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ON THE CONVERGENCE OF CLOSED-LOOP NASH EQUILIBRIA TO THE
MEAN FIELD GAME LIMIT

BY DANIEL LACKER

Department of Industrial Engineering & Operations Research, Columbia University, daniel.lacker@columbia.edu

This paper continues the study of the mean field game (MFG) conver-
gence problem: In what sense do the Nash equilibria of n-player stochastic
differential games converge to the mean field game as n → ∞? Previous work
on this problem took two forms. First, when the n-player equilibria are open-
loop, compactness arguments permit a characterization of all limit points of
n-player equilibria as weak MFG equilibria, which contain additional ran-
domness compared to the standard (strong) equilibrium concept. On the other
hand, when the n-player equilibria are closed-loop, the convergence to the
MFG equilibrium is known only when the MFG equilibrium is unique and the
associated “master equation” is solvable and sufficiently smooth. This paper
adapts the compactness arguments to the closed-loop case, proving a con-
vergence theorem that holds even when the MFG equilibrium is nonunique.
Every limit point of n-player equilibria is shown to be the same kind of weak
MFG equilibrium as in the open-loop case. Some partial results and examples
are discussed for the converse question, regarding which of the weak MFG
equilibria can arise as the limit of n-player (approximate) equilibria.
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1. Introduction. The goal of this paper is to deepen the study of the n → ∞ limit the-
ory for n-player stochastic differential games of mean field type. To briefly summarize the
problem, specified in full detail in Section 2, suppose n players have private state processes
X = (X1, . . . ,Xn) governed by the stochastic differential equation (SDE) system

dXi
t = b

(
t,Xi

t ,μ
n
t , α

i(t,Xt )
)
dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
,

where W 1, . . . ,Wn are independent Brownian motions, and X1
0, . . . ,X

n
0 are i.i.d. Note that

the drift function b is the same for each player, but the dynamics of player i’s state process
depend only on Xi itself, the empirical probability measure μn

t of all players’ states, and the
control αi of player i. Each player chooses αi from the set A of measurable functions from
[0, T ] × (Rd)n to the set A of admissible actions. That is, each player’s control is chosen as
a (deterministic) function of time and the current states of all players. The goal of player i is
to maximize the expected payoff

Jn
i

(
α1, . . . , αn)= E

[∫ T

0
f
(
t,Xi

t ,μ
n
t , α

i(t,Xt )
)
dt + g

(
Xi

T ,μn
T

)]
,

which takes the same symmetric form as the drift. The primary object of study is a closed-
loop Markovian Nash equilibrium, defined as any vector (α1, . . . , αn) ∈ An such that

Jn
i

(
α1, . . . , αn)≥ sup

β∈A
Jn

i

(
α1, . . . , αi−1, β,αi+1, . . . , αn).

As is well known, Markovian Nash equilibria can be constructed by solving a parabolic PDE
system, representing the value functions of each of the n players, under suitable assumptions
on the coefficients (b, f, g); see [16], Section 2.1.4. For a more thorough introduction to
stochastic differential games and mean field games, refer to the recent books [16, 17].

A fundamental problem in mean field game (MFG) theory is to characterize the limiting
behavior of Nash equilibrium as n → ∞. More specifically, if (αn,1, . . . , αn,n) is a Nash
equilibrium for each n, how does the associated empirical measure process μn = (μn

t )t∈[0,T ]
behave as n → ∞? The heuristic put forth in the foundational work of [53–55] and [44, 45]
suggests that the limiting behavior should be captured by what we call in this paper the strong
mean field equilibria. A strong mean field equilibrium (or strong MFE, defined precisely in
Definition 2.3) is a flow of probability measures m = (mt)t∈[0,T ] such that mt = Law(X∗

t )
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for all t ∈ [0, T ], where X∗ is the optimal state process for the following stochastic control
problem, in which m is treated as fixed:

(1.1)
sup
α

E

[∫ T

0
f
(
t,Xt ,mt , α(t,Xt)

)
dt + g(XT ,mT )

]
,

dXt = b
(
t,Xt ,mt , α(t,Xt)

)
dt + dWt .

The majority of the MFG literature focuses on questions of existence and uniqueness of
equilibria, though there is by now a decent understanding of this convergence problem.
Early results [30, 53, 55] confirmed the MFE as the relevant limiting concept but im-
posed strong restrictions on the controls αn,i , requiring them to be of the distributed form
αn,i(t, x1, . . . , xn) = α̂n,i(t, xi).

The first comprehensive results came in [33, 51], but notably working with the distinct (and
typically simpler to analyze) concept of open-loop controls. In an open-loop equilibrium,
each player specifies a control as a function of the noises (W 1, . . . ,Wn) rather than the states
(X1, . . . ,Xn), and this results in completely different equilibria. See [16], pp. 72–76, for a
careful discussion of the differences between the open-loop and closed-loop regimes, which
we will review briefly in Section 2.5. For open-loop equilibria, the results of [51] give a rather
complete picture of the n → ∞ behavior: Even when the MFG equilibrium is nonunique, we
can still characterize all subsequential limits of μn as MFG equilibria, as long as we work
with a suitable weak equilibrium concept. Conversely, each of these weak equilibria can arise
as the limit of μn, for a suitable choice of approximate n-player open-loop equilibria.

Our understanding of the n → ∞ behavior of closed-loop equilibria is much less complete,
but a major breakthrough came with the work of Cardaliaguet et al. [11] on the master equa-
tion, an infinite-dimensional PDE that describes the value function of the mean field game. It
was shown in [11], Section 6, how to use a smooth solution of the master equation to prove
that μn converges to the (unique, in their setting) MFG equilibrium μ = (μt )t∈[0,T ]; see also
[17], Section 6.3. More recently, these ideas were refined in [25, 26] to derive a central limit
theorem and a large deviation principle for μn, as well as nonasymptotic bounds on various
distances between μn and its limit μ. The idea of using the master equation to prove limit
theorems has proven to be powerful and quite versatile, subsequently adapted to to models
with finite state space [2, 21], local interactions [10], interactions governed by random graphs
[23], and models with a major player [9].

The master equation approach, however, is limited in several ways. The most fundamental
shortcoming is that it requires the MFG equilibrium to be unique. In game theory, uniqueness
is of course the exception, not the rule, and the aforementioned papers leave open the intrigu-
ing question of how to describe the limiting behavior of μn when there are multiple MFG
equilibria. Furthermore, it is very challenging to produce a classical solution of the master
equation, and this has been accomplished so far only in quite restricted settings [11, 22, 39].

This paper fills the gap between the open-loop and closed-loop regimes by proving (in
Theorem 2.7) a limit theorem for closed-loop equilibrium which is general enough to accom-
modate nonunique MFG equilibrium. Under suitable assumptions, we show that the sequence
of empirical measure flows (μn) is tight in a suitable space, and every limit in distribution
is what we call a weak semi-Markov mean field equilibrium, or weak MFE for short. This
equilibrium concept (given precisely in Definition 2.5) differs from the standard strong MFE
described above in three key respects:

• The deterministic measure flow (mt )t∈[0,T ] is replaced by a stochastic one μ = (μt )t∈[0,T ].
• The controls α in (1.1) are semi-Markov, meaning α = α(t,Xt ,μ), where the dependence

on the path μ = (μt )t∈[0,T ] is nonanticipative.
• The consistency condition mt = Law(Xt) becomes conditional, μt = Law(Xt | (μs)s≤t ).
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The philosophy behind the weak MFE is no different from strong MFE: Each individual
player treats the mean field μ as given, describing the distribution of states among an infinite
(continuum) population of competing players. Each player reacts optimally to μ, in a way
that is consistent with (i.e., reproduces) the mean field μ when aggregated over the infinity
of players. The stochastic measure flow μ should be thought of as an endogeneous common
noise, in the sense that its randomness is felt equally by all of the players. An economist
might refer to this as aggregate uncertainty [4], as opposed to (exogeneous) aggregate shocks,
which one might produce by allowing correlations between the driving Brownian motions
W 1, . . . ,Wn as in [11, 18].

In fact, our main limit theorem applies also to closed-loop path-dependent equilibria, in
which each player can choose a control αi = αi(t, (Xs)s≤t ) depending on the entire history of
the n state processes. Under modest convexity assumptions, we show that every Markovian
equilibrium for the n-player game is also a path-dependent equilibrium, which allows us
to study the two simultaneously. This seems to be the first MFG limit theorem for path-
dependent equilibria.

In the special case where the weak MFE is unique, our main limit theorem becomes a
proper convergence result: Every sequence of n-player (closed-loop) Nash equilibria con-
verges to the unique weak MFE. In particular, we show that the well-known monotonicity
condition of Lasry–Lions [55] is sufficient (Corollary 2.10), and this recovers and general-
izes the aspects of the limit theorems of [11] pertaining to empirical measures.

The proof of our main limit theorem is based on probabilistic weak convergence and com-
pactness arguments, as well as judicious use of Markovian projection arguments which allow
one to “mimick” the time-t marginal laws of a general Itô process by a Markovian diffusion
(see Theorem 2.14, quoted from [8, 41]). In a sense, the techniques build on those developed
in [51] for the open-loop regime, but the adaptation to the closed-loop case is highly nontriv-
ial. The central difficulty of the closed-loop regime comes from the fact that a single player’s
change in strategy can have an outsized impact on the empirical measure due to the feedback
through the other controls. If we heuristically consider such a player to be influential, the
key idea behind our proof is that, in a certain averaged sense, not too many players can be
simultaneously influential. See Section 2.6 for an informal discussion of the proof.

Our notion of weak MFE turns out to be equivalent in a certain sense to the notion of weak
MFG solution introduced in [18, 51]. In particular, we encounter here the same interesting
phenomenon explored in [51], Section 3, which is that not all weak MFE are mixtures of
strong MFE. That is, if we let S denote the set of strong MFE m = (mt )t∈[0,T ] in the usual
sense described in (1.1) above, then there can exist weak MFE μ such that P(μ ∈ S) < 1.
As a consequence, in settings with multiple MFG equilibria, the usual strong MFE concept
is inadequate for describing the limiting behavior of n-player equilibria. Notably, this phe-
nomenon does not appear in McKean–Vlasov systems (i.e., uncontrolled systems) or in static
mean field games (i.e., one-shot games with no time component).

The converse to our main limit theorem turns out to be challenging to address, and we
have only partial results. We show in Theorem 2.12 that, under reasonable assumptions, every
strong MFE does indeed arise as the n → ∞ limit of some sequence of approximate n-player
(closed-loop) equilibria (see also [17], Section 6.1). The question of if or when this is true
for weak MFE remains open. We give some examples of weak MFE which are not strong
but which do arise as limits of approximate n-player equilibria by exploiting an interesting
connection with the regularization-by-noise or Peano phenomenon, which can be described
as follows: Adding εdWt can turn a nonunique ODE into a well-posed SDE, and in certain
cases the limit in distribution of the SDE solution as ε ↓ 0 is a particular mixture of the
ODE solutions [1]. We mention also the three recent case studies [20, 24, 57], to be discussed
further in Section 2.4, explore this equilibrium-selection problem for various specific models.
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On the other hand, in the open-loop regime, it is by now well known that strong MFE do
arise as the limit of n-player equilibria [15, 44], and it was shown in [51] that the same is true
for any weak MFE. In this sense our results support the folklore that open-loop and closed-
loop should “converge together” as n → ∞.1 This is reminiscent of the study in discrete time
in [38], though the precise use of terminology therein is different.

The paper is organized as follows. We begin in Section 2 by specifying notation and as-
sumptions, precisely defining the n-player and mean field games, and stating clearly the main
results. Notably, Section 2.6 sketches the key ideas of the proof of the main result, The-
orem 2.7. Section 3 makes a first step toward proving the main theorems by relaxing the
notions of equilibrium, leading to somewhat more general forms of the main theorems which
are interesting in their own right. The heart of the paper is Section 5, devoted to the proof
of Theorem 2.7. The comparison between open-loop and closed-loop equilibria is developed
further in Section 6, with proofs of several statements from Section 2.5. Lastly, Section 7
contains some proofs and examples surrounding the partial converse to the main limit theo-
rem, discussed in the previous paragraph. The rather long-winded Appendix irons out some
necessary but less exciting technical points pertaining to SDEs with random coefficients (Ap-
pendix A) as well as measurability properties of regular conditional laws (Appendix B) and
conditional expectations of random measures (Appendix C) with respect to the underlying
probability law.

2. Setup and main results. We begin by fixing some commonly used notation. We are
given a time horizon T > 0 and a dimension d ∈ N, and we write Cd for the space of contin-
uous paths,

Cd := C
([0, T ];Rd),

equipped with the sup-norm. We use boldface for vectors, such as x = (x1, . . . , xn) ∈ (Rd)n.
For a complete separable metric space (E,d), let P(E) denote the set of Borel proba-

bility measures. We always endow P(E) with the topology of weak convergence and its
corresponding Borel σ -field. Although we will not explicitly use it, to fix ideas we suppose
throughout the paper that P(E) is equipped with the Wasserstein metric(

m,m′) 
→ inf
γ

∫
E×E

1 ∧ d(x, y)γ (dx, dy),(2.1)

where the infimum is over all γ ∈ P(E×E) with marginals m and m′. This is known to (com-
pletely) metrize weak convergence [67], Theorem 7.12. In particular, we will make frequent
use of the space C([0, T ];P(Rd)), implicitly equipped with the sup-metric.

For any random variable X we write L(X) for its law, or L(X | Y) for a version of the
conditional law of X given another random variable Y , which is always well-defined up to

almost sure equality when the random variables take values in Polish spaces. We write X
d= Y

when two random variables have the same law, and we write X ∼ λ to mean that L(X) = λ.
We are given a time horizon T > 0, a control space A, an initial state distribution λ ∈

P(Rd), and the following functions:

(b, f ) : [0, T ] ×Rd ×P
(
Rd)× A →Rd ×R,

g : Rd ×P
(
Rd)→R.

The following assumption is in force throughout the paper:

1Interestingly, however, this connection can break down if the interactions are not sufficiently continuous; the
forthcoming [14] studies an explicitly solvable MFG with singular interactions à la Dyson Brownian motion in
which the n → ∞ limits of the open-loop and closed-loop equilibria of the n-player games are different.
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ASSUMPTION A.

(A.1) A is a compact convex subset of normed vector space.
(A.2) The functions b, f and g are bounded and jointly continuous.

Occasionally, we will also need the following convexity assumption, which dates back to
the work of Filippov [32] and Roxin [60]. It holds, for example, if b = b(t, x,m,a) is affine
in a and f = f (t, x,m,a) concave in a, for each (t, x,m).

ASSUMPTION B. For each (t, x,m) ∈ [0, T ]×Rd ×P(Rd), the following set is convex:

K(t, x,m) = {(
b(t, x,m,a), z

) : a ∈ A,z ≤ f (t, x,m,a)
}⊂ Rd ×R.

Before proceeding, let us comment on these admittedly strong assumptions. The bounded-
ness of b is unfortunate from the perspective of applications but is the most essential for our
arguments, which rely heavily on Girsanov’s theorem; to allow unbounded b may be possible
but would significantly complicate the already long proofs. On the other hand, it should be
straightforward to allow f and g to grow polynomially in x and perhaps even in the mean
of the measure m, as long as the initial state distribution λ is granted certain finite moments.
It is conceivable also that we could allow a noncompact control space A, under a coercivity
assumption on f . Lastly, Assumption B can be dropped at the price of working with relaxed
controls, and this is written explicitly in Section 3.

2.1. The n-player games. Let n ∈ N. In the n-player game, an admissible control is a pro-
gressively measurable function α : [0, T ]× (Cd)n → A.2 Let An denote the set of admissible
controls. A Markovian control is an admissible control α ∈ An of the form α(t, x) = α̃(t, xt ),
where α̃ : [0, T ]× (Rd)n → A is Borel measurable. Let AMn ⊂ An denote the set of Marko-
vian controls. Accepting a mild abuse of notation, we will identify AMn with the set of Borel
measurable functions from [0, T ] × (Rd)n to A.

The state processes in the n-player game are described as follows. For any α =
(α1, . . . , αn) ∈ An

n, by Girsanov’s theorem the following SDE system has a unique in law
solution X = (X1, . . . ,Xn):

dXi
t = b

(
t,Xi

t ,μ
n
t , α

i(t,X)
)
dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
,

where W 1, . . . ,Wn are independent d-dimensonal Brownian motions, and X1
0, . . . ,X

n
0 are

i.i.d. with law λ, independent of (W 1, . . . ,Wn).3 We may write X[α] = (X1[α], . . . ,Xn[α])
in place of X = (X1, . . . ,Xn) to stress which controls are being applied, and similarly
μn[α] = μn.

When (α1, . . . , αn) are Markovian, the solution of the above SDE is strong, thanks to a
result of Veretennikov [66] (see also Krylov–Röckner [49], Theorem 2.1). In particular, we
can in that case assume the solution processes are all defined on the same probability space. In
general, however, we work with weak solutions of SDEs, and keep in mind that for a different
control we may need to construct the state process X on a different probability space.

2Here, we may define progressive measurability simply to mean that α is Borel measurable and satisfies

α(t,x) = α(t,x′) whenever t ∈ [0, T ] and x,x′ ∈ (Cd )n satisfy xs = x′
s for all s ≤ t .

3We could allow a constant invertible volatility coefficient σ ∈Rd×d , but by redefining the state variables there
is no loss of generality in taking σ to be the identity matrix. Nondegeneracy of the noise is important in this paper,
as we will make heavy use of Girsanov’s theorem and well-posedness results for nondegenerate SDEs.
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Player i ∈ {1, . . . , n} chooses αi to try to maximize

Jn
i

(
α1, . . . , αn) := E

[∫ T

0
f
(
t,Xi

t ,μ
n
t , α

i(t,X)
)
dt + g

(
Xi

T ,μn
T

)]
.

DEFINITION 2.1. Let ε ≥ 0. A closed-loop (path-dependent) ε-Nash equilibrium is a
tuple (α1, . . . , αn) ∈ An

n such that

Jn
i

(
α1, . . . , αn)≥ sup

β∈An

J n
i

(
α1, . . . , αi−1, β,αi+1, . . . , αn)− ε for i = 1, . . . , n.

A Markovian ε-Nash equilibrium is a tuple (α1, . . . , αn) ∈ AMn
n such that4

Jn
i

(
α1, . . . , αn)≥ sup

β∈AMn

J n
i

(
α1, . . . , αi−1, β,αi+1, . . . , αn)− ε for i = 1, . . . , n.

Note that the notion of Markovian Nash equilibrium involves a supremum only over AMn,
so a priori there is no clear relationship between these two equilibrium concepts. Nonetheless,
using Assumption B we prove in Section 4 that Markovian equilibria form a subset of closed-
loop equilibria, which allows us to study both types of equilibrium simultaneously:

PROPOSITION 2.2. Suppose Assumptions A and B hold, and let ε ≥ 0. Then any Marko-
vian ε-Nash equilibrium is also a closed-loop ε-Nash equilibrium.

It is well known that a Markovian Nash equilibrium for an n-player game can be con-
structed from a classical solution (when one exists) of the corresponding Nash system, a
system of n parabolic PDEs representing the value functions of the n players [36]. For a
general discussion see [16], Section 2.1.4, or see [11], Section 1.1, for a good summary in a
setting closer to ours. Alternatively, Markovian equilibria can be constructed using a form of
the stochastic maximum principle [16], Section 2.2.2.

2.2. The mean field game. We next define the limiting (mean field) game, beginning
with the usual notion of equilibrium, which we call a strong equilibrium. In the following,
for m ∈ C([0, T ];P(Rd)) and measurable functions α : [0, T ] ×Rd → A we will encounter
SDEs which we will write in the form

dXt = b
(
t,Xt ,mt , α(t,Xt)

)
dt + dWt, X0 ∼ λ.

When we say “X is the unique solution” of this SDE, we mean implicitly that X = (Xt)t∈[0,T ]
and W = (Wt)t∈[0,T ] are continuous stochastic processes defined on some common filtered
probability space (	,F,F,P) on which X is F-adapted, W is an F-Brownian motion, the
initial state X0 has law P ◦X−1

0 = λ and is independent of W , and the above SDE is satisfied.
We avoid making explicit mention of the probability space, as we work exlusively with distri-
butional properties of X. Recall in the following that we write L(Y ) for the law of a random
variable Y .

DEFINITION 2.3. We say that m = (mt )t∈[0,T ] ∈ C([0, T ];P(Rd)) is a strong mean field
equilibrium (MFE) if there exists a measurable function α∗ : [0, T ] ×Rd → A such that the
unique solution of the SDE

dX∗
t = b

(
t,X∗

t ,mt , α
∗(t,X∗

t

))
dt + dWt, X∗

0 ∼ λ

satisfies the following:

4Alternative terminology is common in the engineering literature: Instead of “closed-loop path-dependent” and
“Markovian” one sometimes encounters “closed loop perfect state” and “feedback perfect state,” respectively.
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(1) The consistency condition holds: mt = L(Xt) for all t ∈ [0, T ].
(2) For any measurable function α : [0, T ] ×Rd → A, we have

E

[∫ T

0
f
(
t,X∗

t ,mt , α
∗(t,X∗

t

))
dt + g

(
X∗

T ,mT

)]

≥ E

[∫ T

0
f
(
t,Xt ,mt , α(t,Xt)

)
dt + g(XT ,mT )

]
,

where X is the unique solution of

dXt = b
(
t,Xt ,mt , α(t,Xt)

)
dt + dWt, X0 ∼ λ.

It was shown in [50], Theorem 6.2, that a strong MFE exists under Assumptions A and B,
but we will not make use of this fact. We next define our weak equilibrium concept, after first
introducing a useful terminology:

DEFINITION 2.4. For a Polish space E, we say a function F : [0, T ] × Rd ×
C([0, T ];P(Rd)) → E is semi-Markov if it is Borel measurable and satisfies F(t, x,m) =
F(t, x,m′) whenever (t, x) ∈ [0, T ] ∈Rd and m,m′ ∈ C([0, T ];P(Rd)) satisfy ms = m′

s for
all s ≤ t .

We use the term semi-Markov because the control α∗(t, x,m) depends on the state pro-
cess only at its current time (Markovian) but on the entire history of the measure flow (non-
Markovian). It is important to notice that the dependence on m is nonanticipative.

DEFINITION 2.5. A weak semi-Markov mean field equilibrium (or simply a weak MFE)
is a tuple (	,F,F,P,W,α∗,X∗,μ), where (	,F,F,P) is a complete filtered probability
space and:

(1) μ is a continuous F-adapted P(Rd)-valued process, W is a F-Brownian motion, and
X∗ is a continuous Rd -valued F-adapted process with P ◦ (X∗

0)−1 = λ.
(2) α∗ : [0, T ] ×Rd × C([0, T ];P(Rd)) → A is semi-Markov.
(3) X∗

0 , μ, and W are independent.
(4) The state equation holds:

dX∗
t = b

(
t,X∗

t ,μt , α
∗(t,X∗

t ,μ
))

dt + dWt .

(5) For every alternative semi-Markov α : [0, T ] ×Rd × C([0, T ];P(Rd)) → A we have

E

[∫ T

0
f (t,X∗

t ,μt , α
∗(t,X∗

t ,μ
)
dt + g

(
X∗

T ,μT

)]

≥ E

[∫ T

0
f
(
t,Xt ,μt , α(t,Xt ,μ)

)
dt + g(XT ,μT )

]
,

where X is the solution (see Remark 2.6 below) of

dXt = b
(
t,Xt ,μt , α(t,Xt ,μ)

)
dt + dWt, X0 = X∗

0 .(2.2)

(6) The consistency condition holds: μt = P(X∗
t ∈ · | Fμ

t ) a.s. for each t ∈ [0, T ], where
Fμ

t = σ(μs : s ≤ t).

We refer also to the P(Rd)-valued process μ itself as a weak (semi-Markov) MFE. In this
way, if μ is deterministic, then it is a weak MFE if and only if it is a strong MFE. In other
words, a strong MFE is always a weak MFE.
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REMARK 2.6. The SDE (2.2) admits a unique strong solution (in particular, defined on
the same probability space 	), as we discuss in detail in Appendix A. When μ is determin-
istic, this follows immediately from the main results of [49, 66]. Appendix A extends this to
cover stochastic μ, as long as X0, W , and μ are independent. In particular, the solution X of
(2.2) is adapted to the complete filtration generated by the process (X∗

0,Ws,μs)s≤t , and so
is X∗.

2.3. Limit theorems. The following is the main result of the paper:

THEOREM 2.7. Suppose Assumptions A and B hold. Fix a sequence εn ≥ 0 with εn → 0.
For each n, suppose αn = (αn,1, . . . , αn,n) ∈ An

n is a closed-loop εn-Nash equilibrium.
Then the associated empirical measure flow sequence μn = μn[αn] is tight as a family of
C([0, T ];P(Rd))-valued random variables, and every limit in distribution is a weak MFE.

The proof is given between Sections 4 and 5. Recalling Proposition 2.2, we immediately
deduce that Theorem 2.7 remains true if instead αn is a Markovian εn-Nash equilibrium.

REMARK 2.8. The proof of Theorem 2.7 will show that we do not need the full
strength of the εn-Nash equilibrium property. In fact, it suffices to assume merely that
αn = (αn,1, . . . , αn,n) satisfies the much weaker inequality

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,n)+εn ≥ sup

β1,...,βn∈An

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,k−1, βk,αn,k+1, . . . , αn,n).

This can be interpreted as an averaged form of approximate Nash equilibrium, which inter-
estingly permits a vanishing fraction of players to choose highly suboptimal controls. See
also Section 2.6.2 below, particularly inequality (2.6), for an idea of why this is good enough.

It is well known that stronger assumptions, including a suitable monotonicity condition
on the payoff functions, ensures that the mean field equilibrium is unique, and we adapt
these ideas to our weaker equilibrium concept. The following theorem, inspired by the early
uniqueness result of Lasry–Lions [55], is proven in Section 5.6.

THEOREM 2.9. Suppose Assumption A holds, along with the following:

(i) b(t, x,m,a) = b(t, x, a) has no mean field term.
(ii) f (t, x,m,a) = f1(t, x,m) + f2(t, x, a), for some measurable functions f1 and f2.

(iii) The action space A is a convex, compact subset of Rk for some k.
(iv) For each (t, x,m) ∈ [0, T ] ×Rd ×P(Rd), b(t, x, a) is affine in a, and f2(t, x,m,a)

is strictly concave in a.
(v) The monotonicity condition holds: For each m1,m2 ∈ P(Rd), we have∫

Rd

(
f1(t, x,m1) − f1(t, x,m2)

)
(m1 − m2)(dx) ≤ 0,∫

Rd

(
g(x,m1) − g(x,m2)

)
(m1 − m2)(dx) ≤ 0.

Then there exists a unique in law weak MFE, and it is in fact a strong MFE.

Noting that condition (iv) of Theorem 2.9 implies Assumption B, we may combine the
Theorems 2.9 and 2.7 to get the following limit theorem:
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COROLLARY 2.10. Suppose the assumptions of Theorem 2.9 hold. For each n, suppose
αn = (αn,1, . . . , αn,n) ∈ An

n is a closed-loop εn-Nash equilibrium. Then μn = μn[αn] con-
verges in probability in C([0, T ];P(Rd)) to the unique strong MFE.

Corollary 2.10 is worth comparing to the results of [11], Section 2.4.4, the only previous
limit theorem for closed-loop n-player equilibria. Assuming a unique (strong) MFE and a
smooth solution of the master equation, a comparable limit theorem for μn follows from [11],
Theorem 2.15, though it is not stated explicitly. Aside from the fact that they treat common
noise, our Corollary 2.10 holds under much weaker assumptions. Moreover, our main result,
Theorem 2.7, holds even when the MFE is nonunique, which seems completely out of reach
of the techniques of [11]. Of course, the smooth regime they work with affords a more refined
and quantitative description of the limit theorem including convergence of value functions;
see also [25, 26].

REMARK 2.11. Instead of Definition 2.5, one might propose a more natural weak fully-
Markov equilibrium concept, in which the control is of the form α∗(t,Xt ,μt ), depending
only on the present value of the measure flow. It is not clear if this smaller class of equilibria
is sufficient to catch all limit points of n-player equilibria, and we suspect not. The issue is
likely the mode of convergence, and the method of proof suggests the following conjecture:
In the setting of Theorem 2.7, every limit point of the pre-compact sequence (L(μn

t ))t∈[0,T ]
in C([0, T ];P(P(Rd))) can be written as (L(μt ))t∈[0,T ] for some weak fully-Markov equi-
librium, in the sense just described. To prove this would likely require a Markovian projection
argument for measure-valued processes, and such technology does not seem to be available
at this time.

2.4. A partial converse to the main limit theorem. Theorem 2.7 ensures that all subse-
quential limits of closed-loop n-player approximate equilibria are weak MFE. The natural
followup question is: Are all weak MFE subsequential limits of closed-loop n-player approx-
imate equilibria? This remains unclear in general, but this section discusses a partial result
and a sketch of how to build interesting examples, carried out in more detail in Section 7.
(Notably, if the n-player equilibria are open-loop rather than closed-loop, then the results
of [51] provide an affirmative answer to this question, and we will return to this point in
Section 2.5.)

ASSUMPTION C. The drift b is Lipschitz with respect to total variation, in the following
sense: There exists c > 0 such that, for each (t, x, a) ∈ [0, T ] ×Rd × A and m,m′ ∈ P(Rd),
we have

1

c

∣∣b(t, x,m,a) − b
(
t, x,m′, a

)∣∣≤ ∥∥m − m′∥∥
TV := sup

f

∫
Rd

f d
(
m − m′),

where the supremum is over all measurable functions f :Rd → [−1,1].

Note that the metric ‖m − m′‖TV dominates the Wasserstein metric defined in (2.1), and
thus Assumption C is weaker in a sense than the Wasserstein–Lipschitz assumptions that
appear more often in the literature.

We prove the following in Section 7.3, which shows that every strong MFE arises as the
limit of n-player approximate equilibria. The only prior result of this nature seems to be the
recent [17], Theorem 6.9, which operates under different and mostly stronger assumptions.
The same conclusion is also implicit in [11], Proposition 6.3, under even heavier assumptions.
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THEOREM 2.12. Suppose Assumptions A, B and C hold. Suppose m ∈ C([0, T ];P(Rd))

is a strong MFE. Then there exist εn ≥ 0 with εn → 0 and, for each n, a Markovian εn-Nash
equilibrium αn ∈ AMn

n such that μn[αn] converges in law to m in C([0, T ];P(Rd)).

The strategy in proving this is standard: Let α∗(t, x) be the corresponding optimal control
from Definition 2.3. The state process X in Definition 2.3 is then the solution of

dXt = b
(
t,Xt ,mt , α

∗(t,Xt)
)
dt + dWt, mt = L(Xt),∀t ∈ [0, T ].(2.3)

Then, we tell each player in the n-player game to adopt the control α∗(t,Xi
t ). This results in

the n-particle system

dXi
t = b

(
t,Xi

t ,μ
n
t , α

∗(t,Xi
t

))
dt + dWi

t .

We expect from McKean–Vlasov limit theory that μn converges in law to m. The inequality
of the optimality condition (2) of Definition 2.3 should then translate to the approximate Nash
property in the pre-limit. The precise form of Assumption C is inspired from the recent [52],
which proves a strong form of propagation of chaos, in total variation norm, which allows us
to avoid imposing continuity assumptions on the control α∗.5

It is not clear when we can expect Theorem 2.12 to extend to weak MFE. To explain
what can go wrong, suppose that (	,F,F,P,W,α∗,X∗,μ) is a weak MFE in the sense of
Definition 2.5. We then have

dX∗
t = b

(
t,X∗

t ,μt , α
∗(t,X∗

t ,μ
))

dt + dWt, μt = L
(
X∗

t | Fμ
t

)
, t ∈ [0, T ].(2.4)

Because X∗
0 , W , and μ are independent, the law of (X∗

0,W) remains unchanged if
we condition on μ; it is then intuitively clear (and follows from Lemma A.2) that the
C([0, T ];P(Rd))-valued random variable μ belongs almost surely to the set S∗, consisting
of those m ∈ C([0, T ];P(Rd)) which solve the McKean–Vlasov equation deterministically,

dXm
t = b

(
t,Xm

t ,mt , α
∗(t,Xm

t ,m
))

dt + dWt, mt = L
(
Xm

t

)
, t ∈ [0, T ].(2.5)

The key point is that if μ is a weak but not strong MFE, then this McKean–Vlasov equation
(2.5) is necessarily nonunique; that is, S∗ is not a singleton. In other words, a weak MFE can
always be expressed as a mixture of solutions of a nonunique McKean–Vlasov equation. As
a consequence, we cannot expect propagation of chaos to hold for the corresponding particle
system. That is, if we proceed as before by letting the players in the n-player game use the
(path-dependent) controls αn = (αn,1, . . . , αn,n) ∈ An

n given by

αn,i(t,x) = α∗
(
t, xi

t ,
1

n

n∑
k=1

δxk

)
, x = (

x1, . . . , xn) ∈ (Cd)n,
then there is no way to know if μn[αn] converges to the given μ. For nonunique McKean–
Vlasov equations, one can often show that the sequence μn[αn] is tight and that every limit
point is supported on S∗. But when S∗ is not a singleton, there is no way in general to know
which mixture(s) will be “picked out” by the limit n → ∞.

We will discuss these ideas further in Section 7, which includes examples of weak MFE
which are not strong MFE but which do arise as the limits of n-player (approximate) Nash
equilibria. Section 7.3, in particular, gives an example of an interesting kind of weak MFE,
discussed also in [51], Section 3: If S ⊂ C([0, T ];P(Rd)) denotes the set of strong MFE,

5Aside from [52], some other papers have developed propagation of chaos results in total variation, such as [3,
46]. But, unlike [52], the results of [3, 46] are quantitative in nature and accordingly require structural assumptions
on the coefficients that are not natural in the present context.
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then there can exist weak semi-Markov MFE μ with P(μ ∈ S) < 1. But we do not address an
intriguing open problem: Can one construct a weak MFE μ satisfying P(μ ∈ S) < 1 which
arises as the limit of n-player approximate equilibria? In the examples we give in Section 7
of weak MFE which arise as the limits of n-player approximate equilibria, the weak MFE
are always mixtures of strong MFE; that is, they satisfy P(μ ∈ S) = 1. Note, on the other
hand, that it is known that all weak MFE do indeed arise as limits of open-loop n-player
approximate equilibria; see Theorem 2.13 below, essentially quoted from [51].

Lastly, we mention three recent papers [20, 24, 57] which provide enlightening case studies
on the equilibrium-selection problem. In the MFG of optimal stopping in [57], certain MFE
are shown to arise as the limits of n-player equilibria, while others do not. In the linear-
quadratic model of [24], the unique n-player equilibria converge to a mixture of two strong
MFE, and there exists a third MFE which is not selected. Lastly, in the two-state model of
[20], there are up to three strong MFE, and one of them is selected as the limit of n-player
equilibria. Interestingly, both [20, 24] highlight the role of a unique but nonclassical solution
of the master equation. Notably, these three papers work with true n-player Nash equilibria,
not with ε-equilibria like we do. With this in mind, Theorem 2.12 surely fails if we require
εn = 0. This fits well with known results for static games [37], in which all equilibria of a
continuum of agents arise as the limit of n-player approximate equilibria, but this fails if the
word “approximate” is omitted.

2.5. Closed-loop versus open-loop equilibria. The parallel limit theory for open-loop n-
player equilibria is better understood, and we highlight it in this short section for the sake
of comparison. First, we recall the definition of open-loop equilibrium. In this section, we
impose stronger continuity assumptions on b and f , so that we may apply the results of [51]:

ASSUMPTION D. There exist c > 0 such that
∫
Rd |x|2λ(dx) < ∞ and, for each t ∈

[0, T ], a ∈ A, x, x′ ∈Rd , and m,m′ ∈ P(Rd), we have∣∣b(t, x,m,a) − b
(
t, x′,m′, a

)∣∣≤ c
(∣∣x − x′∣∣+W1

(
m,m′)),

where W1 denotes the Wasserstein metric, defined by W1(m,m′) = infγ
∫
Rd×Rd |x −

y|γ (dx, dy), where the infimum is over all probability measures γ on Rd × Rd with
marginals m and m′. Moreover, the objective function f = f (t, x,m,a) satisfies the uni-
form continuity condition

lim
(x′,m′)→(x,m)

sup
a∈A

∣∣f (t, x′,m′, a
)− f (t, x,m,a)

∣∣= 0,

for all (t, x,m) ∈ [0, T ] ×Rd ×P(Rd).

The open-loop n-player game is defined on a fixed filtered probability space (	n,Fn,

Fn,Pn), supporting independent Fn-Brownian motions and i.i.d. Fn
0 -measurable initial states

(X1
0, . . . ,X

n
0) with law λ.6 Let An denote the set of Fn-adapted A-valued processes. For

α = (α1, . . . , αn) ∈ An
n, define the expected payoff

Jn
i (α) = E

[∫ T

0
f
(
t,Xi

t ,μ
n
t , α

i
t

)
dt + g

(
Xi

T ,μn
T

)]
,

where (X1, . . . ,Xn) is the unique strong solution (recalling Assumption D) of the SDE

dXi
t = b

(
t,Xi

t ,μ
n
t , α

i
t

)
dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
.

6The filtration Fn does not need to be the minimal one generated by the initial states and Brownian motions.
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We may again write μn = μn[α] to emphasize the dependence on the choice of control. For
ε ≥ 0, an open-loop ε-equilibrium is a tuple αn = (α1, . . . , αn) ∈ An

n such that

Jn
i (α) ≥ sup

β∈An

J n
i

(
α1, . . . , αi−1, β,αi+1, . . . , αn)− ε.

It cannot be stressed enough that open-loop and closed-loop equilibria can be very different.
See [19] for an example of an n-player game in which the unique (and explicit) open-loop
and closed-loop equilibria are distinct, although they converge to the same limit as n → ∞.
Open-loop equilibria are most often found using the stochastic maximum principle [16], Sec-
tion 2.2.1.

In the open-loop case, at least under the additional Assumption D, a limit theorem anal-
ogous to Theorem 2.7 was developed in [51] along with with a full converse. That is, every
weak MFE arises as the limit of some sequence of approximate equilibria of the n-player
games. The following is essentially [51], Theorem 3.4:

THEOREM 2.13. Suppose Assumptions A, B and D hold. If, for each n, we are given
an open-loop εn-Nash equilibrium αn = (αn,1, . . . , αn,n) ∈ An

n for some εn ≥ 0 with εn → 0,
then μn[αn] is tight in C([0, T ];P(Rd)), and every limit in distribution is a weak MFE.
Conversely, for every weak MFE μ, we may find, for each n, εn ≥ 0 and an open-loop εn-
Nash equilibrium αn = (αn,1, . . . , αn,n) such that εn → 0 and μn[αn] converges in law to μ

in C([0, T ];P(Rd)).

The only difference between Theorem 2.13 and [51], Theorem 3.4, lies in the notion of
weak MFE. We will prove at the end of Section 6 a correspondence between our notion of
weak MFE and the equilibrium concept used in [51], and Theorem 2.13 will then readily
follow.

In summary, the main gap remaining between the open-loop and closed-loop regimes is
that we have only a partial converse for the latter, as discussed in depth in Section 2.4. How-
ever, there is also a discrepancy in the assumptions required for each result. The second claim
in Theorem 2.13 relies on the additional Assumption D, much as Theorem 2.12 requires As-
sumption C. Notably, both are Lipschitz assumptions, used in the proofs to ensure uniqueness
and propagation of chaos for certain (controlled) McKean–Vlasov equations.

2.6. Ideas of the proof of the main limit theorem. In this section we informally explain
some of the main ideas of the rather lengthy proof of Theorem 2.7, which comes in Section 5.
Tightness is straightforward here and fairly standard, so we mostly focus on the two bigger
challenges of identifying the dynamics at the limit (properties (1–4) and (6) of Definition 2.5)
and proving the optimality of the limiting control (property (5) of Definition 2.5).

A key tool in identifying the limiting dynamics and in proving Proposition 2.2 is (a special
case of) the Markovian projection theorem, due originally to Gyöngy [41], Theorem 4.6, and
later generalized in [8], Corollary 3.7:

THEOREM 2.14 (Markovian projection). Let (	,F,F,P) be a filtered probability space
supporting an F-adapted continuous process X and an F-Brownian motion W . Suppose b =
(bt )t∈[0,T ] is a bounded F-progressively measurable process such that, almost surely,

Xt = X0 +
∫ t

0
bs ds + Wt, t ∈ [0, T ].

Then there exists a bounded measurable function b̂ : [0, T ] ×Rd →Rd such that

b̂(t,Xt ) = E[bt | Xt ] a.s., t ∈ [0, T ],
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and, moreover, the unique strong solution of the SDE

dYt = b̂(t, Yt ) dt + dWt, Y0 = X0,

satisfies Yt
d= Xt for each t ∈ [0, T ].

2.6.1. Limiting dynamics. We want to show that, for any weak limit μ of (μn), we may
construct a tuple (	,F,F,P,W,α∗,X∗,μ) and such that properties (1–4) and (6) of Defi-
nition 2.5 hold. Much of this argument is an embellishment of a well-established martingale
approach for deriving the McKean–Vlasov limit for interacting diffusions, developed for in-
stance in [40, 58]. A first difference is that here we work with the extended empirical measure

μn = 1

n

n∑
k=1

δ(Xk,αn,k).

Here we view Xk as a Cd -valued random variable and αn,k = αn,k(t,X) as a random variable
taking values in the space V of relaxed or measure-valued controls, defined in Section 5.2; the
space V is essentially a convenient compactification of the space L0([0, T ];A) of measurable
A-valued paths. First, we show that every weak limit μ of (μn) satisfies∫
Rd

ϕd(μt − μ0) =
∫
Cd×V

∫ t

0

∫
A

(
b(s, xs,μs, a) · ∇ϕ(xs) + 1

2
�ϕ(xs)

)
qs(da) dsμ(dx, dq)

almost surely, for each smooth test function ϕ on Rd , where μt = μ ◦ [(x, q) 
→ xt ]−1 is the
marginal flow associated to the x variable.

The above integral equation closely resembles the weak or integrated form of a Fokker–
Planck equation. Instead of an integral

∫ t
0
∫
Rd · · ·μs(dx) ds appearing on the right-hand side,

we have a more complicated expression involving the integral with the respect to μ. Draw-
ing intuition from the Markovian Projection Theorem 2.14, we would like to condition on
the marginal flow (μt )t∈[0,T ], in order to “project away the extra randomness” in some
sense. Ultimately, we build (cf. Lemma 5.3) a semi-Markov control α∗ : [0, T ] × Rd ×
C([0, T ];P(Rd)) → A such that∫

Rd
ϕd(μt − μ0) =

∫ t

0

∫
Rd

(
b
(
s, x,μs,α

∗(t, x,μ)
) · ∇ϕ(x) + 1

2
�ϕ(x)

)
μs(dx) ds,

almost surely, for each ϕ, and such that the expected value of objective function is preserved
in a suitable sense. This now says that (μt )t∈[0,T ] almost surely solves a Fokker–Planck
equation, which we can identify with the solution of an SDE. In fact, this SDE is of McKean–
Vlasov type, because μ itself appears nonlinearly in the coefficients b and α∗, and this line
of reasoning eventually leads us to properties (1–4) and (6) of Definition 2.5.

REMARK 2.15. Throughout the proofs, we repeatedly use projection arguments like
Theorem 2.14 to allow us to modify the control into a more convenient form (e.g., semi-
Markov), while preserving the (time-marginal) laws of the state process and measure flow.
Because of this, our approach does not readily adapt to models in which the functions b or
f depend on the distribution the controls in addition to that of the states, which are often
known as extended mean field games. See [16], Chapter I.4.6–8, for further discussion and
references on such models.
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2.6.2. Optimality at the limit. Suppose now that we have proven the claimed tight-
ness of Theorem 2.7 and also that for any limit point μ of (μn) we may construct a tuple
(	,F,F,P,W,α∗,X∗,μ) such that properties (1–4) and (6) of Definition 2.5 hold. The fi-
nal and most difficult step is to check that this tuple satisfies the optimality property (5) of
Definition 2.5. In the following, we work with a relabeled convergent subsequence and as-
sume μn converges in law to μ.

The general strategy, reminiscent of Gamma-convergence arguments, is to choose an arbi-
trary alternative control α : [0, T ] × Rd × C([0, T ];P(Rd)) → A, and give it to each of the
players in the n-player game. Precisely, for each n and each k = 1, . . . , n, define the n state
processes Y k = (Y k,1, . . . , Y k,n) by

dY
k,k
t = b

(
t, Y

k,k
t ,μ

n,k
t , α

(
t, Y

k,k
t ,μn,k))dt + dWk

t , μn,k = 1

n

n∑
j=1

δYn,k,j ,

dY
k,i
t = b

(
t, Y

k,i
t ,μ

n,k
t , αn,i(t,Y k))dt + dWi

t , i �= k,

with initial states Y
k,i
0 = Xi

0. The state process Y k differs from the equilibrium state process
X[(αn,1, . . . , αn,n)] only in that we switched player k’s control from αn,k to α.

The assumed εn-Nash equilibrium property of (αn,1, . . . , αn,n) then implies that

(2.6)

1

n

n∑
k=1

E

[∫ T

0
f
(
t,Xk

t ,μ
n
t , α

n,k(t,X)
)
dt + g

(
Xk

T ,μn
T

)]

≥ −εn + 1

n

n∑
k=1

E

[∫ T

0
f
(
t, Y

k,k
t ,μ

n,k
t , α

(
t, Y

k,k
t ,μn,k))dt + g

(
Y

k,k
T ,μ

n,k
T

)]
.

(In fact, this is the only use of the εn-Nash property in the entire proof, and this explains
Remark 2.8.) We then wish to take limits on both sides. First, the arguments of Section 2.6.1
allow us to identify the limit of the left-hand side of (2.6) as precisely the left-hand side of
the inequality in (5) of Definition 2.5. What remains is to show that the right-hand side of
(2.6) along the same subsequence converges to the right-hand side of the inequality in (5) of
Definition 2.5.

This last point is the technical crux of the argument. It is not obvious at first how to ap-
proach this, because we know very little about the controls αn,1, . . . , αn,n. Intuitively, one is
tempted to claim that, because we have only switched one single agent’s control, μn,k should
be close in some sense to μn, for each k. The challenge comes from the closed-loop nature
of the controls; if one player switches controls, then all of the other players controls react
to the change in the state process. It could be the case that all of the controls αn,1, . . . , αn,n

depend very heavily on, say, player 1’s state process, in which case a change in control from
this player 1 would have a strong influence on the empirical measure.

While we cannot show that μn,k and μn have the same limiting behavior for each k, we are
able to show that L(μn) and 1

n

∑n
k=1 L(μn,k) have the same limiting behavior, in the sense

that the total variation distance between these two measures converges to zero as n → ∞.
Indeed, supposing the state process X is defined on the probability space (	n,Fn,Fn,Pn),
we may define an equivalent probability measure Qn,k by setting dQn,k/dPn := ζ

n,k
T , where

the positive martingale (ζ
n,k
t )t∈[0,T ] is given as the unique solution of the SDE

dζ
n,k
t = ζ

n,k
t

(
b
(
t,Xk

t ,μ
n
t , α

(
t,Xk

t ,μ
n))− b

(
t,Xk

t ,μ
n
t , α

n,k(t,X)
)) · dWk

t , ζ
n,k
0 = 1.

By Girsanov’s theorem and uniqueness of the SDEs, we have L(Y k) = Qn,k ◦ X−1. Hence,
for any bounded measurable function h,

1

n

n∑
k=1

E
[
h
(
μn,k)]= 1

n

n∑
k=1

E
[
ζ

n,k
T h

(
μn)].(2.7)
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Because the Brownian motions Wk are independent, the process 1
n

∑n
k=1 ζ

n,k
t is a martingale

with quadratic variation up to time s given by

1

n2

n∑
k=1

∫ s

0

∣∣ζ n,k
s

∣∣2∣∣b(t,Xk
t ,μ

n
t , α

(
t,Xk

t ,μ
n))− b

(
t,X

n,k
t ,μn

t , α
n,k(t,X)

)∣∣2 dt,

which is of order 1/n in expectation because b is bounded. Hence, 1
n

∑n
k=1 ζ

n,k
T → 1 in

probability, and from (2.7) we deduce that

lim
n→∞

1

n

n∑
k=1

E
[
h
(
μn,k)]−E

[
h
(
μn)]= 0.(2.8)

Most of the intuition behind this proof is contained in this argument that L(μn) and
1
n

∑n
k=1 L(μn,k) have the same limiting behavior, but one important additional point is

worth mentioning: The right-hand side of (2.6) can be written as the integral of a fixed
(n-independent) function with respect to the measure 1

n

∑n
k=1 L(Y k,k,μn,k), and it is this

measure whose limiting behavior we should identify, not just 1
n

∑n
k=1 L(μn,k). To this end,

for any bounded measurable function h, write

1

n

n∑
k=1

E
[
h
(
Y k,k,μn,k)]= 1

n

n∑
k=1

E
[
ζ

n,k
T h

(
Xk,μn)].

The limiting behavior of this expression can be identified by studying the (d +1)-dimensional
particle system (Xk, ζ n,k)nk=1, adapting the classical martingale approach for McKean–
Vlasov systems mentioned in Section 2.6.1.

3. Relaxed equilibria. Our proofs will make heavy use of relaxed or randomized con-
trols, essentially replacing A-valued controls with P(A)-valued controls, which by now have
a long history in stochastic optimal control theory [28, 34] for their useful compactness prop-
erties. Relaxed controls were employed in an MFG context [18, 50, 51], and we will use them
in the same way. It is worth noting, however, that while they are certainly mathematically
convenient, relaxed controls also admit a natural interpretation in a game-theoretic context as
mixed strategies.

3.1. Relaxed n-player games. We begin by extending the equilibrium concepts for n-
player games of Section 2.1. Write Rn for the set of progressively measurable functions  :
[0, T ] × (Cd)n → P(A), and let RMn denote the subset of functions of the form (t, x) =
̃(t, xt ) for some measurable function ̃ : [0, T ] × (Rd)n → P(A). Via the embedding A �
a 
→ δa ∈ P(A), we may view An and AMn as subsets of Rn, and we have the following
natural inclusions:

AMn ⊂ An ⊂ Rn, AMn ⊂ RMn ⊂Rn.

The state process and objective functions are defined for relaxed controls � = (1, . . . ,n) ∈
Rn

n as follows:

dXi
t =

∫
A

b
(
t,Xi

t ,μ
n
t , a

)
i(t,X)(da) dt + dWi

t ,

J n
i

(
1, . . . ,n)= E

[∫ T

0

∫
A

f
(
t,Xi

t ,μ
n
t , a

)
i(t,X)(da) dt + g

(
Xi

T ,μn
T

)]
.

We may write X[�] = (X1[�], . . . ,Xn[�]) in place of X = (X1, . . . ,Xn) to stress which
controls are being applied, and similarly we may write μn[�] in place of μn.



CLOSED-LOOP MEAN FIELD GAME CONVERGENCE 1709

DEFINITION 3.1. Let ε ≥ 0. A relaxed closed-loop ε-Nash equilibrium is a tuple
(1, . . . ,n) ∈ Rn

n such that

Jn
i

(
1, . . . ,n)≥ sup

β∈Rn

J n
i

(
1, . . . ,i−1, β,i+1, . . . ,n)− ε for i = 1, . . . , n.

A relaxed Markovian ε-Nash equilibrium is a tuple (1, . . . ,n) ∈ RMn
n such that

Jn
i

(
1, . . . ,n)≥ sup

β∈RMn

J n
i

(
1, . . . ,i−1, β,i+1, . . . ,n)− ε for i = 1, . . . , n.

The following trio of propositions, along with Proposition 2.2, will show that the four
equilibrium concepts described in Definitions 2.1 and 3.1 are roughly equivalent, if we accept
both assumptions A and B. The proofs are given in Section 4.

PROPOSITION 3.2. Suppose Assumption A holds, and let ε ≥ 0. Then any relaxed
Markovian ε-Nash equilibrium is also a relaxed closed-loop ε-Nash equilibrium.

PROPOSITION 3.3. Suppose Assumptions A and B hold, and let ε ≥ 0. Then:

(a) Any Markovian ε-Nash equilibrium is also a relaxed Markovian ε-Nash equilibrium.
(b) Any closed-loop ε-Nash equilibrium is also a relaxed closed-loop ε-Nash equilibrium.

PROPOSITION 3.4. Suppose Assumptions A and B hold, and let ε ≥ 0. Then:

(a) For any relaxed Markovian ε-Nash equilibrium � = (1, . . . ,n) ∈ RMn
n, there ex-

ists a Markovian ε-Nash equilibrium α = (α1, . . . , αn) ∈ AMn
n such that X[�] d= X[α].

(b) For any relaxed closed-loop ε-Nash equilibrium � = (1, . . . ,n) ∈Rn
n, there exists

a closed-loop ε-Nash equilibrium α = (α1, . . . , αn) ∈ An
n such that X[�] d= X[α].

Some notation helps to summarize the above propositions. Fix ε ≥ 0, let A∗,ε
n ⊂ An

n de-
note the set of closed-loop ε-Nash equilibria. Similarly, define AM∗,ε

n , R∗,ε
n , and RM∗,ε

n

respectively as the sets of Markovian, relaxed closed-loop, and relaxed Markovian ε-Nash
equilibria. We may summarize the relations of Propositions 2.2, 3.2 and 3.3 by writing

AM∗,ε
n ⊂A∗,ε

n ⊂R∗,ε
n , AM∗,ε

n ⊂RM∗,ε
n ⊂ R∗,ε

n .

Moreover, we can think of Proposition 3.4(a) (resp. (b)) as reducing AM∗,ε
n ⊂ RM∗,ε

n (resp.
A∗,ε

n ⊂ R∗,ε
n ) to equality, if we are content to focus only on the law of the state process X.

Precisely, under Assumptions A and B, we have the following relationships between subsets
of P((Cd)n):

(3.1)

{
L
(
X[�]) : � ∈ AM∗,ε

n

}= {
L
(
X[�]) : � ∈ RM∗,ε

n

}
⊂ {

L
(
X[�]) : � ∈ R∗,ε

n

}
= {

L
(
X[�]) : � ∈ A∗,ε

n

}
.

Recall that our main result, Theorem 2.7, involves only the law of the state process X. Thanks
to the above propositions, we may simultaneously cover all four of these possibilities by
focusing solely on the laws of closed-loop Markovian equilibria, that is, A∗,ε

n .
We will make no claims throughout the paper regarding existence of equilibria for n-player

games, but we provide some references. As we have mentioned, Markovian Nash equilibria
(the set AM∗,0

n , in the notation of the previous paragraph) are by far the most commonly
studied in the literature and can be found by solving a system of n Hamilton–Jacobi–Bellman
(HJB) equations. Relaxed Markovian equilibria are far less common, but the notable paper of
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Borkar and Ghosh [6] has several theorems on existence (i.e., RM∗,0
n �=∅). While their dis-

cussion of finite horizon problems is limited to the final sentence of the paper, it is clear that
the techniques they develop for infinite-horizon problems can be easily adapted. Closed-loop
path-dependent equilibria have appeared with some frequency in the literature on two-player
stochastic differential games [12, 42]. They arise quite naturally in the BSDE-based weak
formulation of Hamadene–Lepeltier [42], which reduces the existence of Nash equilibria to
the solution of a BSDE (which is nothing but the stochastic representation of the correspond-
ing HJB equation). The extension to the n-player setting is written in the lecture notes [13],
Section 5.3.2, but be careful that our notion of closed-loop equilibrium is called “open-loop”
therein. Lastly, we are unaware of any discussion of relaxed closed-loop equilibria in prior
literature, but it is useful at the very least as an intermediary in establishing the relations in
(3.1).

3.2. Relaxed mean field equilibria. We next extend the MFG equilibrium concepts (Def-
initions 2.3 and 2.5) of Section 2.2 to the relaxed setting:

DEFINITION 3.5. We say that m = (mt )t∈[0,T ] ∈ C([0, T ];P(Rd)) is a strong relaxed
mean field equilibrium (or simply a strong RMFE) if there exists a measurable function ∗ :
[0, T ] ×Rd → P(A) such that the unique solution of the SDE

dX∗
t =

∫
A

b
(
t,X∗

t ,mt , a
)
∗(t,X∗

t

)
(da) dt + dWt, X∗

0 ∼ λ

satisfies the following:

(1) The consistency condition holds: mt = L(Xt) for all t ∈ [0, T ].
(2) For any measurable function  : [0, T ] ×Rd → P(A), we have

E

[∫ T

0

∫
A

f
(
t,X∗

t ,mt , a
)
∗(t,X∗

t

)
(da) dt + g

(
X∗

T ,mT

)]

≥ E

[∫ T

0

∫
A

f (t,Xt ,mt , a)(t,Xt)(da) dt + g(XT ,mT )

]
,

where X is the unique solution of

dXt =
∫
A

b(t,Xt ,mt , a)(t,Xt)(da) dt + dWt, X0 ∼ λ.

It was shown in [50], Theorem 6.2, that a strong MFE exists under Assumption A, though
we will not need this fact. Recall from Definition 2.4 the notion of a semi-Markov function.

DEFINITION 3.6. A weak semi-Markov relaxed mean field equilibrium (or simply a weak
RMFE) is a tuple (	,F,F,P,W,∗,X∗,μ), where (	,F,F,P) is a complete filtered prob-
ability space and:

(1) μ is a continuous F-adapted P(Rd)-valued process, W is a F-Brownian motion, and
X∗ is a continuous Rd -valued F-adapted process with P ◦ (X∗

0)−1 = λ.
(2) ∗ : [0, T ] ×Rd × C([0, T ];P(Rd)) → P(A) is semi-Markov.
(3) X∗

0 , μ, and W are independent.
(4) The state equation holds:

dX∗
t =

∫
A

b
(
t,X∗

t ,μt , a
)
∗(t,X∗

t ,μ
)
(da) dt + dWt .(3.2)
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(5) For every alternative  : [0, T ] ×Rd × C([0, T ];P(Rd)) → P(A) satisfying (2), we
have

E

[∫ T

0

∫
A

f
(
t,X∗

t ,μt , a
)
∗(t,X∗

t ,μ
)
(da) dt + g

(
X∗

T ,μT

)]

≥ E

[∫ T

0

∫
A

f (t,Xt ,μt , a)(t,Xt ,μ)(da) dt + g(XT ,μT )

]
,

where X is the solution (recall Remark 2.6) of

dXt =
∫
A

b(t,Xt ,μt , a)(t,Xt ,μ)(da) dt + dWt, X0 ∼ λ.

(6) The consistency condition holds: μt = P(X∗
t ∈ · | Fμ

t ) a.s. for each t ∈ [0, T ], where
Fμ

t = σ(μs : s ≤ t).

We refer also to the process μ itself as a weak RMFE. More precisely, we say a con-
tinuous P(Rd)-valued process μ is a weak RMFE if it is defined within some tuple
(	,F,F,P,W,∗,X∗,μ) which meets the above requirements.

Similar to the relationships of Section 3.1, under Assumptions A and B we prove in Sec-
tion 4 that MFE and relaxed MFE induce the same measure flows:

PROPOSITION 3.7. Suppose Assumptions A and B hold. Then every strong RMFE is a
strong MFE, and every strong MFE is a strong RFME. Similarly, a continuous P(Rd)-valued
processes μ is a weak MFE if and only if it is a weak RMFE.

REMARK 3.8. Recall from Remark 2.6 that the SDEs in (3.2) admit unique strong solu-
tions, and in particular X∗ is necessarily adapted to the complete filtration generated by the
process (X∗

0,Ws,μs)s≤t . With this and property (3) of Definition 3.6, we easily deduce that
L(X∗

t | Fμ
t ) = L(X∗

t | μ) a.s., for each t ∈ [0, T ], which will be useful later.

3.3. Extensions of the limit theorems. This section collects some generalizations of the
main results announced in Section 2, which do not require the convexity Assumption B. The
results of the previous two subsections show how the various equilibrium concepts related to
each other if we impose Assumption B, and this is how we will deduce the results of Section 2
from those announced here.

THEOREM 3.9. Suppose Assumption A holds. Fix a sequence εn ≥ 0 with εn → 0.
For each n, suppose αn = (αn,1, . . . , αn,n) ∈ An

n is a closed-loop εn-Nash equilibrium.
Then the associated empirical measure flow sequence μn = μn[αn] is tight as a family of
C([0, T ];P(Rd))-valued random variables, and every limit in distribution is a weak RMFE.

If we impose both Assumption A and B, then Proposition 3.7 tells us that weak RMFE
and weak MFE are one and the same. Thus, our main result, Theorem 2.7, follows from
Theorem 3.9. Recall also the relations summarized in (3.1). Under Assumptions A and B,
we deduce that Theorem 3.9 remains valid when αn is instead assumed to be any of the four
types of equilibrium described in Definitions 2.1 and 3.1.

Similarly, we may deduce the converse Theorem 2.12 from Proposition 3.4(a) the follow-
ing generalization to relaxed equilibria:

THEOREM 3.10. Suppose Assumptions A and C hold. Suppose m ∈ C([0, T ];P(Rd)) is
a strong RMFE. Then there exist εn ≥ 0 with εn → 0 and, for each n, a relaxed Markovian εn-
Nash equilibrium �n ∈RMn

n such that μn[�n] converges in law to m in C([0, T ];P(Rd)).
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Sections 5 and 7.1 are devoted to the proofs of Theorems 3.9 and 3.10, respectively. We
might lastly state a form of Theorem 2.13 without Assumption B, as long as we use weak
RMFE instead of weak MFE, but we opt not to write this out explicitly.

4. Relating the various equilibrium concepts. This section proves the various rela-
tionships between different equilibrium concepts of Definitions 2.1 and 3.1, announced in
Propositions 2.2, 3.2, 3.3 and 3.4. We also prove Proposition 3.7, which relates MFE to
RMFE.

4.1. Proof of Proposition 3.2. Let ε ≥ 0, and fix a relaxed Markovian ε-Nash equilibrium
� = (1, . . . ,n) ∈ RMn

n. The goal is to show that � is also a relaxed closed-loop ε-Nash
equilibrium. The state processes X = X[�] solve the SDE system

dXi
t =

∫
A

b
(
t,Xi

t ,μ
n
t , a

)
i(t,Xt )(da) dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
.

Let β ∈ Rn be an alternative relaxed closed-loop control. We will focus on player 1, showing
that

Jn
1
(
1, . . . ,n)≥ Jn

1
(
β,2, . . . ,n)− ε.(4.1)

The argument for other players i �= 1 is identical. To proceed, let Y = (Y 1, . . . , Y n) :=
X[β,2, . . . ,n] be the state processes in which players i �= 2 still use i :

dY 1
t =

∫
A

b
(
t, Y 1

t , νn
t , a

)
β(t,Y )(da) dt + dW 1

t ,

dY i
t =

∫
A

b
(
t, Y i

t , ν
n
t , a

)
i(t,Y t )(da) dt + dWi

t , i �= 1,

νn
t = 1

n

n∑
k=1

δY k
t
.

Define β̃ ∈ RMn by setting β̃(t,x) = E[β(t,Y ) | Y t = x], noting that the existence of a
jointly measurable version of this conditional mean measure is demonstrated by Lemma C.2.
More precisely, this defines a Borel measurable function β̃ : [0, T ] × (Rd)n → P(A) such
that

(4.2)
∫
A

ϕ(t,Y t , a)β̃(t,Y t )(da) = E

[∫
A

ϕ(t,Y t , a)β(t,Y )(da)
∣∣∣ Y t

]
a.s., a.e. t ∈ [0, T ].

By Theorem 2.14, the unique solution Ỹ = (Ỹ 1, . . . , Ỹ n) of the SDE system

dỸ 1
t =

∫
A

b
(
t, Ỹ 1

t , ν̃n
t , a

)
β̃(t, Ỹ t )(da) dt + dW 1

t ,

dỸ i
t =

∫
A

b
(
t, Ỹ i

t , ν̃
n
t , a

)
i(t, Ỹ t )(da) dt + dWi

t , i �= 1,

ν̃n
t = 1

n

n∑
k=1

δỸ k
t
,

satisfies Ỹ t
d= Y t for all t ∈ [0, T ]. Using Fubini’s theorem and (4.2), we find

J n
1
(
β,2, . . . ,n)= E

[∫ T

0

∫
A

f
(
t, Y 1

t , νn
t , a

)
β(t,Y )(da) dt + g

(
Y 1

T , νn
T

)]
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= E

[∫ T

0

∫
A

f
(
t, Y 1

t , νn
t , a

)
β̃(t,Y t )(da) dt + g

(
Y 1

T , νn
T

)]

= E

[∫ T

0

∫
A

f
(
t, Ỹ 1

t , ν̃n
t , a

)
β̃(t, Ỹ t )(da) dt + g

(
Ỹ 1

T , ν̃n
T

)]
= Jn

1
(
β̃,2, . . . ,n)

≤ Jn
1
(
1, . . . ,n)+ ε.

Indeed, the last inequality follows from the assumption that (1, . . . ,n) is a relaxed Marko-
vian ε-Nash equilibrium.

4.2. Proof of Proposition 3.3. Proof of (a): Let ε ≥ 0, and fix a Markovian ε-Nash equi-
librium α = (α1, . . . , αn) ∈ AMn

n. The goal is to show that α is also a relaxed Markovian
ε-Nash equilibrium. The state processes X = X[α] solve the SDE system

dXi
t = b

(
t,Xi

t ,μ
n
t , α

i(t,Xt )
)
dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
.

Let β ∈ RMn be an alternative relaxed control. We will focus on player 1, showing that

Jn
1
(
α1, . . . , αn)≥ Jn

1
(
β,α2, . . . , αn)− ε.(4.3)

The argument for other players i �= 1 is identical. To proceed, let Y = (Y 1, . . . , Y n) =
X[β,α2, . . . , αn] be the state processes in which players i �= 2 still use αi :

dY 1
t =

∫
A

b
(
t, Y 1

t , νn
t , a

)
β(t,Y t )(da) dt + dW 1

t ,

dY i
t = b

(
t, Y i

t , ν
n
t , αi(t,Y t )

)
dt + dWi

t , i �= 1,

νn
t = 1

n

n∑
k=1

δY k
t
.

Recalling the definition of the convex set K(t, x,m) from Assumption B, we have∫
A

(
b
(
t, Y 1

t , νn
t , a

)
, f
(
t, Y 1

t , νn
t , a

))
β(t,Y t )(da) ∈ K

(
t, Y 1

t , νn
t

)
.

Let Ln : (Rd)n → P(Rd) denote the empirical measure map, Ln(x) = 1
n

∑n
k=1 δxk

. Using a
measurable selection theorem [43], Theorem A.9, we may find a measurable function α̃ :
[0, T ] × (Rd)n → A such that, for each x = (x1, . . . , xn) ∈ (Rd)n,

b
(
t, x1,Ln(x), α̃(t,x)

)= ∫
A

b
(
t, x1,Ln(x), a

)
β(t,x)(da)(4.4)

and ∫
A

f
(
t, x1,Ln(x), a

)
β(t,x)(da) ≤ f

(
t, x1,Ln(x), α̃(t,x)

)
.

The first of these identities implies that in fact

dY 1
t = b

(
t, Y 1

t , νn
t , α̃(t,Y t )

)
dt + dW 1

t ,

and in particular Y
d= X[α̃, α2, . . . , αn], while the second implies

Jn
1
(
β,α2, . . . , αn)= E

[∫ T

0

∫
A

f
(
t, Y 1

t , νn
t , a

)
β(t,Y t )(da) dt + g

(
Y 1

T , νn
T

)]
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≤ E

[∫ T

0
f
(
t, Y 1

t , νn
t , α̃(t,Y t )

)
dt + g

(
Y 1

T , νn
T

)]
= Jn

1
(
α̃, α2, . . . , αn)

≤ Jn
1
(
α1, . . . , αn)+ ε.

Indeed, the last inequality follows from the assumption that (α1, . . . , αn) is a Markovian
ε-Nash equilibrium.

Proof of (b): This proof is identical to that of part (a), except that all of the controls involved
(namely, αi and β) are closed-loop (path-dependent) instead of Markovian.

4.3. Proof of Proposition 2.2. This combines ideas of both of the previous proofs. Let
ε ≥ 0, and fix a Markovian ε-Nash equilibrium α = (α1, . . . , αn) ∈ AMn

n. The goal is to
show that α is a closed-loop ε-Nash equilibrium. The state processes X = X[α] solve the
SDE system

dXi
t = b

(
t,Xi

t ,μ
n
t , α

i(t,Xt )
)
dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
.

Let β ∈ An be an alternative closed-loop control. We will focus on player 1, showing that

Jn
1
(
α1, . . . , αn)≥ Jn

1
(
β,α2, . . . , αn)− ε.(4.5)

Let Y = (Y 1, . . . , Y n) = X[β,α2, . . . , αn] be the state processes in which players i �= 2 still
use αi :

dY 1
t = b

(
t, Y 1

t , νn
t , β(t,Y )

)
dt + dW 1

t ,

dY i
t = b

(
t, Y i

t , ν
n
t , αi(t,Y t )

)
dt + dWi

t , i �= 1,

νn
t = 1

n

n∑
k=1

δY k
t
.

Recalling the definition of the convex set K(t, x,m) from Assumption B, notice that

E
[
b
(
t, Y 1

t , νn
t , β(t,Y )

) | Y t

] ∈ K
(
t, Y 1

t , νn
t

)
a.s.,

for each t ∈ [0, T ]. Using a measurable selection theorem [43], Theorem A.9, we may find a
measurable function β̃ : [0, T ] × (Rd)n → A such that

b
(
t, Y 1

t , νn
t , β̃(t,Y t )

)= E
[
b
(
t, Y 1

t , νn
t , β(t,Y )

) | Y t

]
a.s.,(4.6)

f
(
t, Y 1

t , νn
t , β̃(t,Y t )

)≥ E
[
f
(
t, Y 1

t , νn
t , β(t,Y )

) | Y t

]
a.s.,(4.7)

for each t ∈ [0, T ]. By Theorem 2.14, the unique solution Ỹ = (Ỹ 1, . . . , Ỹ n) of the SDE
system

dỸ 1
t = b

(
t, Ỹ 1

t , ν̃n
t , β̃(t, Ỹ t )

)
dt + dW 1

t ,

dỸ i
t = b

(
t, Ỹ i

t , ν̃
n
t , αi(t, Ỹ t )

)
dt + dWi

t , i �= 1,

ν̃n
t = 1

n

n∑
k=1

δỸ k
t
,
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satisfies Ỹ t
d= Y t for all t ∈ [0, T ]. Note that Ỹ

d= X[β̃, α2, . . . , αn]. Use Fubini’s theorem
and (4.7) to get

Jn
1
(
β,α2, . . . , αn)= E

[∫ T

0
f
(
t, Y 1

t , νn
t , β(t,Y )

)
dt + g

(
Y 1

T , νn
T

)]

≤ E

[∫ T

0
f
(
t, Y 1

t , νn
t , β̃(t,Y t )

)
dt + g

(
Y 1

T , νn
T

)]

= E

[∫ T

0
f
(
t, Ỹ 1

t , ν̃n
t , β̃(t, Ỹ t )

)
dt + g

(
Ỹ 1

T , ν̃n
T

)]
= Jn

1
(
β̃, α2, . . . , αn)

≤ Jn
1
(
α1, . . . , αn)+ ε.

Indeed, the last inequality follows from the assumption that (α1, . . . , αn) is a Markovian
ε-Nash equilibrium.

4.4. Proof of Proposition 3.4. Proof of (a): Let ε ≥ 0, and fix a relaxed Markovian ε-
Nash equilibrium � = (1, . . . ,n) ∈ RMn

n. The state processes X = X[�] solve the SDE
system

dXi
t =

∫
A

b
(
t,Xi

t ,μ
n
t , a

)
i(t,Xt )(da) dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
.

Let Ln : (Rd)n → P(Rd) denote the empirical measure map, Ln(x) = 1
n

∑n
k=1 δxk

. Re-
calling the definition of K(t, x,m) from Assumption B, it holds for each t ∈ [0, T ], x =
(x1, . . . , xn) ∈ (Rd)n, and i ∈ {1, . . . , n} that∫

A

(
b
(
t, xi,Ln(x), a

)
, f
(
t, xi,Ln(x), a

))
i(t,x)(da) ∈ K

(
t, xi,Ln(x)

)
.

Using a measurable selection theorem [43], Theorem A.9, we may find a measurable function
αi : [0, T ] × (Rd)n → A such that, for each x = (x1, . . . , xn) ∈ (Rd)n and t ∈ [0, T ],

b
(
t, xi,Ln(x), αi(t,x)

)= ∫
A

b
(
t, xi,Ln(x), a

)
i(t,x)(da)(4.8)

and ∫
A

f
(
t, xi,Ln(x), a

)
i(t,x)(da) ≤ f

(
t, xi,Ln(x), αi(t,x)

)
.

The first of these identities implies that in fact X solves the SDE system

dXi
t = b

(
t,Xi

t ,μ
n
t , α

i(t,Xt )
)
dt + dWi

t ,

that is, X = X[α1, . . . , αn], while the second implies

Jn
i

(
1, . . . ,n)= E

[∫ T

0

∫
A

f
(
t,Xi

t ,μ
n
t , a

)
i(t,Xt )(da) dt + g

(
Xi

T ,μn
T

)]

≤ E

[∫ T

0
f
(
t,Xi

t ,μ
n
t , α

i(t,Xt )
)
dt + g

(
Xi

T ,μn
T

)]
= Jn

i

(
α1, . . . , αn).

(4.9)

Now, let us show that (α1, . . . , αn) is an ε-Nash equilibrium. Fix an alternative Markovian
control β ∈ AMn. We will focus on player 1, showing that

Jn
1
(
α1, . . . , αn)≥ Jn

1
(
β,α2, . . . , αn)− ε.(4.10)
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To proceed, let Y = (Y 1, . . . , Y n) = X[β,2, . . . ,n] be the state processes in which players
i �= 2 still use the relaxed controls i :

dY 1
t = b

(
t, Y 1

t , νn
t , β(t,Y t )

)
dt + dW 1

t ,

dY i
t =

∫
A

b
(
t, Y i

t , ν
n
t , a

)
i(t,Y t )(da) dt + dWi

t , i �= 1,

νn
t = 1

n

n∑
k=1

δY k
t
.

Using (4.8) we may write

dY i
t = b

(
t, Y i

t , ν
n
t , αi(t,Y t )

)
dt + dWi

t , i �= 1,

that is, Y
d= X[β,α2, . . . , αn]. Hence, since (1, . . . ,n) is ε-Nash, we may use (4.9) to get

Jn
1
(
β,α2, . . . , αn)= Jn

1
(
β,2, . . . ,n)≤ Jn

1
(
1, . . . ,n)+ ε

≤ Jn
1
(
α1, . . . , αn)+ ε.

Proof of (b): This proof is identical to that of part (a), except that all of the controls involved
(namely, i , αi and β) are closed-loop (path-dependent) instead of Markovian.

4.5. Proof of Proposition 3.7. We prove the claims only for weak MFE, as the strong
MFE is a special case of a deterministic weak MFE. We begin with a preparatory argument.
Let  : [0, T ] ×Rd × C([0, T ];P(Rd)) → P(A) be any semi-Markov function (recall Def-
inition 2.4). Recalling the definition of the convex set K(t, x,m) from Assumption B, note
that for (t, x,m) ∈ [0, T ] ×Rd × C([0, T ];P(Rd)) we have∫

A

(
b(t, x,mt , a), f (t, x,mt , a)

)
(t, x,m)(da) ∈ K(t, x,mt).

Using a measurable selection theorem [43], Theorem A.9, we may find a semi-Markov func-
tion α : [0, T ] ×Rd × C([0, T ];P(Rd)) → A such that, for each (t, x,m),

b
(
t, x,mt , α

(t, x,m)
)= ∫

A
b(t, x,m,a)(t, x,m)(da)

and ∫
A

f (t, x,m,a)(t, x,m)(da) ≤ f
(
t, x,m,α(t, x,m)

)
.

In particular, if X solves the SDE

dXt =
∫
A

b(t,Xt ,μt , a)(t,Xt ,μ)(da) dt + dWt,(4.11)

where W is a Brownian motion, μ is a continuous P(Rd)-valued process, and (X0,μ,W)

are independent, then X also solves the SDE

dXt = b
(
t,Xt ,μt , α

(t,Xt ,μ)
)
dt + dWt,

and we have the inequality

(4.12)

E

[∫ T

0

∫
A

f (t,Xt ,μt , a)(t,Xt ,μ)(da) dt + g(XT ,μT )

]

≤ E

[∫ T

0
f
(
t,Xt ,μt , α

(t,Xt ,μ)
)
dt + g(XT ,μT )

]
.
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With this construction the proof is straightforward. We first show that a weak RMFE is
a weak MFE. Let (	,F,F,P,W,∗,X∗,μ) be a weak RMFE. It is then easy to check
using the above facts that (	,F,F,P,W,α∗

,X∗,μ) is a weak MFE. Conversely, let
(	,F,F,P,W,α∗,X∗,μ) be a weak MFE. Define ∗(t, x,m) := δα∗(t,x,m). It is clear that
(	,F,F,P,W,∗,X∗,μ) satisfies properties (1–4) and (6) of Definition 3.6. To prove (5),
let  : [0, T ] × Rd × C([0, T ];P(Rd)) → P(A) denote any semi-Markov function, and let
X solve the corresponding SDE (4.11). Combine property (5) of the definition of weak MFE
(Definition 2.5) with (4.12) to get

E

[∫ T

0

∫
A

f
(
t,X∗

t ,μt , a
)
∗(t,X∗

t ,μ
)
(da) dt + g

(
X∗

T ,μT

)]

= E

[∫ T

0
f
(
t,X∗

t ,μt , α
∗(t,X∗

t ,μ
))

dt + g
(
X∗

T ,μT

)]

≥ E

[∫ T

0
f
(
t,Xt ,μt , α

(t,Xt ,μ)
)
dt + g(XT ,μT )

]

≥ E

[∫ T

0

∫
A

f (t,Xt ,μt , a)(t,Xt ,μ)(da) dt + g(XT ,μT )

]
.

This completes the proof.

5. Proof of the main limit theorem. This section is devoted to the proof of Theorem 3.9,
from which Theorem 2.7 follows (see Section 3.3). We break this up into three major steps.
First, we show tightness, which is straightforward in the present context. Next, we identify the
limiting dynamics, in the sense that we prove that properties (1–4) and (6) of Definition 3.6
hold at the limit. Lastly, we address the optimality condition (5).

In fact, before we prove Theorem 3.9, we will carry out the bulk of the analysis without
using the fact that the n-player controls are given as εn-Nash equilibria. That is, much of the
work of characterizing the limiting behavior can and should be done independently of the
Nash property. Only at the end will we use the Nash property to produce an inequality, which
is then passed to the limit to obtain the desired optimality condition.

In the following, we work with an arbitrary sequence of controls (αn,1, . . . , αn,n) ∈ An
n.

We write Xn = (Xn,1, . . . ,Xn,n) to denote the corresponding state process in the n-player
game, which we now index by n for clarity, and which is determined as the unique in law
solution of the SDE

dX
n,i
t = b

(
t,X

n,i
t ,μn

t , α
n,i(t,Xn))dt + dWi

t , μn
t = 1

n

n∑
k=1

δ
X

n,k
t

.(5.1)

As usual, X
n,1
0 , . . . ,X

n,n
0 are i.i.d. with law λ.

It is convenient in the following to work with probability measures on the path space
rather the flows of probability measures on Rd . To distinguish between the two, we will
reserve bold font for the former. For m ∈ P(Cd), define for each t ∈ [0, T ] the marginal law
mt = m ◦ [x 
→ xt ]−1, and note that the map

P
(
Cd) � m 
→ m := (mt)t∈[0,T ] ∈ C

([0, T ];P(Rd))
is continuous. Given m ∈ P(Cd), we will refer to this m = (mt)t∈[0,T ] as the induced or
corresponding measure flow. To keep track of notation, we stick to the following rules:

• We use the Latin m for a deterministic measure and the Greek μ for a random measure.
• We use boldface for a measure on path space, m ∈ P(Cd), to distinguish it from a measure

flow, written as m = (mt)t∈[0,T ] ∈ C([0, T ];P(Rd)).



1718 D. LACKER

• Starting in Section 5.4, we will encounter probability measures on the extended path space
Cd × V , with V defined in Section 5.2. We denote such measures as m ∈P(Cd × V).

Define μn, a random element of P(Cd), by

μn = 1

n

n∑
k=1

δXn,k .

In light of the previous discussion, if μn converges in law to some P(Cd)-valued random
variable μ, then the marginal flow μn = (μn

t )t∈[0,T ] converges in law in C([0, T ];P(Rd)) to
the corresponding marginal flow μ = (μt )t∈[0,T ].

Let C∞
c (Rd) denote the set of smooth functions of compact support. We define the in-

finitesimal generator of the controlled process as follows: For ϕ ∈ C∞
c (Rd), define

Lϕ(t, x,m,a) := b(t, x,m,a) · ∇ϕ(x) + 1

2
�ϕ(x),(5.2)

for (t, x,m,a) ∈ [0, T ] ×Rd ×P(Rd) × A.

5.1. Tightness. We first prove that (μn) is tight.

LEMMA 5.1. The sequence (μn) is a tight family of P(Cd)-valued random variables.

PROOF. According to [63], (2.5), it suffices to show that the sequence of mean measures
(mn) ⊂ P(Cd) is tight, where we define mn for Borel sets B ⊂ Cd by

mn(B) = E
[
μn(B)

]= 1

n

n∑
k=1

P
(
Xn,k ∈ B

)
.

Letting ‖b‖∞ denote the minimal uniform bound on |b|, note that |Lϕ| is pointwise bounded
by the constant

Cϕ := ‖b‖∞‖∇ϕ‖∞ + 1

2
‖�ϕ‖∞.

By Itô’s formula, for every ϕ ∈ C∞
c (Rd) the process (ϕ(Xk

t )+Cϕt)t∈[0,T ] is a submartingale.
It follows from [62], Theorem 1.4.6, that {Xn,k : n ∈ N, k = 1, . . . , n} is a tight family of Cd -
valued random variables. Hence, (mn) is tight. �

5.2. Relaxed controls. Before we proceed to identify the dynamics of limit points of
(μn), we must first discuss a convenient topological space in which to view the controls.
Let V denote the set of measures q on [0, T ] × A with first marginal equal to Lebesgue
measure. Equip V with the topology of weak convergence, and note that V is a compact
metric space because A is. See [51], Appendix A, for a summary of basic facts about this
space and references.

Each q ∈ V may be identified with a measurable function [0, T ] � t 
→ qt ∈ P(A), deter-
mined uniquely (up to a.e. equality) by dtqt (da) = q(dt, da). Similarly, a measurable P(A)-
valued process (t)t∈[0,T ] can be identified with the random element  = dtt(da) of V . It
is known that one can construct a measurable version of the canonical process on V . More
precisely, suppose FV = (FV

t )t∈[0,T ] denotes the natural filtration, where for each t ∈ [0, T ]
we define FV

t as the σ -field generated by the functions V � q 
→ q(B) ∈ R, for Borel sets
B ⊂ [0, t] × A. Then there exists (see [50], Lemma 3.2) an FV -predictable process

q̂ : [0, T ] × V → P(A) such that q̂(t, q) = qt , a.e. t,∀q ∈ V.(5.3)

In particular, the filtration generated by the process (q̂(t, ·))t∈[0,T ] is precisely FV . With this
in mind, we are free to identify P(A)-valued processes and V-valued random variables.
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5.3. Projection lemmas. As a preparation for the next step of identifying the dynamics
of the limiting measure flows, we begin with two projection arguments that will be useful
again in later sections. The first is straightforward but worth summarizing, while the second
hides some delicate measurability questions which are largely outsourced to the appendix. In
the following, it is convenient to use the usual duality notation for integration:

〈m,ϕ〉 =
∫

ϕ dm.

LEMMA 5.2. Suppose (Yt )t∈[0,T ] is a continuous stochastic process taking values in a
Polish space E and defined on some probability space (	,F,P). Suppose h : E → R is
continuous, and suppose it holds that

h(Yt ) = h(Y0) +
∫ t

0
as ds a.s., for a.e. t ∈ [0, T ],

where (at )t∈[0,T ] is some bounded measurable real-valued process. Suppose â : [0, T ] ×
C([0, T ];E) →R is a progressively measurable function satisfying

â(t, Y ) = E
[
at | FY

t

]
a.s., for a.e. t ∈ [0, T ],

where FY
t = σ(Ys : s ≤ t). Then

h(Yt ) = h(Y0) +
∫ t

0
â(s, Y ) ds for all t ∈ [0, T ] a.s.

PROOF. By continuity, we have

h(Yt ) = h(Y0) +
∫ t

0
as ds for all t ∈ [0, T ] a.s.

Hence, it holds a.s. that for almost every t ∈ (0, T ) we have

at = lim
δ↓0

1

δ

(
h(Yt ) − h(Yt−δ)

)
.

In particular, at is measurable with respect to the completion of FY
t , which implies at =

E[at | FY
t ] = â(t, Y ), a.s., for a.e. t ∈ [0, T ]. Complete the proof by integrating this identity

and using continuity of h and Y to interchange the order of quantifiers as needed. �

In the following lemma, we show that a solution of a certain kind of randomized Fokker–
Planck equation can be realized as the conditional law of the state process under a semi-
Markov control. Recall the notion of semi-Markov function from Definition 2.4.

LEMMA 5.3. Suppose μ is a P(Cd ×V)-valued random variable, and let μ = (μt )t∈[0,T ]
denote the corresponding measure flow.7 Suppose it holds with probability 1 that for every
t ∈ [0, T ] and ϕ ∈ C∞

c (Rd) we have

〈μt,ϕ〉 = 〈μ0, ϕ〉 +
∫
Cd×V

[∫ t

0

∫
A

Lϕ(s, xs,μs, a)qs(da) ds

]
μ(dx, dq).(5.4)

Then there exists a semi-Markov function ∗ : [0, T ]×Rd ×C([0, T ];P(Rd)) → P(A) such
that the following hold:

7That is, the C([0, T ];P(Rd))-valued random variable μ is defined by μt := μ ◦ [(x, q) 
→ xt ]−1, for t ∈
[0, T ].
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(a) It holds with probability 1 that for every t ∈ [0, T ] and ϕ ∈ C∞
c (Rd) we have

〈μt,ϕ〉 = 〈μ0, ϕ〉 +
∫ t

0

〈
μs,

∫
A

Lϕ(s, ·,μs, a)∗(t, ·,μ)(da)

〉
ds.

(b) For each bounded measurable function ψ on [0, T ] ×Rd ×P(Rd) × A, we have

E

[∫
Cd×V

∫ T

0

∫
A

ψ(t, xt ,μt , a)qt (da) dtμ(dx, dq)

]

= E

[∫ T

0

∫
Rd

∫
A

ψ(t, x,μt , a)∗(t, x,μ)(da)μt(dx) dt

]
.

(c) By enlarging the probability space, we may construct continuous d-dimensional pro-
cesses X and W such that:

(i) X0, W and μ are independent.
(ii) W is a Brownian motion with respect to the complete filtration F = (Ft )t∈[0,T ]

generated by the process (X0,μt ,Wt)t∈[0,T ].
(iii) X is a continuous process with X0 ∼ λ, adapted to the completion of F.
(iv) The state equation holds,

dXt =
∫
A

b(t,Xt ,μt , a)∗(t,Xt ,μ)(da) dt + dWt .

(v) For each t , it holds a.s. that μt = L(Xt | Fμ
t ), where Fμ

t = σ(μs : s ≤ t).

PROOF. We first justify (c), assuming we have already found ∗ such that (a) and (b)
hold. In fact, the claimed processes X and W come from the observation that property (a)
is simply a randomized version of a Fokker–Planck equation. Corollary A.7 works out the
details and shows that we can construct X and W satisfying properties (i-v).

To construct ∗ satisfying (a) and (b), we note first that (5.4) rewrites as

〈μt,ϕ〉 = 〈μ0, ϕ〉 +
∫
Cd×V

[∫ t

0

∫
A

Lϕ(s, xs,μs, a)q̂(s, q)(da) ds

]
μ(dx, dq),

where q̂ is the “nice version” of the process [0, T ] × V � (t, q) 
→ qt ∈ P(A) described in
(5.3).

Suppose for concreteness that the random variable μ is defined on a probability space
(	,F,P), and we may assume without loss of generality that 	 is a Polish space and F its
Borel σ -field. We now use Lemma B.2 to construct a jointly measurable version of the regular
condition law of (x, q) given xt under the random probability measure μ(dx, dq); precisely,
there exists a jointly measurable map [0, T ] × Rd × 	 � (t, x,ω) 
→ μt,x(ω) ∈ P(Cd × V)

such that it holds a.s. that for every bounded measurable function h : [0, T ] × Rd → R and
F : [0, T ] × Cd × V →R we have∫

Cd×V

∫ T

0
h(t, xt )F (t, x, q) dtμ(dx, dq)

=
∫
Cd×V

∫ T

0
h(t, xt )

〈
μt,xt

, F (t, ·)〉dtμ(dx, dq) a.s.

Using Fubini’s theorem and a change of variables, we may rewrite this as

(5.5)

∫
Cd×V

∫ T

0
h(t, xt )F (t, x, q) dtμ(dx, dq)

=
∫ T

0

∫
Rd

h(t, x)
〈
μt,x,F (t, ·)〉μt(dx) dt a.s.
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Applying this with F(t, x, q) = ∫
A Lϕ(t, x,μt , a)q̂(t, q)(da), we may write (5.4) as

(5.6)

〈μt,ϕ〉 = 〈μ0, ϕ〉

+
∫ t

0

∫
Rd

∫
Cd×V

∫
A

Lϕ(s, x,μs, a)q̂(s, q)(da)μt,x(dx̃, dq)μs(dx) ds a.s.

Next, recall that Fμ = (Fμ
t )t∈[0,T ] is the filtration generated by the process (μt )t∈[0,T ].

We may find (using Corollary C.3) a semi-Markov function ∗ : [0, T ] × Rd ×
C([0, T ];P(Rd)) → P(A) such that, for every bounded measurable function ψ : [0, T ] ×
Rd ×P(Rd) × A →R and every (t, x) ∈ [0, T ] ×Rd , we have

(5.7)

∫
A

ψ(t, x,μt , ·) d∗(t, x,μ)

= E

[∫
Cd×V

∫
A

ψ(t, x,μt , a)q̂(s, q)(da)μt,x(dx̃, dq)
∣∣∣Fμ

t

]
.

Applying (5.7) with ψ = Lϕ, and using (5.6) and Lemma 5.2, we get

〈μt,ϕ〉 = 〈μ0, ϕ〉 +
∫ t

0

∫
Rd

∫
A

Lϕ(s, x,μs, a)∗(t, x,μ)(da)μs(dx) ds,

for all t ∈ [0, T ], almost surely, for each ϕ ∈ C∞
c (Rd). This is exactly (a), once we inter-

change the order of the quantifiers “almost surely” and “for each ϕ ∈ C∞
c (Rd).” This is easily

justified by working with a countable dense family of such ϕ.
Finally, to prove (b), fix ψ , and simply use (5.5) and (5.7) along with Fubini’s theorem:

E

[∫
Cd×V

∫ T

0

∫
A

ψ(t, xt ,μt , a)qt (da) dtμ(dx, dq)

]

= E

[∫ T

0

∫
Rd

∫
Cd×V

∫
A

ψ(t, x,μt , a)q̂(t, q)(da)μt,x(dx̃, dq)μt(dx) dt

]

= E

[∫ T

0

∫
Rd

∫
A

ψ(t, x,μt , a)∗(t, x,μ)(da)μt(dx) dt

]
. �

5.4. Identification of limiting dynamics. We next provide a first description of the dy-
namics of subsequential limit points of μnk = (μ

nk
t )t∈[0,T ].

THEOREM 5.4. Suppose a subsequence (μ
nk
t )t∈[0,T ] converges in law in C([0, T ];

P(Rd)) to (μt )t∈[0,T ]. Then there exists a semi-Markov function ∗ : [0, T ] × Rd ×
C([0, T ];P(Rd)) → P(A) such that, by extending the probability space if needed, we may
construct continuous d-dimensional processes X and W such that:

(i) X0, W and μ are independent.
(ii) W is a Brownian motion with respect to the complete filtration F = (Ft )t∈[0,T ] gen-

erated by the process (X0,μt ,Wt)t∈[0,T ].
(iii) X is F-adapted, with X0 ∼ λ.
(iv) The following SDE holds:

dXt =
∫
A

b(t,Xt ,μt , a)∗(t,Xt ,μ)(da) dt + dWt .

(v) For each t , it holds a.s. that μt = L(Xt | Fμ
t ), where Fμ

t = σ(μs : s ≤ t).
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Moreover,

(5.8)

lim
k→∞

1

nk

nk∑
i=1

J
nk

i

(
αnk,1, . . . , αnk,nk

)
= E

[∫ T

0

∫
A

f (t,Xt ,μt , a)∗(t,Xt ,μ)(da) dt + g(XT ,μT )

]
.

PROOF. Let us view each control as a random element of V , by defining

n,i(dt, da) = dtδαn,i (t,Xn)(da),

and define the extended empirical measure μn, a P(Cd × V)-valued random variable, by

μn = 1

n

n∑
k=1

δ(Xn,k,n,k).

Because the Cd -marginal μn is tight by Lemma 5.1 and V is compact, the sequence of ran-
dom measures μn is tight. We may then pass to a further subsequence and assume that μn

converges in law to some random element μ of P(Cd × V) whose Cd -marginal is μ.
Step 1: We first show that μ must satisfy the hypothesis (5.4) of Lemma 5.3. Recall that

Xn = (Xn,1, . . . ,Xn,n) is the vector of state processes; see (5.1). Begin by applying Itô’s
formula to ϕ(X

n,k
t ) and averaging over k = 1, . . . , n to get

d
〈
μn

t , ϕ
〉= 1

n

n∑
k=1

Lϕ
(
t,X

n,k
t ,μn

t , α
n,k(t,Xn))dt + dM

n,ϕ
t

= 1

n

n∑
k=1

∫
A

Lϕ
(
t,X

n,k
t ,μn

t , a
)


n,k
t (da) dt + dM

n,ϕ
t ,

where we define the martingale

M
n,ϕ
t = 1

n

n∑
k=1

∇ϕ
(
Xn,k

s

) · dWk
s .

Notice that the quadratic variation of this martingale is

[
Mn,ϕ]

t = 1

n2

n∑
k=1

∫ t

0

∣∣∇ϕ
(
Xn,k

s

)∣∣2 ds ≤ ‖∇ϕ‖2∞
n

.(5.9)

For a measure m ∈ P(Cd × V), let m = (mt)t∈[0,T ] ∈ C([0, T ];P(Rd)) denote the associ-
ated measure flow, and define Ft : P(Cd × V) →R by

F
ϕ
t (m) =

∫
Cd×V

[
ϕ(xt ) − ϕ(x0) −

∫ t

0

∫
A

Lϕ(s, xs,ms, a)qs(da) ds

]
m(dx, dq).

We may then write

M
n,ϕ
t = F

ϕ
t

(
μn).

It can be shown that F
ϕ
t is a bounded continuous function (see [50], Appendix A, for de-

tails). Because μn converges in law to μ, we conclude from the continuous mapping theorem
that F

ϕ
t (μn) converges in law to F

ϕ
t (μ) (with convergence understood in both cases to be

along the same subsequence as before). But (5.9) implies that F
ϕ
t (μn) = M

n,ϕ
t converges in

probability to zero. Hence,

F
ϕ
t (μ) = 0 almost surely, for each t ∈ [0, T ], ϕ ∈ C∞

c

(
Rd).
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For each m ∈ P(Cd × V), it is clear that limn F
ϕn
tn (m) = F

ϕ
t (m) whenever tn → t and

(ϕn,∇ϕn,�ϕn) → (ϕ,∇ϕ,�ϕ) uniformly. Hence, working with a countable dense family,
we may interchange the order of quantifiers and conclude that

F
ϕ
t (μ) = 0 for each t ∈ [0, T ], ϕ ∈ C∞

c

(
Rd), almost surely.

This shows that μ satisfies (5.4).
Step 2. We now construct the processes X and W . Thanks to Step 1, we may apply

Lemma 5.3 to find a semi-Markov function ∗ : [0, T ] ×Rd × C([0, T ];P(Rd)) → A such
that (a), (b) and (c) of Lemma 5.3 hold.

Step 3. To complete the proof, we address the final claim about convergence of value.
Notice that

Jn := 1

n

n∑
i=1

Jn
i

(
αn,1, . . . , αn,n)

= 1

n

n∑
i=1

E

[∫ T

0
f
(
t,X

n,i
t ,μn

t , α
n,i(t,Xn))dt + g

(
Xi

T ,μn
T

)]

= E

[∫
Cd×V

(∫ T

0

∫
A

f
(
t, xt ,μ

n
t , a

)
qt (da) dt + g

(
xT ,μn

T

))
μn(dx, dq)

]
.

Recall that any subsequence contains a further subsequence along which μn converges to
some μ. Along such a subsequence, by boundedness and continuity of f and g, we find that
Jn converges to

E

[∫
Cd×V

(∫ T

0

∫
A

f (t, xt ,μt , a)qt (da) dt + g(xT ,μT )

)
μ(dx, dq)

]
.

We claim that this is equal to the right-hand side of (5.8). Recalling that (μt )t∈[0,T ] is the
marginal flow associated with μ and also that μt = L(Xt | Fμ

t ) for each t , we may write the
second term as

E

[∫
Cd×V

g(xT ,μT )μ(dx, dq)

]
= E

[∫
Rd

g(x,μT )μT (dx)

]
= E

[
g(XT ,μT )

]
.

To handle the first term, we use part (b) of Lemma 5.3 along with Fubini’s theorem and the
identity μt = L(Xt | Fμ

t ) to write

E

[∫
Cd×V

∫ T

0

∫
A

f (t, xt ,μt , a)qt (da) dtμ(dx, dq)

]

= E

[∫ T

0

∫
Rd

∫
A

f (t, x,μt , a)∗(t, x,μ)(da)μt(dx) dt

]

= E

[∫ T

0

∫
Rd

∫
A

f (t,Xt ,μt , a)∗(t,Xt ,μ)(da) dt

]
.

This completes the proof. �

5.5. Optimality. The analysis carried out so far will allow us to check all of the properties
of Definition 3.6 at the limit except for the optimality condition (5), and this section will
complete this last task. Using Theorem 5.4, we work with a fixed weak limit μ = (μt )t∈[0,T ],
and we abuse notation by relabeling the subsequence with the same notation, so that μn =
(μn

t )t∈[0,T ] → μ weakly in C([0, T ];P(Rd)). It is crucial to keep in mind that for the rest
of this section we are working with this particular limit point and this particular convergent
subsequence.
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By Theorem 5.4, we may assume that μ is defined on a complete filtered probabil-
ity space (	,F,F,P), which supports d-dimensional processes X and W which satisfy
properties (i–v) of Theorem 5.4 and equation (5.8), for some semi-Markov function ∗ :
[0, T ]×Rd ×C([0, T ];P(Rd)) →P(A). Throughout this section, the notation (	,F,F,P)

of this paragraph will stand.
Relative to this fixed random measure flow μ, we define on (	,F,F,P) the family of all

possible alternative strategy choices. Let us write Rsemi for the set of semi-Markov functions
from [0, T ]×Rd ×C([0, T ];P(Rd)) to P(A). For any  ∈Rsemi, let X[] = (Xt [])t∈[0,T ]
denote the unique strong solution (see Lemmas A.2 and A.3) of the SDE8

(5.10) dXt [] =
∫
A

b
(
t,Xt [],μt , a

)

(
t,Xt [],μ)(da) dt + dWt, X0[] = X0.

In this notation, note that X[∗] = X. Define

J () := E

[∫ T

0

∫
A

f
(
t,Xt [],μt , a

)

(
t,Xt [],μ)(da) dt + g

(
XT [],μT

)]
.

The proof of Theorem 3.9 will be complete if we can show that

sup
∈Rsemi

J () = J
(
∗).(5.11)

We accomplish this in two steps. The first and more straightforward step is to reduce the
supremum to a nicer subset of Rsemi. Precisely, we will show

sup
β∈Ac

semi

J (β) = sup
∈Rsemi

J (),(5.12)

where we define Ac
semi to be the set of continuous semi-Markov functions β : [0, T ] ×Rd ×

C([0, T ];P(Rd)) → A, which we view as a subset of Rsemi by means of the usual embedding
A � a 
→ δa ∈ P(A). Indeed, (5.12) follows from:

LEMMA 5.5. For any  ∈ Rsemi, there exists a sequence βn ∈ Ac
semi such that

(μ,X[n]) converges in law to (μ,X[]) and J (βn) → J ().

Lastly, for each “nice” alternative control β ∈ Ac
semi, we show that J (β) is the limit of

the average value of some sequence of admissible n-player controls, which is accomplished
using the following crucial proposition:

PROPOSITION 5.6. Let β ∈ Ac
semi. For each n and each k = 1, . . . , n, define βn,k ∈ An

by

βn,k(t,x) = β

(
t, xk

t ,
1

n

n∑
j=1

δxj

)
for t ∈ [0, T ],x = (

x1, . . . , xn) ∈ (Cd)n.(5.13)

Then (taking limits along the same subsequence described above)

lim
n

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,k−1, βn,k, αn,k+1, . . . , αn,n)= J (β).(5.14)

8It is not important here that we are working with strong solutions, but it is notationally convenient to construct
everything on the same probability space (	,F ,F,P).
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With Proposition 5.6 in hand, let us see how to complete the proof of Theorem 3.9:

PROOF OF THEOREM 3.9. Using (5.12), for an arbitrary δ > 0 we may find β ∈ Ac
semi

such that

sup
∈Rsemi

J () ≤ J (β) + δ.

To prove (5.11) it now suffices to show that J (β) ≤ J (∗). Recall (5.8) from Theorem 5.4,
which says

J
(
∗)= lim

n

1

n

n∑
i=1

Jn
i

(
αn,1, . . . , αn,n),

where the limit is taken along the appropriate subsequence. On the other hand, defining βn,k

as in Proposition 5.6, we have (5.14). Finally using the fact that (αn,1, . . . , αn,n) is a closed-
loop εn-Nash equilibrium with εn → 0, we conclude that, along the same convergent subse-
quence,

J (β) = lim
n

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,k−1, βn,k, αn,k+1, . . . , αn,n)

≤ lim
n

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,n)+ εn

= J
(
∗).

The proof of Theorem 3.9 is thus complete. �

PROOF OF LEMMA 5.5. Step 1. Before constructing the approximations, we show how
to derive the claimed limits. Suppose n ∈ Rsemi, and assume that it holds for almost every
x ∈ Rd and L(μ)-almost every m ∈ C([0, T ];P(Rd)) that, for every bounded continuous
function ϕ : [0, T ] ×Rd × A →R,

lim
n→∞

∫ T

0

∫
A

ϕ(t, x, a)n(t, x,m)(da) dx dt =
∫ T

0

∫
A

ϕ(t, x, a)(t, x,m)(da) dt.

Consider the coefficients

Bn(t, x,m) :=
∫
A

b(t, x,mt , a)n(t, x,m)(da),

B(t, x,m) =
∫
A

b(t, x,mt , a)(t, x,m)(da).

For continuous ϕ : [0, T ] ×Rd →Rd with compact support, we have

lim
n→∞

∫ T

0

∫
Rd

(
Bn(t, x,m) − B(t, x,m)

) · ϕ(t, x) dx dt = 0,

for L(μ)-almost every m ∈ C([0, T ];P(Rd)). Using Lemma A.4, we conclude that
(μ,X[n]) converges in law to (μ,X[]). To conclude that J (n) → J () we would
like to simply use the fact that f and g are bounded and continuous, but we must be careful
about the fact that  and n may be discontinuous. Begin by writing

J
(
n)= E

[
Fn

(
μ,X

[
n])],
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where we define Fn : C([0, T ];P(Rd)) × Cd →R by

Fn(m,x) =
∫ T

0

∫
A

f (t, xt ,mt , a)n(t, xt ,m)(da) dt + g(xT ,mT ).

Define F(x,m) similarly, with  in place of n, so that J () = E[F(μ,X[])]. We know
from Lemma A.4 that E[h(μ,X[n])] → E[h(μ,X[])] for every bounded measurable
function h : C([0, T ];P(Rd)) × Cd → R. On the other hand, we know by assumption that
Fn → F pointwise. We may use a form of the dominated convergence theorem [61], Propo-
sition 11.4.18, to conclude that E[Fn(μ,X[n])] → E[F(μ,X[])].

Step 2. Next, we construct the desired approximations. Apply the well known “chattering
lemma” (see, e.g., [29], Theorem 2.2, or [35], Theorem 4) to find a sequence of semi-Markov
functions βn : [0, T ] ×Rd × C([0, T ];P(Rd)) → A such that

dtδβn(t,x,m)(da) → dt(t, x,m)(da)

weakly (i.e., in V) for each (x,m). Hence, we may assume  is already of the form
(t, x,m) = δβ(t,x,m) for some semi-Markov function β .

To complete the proof we use the fact that, since A is compact and convex, any mea-
surable function from a Polish probability space into A is the a.e. limit of continuous func-
tions (see, e.g., [18], Proposition C.1). By “Polish probability space” we mean a Polish space
E equipped with a Borel probability measure. The only hurdle is that the Borel σ -field of
the space � := [0, T ] × Rd × C([0, T ];P(Rd)) is strictly larger than the one generated by
semi-Markov functions, but this is not difficult to work around. Equip � with the probability
measure Q defined for Borel sets S ⊂ � by

Q(S) = 1

T
E

[∫ T

0

∫
Rd

1S(t, x,μt)�d(x) dx dt

]
,

where �d is the density of a standard d-dimensional Gaussian random variable. Define the
map � : � → � by

�(t, x,m) = (t, x,m·∧t ),

where m·∧t denotes the path which follows m up to time t and is constant thereafter. Then
� is continuous, and the image �(�) is closed. Moreover, the σ -field generated by � is
precisely the one generated by the semi-Markov functions, and so any semi-Markov function
F : � → A factorizes through �, in the sense that F = F ◦ �. The space �(�) is a Polish
space with the induced topology. Hence, as mentioend above, β = β ◦ � is the Q ◦ �−1-
a.e. limit of a sequence of continuous functions β̃n : �(�) → A. Define βn : � → A by
βn = β̃n ◦ �. Then, βn is continuous for each n, and βn → β holds Q-a.e. �

PROOF OF PROPOSITION 5.6. Recall that Xn solves the SDE (5.1). Define the state
process

Y n,k = (
Yn,k,1, . . . , Y n,k,n) := Xn[(αn,1, . . . , αn,k−1, βn,k, αn,k+1, . . . , αn,n)].

Note that Y n,k follows the dynamics

dY
n,k,k
t = b

(
t, Y

n,k,k
t ,μ

n,k
t , β

(
t, Y

n,k,k
t ,μn,k))dt + dWk

t ,

dY
n,k,i
t = b

(
t, Y

n,k,i
t ,μ

n,k
t , αn,i(t,Y n,k))dt + dWi

t , i �= k,

μ
n,k
t = 1

n

n∑
j=1

δYn,k,j .
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Assume that Xn is defined on some filtered probability space (	n,Fn,Fn,Pn), and we of
course assume that the Brownian motions Wk from (5.1) are in fact Fn-Brownian motions.
Note Y n may live on a different probability space which, to avoid complicating notation, we
will not give a name. Recall from the second paragraph of Section 5.5 that we are working
throughout this proof with a given (relabeled) subsequence along which L(μn) = Pn ◦(μn)−1

converges in P(C([0, T ];P(Rd))) to L(μ).
Step 1. It is convenient in this proof to work on a suitable canonical space, and the first step

is simply to set up notation. Define an equivalent probability measure Qn,k on (	n,Fn,Fn)

by setting

dQn,k

dPn
= exp

(∫ T

0

(
b
(
t,X

n,k
t ,μn

t , β
(
t,X

n,k
t ,μn))− b

(
t,X

n,k
t ,μn

t , α
n,k(t,Xn))) · dWk

t

− 1

2

∫ T

0

∣∣b(t,Xn,k
t ,μn

t , β
(
t,X

n,k
t ,μn))− b

(
t,X

n,k
t ,μn

t , α
n,k(t,Xn))∣∣2 dt

)
.

By Girsanov’s theorem and uniqueness of the SDEs, we have Qn,k ◦ (Xn)−1 = L(Y n,k), and
thus Qn,k ◦ (μn,Xn)−1 = L(μn,k,Y n,k). Note also that we may write dQn,k/dPn = ζ

n,k
T ,

where we define ζ n,k as the unique solution of the SDE

(5.15)
dζ

n,k
t = ζ

n,k
t �

n,k
t · dWk

t , ζ
n,k
0 = 1,

�
n,k
t := b

(
t,X

n,k
t ,μn

t , β
(
t,X

n,k
t ,μn))− b

(
t,X

n,k
t ,μn

t , α
n,k(t,Xn)).

We note for future use that boundedness of b easily yields the estimate

sup
n∈N

max
k=1,...,n

E
[∣∣dQn,k/dPn

∣∣p]= sup
n∈N

max
k=1,...,n

E
[∣∣ζ n,k

T

∣∣p]< ∞,(5.16)

for any p > 0. Moreover, we may write

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,k−1, βn,k, αn,k+1, . . . , αn,n)

= 1

n

n∑
k=1

E

[∫ T

0
f
(
t, Y

n,k,k
t ,μ

n,k
t , β

(
t, Y

n,k,k
t ,μn,k))dt + g

(
Y

n,k,k
T ,μ

n,k
T

)]
(5.17)

= 1

n

n∑
k=1

EQn,k
[∫ T

0
f
(
t,X

n,k
t ,μn

t , β
(
t,X

n,k
t ,μn))dt + g

(
X

n,k
T ,μn

T

)]

= EPn

[
1

n

n∑
k=1

ζ
n,k
T

(∫ T

0
f
(
t,X

n,k
t ,μn

t , β
(
t,X

n,k
t ,μn))dt + g

(
X

n,k
T ,μn

T

))]
.(5.18)

We would like to show that the measure 1
n

∑n
k=1 L(Y n,k,k,μn,k) converges to L(X[β],μ),

along the same subsequence for which L(μn) converges to L(μ). Indeed, we could then pass
to the limit directly in (5.17). The change of measure allows us to transform the expres-
sion into one involving the original μn and the particles Xn,k , as well as the new auxiliary
particles ζ n,k . We will ultimately analyze the limiting behavior of the empirical measure of
(Xn,k, ζ n,k,Wk)nk=1, as it is convenient to include the Brownian motion Wk as well.

Precisely, we proceed as follows. Define the P(A)-valued processes 
n,k
t = δαn,k(t,Xn),

and view n,k as a V-valued random variable. Consider the extended empirical measure

Rn := 1

n

n∑
k=1

δ(Xn,k,ζ n,k,Wk,n,k),
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viewed as a random variable with values in P(	), where 	 := Cd × C1+ × Cd × V . Here,
C1+ := C([0, T ];R+) is the space of nonnegative one-dimensional continuous paths.

Step 2. We first show that the sequence {Pn ◦ (Rn)−1 : n ∈ N} ⊂ P(P(	)) is tight. Ac-
cording to [63], (2.5), it suffices to show that the sequence {Mn : n ∈ N} ⊂ P(	) of mean
measures is tight, where the mean measure Mn is defined on Borel sets S ⊂ 	 by

Mn(S) = EPn[
Rn(S)

]= 1

n

n∑
k=1

Pn((Xn,k, ζ n,k,Wk,n,k) ∈ S
)
.(5.19)

To do this, it suffices to show that each marginal sequence is tight. Since V is compact, the
V-marginal sequence is clearly tight. The third marginal of Mn is precisely Wiener measure;
this sequence is constant and therefore tight. We saw in the proof of Lemma 5.1 that the
sequence of first marginals

1

n

n∑
k=1

Pn ◦ (Xn,k)−1

is tight. Finally, we must check that the second marginal sequence

1

n

n∑
k=1

Pn ◦ (ζ n,k)−1

is tight. This is accomplished using Aldous’ criterion for tightness [48], Lemma 16.12. First,
note that the estimate (5.16) implies by Doob’s inequality

sup
n∈N

max
k=1,...,n

EPn
[

sup
t∈[0,T ]

∣∣ζ n,k
t

∣∣p]< ∞.(5.20)

Recalling that b is uniformly bounded, we have |�n,k| ≤ 2‖b‖∞, where we recall the notation
�n,k from (5.15). For any δ > 0 and any [0, T −δ]-valued stopping time, Itô’s isometry yields

EPn[∣∣ζ n,k
τ+δ − ζ n,k

τ

∣∣2]= EPn
[∣∣∣∣∫ τ+δ

τ
ζ

n,k
t �

n,k
t · dWk

t

∣∣∣∣2]= EPn
[∫ τ+δ

τ

∣∣ζ k
t

∣∣2∣∣�n,k
t

∣∣2 dt

]
≤ 4δ‖b‖2∞EPn

[
sup

t∈[0,T ]
∣∣ζ k

t

∣∣2].
This converges to zero as δ → 0, uniformly in n, k and τ . This is enough to apply Aldous’
criterion and conclude that the second marginal sequence of Mn is tight, thus completing the
proof that Rn is a tight sequence of P(	)-valued random variables.

Step 3. As a first step toward identifying the limit points of Rn, by first showing that all
limit points are supported on the set of solutions of a certain martingale problem. For the
moment, fix n ∈ N and k ∈ {1, . . . , n}. For any ϕ = ϕ(x, y,w) ∈ C∞

c (Rd × R+ × Rd), Itô’s
formula yields

dϕ
(
X

n,k
t , ζ

n,k
t ,Wk

t

)
= ∇xϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

) · b(t,Xn,k
t ,μn

t , α
n,k(s,Xn))dt + 1

2
�xϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

)
dt

+ 1

2
∂yyϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

)∣∣ζ n,k
t

∣∣2∣∣�n,k
t

∣∣2 dt + 1

2
�wϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

)
dt

+ ζ
n,k
t (∇x + ∇w)∂yϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

) · �n,k
t dt

+ (∇w · ∇x)ϕ
(
X

n,k
t , ζ

n,k
t ,Wk

t

)
dt + ∂yϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

)
ζ

n,k
t �

n,k
t · dWk

t

+ ∇xϕ
(
X

n,k
t , ζ

n,k
t ,Wk

t

) · dWk
t + ∇wϕ

(
X

n,k
t , ζ

n,k
t ,Wk

t

) · dWk
t .
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Here we write (∇w · ∇x) for the operator
∑d

i=1 ∂wi
∂xi

. For m ∈ C([0, T ];P(Rd)), t ∈ [0, T ],
and ϕ ∈ C∞

c (Rd ×R+ ×Rd), define a random variable Mt [m,ϕ] : 	 →R by

Mt [m,ϕ](x, y,w,q) = ϕ(xt , yt ,wt ) −
∫ t

0

∫
A

M̂[m,ϕ](u, xu, yu,wu, a)qu(da) du,

where, for (t, x, y,w,a) ∈ [0, T ] ×Rd ×R+ ×Rd × A, we define

M̂[m,ϕ](t, x, y,w,a)

= ∇xϕ(x, y,w) · b(t, x,mt , a) + 1

2
�xϕ(x, y,w)

+ 1

2
∂yyϕ(x, y,w)|y|2∣∣b(t, x,mt , β(t, x,m)

)− b(t, x,mt , a)
∣∣2

+ y(∇x + ∇w)∂yϕ(x, y,w) · [b(t, x,mt , β(t, x,m)
)− b(t, x,mt , a)

]
+ 1

2
�wϕ(x, y,w) + (∇w · ∇x)ϕ(x, y,w).

Under Pn, the above calculation shows that the process

M
n,k,ϕ
t := Mt

[
μn,ϕ

](
Xn,k, ζ n,k,Wk,n,k)

is a martingale. Moreover, the cross-variation [Mn,k,ϕ,Mn,j,ϕ] vanishes for j �= k.
To completely specify a martingale problem, we equip 	 with a canonical filtration F =

(F t )t∈[0,T ]. Precisely, this is defined by letting F t be the σ -field generated by the maps
	 � (x, y,w,q) 
→ (xs, ys,ws, q̂(s, ·)) ∈ Rd × R+ × Rd × P(A), for s ≤ t , where q̂ is the
version of the canonical P(A)-valued process on V described in (5.3).

For s < t and any continuous F s -measurable function h : 	 → R bounded in absolute
value by 1, define F [h,ϕ, s, t] : P(	) →R by

F [h,ϕ, s, t](R) = ∣∣〈R,
(
Mt

[
Rx,ϕ

]− Ms

[
Rx,ϕ

])
h
〉∣∣2,

where, for R ∈ P(	) = P(Cd × C1+ × Cd × V), we write Rx to denote the induced measure
flow Rx = (Rx

t )t∈[0,T ] ∈ C([0, T ];P(Rd)) induced by the first Cd -marginal of R. That is,
Rx

t = R ◦ [(x, y,w,q) 
→ xt ]−1. Because b and β are continuous by assumption, the map

C
([0, T ];P(Rd))× 	 � (m,x, y,w,q) 
→

∫ t

0

∫
A

M̂[m,ϕ](u, xu, yu,wu, a)qu(da) du

is continuous for each t and ϕ (see, e.g., [50], Appendix A, for details). We would immedi-
ately deduce that F [h,ϕ, s, t] is continuous on P(	), except that M̂ is unbounded due to the
multiplication by |y|2. To deal with this, abbreviate F = F [h,ϕ, s, t], and define for r > 0

F r [h,ϕ, s, t](R) = ∣∣〈R,
(
Mr

t

[
Rx,ϕ

]− Mr
s

[
Rx,ϕ

])
h
〉∣∣2,

where Mr
t [m,ϕ](x, y,w,q) := Mt [m,ϕ](x, y ∧ r,w,q). Then Mr [m,ϕ] is uniformly

bounded for each r and ϕ. Using (5.20), it is straightforward to check that

lim
r→∞ sup

n∈N
EPn[∣∣F [h,ϕ, s, t](Rn)− F r [h,ϕ, s, t](Rn)∣∣2]= 0.(5.21)

Note that F r [h,ϕ, s, t] is bounded and continuous on P(	).
Now, recalling that the sequence Rn is tight by Step 2, we may suppose that it converges

in law (along a subsequence) to some P(	)-valued random variable R. Use (5.21) to con-
clude that Pn ◦ (F [h,ϕ, s, t](Rn))−1 converges to L(F [h,ϕ, s, t](R)). Then, using Fatou’s
lemma, the fact that Mn,k,ϕ and Mn,j,ϕ define orthogonal martingales, and the fact that h is
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F s -measurable and bounded in absolute value by 1, we find (taking limits along the same
subsequence)

E
[
F [h,ϕ, s, t](R)

]≤ lim inf
n

EPn[
F [h,ϕ, s, t](Rn)]

= lim inf
n

EPn

[∣∣∣∣∣1n
n∑

k=1

(
M

n,k,ϕ
t − Mn,k,ϕ

s

)
h
(
Xn,k, ζ n,k,Wk,n,k)∣∣∣∣∣

2]

= lim inf
n

1

n2

n∑
k=1

EPn[∣∣Mn,k,ϕ
t − Mn,k,ϕ

s

∣∣2h2(Xn,k, ζ n,k,Wk,n,k)]

≤ lim inf
n

1

n2

n∑
k=1

EPn[∣∣Mn,k,ϕ
t − Mn,k,ϕ

s

∣∣2].
Finally, noting that

EPn[∣∣Mn,k,ϕ
t − Mn,k,ϕ

s

∣∣2]
= EPn

∫ t

s

∣∣(∇w + ∇x)ϕ
(
Xn,k

u , ζ n,k
u ,Wk

u

)+ ∂yϕ
(
Xn,k

u , ζ n,k
u ,Wk

u

)
ζ n,k
u �k

u

∣∣2 du,

we use (5.20) and boundedness of b to get

sup
n∈N

max
k=1,...,n

EPn[∣∣Mn,k,ϕ
t − Mn,k,ϕ

s

∣∣2]< ∞.

Hence,

E
[
F [h,ϕ, s, t](R)

]= 0.

In particular, F [h,ϕ, s, t](R) = 0 a.s. for each h, ϕ, s, t .
By working with a countably dense family (as in the end of Step 1 of the proof of The-

orem 5.4), we may switch the order of quantifiers to conclude that it holds with probability
1 that, for all (h,ϕ, s, t), F [h,ϕ, s, t](R) = 0. Recalling the definition of F [h,ϕ, s, t], this
means that R is supported on the set L ⊂ P(	) consisting of those probability measures R

such that:

• (Mt [Rx,ϕ])t∈[0,T ] is an R-martingale, for each ϕ ∈ C∞
c (Rd × R+ × Rd), where

Rx = (Rx
t )t∈[0,T ] ∈ C([0, T ];P(Rd)) denotes the measure flow associated with the first

marginal.
• R ◦ [(x, y,w,q) 
→ (x0, y0,w0)]−1 = λ × δ1 × δ0.

Step 4. We now establish a key identity satisfied by the measures R ∈ L identified in
the previous step. For m ∈ C([0, T ];P(Rd)) let P m ∈ P(Cd) denote the law of the unique
solution Xm of the SDE

dXm
t = b

(
t,Xm

t ,mt , β
(
t,Xm

t ,m
))

dt + dBt , Xm
0 ∼ λ.

This defines a universally measurable map C([0, T ];P(Rd)) � m 
→ P m ∈ P(Cd), by
Lemma A.1. Recall that universal measurability means here that, for any Borel set S in
P(Cd), the set {m : P m ∈ S} is measurable with respect to the completion of the Borel σ -
field of C([0, T ];P(Rd)) by any Borel probability measure; see [5], Definition 7.18 and
Chapter 7.7, for background. We claim that every R ∈ L satisfies∫

	
h(x)yT R(dx, dy, dw,dq) = 〈

P Rx

,h
〉
,(5.22)

for bounded measurable functions h on Cd .
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Fix R ∈ L. We can construct, on some filtered probability space (	,F,F,P), an 	-valued
random variable (X, ζ,W,) with law R such that the process

ϕ(Xt , ζt ,Wt) −
∫ t

0

∫
A

[
∇xϕ(Xs, ζs,Ws) · b(s,Xs,R

x
s , a

)+ 1

2
�xϕ(Xs, ζs,Ws)

+ 1

2
∂yyϕ(Xs, ζs,Ws)|y|2∣∣b(s,Xs,R

x
s , β

(
s,Xs,R

x))− b
(
s,Xs,R

x
s , a

)∣∣2
+ y(∇x + ∇w)∂yϕ(Xs, ζs,Ws) · [b(t,Xs,R

x
s , β

(
s,Xs,R

x))− b
(
s,Xs,R

x
s , a

)]
+ 1

2
�wϕ(Xs, ζs,Ws) + (∇w · ∇x)ϕ(Xs, ζs,Ws)

]
s(da) ds

is a martingale for each ϕ ∈ C∞
c (Rd × R+ × Rd). This is a bit different from the usual

martingale problem framework because of the integration with respect to s(da), so standard
theory does not immediately tell us how to represent (X, ζ,W) as the solution of an SDE. But
the work of El Karoui and Méléard [27] covers this situation by making use of the notion of
martingale measures, in the sense of Walsh [68], and the reader is referred to either reference
for precise definitions. According to [27], Theorem IV-2, by extending the probability space if
needed, we may find a vector M = (M1, . . . ,Md) of orthogonal martingale measures Mi =
Mi(da, dt) on A × [0, T ], each with intensity measure t(da) dt , such that the following
hold, for t ∈ [0, T ]:

dXt =
∫
A

b
(
t,Xt ,R

x
t , a

)
t(da) dt + dWt

dWt =
∫
A

M(da, dt) i.e., Wt =
∫
A×[0,t]

M(da, ds) = M
(
A × [0, t]),

dζt = ζt dNt ,

where we define the martingale N by

Nt =
∫
A×[0,t]

(
b
(
s,Xs,R

x
s , β

(
s,Xs,R

x))− b
(
s,Xs,R

x
s , a

)) · M(da, ds).

The only fact we need to know about martingale measures is the following: For any bounded
jointly functions ϕ,ψ : [0, T ] × A × 	 → Rd (using the Borel σ -field on A and the
F-progressive σ -field on [0, T ] × 	), the processes t 
→ ∫

A×[0,t] ϕ(s, a) · M(da, ds) and
t 
→ ∫

A×[0,t] ψ(s, a) · M(da, ds) are martingales with covariation process
∫ t

0
∫
A ϕ(s, a) ·

ψ(s, a)s(da) ds. In particular, using this and Lévy’s characterization, we deduce that W

is a Brownian motion.
Continuing to work on the same probability space (	,F,F,P), define a change of measure

by

dQ

dP
:= ζT = exp

(
NT − 1

2
[N ]T

)
.

By Girsanov’s theorem (e.g., in the general form of [59], Theorem III.39), the process B =
W − [W,N ] is a Q-Brownian motion, and we compute

Bt = Wt −
∫ t

0

∫
A

(
b
(
s,Xs,R

x
s , β

(
s,Xs,R

x))− b
(
s,Xs,R

x
s , a

))
s(da) ds.

Substitute this into the equation for X to get

dXt = b
(
t,Xt ,R

x
t , β

(
t,Xt ,R

x))dt + dBt ,(5.23)

still with initial distribution Q ◦ X−1
0 = P ◦ X−1

0 = λ.
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The SDE (5.23) has a unique in law solution, and its law is precisely Q ◦ X−1 = P Rx
,

where P m was defined for m ∈ C([0, T ];P(Rd)) at the beginning of this step. It then holds,
for any bounded measurable h : Cd →R, that∫

	
h(x)yT R(dx, dy, dw,dq) = EP

[
h(X)ζT

]= EQ
[
h(X)

]= 〈
P Rx

,h
〉
,

which establishes (5.22).
Step 5. We are finally ready to take limits. Recalling from Step 2 that Rn is a tight sequence,

let R denote any weak limit. From Step 3 we know that R belongs almost surely to L.
Recalling the identifications of Step 1, we may pass to the limit along the same subsequence
along which Rn converges in law to R to get, using (5.22),

lim
1

n

n∑
k=1

EPn[
ζ

n,k
T h

(
μn,Xn,k)]= limEPn

[∫
	

yT h
(
μn,x

)
Rn(dx, dy, dw,dq)

]

= E

[∫
	

yT h
(
Rx, x

)
R(dx, dy, dw,dq)

]
= E

[〈
P Rx

,h
(
Rx, ·)〉],

for any bounded continuous function h on C([0, T ];P(Rd)) × Cd . Recall that μn converges

in law to μ, which implies that Rx d= μ. Hence,

lim
n→∞

1

n

n∑
k=1

EPn[
ζ

n,k
T h

(
μn,Xn,k)]= E

[〈
P μ,h(μ, ·)〉].

Recalling the notation from before the statement the Proposition, the process X[β] solves the
SDE

dXt [β] = b
(
t,Xt [β],μt , β

(
t,Xt [β],μ))dt + dWt,

where X0 ∼ λ, W , and μ are independent. Lemma A.2 ensures that the conditional law of
X[β] given μ is precisely P μ. In particular, E[〈P μ,h(μ, ·)〉] = E[h(μ,X[β])], and we have

lim
n→∞

1

n

n∑
k=1

EPn[
ζ

n,k
T h

(
μn,Xn,k)]= E

[
h
(
μ,X[β])].

Finally, recalling that f , g and β are continuous by assumption, we may finally return to
(5.18) from Step 1 to complete the proof:

1

n

n∑
k=1

Jn
k

(
αn,1, . . . , αn,k−1, βn,k, αn,k+1, . . . , αn,n)

= EPn

[
1

n

n∑
k=1

ζ
n,k
T

(∫ T

0
f
(
t,X

n,k
t ,μn

t , β
(
t,X

n,k
t ,μn))dt + g

(
X

n,k
T ,μn

T

))]

= E

[∫ T

0
f
(
t,Xt [β],μt , β

(
t,Xt [β],μ))dt + g

(
XT [β],μT

)]
= J (β). �

5.6. Proof of Theorem 2.9. In this section we prove Theorem 2.9, which asserts unique-
ness of weak MFE. The key monotonicity assumption (v) is of course inspired by the work of
Lasry and Lions [55], which argued via PDEs. The probabilistic proof below is quite similar
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to that of [18], which worked with a different equilibrium concept, though we will see in The-
orems 6.2 and 6.3 that our weak MFE concept coincides in a sense with the notion of weak
MFG solution used in [18, 51]. We give a complete proof below in part to keep the paper self-
contained. In addition, [18], Theorem 6.2, makes the stronger assumption that b(t, x,m,a)

and f (t, x,m,a) are respectively affine and strictly concave in (x, a) jointly, which we relax
here to be just in a.

For i = 1,2, suppose (	i,F i ,Fi ,Pi ,W i,αi,Xi,μi) are weak MFE in the sense of Def-
inition 2.5. Noting that (Xi

0,W
i,μi) are independent for each i = 1,2, we can without loss

of generality couple these weak MFE by assuming that they are defined on a common prob-
ability space (	,F,F,P), with the same Brownian motion and initial state. Precisely, W is
an F-Brownian motion, X0 is F0-measurable with law λ, and the random variables X0, W ,
μ1, and μ2 are independent, with Xi given as the unique strong solution of

dXi
t = b

(
t,Xi

t , α
i(t,Xi

t ,μ
i))dt + dWt, Xi

0 = X0, i = 1,2.

The MFG fixed point property entails that

μi
t = L

(
Xi

t | Fμi

t

)= L
(
Xi

t | μi) a.s., t ∈ [0, T ].
(See Lemma A.1 for the latter identity.) Because (X1,μ1) and μ2 are independent, and sim-
ilarly with the indices 1 and 2 reversed, we deduce that

μi
t = L

(
Xi

t | μ1,μ2) a.s., t ∈ [0, T ], i = 1,2.(5.24)

Let us define also the auxiliary state processes

dY
i,m
t = b

(
t, Y

i,m
t , αi(t, Y i,m

t ,m
))

dt + dWt, Y
i,m
0 = X0,

for i = 1,2 and m ∈ C([0, T ];P(Rd)). Now, for a fixed m ∈ C([0, T ];P(Rd)), the function
(t, x,m′) 
→ αi(t, x,m) defines an admissible semi-Markov control, which happens to not
depend on the measure argument; we deduce from the optimality of α1 that

(5.25)

E

[∫ T

0
(f1
(
t,X1

t ,μ
1
t

)+ f2
(
t,X1

t , α
1(t,X1

t ,μ
1))dt + g

(
X1

T ,μ1
T

)]

≥ E

[∫ T

0
(f1
(
t, Y

2,m
t ,μ1

t

)+ f2
(
t, Y

2,m
t , α2(t, Y 2,m

t ,m
))

dt + g
(
Y

2,m
T ,μ1

T

)]
.

According to Lemma A.2, if Mi := L(μi), then for any bounded measurable function ϕ on
Cd × C([0, T ];P(Rd)) we have

E
[
ϕ
(
X2,μ2)]= E

[
ϕ
(
Y 2,μ2

,μ2)]= ∫
E
[
ϕ
(
Y 2,m,m

)]
M2(dm).

In other words, the law of Y i,m is a version of the conditional law of Xi given μi = m.
Because X0, W , μ1, and μ2 are independent, we similarly have

E
[
ϕ
(
X2,μ2,μ1)]= ∫

E
[
ϕ
(
Y 2,m,m,μ1)]M2(dm),(5.26)

for bounded measurable functions ϕ on Cd × C([0, T ];P(Rd))
2
. Hence, integrating (5.25)

with respect to M2(dm), we find

(5.27)

E

[∫ T

0
(f1
(
t,X1

t ,μ
1
t

)+ f2
(
t,X1

t , α
1(t,X1

t ,μ
1))dt + g

(
X1

T ,μ1
T

)]

≥ E

[∫ T

0
(f1
(
t,X2

t ,μ
1
t

)+ f2
(
t,X2

t , α
2(t,X2

t ,μ
2))dt + g

(
X2

T ,μ1
T

)]
.



1734 D. LACKER

Repeat the argument with the indices 1 and 2 reversed to get

(5.28)

E

[∫ T

0
(f1
(
t,X2

t ,μ
2
t

)+ f2
(
t,X2

t , α
2(t,X2

t ,μ
2))dt + g

(
X2

T ,μ2
T

)]

≥ E

[∫ T

0
(f1
(
t,X1

t ,μ
2
t

)+ f2
(
t,X1

t , α
2(t,X1

t ,μ
1))dt + g

(
X1

T ,μ2
T

)]
.

Add these two inequalities, apply (5.24), and rearrange to find

0 ≤ E

[∫ T

0

∫
Rd

(
f1
(
t, x,μ1

t

)− f1
(
t, x,μ2

t

))(
μ1

t − μ2
t

)
(dx) dt

]
+E

[∫
Rd

(
g
(
x,μ1

T

)− g
(
x,μ2

T

))(
μ1

T − μ2
T

)
(dx)

]
.

According to the monotonicity assumption (v), this must hold with equality. Hence, both
(5.27) and (5.28) must hold with equality.

To complete the proof, it will suffice to show that the optimal semi-Markov control α1

is essentially unique; that is, we will show that unless α1 and α2 agree in a certain sense
then we can construct another control which achieves a strictly greater reward. To do this, we
apply a projection argument. Fix m1,m2 ∈ C([0, T ];P(Rd)). Let U be a random variable,
independent of everything else, which takes the value 1 or 2 with equal probability. Then

dY
U,mU

t = b
(
t, Y

U,mU

t , αU (t, YU,mU

t ,mU ))dt + dWt, Y
U,mU

0 = X0.

Suppose we define

α̂m1,m2
(t, x) = E

[
αU (t, YU,mU

t ,mU ) | YU,mU

t = x
]
.(5.29)

By Lemmas A.1 and B.2, α̂m1,m2
(t, x) is jointly semi-Markov, in the sense that it is jointly

measurable and α̂m̃1,m̃2
(t, x) = α̂m1,m2

(t, x) whenever m̃i
s = mi

s for all s ≤ t and i = 1,2.
By Markovian projection (Theorem 2.14), and because b(t, x, a) is affine in a, we have

L(Y
U,mU

t ) = L(X̂
m1,m2

t ) for all t , where X̂m1,m2
is the unique strong solution of

dX̂
m1,m2

t = b
(
t, X̂

m1,m2

t , α̂m1,m2(
t, X̂

m1,m2

t

))
dt + dWt, X̂

m1,m2

0 = X0.

By Fubini’s theorem and Jensen’s inequality, using the assumption that f (t, x,m,a) is con-
cave in a it follows that

(5.30)

E

[∫ T

0
f
(
t, X̂

m1,m2

t ,m1
t , α̂

m1,m2(
t, X̂

m1,m2

t

))
dt + g

(
X̂

m1,m2

T ,m1
T

)]

= E

[∫ T

0
f
(
t, Y

U,mU

t ,m1
t , α̂

m1,m2(
t, Y

U,mU

t

))
dt + g

(
Y

U,mU

T ,m1
T

)]

≥ E

[∫ T

0
f
(
t, Y

U,mU

t ,m1
t , α

U (t, YU,mU

t ,mU ))dt + g
(
Y

U,mU

T ,m1
T

)]

= 1

2
E

[∫ T

0
f
(
t, Y

1,m1

t ,m1
t , α

1(t, Y 1,m1

t ,m1))dt + g
(
Y

1,m1

T ,m1
T

)]

+ 1

2
E

[∫ T

0
f
(
t, Y

2,m2

t ,m1
t , α

2(t, Y 2,m2

t ,m2))dt + g
(
Y

2,m2

T ,m1
T

)]
.
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Integrate on both sides with respect to M1(dm1)M2(dm2), recalling (5.26), to get

E

[∫ T

0
f
(
t, X̂

μ1,μ2

t ,μ1
t , α̂

μ1,μ2(
t, X̂

μ1,μ2

t

))
dt + g

(
X̂

μ1,μ2

T ,μ1
T

)]

≥ 1

2
E

[∫ T

0
f
(
t,X1

t ,μ
1
t , α

1(t,X1
t ,μ

1))dt + g
(
X1

T ,μ1
T

)]

+ 1

2
E

[∫ T

0
(f1
(
t,X2

t ,μ
1
t

)+ f2
(
t,X2

t , α
2(t,X2

t ,μ
2))dt + g

(
X2

T ,μ1
T

)]
.

Recalling that equality holds in (5.27), we deduce

(5.31)

E

[∫ T

0
f
(
t, X̂

μ1,μ2

t ,μ1
t , α̂

μ1,μ2(
t, X̂

μ1,μ2

t

))
dt + g

(
X̂

μ1,μ2

T ,μ1
T

)]

≥ E

[∫ T

0
f
(
t,X1

t ,μ
1
t , α

1(t,X1
t ,μ

1))dt + g
(
X1

T ,μ1
T

)]
.

On the other hand, because X̂μ1,m2
solves the SDE

dX̂
μ1,m2

t = b
(
t, X̂μ1,m2

, α̂μ1,m2(
t, X̂

μ1,m2

t

))
dt + dWt, X̂

μ1,m2

0 = X0,

and because (t, x,m1) 
→ α̂m1,m2
(t, x) is semi-Markov for each m2, we deduce from the

optimality of α1 that

E

[∫ T

0
f
(
t, X̂

μ1,μ2

t ,μ1
t , α̂

μ1,m2(
t, X̂

μ1,m2

t

))
dt + g

(
X̂

μ1,m2

T ,μ1
T

)]

≤ E

[∫ T

0
f
(
t,X1

t ,μ
1
t , α

1(t,X1
t ,μ

1))dt + g
(
X1

T ,μ1
T

)]
.

Integrate with respect to M2(dm2) to deduce the opposite inequality of (5.31), which thus
becomes an equality. It follows that the application of Jensen’s inequality in (5.30) to the
strictly concave function f must be an equality for M1 × M2-a.e. (m1,m2), which implies

that the random variable inside the conditional expectation in (5.29) must in fact be Y
U,mU

t -
measurable for a.e. t . That is,

α̂m1,m2(
t, Y

U,mU

t

)= αU (t, YU,mU

t ,mU ),
a.s., for a.e. t , for M1 × M2-a.e. (m1,m2). Recalling the definition of U , this is equivalent to

α̂m1,m2(
t, Y

1,m1

t

)= α1(t, Y 1,m1

t ,m1) and α̂m1,m2(
t, Y

2,m2

t

)= α2(t, Y 2,m2

t ,m2),
a.s., for a.e. t , for M1 ×M2-a.e. (m1,m2). Because the drift b is bounded, the random variable

Y
i,mi

t has full support for each t > 0, and we deduce that

α1(t, x,m1)= α2(t, x,m2),
for (Lebesgue) almost every (t, x), and for M1 × M2-a.e. (m1,m2). This in turn implies
X1 ≡ X2 a.s., which implies μ1 = μ2 a.s. In summary, we have shown that for any two weak
MFE μ1 and μ2, we can couple the two in such a way that they are independent and also
satisfy μ1 = μ2 a.s. This shows not only that μ1 and μ2 must have the same law but also that
they must be deterministic, hence strong MFE.
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6. Closed-loop versus open-loop. This section compares our notion of weak semi-
Markov RMFE (Definition 3.6) with the notion of weak MFG solution of [51], Definition 3.1,
which itself is a specialization of [18], Definition 3.1, to the case without common noise. The
relevance of the latter definition is that it characterizes the limits of n-player approximate
equilibria in open-loop regime [51], Theorem 3.4. Our goal is to show that these two defini-
tions are largely equivalent. To state the definition of a weak MFG solution, we first need a
bit of notation.

Recall from Section 5.2 the definition of the space V of relaxed controls. Define X :=
Cd × V × Cd , and equip this space with the filtration FX = (FX

t )t∈[0,T ], where FX
t is the σ -

field generated by the maps X � (w,q, x) 
→ (ws, q(S), xs) ∈ Rd ×R×Rd , where s ≤ t and
S is a Borel subset of [0, t]×A. As usual, we identify a P(A)-valued process  = (t)t∈[0,T ]
with the random element of V given by dtt(da). For a measure m̃ ∈P(X ), we write m̃x =
(m̃x

t )t∈[0,T ] ∈ C([0, T ];P(Rd)) for the measure flow associated with the third marginal, that
is, m̃x

t = m̃ ◦ [(w,q, x) 
→ xt ]−1.

DEFINITION 6.1. A weak MFG solution is a tuple (	,F,F,P,W, μ̃,,X), where:

(1) (	,F,F,P) is a complete filtered probability space. Also, W is an F-Brownian mo-
tion of dimension d , X is an F-adapted d-dimensional process with P ◦ X−1

0 = λ, and 

is a P(A)-valued F-progressively measurable process. Lastly, μ̃ is a P(X )-valued random
variable such that μ̃(S) is Ft -measurable whenever S ∈ FX

t and t ∈ [0, T ].
(2) μ̃, X0 and W are independent.
(3) The state equation holds,

dXt =
∫
A

b
(
t,Xt , μ̃

x
t , a

)
t(da) dt + dWt .

(4) The control  is compatible, in the sense that σ(s : s ≤ t) is conditionally indepen-
dent of FX0,W,μ̃

T given FX0,W,μ̃
t , for each t ∈ [0, T ], where

FX0,W,μ̃
t := σ

(
X0,Ws, μ̃(S) : s ≤ t, S ∈FX

t

)
.

(5) The control  is optimal, in the sense that if (	′,F ′,F′,P′,W ′, μ̃′,′,X′) satisfies
(1-4) and P′ ◦ (μ̃′)−1 = P ◦ μ̃−1, then we have

EP

[∫ T

0

∫
A

f
(
t,Xt , μ̃

x
t , a

)
t(da) dt + g

(
XT , μ̃x

T

)]

≥ EP′
[∫ T

0

∫
A

f
(
t,X′

t , μ̃
′x
t , a

)
′

t (da) dt + g
(
X′

T , μ̃′x
T

)]
.

(6) The consistency condition holds: μ̃ = P((W,,X) ∈ · | μ̃) a.s.

We may abuse notation somewhat by referring to μ̃ itself as a weak MFG solution. This is
reasonable because we can recover the full joint law of (μ̃,W,,X) from that of μ̃ by using
the consistency condition (6).

THEOREM 6.2. Suppose (	,F,F,P,W,∗,X,μ) is a weak semi-Markov RMFE. Let
t = ∗(t,Xt ,μ), and set μ̃ = P((W,,X) ∈ · | μ). Then (	,F,F,P,W, μ̃,,X) is a
weak MFG solution.

PROOF. First, define Fμ̃ = (F μ̃
t )t∈[0,T ] as the filtration generated by μ̃, namely, F μ̃

t =
σ(μ̃(S) : S ∈ FX

t ). As usual, let Fμ
t = σ(μs : s ≤ t). We claim first that F μ̃

t =Fμ
t for each t .
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Recall from Remark 3.8 that L(Xt | μ) = L(Xt | Fμ
t ) = μt a.s. for each t . It follows imme-

diately that Fμ
t ⊂ F μ̃

t , because

μt = P(Xt ∈ · | μ) = μ̃x
t a.s.

For the reverse, fix a bounded FX
t -measurable function h : X → R. Note that X is neces-

sarily FX0,W,μ-adapted by Lemma A.2, and thus so is , where FX0,W,μ = (FX0,W,μ
t )t∈[0,T ]

is defined by FX0,W,μ
t = σ(X0,Ws,μs : s ≤ t). Hence, we may find a bounded FX0,W,μ

t -
measurable random variable ψ(X0,W,μ) such that h(W,,X) = ψ(X0,W,μ) a.s. Then,

〈μ̃, h〉 = E
[
h(W,,X) | μ]= E

[
ψ(X0,W,μ) | μ]

= 〈
λ ×W,ψ(·, ·,μ)

〉
,

where W denotes Wiener measure on Cd , and the last identity follows from the independence
of X0, W and μ. Because ψ(X0,W,μ) is FX0,W,μ

t -measurable, this shows that 〈μ̃, h〉 is Fμ
t -

measurable. Hence, Fμ
t ⊃F μ̃

t .
Properties (1–3) and (6) of Definition 6.1 are straightforward to check now that we have

shown F μ̃
t = Fμ

t for each t . The compatibility property (4) follows easily from the fact that
 is FX0,W,μ = FX0,W,μ̃-adapted.

It remains to check properly the optimality property (5). According to [18], Lemma 3.11,
(see also [51], Lemma 4.7), it suffices to check (5) only for alternative controls ′ which
are adapted to the filtration FX0,W,μ̃, because such controls are dense in a joint distributional
sense. Precisely, (5) is equivalent to the following:

(5’) For each FX0,W,μ̃-progressively measurable P(A)-valued process ′ = (′
t )t∈[0,T ],

we have

(6.1)

E

[∫ T

0

∫
A

f
(
t,Xt , μ̃

x
t , a

)
t(da) dt + g

(
XT , μ̃x

T

)]

≥ E

[∫ T

0

∫
A

f
(
t,X′

t , μ̃
x
t , a

)
′

t (da) dt + g
(
X′

T , μ̃x
T

)]
,

where X′ is the unique strong solution of the SDE

dX′
t =

∫
A

b
(
t,X′

t , μ̃
x
t , a

)
′

t (da) dt + dWt, X′
0 = X0.

Let (X′,′) be as in (5’). Recall that μt = μ̃x
t for all t ∈ [0, T ], and so (6.1) is equivalent to

(6.2)

E

[∫ T

0

∫
A

f (t,Xt ,μt , a)∗(t,Xt ,μ)(da) dt + g(XT ,μT )

]

≥ E

[∫ T

0

∫
A

f
(
t,X′

t ,μt , a
)
′

t (da) dt + g
(
X′

T ,μT

)]
.

We showed also that Fμ
t = F μ̃

t for each t ∈ [0, T ], and thus FX0,W,μ̃
t = FX0,W,μ

t :=
σ(X0,Ws,μs : s ≤ t). Then ′ is FX0,W,μ-progressively measurable, and we may write
′

t = ′(t,X0,W,μ).
Because μ is a weak RMFE, we know that ∗ is optimal when compared to alternative

semi-Markov controls. To check that it is optimal over FX0,W,μ̃ controls, we proceed by a
projection argument reminiscent of those of Section 4. For m ∈ C([0, T ];P(Rd)), let Pm =
P(· | μ = m) denote a version of the regular conditional law given μ. The statements in the
rest of this paragraph hold for P◦μ−1-almost every m ∈ C([0, T ];P(Rd)). Since X0, W and
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μ are independent, we have Pm ◦ (X0,W)−1 = P ◦ (X0,W)−1 = λ × W , where W denotes
Wiener measure. Moreover, under Pm, the SDE still holds, which we may write as

dX′
t =

∫
A

b
(
t,X′

t ,mt , a
)
′(t,X0,W,m)(da) dt + dWt .

We wish to apply Theorem 2.14 under this measure Pm. To do so, we first find a Borel
measurable function ̂ : [0, T ] ×Rd × C([0, T ];P(Rd)) → P(A) such that

̂
(
t,X′

t ,m
)= EPm[

′(t,X0,W,m) | X′
t

]
, Pm-a.s.,∀t ∈ [0, T ],(6.3)

where these expectations are in the sense of mean measure; see Lemma C.2. The point of this
definition is that the unique strong solution Xm (on (	,F,F,P)) of the SDE

dXm
t =

∫
A

b
(
t,Xm

t ,mt , a
)
̂
(
t,Xm

t ,m
)
(da) dt + dWt, Xm

0 = X0,

satisfies P ◦ (Xm
t )−1 = Pm ◦ (X′

t )
−1 for each t ∈ [0, T ], by Theorem 2.14.

At this point we would like to re-introduce the random measure flow by replacing m by μ

and treating ̂(t,X′
t ,μ) as a semi-Markov control. For this to work, we must check that ̂ is

not merely Borel measurable but rather semi-Markov. Note that X′ is a strong solution, so it
is FX0,W,μ-adapted, and we can write X′

t = X′(t,X0,W,μ). We may then write (6.3) as

̂
(
t,X′

t ,m
)= EPm[

′(t,X0,W,m) | X′(t,X0,W,m)
]
.

Recall that Pm ◦ (X0,W)−1 = λ × W and that ′ and X′ are progressive, which implies
in particular that ′(t,X0,W,m) = ′(t,X0,W, m̃) and X′(t,X0,W,m) = X′(t,X0,W, m̃)

a.s., whenever t ∈ [0, T ] and ms = m̃s for s ∈ [0, t]. From these facts we deduce that
̂(t,X′

t ,m) = ̂(t,X′
t , m̃) a.s., whenever ms = m̃s for s ∈ [0, t].

Finally, returning to the unconditional measure P, define X̂ to be the unique strong solution
(on (	,F,F,P)) of the SDE

dX̂t =
∫
A

b(t, X̂t ,μt , a)̂(t, X̂t ,μ)(da) dt + dWt, X̂0 = X0,(6.4)

and note that X̂ is adapted to FX0,W,μ. Indeed, see Lemma A.2 and A.3 for well-posedness
of this SDE, despite the fact that ̂ may be discontinuous. In addition, as we check carefully
in the same two lemmas, the conditional law of X̂ given μ = m is precisely P ◦ (Xm)−1. In
particular, we find

Pm ◦ X̂−1
t = P ◦ (Xm

t

)−1 = Pm ◦ (X′
t

)−1
,

for almost every m and for each t . Equivalently, plugging in the random μ, we have Pμ =
Pμ ◦ (X′

t )
−1 a.s. for each t . Using this and the definition of ̂, we finally use Fubini’s theorem

and the tower property of conditional expectation to get

E

[∫ T

0

∫
A

f
(
t,X′

t ,μt , a
)
′

t (da) dt + g
(
X′

T ,μT

)]

= E

[∫ T

0

∫
A

f
(
t,X′

t ,μt , a
)
′(t,W,μ)(da) dt + g

(
X′

T ,μT

)]

= E

[∫ T

0

∫
A

f
(
t,X′

t ,μt , a
)
̂
(
t,X′

t ,μ
)
(da) dt + g

(
X′

T ,μT

)]

= E

[∫ T

0

∫
A

f (t, X̂t ,μt , a)̂(t, X̂t ,μ)(da) dt + g(X̂T ,μT )

]
.
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Recalling the form of the SDE (6.4) for X̂, we may finally use the defining property (5) of a
weak RMFE (Definition 3.6) to conclude that this expectation is dominated by

E

[∫ T

0

∫
A

f (t,Xt ,μt , a)∗(t,Xt ,μ)(da) dt + g(XT ,μT )

]
,

which proves (6.2). �

THEOREM 6.3. Suppose μ̃ is a weak MFG solution. Then there exists a weak semi-

Markov RMFE μ such that μ
d= μ̃x .

PROOF. Let (	,F,F,P,W, μ̃,,X) be a weak MFG solution. Recalling that μ̃ is a
random measure on X = Cd × V × Cd , let μ denote the image under under the map Cd ×
V × Cd � (w,q, x) 
→ (x, q) ∈ Cd × V . It is straightforward to check using the properties of
Definition 6.1 and Itô’s formula that μ satisfies the identity (5.4). Hence Lemma 5.3 applies,
in particular part (c), and (enlarging the probability space if necessary) we may define ∗
and X∗ as therein. It is immediate from Lemma 5.3 to check that properties (1–4) and (6) of
Definition 3.6 are valid. It remains to check the optimality property (5).

First, from part (b) of Lemma 5.3, note that

(6.5)

EP

[∫ T

0

∫
A

f
(
t,Xt , μ̃

x
t , a

)
t(da) dt + g

(
XT , μ̃x

T

)]

= EP

[∫ T

0

∫
A

f
(
t,X∗

t ,μt , a
)
∗(t,X∗

t ,μ
)
(da) dt + g

(
X∗

T ,μT

)]
.

Fix any semi-Markov function ′ : [0, T ] × Rd × C([0, T ];P(Rd)) → P(A), and let X′
denote the unique strong solution (see Lemmas A.2 and A.3) of the SDE

dX′
t =

∫
A

b
(
t,X′

t ,μt , a
)
′(t,X′

t ,μ
)
(da) dt + dWt, X0 ∼ λ.

Note that X′ is adapted to the complete filtration generated by the process (X0,Wt ,μt )t∈[0,T ].
Define the P(A)-valued process ̃t = ′(t,X′

t ,μ). One checks easily that (	,F,F,P,W,

μ̃, ̃,X′) satisfies properties (1–4) of Definition 6.1. Hence, using property (5) therein along
with (6.5), we find

EP

[∫ T

0

∫
A

f
(
t,X∗

t ,μt , a
)
∗(t,X∗

t ,μ
)
(da) dt + g

(
X∗

T ,μT

)]

≥ EP

[∫ T

0

∫
A

f
(
t,X′

t , μ̃
x
t , a

)
̃t (da) dt + g

(
X′

T , μ̃x
T

)]

= EP

[∫ T

0

∫
A

f
(
t,X′

t ,μt , a
)
′(t,Xt ,μ)(da) dt + g

(
X′

T ,μT

)]
.

This is valid for any choice of ′, and we conclude that property (5) of Definition 3.6 holds.
�

Now that we have shown that weak MFE and weak MFG solutions coincide, we can give
a quick proof of Theorem 2.13:

6.1. Proof of Theorem 2.13. It was shown in [51], Theorem 3.4, that both claims are
true if “weak MFE” is replaced by “weak MFG solution” in the statements. We saw in Theo-
rem 6.3 that a weak MFG solution is a weak RMFE and in Proposition 3.7 that a weak RMFE
is a weak MFE under Assumptions A and B.
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7. Constructing n-player equilibria from mean field equilibria. This section contin-
ues the discussion of Section 2.4 on the question of which weak MFE can arise as the limit of
n-player (approximate) Nash equilibria. We begin in Section 7.1 by proving Theorem 3.10,
which states that every strong RMFE arises as the limit of n-player approximate equilibria.

The rest of the section is devoted to examples: We warm up in Section 7.2 with some
observations on the case where the game-theoretic aspect of the problem degenerates in the
sense that A is a singleton. In this uncontrolled regime, we are simply left with the study of
McKean–Vlasov limits, which already reveals of some of the range of possible behaviors.

However, much richer behavior is possible when the game-theoretic aspect does not trivi-
alize. Section 7.3 discusses such an example, in which there exist weak MFE which are not
mixtures of strong MFE.

7.1. Proof of Theorem 3.10. Let (m,∗) be a strong RMFE, in the sense of Defini-
tion 3.5. Let X∗ denote the corresponding state process,

dX∗
t =

∫
A

b
(
t,X∗

t ,mt , a
)
∗(t,X∗

t

)
(da) dt + dWt, X∗

0 ∼ λ.(7.1)

Now, for the n-player game, define n,i ∈ RMn by setting

n,i(t,x) = ∗(t, xi) for x = (x1, . . . , xn) ∈ (Rd)n.
Define

εn := sup
β∈RMn

J n
1
(
β,n,2, . . . ,n,n)− Jn

1
(
n,1, . . . ,n,n).

Note that εn ≥ 0, and by symmetry it holds for any i ∈ {1, . . . , n} that

εn = sup
β∈RMn

J n
i

(
n,1, . . . ,n,i−1, β,n,i+1, . . . ,n,n)− Jn

i

(
n,1, . . . ,n,n).

Hence, �n = (n,1, . . . ,n,n) is an εn-Nash equilibrium. Assumption C lets us apply the
result of [52], Theorem 2.5(2), (or more specifically Remark 2.7 therein), a strong form of
propagation of chaos, to conclude that μn → m in law in C([0, T ];P(Rd)). Moreover, for
any t ∈ [0, T ] and any bounded measurable (not necessarily continuous) function ϕ : Rd →
R, we have ∫

Rd
ϕ dμn

t

[
�n]→ ∫

Rd
ϕ dmt ,(7.2)

in probability.
It remains to show that εn → 0. Fix arbitrarily a sequence βn ∈RMn such that

Jn
1
(
βn,n,2, . . . ,n,n)≥ sup

β∈RMn

J n
1
(
β,n,2, . . . ,n,n)− 1

n
.(7.3)

Abbreviate Xn = (Xn,1, . . . ,Xn,n) = X[�n] and μn = μn[�n], as well as

Y n = (
Yn,1, . . . , Y n,n)= X

[(
βn,n,2, . . . ,n,n)],

νn = μn[(βn,n,2, . . . ,n,n)].
In particular, the state process Xn follows the SDEs

dX
n,i
t =

∫
A

b
(
t,X

n,i
t ,μn

t , a
)
∗(t,Xn,i

t

)
(da) dt + dWi

t , μn
t = 1

n

n∑
k=1

δ
X

n,k
t

,
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whereas Y n follows the SDEs

dY
n,1
t =

∫
A

b
(
t, Y

n,1
t , νn

t , a
)
βn(t,Y n)(da) dt + dW 1

t ,

dY
n,k
t =

∫
A

b
(
t, Y

n,k
t , νn

t , a
)
∗(t, Y n,k

t

)
(da) dt + dWk

t , i �= 1,

νn
t = 1

n

n∑
j=1

δ
Y

n,j
t

.

Suppose that Xn is defined on a filtered probability space (	n,Fn,Fn,Pn), where Wk are
of course assumed to be Fn-Brownian motions. (We will avoid giving a name to whatever
probability space Y n is defined on, which may be different.) Define a probability measure Qn

on (	n,Fn,Fn) by

dQn

dPn
= exp

(∫ T

0

∫
A

b
(
t,X

n,1
t ,μn

t , a
)(

βn(t,Xn)− ∗(t,Xn,1
t

))
(da) dW 1

t

− 1

2

∫ T

0

∣∣∣∣∫
A

b
(
t,X

n,1
t ,μn

t , a
)(

βn(t,Xn)− ∗(t,Xn,1
t

))
(da)

∣∣∣∣2 dt

)
.

By Girsanov’s theorem and uniqueness of the SDEs, we have Qn ◦ (Xn)−1 = L(Y n). Bound-
edness of b implies that

sup
n∈N

EPn
[∣∣∣∣dQn

dPn

∣∣∣∣p]< ∞,

for all p ≥ 1. Hence, because μn converges in probability to m under Pn (in the sense that
limn→∞ Pn(μn /∈ U) = 0 for any open neighborhood U of m in C([0, T ];P(Rd))), it also
converges in probability to m under Qn. But Qn ◦ (μn)−1 = L(νn), and so νn → m in prob-
ability; this uses the fact that m is deterministic.9

Now, view (Y n,1, βn(·,Yn),W 1) as a random element of Cd × V × Cd , where the space
V of relaxed controls was defined in Section 5.2. Recalling that V is compact, it is straight-
forward to check that this sequence is tight. Letting (Y,β,W) denote any subsequential limit
point, one readily checks using continuity of b that W is a Brownian motion with respect to
the filtration (σ (Ys, βs,Ws : s ≤ t))t∈[0,T ], that Y0 ∼ λ, and that the SDE holds,

dYt =
∫
A

b(t, Yt ,mt , a)βt (da) dt + dWt .

Use Lemma C.2 to find a measurable function  : [0, T ] ×Rd → P(A) such that

(t,Yt ) = E[βt | Yt ] a.s., a.e. t,

in the sense of mean measures. Apply Theorem 2.14 to find that Yt
d= Zt for all t ∈ [0, T ],

where Z is the unique strong solution of the SDE

dZt =
∫
A

b(t,Zt ,mt , a)(t,Zt)(da) dt + dWt .

Using the assumption that f and g are bounded and continuous, we conclude that, along the
same convergent subsequence for which (Y n,1, βn(·,Yn),W 1) converges to (Y,β,W), we

9For a metric space (E,d), a point e0 ∈ E, and a sequence ξn of E-valued random variables, perhaps defined
on different probability spaces, recall that L(ξn) → δe weakly if and only if ξn → e in probability, which means
limn→∞ P(d(ξn, e0) > ε) = 0 for all ε > 0.
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have

lim
n

E

[∫ T

0

∫
A

f
(
t, Y

n,1
t , νn

t , a
)
βn(t,Y n)(da) dt + g

(
Y

n,1
T , νn

T

)]

= E

[∫ T

0

∫
A

f (t, Yt ,mt , a)βt (da) dt + g(YT ,mT )

]

= E

[∫ T

0

∫
A

f (t, Yt ,mt , a)(t, Yt )(da) dt + g(YT ,mT )

]

= E

[∫ T

0

∫
A

f (t,Zt ,mt , a)(t,Zt)(da) dt + g(ZT ,mT )

]

≤ E

[∫ T

0

∫
A

f
(
t,X∗

t ,mt , a
)
∗(t,X∗

t

)
(da) dt + g

(
X∗

T ,mT

)]
,

where the last inequality is from the optimality part of the assumption that m is a
strong MFE. This inequality holds for any convergent subsequence of the tight sequence
(Y n,1, βn(t,Yn),W 1), and we conclude that

lim sup
n→∞

Jn
1
(
βn,n,2, . . . ,n,n)

= lim sup
n→∞

E

[∫ T

0

∫
A

f
(
t, Y

n,1
t , νn

t , a
)
βn(t,Y n)(da) dt + g

(
Y

n,1
T , νn

T

)]

≤ E

[∫ T

0

∫
A

f
(
t,X∗

t ,mt , a
)
∗(t,X∗

t

)
(da) dt + g

(
X∗

T ,mT

)]
.

On the other hand, notice that the convergence μn → m implies

lim
n→∞Jn

1
(
�n)

= lim
n→∞E

[∫ T

0

∫
A

f
(
t,X

n,1
t ,μn

t , a
)
∗(t,Xn,1

t

)
(da) dt + g

(
X

n,1
T ,μn

T

)]

= lim
n→∞E

∫ T

0

∫
Rd

∫
A

f
(
t, x,μn

t , a
)
∗(t, x)(da)μn

t (dx) dt +E

∫
Rd

g
(
x,μn

T

)
μn

T (dx)

=
∫ T

0

∫
Rd

∫
A

f (t, x,mt , a)∗(t, x)(da)mt(dx) dt +
∫
Rd

g(x,mT )mT (dx)

= E

[∫ T

0

∫
A

f
(
t,X∗

t ,mt , a
)
∗(t,X∗

t

)
(da) dt + g

(
X∗

T ,mT

)]
,

where the second line used symmetry and the third used (7.2) to deal with the fact that ∗
may be discontinuous. Recalling the previous inequality and (7.3), we conclude that εn → 0.

7.2. Uncontrolled models and ill-posed ODEs. Weak MFE are easy to construct by
building degenerate control problems into ill-posed McKean–Vlasov equations or ODEs, as
illustrated in this section. Suppose the drift function is the trivial

b(t, x,m,a) = B(m),

for some bounded continuous function B : Rd →Rd , where we again denote by m the mean
of a measure m ∈ P(Rd), if it exists. The state process (X1, . . . ,Xn) of the n-player game
are then un-controlled, and we do not even need to specify objective functions (f, g) or an
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action space A. The dimension d is arbitrary. The state processes then evolve according to

dXi
t = B

(
μn

t

)
dt + dWi

t , μn
t = 1

n

n∑
k=1

δXk
t
,(7.4)

with i.i.d. initial states given by λ.
This is the unique n-player equilibrium, and the above SDE system (7.4) is unique in

law. But a broad range of n → ∞ limiting behavior is possible here, and there are potentially
multiple (weak) MFE. Averaging (7.4) over i = 1, . . . , n, the empirical mean is seen to follow

dμn
t = B

(
μn

t

)
dt + 1√

n
dWt,

where W := 1√
n

∑n
k=1 Wk is a Brownian motion. The sequence of real-valued processes

(μn
t )t∈[0,T ] is easily seen to be tight (using, e.g., Aldous’ criterion for tightness [48],

Lemma 16.12), and it is straightforward to check that every weak limit is supported on the set
SODE ⊂ C([0, T ];R) consisting of those functions x = x(t) satisfying the integral equation

x(t) = λ +
∫ t

0
B
(
x(s)

)
ds ∀t ∈ [0, T ].(7.5)

It can be checked that a P(Rd)-valued process μ = (μt )t∈[0,T ] is a weak MFE if and only if
(μt )t∈[0,T ] belongs almost surely to SODE and μt is precisely

μt = Nd

(
λ +

∫ t

0
B(μs) ds, tI

)
,

where Nd(m,�) denotes the d-dimensional Gaussian law with mean vector m and covari-
ance matrix �. In particular, weak MFE are parametrized by mixtures of solutions of the
ODE (7.5).

Of course, in some cases, such as if B is Lipschitz, this ODE has a unique solution. In
this case, there is a unique MFE, and the n-player equilibrium converges to it. But without
uniqueness for (7.5), anything could happen. The vanishing noise limit n → ∞ may select
one particular solution, or it may fail to converge at all. See [1, 64] for examples of this
phenomenon.

7.3. A game-theoretic example. We now turn to a more interesting example, in which the
nonuniqueness of the MFE comes from the game-theoretic aspect rather than from ill-posed
state process dynamics. In particular, this example admits many weak MFE which are not
mixtures of strong MFE. Consider the d = 1-dimensional mean field game described by the
coefficients

b(t, x,m,a) = a, f ≡ 0, g(x,m) = xm, A = [−1,1], λ = δ0,

where m = ∫
R ym(dy). This example was analyzed in [51], Section 3.3. It was shown in

Proposition 3.6 therein that there are precisely three strong MFE, m−1, m0, and m1, defined
by

mc
t = L(ct + Wt) for c ∈ {−1,0,1}.(7.6)

On the other hand, there are infinitely many weak MFE, many of which are not mixtures
of these three strong MFE. In [51], Proposition 3.7, one such weak MFE was constructed
explicitly, and we elaborate somewhat on this construction below. Note that [51] works with
weak MFG solutions in the sense of Definition 6.1 instead of our notion of weak semi-Markov
MFE (Definition 3.6), but we saw in Section 6 that the two are equivalent in a sense.
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To construct a family of weak MFE, let t0 ∈ [0, T ], and let (	,F,P) be any probability
space supporting a Brownian motion W and an independent random variable γ with P(γ =
1) = P(γ = −1) = 1/2. Define a P(Rd)-valued process μ = (μt )t∈[0,T ] by

μt =
{
L(Wt) if t ≤ t0,

L
(
Wt + γ (t − t0) | γ ) if t ∈ (t0, T ],(7.7)

and note that the mean of μt is

μt = γ (t − t0)
+.(7.8)

Suppose F = (Ft )t∈[0,T ] is the complete filtration generated by the processes (W,μ). In
particular, Ft = σ(Ws : s ≤ t) for t ≤ t0, and Ft = σ(Ws, γ : s ≤ t) for t ∈ (t0, T ]. Define the
state process

dX∗
t = γ 1(t0,T ](t) dt + dWt, X∗

0 = 0,

and define a control α∗
t0

: [0, T ] ×R →R by

α∗
t0
(t, x) = sgn(x)1(t0,T ](t),

where

sgn(x) :=

⎧⎪⎪⎨⎪⎪⎩
1 if x > 0,

−1 if x < 0,

0 if x = 0.

Then γ = sgn(μt ) for t > t0, and we can rewrite the dynamics of X∗ as

dX∗
t = α∗

t0
(t,μt ) dt + dWt .(7.9)

We claim that (	,F,F,P,W,α∗
t0
,X∗,μ) is a weak MFE in the sense of Definition 2.5.

To check that the consistency condition μt = L(X∗
t | Fμ

t ) holds, note first that the σ -field
Fμ

t := σ(μs : s ≤ t) is trivial if t ≤ t0 and is equal to σ(γ ) if t ∈ (t0, T ]. Hence,

L
(
X∗

t | Fμ
t

)= L
(
Wt +

∫ t

0
α∗

t0
(s,μs) ds

∣∣∣Fμ
t

)
= L

(
Wt + γ (t − t0)

+ | Fμ
t

)= μt .

We must lastly check that the control α∗
t0

defined above is optimal. Fix an alternative semi-
Markov control α = α(t, x,m), and define the state process

dX′
t = α

(
t,X′

t ,μ
)
dt + dWt, X′

0 = 0.

The corresponding reward, using the fact that μ and W are independent, is

J (α) := E
[
X′

T μT

]= E

[∫ T

0
α
(
t,X′

t ,μ
)
dt

]
= E

[∫ T

0
α
(
t,X′

t ,μ
)
E[μT | Ft ]dt

]

= E

[∫ T

0
α
(
t,X′

t ,μ
)
sgn(μt ) dt

]
.

Indeed, the last step follows from the independence of W and μ, which yields

E[μT | Ft ] =
{
μT = sgn(μT ) = sgn(μt ) if t ∈ (t0, T ],
E[μT ] = 0 if t ≤ t0

= α∗
t0
(t,μt ).

The optimizers of J (α) over α are precisely those α which satisfy

α
(
t,X′

t ,μ
)= α∗

t0
(t,μt ) for t ∈ (1, T ].

In particular, the control α∗
t0

itself above is optimal, and we conclude that (	,F,F,P,W,

α∗
t0
,X∗,μ) is a weak semi-Markov MFE.
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REMARK 7.1. This example notably illustrates weak MFE which are not mixtures of
strong MFE. Indeed, recall from (7.6) that the three strong MFE are m−1, m0, m1. The weak
MFE μ constructed above satisfies in particular P(|μT | = T − t0) = 1. Hence, unless t0 = 0
or t0 = T , this weak MFE is not a mixture of strong MFE.

The McKean–Vlasov equation in (7.9) is ill-posed (by design), which renders this example
difficult to analyze. Indeed, consider the set S∗

t0
of m ∈ C([0, T ];P(Rd)) such that there exists

a solution of

dXt = α∗
t0
(t,mt ) dt + dWt, X0 = 0,L(Xt) = mt,∀t ∈ [0, T ].

Taking expectations, we find

dmt = α∗
t0
(t,mt ) dt, m0 = 0.(7.10)

This is an ill-posed ODE, and its solutions (on the time interval [0, T ]) are precisely the
functions {H±

s : s ∈ [t0, T ]}, where

H±
s (t) = ±(t − s)+,(7.11)

noting that H±
T ≡ 0. Note then that S∗

t0
consists of precisely the measure flows of the form

(L(Wt + H±
s (t)))t∈[0,T ], for s ∈ [t0, T ].

On the other hand, suppose we construct the natural n-particle system

dXi
t = α∗

t0

(
t,μn

t

)
dt + dWi

t , Xi
0 = 0,μn

0 = 1

n

n∑
k=1

δXk
t
.

Averaging over i = 1, . . . , n, we find that the empirical mean satisfies

dμn
t = α∗

t0

(
t,μn

t

)
dt + 1√

n
dWt, μn

t = 0,(7.12)

where Wt = 1√
n

∑n
k=1 Wk

t is a Brownian motion. One would expect that as n → ∞ the limit

points of (μn
t )t∈[0,T ] are supported on solutions of the ODE (7.10). But, in fact, this is a well

understood example of the “regularization by noise” phenomenon, and a particular mixture
is picked out in the limit n → ∞. Indeed, the law of (μn

t )t∈[0,T ] converges to the mixture
1
2δH+

t0
+ 1

2δH−
t0

; this was proven in [64] in the case t0 = 0, and the extension to general t0 is

straightforward. In addition, one can deduce from this that the full measure flow μn, not just
its mean, converges in law in C([0, T ];P(Rd)) to μ defined in (7.7).

In light of this discussion, and after studying the proof of Theorem 2.12, it is natural to
guess that

α
n,i
t0

(t,x) := α∗
t0

(
t,

1

n

n∑
k=1

xk

)
(7.13)

defines an approximate (Markovian) Nash equilibrium for the n-player game, for any t0 ∈
[0, T ]. For t0 = T this is true and follows from Theorem 2.12, because the MFE μt = L(Wt)

is strong in this case. For general t0 ∈ [0, T ) it is not as clear, and we have resolved only the
t0 = 0 case:

PROPOSITION 7.2. Let αn = (α
n,1
0 , . . . , α

n,n
0 ), where α

n,i
0 are defined as in (7.13) with

t0 = 0. Then there exists εn ≥ 0 with εn → 0 such that αn is a Markovian εn-Nash equilibrium
for each n. Moreover, the law of the Cd -valued random variable (μn

t [αn])t∈[0,T ] converges to
1
2δH+

0
+ 1

2δH−
0

.
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REMARK 7.3. On the other hand, suppose instead that we take γ to be 1, −1, or 0 with
P(γ = 1) = P(γ = −1) = p < 1/2 so that Eγ = 0 and P(γ = 0) > 0. Carrying out the exact
same construction as above, we arrive at another weak MFE in which (μ,X∗) once again
obeys the dynamics

dX∗
t = α∗

t0
(t,μt ) dt + dWt, X∗

0 = 0,μt = L
(
Xt | Fμ

t

)
, a.s.,∀t ∈ [0, T ],

and again with μ satisfying both (7.8) and (7.7). The point is that in this case the law of
(μt )t∈[0,T ] is given by the mixture pδH+

t0
+ pδH−

t0
+ (1 − 2p)δ0. This is not the mixture

picked out in the limit from the n-particle system (7.12), in which we saw that the law of μn

converges to 1
2δH+

t0
+ 1

2δH−
t0

. In this case, it is not clear if this particular weak MFE can arise

as the limit of n-player approximate equilibria, but the naive construction certainly fails.

PROOF OF PROPOSITION 7.2. Recall that our weak MFE μ satisfies μt = γ t , where
P(γ = 1) = P(γ = −1) = 1/2. The final claim of the Proposition, that the law of μn[αn]
converges to 1

2δH+
0

+ 1
2δH−

0
, was shown in [64].

Define

εn := sup
β∈AMn

J n
1
(
β,α

n,2
0 , . . . , α

n,n
0

)− Jn
1
(
αn).

Note that εn ≥ 0, and by symmetry it holds for any k ∈ {1, . . . , n} that

εn = sup
β∈AMn

J n
k

(
α

n,1
0 , . . . , α

n,k−1
0 , β,α

n,k+1
0 , . . . , α

n,n
0

)− Jn
k

(
αn).

Hence, αn = (α
n,1
0 , . . . , α

n,n
0 ) is an εn-Nash equilibrium. It remains to show that εn → 0.

A direct calculation, using symmetry and the fact that |μn
t [αn]| → t in law, shows that

Jn
1
(
α

n,1
0 , . . . , α

n,n
0

)= E
[
X1

T

[
αn]μn

T

[
αn]]= E

[∣∣μn
T

[
αn]∣∣2]→ T 2

as n → ∞. Hence, to show that εn → 0, it suffices to show that

lim sup
n→∞

sup
β∈AMn

J n
1
(
β,αn,2, . . . , αn,n)≤ T 2.(7.14)

To this end, for each n find βn ∈ AMn such that

sup
β∈AMn

J n
1
(
β,α

n,2
0 , . . . , α

n,n
0

)≤ Jn
1
(
βn,α

n,2
0 , . . . , α

n,n
0

)+ 1

n
.(7.15)

Abbreviate Xn = X1[(βn,α
n,2
0 , . . . , α

n,n
0 )], Yn = μn[(βn,α

n,2
0 , . . . , α

n,n
0 )]. Abuse notation

by writing βn
t = βn(t,Xt [(βn,α

n,2
0 , . . . , α

n,n
0 )]). Then

dXn
t = βn

t dt + dW 1
t ,

dY n
t =

(
1

n
βn

t + n − 1

n
sgn
(
Yn

t

))
dt + 1

n

n∑
k=1

dWk
t .

Finally, we view βn as a random variable with values in L2
1 := L2([0, T ]; [−1,1]). Equip

L2
1 with the subspace topology inherited from the weak topology of the Hilbert space

L2([0, T ];R), and note that L2
1 is then compact and metrizable.

LEMMA 7.4. The sequence (Xn,Y n,W 1, βn) of C × C × C × L2
1-valued random vari-

ables is tight, and every weak limit (X,Y,W,β) satisfies:
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(i) L(Y ) = 1
2δH+

0
+ 1

2δH−
0

, where H±
0 are defined in (7.11).

(ii) The following equations hold, for t ∈ [0, T ]:
Xt =

∫ t

0
βs ds + Wt, Yt =

∫ t

0
sgn(Ys) ds.

(iii) W is a Brownian motion with respect to the filtration F = (Ft )t∈[0,T ] defined by Ft =
σ(Xs,Ys,Ws,βs : s ≤ t).

(iv) Y and W are independent.

PROOF. Tightness follows from standard arguments. Let (X,Y,W,β) denote any limit
point. Clearly (iii) holds. We first check that (i) holds by showing that the law of Yn con-
verges weakly to 1

2δH+
0

+ 1
2δH−

0
. Suppose that (Xn,Y n,W 1, . . . ,n , βn) are defined on the

filtered probability space probability space (	n,Fn,Fn,Pn). Define the Brownian motion
Wt = 1√

n

∑n
i=1 Wi

t . On this space, let Zn denote the unique strong solution of the SDE

dZn
t = sgn

(
Zn

t

)
dt + 1√

n
dWt .

We know from [64] that Pn ◦ (Zn)−1 → 1
2δH+

0
+ 1

2δH−
0

. Define an equivalent probability
measure Qn by setting

dQn

dPn
= exp

(
1√
n

∫ T

0

(
βn

t − sgn
(
Zn

t

))
dWt − 1

2n

∫ T

0

(
βt − sgn

(
Zn

t

))2
dt

)
.

By Girsanov’s theorem and uniqueness in law of the SDEs, we have Qn ◦ (Zn)−1 = Pn ◦
(Y n)−1. This yields the following bound on relative entropy:

EPn
[
dQn

dPn
log

dQn

dPn

]
= −EQn

[
log

dPn

dQn

]
= 1

2n
EQn

∫ T

0

(
βt − sgn

(
Zn

t

))2
dt ≤ 2T

n
.

By Pinsker’s inequality, the total variation norm of Qn − Pn converges to zero. Because Pn ◦
(Zn)−1 → 1

2δH+
0

+ 1
2δH−

0
, we conclude that also Qn ◦ (Zn)−1 → 1

2δH+
0

+ 1
2δH−

0
. Recalling

that Qn ◦ (Zn)−1 = Pn ◦ (Y n)−1, this completes the proof of (i).
With (i) now established, we prove (ii). It is clear that Xt = ∫ t

0 βs ds + Wt holds, because
Xn

t = ∫ t
0 βn

s ds + Wn
t for each n and because L2

1 � q 
→ ∫ t
0 qs ds ∈ R is (weakly) continuous

for each t . Finally, note that (i) implies that Yt = ∫ t
0 sgn(Ys) ds for all t .

To check property (iii), note that the law of W is clearly equal to Wiener measure, so we
must only show that Wt − Ws is independent of Fs for each t > s ≥ 0. This argument is
straightforward and thus omitted.

We finally show that (iv) follows from the other claims. Because W is F-Brownian, it
is also F+-Brownian, where F+ = (Ft+)t∈[0,T ] denotes the right-continuous augmentation,
defined by Ft =⋂

ε>0 Ft+ε . In particular, W is independent of F0+. Now, from (i) we may
write Yt = t sgn(YT ) a.s., from which we conclude that the entire process Y is a.s.-measurable
with respect to F0+. Hence, Y and W are independent. �

With this Lemma in hand, we now complete the proof of Proposition 7.2. Working with a
subsequence of (Xn,Y n,W 1, βn) and its limit (X,Y,W,β), we have

lim
n

J n
1
(
βn,α

n,2
0 , . . . , α

n,n
0

)= lim
n

E
[
Xn

T Yn
T

]
= E[XT YT ] = E

[
YT

∫ T

0
βt dt + YT WT

]
= E

[
YT

∫ T

0
βt dt

]
≤ TE|YT | = T 2,
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with the limit taken along the appropriate subsequence. Note that the second equality is valid
in light of the simple estimate supn∈N E[|Xn

T Yn
T |p] < ∞ for any p > 1, which provides the

uniform integrability needed to pass to the limit. Finally, because this holds for each conver-
gent subsequence, we conclude finally from

lim sup
n→∞

Jn
1
(
βn,α

n,2
0 , . . . , α

n,n
0

)≤ T 2.

Recalling (7.14) and (7.15), this completes the proof. �

APPENDIX A: SDES WITH RANDOM COEFFICIENTS

This section develops some intuitively clear but somewhat delicate technical points re-
garding SDEs with random coefficients. It will be useful to write FE = (FE

t )t∈[0,T ] for the
canonical filtration on the path space C([0, T ];E), defined for any Polish space E.

For the rest of the section, fix a complete separable metric space E (which in applications
in this paper will be E =P(Rd)). As in Definition 2.4, let us say that a function B : [0, T ] ×
Rd × C([0, T ];E) → Rd is semi-Markov if it is Borel measurable and satisfies F(t, x, e) =
F(t, x, e′) whenever (t, x) ∈ [0, T ] ∈Rd and e, e′ ∈ C([0, T ];E) satisfy es = e′

s for all s ≤ t .
Fix throughout the section one such semi-Markov function B , which we assume is bounded.
Equip C([0, T ];E) with the supremum distance. We fix also a complete filtered probability
space (	,F,F,P) supporting a d-dimensional F-Brownian motion W as well as an F0-
measurable Rd -valued random variable ξ with law λ.

The goal of this section is to justify the following points:

(1) Deterministic well-posedness: For a deterministic e ∈ C([0, T ];E), there is a unique
strong solution of the SDE

dXe
t = B

(
t,Xe

t , e
)
dt + dWt, Xe

0 = ξ.(A.1)

Let P e ∈ P(Cd) denote its law. By “strong solution” here we mean Xe is adapted to the
complete filtration generated by the process (ξ,Wt)t∈[0,T ].

(2) Stochastic well-posedness: If η is a C([0, T ];E)-valued random variable with law M ,
independent of (ξ,W), then there is a unique strong solution of the SDE

dXt = B(t,Xt , η) dt + dWt, X0 = ξ.(A.2)

By “strong solution” we mean X is adapted to the complete filtration generated by the process
(ξ,Wt , ηt )t∈[0,T ].

(3) Consistency: The map C([0, T ];E) � e 
→ P e ∈ P(Cd) is universally measurable and,
in the notation of part (2), provides a version of the conditional law of X given η. That is, for
each bounded measurable function ϕ on C([0, T ];E) × Cd , we have

E
[
ϕ(η,X)

]= ∫
C([0,T ];E)

M(de)

∫
Cd

P e(dx)ϕ(e, x).

(4) Stability: Given a uniformly bounded sequence of semi-Markov functions Bn :
[0, T ] × Rd × C([0, T ];E) → Rd satisfying Bn(t, x, e) → B(t, x, e) for M-a.e. e and
Lebesgue-a.e. (t, x), we have

lim
n→∞E

[
ϕ
(
η,Xn)]= E

[
ϕ(η,X)

]
for each bounded measurable function ϕ : C([0, T ];E) × Cd → R, where Xn is the unique
strong solution of

dXn
t = Bn

(
t,Xn

t , η
)
dt + dWt, Xn

0 = ξ.(A.3)
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(5) Equivalence to forward equations: Suppose a continuous P(Rd)-valued process μ =
(μt )t∈[0,T ] is a weak solution of the randomized Fokker–Planck equation associated to (A.2).
Precisely, suppose μ is adapted to the filtration generated by η, and it holds almost surely
that, for all t ∈ [0, T ] and ϕ ∈ C∞

c (Rd),

〈μt,ϕ〉 = 〈λ,ϕ〉 +
∫ t

0

〈
μs,B(s, ·, η) · ∇ϕ(·) + 1

2
�ϕ(·)

〉
ds.

Then μt = L(Xt | (ηs)s≤t ) a.s., for each t , where X is as in (A.2).

These results are applied in the text in the particular case E = P(Rd), and with μ = η in step
(5), but we find it clearer and perhaps useful on its own to work in this more general setting.

A.1. Deterministic well-posedness. Part (1) of the program follows from the result of
Veretennikov [66] (see also [49], Theorem 2.1). That is, for each e ∈ C([0, T ];E) there ex-
ists a unique strong solution Xe of the SDE (A.1). Let P e = P ◦ (Xe)−1. In particular, path-
wise uniqueness holds for this SDE, in the following sense: Suppose our probability space
(	,F,F,P) supports two continuous F-adapted processes X1, X2 which both satisfy

dXi
t = B

(
t,Xi

t , e
)
dt + dWt, Xi

0 = ξ, i = 1,2,

and also as usual the process W is an F-Brownian motion independent of ξ . Then X1 = X2

a.s., and the law of X1 is precisely P e.
We would like to be able to construct a version of (t,ω, e) 
→ Xe

t (ω) which is jointly
measurable and which depends in an adapted fashion on e, but it is not clear how to do
this. Uniqueness of the strong solution Xe easily yields P(Xe

s = Xẽ
s ,∀s ≤ t) = 1 whenever

t ∈ [0, T ] and e, ẽ ∈ C([0, T ];E) satisfy es = ẽs for all s ≤ t . But the null set depends on
(t, e, ẽ), and we thus face a continuum of null sets. There is no continuity in e to exploit, as
we have made no continuity assumptions on B , and this is the main technical impediment to
our program (1–5). Instead, we work with the law P e instead of the process Xe itself.

In the following, for each t ∈ [0, T ] we let FE

t denote the universal completion of FE
t .

That is, if NM
t := {S ⊂ C([0, T ];E) : ∃S′ ∈ FE

t , S ⊂ S′,M(S′) = 0} denotes the set of M-
null sets of FE

t , then

FE

t := ⋂
M∈P(C([0,T ];E))

σ
(
FE

t ∪NM
t

)
.

We will make implicit use of the well known fact that the following σ -fields coincide, for any
Polish space E′ (see [5], Corollary 7.29.1):

• The Borel σ -field on P(E′) induced by the topology of weak convergence.
• The σ -field generated by the maps P(E′) � m 
→ 〈m,ϕ〉, where ϕ is a bounded continuous

function on E′.
• The σ -field generated by the maps P(E′) � m 
→ m(S), where S is a Borel set of E′.

LEMMA A.1. The map C([0, T ];E) � e 
→ P e ∈ P(Cd) is universally measurable.
Moreover, this map is adapted in the sense that, for every t ∈ [0, T ] and every S ∈ FRd

t ,

the map e 
→ P e(S) is FE

t -measurable.

PROOF. We first prove the claims under the additional assumption that B(t, x, e) is con-
tinuous in e for each (t, x). We claim that then e 
→ P e is continuous. To see this, suppose
en → e in C([0, T ];E). It then holds for bounded continuous function ϕ : [0, T ]×Rd →Rd

with compact support that

lim
n→∞

∫ T

0

∫
Rd

B
(
t, x, en) · ϕ(t, x) dx dt =

∫ T

0

∫
Rd

B(t, x, e) · ϕ(t, x) dx dt.
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It follows from [62], Theorem 11.3.3, that P en → P e. Moreover, for t ∈ [0, T ], uniqueness
of the SDE ensures that if es = ẽs for s ≤ t then Xe

s = Xẽ
s for all s ≤ t , a.s. Hence, if S ∈ FRd

t ,
then P e(S) = P(Xe ∈ S) = P(Xẽ ∈ S) = P ẽ(S), and so e 
→ P e(S) is FE

t -measurable.
We now address general B by an approximation argument. Fix a probability measure M ∈

P(C([0, T ];E)). Define the finite measure Q on [0, T ] ×Rd × C([0, T ];E) by setting, for
Borel sets S,

Q(S) =
∫
C([0,T ];E)

∫
Rd

∫ T

0
1S(t, x, e) exp

(−|x|2)dt dxM(de).

We may then find a sequence of continuous semi-Markov functions Bn which converges Q-
almost everywhere to B . Define P e

n as the law of the corresponding SDE solution, that is,
P e

n = P ◦ (Xn,e)−1 where Xn,e is given by

dX
n,e
t = Bn

(
t,X

n,e
t , e

)
dt + dWt, X

n,e
0 = ξ.

As argued in the previous paragraph, e 
→ P e
n is continuous for each n. Moreover, it holds for

M-almost every e ∈ C([0, T ];E) that

lim
n→∞

∫ T

0

∫
Rd

Bn(t, x, e) · ϕ(t, x) dx dt =
∫ T

0

∫
Rd

B(t, x, e) · ϕ(t, x) dx dt

for each bounded continuous function ϕ : [0, T ]×Rd →Rd with compact support. It follows
again from [62], Theorem 11.3.3, that P e

n → P e for M-a.e. e ∈ C([0, T ];E). Hence, the map
e 
→ P e agrees M-a.e. with a Borel measurable function, so it is measurable with respect
to the M-completion of the Borel σ -field of C([0, T ];E). This holds for every choice of
M ∈ P(C([0, T ];E)), which proves the first claim. The second claim is proven similarly:
For t ∈ [0, T ], we know from above that e 
→ P e

n (S) is Fe
t -measurable for S ∈ FRd

t . Hence,

for any bounded continuous FRd

t -measurable function ϕ : Cd → R, we have limn〈P e
n ,ϕ〉 =

〈P e,ϕ〉 for M-a.e. e, and we deduce that e 
→ 〈P e,ϕ〉 is FE

t -measurable. �

A.2. Stochastic well-posedness. We now turn to steps (2) and (3) of the program out-
lined at the beginning of the section, by proving weak existence and pathwise unique-
ness for the SDE (A.2) and then identifying the law of the unique solution as L(η,X) =
M(de)P e(dx). As the SDE (A.2) has random coefficients, the original form of the Yamada–
Watanabe theorem does not apply, and we instead use the generalization due to Jacod–Mémin
[47] to conclude, as usual, that weak existence and pathwise uniqueness are together equiva-
lent to uniqueness in law and existence of a strong solution. The first lemma checks that the
SDE (A.2) is pathwise unique and identifies its law (rather, it satisfies very good pathwise
uniqueness in the language of [47], Definition 2.24).

LEMMA A.2. Let M ∈ P(C([0, T ];E)). Suppose our filtered probability space
(	,F,F,P) supports an F-adapted continuous E-valued process η with law M , independent
of (ξ,W), as well as two d-dimensional F-adapted processes (X1,X2) satisfying

dXi
t = B

(
t,Xi

t , η
)
dt + dWt, Xi

0 = ξ, i = 1,2.

Define F ξ,η,W
t := σ(ξ, ηs,Ws : s ≤ t), and assume that (X1

s ,X
2
s )s∈[0,t] is conditionally inde-

pendent of F ξ,η,W
T given F ξ,η,W

t , for each t ∈ [0, T ]. Then X1 = X2 a.s., and P◦ (η,Xi)−1 =
M(de)P e(dx) for each i = 1,2.

PROOF. By assumption, P ◦ η−1 = M . Let us show that e 
→ P e is a version of the
conditional law P(Xi ∈ · | η = e). Define the regular conditional law C([0, T ];E) � e 
→
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Qe = P(· | η = e) ∈ P(	). Because W , ξ and η are independent, we have Qe ◦ (ξ,W)−1 =
P ◦ (ξ,W)−1 for M-a.e. e. Moreover, the SDE

Xi
t = ξ +

∫ t

0
B
(
s,Xi

s, e
)
ds + Wt ∀t ∈ [0, T ],

holds almost surely under Qe, for M-a.e. e.
We would like to conclude from pathwise uniqueness (see the first paragraph of Sec-

tion A.1) that Qe(X
1 = X2) = 1 and Qe ◦ (Xi)−1 = P e for M-a.e. e. To do so we need

only to show that W is an F̃-Brownian motion under Qe, for M-a.e. e, where F̃ = (F̃t )t∈[0,T ]
denotes the filtration (on 	) generated by X1, X2 and W , that is, F̃t = σ(Xs,Ws : s ≤ t).
This amounts to proving that for each t ∈ [0, T ], each σ(X1

s ,X
2
s : s ≤ t)-measurable ran-

dom variable ϕt(X), each σ(Ws : s ≤ t)-measurable random variable ht (W), and each
σ(Ws − Wt : s ∈ [t, T ])-measurable random variable ht+(W), we have

EQe
[
ϕt(X)ht (W)ht+(W)

]= EQe
[
ϕt(X)ht (W)

]
EQe

[
ht+(W)

]
.

To prove this, notice that if ϕ : C([0, T ];E) → R is any bounded measurable function, then
(taking expectations under P)

E
[
ϕ(η)ϕt (X)ht (W)ht+(W)

]= E
[
E
[
ϕt (X)|F ξ,η,W

T

]
ϕ(η)ht (W)ht+(W)

]
= E

[
E
[
ϕt (X)|F ξ,η,W

t

]
ϕ(η)ht (W)ht+(W)

]
= E

[
E
[
ϕt (X)|F ξ,η,W

t

]
ϕ(η)ht (W)

]
E
[
ht+(W)

]
= E

[
ϕ(η)ϕt (X)ht (W)

]
E
[
ht+(W)

]
.

Indeed, the second and final lines follow from the assumed conditional independence of
(X1

s ,X
2
s )s≤t and F ξ,η,W

T given F ξ,η,W
t , while the second to last identity follows from the

fact that (ξ, η, (Ws)s≤t ) and (Ws − Wt)s≥t are independent, which is an easy consequence of
the independence of ξ , η and W . We conclude that

E
[
ϕt(X)ht (W)ht+(W) | η]= E

[
ϕt(X)ht (W) | η]E[ht+(W)

]
a.s.,

which completes the proof. �

Now that we have checked pathwise uniqueness, we turn to the problem of existence. The
following lemma shows that we can construct (η,X) with law M(de)P e(dx) so that the SDE
(A.2) does indeed hold, as well as the conditional independence property of Lemma A.2. This
will be enough to deduce strong existence, using a form of the Yamada–Watanabe theorem
[47], Theorem 2.25.

LEMMA A.3. Let M ∈ P(C([0, T ];E)). Suppose our filtered probability space
(	,F,F,P) supports an F-adapted continuous E-valued process η with law M , independent
of (ξ,W). Then there exists a continuous F-adapted process X solving

dXt = B(t,Xt , η) dt + dWt, X0 = ξ,

such that P ◦ (η,X)−1 = M(de)P e(dx). In particular, X is adapted to the complete filtration
generated by the process (ξ, ηt ,Wt)t∈[0,T ].

PROOF. Following the strategy described above, we begin by building a weak solution.
We work on the canonical space 	 = C([0, T ];E) × Cd . Let (η,X) denote the canonical
(coordinate) processes, and let F = (F t )t∈[0,T ] denote the filtration they generate, which can



1752 D. LACKER

be written as F t = FE
t ⊗FRd

t . Define P(de, dx) = M(de)P e(dx). For each t ∈ [0, T ], define
Wt : 	 →R by

Wt(e, x) = xt − x0 −
∫ t

0
B(s, xs, e) ds,

and define ξ := X0. The process W = (Wt)t∈[0,T ] is F-progressively measurable with respect

to the canonical filtration. Note that W(e, ·) is a Brownian motion on (Cd,FRd
,P e), for each

e ∈ C([0, T ];E), by definition of P e. It follows easily that W is an F-Brownian motion
under P. Moreover, ξ , η and W are independent. By construction, the SDE holds,

dXt = B(t,Xt , η) dt + dWt, X0 = ξ.

We will show that (Xs)s≤t is conditionally independent of F ξ,η,W
T given F ξ,η,W

t for each t ,

where F ξ,η,W
t := σ(ξ, ηs,Ws : s ≤ t). To prove this, fix t ∈ [0, T ] as well as random variables

ht (W), ht+(W), ϕ0(ξ), ϕt(X), ψt(η), and ψT (η), measurable with respect to (Ws)s≤t , (Ws −
Wt)s∈[t,T ], ξ , (Xs)s≤t , (ηs)s≤t , and η, respectively. Then, by definition of P,

(A.4)

EP[ht (W)ht+(W)ϕ0(ξ)ϕt (X)ψt(η)ψT (η)
]

=
∫
C([0,T ];E)

M(de)ψt(e)ψT (e)

∫
Cd

P e(dx)ϕ0(x0)ϕt (x)ht

(
W(e, x)

)
ht+

(
W(e, x)

)
= 〈W, ht+〉

∫
C([0,T ];E)

M(de)ψt(e)ψT (e)

∫
Cd

P e(dx)ϕ0(x0)ϕt (x)ht

(
W(e, x)

)
,

where W denotes Wiener measure on Cd , and where the last line used the fact that W(e, ·) is
a Brownian motion on (Cd,FRd

,P e), mentioned above. Now, the independence of ξ , η and
W easily implies

EP[ψT (η) | F ξ,η,W
t

]= EP[ψT (η) | Fη
t

]=: ψ̃t (η).

Moreover, because the function Cd � x 
→ ϕ0(x0)ϕt (x)ht (W(e, x)) is FRd

t -measurable for
each fixed e, the adaptedness of e 
→ P e proven in Lemma A.1 implies that the function

C
([0, T ];E) � e 
→

∫
Cd

P e(dx)ϕ0(x0)ϕt (x)ht

(
W(e, x)

)
is FE

t -measurable, and in particular it agrees M-a.e. with an FE
t -measurable function. Hence,

we may condition in the right-hand side of (A.4) to get

〈W, ht+〉
∫
C([0,T ];E)

M(de)ψt(e)ψ̃t (e)

∫
Cd

P e(dx)ϕ0(x0)ϕt (x)ht

(
W(e, x)

)
,

and we deduce from (A.4) that

EP[ht (W)ht+(W)ϕ0(ξ)ϕt (X)ψt(η)ψT (η)
]

= EP
[
ht+(W)

]
EP
[
ht (W)ϕ0(ξ)ϕt (X)ψt(η)ψ̃t (η)

]
.

Finally, recall that

ψ̃t (η)EP[ht+(W)
]= EP[ψT (η) | F ξ,η,W

t

]
EP[ht+(W) | F ξ,η,W

t

]
,

which yields

EP[ht (W)ht+(W)ϕ0(ξ)ϕt (X)ψt(η)ψT (η)
]

= EP[ht (W)ϕ0(ξ)ϕt (X)ψt(η)EP[ψT (η) | F ξ,η,W
t

]
EP[ht+(W) | F ξ,η,W

t

]]
= EP[ht (W)ψt(η)ϕ0(ξ)EP[ϕt (X) | F ξ,η,W

t

]
EP[ψT (η) | F ξ,η,W

t

]
EP[ht+(W) | F ξ,η,W

t

]]
.

This proves the desired conditional independence (and in fact a bit more).
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Finally, we complete the proof in the manner announced before the statement of the
lemma. It is well known (see, e.g., [7], Theorem 3) that the following are equivalent:

(1) Every Fξ,η,W -martingale is an Fξ,η,W,X-martingale, where Fξ,η,W,X =
(F ξ,η,W,X

t )t∈[0,T ] is defined by F ξ,η,W,X
t = σ(ξ, ηs,Ws,Xs : s ≤ t).

(2) (Xs)s≤t is conditionally independent of F ξ,η,W
T given F ξ,η,W

t for each t ∈ [0, T ].
This shows that our conditional independence property is in fact equivalent to the notion of
very good solution measure in [47], Definition 1.7. Thus, by [47], Theorem 2.25, we conclude
that the solution measure is in fact strong, which means in our context that X must be adapted
with respect to the P-completion of Fξ,η,W . �

A.3. Stability. We turn next to part (4) of the outline from the beginning of the section.
Suppose Bn : [0, T ] × Rd × C([0, T ];E) → Rd is semi-Markov, for each n. Assume that
Bn are uniformly bounded and that Bn(t, x, e) → B(t, x, e), for M-a.e. e ∈ C([0, T ];E) and
Lebesgue-a.e. (t, x) ∈ [0, T ]×Rd . Thanks to the work of the previous section, we may define
Xn as the unique strong solution of the SDE (A.3) corresponding to coefficient Bn. That is,

dXn
t = Bn

(
t,Xn

t , η
)
dt + dWt, Xn

0 = ξ.

LEMMA A.4. Let M ∈ P(C([0, T ];E)). Suppose our filtered probability space
(	,F,F,P) supports an F-adapted continuous E-valued process η with law M , independent
of (ξ,W). Then, for every bounded measurable function h : C([0, T ];E)×Cd →R, we have

lim
n→∞E

[
ϕ
(
η,Xn)]= E

[
ϕ(η,X)

]
.(A.5)

In particular, (η,Xn) converges in law to (η,X).

PROOF. From Lemmas A.2 and A.3, we know that P ◦ (η,Xn)−1 = M(de)P e
n (dx),

where we define P e
n := P ◦ (Xn,e)−1 as the law of the unique strong solution of the SDE

dX
n,e
t = Bn

(
t,X

n,e
t , e

)
dt + dWt, X

n,e
0 = ξ.

By assumption, for any bounded continuous function ϕ : [0, T ] × Rd → Rd with compact
support, we have

lim
n→∞

∫ T

0

∫
Rd

Bn(t, x, e) · ϕ(t, x) dx dt =
∫ T

0

∫
Rd

B(t, x, e) · ϕ(t, x) dx dt,

for M-a.e. e. It follows from [62], Theorem 11.3.3, that P e
n → P e for M-a.e. e. It follows

immediately that M(de)P e
n (dx) → M(de)P e(dx) weakly. To prove that convergence holds

for bounded measurable test functions, we need a bit more. Let Wλ ∈ P(Cd) denote the law
of a d Brownian motion started from initial law λ. Then

dP e
n

dWλ

(w) = exp
(∫ T

0
Bn(t,wt , e) dwt − 1

2

∫ T

0

∣∣Bn(t,wt , e)
∣∣2 dt

)
.

Because Bn is uniformly bounded, it is straightforward to show that

sup
e∈C([0,T ];E)

sup
n∈N

∫
Cd

∣∣∣∣ dP e
n

dWλ

∣∣∣∣2dWλ < ∞.

This implies that the family {dP e
n/dWλ : n ∈ N, e ∈ C([0, T ];E)} is precompact in L2(Wλ)

with the weak topology, and this is enough to let us upgrade the convergence. Indeed, we
conclude that

lim
n→∞

∫
Cd

h dP e
n =

∫
Cd

h dP e ∀e ∈ C
([0, T ];E),
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not only for bounded continuous functions h : Cd → R but also for bounded measurable
functions. Finally, if h : C([0, T ];E) × Cd → R is bounded and measurable, we conclude
from dominated convergence that

lim
n→∞

∫
C([0,T ];E)

∫
Cd

h(e, x)P e
n (dx)M(de) =

∫
C([0,T ];E)

∫
Cd

h(e, x)P e(dx)M(de).

This is equivalent to the claimed (A.5). �

A.4. Forward equations. Let E and B be as in the previous section. Let λ denote the
law of the initial state ξ . Consider the problem of finding (mt )t∈[0,T ] ∈ C([0, T ];P(Rd))

such that

〈mt,ϕ〉 = 〈λ,ϕ〉 +
∫ t

0

〈
ms,B(s, ·, e) · ∇ϕ(·) + 1

2
�ϕ(·)

〉
ds,(A.6)

for all t ∈ [0, T ] and ϕ ∈ C∞
c (Rd). This is nothing but the Fokker–Planck equation associated

with the SDE (A.1). One solution is provided by the marginal flow (P e
t = L(Xe

t ))t∈[0,T ], and
the following gives uniqueness.

LEMMA A.5. Fix e ∈ C([0, T ];E), and suppose m ∈ C([0, T ];P(Rd)) satisfies (A.6)
for every t ∈ [0, T ] and ϕ ∈ C∞

c (Rd). Then mt = P e
t for all t ∈ [0, T ].

PROOF. It is well known that the solution of a Fokker–Planck equation, in very general
settings, can be represented as the marginal laws of a solution of the corresponding martingale
problem. See, for example, [31], Theorem 2.6, or [65], Theorem 2.5. In our context, the
martingale problem has a unique solution given by P e, and the claim follows. �

LEMMA A.6. Suppose our filtered probability space (	,F,F,P) supports an F-adapted
continuous E-valued process η, independent of (ξ,W), as well as a continuous P(Rd)-valued
process μ which is adapted to the filtration generated by η. Suppose it holds almost surely
that, for all t ∈ [0, T ] and ϕ ∈ C∞

c (Rd),

〈μt,ϕ〉 = 〈λ,ϕ〉 +
∫ t

0

〈
μs,B(s, ·, η) · ∇ϕ(·) + 1

2
�ϕ(·)

〉
ds.(A.7)

Then μt = P
η
t for all t ∈ [0, T ] a.s. Moreover, we may find a continuous process X, adapted

to the complete filtration generated by the process (ξ,Wt , ηt )t∈[0,T ], such that

dXt = B(t,Xt , η) dt + dWt, X0 = ξ,(A.8)

and also L(Xt | η) = L(Xt | (ηs)s≤t ) = μt a.s. for each t .

PROOF. Let M ∈ P(C([0, T ];E)) denote the law of η. As we assumed μ is adapted to
the filtration of η, we may write μ = μ̂(η) a.s., where μ̂ : C([0, T ];E) → C([0, T ];P(Rd))

is an adapted map in the sense that μ̂−1(S) ∈ FP(Rd )
t for each S ∈ FE

t and each t ∈ [0, T ].
Then because of (A.7), for M-a.e. e ∈ C([0, T ];E) and every ϕ ∈ C∞

c (Rd) and t ∈ [0, T ] it
holds that 〈

μ̂t (e), ϕ
〉= 〈λ,ϕ〉 +

∫ t

0

〈
μ̂s(e),B(s, ·, e) · ∇ϕ(·) + 1

2
�ϕ(·)

〉
ds.

From Lemma A.5 we conclude that μ̂t (e) = P e
t for each t ∈ [0, T ]. As this holds for almost

every e, we deduce the first claim: μt = P
η
t for all t , a.s.

Now, using Lemmas A.2 and A.3, we may safely define X to be the unique strong solution
of the SDE (A.8), and we know that P ◦ (η,X)−1 = M(de)P e(dx). This last identity is
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equivalent to L(X | η) = P η a.s. Marginalizing at time t and using the conclusion of the
previous paragraph, we find L(Xt | η) = P

η
t = μt for all t , a.s.

Lastly, to deduce that L(Xt | η) = L(Xt | (ηs)s≤t ), note that for any bounded measurable
ϕ : Rd →R we have E[ϕ(Xt) | η] = 〈μt,ϕ〉. As μt is (ηs)s≤t -measurable, we may condition
on (ηs)s≤t to get E[ϕ(Xt) | (ηs)s≤t ] = 〈μt,ϕ〉. �

We finally note how Lemma A.6 specializes in the most important situation for this paper,
where E = P(Rd) and the processes η and μ are identical. Assume now that B : [0, T ] ×
Rd × C([0, T ];P(Rd)) → Rd is a given bounded semi-Markov function (in the sense of
Definition 2.4).

COROLLARY A.7. Suppose our filtered probability space (	,F,F,P) supports an F-
adapted continuous P(Rd)-valued process μ, independent of (ξ,W). Suppose it holds almost
surely that, for all t ∈ [0, T ] and ϕ ∈ C∞

c (Rd),

〈μt,ϕ〉 = 〈λ,ϕ〉 +
∫ t

0

〈
μs,B(s, ·,μ) · ∇ϕ(·) + 1

2
�ϕ(·)

〉
ds.(A.9)

Then we may find a continuous process X, adapted to the complete filtration generated by
the process (ξ,Wt ,μt)t∈[0,T ], such that

dXt = B(t,Xt ,μ)dt + dWt, X0 = ξ,

and also L(Xt | μ) = L(Xt | Fμ
t ) = μt a.s. for each t , where Fμ

t = σ(μs : s ≤ t).

APPENDIX B: JOINT MEASURABILITY OF REGULAR CONDITIONAL LAWS

This section provides the details of a technical point used in various places in the paper,
notably in the proof of Lemma 5.3. Therein, we wanted to define a regular conditional law
in a way that is jointly measurable with respect to the underlying probability law. The first
lemma in this direction is likely known, but we include a proof. Recall that for a Polish space
E we always equip P(E) with the topology of weak convergence and the corresponding
Borel σ -field.

LEMMA B.1. Let E and E′ be Polish spaces, and let π : E → E′ be continuous. Then
there exists a measurable map � : P(E) × E′ → P(E) such that∫

E
F(x)h

(
π(x)

)
m(dx) =

∫
E

(∫
E

F d�
(
m,π(x)

))
h
(
π(x)

)
m(dx),

for all bounded measurable F : E →R and h : E′ →R.

PROOF. To write this in a more probabilistic notation, let X : E → E denote the identity
map. What we must find is a version of the regular conditional law m(X ∈ · | π(X) = x′)
which is jointly measurable as a function of (x′,m) ∈ E′ ×P(E). We borrow a construction
of [56], Lemma 3.1. Because E′ is Polish, we may find a refining sequence of finite Borel
partitions (An

1, . . . ,A
n
n) of E′ such that

⋃
n σ (An

1, . . . ,A
n
n) generates the Borel σ -field. For

each n, define �n : P(E) × E′ → P(E) by

�n

(
m,x′)(·) =

n∑
k=1

m(· ∩ π−1(An
k))

m(π−1(An
k)

1An
k

(
x′),

where we adopt the convention 0/0 := 0. As E is Polish, we may find a countable se-
quence (ϕk) of bounded continuous functions such that P(E) � m 
→ (〈m,ϕk〉)k∈N ∈ RN
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is a homeomorphism to its image. Because the σ -algebras σ(An
1, . . . ,A

n
n) increase in n

by design, the supermartingale convergence theorem ensures that for each m ∈ P(E) the
limn

∫
ϕk d�n(m,x′) exists for m ◦ π−1-almost every x′ and is a version of the conditional

expectation Em[ϕk(X) | π(X) = x′]. Now, fixing x0 ∈ E arbitrarily, we may set

�
(
m,x′) :=

⎧⎨⎩lim
n

�n

(
m,x′) if the limit exists,

δx0 otherwise,

where the limit is in the sense of weak convergence. Then, with the help of the sequence (ϕk)

from above, we deduce that for each m ∈ P(E) the map x′ 
→ �(m,x′) is a version of the
regular conditional law m(X ∈ · | π(X) = x′). As �n is jointly measurable for each n, so too
is �. �

We now turn to the real purpose of this section. In the following, let 	 be a Polish space.
Let E be a complete and separable metric space, and let X = (Xt)t∈[0,T ] be a measurable
process. By measurable here we mean that the function X : [0, T ] × 	 → E is jointly Borel-
measurable. We show next how to construct a version of P(· | Xt = x) which is jointly mea-
surable in t , x, and the underlying probability measure P . Let EP [·] denote expectation with
respect to a probability measure P ∈ P(	).

LEMMA B.2. There exists a jointly measurable function � : [0, T ]×E ×P(	) → P(	)

such that, for every bounded measurable function F : [0, T ] × 	 → R and each P ∈ P(	),
we have

EP [F(t, ·) | Xt

]= ∫
	

F(t, ·) d�(t,Xt ,P ), P -a.s.,a.e. t ∈ [0, T ].

PROOF. Consider the measurable space 	 = [0, T ] × 	 and E = [0, T ] × E, and define
π : 	 → E by π(t,ω) = (t,Xt(ω)). Apply Lemma B.1 to find a measurable function � :
P(	) × E → P(	) such that for each P ∈ P(	) it holds that �(P , ·) is a version of the
conditional law P (· | π). Let U denote the uniform probability measure on [0, T ]. Then, for
P ∈ P(	) and bounded measurable functions F : 	 →R and h : E →R, we have

1

T
EP

∫ T

0
F(t, ·)h(t,Xt) dt

=
∫
	

∫ T

0
F(t,ω)h

(
π(t,ω)

)
U(dt)P (dω)

=
∫
[0,T ]×	

h
(
π(t,ω)

)(∫
	

F d�
(
U × P,π(t,ω)

))
(U × P)(dt, dω)

=
∫
[0,T ]×E

h(t, x)

(∫
	

F d�
(
U × P, (t, x)

))
(U × P) ◦ π−1(dt, dx)

=
∫
[0,T ]×E

h(t, x)

(∫
	

F d�(P, t, x)

)
(U × P) ◦ π−1(dt, dx),

where we define �̃ : P(	)×E → P(	) by setting �̃(P, t, x) := �(U ×P, (t, x)). Note next
that ∫

[0,T ]×E
g(t, x)(P × U) ◦ π−1(dt, dx) = 1

T
EP

∫ T

0
g(t,Xt) dt,

for any bounded measurable g : E →R. Hence, the above becomes

1

T
EP

∫ T

0
F(t, ·)h(t,Xt) dt = 1

T
EP

∫ T

0
h(t,Xt)

(∫
	

F d�̃(P, t,Xt)

)
dt.



CLOSED-LOOP MEAN FIELD GAME CONVERGENCE 1757

For a measure P ∈ P(	) = P([0, T ]×	), let P
T

and P
	

denote the [0, T ] and 	 marginals,
respectively. By choosing F depending only on t , we find that �̃(P, t,Xt)

T = δt a.s. for a.e.
t ∈ [0, T ]. Finally, define � : [0, T ] × E × P(	) → P(	) by marginalizing, for example,
setting

�(t, x,P ) := �̃(P, t, x)	.

Then

�̃(P, t,Xt) = �(t,Xt ,P ) × δt a.s., a.e. t ∈ [0, T ],
and we find

1

T
EP

∫ T

0
F(t, ·)h(t,Xt) dt = 1

T
EP

∫ T

0
h(t,Xt)

(∫
	

F(t, ·) d�(t,Xt ,P )

)
dt.

This is enough to complete the proof (see [8], Lemma 5.2). �

APPENDIX C: CONDITIONAL MEANS OF RANDOM MEASURES

This section gives some details regarding one additional technical point, relevant in various
applications of the Markovian projection Theorem 2.14 in settings involving relaxed controls,
which is to construct a measurable version of the conditional mean of a random measure.
This is formalized in the following lemma, stated in a setting abstract enough to allow for the
various applications we have in mind. This is implicit in many references on relaxed controls,
but we include the short proofs in the spirit of full transparency, as in the previous sections.

LEMMA C.1. Suppose � : E 
→ P(	) is a measurable map. Suppose also that K : 	 →
P(A) is measurable. Then there exists a measurable function  : E → P(A) such that, for
every bounded measurable function ϕ : E × A →R and every x ∈ E, we have∫

A
ϕ(x, a)(x)(da) =

∫
	

(∫
A

ϕ(x, a) dK(ω)(da)

)
�(x)(dω).

PROOF. It is useful here to recall the well-known equivalence stated just before
Lemma A.1. Define (x)(S) for Borel sets S ⊂ A and x ∈ E by setting

(x)(S) =
∫
	

K(ω)(S)�(x)(dω).

For each x ∈ E, it is clear that (x)(·) is a probability measure on A. On the other hand,
for each Borel set S ⊂ A, the map ω 
→ K(ω)(S) is Borel measurable, and thus so is x 
→
(x)(B). We conclude that  defines a measurable map from E to P(A), and the claimed
identity holds whenever ϕ(x, a) = 1S(a) for a Borel set S ⊂ A. It is straightforward to extend
this to any ϕ of the form ϕ(x, a) = ψ(a), for ψ : A → R bounded and measurable. Because
the identity holds pointwise, for each x ∈ E, we can then extend to general ϕ = ϕ(x, a). �

One of the main purposes of the abstract considerations of Sections B and C is the follow-
ing:

LEMMA C.2. Suppose we are given, on some Polish probability space (	,F,P), a
measurable P(A)-valued process β = (βt )t∈[0,T ] as well as a measurable E-valued process
X = (Xt)t∈[0,T ]. Then there exists a jointly measurable function β̂ : [0, T ]×E → P(A) such
that, for each bounded measurable function ϕ : [0, T ] × E × A →R, we have∫

A
ϕ(t,Xt , a)β̂(t,Xt)(da) = E

[∫
A

ϕ(t,Xt , a)βt (da)
∣∣∣Xt

]
a.s.,a.e. t ∈ [0, T ].
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We may write this with the suggestive mean measure notation,

β̂(t,Xt ) = E[βt | Xt ].

PROOF. By Lemma B.2, a version of the regular conditional law �(t, x) = P(· | Xt =
x) ∈ P(	) can be constructed which is jointly measurable in (t, x). Then simply apply
Lemma C.1. �

Lastly, in the proof of Lemma 5.3, we need the following:

LEMMA C.3. Suppose we are given, on some Polish probability space (	,F,P), a
jointly measurable function β : [0, T ] ×Rd × 	 → P(A), as well as a continuous E-valued
process η = (ηt )t∈[0,T ]. Let Fη

t = σ(ηs : s ≤ t). Then there exists a semi-Markov function
 : [0, T ] ×Rd × C([0, T ];E) →P(A) such that

(t,Xt , η) = E
[
β(t,Xt , ·) | Fη

t

]
a.s., for each t ∈ [0, T ].

That is, for each bounded measurable function ϕ : [0, T ] ×Rd × C([0, T ];E) × A →R, we
have ∫

A
ϕ(t,Xt , η, ·) d(t,Xt, η)

= E

[∫
A

ϕ(t,Xt , η, ·) dβ(t,Xt , ·)
∣∣∣ fFη

t

]
a.s., for each t ∈ [0, T ].

PROOF. This will follow immediately from Lemma C.1 once we can construct a version
of the conditional law P(· | Fη

t ) which is progressively measurable in (t, η). In fact, noting
that Fη

t = σ(η·∧t ), this follows from Lemma B.2 applied with X = (Xt)t∈[0,T ] therein given
by the stopped process (η·∧t )t∈[0,T ]. �
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