
The Annals of Applied Probability
2020, Vol. 30, No. 3, 1321–1367
https://doi.org/10.1214/19-AAP1531
© Institute of Mathematical Statistics, 2020

NONEXPONENTIAL SANOV AND SCHILDER THEOREMS ON WIENER
SPACE: BSDES, SCHRÖDINGER PROBLEMS AND CONTROL

BY JULIO BACKHOFF-VERAGUAS1, DANIEL LACKER2 AND LUDOVIC TANGPI3

1Stochastics and Financial Mathematics Group, University of Vienna, julio.backhoff@univie.ac.at
2Industrial Engineering and Operations Research, Columbia University, daniel.lacker@columbia.edu

3Operations Research and Financial Engineering, Princeton University, ludovic.tangpi@princeton.edu

We derive new limit theorems for Brownian motion, which can be seen
as nonexponential analogues of the large deviation theorems of Sanov and
Schilder in their Laplace principle forms. As a first application, we obtain
novel scaling limits of backward stochastic differential equations and their re-
lated partial differential equations. As a second application, we extend prior
results on the small-noise limit of the Schrödinger problem as an optimal
transport cost, unifying the control-theoretic and probabilistic approaches ini-
tiated respectively by T. Mikami and C. Léonard. Lastly, our results suggest
a new scheme for the computation of mean field optimal control problems,
distinct from the conventional particle approximation. A key ingredient in our
analysis is an extension of the classical variational formula (often attributed
to Borell or Boué–Dupuis) for the Laplace transform of Wiener measure.

1. Introduction. In this work we develop two new limit theorems for the Wiener pro-
cess along with several applications. These can be seen as nonexponential extensions of the
classical large deviation principles of Schilder and Sanov in their Laplace principle forms, in
the spirit of recent limit theorems obtained in [23] by the second named author in an abstract
setting. Along the way, we derive a variational principle for the Wiener process which can be
seen as a reformulation of Gibbs variational principle as initiated by [5, 17]; see also [4, 26]
for further developments. Our two limit theorems turn out to be a common ground for three
domains of application, as we now describe.

Our first application concerns the theory of backward stochastic differential equations
(BSDE), and their related convex dual and PDE representations. Our two main limit theo-
rems lead to two new kinds of scaling limits for BSDEs. The first of these scaling limits,
coming from our Schilder-type theorem, can be seen as a non-Markovian vanishing-viscosity
limit. Indeed, by exploiting the well-known link between BSDEs and semilinear PDEs (see,
e.g., [35, 36]), our result recovers as a special case the well-known convergence of a viscous
Hamilton–Jacobi equation to its inviscid counterpart as the viscosity coefficient vanishes. Our
Sanov-type theorem leads to a second and more unusual BSDE scaling limit, in which the
terminal condition depends on the empirical distribution of n rescaled sub-paths of the Brow-
nian motion. Although non-Markovian in nature, in special cases this translates to a limit
theorem for “concatenated” semilinear PDEs.

Our second application concerns the convergence of Schrödinger-type problems (also
called stochastic optimal transport) to classical optimal transport in the small noise limit.
The Schrödinger problem is a well documented topic in probability theory and mechanics
(see, e.g., [28] and the references therein), and its link to optimal transportation was de-
veloped by Föllmer [18] in his Saint Flour lecture notes. The study of small-noise limits
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of Schrödinger problems was pioneered by Mikami in the works [32, 33], the second joint
with Thieullen. The main tools in these articles were stochastic control and partial differen-
tial equations (PDEs). Subsequently, an elegant large deviations viewpoint was developed by
Léonard in [27, 29]. We draw inspiration from both approaches, to a certain extend unifying
them, as we exploit our Schilder-type theorem in order to obtain new small-noise results for
Schrödinger-type problems.

The third application is a surprising connection with a particular type of optimal control
problem, known as mean field or McKean–Vlasov optimal control, which have seen a surge
of interest in recent years; see [6, 24, 37] and references therein. The limiting quantity in
our Sanov-type theorems can be seen as the value of an optimal control problem in which
the dependence of the optimization criterion on the law of the state process is nonlinear. Our
limit theorem provides a new approximation scheme for such problems, markedly different
from the natural particle approximation worked out in [24].

We now proceed to present the setting and main results in detail.

2. Setting and main results. Let C = C([0,1];Rd) denote the continuous path space,
equipped with the supremum norm ‖ · ‖∞ and its Borel σ -field. Let P denote the standard
Wiener measure on C. With W = (W(t))t∈[0,1] we denote the canonical (coordinate) process
on C, defined by setting W(t)(ω) = ω(t), so that W is a standard d-dimensional Brownian
motion under P . Let F = (Ft )t∈[0,1] denote the P -complete filtration generated by W . As
usual, we denote by L0(P ) the space of (real-valued) random variables quotiented with the
P -a.s. identification, and by L∞(P ) the essentially bounded elements of L0(P ). We will
likewise identify processes that are dt ⊗ dP -almost surely equal.

We are given a function g : [0,1] × R
d → R ∪ {∞} and write dom(g(t, ·)) := {q ∈ R

d :
g(t, q) < ∞} for its effective domain. We impose the following standing assumption:

(TI) The function g is measurable and bounded from below, and it is coercive in the sense
that lim|q|→∞ inft∈[0,1] g(t,q)

|q| = ∞. For each t ∈ [0,1] the function g(t, ·) is convex, proper,
and lower semicontinuous. Finally, the following technical conditions hold:

(1) 0 ∈ ri
(
dom

(
g(t, ·))) = ri

(
dom

(
g(s, ·))) =: R for all s, t ∈ [0,1],

where ri(dom(g(t, ·))) denotes the relative interior of dom(g(t, ·)), and

(2)
∫ 1

0

∣∣sup
{
g(t, q) : q ∈ R, |q| ≤ r

}∣∣dt < ∞ for all r ≥ 0.

The final technical conditions (1) and (2) always holds if g is finite-valued and jointly con-
tinuous. A typical example which takes the value +∞ and which satisfies (TI) is g(t, q) =
+∞1K(q), the convex indicator of a convex compact set K ⊂R

d . The assumption that 0 ∈R
is unnecessary, but it is convenient and not terribly restrictive.

Define L to be the set of progressively measurable R
d -valued processes q : [0,1] × C →

R
d satisfying P(

∫ 1
0 |q(t)|2 dt < ∞) = 1. We often write q(t) = q(t, ·), suppressing the de-

pendence on ω ∈ C. We denote by
∫ 1

0 qQ(t) dW(t) the stochastic integral
∫ 1

0 qQ(t) · dW(t).
Let Q be the set of probability measures absolutely continuous with respect to P . It is well
known that for every Q ∈ Q, there is a unique process qQ ∈ L such that Q-a.s.

dQ

dP
= exp

(∫ 1

0
qQ(t) dW(t) −

∫ 1

0

1

2

∣∣qQ(t)
∣∣2 dt

)
.

A partial converse which we will often use is as follows: Letting Lb ⊂ L denote the subset
of bounded processes, for each q ∈ Lb there is a unique Qq ∈ Q such that qQq = q . By
Girsanov’s theorem, we may express this measure as

(3) Qq = P ◦
(
W +

∫ ·
0

q(t) dt

)−1
.
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In the following we write E for expectation under P and E
Q for expectation under any other

measure Q.
The main objects we study are the conjugate functionals

αg : Q →R∪ {+∞}, ρg : L∞(P ) →R,

respectively given by

(4) αg(Q) := E
Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
and ρg(X) := sup

Q∈Q
(
E

Q[X] − αg(Q)
)
.

Because g is bounded from below, note that αg(Q) is well defined and bounded from below,
taking values in R∪{+∞}. Note also that αg is not identically +∞ since

∫ 1
0 |g(t,0)|dt < ∞,

and in particular −∞ < ρg(X) < ∞ for all X ∈ L∞(P ).
The classical example to keep in mind is the quadratic case, g(t, q) = 1

2 |q|2. In this case,
αg is nothing but the relative entropy,

(5) αg(Q) = H(Q|P) := E

[
dQ

dP
log

dQ

dP

]
, Q ∈ Q

and, by the Gibbs variational principle, ρg is the cumulant generating functional, ρg(X) =
logE[eX]. A more trivial example is given by g(t, q) = +∞1{{0}c}(q), the convex indicator of
0, in which case ρg(X) = E[X]. More generally, if g(t, q) = +∞1Kc(q) for some compact
convex set K ⊂ R

d , then ρg(X) = sup{EQ[X] : Q ∈ Q, q
Q
t ∈ K dt ⊗ dP -a.e.}. When we

turn to Schrödinger problems in Section 2.3, a general time-independent function g(q) will
lead us to the optimal transport problem with cost function (x, y) �→ g(x − y).

We will derive in Theorem 3.1 yet another representation of ρg , in the spirit of stochastic
optimal control. For F ∈ L∞(P ) we show that

(BBD) ρg(F ) = sup
q∈Lb

E

[
F

(
W +

∫ ·
0

q(t) dt

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]
.

The fact that F is path-dependent here means that the representation (BBD) does not follow as
quickly from the definition of ρg(F ) as it may seem at first sight. In the case g(t, q) = 1

2 |q|2,
the representation (BBD) was a key technical result of Boué and Dupuis [5] and Lehec [26].

We first summarize in Section 2.1 our main limit theorems for the functionals ρg , and
the remaining parts of this section explain the various applications: Section 2.2 explains the
implications for BSDEs. This is followed by Section 2.3 where we present some new in-
sights into the study of convergence of stochastic transport problems (i.e., Schrödinger-type
problems) to optimal transport problems. We close this overview section with discussions of
connections with PDEs in Section 2.4 and (mean field) optimal control in Section 2.5.

2.1. Limit theorems. To state our first main limit theorem, a nonexponential version of
Sanov’s theorem in its Laplace principle form, we introduce the following notation: For a
Polish space E, we denote by P(E) the set of Borel probability measures on E equipped with
the topology of weak convergence and by Cb(E) the space of bounded continuous functions
on E. For n ∈ N, k = 1, . . . , n and a path ω ∈ C, we define the chopped and rescaled path
ω(n,k) ∈ C by

(6) ω(n,k)(t) := √
n

(
ω

(
k − 1 + t

n

)
− ω

(
k − 1

n

))
, t ∈ [0,1].

Note that (W(n,k))
n
k=1 are n independent Brownian motions (under P ). In the following, recall

that we always work with a given function g satisfying the standing assumption (TI).
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THEOREM 2.1. Define Gn : [0,1] ×R
d →R∪ {∞} by

Gn(t, q) := g

(
nt − �nt�, q√

n

)
.

Then Gn satisfies (TI) for each n, and for every F ∈ Cb(P(C)) we have

lim
n→∞ρGn

(
F

(
1

n

n∑
k=1

δW(n,k)

))
= sup

Q∈Q
(
F(Q) − αg(Q)

)
= sup

q∈Lb

(
F
(
Qq)−E

[∫ 1

0
g
(
t, q(t)

)
dt

])
,

where Qq was defined in (3) for q ∈ Lb.

The proof is given at the end of Section 4. For the second main result, we adopt the con-
vention that

(7)
∫ 1

0
g
(
t, ω̇(t)

)
dt = +∞

whenever ω ∈ C is not absolutely continuous. Define C0 := {ω ∈ C : ω(0) = 0}. Our second
main limit theorem is a nonexponential version of Schilder’s theorem in Laplace principle
form:

THEOREM 2.2. Denote gn(t, q) := g(t, q/
√

n). Then gn satisfies (TI) for each n, and
for every F ∈ Cb(C), we have

(8) lim
n→∞ρgn

(
F

(
W√
n

))
= sup

ω∈C0

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
.

Moreover, if g(t, q) = g(q) does not depend on t , and if h ∈ Cb(R
d), we have

lim
n→∞ρgn

(
h

(
W(1)√

n

))
= sup

x∈Rd

(
h(x) − g(x)

)
.

The proof is given at the end of Section 3. Returning to the quadratic case g(t, q) := 1
2 |q|2

reveals how Theorems 2.1 and 2.2 relate to the classical theorems of Sanov and Schilder. In
this case, Gn(t, q) = gn(t, q) = 1

2n
|q|2 for every n, and as mentioned above we get

ρGn(X) = ρgn(X) = 1

n
logE

[
enX],

and αg(Q) = H(Q|P) is the relative entropy, as defined in (5). Thus in the quadratic case
Theorems 2.1 and 2.2 respectively reduce to Sanov and Schilder theorem for Brownian
motion in their Laplace principle forms; see [9], Theorems 6.2.10 and 5.2.3, respectively
for classical statements of Sanov and Schilder’s theorems and [14], Theorems 1.2.1 and
1.2.3, for the equivalence with Laplace principles. For another explicit but trivial example,
if g(t, q) = +∞1{0}(q), then ρg(X) = E[X] as above, and Theorem 2.1 reduces to the law
of large numbers, stating that the random measures 1

n

∑n
k=1 δW(n,k)

converge weakly to P .
Similarly, if g(t, q) = +∞1{z}(q) for some z ∈ R

d then ρg(X) = E
Qz[X] with Qz denoting

the law of the Brownian motion with drift z, although strictly speaking this example does not
fit assumption (TI) because g(t,0) = ∞. Explicit formulas for ρg(X) are unfortunately few
and far between, and we do not know of any outside of the classical case and the trivial cases
just discussed; see Remark 2.5 for more on this.
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It is important to note that the chopped paths (W(n,k))
n
k=1 appearing in Theorem 2.1 cannot

be replaced with an arbitrary sequence of n independent Brownian motions, because the
functional ρGn is not necessarily law-invariant!1 For this reason, Theorem 2.2 cannot be
deduced from Theorem 2.1, contrary to the classical case in which Schilder’s theorem can
be deduced from Sanov’s theorem and continuous mapping. Nevertheless, in Corollary 7.3
we derive from Theorem 2.1 a result more in the spirit of Cramér’s theorem, which notably
shares the same limiting expression as Theorem 2.2 despite involving a quite distinct pre-limit
quantity.

The key to proving these limit theorems is the stochastic control representation (BBD),
which we establish in Theorem 3.1. Theorem 2.1 is ultimately a specialization of the ab-
stract Sanov-type theorem of the second named author in [23], though computing the iter-
ates denoted ρn therein is a highly nontrivial step here. The proof of Theorem 2.2 is direct
and does not use the results of [23]. A major difficulty in our analysis is the lack of lower-
semicontinuity of ρg and weak compactness of the sublevel sets of αg when g is subquadratic,
which necessitates the study of a better-behaved functional (see α̃g in Section 4.2). In Sec-
tion 7, we extend Theorem 2.2 to random initial conditions and Theorem 2.1 to stronger
topologies.

REMARK 2.3. It is possible to leverage our results, which concern Brownian mo-
tion solely, in order to obtain analogous limit results for those stochastic differential
equations which can be solved path-by-path in a continuous fashion. To exemplify, let
b : [0, T ] × R

d → R
d be bounded, jointly continuous and Lipschitz in the second argu-

ment (uniformly in the first one). Denote by Xq the weakly-unique solution of the con-
trolled SDE dX(t) = [b(t,X(t)) + q(t)]dt + dW(t) with Xq(0) = a. Recalling W(n,k) as
given in (6), we further denote by Xn,k the unique strong solution of the SDE dXn,k(t) =
b(t,Xn,k(t)) dt + dW(n,k)(t) with Xn,k(0) = a. Then the analogue of Theorem 2.1 is

lim
n→∞ρGn

(
F

(
1

n

n∑
k=1

δXn,k

))
= sup

q∈Lb

(
F
(
Law

(
Xq))− E

[∫ T

0
g
(
t, q(t)

)
dt

])
.

A similar analogue of Theorem 2.2 is possible. The key point is that the assumptions on
b ensure that the integral equation x(t) = ∫ t

0 b(s, x(s)) ds + ω(t) for each t ∈ [0,1] has a
unique solution x = S(ω), for each ω ∈ C, where the map S : C → C is continuous. We leave
it to the interested reader to complete the remaining straightforward arguments. We do not
elaborate further in this direction, since the scope of this line of arguments is rather limited.
To wit, if we wanted to cover the case of SDEs with a variable diffusion coefficient, then new
techniques and arguments seem to be indispensable.

2.2. Scaling limits of BSDE. In this section, we develop the first application, stating
two new results on scaling limits for BSDEs. One consequence of the assumption (TI) is
a stochastic representation of ρg in terms of BSDEs: Let g∗ stand for the convex conjugate
of g in the spatial variable, namely

(9) g∗(t, z) := sup
q∈Rd

(
q · z − g(t, q)

)
.

Following [10], we say that a pair (Y,Z), where Y is a càdlàg and adapted process and with
Z ∈ L, is a supersolution to the BSDE (driven by W , with terminal condition X ∈ L0(P ),
and generator g∗)

(10) dY (t) = −g∗(t,Z(t)
)
dt + Z(t) dW(t), Y (1) = X,

1A functional ρ : L0 →R∪ {+∞} is law-invariant if ρ(X) = ρ(X′) whenever X and X′ have the same law.
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if it satisfies

(11)

⎧⎨⎩Y(s) −
∫ t

s
g∗(u,Z(u)

)
du +

∫ t

s
Z(u)dW(u) ≥ Y(t) for every 0 ≤ s ≤ t ≤ 1,

Y (1) ≥ X,

and
∫

Z dW is a supermartingale. A supersolution (Ȳ , Z̄) of (10) is said to be minimal if
Ȳ (t) ≤ Y(t) a.s. for each t ∈ [0,1] and for every supersolution (Y,Z). By [10], Theorem 4.17,
under the condition (TI), the BSDE (10) admits a unique minimal supersolution for every
terminal condition X bounded from below.

The crucial link is given in [11], Theorems 3.4/3.10, where it was shown that

(12) ρg(X) = Ȳ (0),

where (Ȳ , Z̄) is the minimal supersolution of (11), provided that X is for example, bounded.
This is the aforementioned representation of ρg in terms of a BSDE. Additionally, it is well
known that a nonlinear Feynman–Kac formula connects BSDEs with semilinear parabolic
PDEs, and we will briefly elaborate on this perspective in Section 2.4 below.

REMARK 2.4. If X ∈ L∞(P ) and g has at least quadratic growth, then g∗ has sub-
quadratic growth and the BSDE (10) admits a unique solution (Y,Z) such that Y is bounded
(see, e.g., [8, 21]). Thus, it follows by [11], Theorem 4.6, that ρg(X) = Y0. That is, the mini-
mal supersolution and the unique (true) solution coincide. Consequently, all results stated in
this paper for minimal supersolutions transfer to true solutions when g is of superquadratic
growth. When this is not the case, a solution to a BSDE need not exist or be unique (see, e.g.,
Delbaen et al. [8]), and the weaker concept of minimal supersolution becomes essential.

REMARK 2.5. The BSDE formulation sheds light on why we do not expect to find ex-
plicit formulas for ρg(X) outside of the classical case g(t, q) = c|q|2 for c > 0 and the trivial
cases g(t, q) = +∞1{z}(q) for z ∈ R

d . Indeed, nonlinear BSDEs (and their semilinear PDE
counterparts discussed in Section 2.4) are rarely explicitly solvable.

Using the representation (12), Theorems 2.1 and 2.2 immediately translate into limit the-
orems for the time-zero values of suitable BSDEs. With some additional effort, we are able
to bootstrap Theorems 2.1 and 2.2 in order to obtain limits at every time, and not just at time
zero. We begin with the BSDE analogue of Theorem 2.1, with proofs deferred to Section 5.

THEOREM 2.6. Let F ∈ Cb(P(C)), and let (Yn,Zn) be the minimal supersolution of the
BSDE

(13) dY (t) = −g∗(nt − �nt�,√nZ(t)
)
dt + Z(t) dW(t), Y (1) = F

(
1

n

n∑
k=1

δW(n,k)

)
.

Then, for each t ∈ [0,1], we have the a.s. limit

lim
n→∞Yn

(�nt�
n

)
= sup

Q∈Q
(
F
(
tP + (1 − t)Q

)− (1 − t)αg(Q)
)

= sup
q∈Lb

(
F
(
tP + (1 − t)Qq)− (1 − t)E

[∫ 1

0
g
(
s, q(s)

)
ds

])
.

We do not know of any results similar to Theorem 2.6 in the literature. The limiting
expression exhibits a structure remarkably parallel to the Hopf–Lax–Oleinik solution of a
Hamilton–Jacobi equation, reviewed in Section 2.4.1 below. Another interesting feature is
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that it is a decidedly non-Markovian result; even if F depends only on the time-1 marginal
of the measure, the terminal conditional in (13) still depends on the value of W at n different
times.

Next, in order to state a BSDE analogue of Theorem 2.2, we make use of the following
notation: Define C0[t,1] to be the set of continuous paths ω : [t,1] → R with ω(t) = 0. Also,
for ω ∈ C and ω ∈ C0[t,1], define ω ⊕t ω ∈ C by

ω ⊕t ω(s) := ω(s ∧ t) + ω(s)1[t,1](s).

Recall as in (7) that we set
∫ 1
t g(s, ω̇(s)) ds := ∞ when ω is not absolutely continuous.

THEOREM 2.7. Let F ∈ Cb(C) and let (Yn,Zn) be the minimal supersolution of the
BSDE

(14) dY (t) = −g∗(t,√nZ(t)
)
dt + Z(t) dW(t), Y (1) = F

(
W√
n

)
.

Then there exist progressively measurable functions un : [0,1] × C → R such that Yn(t) =
un(t,W/

√
n) a.s. for each n and un → u pointwise, where

u(t,ω) := sup
ω∈C0[t,1]

(
F(ω ⊕t ω) −

∫ 1

t
g
(
s, ω̇(s)

)
ds

)
.

Moreover, for each t ∈ [0,1], we have the a.s. limit

lim
n→∞Yn(t) = u(t,0).

The previous theorem is noteworthy, as it shows that making the generator of the BSDE
explode and its terminal condition trivialize at the same rate gives a nontrivial deterministic
limit. Alternatively, we may move the rescaling to the Brownian motion itself. Letting Wε =√

εW denote Brownian motion with volatility ε = 1/n, we can rewrite (14) as

(15) dY (t) = −g∗(t,Z(t)
)
dt + Z(t) dWε(t), Y (1) = F

(
Wε),

and so Theorem 2.7 also shows a nontrivial effect of “cooling-down” the driving Brownian
motion in such a BSDE. The closest related results seem to be those of the form of [38],
Theorem 2.1, on (F)BSDEs with vanishing noise, though the factor

√
n in g∗ in (14) is absent

in [38].
The ε ↓ 0 limit of the BSDE (15) is intriguing from the perspective of BSDE stability

theory. It has been known for some time that if the generator and terminal condition of a
BSDE converge in a suitable sense, then so does the solution (Y,Z). Modern BSDE theory
has explored similar stability theorems in much more generality, when the driving martingale
(in our case, Wε) itself can vary (see [34] and the thesis [41] for thorough discussions and
references). However, existing results in this direction require that the limiting BSDE admit a
unique solution, and it is far from clear how to properly formulate a uniquely solvable BSDE
driven by the zero martingale. Similarly, one may interpret Theorem 2.7 as a BSDE form of
the regularization-by-noise phenomenon: The ε = 0 equation is ill-posed, but for each ε > 0
the equation is well-posed, and the ε ↓ 0 limit “selects” a particular solution. In Section 2.4.1,
in the Markovian case, we will re-interpret this as the vanishing viscosity limit of Hamilton–
Jacobi–Bellman equations.

The factor
√

n appears in the identity Yn(t) = un(t,W/
√

n) in Theorem 2.7 for two rea-
sons. On a purely mathematical level, this provides the scaling that results in a random (ω-
dependent) limit for un. The second and more practical reason is that one can interpret u(t,ω)

as the value function of a stochastic control problem in which the state process, W/
√

n, is
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observed up to time t to agree with the path (ω(s))s≤t . This will be perhaps more clear when
we reinterpret Theorem 2.7 in terms of PDEs in Section 2.4.1 below.

In the quadratic case g(t, q) = 1
2 |q|2, Theorem 2.7 reads as a “conditional” version of

Schilder’s theorem for Brownian motion. Indeed, the solution of BSDE (14) and its a.s. limit
in Theorem 2.7 are given by

Yn(t) = 1

n
logE

[
exp

(
nF(W/

√
n)
) | Ft

]
→ sup

ω∈C0[t,1]

(
F(0 ⊕t ω) − 1

2

∫ 1

t

∣∣ω̇(s)
∣∣2 ds

)
.

Of course, it is straightforward to derive this directly from the usual form of Schilder’s theo-
rem. Similarly, in the quadratic case, Theorem 2.6 can be rewritten as the a.s. limit

lim
n→∞

1

n
logE

[
exp

(
nF

(
1

n

n∑
k=1

δW(n,k)

)) ∣∣∣∣F �nt�
n

]

= sup
Q∈Q

(
F
(
tP + (1 − t)Q

)+ (1 − t)H(Q|P)
)
,

for each t ∈ [0,1]. It is likely that a direct argument would yield in this case that the same
holds even if we replace �nt�

n
with t on the left-hand side. More generally, we conjecture that

Yn(t) converges to the same limit as Yn(
�nt�
n

) in the setting of Theorem 2.6.

2.3. Small noise limit of Schrödinger-type problems. In this part we aim to deepen the
study of optimal transport as a small-noise limit of stochastic optimal transport. We first
present the setting and main result, before discussing the connection with prior literature.

For ε > 0 we introduce the set P∗
ε (C) of Q ∈ P(C) for which there exists a progressively

measurable R
d -valued processes qQ such that the process

1√
ε

(
W(t) − W(0) −

∫ t

0
qQ(s) ds

)
is a standard d-dimensional Brownian motion under Q. We stress that for Q ∈ P∗

ε (C) the
process qQ is uniquely determined (in the dt ⊗ dQ-a.s. sense), and that it is understood in
the above definition that qQ is dt-integrable Q-a.s. Note that Q is a proper subset of P∗

ε (C),
and membership in Q requires some integrability of qQ which is not required in P∗

ε (C).
We now introduce the problems of interest in this part of the work. Let Z be a separable

Banach space, which we endow with its Borel sigma-algebra. We are given an observable H ,
which is nothing more than a continuous linear operator

H : C → Z.

We think of H as an observable random quantity whose distribution ν we know, and impose
in advance into the problem. For instance, H could give the value of a path at different time
points, as well as the value of successive integrals of the path. We denote by Qt the marginal
at time t of a path measure Q ∈ P(C). For μ and ν Borel probability measures respectively
on R

d and Z, we examine here the problems

(16) inf
Q∈P∗

ε (C)

Q0=μ,Q◦H−1=ν

E
Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
,

and their limits when ε ↓ 0.
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The classical Schrödinger problem (see, e.g., the survey of Léonard [28]) arises from the
specification

(17) Z =R
d, H(ω) = ω(1), g(t, q) = 1

2
|q|2, ν ∈P

(
R

d).
In this setting, the quantity (16) can be written as the problem of minimizing relative entropy
with respect to Pε subject to marginal constraints,

(18) inf
Q∈P∗

ε (C)

Q0=μ,Q1=ν

εH(Q|Pε),

where Pε denotes Wiener measure with volatility ε, that is, Pε = P ◦ (
√

εW)−1. Moreover, if
one replaces the target measure ν by its convolution νε with a centered Gaussian of variance
ε (see the discussion following Theorem 2.9 for why this is necessary), then the ε → 0 limit
of (18) is precisely the quadratic Wasserstein distance:

lim
ε→0

inf
Q∈P∗

ε (C)

Q0=μ,Q1=νε

εH(Q|Pε) = inf
π∈
(μ,ν)

∫
Rd×Rd

1

2
|x − y|2π(dx, dy),

where 
(μ,ν) is the set of couplings of (μ, ν), that is, the set of probability measures on
R

d ×R
d with first marginal μ and second marginal ν.

We now state our first main result, which relies fundamentally on our Schilder-type re-
sult Theorem 2.2, or rather the extension given in Section 7.2 to the case of random initial
positions. Proofs of the results announced in this section are given in Section 8.

THEOREM 2.8. Let μ ∈ P(Rd) and ν ∈ P(Z), and let H : C → Z be linear and contin-
uous. Let νε := ν ∗ (Pε ◦ H−1) denote the convolution of ν with the push-forward by H of
Pε . Then2

(19) lim
ε↓0

inf
Q∈P∗

ε (C)

Q0=μ,Q◦H−1=νε

E
Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
= inf

Q∈P(C)

Q0=μ,Q◦H−1=ν

E
Q

[∫ 1

0
g
(
t, Ẇ (t)

)
dt

]
.

Furthermore, we have:

• The problem

(20) inf
Q∈P∗

ε (C)

Q0=μ,Q◦H−1=νε

E
Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
,

has an optimizer as soon as {Q ∈ P∗
ε (C) : Q0 = μ,Q ◦ H−1 = νε} �=∅. Analogously,

(21) inf
Q∈P(C)

Q0=μ,Q◦H−1=ν

E
Q

[∫ 1

0
g
(
t, Ẇ (t)

)
dt

]
,

has an optimizer as soon as {Q ∈ P(C) : Q0 = μ,Q ◦ H−1 = ν} �=∅.
• If for all ε > 0 small, an optimizer Qε of (20) exists, then any cluster point of {Qε}ε is

an optimizer of (21). In particular, if the latter problem has a unique optimizer, then any
cluster point of {Qε}ε is equal to it.

2We adopt the convention that infimum over an empty set equals +∞.
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The connection with optimal transport arises from working with the classical observable,
H(ω) = ω(1) with Z = R

d , and a time-independent function g = g(q). Then, from Jensen’s
inequality (as g is always convex under assumption (TI)) it is clear that the right-hand side of
(19) becomes

inf
Q∈P(C)

Q0=μ,Q1=ν

E
Q

[∫ 1

0
g
(
Ẇ (t)

)
dt

]
= inf

π∈
(μ,ν)

∫
Rd×Rd

g(y − x)π(dx, dy).

In other words, by modifying the notion of entropy used in the definition of the Schrödinger
problem, we obtain a different optimal transport cost in the limit, with the cost function given
by precisely the function g governing the entropy. Interestingly, Léonard [28] shows that one
can also obtain a different transport cost by changing the Brownian motion to another Markov
process, while sticking with the usual entropy.

We stress that introducing the mollified measures νε is in general unavoidable in Theo-
rem 2.8. For instance, in the classical case (17), and when μ and ν are discrete, the value in
the left-hand side of (19) is +∞ whereas the right-hand side could very well be finite. Our
second result on the matter shows that the mollification can be avoided when g is strictly
subquadratic.

THEOREM 2.9. Let us assume that g(t, q) = g(q) and consider the classical observable

Z = R
d and H(ω) = ω(1).

Assume that g satisfies

(22) lim sup
|q|→∞

g(q)

|q|r < ∞ for some r ∈ (1,2),

and also that g has the �2 doubling property, that is, there exist R0,C0 > 0 such that g(2q) ≤
C0g(q) for all |q| ≥ R0. Then all conclusions of Theorem 2.8 are valid when we take νε ≡ ν

for all ε.

In the important special case g(q) = |q|p for 1 < p < 2, which indeed satisfies (TI) and
the assumption of Theorem 2.9, we find in particular that, for μ,ν ∈P(Rd),

lim
ε↓0

inf
Q∈P∗

ε (C)

Q0=μ,Q1=ν

E
Q

[∫ 1

0

∣∣qQ(t)
∣∣p dt

]
= inf

π∈
(μ,ν)

∫
Rd×Rd

|x − y|pπ(dx, dy),

where we recognize the right-hand side as the pth power of the p-Wasserstein distance. It is
worth noting that, assuming (22), a sufficient condition for the �2 doubling property is that
lim inf|q|→∞ g(q)

|q|r > 0.
Let us explain how our results relate to prior literature. It was established by Mikami [32]

that classical quadratic optimal transport is the small-noise limit of the so-called Schrödinger
problem. This was then extended by Mikami and Thieullen [33] to nonquadratic situations. In
this case, optimal transport is obtained as a small-noise limit of a stochastic transport prob-
lem. This latter stochastic variant can be interpreted as a nonexponential, Schrödinger-type
problem. The method employed by the authors relies on PDE techniques and the given Brow-
nian setting that they propose. On the other hand, Léonard [27] extended these considerations
to a non-Brownian setting by employing large deviations arguments instead of PDEs; his is
therefore a fully probabilistic approach, which was further developed in [28, 29]. However,
the approach of Léonard, when applied in the aforementioned Brownian setting of Mikami–
Theullien, can only cover the quadratic case.
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We draw inspiration in Léonard’s fully probabilistic approach of [27], crucially applying
our generalized Schilder-type result (Theorem 2.2). By working probabilistically and not with
PDEs, we avoid the regularity assumptions imposed in [33]. In particular, our Theorem 2.8
extends [33], Theorem 3.2, in the sense that we allow for a time-dependent function g with
nearly no regularity assumptions as well as a general observable H .

Regarding our second result, Theorem 2.9, the closest counterpart in the literature is [32],
Proposition 2.1, which shows that in the quadratic case (17) one can still take νε = ν under
the additional assumption that ν has finite relative entropy with respect to Lebesgue measure,
resulting in

lim
ε↓0

inf
Q∈P∗

ε (C)

Q0=μ,Q1=ν

εH(Q|Pε) = inf
π∈
(μ,ν)

∫
Rd×Rd

1

2
|x − y|2π(dx, dy).

In fact, this fails without an additional assumption on ν. For instance, if ν has finite sup-
port, then the right-hand side is finite, whereas for any Q ∈ P∗

ε (C) with Q1 = ν we have
H(Q|Pε) = ∞ for each ε > 0 because Q must be singular with respect to Pε . Interestingly,
Theorem 2.9 states that the mollification can be completely avoided under no additional as-
sumptions on ν, by working with a strictly subquadratic entropy. Our proof makes crucial
use of Brownian bridges, which give rise to drifts which are not square-integrable but are
r-integrable for r < 2.

The reader who is mostly interested in these results on the Schrödinger-type problem may
skip directly to Section 8, or first to Section 7.2 for some technical preparations.

2.4. Connections with PDEs. In this subsection we specialize the limit theorems to func-
tions F on P(C) (resp. C) which depend only on the time-1 marginal of the measure (resp. the
time-1 value of the path). In this case, the so-called nonlinear Feynman–Kac formula (see the
recent book [45], Section 5.1.3, for a typical case) allows to reinterpret the BSDE results of
Section 2.2 in terms of vanishing viscosity limits for semilinear parabolic partial differential
equations.

2.4.1. A PDE form of Theorem 2.7. As a first special case, suppose the function F in
Theorem 2.7 depends only on the final value of the path; that is, F(w) = f (w(1)) for all
w ∈ C, for some f ∈ Cb(R

d). Then, according to [12], Theorem 5.2, we can write Yn(t) =
vn(t,W(t)), where vn : [0,1] × R

d → R solves (i.e., is the minimal viscosity supersolution
of) the Hamilton–Jacobi–Bellman PDE

(23)

⎧⎪⎪⎨⎪⎪⎩
∂tvn(t, x) + 1

2
�vn(t, x) + g∗

(
t,

1√
n
∇vn(t, x)

)
= 0 on [0,1] ×R

d,

vn(1, x) = f

(
x√
n

)
for x ∈ R

d,

where the gradient and Laplacian operators act on the x variable. Alternatively, defining
un(t, x) = vn(t,

√
nx), we find that un should solve the PDE⎧⎨⎩∂tun(t, x) + 1

2n
�un(t, x) + g∗(t,∇un(t, x)

) = 0 on [0,1] ×R
d,

un(1, x) = f (x) for x ∈ R
d .

In this PDE, the factor n appears only in the denominator of the diffusion coefficient, and as
n → ∞ we expect un to converge to the solution u of the first-order PDE

(24)

{
∂tu(t, x) + g∗(t,∇u(t, x)

) = 0 on [0,1] ×R
d,

u(1, x) = f (x) for x ∈ R
d .
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If g(t, x) = g(x) is time-independent, the solution should be given by the Hopf–Lax–Oleinik
formula,

(25) u(t, x) = sup
y∈Rd

(
f (y) − (1 − t)g

(
y − x

1 − t

))
.

We then obtain

lim
n→∞vn(0,0) = lim

n→∞un(0,0) = u(0,0) = sup
x∈Rd

(
f (x) − g(x)

)
,

which agrees with the limiting expressions Theorems 2.2 and 2.7. We will expand and for-
malize these heuristics in Proposition 6.4 below. Noting that Yn(t,ω) = un(t,ω(t)/

√
n), this

explains the choice of scaling in the first claimed limit of Theorem 2.7.

2.4.2. Path-dependent PDEs. It is tempting to search for a PDE formulation of Theo-
rem 2.7, analogous to the discussion in Section 2.4.1. Indeed, the quantity un(t,ω) in The-
orem 2.7 can be viewed as the value function of a stochastic control problem with a path-
dependent objective functional, and Theorem 2.7 identifies the limiting function u(t,ω) as
itself the value of a deterministic control problem. In analogy with Section 2.4.1, we spec-
ulate that Theorem 2.7 could be rewritten as a vanishing viscosity limit of path-dependent
Hamilton–Jacobi–Bellman equations, but this is beyond the scope of this paper. Refer to [2,
15, 30] and the references therein for relevant literature on path-dependent PDEs and partic-
ularly to [31] where a connection with large deviations appears.

2.4.3. A PDE form of Theorem 2.6. In the general context of Theorem 2.6, when F ∈
Cb(P(C)) depends on the whole path, the BSDE of Theorem 2.6 cannot be expressed using
PDEs. However, when F depends only on the marginal law at the final time, that is, F =
F(m(1)) for some F ∈ Cb(P(Rd)), a different PDE representation is available. The terminal
condition in the BSDE of Theorem 2.6 becomes

F

(
1

n

n∑
k=1

δW(n,k)(1)

)
= F

(
1

n

n∑
k=1

δ√
n(W(k/n)−W((k−1)/n))

)
.

This terminal condition depends on the path of W only through the values of W(t) at the
finitely many time points t = 1/n,2/n, . . . ,1. Hence, the BSDE of Theorem 2.6 can be seen
as a concatenation of n Markovian BSDEs, each of which can be represented by a PDE.

More details will be given in Section 6, specifically in Proposition 6.2, but let us briefly
summarize the idea. Define an operator Ln, taking lower semicontinuous lower bounded
functions of (Rd)n to lower semicontinuous lower bounded functions of (Rd)n−1, as fol-
lows: Given f : (Rd)n → R and (x1, . . . , xn−1) ∈ (Rd)n−1, we define Lnf (x1, . . . , xn−1) :=
v(0,0), where v = v(t, x) is the the minimal viscosity supersolution of the PDE⎧⎨⎩∂tv(t, x) + 1

2
�v(t, x) + g∗(t,∇v(t, x)

) = 0 on [0,1] ×R
d,

v(1, x) = f (x1, . . . , xn−1, x) for x ∈ R
d .

For n = 1, we interpret L1 as mapping from functions of Rd to real numbers. The composition
L1 · · ·Ln−1Ln then maps a function of (Rd)n to a real number. For F ∈ Cb(P(Rd)), define
Fn : (Rd)n →R by

Fn(x1, . . . , xn) := F

(
1

n

n∑
i=1

δxi

)
.

Then we have 1
n
L1 · · ·Ln−1Ln(nFn) = Yn(0), where Yn is as in Theorem 2.6.
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2.5. Approximation schemes for (mean field) optimal control problems. Interpreting the
quantity ρg(F ) as well as the limiting expressions of Section 2.1 as the values of optimal
control problems suggests certain numerical schemes for mean field stochastic control prob-
lems. We stress that by allowing the function g to be +∞-valued, we can induce pointwise
control constraints in these problems.

The limiting quantity in Theorem 2.1, or in Theorem 2.6, is a stochastic optimal control
problem of mean field type. Indeed, one may express this limit quantity as

(26) sup
q∈Lb

{
F
(
P ◦ (

Xq)−1)−E

[∫ 1

0
g
(
t, q(t)

)
dt

]}
,

where we define

(27) Xq(t) =
∫ t

0
q(s) ds + W(t).

This kind of optimization problem has been the subject of active research in recent years,
with most of the literature focused on solution techniques, using either maximum principles
[1, 6] or infinite-dimensional Hamilton–Jacobi–Bellman equations [25, 37]. In this literature,
the function g or the coefficients of the SDE for X sometimes depend additionally on X

and even its law. In this sense, we encounter in this paper only a special type of mean field
control problem, but one which nonetheless includes many noteworthy examples, such as
mean-variance optimization problems.

A mean field control problem such as (26) arises heuristically as an n → ∞ (mean field)
limit of an optimal control problem consisting of n state processes, described as follows:

(28) sup
(q1,...,qn)

E

[
F

(
1

n

n∑
k=1

δXk

)
− 1

n

n∑
k=1

∫ 1

0
g
(
t, qk(t)

)
dt

]
,

where the supremum is over progressively measurable square-integrable processes (q1, . . . ,

qn), adapted to the filtration generated by n independent Brownian motions W1, . . . ,Wn, with
the state processes Xk defined by

Xk(t) :=
∫ t

0
qk(s) ds + Wk(t).

The optimal value in (28) should converge to the optimal value in (26), as was rigorously
justified only recently in [24], at least for certain functions F . The n-particle control problem
(28) is arguably more amenable to numerical approximation than the mean field counterpart
(26), as (finite-dimensional) dynamic programming and PDE methods are available for the
former; the jury is still out on this question, but see [7] and references therein for direct
perspectives on problems like (26).

Interestingly, our Theorem 2.1 provides an alternative approximation for (26) which could
presumably be the basis for a numerical scheme. In particular, the pre-limit expression in
Theorem 2.1 can be written as the value of a stochastic control problem:

(29) sup
q∈Lb

E

[
F

(
1

n

n∑
k=1

δX
q
(n,k)

)
−

∫ 1

0
g

(
nt − �nt�, q(t)√

n

)
dt

]
,

with Xq as in (27). The potential advantage, compared to the n-particle approximation
of the previous paragraph, is that here there is only one controlled process. The trade-
off, however, is that the control problem (29) is inevitably highly path-dependent. If we
assume F ∈ Cb(P(C)) depends only on the time-1 marginal of the measure, then the n-
particle problem (28) becomes Markovian, whereas our approximation (29) remains path-
dependent, as the cost function depends on the value of the state process at the n grid points
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(Xq(1/n),Xq(2/n), . . . ,Xq(1)). We discussed in Section 2.4.3 (with full details to come in
Section 6) how one can essentially still apply dynamic programming and PDE methods to
this kind of non-Markovian control problem. A proper exploration of the numerical feasibil-
ity of this approach, however, is beyond the scope of this already long paper, so we pursue
this no further.

The two approximations (28) and (29) may appear more closely related than they truly
are. On the one hand, in (29), we may interpret X(n,k) for k = 1, . . . , n as playing the role of
the n particles in (28). Indeed, these chopped paths are driven by the independent Brownian
motions W(n,k). However, in (29), the control q(t) in the time interval t ∈ [k/n, (k + 1)/n] is
allowed to depend on the entire past of the process (Xs)s≤t , which includes the entire paths
(X(n,1), . . . ,X(n,k)) on the entire interval [0,1]. On the other hand, in (28), the control qk(t) of
particle k at time t depends on the paths of all particles up to time t , or (X1(s), . . . ,Xn(s))s≤t .

2.6. Outline of the remainder of the paper. The rest of the paper is devoted to proving the
results stated above. First, Section 3 proves the variational formula (BBD) and then uses it to
prove Theorem 2.2. Section 4 gives the more involved proof of Theorem 2.1. The remaining
four sections address the applications, beginning with BSDEs and PDEs in Sections 5 and
6, respectively. Section 7 gives some modest extensions of our main results, in particular to
allow for nonrandom initial states, which is crucial in proving our results on Schrödinger
problems in the final Section 8.

3. The stochastic control representation. This section is devoted to the stochastic
control representation of ρg , already hinted at in (BBD). In fact, we will establish a
stronger result. In the following, the total variation metric on P(C) is defined by (Q,Q′) �→
sup

∫
f d(Q − Q′), where the supremum is over measurable functions f : C → [−1,1].

THEOREM 3.1. Let H : P(C) → R be bounded and continuous with respect to total
variation, then

(30) sup
Q∈Q

{
H(Q) − αg(Q)

} = sup
q∈Lb

{
H
(
Qq)−E

[∫ 1

0
g
(
t, q(t)

)
dt

]}
,

where

Qq := P ◦
(
W +

∫ ·
0

q(t) dt

)−1
.

In particular, if F : C →R is Borel measurable and bounded, then

(BBD) ρg(F ) = sup
q∈Lb

E

[
F

(
W +

∫ ·
0

q(t) dt

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]
.

Recall that in the quadratic case g(t, q) := |q|2/2 we have ρg(X) = logE[eX], and equa-
tion (BBD) becomes the celebrated variational principle obtained in [4, 5, 17]. We stress that
in such case, (BBD) has already proved to be a powerful tool in stochastic analysis, for ex-
ample, in large deviations theory [5], in convex geometry (e.g., functional inequalities [26])
and in the study of convexity properties of Gaussian measure [4, 42]. For these reasons we
employ the name Borell–Boué–Dupuis formula for the representation (BBD). On the other
hand, for nonlinear H , the identity (30) seems to be novel even in the quadratic case and will
be useful in the proofs of Theorem 2.1 and 2.2.

For the stochastic control connoisseur we stress that the formula (BBD) is a natural conse-
quence of the definition of ρg (see 4) and the fact that optimizing over open-loop or closed-
loop controls should yield the same optimal value. The difficulty lies mainly in the rather
arbitrary path-dependence of F .
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We prepare with a lemma which allows us to restrict the supremum in the definition of
ρg to a more convenient class. In the following, recall that Lb denotes the set of bounded
progressively measurable functions q : [0,1] × C → R

d . Let Ls
b denote the set of q ∈ Lb

such that the SDE

(31) dX(t) = q(t,X)dt + dW(t), X(0) = 0,

admits a unique strong solution. If Q denotes the law of X then q = qQ. We find it useful,
and intuitive, to overload the notation ρg in the following way: if H : P(C) →R we write

ρg(H) := sup
Q∈Q

{
H(Q) − αg(Q)

}
.

This notation is only employed within this section of the article.

LEMMA 3.2. Let H : P(C) →R be as stated in Theorem 3.1. We have

(32) ρg(H) = sup
{
H(Q) −E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
: Q ∈ Q, qQ ∈ Ls

b

}
.

PROOF. As g is bounded from below, we may assume without loss of generality that g ≥
0, by making an additive shift to both H and g. We make two intermediate approximations.
First, define Q∞ to be the set of Q ∈ Q such that

∫ 1
0 g(t, qQ(t)) dt ∈ L∞(P ). Let us show

(33) ρg(H) = sup
Q∈Q∞

{
H(Q) −E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]}
.

To prove this, we first note that we may trivially restrict the supremum in the definition of
ρg(F ) to those Q ∈ Q for which E

Q
∫ 1

0 g(t, qQ(t)) dt < ∞. Fix one such Q ∈ Q. In the nota-
tion of (TI), we have qQ(t) ∈ dom(g(t, ·)), dt ⊗ dP -a.e. Let τn = inf{t : ∫ t

0 g(s, qQ(s)) ds >

n} ∧ 1 and define dQn

dP
:= E[dQ

dP
| Fτn], so that qQn = qn, where qn(t) := qQ(t)1{t≤τn}. We

easily check that dQn/dP → dQ/dP in probability, and, by Scheffe’s lemma, in L1(P ).
This implies that Qn → Q in total variation, and so H(Qn) → H(Q). Moreover, Qn = Q

on Fτn , and we deduce

H
(
Qn)−E

Qn

[∫ 1

0
g
(
t, qQn(t)

)
dt

]

= H
(
Qn)−E

Q

[∫ τn

0
g
(
t, q(t)

)
dt

]
−E

Qn

[∫ 1

τn

g(t,0) dt

]

→ H(Q) −E
Q

[∫ 1

0
g
(
t, q(t)

)
dt

]
.

With (33) established, we next show that in fact

(34) ρg(H) = sup
{
H(Q) −E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
: Q ∈ Q∞, qQ ∈ Lb

}
.

To prove this, fix Q ∈ Q∞. We again have qQ(t) ∈ dom(g(t, ·)), dt ⊗ dP -a.e. Define qn(t)

as the projection of qQ(t) onto the centered ball of radius n, that is:

qn(t) := qQ(t)1{|qQ(t)|≤n} + n

|qQ(t)|q
Q(t)1{|qQ(t)|>n}.

Using convexity of g(t, ·) and g ≥ 0, we have

(35) g
(
t, qn(t)

) ≤ g(t,0) + g
(
t, qQ(t)

)
.
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For each (t,ω) it holds for all sufficiently large n that qn(t,ω) = qQ(t,ω), and thus
g(t, qn(t,ω)) → g(t, qQ(t,ω)) pointwise. Find Qn ∈Q such that qQn = qn. Since qn → qQ,
we deduce, as in the previous step, that dQn/dP → dQ/dP in L1(P ) and thus Qn → Q in
total variation. Thanks to (35) we may apply dominated convergence to get

H(Qn) −E
Qn

[∫ 1

0
g
(
t, qQn(t)

)
dt

]
→ H(Q) −E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
.

Now that we have proven (34), we show as a final approximation that

(36) ρg(H) = sup
{
H(Q) −E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]}
,

where the supremum is taken over Q ∈ Q such that qQ is a simple process. We say here that
q : [0,1]×C →R

d is a simple process if there is a (deterministic) partition t0 < t1 < · · · < tN
and bounded Fti -measurable random variables ξi for which

q(t) = ξ01{0}(t) +
N−1∑
i=0

ξi1(ti ,ti+1](t).

We start from (34). Fix Q ∈ Q∞ such that qQ ∈ Lb, noting that necessarily qQ(t) ∈
dom(g(t, ·)) dt ⊗ dP -a.e. Suppose |qQ| ≤ C pointwise, where C < ∞. Due to convex-
ity and lower semicontinuity of g(t, ·), upon making the further approximation qε(t) :=
εq̄(t) + (1 − ε)qQ(t), with ε ∈ (0,1) and for q̄ ≡ 0 ∈ ri(dom(g(t, ·))) =: R, we can as-
sume qQ(t) ∈ R. The convex set R is, by assumption, independent of the time t . We now
show that qQ can be suitably approximated by measurable processes with continuous paths.
First remark that qQ can be identified with a measurable function on

E := �
([0,1] × C

)
,

where �(t,ω) := (t,ω(· ∧ t)). The space E is Polish, as a closed subset of the Polish space
[0,1] × C. By Lusin’s Theorem, there is for every k a closed set Ek ⊂ E such that qQ re-
stricted to Ek is continuous and dt ⊗ dP (Ek) ≥ 1 − 2−k . By the Tietze extension theorem
[13], Theorem 4.1, we can find a continuous function qk on E which coincides with qQ when
restricted to Ek and which takes values in the closed convex hull of {qQ(t,ω) : (t,ω) ∈ E}. In
particular, qk(t,ω) ∈ R and |qk(t,ω)| ≤ C for each (t,ω). By Borel–Cantelli, qk converges
dt ⊗ dP -a.s. to qQ. By further approximating each qk , we may obtain the existence of a se-
quence of simple processes converging dt ⊗dP -a.s. to qQ, each of which still takes values in
R and is bounded uniformly by C. Let us re-brand by qn this sequence of simple processes.
It follows that g(t, qn(t)) → g(t, qQ(t)), dt ⊗ dP -almost surely, since g is continuous in the
relative interior of its domain. Since the sequence (qn) is uniformly bounded, it follows from
the assumption (2) that supn g(t, qn(t)) ∈ L1([0,1], dt). By dominated convergence we then
have

(37)
∫ 1

0
g
(
t, qn(t)

)
dt →

∫ 1

0
g
(
t, qQ(t)

)
dt P -a.s.

Now find Qn ∈ Q such that qQn = qn, and note as before that dQn/dP → dQ/dP

in L1(P ). The sequence (
∫ 1

0 g(t, qn(t)) dt)n is essentially bounded thanks to (2). Hence
EQn[∫ 1

0 g(t, qn(t)) dt] → EQ[∫ 1
0 g(t, qQ(t)) dt]. Since qQn is a simple process, this proves

(36).
With (36) in hand, we complete the proof as follows. It is clear from the definition that

ρg(H) is larger than the right-hand side of (32). The reverse inequality follows from (36)
and the fact that whenever q is a simple process in the sense described above, the SDE (31)
admits a unique strong solution. �
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We can now provide the proof of Theorem 3.1. Our argument is reminiscent of [26].

PROOF OF THEOREM 3.1. We prove equation (30), establishing first the inequality “≤”.
By Lemma 3.2, we fix Q ∈ Q such that qQ ∈ Ls

b. Note that the completed filtrations of W

and WQ coincide, where WQ := W − ∫ ·
0 qQ(t) dt is a Q-Brownian motion by Girsanov’s

theorem. Hence, there exists q̃ ∈ Lb such that qQ(t) = q̃(t,WQ) and so Q = P ◦ (W +∫ ·
0 q̃(t,W)dt)−1. Thus

H(Q) −E
Q

[∫ 1

0
g
(
t, qQ(t,W)

)
dt

]

= H(Q) −E
Q

[∫ 1

0
g
(
t, q̃

(
t,WQ))

dt

]

= H

(
P ◦

(
W +

∫ ·
0

q̃(t,W)dt

)−1)
−E

[∫ 1

0
g
(
t, q̃(t,W)

)
dt

]

≤ sup
q∈Lb

{
H
(
Qq)−E

[∫ 1

0
g
(
t, q(t)

)
dt

]}
.

To prove the opposite inequality, let q ∈ Lb, and set

X(t) = W(t) +
∫ t

0
q(s) ds = W(t) +

∫ t

0
q(s,W)ds.

Letting F
X = (FX

t )t∈[0,1] denote the complete filtration generated by X, let us choose q̃ :
[0,1] × C →R

d to be any bounded progressively measurable function satisfying

q̃(t,X) = E
[
q(t,W) | FX

t

]
a.s., for each t ∈ [0,1].

In particular, q̃ may be defined via optional projection. It is well known [39], Exercise (5.15),
that the innovation process

W̃ (t) := X(t) −
∫ t

0
q̃(s,X)ds

is an F
X-Brownian motion. Hence, if Q := P ◦ X−1, then qQ = q̃ by Girsanov’s theorem.

Using convexity of g and Jensen’s inequality, we conclude

H

(
P ◦

(
W +

∫ ·
0

q(t) dt

)−1)
−E

[∫ 1

0
g
(
t, q(t)

)
dt

]

= H(Q) −E

[∫ 1

0
g
(
t, q(t,W)

)
dt

]

≤ H(Q) −E

[∫ 1

0
g
(
t, q̃(t,X)

)
dt

]

= H(Q) −E
Q

[∫ 1

0
g
(
t, q̃(t,W)

)
dt

]
≤ ρg(H),

where the last inequality follows from the identity qQ = q̃ and the (overloaded) definition of
ρg . As this inequality is valid for any q ∈ Lb, the proof of equation (30) is complete. Finally,
equation (BBD) follows since Q �→ H(Q) := E

Q[F(W)] is sequentially continuous in the
desired way (if F is bounded and Borel) and ρg(H) = ρg(F ) of course. �
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The functional ρg can be extended to random variables X ∈ L0(P ) that are bounded from
below by setting ρg(X) := limn→∞ ρg(X ∧ n). It is easily checked that this extension also
satisfies (BBD), though we will make no use of this.

Using Theorem 3.1, we now prove the Schilder-type result of Theorem 2.2. The argument
is reminiscent of the weak convergence proof of the Freidlin–Wentzell theorem [5], Theo-
rem 4.3.

PROOF OF THEOREM 2.2. By (BBD) we have

ρgn

(
F

(
W√
n

))
= sup

q∈Lb

E

[
F

(
W + ∫ ·

0 q(t) dt√
n

)
−

∫ 1

0
g

(
t,

q(t)√
n

)
dt

]

= sup
q∈Lb

E

[
F

(
W√
n

+
∫ ·

0
q(t) dt

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]
.

We first bound the lim infn→∞ of the above expression. For each absolutely continuous ω ∈
C0 such that

∫ 1
0 g(t, ω̇(t)) dt < ∞, define the absolutely continuous path wk ∈ C0 by setting

ẇk(t) := ω̇(t)1{|ω̇(t)|≤k} + k

|ω̇(t)| ω̇(t)1{|ω̇(t)|>k}, k ≥ 1.

Note that wk ∈ Lb. For every k ∈ N we have

(38)

lim inf
n→∞ ρgn

(
F

(
W√
n

))
≥ lim inf

n→∞ E

[
F

(
W√
n

+ wk

)
−

∫ 1

0
g
(
t, ẇk(t)

)
dt

]

≥ F(wk) −
∫ 1

0
g
(
t, ẇk(t)

)
dt.

By convexity of g(t, ·), we have

g
(
t, ẇk(t)

) ≤ g
(
t, ω̇(t)

)+ g(t,0) + 2b,

where b ≥ 0 is a constant such that g ≥ −b. Moreover, since ẇk(t) = ω̇(t) for sufficiently
large k, it holds that wk → ω and g(t, ẇk(t)) → g(t, ω̇(t)) for every t . Thus, taking the limit
as k goes to infinity in (38), it follows by dominated convergence (noting that |ẇk| ≤ |ω̇|) that

lim inf
n→∞ ρgn

(
F

(
W√
n

))
≥ F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt.

Recalling the convention that
∫ 1

0 g(t, ω̇(t)) dt := ∞ whenever ω is not absolutely continuous,
we may take the supremum over ω ∈ C0 to get

lim inf
n→∞ ρgn

(
F

(
W√
n

))
≥ sup

ω∈C0

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
.

For the opposite inequality, first notice that we may always choose a constant q ≡ 0 to get
the lower bound

(39) ρgn

(
F

(
W√
n

))
≥ E

[
F

(
W√
n

)
−

∫ 1

0
g(t,0) dt

]
≥ −2C ∀n ∈N,

where C < ∞ is any constant such that infω∈C F(ω) ≥ −C and
∫ 1

0 g(t,0) dt ≤ C (see As-
sumption (TI)). Now, take qn to be 1/n-optimal; that is, let qn ∈ Lb be such that

(40) ρgn

(
F

(
W√
n

))
− 1

n
≤ E

[
F

(
W√
n

+
∫ ·

0
qn(t) dt

)
−

∫ 1

0
g
(
t, qn(t)

)
dt

]
.
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From (39), we have

(41) sup
n

E

∫ 1

0
g
(
t, qn(t)

)
dt < ∞.

Letting An(t) = ∫ t
0 qn(s) ds, it follows from Lemma A.1 that the sequence (An) of C0-valued

random variables is tight. Moreover, if we fix a subsequence Ank
which converges in law to

some A, then we may write A = ∫ ·
0 q(t) dt for some process q satisfying

E

∫ 1

0
g
(
t, q(t)

)
dt ≤ lim inf

k→∞ E

∫ 1

0
g
(
t, qnk

(t)
)
dt.

Because limn→∞ W/
√

n = 0 in probability, we have W/
√

nk + Ank
→ A in law. Recalling

(40), we have (taking limits still along the same subsequence)

lim sup
k→∞

ρgnk

(
F

(
W√
nk

))
≤ lim sup

k→∞
E

[
F

(
W√
nk

+ Ank

)
−

∫ 1

0
g
(
t, qnk

(t)
)
dt

]

≤ E

[
F(A) −

∫ 1

0
g
(
t, q(t)

)
dt

]

= E

[
F

(∫ ·
0

q(t) dt

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]

≤ sup
ω∈C0

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
.

We have argued that for any subsequence we can extract a further subsequence along which
the above limsup bound is valid, and we conclude that the same upper bound is valid without
passing to a subsequence. This completes the proof. �

4. The Sanov-type limit theorem. This section develops the necessary machinery for
proving Theorem 2.1, some of which will be used again in later sections. The goal is to write
our problem in a setting amenable to [23], Theorem 1.1. A first key step is to use Theorem 3.1
to derive an alternative expression for the pre-limit quantity in Theorem 2.1, relating it to the
iterates denoted ρn in [23], and this will explain the precise form of the scaling limit. This is
carried out in Section 4.1. A second key ingredient in applying [23] is to check that the sub-
level sets of αg are weakly compact, which turns out to fail in general. Section 4.2 provides
a suitable work-around. Finally, Section 4.3 assembles these pieces into a complete proof.

4.1. The rescaled control problem. Let Cn be the n-fold product space, and denote by
(ω1, . . . ,ωn) a typical element in Cn. Let Bb(Cn) be the space of bounded measurable func-
tions on Cn. We define inductively the iterates of ρ

g
n : Bb(Cn) → R ∪ {+∞} as follows: We

set ρ
g
1 ≡ ρg , and for n > 1 define

(42) ρg
n(f ) := ρ

g
n−1

(
(ω1, . . . ,ωn−1) �→ ρ

(
f (ω1, . . . ,ωn−1, ·))).

In other words, given f ∈ Bb(Cn) for n > 1, we define3 f̃ ∈ Bb(Cn−1) by f̃ (ω1, . . . ,ωn−1) =
ρg(f (ω1, . . . ,ωn−1, ·)), and then we set ρ

g
n(f ) = ρ

g
n−1(f̃ ).

Recall from (6) the definition of the chopped paths W(n,k) for k = 1, . . . , n. The following
representation for ρ

g
n underlies our proof of Theorem 2.1:

3Actually, the function f̃ is merely upper-semianalytic in general. But this does not pose any problems, since
upper-semianalytic functions are universally measurable.
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PROPOSITION 4.1. For q ∈ Lb define Xq = W + ∫ ·
0 q(t) dt . For f ∈ Bb(Cn), we have

ρg
n(f ) = sup

q∈Lb

E

[
f
(
X

q
(n,1), . . . ,X

q
(n,n)

)− n

∫ 1

0
g

(
nt − �nt�, q(t)√

n

)
dt

]

= nρGn

(
1

n
f (W(n,1), . . . ,W(n,n))

)
.

PROOF. The second claimed equality follows immediately from Theorem 3.1 and the
definition of Gn, so we prove only the first.

For n = 1 this is Theorem 3.1. Fix n > 1. Define a process Bn : [0, n] × Cn → R
d by

setting

Bn(t,ω1, . . . ,ωn)

=

⎧⎪⎪⎨⎪⎪⎩
ω1(t) − ω1(0) if t ∈ [0,1],
ωk+1(t − k) − ωk+1(0) +

k∑
i=1

[
ωi(1) − ωi(0)

]
if t ∈ [k, k + 1], k ≤ n − 1.

In other words, Bn(t,ω1, . . . ,ωn) follows the increments of ωk on the interval [k − 1, k].
Define the filtration F

n on Cn by setting Fn
t = σ(Bn

s : s ≤ t). Note that Bn = (Bn(t))t∈[0,n]
is a Brownian motion on (Cn,Fn,P n) with P n the n-fold product of P . In the following, the
symbol En will denote expectation on (Cn,Fn,P n), and we note that E = E

1.
Let An denote the set of bounded F

n-progressively measurable processes q : [0, n]×Cn →
R

d . For q ∈An, define a continuous process Xn,q = (Xn,q(t))t∈[0,n] on (Cn,Fn,P n) by

Xn,q(t,ω1, . . . ,ωn) :=
∫ t

0
q(s,ω1, . . . ,ωn) ds + Bn(t,ω1, . . . ,ωn).

In the following, for a path x ∈ C([0, n];Rd) and for k = 1, . . . , n, define the chopped (but
not rescaled) path x(c,n,k) ∈ C = C([0,1];Rd) by

x(c,n,k)(t) = x(k − 1 + t) − x(k − 1), t ∈ [0,1].
In other words, x(c,n,k) is simply the increment over the time interval [k − 1, k].

Let us understand first the case n = 2. For a fixed ω ∈ C, by Theorem 3.1 we have

ρg(f (ω, ·)) = sup
q∈A1

E
1
[
f
(
ω,X1,q)−

∫ 1

0
g
(
t, q(t)

)
dt

]
.

Applying Theorem 3.1 once again, we have by definition

ρ
g
2 (f ) = sup

β∈A1

E
1
[
ρg(f (

X1,β, ·))−
∫ 1

0
g
(
t, β(t)

)
dt

]

= sup
β∈A1

E
1
[(

sup
q∈A1

E

[
f
(
ω,X1,q)−

∫ 1

0
g
(
t, q(t)

)
dt

])∣∣∣∣
ω=X1,β

−
∫ 1

0
g
(
t, β(t)

)
dt

]
.

The key idea here is to apply a form of dynamic programming. In particular, let Â1 denote
the set of bounded functions [0,1] × C × C � (t,ω1,ω2) �→ q̂[ω1](t,ω2) ∈ R

d which are
jointly measurable, using the progressive σ -field on [0,1] × C for the argument (t,ω2) and
the Borel σ -field on C for the argument ω1. A standard measurable selection argument [3],
Proposition 7.50, lets us write the above as

(43)

ρ
g
2 (f ) = sup

β∈A1
q̂∈Â1

E
1
[
E

1
[
f
(
ω1,X

1,q̂[ω1])−
∫ 1

0
g
(
t, q̂[ω1](t))dt

]∣∣∣∣
ω1=X1,β

−
∫ 1

0
g
(
t, β(t)

)
dt

]
.
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Now consider a fixed q̂ ∈ Â1 and β ∈ A1. We may define a process q : [0,2] × C2 → R
d by

setting

(44) q(t,ω1,ω2) = β(t,ω1)1[0,1](t) + q̂[ω1](t − 1,ω2)1(1,2](t).
Then q ∈ A2, and unpacking the definitions reveals the identities

X1,q̂[ω1](t,ω2) = X
2,q
(c,2,2)(t,ω1,ω2), t ∈ [0,1],

X1,β(t,ω1) = X
2,q
(c,2,1)(t,ω1,ω2), t ∈ [0,1],

E
1
∫ 1

0
g
(
t, β(t)

)
dt = E

2
∫ 1

0
g
(
t, q(t)

)
dt,

which in turn imply

E
1
[
f
(
ω1,X

1,q̂[ω1])−
∫ 1

0
g
(
t, q̂[ω1](t))dt

]∣∣∣∣
ω1=X1,β

= E
2
[
f
(
ω1,X

2,q
(c,2,2)(ω1, ·))−

∫ 2

1
g
(
t − 1, q(t,ω1, ·))dt

]∣∣∣∣
ω1=X1,β

= E
2
[
f
(
X

2,q
(c,2,1),X

2,q
(c,2,2)

)−
∫ 2

1
g
(
t − 1, q(t)

)
dt

∣∣∣F2
1

]
.

Indeed, the last identity follows from the fact that the C-valued random variable (ω1,ω2) �→
ω2 is independent of F2

1 . Finally, we plug this last expression into (43). Then, note that the
map (β, q̂) �→ q given by (44) defines a bijection between A1 ×Â1 and A2, and use the tower
property of conditional expectation to get

ρ
g
2 (f ) = sup

q∈A2

E
2
[
f
(
X

2,q
(c,2,1),X

2,q
(c,2,2)

)−
∫ 2

0
g
(
t − �t�, q(t)

)
dt

]
.

This argument adapts, mutatis mutandis, to the case of general n > 1, and we find

(45) ρg
n(f ) = sup

q∈An

E
n

[
f
(
X

n,q
(c,n,1), . . . ,X

n,q
(c,n,n)

)−
∫ n

0
g
(
t − �t�, q(t)

)
dt

]
.

To complete the proof, we rescale this control problem to live on the time interval [0,1]
instead of [0, n]. Still working on the space (Cn,Fn,P n), define for each q ∈ An the process

X
n,q

(t) := 1√
n
Xn,q(nt) = 1√

n

∫ nt

0
q(s) ds + 1√

n
Bn(nt) for t ∈ [0,1].

By a change of variables and Brownian scaling, we can write

X
n,q

(t) =
∫ t

0
q(s) ds + B

n
(t),

where q(s) := √
nq(ns), and B

n
(t) := 1√

n
Bn(nt) is a Brownian motion. Another change of

variables yields ∫ n

0
g
(
t − �t�, q(t)

)
dt = n

∫ 1

0
g

(
nt − �nt�, q(t)√

n

)
dt.

Lastly, it is straightforward to check that X
n,q
(c,n,k) ≡ X

n,q

(n,k). Putting it all together, (45) be-
comes

ρg
n(f ) = sup

q∈An

E
n

[
f
(
X

n,q

(n,1), . . . ,X
n,q

(n,n)

)− n

∫ 1

0
g

(
nt − �nt�, q(t)√

n

)
dt

]
.

Complete the proof by transferring everything from the probability space (Cn,Fn,P n) to the
original space (C,F,P ), using the map Cn � (ω1, . . . ,ωn) �→ B

n
(ω1, . . . ,ωn) ∈ C. �
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4.2. In search of compactness. As mentioned above, the goal of this section is to over-
come the technical impediment that the functional αg does not necessarily have compact
sub-level sets. We illustrate this with an example, but we stress that this is only an issue when
we do not assume that g has at least quadratic growth.

EXAMPLE 4.2. Take d = 1 and g(t, q) = |q|5/4. Set qn(t) := t−3/41(1/n,1](t) and
q∞(t) := t−3/4. Define Qn as the measure with density

dQn

dP
= exp

(∫ 1

0
qn(t) dW(t) − 1

2

∫ 1

0

∣∣qn(t)
∣∣2 dt

)
,

and let Q∞ = Law(W + ∫ ·
0 q∞(t) dt). One can easily check the following:

(1) Qn converges to Q∞ in the weak topology of measures.
(2) αg(Qn) ≤ 16 for each n.
(3) Q∞ is singular to P , so in particular αg(Q∞) = ∞.

This shows that the sublevel set {αg ≤ 16} is not even closed in the weak topology of mea-
sures.

For this reason, we initially replace αg and ρg by two new functionals better suited for our
purposes. Let P∗ denote the set of those measures Q on C for which there exists a progressive
R

d -valued process qQ such that
∫ 1

0 |qQ(s)|ds < ∞ Q-a.s. and

W(t) −
∫ t

0
qQ(s) ds is a Q-Brownian motion.

The process qQ is then uniquely defined up to dt ⊗ dQ-almost everywhere equality. This
does not reduce to Girsanov theory, since we are not asking that elements in P∗ be absolutely
continuous with respect to Wiener measure (e.g., the set P∗ contains measures singular to
P , such as the laws of Brownian bridges or Bessel processes). Note, however, that αg(Q) =
α̃g(Q) for Q ∈ Q.

Consider the functional

(46) P∗ � Q �→ α̃g(Q) := E
Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
∈ R∪ {+∞},

where we define the functional as +∞ outside of P∗. Let Bb(C) denote the set of bounded
measurable functions on C and define the functional

ρ̃g(F ) := sup
Q∈P∗

(
E

Q[F ] − α̃g(Q)
)
, F ∈ Bb(C).

We now give some elementary facts about α̃g which may seem folklore. We defer the rather
technical proof of the next lemma to the Appendix. Recall that we are assuming at all times
that the given function g satisfies assumption (TI).

LEMMA 4.3. The functional α̃g is convex, lower semicontinuous with respect to weak
convergence of measures on path space, and its sub-level sets are weakly compact in this
topology. Furthermore, we have

α̃g(Q) = sup
F∈Bb(C)

(
EQ[F ] − ρ̃g(F )

) = sup
F∈Cb(C)

(
EQ[F ] − ρ̃g(F )

)
, Q ∈ P∗.

In general ρg and ρ̃g , just as αg and α̃g , may differ. It is thus important to establish how
ρg and ρ̃g are related. This is the content of the next result.
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LEMMA 4.4. If F : C →R is bounded and lower semicontinuous, then ρg(F ) = ρ̃g(F ).

PROOF. Obviously ρ̃g ≥ ρg . Let Q ∈ P∗ such that α̃g(Q) < ∞. We will exhibit a se-
quence Qn of absolutely continuous measures such that

lim inf
{
E

Qn[F ] − αg(Qn)
} ≥ E

Q[F ] − α̃g(Q),

which would establish the claim. Note that E
Q
∫ 1

0 g(t, qQ(t)) dt = α̃g(Q) < ∞ implies
qQ(t) ∈ dom(g(t, ·)), dt ⊗ dP -a.e. We know that WQ(t) := W(t) − ∫ t

0 qQ(s) ds is a Q-
Brownian motion. Define qn(t) = qQ(t)1{|qQ(t)|≤n}, and let Qn denote the law of the process

Xn(t) = WQ(t) +
∫ t

0
qn(s) ds.

Note that qn is uniformly bounded, and so Qn ∈ Q. Because qn(t) → qQ(t) for each t , it is
clear that Qn → Q weakly. Hence, by lower semicontinuity of F ,

lim inf
n→∞ E

Qn[F ] ≥ E
Q[F ].

Finally, define q̂n(t,X
n) and ŴQ as the optional projections (under Q) of qn and WQ, re-

spectively, on the filtration generated by Xn. Then ŴQ remains a Brownian motion in this
smaller filtration [39], Exercise (5.15). It follows that qQn(t,Xn) = q̂n(t,X

n), dt ⊗ dQ-
almost surely. By convexity, we get

αg(Qn) = E
Qn

[∫ 1

0
g
(
t, qQn(t,W)

)
dt

]

= E
Q

[∫ 1

0
g
(
t, q̂n

(
t,Xn))dt

]
≤ E

Q

[∫ 1

0
g
(
t, qn(t)

)
dt

]

= E
Q

[∫ 1

0

(
g
(
t, q(t)

)
1{|qQ(t)|≤n} + g(t,0)1{|qQ(t)|>n}

)
dt

]
.

Since
∫ 1

0 g(t,0) dt < ∞ by assumption (TI), we conclude from monotone convergence that

(47) lim sup
n

αg(Qn) ≤ E
Q

[∫ 1

0
g
(
t, q(t)

)
dt

]
= α̃g(Q). �

Recalling the definition of the iterates ρ
g
n based on ρg and given in (42), we define the

iterates ρ̃
g
n based on ρ̃g in the same way. A simple consequence of Lemma 4.4 is that ρ

g
n = ρ̃

g
n

restricted to a large class of functions:

LEMMA 4.5. Let n ∈N, and let f : Cn →R be lower semicontinuous and bounded. Then
the functions Cn−1 � (ω1, . . . ,ωn−1) �→ ρ(f (ω1, . . . ,ωn−1, ·)) are lower-semicontinuous
and bounded, for both ρ = ρg and ρ = ρ̃g . In particular, for such f we have ρ

g
n(f ) = ρ̃

g
n (f ).

PROOF. The case n = 1 is covered by Lemma 4.4. The general case follows by induction
but for ease of presentation we consider only the case n = 2. Let us prove that ω �→ F(ω) :=
ρ̃g(f (ω, ·)) is lower semicontinuous. To wit, if ωn → ω and F(ωn) ≤ c for all n, then by
definition ∫

f (ωn, ω̄) dQ(ω̄) − α̃g(Q) ≤ c,

for all Q ∈ P∗. Taking limit inferior here, and by Fatou’s lemma and lower semicontinuity of
f , we get ∫

f (ω, ω̄) dQ(ω̄) − α̃g(Q) ≤ c.



1344 J. BACKHOFF-VERAGUAS, D. LACKER AND L. TANGPI

Now taking supremum over Q we conclude F(ω) ≤ c. Moreover, because g is bounded from
below and f is bounded, F too is bounded. The same reasoning can be applied to ρg . By
Lemma 4.4 and the case n = 1 we have

ρ
g
2 (f ) = ρg(ω �→ ρg(f (ω, ·))) = ρ̃g(ω �→ ρg(f (ω, ·)))

= ρ̃g(ω �→ ρ̃g(f (ω, ·))) = ρ̃
g
2 (f ). �

4.3. Proof of Theorem 2.1. With the above machinery we can finally prove Theorem 2.1.
Let us denote the empirical measure of the family (ω1, . . . ,ωn) ∈ Cn by

Ln(ω1, . . . ,ωn) := 1

n

∑
i≤n

δωi

and recall the notation ω(n,k) from (6). Apply Proposition 4.1 to get

ρGn

(
F

(
1

n

n∑
k=1

δW(n,k)

))
= 1

n
ρg

n(nF ◦ Ln).

Since F ◦ Ln is clearly a continuous function on Cn, Lemma 4.5 yields ρ
g
n(nF ◦ Ln) =

ρ̃
g
n (nF ◦ Ln). Now, because α̃g is convex and has weakly compact sub-level sets, we may

apply [23], Theorem 1.1 (taking note of the representation of [23], Proposition A.1) to get

lim
n→∞

1

n
ρ̃g

n (nF ◦ Ln) = sup
Q∈P(C)

(
F(Q) − α̃g(Q)

) = sup
Q∈P∗

(
F(Q) − α̃g(Q)

)
.

To complete the proof, it remains to show that

(48) sup
Q∈P∗

(
F(Q) − α̃g(Q)

) = sup
Q∈Q

(
F(Q) − αg(Q)

)
.

Indeed, this will prove the first equality of Theorem 2.1, while the second follows from The-
orem 3.1. To prove (48), notice from the proof of Lemma 4.4 (specifically (47)) that the
following holds: If α̃g(Q) < ∞, then there exist Qn ∈ Q such that Qn → Q weakly and
lim supn αg(Qn) ≤ α̃g(Q). From this and continuity of F we deduce (48).

5. BSDE scaling limits. This section is dedicated to the proofs of Theorems 2.7 and
2.6. We will make use of the following definitions. For a function g satisfying (TI) and for
t ∈ [0,1), define g(t) : [0,1] ×R

d →R∪ {∞} by

g(t)(s, q) := (1 − t)g

(
t + s(1 − t),

q√
1 − t

)
.

Note that g(t) itself satisfies (TI), and so ρg(t)
is well defined. Moreover, we define the oper-

ation ⊗t : C × C0 → C by

ω ⊗t ω(s) := ω(s ∧ t) + √
1 − tω

(
s − t

1 − t

)
1[t,1](s).

We begin with the following crucial lemma, which shows how to express the (super-) solution
process Y(t) of a BSDE with generator g∗ in terms of ρg(t)

.

LEMMA 5.1. Let F ∈ Cb(C), and let (Y,Z) be the minimal supersolution of

dY (t) = −g∗(t,Z(t)
)
dt + Z(t) dW(t), Y (1) = F(W).

Then, for t ∈ [0,1) and P -a.e. ω ∈ C, we have

Y(t,ω) = ρg(t)(
F(ω ⊗t ·)).
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PROOF. By Lemma A.2 (which is just a minor modification of [11], Theorem 3.4), it
holds

Y(t) = ess sup
Q∈Qt

E
Q

[
F(W) −

∫ 1

t
g
(
s, qQ(s,W)

)
ds

∣∣∣Ft

]
,

where Qt is the set of those measures Q ∈ Q such that Q = P on Ft . Note that qQ ≡ 0 on
[0, t] for Q ∈Qt . Now, for a path ω ∈ C, define ω(t) ∈ C0 by

ω(t)(s) := 1√
1 − t

(
ω
(
t + s(1 − t)

)− ω(t)
)
.

It is readily checked that ω ⊗t ω(t) = ω for ω ∈ C. Hence, for a.e. ω, we may write

(49) Y(t,ω) = ess sup
Q∈Qt

E
Q

[
F
(
ω ⊗t W (t))−

∫ 1

t
g
(
s, qQ(

s,ω ⊗t W (t)))ds
∣∣∣Ft

]
(ω).

On the other hand, we can write

(50) ρg(t)(
F(ω ⊗t ·)) = sup

Q∈Q
E

Q

[
F(ω ⊗t W) −

∫ 1

0
g(t)(s, qQ(s,W)

)
ds

]
.

With these preparations out of the way, we first show that

(51) Y(t,ω) ≤ ρg(t)(
F(ω ⊗t ·)) for a.e. ω.

To see this, fix Q ∈ Qt . Define a measurable map C � ω �→ Qω ∈ P(C) as a version of
Q(W(t) ∈ · | Ft )(ω). Recalling also that qQ = 0 on [0, t], and noting that P(W(t) ∈ · | Ft ) =
P a.s. by Brownian scaling, we have

dQω

dP

(
ω(t)) = dQ

dP
(ω) = exp

(∫ 1

t
qQ(s,ω)dω(s) − 1

2

∫ 1

t

∣∣qQ(s,ω)
∣∣2 ds

)
, ω ∈ C.

Now, for ω ∈ C define q̃ω : [0,1] × C0 →R
d by

q̃ω(s,ω) := √
1 − tqQ(

t + s(1 − t),ω ⊗t ω
)
.

Recalling that ω ⊗t ω(t) = ω, by a change of variables we may write the above as

dQω

dP

(
ω(t)) = exp

(∫ 1

0
q̃ω

(
s,ω(t))dω(t)(s) − 1

2

∫ 1

0

∣∣q̃ω

(
s,ω(t))∣∣2 ds

)
.

We conclude that Qω ∈ Q and q̃ω = qQω for a.e. ω. With these identifications and another
change of variables in the time-integral, we can write

E
Q

[
F
(
ω ⊗t W (t))−

∫ 1

t
g
(
s, qQ(

s,ω ⊗t W (t)))ds
∣∣∣Ft

]
(ω)

= E
Qω

[
F(ω ⊗t W) −

∫ 1

t
g
(
s, qQ(s,ω ⊗t W)

)
ds

]

= E
Qω

[
F(ω ⊗t W) − (1 − t)

∫ 1

0
g
(
t + s(1 − t), qQ(

t + s(1 − t),ω ⊗t W
))

ds

]

= E
Qω

[
F(ω ⊗t W) −

∫ 1

0
g(t)(s, qQω(s,W)

)
ds

]
,

with the last line simply using the definition of g(t). This completes the proof of (51).
Finally, we prove the reverse, namely that

(52) Y(t,ω) ≥ ρg(t)(
F(ω ⊗t ·)).
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First, note that the definition of the operation ⊗t entails that, for each Q, the function of ω

on the right-hand side of (50) is Ft -measurable. Using [3], Proposition 7.50, we may find an
Ft -measurable map C � ω �→ Qω ∈Q such that

(53) E
Qω

[
F(ω ⊗t W) −

∫ 1

0
g(t)(s, qQω(s,W)

)
ds

]
≥ ρg(t)(

F(ω ⊗t ·))− ε,

for each ω ∈ C. Define Q by setting

dQ

dP
(ω) = dQω

dP

(
ω(t)).

The Ft -measurability of ω �→ Qω and the independence of W(t) and Ft under P together
ensure that P(dω) indeed integrates the right-hand side to 1, so that Q ∈P(C) is well defined.
Using the same facts, it is straightforward to check that Q ∈ Qt ; indeed, if S ∈ Ft then

Q(S) = E

[
dQ

dP
1S(W)

]
= E

[
dQW

dP

(
W(t))1S(W)

]
=

∫
C
E

[
dQω

dP

(
W(t))]1S(ω)P (dω) =

∫
C

1S(ω)P (dω) = P(S).

As argued in the previous paragraph, ω �→ Qω is a version of Q(W(t) ∈ · | Ft )(ω), and we
have

qQω(s,ω) = √
1 − tqQ(

t + s(1 − t),ω ⊗t ω
)
,

for ω,ω ∈ C. Using (53), the definition of g(t), and a change of variables, we find

ρg(t)(
F(ω ⊗t ·))

≤ ε +E
Q

[
F
(
ω ⊗t W (t))−

∫ 1

0
g(t)(s, qQω

(
s,W(t)))ds

∣∣∣Ft

]
(ω)

= ε +E
Q

[
F
(
ω ⊗t W (t))

− (1 − t)

∫ 1

0
g
(
t + s(1 − t), qQ(

t + s(1 − t),ω ⊗t W (t)))ds
∣∣∣Ft

]
(ω)

= ε +E
Q

[
F
(
ω ⊗t W (t))−

∫ 1

t
g
(
s, qQ(

s,ω ⊗t W (t)))ds
∣∣∣Ft

]
(ω).

Comparing this to the expression (49), the proof of (52) is complete. �

We now give the proof of Theorem 2.7. In the following, define C0[t,1] to be the set of
continuous paths ω : [t,1] → R with ω(t) = 0. For ω ∈ C and ω ∈ C0[t,1], define ω ⊕t ω ∈ C
by

ω ⊕t ω(s) = ω(s ∧ t) + ω(s)1[t,1](s).

Recall the notation hn(t, q) = h(t, q/
√

n).

PROOF OF THEOREM 2.7. The case t = 1 is trivial. Indeed, then un(1,ω) = Yn(1,√
nω) = F(ω) for each n, which is seen to equal u(1,ω) = F(ω). Assume henceforth that

t ∈ [0,1). Note first that (g(t))n = (gn)
(t) =: g(t)

n . We let

un(t,ω) := ρg
(t)
n

(
F

(
ω ⊗t

W√
n

))
.
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Using Lemma 5.1, we also have almost surely Yn(t,ω) = un(t,ω/
√

n). Since F(ω ⊗t ·) is
bounded and continuous, we may apply Theorem 2.2 to get

lim
n→∞un(t,ω) = sup

ω∈C0

(
F(ω ⊗t ω) −

∫ 1

0
g(t)(s, ω̇(s)

)
ds

)

= sup
ω∈C0

(
F(ω ⊗t ω) − (1 − t)

∫ 1

0
g

(
t + s(1 − t),

ω̇(s)√
1 − t

)
ds

)

= sup
ω∈C0

(
F(ω ⊗t ω) −

∫ 1

t
g

(
s,

1√
1 − t

ω̇

(
s − t

1 − t

))
ds

)
.

Given ω ∈ C0 = C0[0,1], we may define ω̃ ∈ C0[t,1] by ω̃(s) := √
1 − tω( s−t

1−t
). Then ω ⊗t

ω = ω ⊕t ω̃, and the map ω �→ ω̃ defines a bijection from C0 to C0[t,1]. Hence, the above
reduces to u(t,ω).

To prove the final claim, let us first assume that F is uniformly continuous. Using the fact
that a convex risk measure is always 1-Lipschitz with respect to the supremum norm (e.g.,
[19], Lemma 4.3) we get∣∣Yn(t,ω) − Yn(t,0)

∣∣ = ∣∣un(t,ω/
√

n) − un(t,0)
∣∣

≤
∥∥∥∥F(

1√
n
(ω ⊗t ·)

)
− F

(
1√
n
(0 ⊗t ·)

)∥∥∥∥∞
,

which converges to zero by uniform continuity. This and the convergence for un settles the
uniformly continuous case.

Now, if F is merely continuous, it is nevertheless the pointwise increasing limit of a se-
quence of bounded uniformly continuous (even Lipschitz) functions. Observing that both
Yn(t) and u(t,0) are increasing functions of F , we easily conclude from the uniformly con-
tinuous case that

lim inf
n→∞ Yn(t) ≥ u(t,0) a.s.

On the other hand, there is a uniformly bounded sequence (Fm) of uniformly continuous
functions decreasing to F . This time we can conclude that

lim sup
n→∞

Yn(t) ≤ inf
m

sup
ω∈C0[t,1]

(
Fm(0 ⊕t ω) −

∫ 1

t
g
(
s, ω̇(s)

)
ds

)
a.s.

It remains to bound the right-hand side from above by u(t,0). For each m ∈ N find ωm ∈
C0[t,1] such that

sup
ω∈C0[t,1]

(
Fm(0 ⊕t ω) −

∫ 1

t
g
(
s, ω̇(s)

)
ds

)
≤ 1

m
+ Fm(0 ⊕t ωm) −

∫ 1

t
g
(
s, ω̇m(s)

)
ds.

Since (Fm) is uniformly bounded, we deduce (as we did for (41) in the proof of Theorem 2.2)

sup
m∈N

∫ 1

t
g
(
s, ω̇m(s)

)
ds < ∞.

It is a consequence of Lemma A.1 that there exists ω ∈ C0[t,1] absolutely continu-
ous and such that for a subsequence (which we do not track) ωm → ω uniformly, and
lim infm

∫ 1
t g(s, ω̇m(s)) ds ≥ ∫ 1

t g(s, ω̇(s)) ds. On the other hand, since Fm decreases point-
wise to F , we have Fm(0 ⊕t ωm) → F(0 ⊕t ω) by Dini’s theorem. We conclude that

inf
m

sup
ω∈C0[t,1]

(
Fm(0 ⊕t ω) −

∫ 1

t
g
(
s, ω̇(s)

)
ds

)
≤ F(0 ⊕t ω) −

∫ 1

t
g
(
s, ω̇(s)

)
ds ≤ u(t,0),

which completes the proof. �
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PROOF OF THEOREM 2.6. The case t = 1 is trivial: Because (W(n,k))
n
k=1 are indepen-

dent Wiener processes under P , we conclude from the law of large numbers that Yn(1) =
F( 1

n

∑n
k=1 δW(n,k)

) converges a.s. to F(P ).
Henceforth, assume t < 1, so that �nt� < n for all n ∈ N. First notice that

G(t)
n (s, q) := (Gn)

(t)(s, q) = (1 − t)Gn

(
t + s(1 − t),

q√
1 − t

)

= (1 − t)g

(
nt + ns(1 − t) − ⌊

nt + ns(1 − t)
⌋
,

q√
n(1 − t)

)
.

Plugging in tn := �nt�/n, we find

(54)

G(tn)
n (s, q) = (1 − tn)g

(
�nt� + s

(
n − �nt�)− ⌊�nt� + s

(
n − �nt�)⌋, q√

n − �nt�
)

= (1 − tn)g

(
s
(
n − �nt�)− ⌊

s
(
n − �nt�)⌋, q√

n − �nt�
)

= (1 − tn)Gn−�nt�(s, q),

where the second line used the identity �k + c� = k + �c�, valid for any integer k and any
c ∈ R. Define Ln : C → P(C) by

Ln(ω) := 1

n

n∑
k=1

δω(n,k)
.

Using Lemma 5.1, we write

Yn(tn,ω) = ρG
(tn)
n

(
F ◦ Ln(ω ⊗tn W)

)
.

Note that (ω ⊗tn W)(n,k) ≡ ω(n,k) if k ≤ ntn = �nt�, while for k ≥ �nt� + 1 and s ∈ [0,1] we
have

(ω ⊗tn W)(n,k)(s) = √
n(1 − tn)

(
W

( k−1+s
n

− tn

1 − tn

)
− W

( k−1
n

− t

1 − tn

))
= √

n − �nt�
(
W

(
k − 1 + s − �nt�

n − �nt�
)

− W

(
k − 1 − �nt�

n − �nt�
))

= W(n−�nt�,k−�nt�)(s).
Hence,

(55)

Ln(ω ⊗tn W) = 1

n

�nt�∑
k=1

δω(n,k)
+ 1

n

n∑
k=�nt�+1

δW(n−�nt�,k−�nt�)

= tn
1

�nt�
�nt�∑
k=1

δω(n,k)
+ (1 − tn)Ln−�nt�(W).

Assume first that F is uniformly continuous. Under P , ω(n,k) for k = 1, . . . , n are independent
Brownian motions, and so as n → ∞ the first term converges P -a.s. by the law of large
numbers to tP . Hence, it holds for P -a.e. ω that the existence of the limit

lim
n→∞Yn(tn,ω) = lim

n→∞ρG
(tn)
n

(
F ◦ Ln(ω ⊗tn W)

)
,

is equivalent to the existence of the limit

lim
n→∞ρG

(tn)
n

(
F
(
tP + (1 − t)Ln−�nt�(W)

))
,
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and if any of these exist, then they are equal. Indeed, from the 1-Lipschitz continuity of
convex risk measures [19], Lemma 4.3, we have∣∣ρG

(tn)
n

(
F ◦ Ln(ω ⊗tn W)

)− ρG
(tn)
n

(
F
(
tP + (1 − t)Ln−�nt�(W)

))∣∣
≤ ∥∥F ◦ Ln(ω ⊗tn ·) − F

(
tP + (1 − t)Ln−�nt�(·))∥∥∞,

with the right-hand side converging to zero thanks to the uniform continuity and bounded-
ness of F , the law of large numbers, and the identity (55). Using this, equation (54), and
Theorem 2.1 we compute the limit,

lim
n→∞Yn(tn,ω) = lim

n→∞ρG
(tn)
n

(
F
(
tP + (1 − t)Ln−�nt�(W)

))
= lim

n→∞ρ(1−tn)Gn−�nt�(F (
tP + (1 − t)Ln−�nt�(W)

))
= lim

n→∞ρ(1−t)Gn−�nt�(F (
tP + (1 − t)Ln−�nt�(W)

))
= sup

q∈Lb

(
F
(
tP + (1 − t)Qq)− (1 − t)E

[∫ 1

0
g
(
s, q(s)

)
ds

])
.

The third equality, in which (1 − tn) is replaced by (1 − t) in the superscript, follows from
the estimate

(56)
∣∣ρag(f ) − ρbg(f )

∣∣ ≤ (
3‖f ‖∞

a
+ supg− + g(0)

)
|b − a|,

valid for any g satisfying (TI), any bounded measurable f , and any a, b ∈ (0,1], which we
justify in the next paragraph. (Here supg− := sup(t,q) max{0,−g(t, q)}.)

To prove (56) note that by monotonicity of ρg , it holds ρg(f ) ≤ ρg(‖f ‖∞) = ‖f ‖∞ +
ρg(0) ≤ ‖f ‖∞ + supg− and ρg(f ) ≥ E[f ] − g(0) ≥ −‖f ‖∞ − g(0). Take note also of the
easy identity ρcg(f ) = cρg(f/c), valid for c > 0. Thus,∣∣ρag(f ) − ρbg(f )

∣∣ ≤ ∣∣∣∣aρg

(
f

a

)
− bρg

(
f

a

)∣∣∣∣+ ∣∣∣∣bρg

(
f

a

)
− bρg

(
f

b

)∣∣∣∣
≤

∣∣∣∣ρg

(
f

a

)∣∣∣∣|a − b| + b

∥∥∥∥f

a
− f

b

∥∥∥∥∞

≤
(

3
‖f ‖∞

a
+ supg− + g(0)

)
|a − b|.

We have now completed the proof under the extra assumption that F is uniformly con-
tinuous. To conclude, we may drop this extra assumption by essentially the same monotone
approximation arguments as in the proof of Theorem 2.7, by relying again on Lemma A.1.

�

6. On the PDE connection. The goal of this section is to briefly elaborate on the PDE
results of Section 2.4. The basic lemma linking the functionals ρg with PDEs is the following:

LEMMA 6.1. Let f :Rd →R be bounded and lower semicontinuous. Then the parabolic
PDE

(57)

⎧⎨⎩∂tv(t, x) + 1

2
�v(t, x) + g

(
t,∇v(t, x)

) = 0 on [0,1] ×R
d,

v(1, x) = f (x) for x ∈ R
d

admits a minimal viscosity supersolution v. Moreover, ρg(f (W(1))) = v(0,0).
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If f ∈ Cb(R
d) and g∗(t, ·) is differentiable and there is a constant C ≥ 0 such that∣∣g∗(t, z)

∣∣ ≤ C
(
1 + |z|2) and

∣∣∂zg
∗(t, z)

∣∣ ≤ C
(
1 + |z|), z ∈ R

d,

then v is the unique viscosity solution of (57).

PROOF. The existence of a minimal viscosity supersolution v is shown in [12], Theo-
rem 5.2, where it is also shown that v(0,0) = Y(0), where (Y,Z) is the minimal supersolution
of the BSDE (10). To complete the proof, simply recall from (12) that Y(0) = ρg(f (W(1))).
When g∗ is of quadratic growth and f ∈ Cb(R

d), the existence of a unique viscosity solution
u follows by [21], Theorems 3.2 and 3.8. By comparison, v = u. �

Now, for each integer n ≥ 1, consider the operator Ln, taking bounded lower semicon-
tinuous functions on (Rd)n to bounded lower semicontinuous functions on (Rd)n−1, as fol-
lows. Given F : (Rd)n → R and (x1, . . . , xn−1) ∈ (Rd)n−1, we define LnF (x1, . . . , xn−1) :=
v(0,0), where v = v(t, x) is the minimal viscosity supersolution of the PDE

(58)

⎧⎨⎩∂tv(t, x) + 1

2
�v(t, x) + g

(
t,∇v(t, x)

) = 0 on [0,1] ×R
d,

v(1, x) = F(x1, . . . , xn−1, x) for x ∈ R
d .

By Lemma 6.1, the minimal viscosity supersolution v exists, and we have

ρg(F (
x1, . . . , xn−1,W(1)

)) = v(0,0).

By definition,

ρg(F (
x1, . . . , xn−1,W(1)

))
= sup

Q∈Q
E

Q

[
F

(
x1, . . . , xn−1,W(1) +

∫ 1

0
qQ(t) dt

)
−

∫ 1

0
g
(
t, qQ(t)

)
dt

]
.

Because F is lower semicontinuous and bounded, this exhibits ρg(F (x1, . . . , xn−1,W(1)))

as the supremum of lower semicontinuous functions of (x1, . . . , xn−1). Hence, Ln is well
defined and indeed maps bounded lower semicontinuous functions of (Rd)n to bounded lower
semicontinuous functions of (Rd)n−1. For n = 1, we interpret L1 as mapping from bounded
lower semicontinuous functions of Rd to real numbers. The composition L1 · · ·Ln−1Ln then
maps a function on (Rd)n to a real number.

PROPOSITION 6.2. For a function F ∈ Cb(P(Rd)), define Fn : (Rd)n →R by

Fn(x1, . . . , xn) := nF

(
1

n

n∑
i=1

δxi

)
.

Then, defining Q
q
1 := P ◦ (W(1) + ∫ 1

0 q(t) dt)−1 for q ∈ Lb as the time-1 marginal of Qq ,

(59) lim
n→∞

1

n
L1 · · ·Ln−1LnF

n = sup
q∈Lb

(
F
(
Q

q
1

)−E

[∫ 1

0
g
(
t, q(t)

)
dt

])
.

PROOF. Recall the definition of ρ
g
n from Section 4.1. For a bounded lower semicon-

tinuous function f on (Rd)n, define f̃ ∈ Bb(Cn) by setting f̃ (ω1, . . . ,ωn) = f (ω1(1), . . . ,

ωn(1)), and note that we have

L1 · · ·Ln−1Lnf = ρg
n(f̃ ) = nρGn

(
1

n
f̃ (W(n,1), . . . ,W(n,n))

)
.
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Indeed, the first equality is just the definition of ρ
g
n , while the second is Proposition 4.1. In

particular, we may write

F̃ n(ω1, . . . ,ωn) = Fn(ω1(1), . . . ,ωn(1)
) = nF

(
1

n

n∑
i=1

δωi(1)

)
,

and thus

1

n
L1 · · ·Ln−1LnF

n = ρGn
(
F̃ n(W(n,1), . . . ,W(n,n))

) = ρGn

(
F

(
1

n

n∑
k=1

δW(n,k)(1)

))
.

Conclude from Theorem 2.1. �

REMARK 6.3. The right-hand side of (59) can be further rewritten as supν∈P(Rd ){F(ν)−
I (ν)}, where I (ν) := inf{EQ[∫ 1

0 g(t, qQ(t)) dt] : Q ∈ P∗
1 (C),Q ◦ ω(1)−1 = ν} is a Schrö-

dinger-type problem under the classical observable (as discussed in Section 2.3).

We finally turn our attention to the formalization of the heuristics given in Section 2.4.1.
The novelty here lies in the “stochastic” proof, involving our BSDE limit theorems which
allow to bypass the regularity conditions often made on the coefficients of the PDE.

PROPOSITION 6.4. Let f ∈ Cb(R
d). The PDE

(60)

⎧⎨⎩∂tun(t, x) + 1

2n
�un(t, x) + g∗(t,∇un(t, x)

) = 0 on [0,1] ×R
d,

un(1, x) = f (x) for x ∈ R
d

admits a minimal viscosity supersolution un. Moreover, un → u pointwise, where u is the
function given by

u(t, x) = sup
ω∈C0[t,1]

(
f
(
x + ω(1)

)−
∫ 1

t
g
(
s, ω̇(s)

)
ds

)
.

When g(t, q) = g(q) does not depend on t , then the function u reduces to the Hopf–Lax–
Oleinik formula (25) and if in addition g is real-valued and f Lipschitz continuous, then u is
the unique viscosity solution of (24).

PROOF. Let (t, x) ∈ [0,1]×R
d be fixed and put Xt,x

n (s) := x+ 1√
n
(W(s)−W(t)), s ≥ t .

By [12] the function un(t, x) := Yn(t) is the minimal supersolution of the PDE (60), where
(Yn,Zn) is the minimal supersolution of the BSDE with generator g∗

n and terminal condition
f (Xt,x

n (1)). Let F : C → R be given by F(ω) = f (x + ω(1) − ω(t)). By Theorem 2.7 and
the fact that Yn(t) is deterministic, it holds

un(t, x) = Yn(t) → sup
ω∈C0[t,1]

(
F(0 ⊕t ω) −

∫ 1

t
g
(
s, ω̇(s)

)
ds

)

= sup
ω∈C0[t,1]

(
f
(
x + ω(1)

)−
∫ 1

t
g
(
s, ω̇(s)

)
ds

)
= u(t, x).

Now, when g is time-independent, the Hopf–Lax–Oleinik formula (25) follows from Jensen’s
inequality. Granting the additional assumptions on g and f , it is classical that the Hopf–Lax–
Oleinik formula is the unique viscosity solution of (24); see [16], Theorem 10.3. �
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7. Some extensions of the limit theorems. In this section we describe two extensions of
the main theorems. First, we show how to strengthen the topology used in Theorems 2.1 and
2.6 to the 1-Wasserstein topology, which allows us to derive a Cramér-type theorem. Second,
we incorporate a random initial position for W(0), which has thus far been assumed to be
zero.

7.1. Extension to stronger topologies. Recall that P(C) denotes the set of Borel proba-
bility measures on C. Define W1 to be the 1-Wasserstein metric on the space

P1(C) :=
{
Q ∈ P(C) :

∫
C
‖ω‖∞Q(dω) < ∞

}
,

where we recall ‖ · ‖∞ denotes the supremum norm on C. That is, W1(Q,Q′) is the infimum
over all Q ∈ P(C × C) with marginals Q and Q′ of the quantity

∫ ‖ω − ω′‖∞Q(dω,dω′).
Recall that α̃g was defined in (46), and as usual we tacitly assume g satisfies (TI).

LEMMA 7.1. The sub-level sets of α̃g are W1-compact. More precisely, for every a ∈ R

the set �a := {Q ∈ P(C) : α̃g(Q) ≤ a} is contained in P1(C) and is compact in the W1-
topology.

PROOF. Noting that g is bounded from below and α̃g+c = α̃g + c for constants c ∈ R,
we may assume without loss of generality that g ≥ 0. Fix a ∈ R. We know from Lemma 4.3
that �a is compact in the topology of weak convergence. It suffices to show (see [43], Theo-
rem 7.12) that

(61) lim
r→∞ sup

Q∈�a

E
Q[‖W‖∞1{‖W‖∞≥2r}

] = 0.

By Assumption (TI), for each c > 0 we may find N > 0 such that g(t, q) ≥ c|q| whenever
|q| ≥ N . Clearly �a ⊂ P∗. For Q ∈ �a , by definition, WQ(t) := W(t) − ∫ t

0 qQ(s) ds is a
Q-Brownian motion. Hence, for any r > 1,

(62) E
Q[‖W‖∞1{‖W‖∞≥2r}

] ≤ E
Q[‖W‖∞1{‖WQ‖∞≥r}

]+E
Q[‖W‖∞1{∫ 1

0 |qQ(t)|dt≥r}
]
.

For the first term, we make the estimate

(63)

E
Q[‖W‖∞1{‖WQ‖∞≥r}

]
≤ E

Q[∥∥WQ
∥∥∞1{‖WQ‖∞≥r}

]+E
Q

[∫ 1

0

∣∣qQ(t)
∣∣dt1{‖WQ‖∞≥r}

]
≤ E

P [‖W‖∞1{‖W‖∞≥r}
]+ NE

Q[1{‖WQ‖∞≥r}]

+ 1

c
E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt1{‖WQ‖∞≥r}

]

≤ (1 + N)EP [‖W‖∞1{‖W‖∞≥r}
]+ 1

c
E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
.

We bound the second term of (62) similarly:

(64)

E
Q[‖W‖∞1{∫ 1

0 qQ(t) dt≥r}
]

≤ E
Q[∥∥WQ

∥∥∞1{∫ 1
0 |qQ(t)|dt≥r}

]+E
Q

[∫ 1

0

∣∣qQ(t)
∣∣dt1{∫ 1

0 |qQ(t)|dt≥r}
]

≤ E
P [‖W‖2∞

]1/2
Q

(∫ 1

0

∣∣qQ(t)
∣∣dt ≥ r

)1/2

+ 1

c
E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
+ NQ

(∫ 1

0

∣∣qQ(t)
∣∣dt ≥ r

)
.
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Lastly, note that the definition of �a and Assumption (TI) ensure that

(65) lim
r→∞ sup

Q∈�a

Q

(∫ 1

0

∣∣qQ(t)
∣∣dt ≥ r

)
= 0.

Combining this with (63)–(64) and returning to (62), we deduce (61) since c was arbitrary.
�

COROLLARY 7.2. The conclusions of Theorems 2.1 and 2.6 hold for any F ∈ Cb(P1(C)),
where P1(C) is equipped with the metric W1, with the suprema over Q ∈ Q replaced by
Q ∈ Q∩P1(C).

PROOF. The proofs are exactly the same as those of Theorems 2.1 and Theorem 2.6,
with only minor points to check. In light of Lemma 7.1, we may apply the more general [23],
Theorem 3.1, in place of [23], Theorem 1.1, to conclude that

lim
n→∞

1

n
ρ̃g

n(nF ◦ Ln) = sup
Q∈P1(C)

(
F(Q) − α̃g(Q)

)
.

The only point worth checking is that

sup
Q∈P1(C)

(
F(Q) − α̃g(Q)

) = sup
Q∈Q∩P1(C)

(
F(Q) − αg(Q)

)
holds when F is merely W1-continuous, but the same argument as in the proof of Theo-
rem 2.1 works: If α̃g(Q) < ∞, then there exists Qn ∈ Q such that Qn → Q weakly and
lim supn αg(Qn) ≤ α̃g(Q). Deduce from Lemma 7.1 that {Qn} is W1-precompact and thus
W1(Qn,Q) → 0. Hence, F(Qn) → F(Q), and the above identity follows. �

As a consequence of Corollary 7.2, we provide the following Crámer-type limit theorem:

COROLLARY 7.3. For every F ∈ Cb(C), we have

(66) lim
n→∞ρGn

(
F

(
1

n

n∑
k=1

W(n,k)

))
= sup

ω∈C0

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
.

PROOF. Apply Corollary 7.2 to the W1-continuous function P1(C) � Q �→ F(
∫
C ω ×

Q(dω)), where the integral is understood in the Bochner sense, to get

lim
n→∞ρGn

(
F

(
1

n

n∑
k=1

W(n,k)

))
= sup

Q∈P1(C)

(
F

(∫
C
ωQ(dω)

)
− αg(Q)

)
.

By the arguments in the proof of Corollary 7.2, the above expression is equal to

sup
Q∈P∗

(
F

(∫
C
ω̄Q(dω̄)

)
− α̃g(Q)

)
= sup

ω∈C0

(
F(ω) − I (ω)

)
,

where we define

I (ω) := inf
{
α̃g(Q) : Q ∈P∗ ∩P1(C),

∫
C
ω̄Q(dω̄) = ω

}
.

Indeed, we may restrict the supremum to P∗ ∩P1(C) as opposed to P∗ because α̃g(Q) = ∞
for Q /∈ P1(C) by Lemma 7.1. We need only show that

I (ω) =
⎧⎪⎨⎪⎩
∫ 1

0
g
(
t, ω̇(t)

)
dt if ω is absolutely continuous,

∞ otherwise.
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Noting that EQ[W(t)] = ∫ t
0 E

Q[qQ(s)]ds for Q ∈ P∗ ∩P1(C), we have

I (ω) = inf
{
E

Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
: Q ∈ P∗ ∩P1(C),∫ t

0
E

Q[
qQ(s)

]
ds = ω(t),∀t ∈ [0,1]

}
.

Now, fix ω ∈ C. Jensen’s inequality yields

(67) E
Q

[∫ 1

0
g
(
t, qQ(t)

)
dt

]
≥

∫ 1

0
g
(
t,EQ[

qQ(t)
])

dt =
∫ 1

0
g
(
t, ω̇(t)

)
dt,

for any Q ∈ P∗ for which
∫ t

0 E
Q[qQ(s)]ds = ω(t) for all t ∈ [0,1]. If ω is absolutely con-

tinuous, then we can define Q = P ◦ (W + ∫ ·
0 ω̇(t) dt)−1 so that Q ∈ P∗ ∩ P1(C) with

qQ(t) = ω̇(t) for all t ∈ [0,1]. We conclude that, for ω absolutely continuous,

I (ω) =
∫ 1

0
g
(
t, ω̇(t)

)
dt.

On the other hand, if ω is not absolutely continuous, then there cannot exist Q ∈P∗ ∩P1(C)

with
∫ t

0 E
Q[qQ(s)]ds = ω(t) for all t ∈ [0,1]. �

REMARK 7.4. Comparing (8) and (66), we find that

lim
n→∞ρgn

(
F

(
W√
n

))
= lim

n→∞ρGn

(
F

(
1

n

n∑
k=1

W(n,k)

))
.

If F(ω) = f (ω(1)) depends only on the final value, then these quantities are even equal
for each n, without taking a limit (by telescoping sum). This may at first seem unsurprising
(at least for time-independent g) because W/

√
n and 1

n

∑n
k=1 W(n,k) have the same law for

each n. In general, however, we do not expect pre-limit equality except when ρg is law-
invariant. By [22], the functional ρg is law-invariant essentially only when g(t, q) = c|q|2
for c ∈ (0,∞], with the convention 0 · ∞ := 0.

REMARK 7.5. Depending on the function g, we could conceivably generalize Lem-
ma 7.1, and thus the rest of the results of this section, to topologies stronger than 1-
Wasserstein. The choice of topology should be informed by the growth of g. In par-
ticular, suppose the assumption lim|q|→∞ g(t, q)/|q| = ∞ in (TI) is strengthened to
lim|q|→∞ g(t, q)/ψ(q) = ∞, for some nonegative function ψ on R

d . Then we should be
able to deduce that the sub-level sets of α̃g are compact subsets of Pψ(C) := {μ ∈ P(C) :∫

ψ dμ < ∞} in the topology generated by the family of linear functionals μ �→ ∫
ϕ dμ,

where ϕ ranges over continuous functions on C satisfying |ϕ(x)| ≤ c(1 + supt∈[0,1] ψ(xt ))

pointwise. In particular, if ψ(q) = |q|p for p ≥ 1, this is nothing but the p-Wasserstein
topology. This is notably consistent with the classical case g(t, q) = |q|2, where it is known
that Sanov’s theorem holds for the empirical measure of i.i.d. Brownian motions in the p-
Wasserstein topology for p < 2 but not for p ≥ 2; this follows from the result of [44] and
the fact that E[ec‖W‖p∞] < ∞ for all c > 0 if and only if 0 ≤ p < 2. We refrain from pursuing
this generalization because the 1-Wasserstein distance is strong enough for the purpose of the
Cramér-type result Corollary 7.3.

7.2. Extensions to nontrivial initial positions. Preparing for our study of Schrödinger
problems, we now extend some of our results to allow the Brownian motion to have a (con-
stant) volatility different than 1 as well as a random, nonzero initial position.
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We fix throughout this section the function g satisfying assumption (TI), and we will omit
it from our soon-to-be cluttered superscripts. Recall that P denotes Wiener measure on C and
W denotes the canonical process (identity map) on C. For Q ∈ P(C) we take a regular kernel
(Qω(0)=x)x∈Rd so by disintegration

Q(·) =
∫
Rd

Qω(0)=x(·)Q0(dx),

where Qω(0)=x ∈ P(C) is supported on the set Cx := {ω ∈ C : ω(0) = x} and Q0 is the time-
zero marginal of Q.

We are given μ ∈ P(Rd). Recalling that Pε = P ◦ (
√

εW)−1, we define

P ω(0)∼μ
ε (·) :=

∫
x∈Rd

P ω(0)=x
ε (·)μ(dx),

namely the law of a Brownian motion with starting distribution μ and instantaneous variance
(i.e., volatility) equal to ε.

For Q ∈ P(C) with Q � P
ω(0)∼μ
ε and Q0 = μ, we define q

Q
ε as the unique progressively

measurable process satisfying

dQ

dP
ω(0)∼μ
ε

= exp
(

1

ε

∫ 1

0
qQ
ε (t) dW(t) − 1

2ε

∫ 1

0

∣∣qQ
ε (t)

∣∣2 dt

)
.

Then, for Q ∈ P(C) we define

αμ
ε (Q) :=

⎧⎪⎨⎪⎩E
Q

[∫ 1

0
g
(
t, qQ

ε (t)
)
dt

]
if Q � P ω(0)∼μ

ε ,Q0 = μ,

+∞ otherwise.

It is straightforward to check that

(68) αμ
ε (Q) =

⎧⎨⎩
∫
Rd

αδx
ε

(
Qω(0)=x)μ(dx) if Q � P ω(0)∼μ

ε ,Q0 = μ,

+∞ otherwise.

On the dual side, for F ∈ Bb(C), we define

ρμ
ε (F ) := sup

Q∈P(C)

(
E

Q[F ] − αμ
ε (Q)

)
= sup

Q�P
ω(0)∼μ
ε ,Q0=μ

E
Q

[
F(W) −

∫ 1

0
g
(
t, qQ

ε (t)
)
dt

]
.

Let us recall the notation for P∗
ε (C) in Section 2.3, as well as Q �→ qQ defined there. Define

α̃μ
ε (Q) :=

⎧⎪⎨⎪⎩E
Q

[∫ 1

0
g(t, qQ(t)) dt

]
if Q ∈ P∗

ε (C) and Q0 = μ,

+∞ otherwise,

and introduce analogously

ρ̃μ
ε (F ) := sup

Q∈P(C)

(
E

Q[F ] − α̃μ
ε (Q)

)
.

We ask the reader to bear in mind that, whenever we use g or any other function as super-
script for α or ρ (resp. α̃ or ρ̃), we mean it in the sense of Section 2 (resp. Section 4.2), with
the starting distribution being fixed to δ0. On the other hand, whenever we use μ or any other
measure as supercript for α, ρ, α̃, ρ̃, we mean it in the sense presented in the current section
(the function g being fixed).

Let us first present the analogue to Lemmas 4.3 and 4.4 (which took care of μ = δ0 and
ε = 1) in the present setup:
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LEMMA 7.6. The functional α̃
μ
ε is convex and lower semicontinuous (with respect to

weak convergence), and its sub-level sets are weakly compact in this topology. Furthermore,
for Q ∈ P∗

ε (C) with Q0 = μ we have

α̃μ
ε (Q) = sup

F∈Bb(C)

(
E

Q[F ] − ρ̃μ
ε (F )

) = sup
F∈Cb(C)

(
E

Q[F ] − ρ̃μ
ε (F )

)
,

and, on the other hand, for F : C →R bounded lower-semicontinuous we have

ρμ
ε (F ) = ρ̃μ

ε (F ).

We omit the proof, since it boils down to the same arguments as for Lemmas 4.3 and 4.4.
The key point of this section is the following proposition, for which we recall the notation
Cx = {ω ∈ C : ω(0) = x}:

PROPOSITION 7.7. Let μ ∈ P(Rd) and ε > 0. For F : C → R measurable and bounded
we have

(69) ρμ
ε (F ) =

∫
Rd

ρδx
ε (F )μ(dx).

For F ∈ Cb(C) we further have

(70) lim
ε↓0

ρμ
ε (F ) =

∫
Rd

sup
ω∈Cx

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
μ(dx).

PROOF. Using (68), we have

(71)

ρμ
ε (F ) = sup

Q∈P(C)

(
E

Q[F ] − αμ
ε (Q)

)
= sup

Q�P
ω(0)∼μ
ε ,Q0=μ

(
E

Q[F ] −
∫
Rd

αδx
ε

(
Qω(0)=x)μ(dx)

)

= sup
Q�P

ω(0)∼μ
ε ,Q0=μ

∫
Rd

(
E

Qω(0)=x [F ] − αδx
ε

(
Qω(0)=x))μ(dx)

≤
∫
Rd

ρδx
ε (F )μ(dx).

The proof of the reverse inequality relies on a careful application of a standard measurable
selection argument. A straightforward transformation of (BBD) yields

(72) ρδx
ε (F ) = sup

q∈Lb

E
P ω(0)=0

[
F

(
x + √

εW +
∫ ·

0
q(t) dt

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]
.

Note that Lb is a Borel subset of the (separable metric) space L2 of square-integrable pro-
gressively measurable processes, and that the map

R
d ×L2 � (x, q) �→ E

P ω(0)=0
[
F

(
x + √

εW +
∫ ·

0
q(t) dt

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]
is measurable. We may apply standard analytic set theory [3], Proposition 7.47, to conclude
that x �→ ρδx

ε (F ) is upper semianalytic and, in particular, universally measurable. The in-
tegral in the right-hand side of (69) is thus well defined, since further ρδx

ε (F ) is bounded
by the bounds of F and g. By [3], Proposition 7.50, there exists a universally measur-
able η-approximate optimizer qx ∈ Lb in (72), for any η > 0. Letting Qx = P ◦ (x +
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√
εW + ∫ ·

0 qx(t) dt)−1, we check that the probability measure Q = ∫
x∈Rd Qxμ(dx) satisfies

Q � P
ω(0)∼μ
ε , Q0 = μ, and Qω(0)=x = Qx . Moreover, by design,

ρδx
ε (F ) − η ≤ E

Qx [F ] − αδx
ε (Qx) = E

Qω(0)=x [F ] − αδx
ε

(
Qω(0)=x).

Hence, using the expression (71) for ρ
μ
ε (F ), we deduce

∫
Rd ρδx

ε (F )μ(dx) − η ≤ ρ
μ
ε (F ). As

η > 0 was arbitrary, this proves (69).
Now we show (70). The key is to observe from (72) that

ρδx
ε (F ) = ρgε

(
Fx

ε

)
,

where gε(q) := g(
√

εq) and Fx
ε (ω) := F(x + √

εω). Indeed,

ρgε
(
Fx

ε

) = sup
q∈Lb

E
P

ω(0)=0
1

[
F

(
x + √

εW + √
ε

∫ ·
0

q(s) ds

)
−

∫ 1

0
g
(
t,

√
εq(t)

)
dt

]

= sup
q∈Lb

E
P

ω(0)=0
ε

[
F

(
x + W +

∫ ·
0

q(s) ds

)
−

∫ 1

0
g
(
t, q(t)

)
dt

]

= sup
Q�P

ω(0)=0
ε

E
Q

[
F(x + W) −

∫ 1

0
g
(
t, qQ(t)

)
dt

]

= sup
Q�P

ω(0)=x
ε

E
Q

[
F(W) −

∫ 1

0
g
(
t, qQ(t)

)
dt

]

= ρδx
ε (F ),

where we used (BBD) in the first and third equalities. Thus Theorem 2.2 implies

lim
ε↓0

ρδx
ε (F ) = sup

ω∈C0

(
F(x + ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
= sup

ω∈Cx

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
.

With this at hand, we conclude by (69) and dominated convergence. �

8. Application to Schrödinger-type problems. Our aim is to prove the results stated in
Section 2.3. We first need some preparatory lemmas. We carry on with the notation of Sec-
tion 7.2, recalling the convention that

∫ 1
0 g(t, ω̇(t)) dt = ∞ if ω is not absolutely continuous.

We introduce the following very important functional

α
μ
0 (Q) := E

Q

[∫ 1

0
g
(
t, Ẇ (t)

)
dt

]
.

We also recall that Z is a separable Banach space (of observations) and that H : C → Z, the
observable, is a continuous linear operator.

The following �-convergence type result is a crucial technical step, and part (i) of it
relies on our Schilder-type result (Proposition 7.7) in an essential way. Recall that Pε =
P ◦ (

√
εW)−1 denotes the law of a standard Brownian motion times

√
ε.

LEMMA 8.1. As ε ↓ 0, α̃
μ
ε converges to the function α

μ
0 in the sense of �-convergence.

This means that for all Q ∈ P(C):

(i) Whenever Qε → Q, then

lim inf
ε↓0

α̃μ
ε (Qε) ≥ α

μ
0 (Q).
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(ii) There exists some Q̃ε → Q such that

lim sup
ε↓0

α̃μ
ε (Q̃ε) ≤ α

μ
0 (Q).

Moreover, the sequence {Q̃ε} in (ii) can be explicitly taken as Q̃ε := Q ∗ Pε .

PROOF. We first show (ii). We may assume Q is such that α
μ
0 (Q) < ∞, and take

Q̃ε := Q ∗ Pε :=
∫
C
P ◦ (ω̄ + √

εW)−1Q(dω̄).

To be completely clear, this means∫
C
FdQ̃ε =

∫
C

∫
C
F(ω̄ + √

εω)P (dω)Q(dω̄).

It is readily verified, via Lebesgue dominated convergence, that Q̃ε → Q weakly. Since
α

μ
0 (Q) < ∞ it follows that Q is concentrated on absolutely continuous paths, so as a con-

sequence Q̃ε ∈ P∗
ε (C). Furthermore, Q̃0

ε = Q0 = μ. As per Lemma 7.6, we know that α̃
μ
ε is

convex. This implies

α̃μ
ε (Q̃ε) ≤

∫
C
α̃μ

ε

(
P ◦ (ω̄ + √

εW)−1)Q(dω̄) =
∫
C

∫ 1

0
g
(
t, ˙̄ω(t)

)
dtQ(dω̄) = α

μ
0 (Q),

so taking limsup we conclude.
We proceed to show (i). We take Qε → Q and assume without loss of generality that

α̃
μ
ε (Qε) < ∞. By the duality formula in Lemma 7.6, and by Proposition 7.7, we have for any

F ∈ Cb(C):

lim inf
ε↓0

α̃μ
ε (Qε) ≥ lim inf

ε↓0

{
E

Qε [F ] − ρ̃μ
ε (F )

}
= E

Q[F ] −
∫
Rd

sup
ω∈Cx

(
F(ω) −

∫ 1

0
g
(
t, ω̇(t)

)
dt

)
μ(dx),

where we recall the notation Cx := {ω ∈ C : ω(0) = x}. Now, the function

R
d � x �→ inf

ω∈Cx

(∫ 1

0
g
(
t, ω̇(t)

)
dt − F(ω)

)
,

is the pointwise supremum of all functions h satisfying h(x) + F(ω) ≤ ∫ 1
0 g(t, ω̇(t)) dt +

�ω(0)(x) for all x ∈ R
d and all ω ∈ C, where we define �a(x) = +∞ if x �= a and �a(x) = 0

otherwise. Hence we have

lim inf
ε↓0

α̃μ
ε (Qε)

≥ sup
F∈Cb(C)

h∈L1(Rd ,μ)

{
E

Q[F ] +
∫

hdμ : h(x) + F(ω) ≤
∫ 1

0
g
(
t, ω̇(t)

)
dt + �ω(0)(x),∀x,ω

}
.

By Kantorovich duality [43], Theorem 1.3, the right-hand side is equal to

inf
π

∫
C×Rd

(∫ 1

0
g
(
t, ω̇(t)

)
dt + �ω(0)(x)

)
π(dω,dx),

where the infimum is over all π ∈ P(C ×R
d) with first marginal Q and second marginal μ.

Unless μ = Q0, this quantity is clearly infinite, and it is then straightforward to check that
the entire expression reduces to α

μ
0 (Q). �

As a final preparation for the proof of Theorem 2.8, we need the following compactness
lemma.
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LEMMA 8.2. The family {α̃μ
ε : ε ≤ 1} is equicoercive, namely:⋃

ε≤1

{
α̃μ

ε ≤ c
}

is tight for each c ∈R.

PROOF. This is the same argument as in the inf-tightness part of the proof of Lemma 4.3,
which we provide in the Appendix below. The point is that the initial distribution of the
canonical process is independent of ε, its quadratic variation is uniformly bounded in ε, and
its drift is bounded in L1 independently of ε thanks to Assumption (TI) and the conditions
α̃

μ
ε ≤ c. �

PROOF OF THEOREM 2.8. With the notation we have built up, equality (19) is equivalent
to

lim
ε↓0

inf
{
α̃μ

ε (Q) : Q ∈ P(C),H(Q) = νε

} = inf
{
α

μ
0 (Q) : Q ∈ P(C),H(Q) = ν

}
.

We begin by proving the upper bound,

lim sup
ε↓0

inf
{
α̃μ

ε (Q) : Q ∈ P(C),Q ◦ H−1 = νε

} ≤ inf
{
α

μ
0 (Q) : Q ∈ P(C),Q ◦ H−1 = ν

}
.

If there is no Q ∈ P(C) with Q ◦ H−1 = ν the right-hand side is +∞. Otherwise, for each
Q ∈ P(C) with Q ◦ H−1 = ν we introduce Q̃ε := Q ∗ Pε as in Lemma 8.1. By linearity of
H we have

Q̃ε ◦ H−1 = (
Q ◦ H−1) ∗ (

Pε ◦ H−1) = νε.

By Lemma 8.1, for each Q ∈P(C) we have

lim sup
ε↓0

inf
{
α̃μ

ε

(
Q′) : Q′ ∈ P(C),Q′ ◦ H−1 = νε

} ≤ lim sup
ε↓0

α̃μ
ε (Q̃ε) ≤ α

μ
0 (Q).

Infimize over Q ∈ P(C) satisfying Q ◦ H−1 = ν to get the announced upper bound.
It remains to prove the lower bound,

lim inf
ε↓0

inf
{
α̃μ

ε (Q) : Q ∈P(C),Q ◦ H−1 = νε

} ≥ inf
{
α

μ
0 (Q) : Q ∈ P(C),Q ◦ H−1 = ν

}
.

If the left-hand side is infinite there is nothing to prove. Otherwise, there exist sequences
εn ↓ 0 and Qn ∈P(C) with Qn ◦ H−1 = νεn such that

lim
n→∞ α̃μ

εn
(Qn) = lim inf

ε↓0
inf

{
α̃μ

ε (Q) : Q ∈ P(C),Q ◦ H−1 = νε

}
and also supn α̃

μ
εn(Qn) < ∞. The latter property along with Lemma 8.2 ensures that we may

pass to a further subsequence and assume that Qn → Q for some Q ∈ P(C). Continuity of
H implies Q ◦ H−1 = limn Qn ◦ H−1 = limn νεn = ν. Moreover, by Lemma 8.1, we have
lim infn→∞ α̃

μ
εn(Qn) ≥ α

μ
0 (Q), and we deduce the aforementioned lower bound.

That the problems in (20) admit an optimizer, provided there exists a feasible element, fol-
lows from the compactness of the sub-level sets of α̃

μ
ε (see Lemma 7.6), since the constraint

Q ◦ H−1 = νε is closed under weak convergence of measures. The analogous result for (21)
follows taking ε = 0.

If an optimizer for Qε exists for all ε > 0, and if Q̄ is an accumulation point of {Qε}ε ,
then Q̄ must be feasible for (21). Thus there exists Q an optimizer for (21), or equivalently
for

inf
{
α

μ
0 (Q) : Q ∈ P(C) with Q ◦ H−1 = ν

}
.
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Defining Q̃ε as in Lemma 8.1,we have

αμ(Q) = lim α̃μ
ε (Q̃ε) ≥ lim inf α̃μ

ε (Qε) ≥ α
μ
0 (Q̄),

by Lemma 8.1. So Q̄ is optimal for (21) as desired. �

We now proceed to the proof of Theorem 2.9. From here on, we take

Z = R
d and H(ω) = ω(1),

so we are in the classical situation. We will make use of a technical estimate for Brownian
bridges. We denote by

P x,y
ε [a, b] ∈ P

(
C
([a, b];Rd)),

the Brownian bridge from “x at time a to y at time b” with instantaneous variance ε. This is
the law, on the space of continuous functions on [a, b], of Brownian motion with volatility ε

conditioned to start in x and end in y. We refer to [40], Theorem 40.3, for a characterization
of (multidimensional) Brownian bridges.

LEMMA 8.3. Let a < b. The canonical process admits under P
x,y
ε [a, b] the decomposi-

tion

W(t) = x +
∫ t

a

y − W(s)

b − s
ds + √

εB(t),

where B is a standard d-dimensional Brownian motion on [a, b]. Then, with g and r ∈ (1,2)

as in Theorem 2.9, we have

E
P

x,y
ε [a,b]

[∫ b

a
g

(
y − W(t)

b − t

)
dt

]
≤ Kg

(
(b − a)g

(
y − x

2(b − a)

)
+ b − a + (b − a)1−(r/2)εr/2

)
,

(73)

where Kg < ∞ is a constant depending only on g and r .

PROOF. The claimed decomposition is classical [40], Theorem 40.3. To prove (73), it
suffices to consider the interval [0, b − a] rather than [a, b]. Let δ = b − a. By conditioning
of Gaussian distributions, we know that W(t) is Gaussian with mean δ−t

δ
x + t

δ
y and variance

matrix ε
δ
t (δ − t)Id, for each t ∈ (0, δ), under P

x,y
ε [0, δ]. Note also that g is convex and

satisfies g(q) ≤ c(1 + |q|r ) for some c > 0. From this, denoting P 1
1 = N (0, Id), we get

E
P

x,y
ε [0,δ]

[∫ δ

0
g

(
y − W(t)

δ − t

)
dt

]

=
∫ δ

0

∫
Rd

g

(
y − x

δ
+ z

√
εt

δ(δ − t)

)
dP 1

1 (z) dt

≤ 1

2
δg

(
2
y − x

δ

)
+ 1

2

∫ δ

0

∫
Rd

g

(
2z

√
εt

δ(δ − t)

)
dP 1

1 (z) dt

≤ 1

2
δg

(
2
y − x

δ

)
+ cδ

2
+ 2r−1c

∫ δ

0

∫
Rd

∣∣∣∣z
√

εt

δ(δ − t)

∣∣∣∣rdP 1
1 (z) dt

= 1

2
δg

(
2
y − x

δ

)
+ cδ

2
+ cKrδ

1−(r/2)εr/2,
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where Kr = 2r−1 ∫
Rd |z|rdP 1

1 (z)
∫ 1

0 ( t
1−t

)r/2 dt . Note that Kr < ∞ for 1 < r < 2. Finally, to
correct the factor of 2 within g we simply apply the assumed �2 doubling property, or rather
its consequence: g(2q) ≤ C(1 + g(q/2)) for all q ∈ R

d , for some C > 0. �

Note that the proof of Lemma 8.3 reveals why we need to assume r < 2 in Theorem 2.9.
Indeed, for r ≥ 2, the integral

∫ 1
0 ( t

1−t
)r/2 dt is infinite.

PROOF OF THEOREM 2.9. Because of Lemma 8.1(i), the lower bound can be established
exactly as in the proof of Theorem 2.8. The delicate point is proving the upper bound

(74) lim sup
ε↓0

inf
{
α̃μ

ε (Q) : Q ∈ P(C),Q1 = ν
} ≤ inf

{
α

μ
0 (Q) : Q ∈ P(C),Q1 = ν

}
,

for which we cannot rely on Lemma 8.1(ii) as we did in the proof of Theorem 2.8, because
we are working now with ν instead of νε on the left-hand side. If the right-hand side is infinite
there is nothing to prove. Let us take any Q with α

μ
0 (Q) < ∞ and Q1 = ν. We introduce the

measures

πs,t = Q ◦ (
W(s),W(t)

)−1 and πε,(s,t) := πs,t ∗ (
P s

ε ⊗ δ0
)
.

That is, πε,(s,t) ∈P(Rd ×R
d) is the joint law of (X(s) + √

sεZ,X(t)), where X ∼ Q and Z

is an independent standard d-dimensional Gaussian. The goal is to define now Q̃ε satisfying
the statement in Lemma 8.1(ii), but with Q̃1

ε = ν (and of course Q̃0
ε = μ).

Let δ < 1, which we will later send to zero. We will define first Q̃ε,δ by convolution of Q

and Pε in the time interval [0,1 − δ], and we then steer toward the appropriate marginal ν at
time 1 by using a suitable mixture of Brownian bridges. Concretely, we define Q̃ε,δ uniquely
by the four properties:

(1) Q̃ε,δ ◦ ({W(t)}t≤1−δ)
−1 = (Q ∗ Pε) ◦ ({W(t)}t≤1−δ)

−1,
(2) Q̃ε,δ ◦ (W(1 − δ),W(1))−1 = πε,(1−δ,1),
(3) Q̃ε,δ(W(1) ∈ · | {W(t)}t≤1−δ) = Q̃ε,δ(W(1) ∈ · | W(1 − δ)), a.s.,
(4) Q̃ε,δ({W(t)}t∈[1−δ,1] | W(1), {W(t)}t≤1−δ) = P

W(1−δ),W(1)
ε [1 − δ,1], a.s.

We remark that Q̃ε,δ is a semimartingale law for which the martingale part is
√

ε times a
Brownian motion and, crucially, for which the time-0 and time-1 marginals are, respectively,

Q̃0
ε,δ = μ and Q̃1

ε,δ = ν.

Because Qε,δ = Q ∗ Pε on Ft , we also have

(75) α̃μ
ε (Q̃ε,δ) = E

Q∗Pε

[∫ 1−δ

0
g
(
qQ∗Pε (t)

)
dt

]
+ A

μ
ε,[1−δ,1],

where (recalling the semimartingale decomposition of P
x,y
ε [1 − δ,1] stated in Lemma 8.3)

A
μ
ε,[1−δ,1] :=

∫
Rd×Rd

E
P

x,y
ε [1−δ,1]

[∫ 1

1−δ
g

(
y − W(t)

1 − t

)
dt

]
πε,(1−δ,1)(dx, dy).

We now use Lemma 8.3, with the constant Kg introduced therein, to bound A
μ
ε,[1−δ,1]:

(76)
A

μ
ε,[1−δ,1] ≤ KgδE

Q

[
g

(
W(1) − W(1 − δ) + √

(1 − δ)εZ

2δ

)]
+ Kgδ + Kgδ

1−(r/2)εr/2,
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where Z denotes a standard Gaussian, independent of W . To bound the first term, use con-
vexity of g and Jensen’s inequality to get

δEQ

[
g

(
W(1) − W(1 − δ) + √

(1 − δ)εZ

2δ

)]

≤ 1

2
δEQ

[
g

(
W(1) − W(1 − δ)

δ

)]
+ 1

2
δEQ

[
g

(√
(1 − δ)εZ

δ

)]

≤ 1

2
E

Q

[∫ 1

1−δ
g
(
Ẇ (t)

)
dt

]
+ Cδ + Cδ1−r((1 − δ)ε

)r/2
E

Q[|Z|r ],
with the last line using the assumption (22) in the form g(q) ≤ 2C(1 + |q|r ) for some C > 0
(note that g is convex and thus locally bounded). The first term vanishes as δ → 0 because
E

Q[∫ 1
0 g(Ẇ (t)) dt] = α

μ
0 (Q) was assumed to be finite. The final term vanishes if we take

δ = √
ε, as does the term δ1−(r/2)εr/2 in (76). We conclude from (76) that A

μ

ε,[1−√
ε,1] → 0.

Let us finally define Q̃ε := Q̃ε,
√

ε . By dominated convergence Q̃ε → Q. Recalling equa-
tion (75) and that A

μ

ε,[1−√
ε,1] → 0, the proof of (74) would be concluded if we can show

that

lim sup
ε→0

E
Q∗Pε

[∫ 1−√
ε

0
g
(
qQ∗Pε (t)

)
dt

]
≤ α

μ
0 (Q).

Let us call (X,Y ) the canonical process on C0 × C0 equipped with the reference measure
Q⊗Pε . Of course Q∗Pε = Q⊗Pε ◦(X+Y)−1 and X has absolutely continuous trajectories.
We next claim that

(77) qQ∗Pε (t,ω) = E
Q⊗Pε

[
Ẋ(t) | {X(s) + Y(s)

}
s≤t = {

ω(s)
}
s≤t

]
, Q ∗ Pε-a.e. ω.

Indeed, this is a consequence of the following well-known fact [40], Theorem VI.8.4: Sup-
pose a filtered probability space (�,F,F,P) supports an F-Brownian motion B as well as
F-progressively measurable processes b and Z such that E

∫ 1
0 |b(t)|dt < ∞. Suppose also

that dZ(t) = b(t) dt + √
εdB(t). If FZ denotes the complete filtration generated by Z, then

there exists an F
Z-Brownian motion such that dZ(t) = b̂(t,Z)dt +√

εdB̂(t), where b̂ is the
optional projection of b onto F

Z , that is, b̂(t,ω) = E[b(t) | {Z(s)}s≤t = {ω(s)}s≤t ]. In our
setting, the requisite integrability of b(t) := Ẋ(t) under Q ⊗ Pε follows from the assumption
α

μ
0 (Q) < ∞ and the growth assumption in (TI).

Finally, using (77), Jensen’s inequality, and dominated convergence, we conclude

lim sup
ε→0

E
Q∗Pε

[∫ 1−√
ε

0
g
(
qQ∗Pε (t)

)
dt

]
≤ lim sup

ε→0
E

Q⊗Pε

[∫ 1−√
ε

0
g
(
Ẋ(t)

)
dt

]
= α

μ
0 (Q).

�

APPENDIX: PROOFS OF PROPERTIES OF αg

We collect here the belated proofs of some technical results.

LEMMA A.1. Suppose (qn) is a sequence of L1([0,1])-valued random variables possi-
bly defined on different probability spaces. Let An(t) := ∫ t

0 qn(s) ds and suppose there exists
a > 0 such that, for each n,

(78) E

∫ t

0
g
(
t, qn(t)

)
dt ≤ a.
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Then there exist a continuous process A, a subsequence Ank
which converges in law in C to

A, and q such that

(79) E

∫ t

0
g
(
t, q(t)

)
dt ≤ lim inf

k→∞ E

∫ t

0
g
(
t, qnk

(t)
)
dt

and A(t) = ∫ t
0 q(s) ds. In particular, (An) is tight.

PROOF. We first check tightness. By Assumption (TI), for each c > 0 we may find N > 0
such that g(t, q) ≥ c|q| whenever |q| ≥ N . Moreover, there exists b ≥ 0 such that g(t, q) ≥
−b for all (t, q). In particular, for all (t, q) we have |q| ≤ N + 1

c
(g(t, q) + b). Hence, for

0 ≤ s < t ≤ 1,∣∣An(t) − An(s)
∣∣ ≤ ∫ t

s

∣∣qn(u)
∣∣du ≤ 1

c

∫ t

s

(
g
(
u,q(u)

)+ b
)
du + N(t − s)

≤ 1

c

∫ 1

0
g
(
u,q(u)

)
du + b

c
+ N(t − s).

Hence, for any δn ↓ 0, (78) yields

lim sup
n→∞

sup
τ

E
∣∣An(τ + δn) − An(τ)

∣∣ ≤ lim sup
n→∞

(
a + b

c
+ Nδn

)
= a + b

c
,

where the supτ is over all stopping times with values in [0,1 − δn]. As c > 0 was arbitrary,
this shows that

lim
n→∞ sup

τ
E
∣∣An(τ + δn) − An(τ)

∣∣ = 0,

and from Aldous’ criterion for tightness [20], Theorem 16.11, we conclude that (An) is tight.
Passing to a subsequence and applying Skorokhod’s representation, let us now assume

that there exists a continuous process A such that An → A almost surely in C, with all
processes defined on some common probability space (�,F,P). From (78), assumption
(TI), and the criterion of de la Vallée Poisson, we conclude that {qn : n ∈ N} ⊂ L1 :=
L1([0,1] × �,dt ⊗ dP) is uniformly integrable and thus weakly precompact. By passing to
a further subsequence, we may now assume that qn → q weakly in L1. Because g is bounded
from below and lower semicontinuous in its second variable, the map q �→ E

∫ 1
0 g(t, q(t)) dt

is lower semicontinuous in the norm topology of L1([0,1] × �) by Fatou’s lemma. Because
it is also convex, this map is therefore weakly lower semicontinuous on L1. This yields (79).
Lastly, by dominated convergence, it holds for each bounded random variable Z that

E
[
ZA(t)

] = lim
n→∞E

[
ZAn(t)

] = lim
n→∞E

[
Z

∫ t

0
qn(s) ds

]
= E

[
Z

∫ t

0
q(s) ds

]
.

Hence A(t) = ∫ t
0 q(s) ds a.s. for each t , and by continuity we have A = ∫ ·

0 q(s) ds a.s. �

PROOF OF LEMMA 4.3. Convexity: Let λ ∈ [0,1], and fix Q0,Q1 ∈ P∗. We work on an
extended probability space C × {0,1}, and we write (W,X) to denote the identity map on
this space. We define a measure M on C × {0,1} by requiring that the second marginal of
M be λδ0 + (1 − λ)δ1, and the conditional law of W given X be QX . In particular, the first
marginal of M is precisely Q := λQ0 + (1 − λ)Q1. Abbreviate qi := qQi . It easily follows
that the process

W(t) −
∫ t

0
qX(s) ds
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defines an M-Brownian motion with respect to the filtration F = (F t )t∈[0,1] defined by F t =
Ft ⊗ σ(X) on the product space. Now define the process q = (q(t))t∈[0,1] on C × {0,1} to
be the optional projection of the process (qX(t))t∈[0,1] on the filtration generated by W . In
particular,

q(t) = E
M[

qX(t) | (Ws)s≤t

] = E
M[

1{X=0}q0(t) + 1{X=1}q1(t) | (Ws)s≤t

]
.

The process W − ∫ ·
0 q(t) dt is then a Brownian motion on (C,F,Q), where we recall that

Q is the first marginal of M (e.g., by [40], Theorem VI.8.4, as in the end of the proof of
Theorem 2.9). It follows that Q ∈ P∗ and q = qQ. Finally, using Jensen’s inequality, we
compute

λα̃g(Q0) + (1 − λ)α̃g(Q1) = λEQ0

[∫ 1

0
g
(
t, q0(t)

)
dt

]
+ (1 − λ)EQ1

[∫ 1

0
g
(
t, q1(t)

)
dt

]

= E
M

[∫ 1

0
g
(
t, qX(t)

)
dt

]

≥ E
M

[∫ 1

0
g
(
t, q(t)

)
dt

]
= E

Q

[∫ 1

0
g
(
t, q(t)

)
dt

]
= α̃g(Q).

Inf-compactness: Let a ∈ R and �a := {Q : α̃g(Q) ≤ a}. It is convenient in this step and
the next to define

WQ(t) := W(t) −
∫ t

0
qQ(s) ds, t ∈ [0,1],

for Q ∈ P∗, recalling that WQ is a Q-Brownian motion by definition of P∗. Letting AQ(t) :=∫ t
0 qQ(s) ds, it follows from Lemma A.1 that {Q ◦ (AQ)−1 : Q ∈ �a} ⊂ P(C) is tight. On

the other hand, {Q ◦ (WQ)−1 : Q ∈ �a} = {P } is a singleton and thus tight. Since each
marginal is tight, we deduce that {Q ◦ (WQ,AQ)−1 : Q ∈ �a} ⊂ P(C × C) is tight. Finally,
by continuous mapping, the set {Q ◦ (WQ + AQ)−1 : Q ∈ �a} = �a is tight.

Lower semicontinuity: Suppose {Qn : n ∈ N} ⊂ �a with Qn → Q weakly for some Q ∈
P(C). We must show that Q belongs to �a . Define the continuous process

An(t) =
∫ t

0
qQn(s) ds = W(t) − WQn(t),

for each n. Since Qn ◦ (WQn)−1 equals Wiener measure for each n, we conclude that {Qn ◦
(W,WQn)−1 : n ∈ N} is tight, and thus {Qn ◦ (W,WQn,An)

−1 : n ∈ N} is tight. Relabeling
a subsequence, suppose that Qn ◦ (W,WQn,An)

−1 converges weakly to the law of some
C3-valued random variable (X,B,A). Using Lemma A.1, we may assume also that A(t) =∫ t

0 q(s) ds for some process q satisfying

E
Q
∫ 1

0
g
(
t, q(t)

)
dt ≤ lim infEQn

∫ 1

0
g
(
t, qQn(t)

)
dt ≤ a.

Clearly, the law of B is Wiener measure. Moreover, (WQn(s)−WQn(t))s∈[t,1] is independent
of (W(s),WQn(s),An(s))s≤t for each t ∈ [0,1], and thus (B(s)−B(t))s∈[t,1] is independent
of (X(s),B(s),A(s))s≤t . In particular, B is a Brownian motion with respect to the filtration
generated by X, B , and q . Finally, notice that

X(t) = B(t) + A(t) = B(t) +
∫ t

0
q(s) ds,
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as the same relation holds in the pre-limit. A standard argument (see [39], Exercise (5.15))
shows that X − ∫ ·

0 q̂(s) ds is a Brownian motion, where q̂ is the optional projection of q onto
the filtration generated by X. By convexity of g(t, ·), we have

E
Q
∫ 1

0
g
(
t, q̂(t)

)
dt ≤ E

Q
∫ 1

0
g
(
t, q(t)

)
dt ≤ a.

Recalling that Q denoted the law of X, we conclude that Q ∈ P∗ and thus Q ∈ �a .
Reverse conjugacy: By definition

α̃g(Q) ≥ sup
F∈Bb(C)

{
E

Q[F ] − ρ̃g(F )
} ≥ sup

F∈Cb(C)

{
E

Q[F ] − ρ̃g(F )
}
.

Recalling the previous results showing convexity and lower semicontinuity of α̃g , we may
apply the Fenchel–Moreau theorem with respect to the dual pairing between Cb(C) and the
space of measures on C to get equality above. �

We close by elaborating slightly on the dual representation of BSDE supersolutions, which
was discussed to some extent on page 1326. In particular, the following slight adaptation of
results of [11] was used in Lemma 5.1, which extended equation (12) to nonzero times t .

LEMMA A.2. Let F ∈ Cb(C). The minimal supersolution of the BSDE

dY (t) = −g∗(t,Z(t)
)
dt + Z(t) dWt, Y (1) = F

admits the representation

Y(t) = ess sup
Q∈Qt

E
Q

[
F(W) −

∫ 1

t
g
(
u,qQ(u)

)
du

∣∣∣Ft

]
P -a.s. for all t ∈ [0,1],

where Qt is the set of Q ∈ Q such that Q = P on Ft .

PROOF. Since Qt ⊆ Q, “≥” follows by [11], Theorem 3.4. Reciprocally, since by (the
first part of the proof of) [11], Proposition 4.2, the set {EQ[F(W)− ∫ 1

t g(u, qQ(u)) du | Ft ] :
Q ∈ Q} of random variables is directed, it holds

Yt = lim
n→∞E

Qn
[
F(W) −

∫ 1

t
g
(
u,qQn

(u)
)
du

∣∣∣Ft

]

for a sequence Qn ∈ Q. Put qn(u) := qQn
(u)1[t,1](u) and let Q̄n be such that qQ̄n = qn.

Then, Q̄n ∈ Qt and it follows from Bayes’ rule that

Y(t) = lim
n→∞E

[
e
∫ 1
t qQn

(u)dW(u)− 1
2

∫ 1
t |qQn

(u)|2 du

(
F(W) −

∫ 1

t
g
(
u,qQn

(u)
)
du

) ∣∣∣Ft

]

= lim
n→∞E

[
e
∫ 1
t qn(u) dW(u)− 1

2

∫ 1
t |qn(u)|2 du

(
F(W) −

∫ 1

t
g
(
u,qn(u)

)
du

) ∣∣∣Ft

]

= lim
n→∞E

Q̄n
[
F(W) −

∫ 1

t
g
(
u,qQ̄n

(u)
)
du

∣∣∣Ft

]
,

which proves “≤”. �
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