfies

(3.3) u0 ∈ C0,1(
R

d) and ‖Du0‖∞ ≤ L,

and therefore, H(p) may be redefined for |p| > L without affecting the solution. Since (3.2)
implies that H is locally Lipschitz, we may then assume that

(3.4) for some C = CL > 0, ‖DH‖∞ = CL < ∞.

Note that (3.4) implies that H grows at most linearly as |p| → +∞.
In some parts of the paper, to allow for a more flexible solution theory, especially when we

discuss schemes for second order equations, the hypothesis (3.2) is replaced with the stronger
assumption

(3.5) H ∈ Ck(
R

d,Rm)
for some k = 2,3, . . . .

If H satisfies (3.5), and therefore H ∈ C1,1(Rd,Rm), then (3.2) is satisfied on every bounded
set of gradients.

3.2. Smooth solutions of the Hamilton–Jacobi part of (1.1). The definition of pathwise
viscosity solutions relies on the existence of local-in-time, smooth-in-space solutions of the
Hamilton–Jacobi part of equation (1.1). More precisely, for t0 ∈ [0, T ] and φ ∈ C1,1(Rd), the
goal is to find an open interval I ⊂ [0, T ] containing t0 and a solution � ∈ C(I,C1,1(Rd)) of

(3.6) d� =
m∑

i=1

Hi(D�) ◦ dWi in R
d × I and �(·, t0) = φ in R

d .

Such solutions are defined through a density argument, that is, the solution operator for (3.6)
for smooth paths extends continuously to continuous paths. This is justified with the com-
putations below, and is consistent with the cases where W is a Brownian motion or, more
generally, a geometric rough path.

When H and φ are smooth, the construction of such solutions can be accomplished for
any smooth φ by inverting the characteristics associated to (3.6). Because H is independent
of x, this amounts to inverting the map

(3.7) x �→ X(x, t) := x −
m∑

i=1

DHi(Dφ(x)
)(

Wi(t) − Wi(t0)
)
.

The continuity of W implies that there exists an interval I � t0 such that

sup
t∈I

∣∣W(t) − W(t0)
∣∣ < 1

‖D2H‖∞‖D2φ‖∞
,

whence (3.7) is invertible for all t ∈ I . The solution is then given by �(x, t) :=
Z(X−1(x, t), t), where

(3.8) Z(x, t) := φ(x) +
m∑

i=1

(
Hi(Dφ(x)

) − Dφ(x) · DHi(Dφ(x)
))(

Wi(t) − Wi(t0)
)
.

This can be confirmed with a simple calculation when W is smooth. For general continuous
paths, the formula holds by a density argument, since all expressions depend only on the
values of W , and not on its derivatives.

Notice also that the regularity of � improves with that of H and φ. Indeed, differentiating
(3.8) leads to the relation D�(X(x, t), t) = Dφ(x, t), and therefore, in view of (3.7), the
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solution � belongs to C(I,Ck(Rd)) as long as H ∈ Ck(Rd,Rm) and φ ∈ Ck(Rd) for some
k = 2,3, . . . . Furthermore, if Djφ is bounded for some j = 0,1,2, . . . , k, then, shrinking I

if necessary,

sup
t∈I

∥∥Dj�(·, t)∥∥∞ < ∞.

This strategy breaks down when H is only assumed to satisfy (3.2), since such Hamilto-
nians are not even continuously differentiable in general. In this case, only very particular
smooth solutions of (3.6) can be constructed. Assume η :Rd →R is strictly convex, and, for
δ > 0, define

(3.9) �(x, t) := sup
p∈Rd

{
p ·x−η(p)−δ

m∑
i=1

(
Hi

1(p)+Hi
2(p)

)+ m∑
i=1

Hi(p)
(
Wi(t)−Wi(t0)

)}
.

LEMMA 3.1. Let H satisfy (3.2) and (3.4). If the open interval I � t0 is such that

sup
t∈I

max
i=1,2,...,m

∣∣Wi(t) − Wi(t0)
∣∣ < δ,

then the function � defined by (3.9) belongs to C(I,C1,1(Rd)), and is a solution of (3.6)
with

(3.10) �(·, t0) = φ(x) := sup
p∈Rd

{
p · x − η(p) − δ

m∑
i=1

(
Hi

1(p) + Hi
2(p)

)}
.

PROOF. For all x ∈R
d and t ∈ I , the function

p �→ η(p) + δ

m∑
i=1

(
Hi

1(p) + Hi
2(p)

) −
m∑

i=1

Hi(p)
(
Wi(t) − Wi(t0)

) − p · x

is strictly convex, and therefore attains a unique global minimum. The smoothness of � in x

then follows from the implicit function theorem.
Now, for t ∈ R, let Si(t) : UC(Rd) → UC(Rd) be the solution operator for the equation

ut = Hi(Du). If ψ ∈ UC(Rd) is convex, then the Hopf formula gives

Si(t)ψ(x) = sup
p∈Rd

{
p · x − ψ∗(p) + tH i(p)

}
,

and so (3.9) can be rewritten as

�(x, t) =
m∏

i=1

Si(Wi(t) − Wi(t0)
)
φ(x)

with φ as in (3.10). If W is smooth, then the fact that � is a solution of (3.6) is justified by
the regularity of � and a simple calculation. The result holds for continuous W by a density
argument. �

As in the classical viscosity theory, many quantitative arguments involve doubling vari-
ables, and it is therefore important to have a smooth solution of (3.6) that behaves like the
penalizing “distance function”

(3.11) (x, y) �→ |x − y|2
2δ

.

In the present setting, this is accompished with a function �δ : Rd × [0, T ]2 × C([0, T ],
R

m) → R that is equal to a particular choice of (3.9) near the diagonal {(t, t) ∈ [0, T ]2}, and
such that �δ(x − y, s, t;W) exhibits similar growth as (3.11) when |x − y| is large.
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Define the neighborhood Uδ(W) by

Uδ(W) := {
(s, t) ∈ [0, T ]2 : osc(W, s, t) < δ

}
,

let the projection πδ(W) : [0, T ]2 → Uδ(W) be such that πδ(W)(s, t) is the element (s̃, t̃) ∈
Uδ(W) closest to (s, t) on the line s̃ + t̃ = s + t , and set

�δ(x, s, t;W)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sup
p∈Rd

{
p · x − δ

2
|p|2 − δ

m∑
i=1

(
Hi

1(p) + Hi
2(p)

)
+

m∑
i=1

Hi(p)
(
Wi(s) − Wi(t)

)}
if (s, t) ∈ Uδ(W),

�δ

(
x,πδ(W)(s, t);W )

if (s, t) /∈ Uδ(W).

(3.12)

LEMMA 3.2. Assume H satisfies (3.2) and (3.4), and let �δ be defined as in (3.12). For
some C = CL > 0 and for all δ > 0 and W ∈ C([0, T ];Rm), the following hold:

(a) For all x ∈ R
d and (s, t), (s̃, t) ∈ Uδ(W),∣∣�δ(x, s, t;W) − �δ(x, s̃, t;W)

∣∣ ≤ C

(
1 + |x|

δ

)∣∣W(s) − W(s̃)
∣∣.

(b) For all (s, t) ∈ [0, T ]2, �δ(·, s, t;W) is convex and semiconcave with constant 1
δ
. That

is,

0 ≤ D2�δ(x, s, t;W) ≤ 1

δ
Id in the sense of distributions.

(c) For all x ∈ R
d and s, t ∈ [0, T ],

1

2(C + 1)δ
|x|2 − Cδ ≤ �δ(x, s, t;W) ≤ 1

2δ
|x|2.

(d) For any fixed y ∈ R
d and t ∈ [0, T ], the functions

(x, s) �→ �δ(x − y, s, t;W) and (x, s) �→ −�δ(y − x, t, s;W)

are C(I,C1,1(Rd))-solutions of (3.6), where I := {s ∈ [0, T ] : osc(W, s, t) < δ}.

Note that the local regularity given by (a) also applies to the second time variable, in view
of the identity �δ(x, s, t;W) = �δ(x, t, s;−W).

PROOF OF LEMMA 3.2. To prove (a), we first show that there exists C = CL > 0 such
that, for any x ∈ R

d and (s, t) ∈ Uδ(W), the unique maximum p∗ achieved in the definition
of �δ satisfies δ|p∗| ≤ Cδ + |x|. Indeed, if

J (p) := p · x − δ

2
|p|2 − δ

m∑
i=1

(
Hi

1(p) + Hi
2(p)

) +
m∑

i=1

Hi(p)
(
Wi(s) − Wi(t)

)
,

then, for any q ∈R
d , (3.4) and the inequality J (p∗) ≥ J (p∗ + q) imply that

δp∗ · q

|q| − δ

2
|q| ≤ |x| + Cδ.

Setting q = t
p∗
|p∗| and sending t → 0+ yields the claim. The time-regularity estimate in (a) is

then immediate.
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As a pointwise supremum of affine functions, �δ is clearly convex, while the semiconcav-
ity follows from elementary convex analysis and the convexity of

p �→ δ

m∑
i=1

(
Hi

1(p) + Hi
2(p)

) −
m∑

i=1

Hi(p)
(
Wi(s) − Wi(t)

)
.

The estimate in (c) can be deduced from Young’s inequality and the fact that, for some C =
CL > 0 and for all p ∈ R

d and (s, t) ∈ Uδ(W),

0 ≤ δ

m∑
i=1

(
Hi

1(p) + Hi
2(p)

) −
m∑

i=1

Hi(p)
(
Wi(s) − Wi(t)

) ≤ Cδ
(
1 + |p|).

Finally, (d) is a consequence of Lemma 3.1. �

The following definition for solutions of (1.1) relies on the existence of solutions of (3.6)
that are C2, and, in particular, is only valid if H is at least twice continuously differentiable.

DEFINITION 3.1. A function u ∈ USC(Rd × [0, T ]) (resp. u ∈ LSC(Rd × [0, T ])) is
called a pathwise viscosity sub-solution (resp. super-solution) of (1.1) for H satisfying (3.5)
if u(·,0) ≤ u0 (resp. u(·,0) ≥ u0) and, whenever ψ ∈ C1([0, T ]), (x0, t0) ∈ R

d × [0, T ],
I � t0, � ∈ C(I,C2(Rd)) is a solution of (3.6) in R

d × I , and

u(x, t) − �(x, t) − ψ(t)

attains a local maximum (resp. minimum) at (x0, t0) ∈R
d × I , then

ψ ′(t0) ≤ F
(
D2�(x0, t0),D�(x0, t0)

)
(
resp. ψ ′(t0) ≥ F

(
D2�(x0, t0),D�(x0, t0)

))
.

(3.13)

A solution of (1.1) is both a sub- and super-solution.

If � ∈ C(I,C1,1(Rd)) is a solution of (3.6), then it is not possible to make sense of (3.13),
since D2� may not be defined at every point. The following definition is made to comply
with the case when H only satisfies (3.2).

DEFINITION 3.2. A function u ∈ USC(Rd × [0, T ]) (resp. u ∈ LSC(Rd × [0, T ])) is
called a pathwise viscosity sub-solution (resp. super-solution) of (1.1) if u(·,0) ≤ u0 (resp.
u(·,0) ≥ u0) and, whenever I ⊂ [0, T ] and � ∈ C(I,C1,1(Rd)) is a solution of (3.6) in
R

d × I , the function v :Rd × I →R defined by

v(ξ, t) := sup
x∈Rd

{
u(x, t) − �(x − ξ, t)

} (
resp. v(ξ, t) := inf

x∈Rd

{
u(x, t) + �(x − ξ, t)

})
is a classical viscosity sub- (resp. super-) solution of the equation

vt = F
(
D2v,Dv

)
in R

d × I.

A solution of (1.1) is both a sub- and super-solution.

When H satisfies (3.5), Definition 3.2 is equivalent to Definition 3.1. In the first-order
setting, that is, when F ≡ 0, Definition 3.1 may be used even if H is not smooth, because it
is not necessary to evaluate D2� at any point.

With either definition, (1.1) satisfies the following comparison principle, a proof for which
can be found in [26] or [31]: if u ∈ USC(Rd × [0, T ]) and v ∈ LSC(Rd × [0, T ]) are respec-
tively a sub- and super-solution of (1.1), then, for all t ∈ (0, T ],
(3.14) sup

x∈Rd

(
u(x, t) − v(x, t)

) ≤ sup
x∈Rn

(
u(x,0) − v(x,0)

)
.
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A variant of the proof of the comparison principle gives the following path-stability estimate
[31].

LEMMA 3.3. Assume that H satisfies (3.2). There exists C = CL > 0 such that, if u0 ∈
C0,1(Rd) with ‖Du0‖∞ ≤ L, W 1,W 2 ∈ C([0, T ],Rm), and u1, u2 ∈ C([0, T ],C0,1(Rd))

are the solutions of (1.1) with respectively the paths W 1 and W 2, then

sup
(x,t)∈Rd×[0,T ]

∣∣u1(x, t) − u2(x, t)
∣∣ ≤ C max

t∈[0,T ]
∣∣W 1(t) − W 2(t)

∣∣.
It can be shown that, when W ∈ C1([0, T ]), the above notions of pathwise viscosity so-

lutions are consistent with the standard definitions from the classical viscosity theory. Fur-
thermore, solutions of (1.1) are stable under uniform convergence. Therefore, the estimate in
Lemma 3.3, which is proved first for smooth paths, also establishes the existence of pathwise
viscosity solutions. Lemma 3.3 can then be seen to hold for arbitrary continuous paths via a
density argument.

Although the class of test functions defined by (3.9) is rather restrictive, it is enough to
prove both the comparison principle and the stability estimate. Indeed, only the “distance
function” �δ in (3.12) is used in both proofs. When H ∈ C2(Rd), any initial condition
�(·, t0) ∈ C2(Rd) with bounded second derivatives yields a solution as in (3.6). In partic-
ular, by adding quadratic functions to �(·, t0), it may be assumed that the test functions in
Definition 3.1 satisfy

lim|x|→+∞
�(x, t)

|x| = +∞ or lim|x|→+∞
�(x, t)

|x| = −∞ uniformly for t ∈ I .

Thus, as in the classical viscosity theory, the maxima and minima in Definition 3.1 may be
assumed to be strict without loss of generality.

Finally, we remark that, if H satisfies (3.5), then it is enough to use functions � ∈
C(I,Ck(Rd)) in Definition 3.1. The argument is almost identical to one from the classical
viscosity theory, and it uses the fact that the solution operator for (3.6) is contractive.

4. The general convergence result and applications. The constructions in this paper
rely on the properties of a family of scheme operators, indexed by h > 0, s, t ∈ [0, T ] with
s ≤ t , and a path ζ ∈ C([0, T ],Rm):

Sh(t, s; ζ ) : (B)UC
(
R

d) → (B)UC
(
R

d).
We assume throughout that Sh commutes with translations in both the independent and de-
pendent variables, in order to reflect the corresponding translation invariance of (1.1). That
is,

(4.1) Sh(t, s; ζ )(u + k) = Sh(t, s; ζ )u + k for all k ∈ R and u ∈ (B)UC
(
R

d),
and

(4.2) Sh(t, s; ζ ) ◦ τv = τv ◦ Sh(t, s; ζ ) for all v ∈ R
d, where τvu := u(· + v).

For a Hamiltonian H satisfying (3.5) and a fixed continuous path W ∈ C([0, T ],Rm), we
consider a family of paths {Wh}h>0 ⊂ C([0, T ],Rm) and a partition width ρh > 0 satisfying

h �→ ρh is increasing, lim
h→0

‖Wh − W‖∞ = 0 = lim
h→0

ρh;(4.3)

if u1 ≤ u2 and s, t ∈ [0, T ] satisfy 0 ≤ t − s ≤ ρh,

then Sh(t, s;Wh)u1 ≤ Sh(t, s;Wh)u2;
(4.4)
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and

(4.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if I ⊂ R, �h ∈ C
(
I,Ck(

R
d)) is a solution of

d�h =
m∑

i=1

Hi(D�h) ◦ dWi
h in R

d × I,

sh, th ∈ I,0 ≤ th − sh ≤ ρh,φ ∈ Ck(
R

d),R > 0, and

lim
h→0

∥∥�h(·, sh) − φ
∥∥
Ck(Rd ) = 0,

then lim
h→0

Sh(th, sh;Wh)�h(·, sh)(x) − �h(x, sh)

th − sh
= F

(
D2φ(x),Dφ(x)

)
uniformly for x ∈R

d and max
j=2,3,...,k

∥∥Djφ
∥∥∞ ≤ R.

The integer k in (4.5) corresponds to the level of regularity of H in (3.5). In Sections 5 and 6,
we obtain error estimates for schemes for first-order equations with Hamiltonians satisfying
the weaker condition (3.2), in which case the assumptions on the scheme operator will be
modified.

The scheme operator is used to build approximate solutions as follows. For a fixed path
ζ ∈ C([0, T ];Rm), partition P = {0 = t0 < t1 < · · · < tN = T } of [0, T ], and initial datum
u0 ∈ BUC(Rd), define

(4.6)

⎧⎪⎪⎨
⎪⎪⎩

vh(·,0; ζ,P) := u0,

vh(·, t; ζ,P) := Sh(t, tn; ζ )vh(·, tn; ζ,P)

for n = 0,1, . . . ,N − 1 and t ∈ (tn, tn+1].

THEOREM 4.1. Assume u0 ∈ BUC(Rd), (3.1), (3.5), and Sh, Wh, and ρh satisfy (4.1)–
(4.5). Let {Ph}h>0 be a family of partitions of [0, T ] such that |Ph| ≤ ρh for all h > 0, and
define uh := vh(·;Wh,Ph). Then, as h → 0, uh converges locally uniformly to the pathwise
viscosity solution u of (1.1).

The proof of Theorem 4.1, which, as in [4], makes use of the method of half-relaxed limits,
will be postponed until the end of this section. In the following sub-sections, we demonstrate
its utility in a variety of contexts.

4.1. Finite difference schemes. Define, for x ∈ R
d and y ∈ Z

d\{0}, the discrete deriva-
tives

D+
h,yu(x) := u(x + hy) − u(x)

h|y| , D−
h,yu(x) := u(x) − u(x − hy)

h|y| and

D2
h,yu(x) := D+

h,yD
−
h,yu(x) = u(x + hy) + u(x − hy) − 2u(x)

h2|y|2 .

(4.7)

Observe that there exists a universal constant C > 0 such that, if u ∈ C1,1(Rd), h > 0, and
y ∈ Z

d\{0}, then

(4.8)
∥∥∥∥D±

h,yu − Du · y

|y|
∥∥∥∥∞

≤ C
∥∥D2u

∥∥∞h,

and, if u ∈ C2(Rd),

(4.9)
∥∥∥∥D2

h,yu − D2u
y

|y| · y

|y|
∥∥∥∥∞

≤ C sup
|x1−x2|≤h

∣∣D2u(x1) − D2u(x2)
∣∣.



APPROXIMATION SCHEMES FOR FULLY NONLINEAR SPDE 1801

For some fixed N ∈ N, define

Z
d
N :=

{
y ∈ Z

d : max
i=1,2,...,d

|yi | ≤ N
}
, D±

h,N := {
D±

h,y

}
y∈Zd

N\{0},

Dh,N := (
D+

h,ND−
h,N

)
and

D2
h,N := {

D2
h,y

}
y∈Zd

N\{0}.

Then, for some given functions

Hh ∈ C0,1(
R

(2N+1)d−1 ×R
(2N+1)d−1 ×R

)
and

Fh ∈ C0,1(
R

2N+1)d−1 ×R
(2N+1)d−1 ×R

(2N+1)d−1),
the scheme operators for finite difference approximations take the form

(4.10) Sh(t, s; ζ )u(x) := u(x) + Fh

(
D2

hu(x),Dhu(x)
)
(t − s) + Hh

(
Dhu(x), ζ(t) − ζ(s)

)
.

Properties (4.1) and (4.2) are immediate, while the question of whether (4.10) satisfies (4.4)
or (4.5) is reduced to routine calculations involving Fh and Hh.

4.1.1. Hamilton–Jacobi equations. We first study the first-order setting, for which F =
Fh = 0, and assume, in addition to (3.5), that

(4.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dp,qHh(·, ·,�ζ) ≤ C
(|�ζ | + h

)
for some C = CL > 0 and all h > 0 and �ζ ∈ R

m,

and Hh(p,p,�ζ) =
m∑

i=1

Hi(p)(�ζ)i

for all h > 0, p ∈ R
(2N+1)d−1, and �ζ ∈ R

m.

In order for monotonicity to hold, the Lipschitz bounds in (4.11) are made more precise. Let
elements of R(2N+1)d−1 be labeled by {py}y∈Zd

N\{0}, and assume that, for some C = CL > 0,
θ ∈ [0,1], and λ0 > 0,

(4.12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
y∈Zd

N\{0}

1

|y|
(

∂Hh

∂qy

− ∂Hh

∂py

)
≤ 1 − θ

λ0
|�ζ | + θh and

∂Hh

∂qy

− ∂Hh

∂p−y

≥ C

(
h − |�ζ |

λ0

)
for all y ∈ Z

d
N\{0}.

LEMMA 4.1. Suppose that H satisfies (3.5) and Hh satisfies (4.11). Then there exists
C = CL > 0 such that, whenever ζ ∈ C([0, T ],Rm), osc(ζ, s, t) ≤ λ0h for some s, t ∈ I , and
� ∈ C(I,C1,1(Rd)) is a solution of

d� =
m∑

i=1

Hi(D�) ◦ dζ i in R
d × I,

then ∥∥Sh(t, s; ζ )�(·, s) − �(·, t)∥∥∞ ≤ C
∥∥D2�

∥∥∞h2.

If, in addition, Hh satisfies (4.12), then, whenever u1, u2 ∈ (B)UC(Rd) with u1 ≤ u2 and
osc(ζ, s, t) ≤ λ0h,

Sh(t, s; ζ )u1 ≤ Sh(t, s; ζ )u2.
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Motivated by the above result, the schemes for first-order equations in Sections 5 and
6, for which we obtain explicit error estimates, will be assumed to satisfy the conclusions of
Lemma 4.1. In fact, the smoothness assumption (3.5) is not needed in the proof of Lemma 4.1,
and the quantitative convergence results in those sections can be proved under the more gen-
eral hypotheses (3.2) and (3.4).

PROOF OF LEMMA 4.1. Let � ∈ C(I,C1,1(Rd)) be as in the statement of the lemma.
Then there exists C > 0 depending only on max|p|≤L |DH(p)| such that, for all s, t ∈ I ,∥∥∥∥∥�(·, t) − �(·, s) −

m∑
i=1

Hi(D�(·, s))(ζ i(t) − ζ i(s)
)∥∥∥∥∥∞

≤ C
∥∥D2�

∥∥∞
∣∣ζ(t) − ζ(s)

∣∣2.
Therefore,∣∣Sh(t, s; ζ )�(·, s)(x) − �(x, t)

∣∣ ≤ C
∥∥D2�

∥∥∞
(
h2 + ∣∣ζ(t) − ζ(s)

∣∣h + ∣∣ζ(t) − ζ(s)
∣∣2)

≤ C
(
1 + λ0 + λ2

0
)
h2.

Meanwhile, if Sh : R(2N+1)d →R is the map implicitly defined by

Sh

({
u(x + y)

}
y∈Zd

N

) = Sh(t, s; ζ )u(x),

then (4.12) implies that Sh is increasing in each of its arguments as long as osc(ζ, s, t) ≤ λ0h.
�

We now mention two specific examples. The first is the analogue of the Lax–Friedrichs
scheme for scalar conservation laws discussed in the Introduction. Here, Hh is defined, for
some θ ∈ (0,1], by

Hh(p,q,�ζ) := H

(
p + q

2

)
�ζ + θh

2d

d∑
k=1

(qk − pk),

where the vector (p, q) ∈ R
d ×R

d stands for the discrete derivatives

p = (
D+

h,e1
,D+

h,e2
, . . . ,D+

h,ed

)
, q = (

D−
h,e1

,D−
h,e2

, . . . ,D−
h,ed

)
,

ek := (0,0, . . . ,0, 1︸︷︷︸
k

,0, . . . ,0) for k = 1,2, . . . , d.

A calculation verifies that (4.11) and (4.12) are satisfied with λ0 := θ
d‖DH‖∞ .

If d = 1, the different regions of monotonicity of H may be exploited to create upwind
schemes. As a simple example, assume that H ≥ H(0) = 0 and H is increasing for p > 0
and decreasing for p < 0, and define

Hh(p,q,�ζ) := [
H(p+) + H(−q−)

]
(�ζ)+ − [

H(q+) + H(−p−)
]
(�ζ)−.

Then (4.11) and (4.12) hold with θ = 0 and λ0 := 1
2‖H ′‖∞ .

As far as the approximating paths Wh are concerned, Lemma 4.1 implies that (4.4) and
(4.5) will hold, with k = 2, if ρh and Wh satisfy

(4.13) sup
0≤t−s≤ρh

∣∣Wh(t) − Wh(s)
∣∣ ≤ λ0h and lim

h→0

h2

ρh

= 0.

If Wh is smooth, then

sup
0≤t−s≤ρh

∣∣Wh(t) − Wh(s)
∣∣ ≤ ‖Ẇh‖∞ρh.
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Let ω : [0,∞) → [0,∞) be the modulus of continuity for W . For many standard approxi-
mations of W , there exists some increasing function h �→ ηh satisfying limh→0+ ηh = 0 and
some C > 0 such that

(4.14) ‖Ẇh‖∞ ≤ C
ω(ηh)

ηh

.

For example, Wh may be the piecewise linear interpolation of W with step-size ηh, or the
convolution of W with a standard mollifier supported in an interval of radius ηh. Then the
first part of (4.13) may be replaced with the slightly stronger assumption

(4.15)
Cω(ηh)ρh

hηh

≤ λ0.

To be more explicit, suppose that W ∈ Cα([0, T ],Rm) and, for some γ > 0, ηh = (ρh)
γ .

Then (4.15) will hold if ρh is defined by

λ := C[W ]α,T (ρh)
1−γ+αγ

h
≤ λ0.

This yields

h2

ρh

≈ (ρh)
1−2γ+2αγ ,

so that (4.13) will be satisfied if

0 < γ <
1

2(1 − α)
.

If α > 1
2 , then γ is allowed to be 1, and in particular, it is natural to define Wh to be the

piecewise linear interpolation of W on a partition of step-size ηh = ρh. Notice also that paths
in Cα for such α have quadratic variation equal to 0.

However, for α ≤ 1
2 , γ is forced to be less than 1, and so we must make Wh a milder

approximation. The work in the subsequent sections suggests that choosing γ = 1
2 gives the

best rate of convergence regardless of the regularity of the path W .

4.1.2. A second order example. Verifying (4.4) and (4.5) is more complicated for finite
difference approximations of second order equations. Rather than stating very general as-
sumptions on Fh or Hh, we perform these calculations for a specific scheme. More examples
can be formed by adapting the results of [20, 21].

Assume for simplicity that d = 1, H ∈ C3(R,Rm), and that F depends only on uxx , and
define, for some εh > 0,

Hh(p,q,�ζ) := H

(
p + q

2

)
�ζ and

Fh(X) = F(X) + εhX for X = D2
h,1u and (p, q) = Dh,1u.

Note that the ellipticity condition (3.1) means that F is increasing, and so a routine calculation
shows that Sh, Wh, and ρh satisfy (4.4) if

ρh := λh2 with λ ≤ 1

2‖F ′‖∞
and

(4.16) ‖Ẇh‖∞ ≤ 2

‖H ′‖∞
· εh

h
.
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Now let �h ∈ C(I,C3(R)) and φ ∈ C3(R) be as in (4.5). Observe that it is possible to find
such a solution because of the added regularity for H , and that

sup
h>0

(‖�h,xx‖∞ + ‖�h,xxx‖∞
)
< ∞.

Then, for some C > 0 depending only on ‖H ′‖∞, and for all ρ ∈ (0, λh2),∣∣∣∣∣�h(x, t + ρ) − �h(x, t) −
m∑

i=1

Hi(�h,x(x, t)
)(

Wh(t + ρ) − Wh(t)
)∣∣∣∣∣

≤ C
(
‖�h,xx‖∞ max

t≤s≤t+ρ

∣∣Wh(s) − Wh(t)
∣∣2) ≤ Cλ‖�h,xx‖∞(εh)

2ρ.

The estimates (4.8) and (4.9) then imply that, for sh and th as in (4.5),∣∣Sh(th, sh;Wh)�h(·, sh)(x) − �h(x, th) − (th − sh)F
(
φxx(x, t)

)∣∣
≤ Cρh · (‖�h,xx‖∞εh + ‖�h,xxx‖∞h + ∥∥�h,xx(·, sh) − φxx

∥∥∞
)
,

and so (4.5) holds if limh→0 εh = 0. This, in turn, requires that

lim
h→0

h‖Ẇh‖∞ = 0,

or that Wh satisfies (4.14) with ηh such that

lim
h→0

hω(ηh)

ηh

= 0.

Taking W ∈ Cα([0, T ],Rm) and ηh = (ρh)
γ = λγ h2γ for some γ > 0 as a concrete example,

this leads once more to the restriction

0 < γ <
1

2(1 − α)
.

4.2. Other approximations.

4.2.1. Stability for (1.1). The proof of Theorem 4.1 is a generalization of the argument
that (1.1) is stable with respect to perturbations in the data. In fact, Theorem 4.1 recovers
these stability properties.

Suppose that

(4.17)

⎧⎪⎪⎨
⎪⎪⎩

uε
0 ∈ C0,1(

R
d), Wε,W ∈ C

([0, T ];Rm)
,

Hε,H ∈ C2(
R

d;Rm)
, F ε,F satisfy (3.1),

and lim
ε→0

(∥∥uε
0 − u0

∥∥∞,
∥∥Wε − W

∥∥∞,
∥∥Hε − H

∥∥
C2,

∥∥Fε − F
∥∥∞

) = 0,

and let uε ∈ BUC(Rd × [0, T ]) be the unique solution of

(4.18)

⎧⎪⎪⎨
⎪⎪⎩

duε = Fε(D2uε,Duε)dt +
m∑

i=1

Hi,ε(Duε) ◦ dWi,ε in R
d × (0, T ] and

uε(·,0) = uε
0 on R

d .

THEOREM 4.2. Assume (4.17) and let uε and u solve respectively (4.18) and (1.1). Then,
as ε → 0, uε converges locally uniformly to u.
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PROOF. The comparison principle implies that the solution operator for (4.18) is con-
tractive, and therefore, it suffices to assume that uε

0 = u0 for all ε > 0.
For s ≤ t , ζ ∈ C([0, T ];Rm), and h > 0, let Sε(t, s; ζ ) : BUC(Rd) → BUC(Rd) be the

solution operator for (4.18) driven by the path ζ instead of Wε . Properties (4.1) and (4.2)
are readily verified, and, letting ρh = ρε be arbitrary and setting Wh = Wε , (4.4) follows
immediately from the comparison principle.

Finally, in view of the uniform bound for D2Hε , for any interval I ⊂ [0, T ] and solution
� ∈ C(I,C2(Rd)) of (3.6), there exists a family of solutions �ε ∈ C(I,C2(Rd)) solving
(3.6) with the Hamiltonian Hε and path Wε , converging in C(I,C2(Rd)) to � as ε → 0.
This can be seen using the method of characteristics, as in Section 3. Therefore, (4.5) is a
consequence of Definition 3.1 and the local uniform convergence of Fε to F . Theorem 4.1
now gives the result. �

4.2.2. A mixing formula. It is also possible to derive general Trotter–Kato type mixing
formulas for (1.1). Here, we present a specific example. A different approach to the following
can be found in the work of Gassiat and Gess [13].

Assume, in addition to (3.1), that

F ∈ C1,1(Sd ×R
d) and H ∈ C4(

R
d,Rm)

,

and, for ζ ∈ C([0, T ],Rm), let SF (t) : BUC(Rd) → BUC(Rd) and SH (t, s; ζ ) :
BUC(Rd) → BUC(Rd) be the solution operators for respectively

ut = F
(
D2u,Du

)
and du =

m∑
i=1

Hi(Du) ◦ dζ i.

Define

Sh(t, s; ζ ) = SF (t − s)SH (t, s; ζ ).

THEOREM 4.3. For any sequence of approximating paths {Wh}h>0 and modulus h → ρh

satisfying (4.3), the triple (Sh,Wh,ρh) satisfies (4.1)–(4.5).

PROOF. Properties (4.1)–(4.4) are immediate from the definitions of the above objects.
Let I ⊂ [0, T ], sh, th ∈ I , �h ∈ C(I ;C4(Rd)), and φ ∈ C4(Rd) be as in (4.5). Such a solution
� exists in view of the additional regularity assumed for H .

For any x ∈ R
d ,

Sh(th, sh;Wh)�h(·, sh)(x) − �h(x, th) = SF (th − sh)�h(·, th)(x) − �h(x, th).

Define φh := �h(·, th), which satisfies

R := sup
h>0

‖φh‖C4(Rd ) < ∞ and lim
h→0

‖φh − φ‖C2(Rd ) = 0,

and let

zh(x, t) := φh(x) + tF
(
D2φh(x),Dφh(x)

)
.

Then, for some universal constant C > 0, zh is a viscosity super-solution of

zh,t ≥ F
(
D2zh,Dzh

) − C‖F‖C1,1(Rd )Rρh in R
d × [0, ρh],

so that, for all ρ ∈ (0, ρh),

sup
x∈Rd

(
SF (ρ)φh(x) − zh(x, ρ)

) ≤ C‖F‖C1,1(Rd )Rρhρ.
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A similar argument, using that zh satisfies an analogous viscosity sub-solution property, gives
a lower bound, whence∣∣SF (th − sh)φh(x) − φh(x) − (th − sh)F

(
D2φh(x),Dφh(x)

)∣∣ ≤ C‖F‖C1,1(Rd )Rρh(th − sh).

Property (4.5) now follows, with k = 4, from the fact that

lim
h→0

F
(
D2φh,Dφh

) = F
(
D2φ,Dφ

)
uniformly. �

4.3. The proof of Theorem 4.1. Define

u∗(x, t) = lim sup
h→0,(y,s)→(x,t)

uh(y, s) and u∗(x, t) = lim inf
h→0,(y,s)→(x,t)

uh(y, s).

The functions u∗ and u∗, called the half-relaxed limits of uh, are respectively upper- and
lower-semicontinuous. Furthermore, u∗ ≤ u∗ on R

d × [0, T ] and u∗(·,0) ≤ u0 ≤ u∗(·,0) on
R

d . The goal will be to show that u∗ = u∗, which yields the local uniform convergence of uh

and the fact that the limit u solves (1.1).
Step 1: Finiteness of u∗ and u∗. Observe that, for any constant k ∈ R, the function

�h(x, t) = k +
m∑

i=1

Hi(0)Wi
h(t)

is a smooth solution of (3.6) for all (x, t) ∈ R
d ×[0, T ]. Therefore, in view of (4.4) and (4.5),

uh(x, t) ≤ ‖u0‖∞ +
m∑

i=1

Hi(0)Wi
h(t) + T

(
F(0,0) + 1

)

for all sufficiently small h > 0, and so u∗(x, t) < ∞ for all (x, t) ∈ R
d × [0, T ]. A similar

argument gives u∗ > −∞.
Step 2: The solution inequalities. In this step, we demonstrate that u∗ and u∗ satisfy re-

spectively the sub- and super-solution properties in Definition 3.1 for equation (1.1). Only
the argument for u∗ is presented, since the proof for u∗ is similar.

Assume that (x0, t0) ∈R
d × (0, T ], I � t0, ψ ∈ C1([0, T ]), � ∈ C(I,Ck(Rd)) solves (3.6)

with

max
j=2,3,...,k

sup
t∈I

∥∥Dj�(·, t)∥∥∞ < ∞,

and u∗(x, t) − �(x, t) − ψ(t) attains a local maximum at (x0, t0). As discussed in Section 3,
it may be assumed that this maximum is strict in R

d × I , and that

(4.19) lim|x|→+∞
�(x, t)

|x| = +∞ uniformly for t ∈ I .

The definition of u∗ implies that there exist yh ∈ R
d and sh ∈ [0, T ] such that

lim
h→0

(
yh, sh, uh(yh, sh)

) = (
x0, t0, u

∗(x0, t0)
)
.

The method of characteristics and the fact that limh→0 ‖Wh −W‖∞ = 0 yield the existence
of a subinterval of I containing t0, relabeled as I for convenience, such that, for all h > 0,
there exists a solution �h ∈ C(I,Ck(Rd)) of

d�h =
m∑

i=1

Hi(D�h) ◦ dWh in R
d × I and �h(·, t0) = �(·, t0) in R

d
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that satisfies (4.19) uniformly in h, and �h converegs to � in C(I,Ck(Rd)) as h → 0. It
follows that

uh(x, t) − �h(x, t) − ψ(t)

attains a global maximum at (ŷh, ŝh) over Rd × I such that {ŷh}h>0 is bounded. This gives,
in particular,

uh(yh, sh) − �h(yh, sh) − ψ(sh) ≤ uh(ŷh, ŝh) − �h(ŷh, ŝh) − ψ(ŝh).

Let (x̂, t̂) be a limit point of the sequence {(ŷh, ŝh)}h>0. Taking h → 0 along the appropriate
subsequence above results in the inequality

u∗(x0, t0) − �(x0, t0) − ψ(t0) ≤ u∗(x̂, t̂) − �(x̂, t̂) − ψ(t̂).

The strictness of the original maximum then implies that limh→0(ŷh, ŝh) = (x0, t0).

Because |Ph| ≤ ρh
h→0−−−→ 0, it follows that, for sufficiently small h, there exists tn ∈ Ph

such that tn < ŝh ≤ tn+1 and tn ∈ I . Then, for all x ∈ R
d ,

(4.20) uh(x, tn) ≤ uh(ŷh, ŝh) + �h(x, tn) − �h(ŷh, ŝh) + ψ(tn) − ψ(ŝh).

Applying the operator Sh(ŝh, tn;Wh) to both sides of (4.20), using (4.4) and the fact that
0 < ŝh − tn ≤ ρh, and rearranging terms yields

ψ(ŝh) − ψ(tn)

ŝh − tn
≤ Sh(ŝh, tn;Wh)�h(·, tn)(ŷh) − �h(ŷh, ŝh)

ŝh − tn
.

Sending h → 0 and using (4.5) gives ψ ′(t0) ≤ F(D2�(x0, t0),D�(x0, t0)), as desired.
Step 3: Initial data. We now prove that u∗(x,0) = u0(x) = u∗(x,0). Only the first equality

is considered, and since u∗(x,0) ≥ u0(x), it suffices to show that u∗(x,0) ≤ u0(x).
Let φ ∈ Ck(Rd) be such that

R := max
j=2,3,...,k

∥∥Djφ
∥∥∞ < ∞

and u0 ≤ φ on R
d , and let I � 0 and � ∈ C(I,Ck(Rd)) be a solution of (3.6) with �(·,0) =

φ. Define φh ∈ C0,1(Rd ×[0, T ]) as in (4.6) with initial condition φh(·,0) = φ, path Wh, and
partition Ph. Then (4.4) and (4.5) yield, for some C > 0 depending only on R and ‖DF‖∞,
and for any (y, s) ∈R

d × I and sufficiently small h,

uh(y, s) ≤ φh(y, s) ≤ �(y, s) + Cs.

Sending (y, s) → (x,0) and h → 0, this becomes u∗(x,0) ≤ φ(x), completing the argument
since φ was arbitrary.

Step 4: The comparison principle. In view of the comparison principle (3.14), u∗(x, t) ≤
u∗(x, t) for all (x, t) ∈ R

d × [0, T ]. Therefore u∗ = u∗, and the result is proved.

5. The pathwise estimate. The remaining sections focus on deriving quantitative error
estimates for schemes in the first-order setting. We will henceforth always assume that H

satisfies (3.2) and u0 satisfies (3.3) (and thus, without loss of generality, H satisfies (3.4)).
Also, in addition to (4.1) and (4.2), the schemes in this part of the paper will be required to
satisfy the following quantitative versions of (4.4) and (4.5): for some λ0 > 0,

(5.1) if u1 ≤ u2 and osc(ζ, s, t) ≤ λ0h, then Sh(t, s; ζ )u1 ≤ Sh(t, s; ζ )u2,
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and

(5.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

there exists C = CL > 0 such that, if ζ ∈ C
([0, T ],Rm)

, � ∈ C
(
I,C1,1(

R
d))

is a solution of d� =
m∑

i=1

Hi(D�) ◦ dζ i in R
d × I , and osc(ζ, s, t) ≤ λ0h, then∥∥Sh(t, s; ζ )�(·, s) − �(·, t)∥∥∞ ≤ C

∥∥D2�
∥∥∞h2.

This is motivated by the properties obtained in Lemma 4.1 for the finite difference approxi-
mations discussed in Section 4.1.1.

Fix a partition

P = {0 = t0 < t1 < t2 < · · · < tN = T }
of [0, T ], set (�t)n := tn+1 − tn, and let ζ : [0, T ] → R

m be any continuous path satisfying

(5.3)

⎧⎨
⎩

ζ(0) = 0, ζ is affine on [tn, tn+1] for every n = 0,1,2, . . . ,N − 1, and

max
n=0,1,2,...,N−1

∣∣ζ(tn+1) − ζ(tn)
∣∣ ≤ λ0h.

In this section, we obtain an estimate for the error between the viscosity solution v of

(5.4) vt =
m∑

i=1

Hi(Dv)ζ̇ i(t) in R
d × (0, T ] and v(·,0) = u0 on R

d

and the approximate solution vh(·; ζ,P) given by (4.6), which, for convenience, we define
again here:

(5.5)

⎧⎪⎪⎨
⎪⎪⎩

vh(·,0; ζ,P) := u0,

vh(·, t; ζ,P) := Sh(t, tn; ζ )vh(·, tn; ζ,P)

for n = 0,1, . . . ,N − 1 and t ∈ (tn, tn+1].

THEOREM 5.1. Assume (3.2), (3.3) and (3.4). Then there exists C = CL > 0 such that,
if Sh satisfies (4.1), (4.2), (5.1), and (5.2), ζ and P satisfy (5.3), and v and vh are as in (5.4)
and (5.5) with ‖Du0‖∞ ≤ L, then, for all ε,h > 0,

sup
(x,t)∈Rd×[0,T ]

∣∣vh(x, t; ζ,P) − v(x, t)
∣∣

≤ 1

ε

N−1∑
n=0

(�tn)
2 + C

√
Nh + max

s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}
.

Before proving Theorem 5.1, we state some regularity estimates for v and vh. First, the
monotonicity of the scheme operator Sh, the comparison principle for (6.1), and the transla-
tion invariance of the solution operators for each immediately yield the Lipschitz bounds

(5.6) ‖Dv‖∞,‖Dvh‖∞ ≤ L.

The regularity of vh and v in the time variable is established by the next result.

LEMMA 5.1. Assume (3.2), (3.3) and (3.4). There exists C = CL > 0 such that, for all
(x, s, t) ∈ R

d × [0, T ] × [0, T ] with s < t ,

(5.7)
∣∣v(x, t) − v(x, s)

∣∣ ≤ Cosc(ζ, s, t)

and, for all m,n ∈ {0,1,2, . . . ,N} with m < n,

(5.8)
∣∣vh(x, tn; ζ,P) − vh(x, tm; ζ,P)

∣∣ ≤ C
(
h
√

n − m + osc(ζ, tm, tn)
)
.
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PROOF. The bound (5.7) follows from the cancellation estimates presented in Propo-
sition 7.2 of [31]. To prove (5.8), observe first that, in view of Lemma 3.2(c), there exists
C = CL > 0 such that, for all z ∈ R

d and δ > 0,

L|z| ≤ �δ(z, tm, tm; ζ ) + Cδ.

Then (5.6) yields, for all x, y ∈ R
d ,

vh(x, tm; ζ,P)

≤ vh(y, tm; ζ,P) + L|x − y| ≤ vh(y, tm; ζ,P) + �δ(x − y, tm, tm; ζ ) + Cδ.
(5.9)

Keeping y fixed, we then apply the operator
∏n−1

k=m Sh(tk+1, tk; ζ,P) to the left- and right-
hand sides of the inequality (5.9), which is preserved because of the monotonicity of this oper-
ator implied by (5.1) and (5.3). According to (5.5), the left-hand side becomes vh(x, tn; ζ,P).
Iteratively using (5.2) to compare the right-hand side to �δ(x −y, tn, tm; ζ,P) yields, in view
of Lemma 3.2(b),

vh(x, tn; ζ,P) ≤ vh(y, tm; ζ,P) + �δ(x − y, tn, tm; ζ ) + C
(
δ + (n − m)

∥∥D2�δ

∥∥∞h2)
≤ vh(y, tm; ζ,P) + �δ(x − y, tn, tm; ζ ) + C

(
δ + (n − m)h2

δ

)
,

as long as osc(ζ, tm, tn) ≤ δ. Setting x = y gives

vh(x, tn; ζ,P) − vh(x, tm; ζ,P) ≤ C inf
{
δ + (n − m)h2

δ
: δ ≥ osc(ζ, tm, tn)

}
.

If osc(ζ, tm, tn) ≤ h
√

n − m, then the right-hand side is optimized by choosing δ = h
√

n − m.
Otherwise, setting δ = osc(ζ, tm, tn) gives the result, since in this case,

(n − m)h2

δ
= (n − m)h2

osc(ζ, tm, tn)
≤ h

√
n − m.

The lower bound for vh(·, tn; ζ,P) − vh(·, tm; ζ,P) is proved similarly. �

PROOF OF THEOREM 5.1. Throughout the proof, to simplify the presentation, we
set vh(x, t) := vh(x, t; ζ,P). Fix a constant C = CL > 0 to be determined later, and let
α,μ : [0, T ] →R be the nondecreasing, lower-semicontinuous, piecewise constant functions
defined by α(0) = μ(0) = 0 and

α(s) − α(tn) := [
(�t)n

]2 and μ(s) − μ(tn) = Ch2

for n = 0,1,2, . . . ,N − 1 and s ∈ (tn, tn+1].
Choose ε > 0 and

(5.10) δ > max
{

2λ0h, max
s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}}
,

and define the auxiliary function � : [0, T ] × [0, T ] →R by

(5.11) �(s, t) = sup
x,y∈Rd

{
vh(x, s) − v(y, t) − �δ(x − y, s, t; ζ )

}− |s − t |2
2ε

− μ(s)

δ
− α(s)

ε
,

where �δ is the “distance function” given in (3.12).
Step 1: We first prove that, if C is sufficiently large, then

(5.12) max
[0,T ]2

� = max
{

max
s∈[0,T ]�(s,0), max

t∈[0,T ]�(0, t)
}
.
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Assume for the sake of contradiction that, for some σ > 0, �(s, t) − σ t attains its maximum
in [0, T ] × [0, T ] at (ŝ, t̂) with ŝ > 0 and t̂ > 0.

The first observation is that, for some M = ML > 0, the supremum in (5.11) may be
restricted to x, y ∈ R

d satisfying |x − y| ≤ Mδ. This is because, for any s, t ∈ [0, T ] and for
some C′ = C′

L > 0,

sup
x,y∈Rd

{
vh(x, s) − v(y, t) − �δ(x − y, s, t; ζ )

} ≥ sup
x∈Rd

{
vh(x, s) − v(x, t)

} − C′δ,

while, if |x − y| > Mδ, then (5.6) and Lemma 3.2(c) give, for some C = CL > 0,

vh(x, s) − v(y, t) − �δ(x − y, s, t; ζ )

≤ sup
x∈Rd

{
vh(x, s) − v(x, t)

} + L|x − y| − |x − y|2
2(C + 1)δ

+ Cδ

≤ sup
x∈Rd

{
vh(x, s) − v(x, t)

} − M2δ

4(C + 1)
+ (

C + (C + 1)L2)δ
< sup

x∈Rd

{
vh(x, s) − v(x, t)

} − C′δ,

where the last inequality holds if M is sufficiently large.
As a result, if C is large enough, then (ŝ, t̂) ∈ Uδ/2(W). To verify this, we rearrange terms

in the inequality �(ŝ, ŝ) ≤ �(ŝ, t̂) and use Lemmas 3.2(a) and 5.1 to obtain, for some C =
CL > 0,

|ŝ − t̂ |2
2ε

≤ sup
|x−y|≤Mδ

{
vh(y, ŝ) − v(y, t̂) + �δ(x − y, ŝ, ŝ; ζ ) − �δ(x − y, ŝ, t̂; ζ )

}
≤ Cosc(ζ, ŝ, t̂).

Consequently,

Cosc(ζ, ŝ, t̂) ≤ max
s,t∈[0,T ]

{
Cosc(ζ, s, t) − |s − t |2

2ε

}
+ |ŝ − t̂ |2

2ε

≤ max
s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}
+ Cosc(ζ, ŝ, t̂ ) ≤ δ + Cosc(ζ, ŝ, t̂),

so that

osc(ζ, ŝ, t̂) ≤ δ

C − C
<

δ

2
if C > C + 2.

Now, if n̂ ∈ {0,1,2, . . . ,N − 1} is the integer satisfying tn̂ < ŝ ≤ tn̂+1, then the linearity of ζ

on [tn̂, tn̂+1] implies that

∣∣ζ(ŝ) − ζ(tn̂)
∣∣ ≤ λ0h <

δ

2
,

and so the triangle inequality yields (tn̂, t̂ ) ∈ Uδ(ζ ). This, in turn, means that (s, t̂) ∈ Uδ(ζ )

for all s ∈ [tn̂, ŝ].
We next use the definition of pathwise viscosity solutions to establish the inequality

(5.13)
ŝ − t̂

ε
≥ σ.

In view of Lemma 3.2(c), for any x ∈ R
d , the function

y �→ v(y, t) + �δ(x − y, ŝ, t; ζ )
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attains a global minimum over Rd . Definition 3.2 and Lemma 3.2(d) then imply that

t �→ inf
y∈Rd

{
v(y, t) + �δ(x − y, ŝ, t; ζ )

}
is nondecreasing on I := {t ∈ [0, T ] : (ŝ, t) ∈ Uδ(ζ )}, and therefore, so is

φ(t) := inf
x,y∈Rd

{
v(y, t) − vh(x, ŝ) + �δ(x − y, ŝ, t; ζ )

}
.

Since φ(t) + |ŝ−t |2
2ε

+ σ t attains a minimum at t̂ ∈ I , (5.13) follows.
On the other hand, we obtain a contradiction by using (5.1) and (5.2) to show that

(5.14)
ŝ − t̂

ε
≤ 0.

The first step is to prove that, for each y ∈ R
d , the function

a(s) := sup
x∈Rd

{
vh(x, s) − �δ(x − y, s, t̂; ζ )

} − μ(s)

δ

satisfies

max[tn̂,tn̂+1]
a = a(tn̂).

Indeed, if this were not the case, then, for some s∗ ∈ [tn̂, tn̂+1] and sufficiently small β > 0,

a(tn̂) ≤ a
(
s∗) − β

(
s∗ − tn̂

)
.

Lemma 3.2(c) implies that the supremum in the definition of a(s∗) is attained for some x∗ ∈
R

d , and so it follows that, for all x ∈ R
d ,

vh(x, tn̂) ≤ vh

(
x∗, s∗) + �δ(x − y, tn̂, t̂; ζ ) − �δ

(
x∗ − y, s∗, t̂; ζ )

− μ(s∗) − μ(tn̂)

δ
− β

(
s∗ − tn̂

)
.

(5.15)

In view of (5.1) and the fact that osc(ζ, tn̂, s
∗) ≤ λ0h, the operator Sh(s

∗, tn̂; ζ ) is monotone.
Applying it to both sides of the inequality (5.15), setting x = x∗, rearranging terms, and using
(5.2) and Lemma 3.2(b) and (d) yield

Ch2

δ
+ β

(
s∗ − tn̂

) = μ(s∗) − μ(tn̂)

δ
+ β

(
s∗ − tn̂

) ≤ C
∥∥D2�

∥∥∞h2 ≤ Ch2

δ
.

This results in a contradiction as long as C ≥ C.
As a consequence,

ψ(s) := sup
x,y∈Rd

{
vh(x, s) − v(y, t̂) − �δ(x − y, s, t̂; ζ )

} − μ(s)

δ

attains its maximum in [tn̂, tn̂+1] at tn̂, and therefore, because ψ(s) − |s−t̂ |2
2ε

− α(s)
ε

attains a
maximum at ŝ,

ψ(tn̂) − |tn̂ − t̂ |2
2ε

− α(tn̂)

ε
≤ ψ(ŝ) − |ŝ − t̂ |2

2ε
− α(ŝ)

ε
≤ ψ(tn̂) − |ŝ − t̂ |2

2ε
− α(ŝ)

ε
,

which, after rearranging terms, yields (5.14). Together with (5.13), this establishes (5.12).
Step 2: The next claim is that, for some C = CL > 0,

max{0}×[0,T ]∪[0,T ]×{0}� ≤ C(δ + √
Nh) + max

s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}
.
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Assume that � attains its maximum at (ŝ, t̂), with either ŝ = 0 or t̂ = 0.
If ŝ = t̂ = 0, then Lemmas 3.2(c) and 5.1 yield C = CL > 0 such that

�(0,0) = sup
x,y∈Rd

{
u0(x) − u0(y) − �δ(x − y,0,0; ζ )

}

≤ sup
x,y∈Rd

{
L|x − y| − 1

2(C + 1)δ
|x − y|2

}
+ Cδ ≤

(
C + (C + 1)L2

2

)
δ.

Assume now that ŝ = 0. Then, in view of Lemmas 3.2(c) and 5.1,

�(0, t̂) = sup
|x−y|≤Mδ

{
u0(x) − v(y, t̂) − �δ(x − y,0, t̂; ζ )

} − t̂2

2ε

≤ Cδ + sup
|x−y|≤Mδ

{
u0(y) − v(y, t̂) − �δ(x − y,0, t̂; ζ )

} − t̂2

2ε

≤ Cδ + max
t∈[0,T ]

(
Cosc(ζ,0, t) − t2

2ε

)
= Cδ + max

s,t∈[0,T ]

(
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

)
.

Finally, if t̂ = 0, then Lemma 5.1 gives

�(ŝ,0) ≤ sup
|x−y|≤Mδ

{
vh(x, ŝ) − u0(y) − �δ(x − y, ŝ,0; ζ )

} − ŝ2

2ε

≤ Cδ + sup
x∈Rd

{
vh(x, ŝ) − u0(x)

} − ŝ2

2ε

≤ C(δ + √
Nh) + max

s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}
.

Step 3. Combining the previous two steps and rearranging terms yields, for all (x, t) ∈
R

d × [0, T ],
vh(x, t) − v(x, t)

≤ 1

ε

N−1∑
n=0

(�tn)
2 + C

(
δ + Nh2

δ
+ √

Nh

)
+ max

s,t∈[0,T ]

{
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

}
.

The inequality is optimized by setting

δ := max
{
C

√
Nh, max

s,t∈[0,T ]

(
C
∣∣ζ(s) − ζ(t)

∣∣ − |s − t |2
2ε

)}
for a sufficiently large constant C = CL > 0, which clearly satisfies (5.10). This finishes the
proof of the upper bound for vh − v, and the lower bound is proved similarly. �

6. Convergence rates. In this section, the pathwise estimate from Theorem 5.1 is used
to obtain a rate of convergence for schemes approximating solutions of the Hamilton–Jacobi
equation

(6.1) du =
m∑

i=1

Hi(Du) ◦ dWi in R
d × (0, T ] and u(·,0) = u0 in R

d .

It will always be assumed, as in Section 5, that

(6.2)

{
H and u0 satisfy (3.2), (3.3), and (3.4),

and the scheme operator Sh satisfies (4.1), (4.2), (5.1), and (5.2).



APPROXIMATION SCHEMES FOR FULLY NONLINEAR SPDE 1813

We first examine the setting in which W is a fixed, deterministic path, and then some
extensions are presented in the case where W is a Brownian motion. Following Section 4, we
define uh := vh(·;Wh,Ph), with vh as in (5.5), for an appropriate family of approximating
paths {Wh}h>0 and partitions {Ph}h>0. Let v be the viscosity solution of

(6.3) vt =
m∑

i=1

Hi(Dv)Ẇh in R
d × (0, T ] and v(·,0) = u0 in R

d .

The error uh − u is then controlled by using Theorem 5.1 and Lemma 3.3 to estimate respec-
tively the differences uh − v and v − u.

6.1. A fixed continuous path. Fix W ∈ C([0, T ];Rm), and let ω : [0,∞) → [0,∞) be its
modulus of continuity. Define ρh implicitly by

(6.4) λ := ω((ρh)
1/2)

(ρh)1/2 < λ0

and set Ph := {nρh ∧ T }Nn=0, where N is the smallest integer for which Nρh ∧ T = T .
Recall from Section 4.1.1 that taking Wh to be the piecewise linear interpolation of W over

the partition Ph may not, in general, yield a convergent scheme. Instead, we set

Mh := ⌊
(ρh)

−1/2⌋
and define Wh by

(6.5) Wh(t) := W(kMhρh) +
(

W((k + 1)Mhρh) − W(kMhρh)

Mhρh

)
(t − kMhρh)

for k ∈ N0 and t ∈ [kMhρh, (k + 1)Mhρh). Observe that the approximating path Wh satisfies
(4.14) with ηh = (ρh)

1/2.
Now set uh := vh(·;Wh,Ph), with vh as in (5.5), and let v be the solution of (6.3).

THEOREM 6.1. Assume (6.2) and let uh and u be as described above. Then there exists
C = CL,λ > 0 such that

(6.6) sup
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − u(x, t)
∣∣ ≤ C(1 + T )ω

(
(ρh)

1/2).
As an example, assume that W ∈ Cα([0, T ],Rm) and set

λ := [W ]α,T

(ρh)
(1+α)/2

h
.

Then, as long as λ < λ0, the scheme converges with a rate of order (ρh)
α/2 ≈ hα/(1+α).

PROOF OF THEOREM 6.1. First, notice that, in view of (6.4), Wh satisfies (5.3). In par-
ticular, for some C = CL > 0,

max
s,t∈[0,T ]

(
C
∣∣Wh(s) − Wh(t)

∣∣ − |s − t |2
2ε

)

≤ Cλ0h + max
n∈N0

(
Cnλ0h − n2ρ2

h

2ε

)
≤ Cλ0h + (Cλ0h)2ε

2(ρh)2 .
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Theorem 5.1 then gives, for any ε > 0,

max
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − v(x, t)
∣∣ ≤ N(ρh)

2

ε
+ C

√
Nh + (Cλ0h)2ε

2(ρh)2

≤ Tρh

ε
+ C

√
T

h√
ρh

+ (Cλ0h)2ε

2(ρh)2 .

Upon choosing ε = √
T

(ρh)3/2

h
, this becomes

(6.7) max
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − v(x, t)
∣∣ ≤ C

√
T

h√
ρh

= C
√

T ω
(
(ρh)

1/2).
Notice that the error term takes the form

√
h2

ρh
, which is consistent with the discussion in

Section 4.1.1.
Lemma 3.3 then implies that

sup
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − u(x, t)
∣∣ ≤ C

(√
T ω

(
(ρh)

1/2) + ω(Mhρh)
)
,

and the result is proved in view of the choice of Mh. �

6.2. Brownian paths. For the rest of the paper, we investigate schemes for which W is
a standard Brownian motion defined on a probability space (�,F,Ft ,P). The expectation
and variance with respect to P are denoted by respectively E and Var. To simplify the pre-
sentation, it is assumed that m = 1, so that W is one-dimensional, although all three schemes
below can be adapted to the case when m > 1.

6.2.1. Regular partitions. Theorem 6.1 may be applied in this situation by using the fact
that oscillations of Brownian paths are controlled by the Lévy modulus of continuity. More
precisely,

(6.8) P
(

lim sup
δ→0

sup
δ≤t≤T −δ

|W(t) − W(t + δ)|√
2δ| log δ| = 1

)
= 1.

THEOREM 6.2. Assume (6.2), let ρh be defined implicitly by

(6.9) λ := (ρh)
3/4| logρh|1/2

h
< λ0,

and let uh, Ph, and Wh be as in the previous subsection. Then there exists a deterministic
constant C = CL,λ > 0 such that

P
(

lim sup
h→0

sup
(x,t)∈Rd×[0,T ]

|uh(x, t) − u(x, t)|
(ρh)1/4| logρh|1/2 ≤ C(1 + T )

)
= 1.

PROOF. Define Mh := (ρh)
−1/2� and Kh := T/(Mhρh)�. The definitions of Wh and λ

give

max
n=0,1,2,...,N−1

|Wh(nρh) − Wh((n + 1)ρh)|
h

= max
k=0,1,2,...,Kh

|W(kMhρh) − W((k + 1)Mhρh|
Mhh
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= λ max
k=0,1,2,...,Kh

|W(kMhρh) − W((k + 1)Mhρh)|
Mh(ρh)3/4| logρh|1/2

≤ λ
max|s−t |≤(ρh)1/2 |W(s) − W(t)|
(ρh)1/4(1 − (ρh)1/2)| logρh|1/2 .

Therefore, in view of (6.8), for any δ > 0,

P
(

max
n=0,1,2,...,N−1

|Wh(nρh) − Wh((n + 1)ρh)|
h

≤ λ
1 + δ

1 − (ρh)1/2 for sufficiently small h

)
= 1.

Taking δ ∈ (0, λ0/λ − 1), this implies that

P
(

lim sup
h→0

max
n=0,1,2,...,N−1

|Wh(nρh) − Wh((n + 1)ρh)|
h

< λ0

)
= 1,

so that, for some h0 > 0,

P
(∣∣Wh(nρh) − Wh

(
(n + 1)ρh

)∣∣ ≤ λ0h for all 0 < h < h0 and n = 0,1,2, . . . ,Nh − 1
) = 1.

Shrinking h0, if necessary, it may be concluded from (6.6) and (6.8) that

P
(

sup
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − u(x, t)
∣∣ ≤ CT (ρh)

1/4| logρh|1/2 for all 0 < h < h0

)
= 1.

�

Observe that (6.9) implies that limh→0
logρh

logh
= 4

3 , so that the convergence rate in Theo-
rem 6.2 can be rewritten as

(6.10) lim sup
h→0

sup
(x,t)∈Rd×[0,T ]

|uh(x, t) − u(x, t)|
h1/3| logh|1/3 ≤ C(1 + T ).

6.2.2. Random partitions. For the next scheme, the partitions Ph are defined using a se-
quence of stopping times adapted to the filtration Ft of the Brownian motion W . By choosing
the stopping times carefully to control the maximal oscillations of the Brownian paths, it is
possible to recover the error estimate from Theorem 6.2.

For h > 0, define ηh := h1/3| logh|−2/3, set T0 = T0(h) := 0, and, for k ∈ N0,

Tk+1 = Tk+1(h) := inf
{
t > Tk(h) : osc

(
W,Tk(h), t

)
> ηh

}
and

τk+1 = τk+1(h) := Tk+1(h) − Tk(h).

Observe that {Tk}∞k=0 is an increasing sequence of stopping times, and, for each fixed k,
h → Tk(h) decreases as h → 0. Therefore, by the strong Markov property for Brownian
motion, for each fixed h, {τk(h)}∞k=1 is a collection of independent, identically distributed
random variables. As a result, for any integer � > 0, there exists a constant c� > 0 such that,
for all k,

E
[
τk(h)�

] = c�(ηh)
2�.

Indeed, it is well known that the first exit time of a Brownian motion from a bounded interval
has finite moments of any order. The exact formula follows from the scaling properties of
Brownian motion, so that

c� := E
[
inf

{
t > 0 : osc

(
W,0, t1/�) > 1

}]
.

Let Wh be the piecewise interpolation of W over the partition {0 = T0(h) < T1(h) <

T2(h) < · · · }. That is,

Wh(t) := W
(
Tk(h)

) + W(Tk+1(h)) − W(Tk(h))

τk+1(h)

(
t − Tk(h)

)
whenever Tk(h) ≤ t < Tk+1(h).
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Define

Mh :=
⌈

ηh

λ0h

⌉
= ⌈(

λ0h
2/3| logh|2/3)−1⌉

,

t0 = t0(h) := 0, and, whenever k = 0,1,2, . . . and kMh ≤ n < (k + 1)Mh,

tn = tn(h) := Tk(h) + (n − kMh)
τk+1(h)

Mh

and

�tn = �tn(h) := tn+1(h) − tn(h) = τk+1(h)

Mh

.

Also set

Kh := sup
{
k ∈N0 : Tk(h) ≤ T

}
and Nh := sup

{
n ∈ N0 : tn(h) ≤ T

}
,

and note that h �→ Kh increases as h → 0.
We have defined the path Wh, which is piecewise linear over the partition

Ph := {
0 = t0(h) < t1(h) < t2(h) < · · · < tNh

(h) ≤ T
}
,

in such a way that (5.3) holds for ζ = Wh. Indeed, if n = 0,1,2, . . . ,N − 1 and k is such that
kMh ≤ tn < tn+1 ≤ (k + 1)Mh, then

∣∣Wh(tn+1) − Wh(tn)
∣∣ = |W(Tk+1) − W(Tk)|

Mh

≤ λ0h.

Finally, set uh := vh(·;Wh,Ph) and let u be the stochastic viscosity solution of (6.1).

THEOREM 6.3. Assume (6.2), and let uh and u be as described above. Then there exists
a deterministic constant C = CL > 0 such that

P
(

lim sup
h→0

max
(x,t)∈Rd×[0,T ]

|uh(x, t) − u(x, t)|
h1/3| logh|1/3 ≤ C(1 + T )

)
= 1.

We proceed with a series of lemmas that indicate how to control the various terms appear-
ing in the estimate from Theorem 5.1.

LEMMA 6.1.

P
(

lim sup
h→0

Khη
2
h ≤ T

c1

)
= 1.

PROOF. Fix α and β such that 1 < β2/3 < α, and define hm := β−m. Note that

lim
m→∞

ηhm+1

ηhm

= 1

β1/3 .

The monotonicity of Kh and ηh implies that

(6.11) P
(

sup
hm+1≤h<hm

Khη
2
h >

αT

c1

)
≤ P

(
Khm+1 >

αT

c1η
2
hm

)
.

Set

km :=
⌈

αT

c1η
2
hm

⌉
,
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so that

kmc1η
2
hm+1

≥ αT

(
ηhm+1

ηhm

)2
m→∞−−−−→ αβ−2/3T > T,

and therefore, for any fixed γ > 0 and all sufficiently large m, kmc1η
2
hm+1

≥ (1 + γ )T .

Define σ 2 := c2 − c2
1, so that Var(τk(h)) = σ 2η4

h for all k and h. Continuing (6.11) and
applying Markov’s inequality yields, for some fixed positive constant C > 0 and for all suffi-
ciently large m,

P
(
Khm+1 >

αT

c1η
2
hm

)
= P

(
km∑
k=1

τk(hm+1) ≤ T

)
≤ P

(
km∑
k=1

(
τk(hm+1) − c1η

2
hm+1

) ≤ −γ T

)

≤ kmσ 2η4
hm+1

γ 2T 2 ≤ Cβ−2m/3.

The Borel–Cantelli lemma applied to the events

Em :=
{

sup
hm+1≤h<hm

Khη
2
h >

αT

c1

}

gives

P
(

lim sup
h→0

Khη
2
h >

αT

c1

)
= P

(
lim sup
m→∞

Em

)
= 0,

and we may conclude upon sending α → 1+. �

LEMMA 6.2.

P

(
lim sup

h→0

1

hηh

N−1∑
n=0

(�tn)
2 ≤ T λ0c2

c1

)
= 1.

PROOF. Fix α and β satisfying 1 < β7/3 < α and set hm := β−m. If, for some m, hm+1 ≤
h < hm, then

Nh−1∑
n=0

(
�tn(h)

)2 ≤
Kh+1∑
k=1

Mh

(
τk(h)

Mh

)2
≤ λ0

hm

ηhm+1

Khm+1+1∑
k=1

τk(hm)2.

Fix m0 ∈ N and define the event

Em0 :=
{
Khm+1 + 1 ≤ K̂m :=

⌈
αT

c1η
2
hm+1

⌉
for all m ≥ m0

}
.

In view of Lemma 6.1, limm0→∞ P(Em0) = 1.
Now, for any m ≥ m0,

P

({
sup

hm+1≤h<hm

1

hηh

Nh−1∑
n=0

(
�tn(h)

)2
>

α2T λ0c2

c1

}
∩ Em0

)

≤ P

(
K̂m∑
k=1

τk(hm)2 >
α2T c2hm+1(ηhm+1)

2

c1hm

)

= P

(
K̂m∑
k=1

(
τk(hm)2 − c2η

4
hm

)
>

α2T c2hm+1(ηhm+1)
2

c1hm

− K̂mc2η
4
hm

)
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≤ P

(
K̂m∑
k=1

(
τk(hm)2 − c2η

4
hm

)
>

αT c2η
2
hm

c1

(
αhm+1(ηhm+1)

2

hm(ηhm)2 − η2
hm

η2
hm+1

)
− c2η

4
hm

)
.

Since

lim
m→∞

(αhm+1η
2
hm+1

hmη2
hm

− η2
hm

η2
hm+1

)
= α

β5/3 − β2/3 > 0,

it follows that, for some fixed γ > 0, all sufficiently large m0, and all m > m0,

P

({
sup

hm+1≤h<hm

1

hηh

Nh−1∑
n=0

(
�tn(h)

)2
>

α2T λ0c2

c1

}
∩ Em0

)

≤ P

(
K̂m∑
k=1

(
τk(hm)2 − c2η

4
hm

)
> γη2

hm

)
.

Set σ 2 := c4 − c2
2 > 0. Then Markov’s inequality gives, for some constant C > 0 independent

of m,

P

({
sup

hm+1≤h<hm

1

hηh

Nh−1∑
n=0

(
�tn(h)

)2
>

α2T λ0c2

c1

}
∩ Em0

)

≤ K̂mσ 2η4
hm

γ 2 ≤ Cη2
hm

≤ Cβ−2m/3.

An application of the Borel–Cantelli lemma for the events{
sup

hm+1≤h<hm

1

hηh

Nh−1∑
n=0

(
�tn(h)

)2
>

α2T λ0c2

c1

}
∩ Em0

yields

P

({
lim sup

h→0

1

hηh

Nh−1∑
n=0

(
�tn(h)

)2
>

α2T λ0c2

c1

}
∩ Em0

)
= 0.

Sending m0 → ∞ and then α → 1+ finishes the proof. �

LEMMA 6.3. For any deterministic constant C > 0,

P
(

lim sup
ε→0

maxs,t∈[0,T ]{C|W(s) − W(t)| − |s−t |2
2ε

}
ε1/3| log ε|2/3 ≤ 4C4/3

32/3

)
= 1.

PROOF. Let 1 < β < α. If, for some δ > 0,

(6.12) osc
(
W,kδ, (k + 1)δ

) ≤
√

2βδ1/2| log δ|1/2 for all k = 0,1,2, . . . ,

⌈
T

δ

⌉
,

then

max
s,t∈[0,T ]

{
C
∣∣W(s) − W(t)

∣∣ − |s − t |2
2ε

}

≤
√

2βCδ1/2| log δ|1/2 + max
n∈N0

{√
2βCδ1/2| log δ|1/2n − n2δ2

2ε

}

≤
√

2βCδ1/2| log δ|1/2 + βC2 | log δ|
δ

ε.
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Taking δ := C2/33−1/3β1/3ε2/3| log ε|1/3 yields, for some deterministic function c(ε)
ε→0−−→

0,

max
s,t∈[0,T ]

{
C
∣∣W(s) − W(t)

∣∣ − |s − t |2
2ε

}
≤ 4C4/3

32/3 β2/3ε1/3| log ε|2/3(1 + c(ε)
)
,

and, therefore, if ε is sufficiently small,

max
s,t∈[0,T ]

{
C
∣∣W(s) − W(t)

∣∣ − |s − t |2
2ε

}
≤ 4C4/3

32/3 α2/3ε1/3| log ε|2/3.

Define

εm := α−m and δm := C2/3β1/3ε
2/3
m | log εm|1/3

31/3 ,

and note that

lim
m→∞

ε
1/3
m | log εm|2/3

ε
1/3
m+1| log εm+1|2/3

= α1/3.

It follows that, for sufficiently large m,

P
(

sup
εm+1≤ε<εm

maxs,t∈[0,T ]{C|W(s) − W(t)| − |s−t |2
2ε

}
ε1/3| log ε|2/3 >

4C4/3α

32/3

)

≤ P
(

max
s,t∈[0,T ]

{
C
∣∣W(s) − W(t)

∣∣ − |s − t |2
2εm

}
>

4C4/3αε
1/3
m+1| log εm+1|2/3

32/3

)

≤ P
(

max
s,t∈[0,T ]

{
C
∣∣W(s) − W(t)

∣∣ − |s − t |2
2εm

}
>

4C4/3α2/3ε
1/3
m | log εm|2/3

32/3

)

≤ P
(

osc
(
W,kδm, (k + 1)δm

)
>

√
2βδ1/2

m | log δm|1/2 for some k = 0,1,2, . . . ,

⌈
T

δm

⌉)

≤
⌈

T

δm

⌉
P
(
max[0,1] W − min[0,1] W >

√
2β| log δm|1/2

)

≤ 2
⌈

T

δm

⌉
P
(
max[0,1] W >

√
2β| log δm|1/2

)

≤ CT δβ−1
m ≤ CT α−γm for γ = 2

3
(β − 1) > 0.

The symmetry and scaling properties of Brownian motion, as well as the reflection principle,
were all used above. In particular, since the processes{

t �→ max
s∈[0,t]W(s) − W(t)

}
and |W |

are identically distributed, so are the random variables

max[0,1] W − min[0,1] W and max[0,1] |W | = max
{
max[0,1] W,−min[0,1] W

}
.

The Borel–Cantelli lemma implies that

P
(

lim sup
ε→0

maxs,t∈[0,T ]{C|W(s) − W(t)| − |s−t |2
2ε

}
ε1/3| log ε|2/3 >

4C4/3α

32/3

)
= 0,

and sending α → 1+ gives the result. �
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PROOF OF THEOREM 6.3. Let v be the solution of (6.3). Then Lemma 3.3 gives, for
some C = CL > 0,

sup
(x,t)∈Rd×[0,T ]

∣∣v(x, t) − u(x, t)
∣∣ ≤ C

∣∣W(t) − Wh(t)
∣∣

≤ C max
k=0,1,2,...,Kh

osc
(
W,Tk(h), Tk+1(h)

)

≤ C
h1/3

| logh|2/3 .

Next, define εh := h
| logh| and recall the pathwise estimate from Theorem 5.1:

max
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − v(x, t)
∣∣

≤ 1

εh

Nh−1∑
n=0

(
�tn(h)

)2 + C
√

Nhh + max
s,t∈[0,T ]

{
C
∣∣Wh(s) − Wh(t)

∣∣ − |s − t |2
2εh

}
.

From the definitions of Nh, Mh, and Kh, and from Lemma 6.1, it follows that, for some
C = CL > 0, with probability one, for all sufficiently small h,

C
√

Nhh ≤ C
√

(Kh + 1)Mhh ≤ CT h1/3| logh|1/3.

Meanwhile, Lemma 6.2 yields C = CL > 0 such that, with probability one, for all suffi-
ciently small h,

1

εh

Nh−1∑
n=0

(
�tn(h)

)2 = 1

hηh

Nh−1∑
n=0

(�tn)
2 · h1/3| logh|1/3 ≤ CT h1/3| logh|1/3.

In view of the definition of Wh,

max
0≤t≤T

∣∣Wh(t) − W(t)
∣∣ ≤ max

k=0,1,2,...,Kh

osc
(
W,Tk(h), Tk+1(h)

) ≤ ηh,

so that, with probability one, for all h,

maxs,t∈[0,T ]{C|Wh(s) − Wh(t)| − |s−t |2
2εh

}
h1/3| logh|1/3

≤ maxs,t∈[0,T ]{C|W(s) − W(t)| − |s−t |2
2εh

}
h1/3| logh|1/3 + C

| logh| ,

while Lemma 6.3 implies that, with probability one and for all sufficiently small h,

max
s,t∈[0,T ]

{
C
∣∣W(s) − W(t)

∣∣ − |s − t |2
2εh

}
≤ Cε

1/3
h | log εh|2/3 ≤ Ch1/3| logh|1/3.

Combining all terms in the estimate finishes the proof. �

6.2.3. Scaled random walks and convergence in law. The point of view for the preceding
approximations was pathwise; that is, the schemes converged for P-almost every sample path
of Brownian motion. Here, the strategy is to use independent Rademacher random variables
to build an object that converges to the solution of (1.1) in distribution. This construction has
the advantage that it is simple to implement numerically.
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Fix a probability space (A,G,P), not necessarily related to (�,F,P), and let {ξn}∞n=1 :
A → {−1,1} be independent and identically distributed with

P(ξn = 1) = P(ξn = −1) = 1

2
.

Define ρh by

λ := (ρh)
3/4

h
≤ λ0,

and, as before, set Mh = (ρh)
−1/2�, Ph := {tn}Nn=0 = {nρh ∧ T }Nn=0, Wh(0) = 0 and, for

k ∈N0 and t ∈ [kMhρh, (k + 1)Mhρh),

Wh(t) := Wh(kMhρh) + ξk√
Mhρh

(t − kMhρh).

The path Wh is a parabolically scaled simple random walk, and therefore, as is well known,
as h → 0, Wh converges to the Wiener process B in distribution. More precisely, if μ is the
Wiener measure on X := C([0, T ],R) and μh is the probability measure on X induced by
Wh, then μh converges weakly to μ as h → 0, that is, for any bounded continuous function
φ : X →R,

lim
h→0

∫
X

φ dμh =
∫
X

φ dμ.

Define uh := vh(·;Wh,Ph) ∈ BUC(Rd × [0, T ]) and let v ∈ BUC(Rd × [0, T ]) be the
solution of (6.3).

THEOREM 6.4. Assume (6.2) and let uh and u be as described above. As h → 0, uh

converges to u in distribution.

PROOF. Observe first that

∣∣Wh(tn+1) − Wh(tn)
∣∣ =

√
ρh

Mh

≤ (ρh)
3/4 ≤ λ0h,

so that Wh satisfies (5.3). Then (6.6) becomes, for some C = CL,λ > 0,

(6.13) max
(x,t)∈Rd×[0,T ]

∣∣uh(x, t) − v(x, t)
∣∣ ≤ C(1 + T )(ρh)

1/4 = C(1 + T )h1/3.

Lemma 3.3 implies that the map

S : X = C
([0, T ],R) � ζ �→ v ∈ BUC

(
R

d × [0, T ]) =: Y,

where v is the solution of (5.4), is uniformly continuous. Let ν̃h and ν be the push-forwards
by S of respectively μh and μ, that is, for any measurable ψ : Y →R,∫

Y
ψ dν =

∫
X

ψ ◦ S dμ,

with the analogous relation holding for νh and ν. It is clear that ν̃h converges weakly to ν.
On the other hand, if νh is the measure on BUC(Rd × [0, T ]) induced by uh, then (6.13) and
Slutzky’s theorem imply that, as h → 0, νh converges weakly to ν. �
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