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NONLINEAR LARGE DEVIATIONS: BEYOND THE HYPERCUBE

BY JUN YAN
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By extending (Adv. Math. 299 (2016) 396–450), we present a framework
to calculate large deviations for nonlinear functions of independent random
variables supported on compact sets in Banach spaces. Previous research on
nonlinear large deviations has only focused on random variables supported
on {−1,+1}n, and accordingly we build theory for random variables with
general distributions, increasing flexibility in the applications. As examples,
we compute the large deviation rate functions for monochromatic subgraph
counts in edge-colored complete graphs, and for triangle counts in dense ran-
dom graphs with continuous edge weights. Moreover, we verify the mean
field approximation for a class of vector spin models.

1. Introduction. Large deviations theory for the linear function of i.i.d. random objects
has long been studied, see [13] and references therein. Since the linear function is the sim-
plest class of functions to analyze and only accounts for a small subset of functions people
usually study, it is of natural interest to explore a corresponding theory for nonlinear func-
tions. Recently, a nonlinear large deviations framework was built by Chatterjee and Dembo
[7], where the authors deal with the large deviation principles for nonlinear functions of i.i.d.
Bernoulli random variables. The main theorem in [7] gives error bounds of the mean field
approximation of logEμ[ef (X1,...,Xn)] where μ is the uniform distribution on {−1,+1}n. The
error bounds consist of two parts: the complexity terms which involve the covering number
of ∇f , and the smoothness terms which involve the first two derivatives of f . Motivated by
[7], Eldan [14] comes up with a different nonlinear large deviations framework to deal with
nonlinear functions of i.i.d. random variables supported on {−1,+1}n. In [14], instead of
the covering number of ∇f , a different notion of complexity called Gaussian width of the
discrete gradient of f is introduced, and there f is not required to have the second deriva-
tive. In [7] many exciting applications are presented, suggesting the strong power of the new
framework. Using the different method, Eldan [14] gets stronger results for the examples in
[7]. However, all of the examples in [7] and [14] concern random variables with distributions
supported on {−1,+1}n, a small subset of random objects people usually study in probability
theory. Therefore, it is natural to research whether a similar nonlinear large deviations regime
works for random objects with more general distributions, and we can expect it since the
Bernoulli random variable should not be special. Indeed, a framework similar to [7] is used
by Basak and Mukherjee [4] to verify the universality of the mean field approximation on the
Potts model.

In this work, we extend the framework of [7] to independent random variables compactly
supported on Banach spaces. Similar to [7], our main result (Theorem 1) gives error bounds
for the mean field approximation of logEμ[ef (X1,...,Xn)], while μ = μ1 × · · · × μn could be
more general than [7]. Our result has considerable flexibility in applications, because: (1) μi’s
could be defined on general Banach spaces, and thus there is no dimension constraint on the
supports of μi’s; (2) μi’s are not required to be discrete; (3) X1, . . . ,Xn are not required to
be i.i.d.—only independence is needed. To show this flexibility we provide examples with
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high dimensional and continuous random variables, including an example in which the di-
mension of the support of μi’s is increasing with n; previous methods do not work on these
examples. While we take the same approach as [7] in proving our main result (Theorem 1),
in [7] special calculations for the product Bernoulli distribution are used, and we find general
arguments for Banach spaces. While our result works for general problems, we propose that
for specific problems the error bounds in Theorem 1 could be improved by using the partic-
ular structures of the problems. As an example, we extend the result of [4] by verifying the
mathematical rigor of the mean field approximation for a larger class of vector spin mod-
els. Note that it will also naturally be of interest to extend the framework in [14] for general
distributions. However, when proving theorems for distributions supported on {−1,1}n, [14]
constructs a Brownian motion running on [−1,1]n, such that whenever a facet of [−1,1]n is
hit the corresponding coordinate stops moving. In this way the Brownian motion ends up at
{−1,1}n uniformly, and one can change the distribution of the ending point by adding a drift
to the Brownian motion. It is not clear what the corresponding objects should be for general
supports.

After the first version of this paper, recently there has been some work in the area of
nonlinear large deviations. In the work of Cook and Dembo [11], by providing quantitative
versions of the Szemerédi’s regularity lemma and the counting lemma, the authors make im-
provements to the large deviations of subgraph counts problem for sparse random graphs.
In the independent work of Augeri [2], by applying convex analysis, the author gets new
error bounds for the mean field approximation of logEμ[ef (X1,...,Xn)], where f is a continu-
ous differentiable function and μ is a compactly support measure on R

n. She then provides
improved estimates on several applications. In the work of Austin [3], the author considers
μ(dx) ∝ ef (x)λ(dx), where λ(dx) is the product Borel probability measure on general prod-
uct spaces, and f is a bounded and continuous function on that product spaces. He shows
that if the covering number of ∇f is small, then μ can be approximated by a mixture of other
measures, most of which are close to product measures.

1.1. The main result. Our goal is to find the leading term of logEμ[ef (X1,...,Xn)], for
X1, . . . ,Xn following a product measure μ supported on a compact subset of Banach spaces
and f a twice Fréchet differentiable functional (see Definition 1). As demonstrated in Sec-
tion 1.2.1 and Section 1.2.2, such leading term provides us with the large deviation rate func-
tion. It further plays an important role in statistical physics, as shown in Section 1.2.3. In
Theorem 1, we provide error bounds for the mean field approximation (introduced below) of
logEμ[ef (X1,...,Xn)] (1.2), in terms of the covering number of the gradient ∇f and the norms
of the first two derivatives of f . One should then show on a case by case basis that the error
terms are of a smaller order than the mean field approximation. In Section 1.2 we provide
three examples, demonstrating how the latter task is achieved.

For two probability measures ξ1, ξ2 on the same space �, denote by D(ξ1 ‖ ξ2) the
Kullback–Leibler divergence

D(ξ1 ‖ ξ2) :=
∫
�

log
(

dξ1

dξ2
(y)

)
ξ1(dy),

where dξ1
dξ2

(·) is the Radon–Nikodym derivative, and we set D(ξ1 ‖ ξ2) ≡ ∞ when the Radon–
Nikodym derivative does not exist. From the Gibbs variational principle, we have the follow-
ing identity:

(1.1) logEμ

[
ef (X1,...,Xn)] = max

ν�μ

{
Eν

[
f (X1, . . . ,Xn)

] − D(ν ‖ μ)
}
.

The maximum on the right-hand side of (1.1) is taken over all measures with ν � μ, which is
difficult to analyze. Restricting ν to be a product measure leads to the previously mentioned
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mean field approximation:

logEμ

[
ef (X1,...,Xn)]

≈ max
ν�μ,ν=ν1×ν2×···×νn

{
Eν

[
f (X1, . . . ,Xn)

] − D(ν ‖ μ)
}
,

(1.2)

which is much easier to deal with.
We next introduce some definitions needed for stating our main result. Let [n] :=

{1, . . . , n}. For each i ∈ [n], we consider the probability space (Vi,Bi ,μi), where Vi is a
Banach space (over the field R) equipped with norm ‖ · ‖Vi

, Bi is the Borel σ -algebra gen-
erated by Vi’s open sets, and μi is a probability measure on the measurable space (Vi,Bi).
We assume that for each i, there exists a compact convex set Wi ⊂ Vi such that μi(Wi) = 1.
Consider the product probability measure μ supported on the product space W in V where

μ := μ1 × · · · × μn, W := W1 × · · · × Wn, V := V1 × · · · × Vn.

Write the element in V as x = (x1, . . . , xn) where xi ∈ Vi . Set the norm ‖ · ‖V on V as

(1.3) ‖x‖V := max
i∈[n]

{‖xi‖Vi

}
, ∀x ∈ V.

For two Banach spaces E1 and E2, and some g : E1 → E2, we say g(r) = o(r), if there
exists a mapping ε : E1 → E2 such that lim‖r‖E1→0 ‖ε(r)‖E2 = 0, and g(r) = ‖r‖E1ε(r). We
introduce the definition of twice Fréchet differentiability as follows.

DEFINITION 1. A functional f (·) : V →R is twice Fréchet differentiable on V , if
(1) For each x ∈ V there exists a bounded linear functional f ′(x)(·) : V →R such that

(1.4) f (x + r) − f (x) − f ′(x)(r) = o(r).

For each i ∈ [n], we define the partial differential fi(x)(·) : Vi →R as

fi(x)(ri) := f ′(x)
(
(0, . . . , ri, . . . ,0)

)
,

where (0, . . . , ri, . . . ,0) ∈ V is an element with the ith coordinate ri ∈ Vi and 0 otherwise.
(2) Moreover, ∀zi ∈ Vi , fi(·)(zi) : Vi → R is Fréchet differentiable. That is, ∀x ∈ V there

exists a bounded linear functional f ′
i (x)(zi, ·) : V →R such that

fi(x + r)(zi) − fi(x)(zi) − f ′
i (x)(zi, r) = o(r).

Similarly, ∀i, j ∈ [n] and zi ∈ Vi , we define the twice partial differential fij (x)(zi, ·) : Vj →
R as

fij (x)(zi, rj ) := f ′
i (x)

(
zi, (0, . . . , rj , . . . ,0)

)
.

For more properties about Fréchet differentials, see [10]. We define the operator norms of
the first two partial derivatives of f (x) as∥∥fi(x)

∥∥ := sup
‖ri‖Vi

≤1

∣∣fi(x)(ri)
∣∣,

∥∥fij (x)
∥∥ := sup

max{‖rj‖Vj
,‖zi‖Vi

}≤1

∣∣fij (x)(zi, rj )
∣∣, ∀i, j ∈ [n].

Denote by |f (x)| the absolute value of f (x). We assume that there exists a, bi, cij > 0 such
that ∀x ∈ W , ∣∣f (x)

∣∣ ≤ a,
∥∥fi(x)

∥∥ ≤ bi,
∥∥fij (x)

∥∥ ≤ cij , ∀i, j ∈ [n].
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Since Wi’s are assumed to be compact, we can find M > 0 such that each Wi satisfies

(1.5) ∀z
(1)
i , z

(2)
i ∈ Wi,

∥∥z(1)
i − z

(2)
i

∥∥
Vi

≤ M.

Denoting by m(νi) ∈ Vi the mean of νi , namely the unique point m such that

(1.6)
∫
Vi

h(z) dνi(z) = h(m), ∀ bounded linear functional h : Vi →R.

The existence of m(νi) is guaranteed by the fact that μi is supported on the compact set Wi ;
for example, see [19], Chapter 2. Then, for any product measure ν = ν1 × ν2 × · · · × νn on
W , let

(1.7) m(ν) := (
m(ν1), . . . ,m(νn)

)
.

Fixing some ε > 0, assume that there exists a finite set D(ε) = {d(α) = (d
(α)
1 , . . . , d

(α)
n ), α ∈

I } (where I is the index set, and for each α ∈ I, i ∈ [n], d
(α)
i is a bounded linear functional

from Vi to R) such that for any x ∈ W , there exists a d = (d1, . . . , dn) ∈D(ε) satisfying

(1.8)
n∑

i=1

∥∥fi(x) − di

∥∥2 ≤ ε2n.

Denote by |D(ε)| the cardinality of D(ε). Following is the main theorem, which gives upper
and lower bounds of the mean field approximation for logEμ[ef (X)] where X ∼ μ.

THEOREM 1. Under the above setting, for any ε > 0 we have

log
∫
W

ef (x) dμ(x) ≤ max
ν�μ,ν=ν1×ν2×···×νn

{
f

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}

+ B1 + B2 + log 2 + log
∣∣D(ε)

∣∣,
(1.9)

where

B1 := 4

(
M2

(
a

n∑
i=1

cii +
n∑

i=1

b2
i

)
+ M3

n∑
i,j=1

bicij

(1.10)

+ M4

(
a

n∑
i,j=1

c2
ij +

n∑
i,j=1

bibj cij

)) 1
2

,

B2 := 4

(
n∑

i=1

b2
i + ε2n

) 1
2
(
M3

(
n∑

i=1

c2
ii

) 1
2

+ M2n
1
2 ε

)
(1.11)

+
n∑

i=1

M2cii + Mnε.

Moreover,

log
∫
W

ef (x) dμ(x) ≥ max
ν�μ,ν=ν1×ν2×···×νn

{
f

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}

− M2

2

n∑
i=1

cii .

(1.12)
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Theorem 1 is an extension of [7], Theorem 1.5. If μi ’s are Bernoulli distribution with
parameter 1

2 , Theorem 1 is merely [7], Theorem 1.5, with slight modifications. The main
challenge here is to avoid the special properties of the Bernoulli distribution and the hyper-
cube, which are used in the proof of [7], Theorem 1.5. For example, letting μ̃ be a measure
such that dμ̃

dμ
(x) ∝ ef (x), in [7], preceding Lemma 3.1, the authors utilize the explicit formula

for X̂i := Eμ̃[Xi | Xj, j �= i] in case of Bernoulli {Xi} when bounding f (X) − f (X̂). Lack-
ing such a simple formula here requires a more sophisticated analysis of the error induced by
approximating f (X) by f (X̂). For another instance, in [7], for any point p in the hypercube
one has a product Bernoulli measure νp such that νp � μ and m(νp) = p. Lacking such ex-
plicit description of νp for all p ∈ W , we instead manage to carry the proof while restricting
to νp for p in a finite subset of W , for which the explicit description of νp exists. See detailed
discussions on the difference from [7], important part in this extension, and the outline of the
proof of Theorem 1 in Section 2. The full proof of Theorem 1 is given in Section 3.

1.2. Applications. We provide three applications of our framework. The first two are
large deviations of subgraph counts in random graph, and the third is the mean field approxi-
mation for vector spin models.

1.2.1. Monochromatic subgraph counts in edge-colored complete graphs. The edge col-
ored complete graph is an important object in combinatorics; for example, see Ramsey’s
theorem. People have studied this kind of graph from different perspectives; for example,
see [1, 18] and [9]. On the other hand, the large deviations for subgraph counts in random
graph has been studied a lot in probability; for example, see [5, 15] and [6]. In this example,
we consider the large deviation for the monochromatic subgraph counts in an edge colored
random graph. More precisely, we consider a complete graph G with N vertices, and assume
that each edge of G has a color which is i.i.d. uniformly chosen from l different colors. Take
any fixed finite simple graph H . We investigate the large deviation of the number of homo-
morphisms of H into G whose edges are of the same color. We formulate this problem as
follows: consider a random vector X = (Xij )1≤i<j≤N , where Xij ’s are i.i.d. chosen from the
set 
 := {(1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1)} (where there are l elements in 
 and
the length of each element is l). Regard each element in 
 as a color, and regard Xij as the
color of the edge {i, j}. Then X corresponds to a coloring on G. Let m be the number of
edges of H , � be the maximum degree of H , and k be the number of vertices of H . For
convenience we let the vertex set of H be {1, . . . , k}, and denote by E the edge set of H . For
x = (xij )1≤i<j≤N where xij ∈ R

l , define

(1.13) T (x) := ∑
q1,q2,...,qk∈[N]

l∑
s=1

∏
{r,r ′}∈E

xqrqr′ s,

where xqrqr′ s is the sth coordinate of xqrqr′ (recall that xqrqr′ ∈ 
 is a vector with length l),
xij is interpreted as xji if i > j , and xii is interpreted as the 0 vector in R

l for all i. It is
easy to check that for coloring X, T (X) is the number of homomorphisms of H in G with
same color edges. Denote by o(1) a quantity which goes to 0 as N goes to ∞. We show the
following large deviation result for T (X).

THEOREM 2. For T (X) as above and any u > 1, as N → ∞ we have

P
(
T (X) ≥ uE

[
T (X)

]) ≤ exp
(−ψl(u)

(
1 + o(1)

))
when l ≤ N1/(19+8m+21�)

and

P
(
T (X) ≥ uE

[
T (X)

]) ≥ exp
(−ψl(u)

(
1 + o(1)

))
,

when l ≤ N1/(2�+m+2))(logN)−1,
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where

ψl(u) := inf

{ ∑
1≤i<j≤N

l∑
s=1

xijs log
xijs

1/l
: xij ∈ W0,

(1.14)

T
(
(xij )1≤i<j≤N

) ≥ uE
[
T (X)

]}
,

and

(1.15) W0 :=
{
(z1, . . . , zl) :

l∑
i=1

zi = 1, zi ≥ 0 ∀i ∈ [l]
}
.

Theorem 2 provides the large deviation rate function for T (X) via the variational prob-
lem (1.14), in the case that the number of colors l not increasing with N faster than certain
polynomial speed. We give the proof of Theorem 2 in Section 4.1.

Besides the edge-colored complete graph, one can also apply Theorem 1 to calculate the
large deviations for the monochromatic subgraph counts in the edge-colored Erdős–Rényi
random graph G(N,p), by making Xij the zero vector with probability 1 − p. For the edge-
colored random regular graph the case is different, since the edges are dependent there.

1.2.2. Triangle counts with continuous edge weights. The large deviation principle for
the triangle counts in random graph has been studied for a long time. People study this prob-
lem for both dense Erdős–Rényi random graph G(N,p), in which p is fixed [8], and sparse
Erdős–Rényi random graph G(N,p), in which p goes to 0 as N goes to ∞ [7, 12, 14–16,
20]. See Chatterjee [6] for more discussions and references. Here we consider the continuous
version of the triangle counts problem in the dense random graph. That is, let G be a com-
plete graph with N vertices. Let X = (Xij )1≤i<j≤N where Xij ’s are i.i.d. from U(0,1), the
uniform distribution on [0,1]. For each 1 ≤ i < j ≤ N , we assign a weight Xij to the edge
{i, j}. For x = (xij )1≤i<j≤N , we define

T (x) := 1

6

∑
i,j,k∈[N]

xij xjkxki,

where we interpret xij = xji if i > j , and xii = 0 for all i ∈ [N ]. Then T (X) is the number
of weighted triangles in G for weights X. For any a ∈ (0,1), we denote by νa the truncated
exponential distribution on [0,1] with mean a, that is, the distribution whose density pνa (·)
is

pνa (z) = λae
−λaz

1 − e−λa
for z ∈ (0,1), with λa such that

∫ 1

0
pνa (z) dz = a.

By direct calculation, the KL divergence between νa and U(0,1) is

D
(
νa||U(0,1)

) =
∫ 1

0

λae
−λax

1 − e−λa
log

(
λae

−λax

1 − e−λa

)
dx

= −1 + λae
−λa

1 − e−λa
+ log

(
λa

1 − e−λa

)
.

Let n = N(N − 1)/2, the number of edges in G. Define

ψn(u) := inf
{ ∑

1≤i<j≤N

(
−1 + λyij

e
−λyij

1 − e
−λyij

+ log
(

λyij

1 − e
−λyij

))
: yij ∈ (0,1),

T
(
(yij )1≤i<j≤N

) ≥ uE
[
T (X)

]}
.
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We show the following.

THEOREM 3. Let X = (Xij )1≤i<j≤N where Xij ’s are i.i.d. from U(0,1). For T (X) as
above and any 1 < u < 8, we have

P
(
T (X) ≥ uE

[
T (X)

]) = exp
(−ψn(u)

(
1 + o(1)

))
as N → ∞.

We give the proof of Theorem 3 in Section 4.2. One can also consider the weighted trian-
gle counts problem for sparse random graphs, for which the challenge is to show that after
approximating the upper tail probability using Theorem 1, the errors are of a smaller order
than the mean field approximation term.

REMARK 1 (of Theorem 1). The bounds in Theorem 1 are not guaranteed and have no
reason to be optimal; they could be improved case by case by utilizing particular structures
of specific problems. We provide the following example to show this.

1.2.3. Mean field approximation on a class of vector spin models. Mean field approxima-
tion is an important method derived from Physics, and it has been applied to many different
fields. See [21] or [4] for an introduction to this method. Like other methods in statisti-
cal physics, its mathematical rigor is not guaranteed and needs to be verified for specific
models. In [4] the universality of the mean field approximation for a class of Potts model
is verified. Our next theorem extends the result in [4] to a more general setting. We intro-
duce some notation first. Let Xi’s be i.i.d. random variables with corresponding distributions
μi’s supported on a compact set W1 in R

N for some N ≥ 1. Define the product measure as
μ := μ1 × · · · × μn. Let J be a real symmetric N × N matrix, h be a real vector with length
N , and for each n ∈ Z

+ let An be a real symmetric n × n matrix. Define the Hamiltonian
HJ,h

n (·) : (RN)n →R such that for any x = (x1, . . . , xn) ∈ (RN)n

(1.16) HJ,h
n (x) := 1

2

n∑
i,j=1

An(i, j)xT
i J xj +

n∑
i=1

xT
i h.

For a sequence {cn}n≥1 and a positive sequence {an}, we say cn = o(an) if limn→∞ cn/an =
0, and cn = O(an) if lim supn→∞ |cn|/an < ∞. We have the following theorem.

THEOREM 4. If the sequence of matrices An satisfies

(1.17) tr
(
A2

n

) = o(n) and sup
x∈[0,1]n

∑
i∈[n]

∣∣∣∣ ∑
j∈[n]

An(i, j)xj

∣∣∣∣ = O(n),

then

lim
n→∞

1

n

[
log

∫
Wn

1

eH
J,h
n (x) dμ(x)

− max
ν�μ,ν=ν1×ν2×···×νn,

{
HJ,h

n

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}]
= 0.

(1.18)

REMARK 2 (of Theorem 4). If we let μi’s be the uniform distribution on {(1,0, . . . ,0),

. . . , (0,0, . . . ,1)} (each element belongs to R
N for N ≥ 2 and has a unique nonzero entry),

then we get the Potts model, and Theorem 4 is merely Theorem 1.1 in [4].
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Theorem 4 covers a large class of models in statistical physics. In the simple case of
An(i, j) = 1/n, it is easy to verify that condition (1.17) holds, and N = 1,2,3 correspond
to the mean field Curie–Weiss model, XY model and Heisenberg model respectively. The
validity of the mean field approximation for these mean field models has long been known;
for example, see [17] and [13]. The more difficult case is when An(i, j) are not same; see
examples and discussions in [4], Section 1.3. A direct application of Theorem 4 is letting
μi be the uniform distribution on the unit sphere SN−1, which is often studied in statistical
physics and is not covered by [4].

If we directly apply Theorem 1 to the setting above, we will find that (1.18) is stronger than
what we can get. In order to prove Theorem 4, we need to incorporate the special properties
of HJ,h

n . We give the proof of Theorem 4 in Section 4.3.
We give the proof outline of Theorem 1 in Section 2 below, including detailed discussions

on the differences from [7] and important parts in our extensions. The full proof of Theorem 1
is provided in Section 3. The proofs of three applications are given in Section 4.

2. Proof outline of Theorem 1. We proceed to sketch the key part of Theorem 1, namely
proving the upper bound (1.9), together with the differences from the proof in [7] (see Sec-
tion 3.1 for the much easier proof of the lower bound (1.12)).

(1) We define a measure μ̃ supported on W such that

(2.1)
dμ̃

dμ
(x) := ef (x)∫

W ef (x) dμ(x)
∀x ∈ W.

We define x̂i (·) : V → Wi and x̂(·) : V → W , such that for every x = (x1, . . . , xn) ∈ V ,

x̂i (x) :=
∫
Wi

zie
f (x1,...,xi−1,zi ,xi+1,...,xn) dμi(zi)∫

Wi
ef (x1,...,xi−1,zi ,xi+1,...,xn) dμi(zi)

and

x̂(x) := (̂
x1(x), . . . , x̂n(x)

)
,

(2.2)

where the integral in the numerator of x̂i (x) is the Bochner integral. Another way to define
x̂i (x) is to let it be the expectation of the distribution of Xi conditioned on Xj = xj for j �= i,
where the expectation is defined at (1.6). The existence of the conditional expectation is due
to the fact that Wi is compact. One can verify that indeed the two ways to define x̂i (x) are
same here.

For simplicity, we write x̂ and x̂i for x̂(x) and x̂i (x). Obviously x̂ ∈ W since Wi is convex.
We first do the approximation

(2.3) f (x) ≈ f (x̂).

In this sketch we write L≈ R if under μ̃ with high probability |L − R| is controlled, we will
not bother to make rigorous the meaning of ≈.

In [7], since each μi is supported on {0,1}, x̂ has the good expression [7], the expression
above Lemma 3.1,

(2.4) x̂i = 1

1 + e−�if (x)
,

where �if (x) is the discrete derivative defined as follows:

�if (x) := f (x1, . . . , xi−1,1, xi+1, . . . , xn) − f (x1, . . . , xi−1,0, xi+1, . . . , xn).

In our case we do not have a good expression as (2.4).
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(2) The next step is to construct a covering set D′(ε) of {x̂ : x ∈ W }, such that for each
x ∈ W , there exists some px = (px

1 , . . . , px
n) ∈ D′(ε) which is close to x̂. Consequently we

have

(2.5) f (x̂)≈ f
(
px)

.

In [7], the covering set D′(ε) is constructed by applying a function u(x) = 1/(1 + e−x)

on each point in D(ε) ([7], 3 lines below (3.16)). This makes sense because D(ε) is the
covering set of the gradient of f (x), and x̂i has the expression (2.4). Special properties of
this explicit construction is used in [7], such as |u′(x)| ≤ 1/4. In our case we construct D′(ε)
in the general setting.

(3) Next, for each i and p = (p1, . . . , pn) ∈ D′(ε) we construct a measure ν
p
i supported

on Wi , such that ν
p
i � μi , m(ν

p
i ) = pi , and the following approximation holds:

(2.6) −
n∑

i=1

D
(
ν

px

i ‖ μi

) +
n∑

i=1

log
(

dν
px

i

dμi

(x)

)
≈ 0.

In [7], μi is Bernoulli(1
2) (the Bernoulli distribution with parameter 1

2 ). Therefore, for
any y = (y1, . . . , yn) ∈ [0,1]n, the unique measure ν

y
i with ν

y
i � μi and m(ν

y
i ) = yi is just

Bernoulli(yi). Hence one can write down the explicit form of the KL divergence between ν
y
i

and μi as

D
(
ν

y
i ‖ μi

) = yi logyi + (1 − yi) log(1 − yi) + log 2.

In this way, −∑n
i=1 D(ν

px

i ‖ μi) + ∑n
i=1

dν
px

i

dμi
(x) becomes [7], (3.13), which has a good

form to analyze. In our case, we build the measure ν
px

i in Section 3.2.2, and we show several
general properties of this kind of measure, which help us to prove our approximation.

(4) Combining (2.3), (2.5) and (2.6), we get the following approximation

(2.7) f (x) ≈ f
(
px) −

n∑
i=1

D
(
ν

px

i ‖ μi

) +
n∑

i=1

log
(

dν
px

i

dμi

(x)

)
.

In [7], to bound the error of the above approximation, the authors decompose the error into
f (x) − f (x̂) and [7], (3.13), which does not work in the general case here. In our proof, we
find the decomposition (see (3.30) and (3.31)) that works in general.

(5) Note that if we fix y ∈ W , then by the fact that
∫
Wi

dν
py

i

dμi
(x) dμi(x) = 1 we get

∫
W

e
f (py)−∑n

i=1 D(ν
py

i ‖μi)+∑n
i=1 log

dν
py

i
dμi

(x)
dμ(x) = f

(
py) −

n∑
i=1

D
(
ν

py

i ‖ μi

)
.

Therefore, with above approximations we have that

log
∫
W

ef (x) dμ(x) = log
∫
W

e
f (px)−∑n

i=1 D(ν
px

i ‖μi)+∑n
i=1 log

dν
px

i
dμi

(x)
dμ(x)

+ error terms

≤ log
∑

p∈D′(ε)

(
f (p) −

n∑
i=1

D
(
ν

p
i ‖ μi

)) + error terms

≤ max
ν�μ,ν=ν1×ν2×···×νn

{
f

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}

+ log
∣∣D′(ε)

∣∣ + error terms,
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where in the last inequality we use the fact that m(ν
p
i ) = pi . The above inequality leads to

the desired upper bound.

3. Proof of Theorem 1.

3.1. The lower bound part of Theorem 1. The idea to prove the lower bound is first
to use the Gibbs variational principle ((3.1) below) on any product measure ν, and then to
approximate the first term on the right-hand side of (3.1) by f (m(ν)) (m(ν) is defined at
(1.7)), where the error is controlled by the norms of the second derivatives of f .

PROOF. For any ν = ν1 × ν2 × · · · × νn, by the Gibbs variational principle, we have

(3.1) log
∫
W

ef (x) dμ(x) ≥
∫
W

f (x)dν(x) − D(ν ‖ μ).

Because ν and μ are both product measures, we have the following decomposition

(3.2) D(ν ‖ μ) =
n∑

i=1

D(νi ‖ μi).

Next we approximate
∫
W f (x)dν(x) by f (m(ν)). For x ∈ V , i ∈ [n] and zi ∈ Vi , define

(3.3) x(i)
zi

:= (x1, . . . , xi−1, zi, xi+1, . . . , xn).

Fix θ = (θ1, . . . , θn) ∈ W . For t ∈ [0,1], by the definition of m(νi) (1.6) and the fact that
fi(tx

(i)
θi

+(1− t)m(ν))(·) is linear, we have
∫
W fi(tx

(i)
θi

+(1− t)m(ν))(xi −m(νi)) dν(x) = 0,
which implies that∣∣∣∣∫

W
fi

(
tx + (1 − t)m(ν)

)(
xi − m(νi)

)
dν(x)

∣∣∣∣
=

∣∣∣∣∫
W

(
fi

(
tx + (1 − t)m(ν)

)
(3.4)

− fi

(
tx

(i)
θi

+ (1 − t)m(ν)
))(

xi − m(νi)
)
dν(x)

∣∣∣∣
≤

∫
W

cii × ‖txi − tθi‖Vi
× ∥∥xi − m(νi)

∥∥
Vi

dν(x) ≤ tciiM
2.

By (3.4) and the expression f (x)−f (m(ν)) = ∑n
i=1

∫ 1
0 fi(tx + (1− t)m(ν))(xi −m(νi)) dt ,

we further get

(3.5)
∫
W

(
f (x) − f

(
m(ν)

))
dν(x) ≥ −

n∑
i=1

∫ 1

0
tciiM

2 dt = −M2

2

n∑
i=1

cii .

Plugging (3.2) and (3.5) into (3.1), we get

log
∫
W

ef (x) dμ(x) ≥ f
(
m(ν)

) −
n∑

i=1

D(νi ‖ μi) − M2

2

n∑
i=1

cii .

Taking the sup over {ν : ν = ν1 × ν2 × · · · × ν, ν � μ} completes the proof. �

3.2. The upper bound part of Theorem 1. In this subsection we prove the upper bound
of Theorem 1. In Section 3.2.1, we construct the covering of {x̂: x ∈ W }, which plays an im-
portant role in our approximation. In Section 3.2.2 we show several properties of the measure
νpx

, which is described in (2.6) and is defined at (3.27). We provide the error bound for the
approximation (2.7) in Section 3.2.3, and we summarize and finish the proof in Section 3.2.4.
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3.2.1. The construction of D′(ε). In order to construct the covering of {x̂: x ∈ W } (de-
fined at (2.2)), for any d = (d1, d2, . . . , dn) ∈ D(ε) we construct a corresponding p(d) =
(p(d)1,p(d)2, . . . , p(d)n) ∈ W in the following way: recalling that di(·) is a bounded linear
functional from Vi to R, let

(3.6) p(d)i :=
∫
Wi

zie
di(zi) dμi(zi)∫

Wi
edi(zi) dμi(zi)

and p(d) := (
p(d)1, . . . , p(d)n

)
.

The existence of p(d) is guaranteed by the fact that Wi is compact, and obviously p(d) ∈ W

since W is convex. Define

D′(ε) := {
p(d) : d ∈ D(ε)

}
.

For each x, we choose a dx such that

(3.7) dx ∈
{
d ∈ D(ε) s.t.

n∑
i=1

∥∥fi(x) − di

∥∥2 ≤ ε2n

}
,

where if the set on the right-hand side contains more than one element, we just choose any
one in it and fix the choice. Using (3.6) we can further define

(3.8) px := (
px

1 ,px
2 , . . . , px

n

)
, where px

i := p
(
dx)

i ∀i ∈ [n].
In the following we show that D′(ε) is a good covering of {x̂ : x ∈ W }, by bounding the term∑n

i=1 ‖x̂i − px
i ‖2

Vi
. Recall that dx

i (·) is a linear functional from Wi to R. Let

px
i (t) :=

∫
Wi

zie
tf (x

(i)
zi

)+(1−t)dx
i (zi ) dμi(zi)∫

Wi
etf (x

(i)
zi

)+(1−t)dx
i (zi ) dμi(zi)

.

Then px
i (t) is an interpolation between px

i and x̂i , since it is easy to verify that

(3.9) px
i (0) = px

i , px
i (1) = x̂i .

Let

(3.10) e(x, i) := x̂i − px
i

‖x̂i − px
i ‖Vi

, Vx,i := {
ke(x, i) : k ∈ R

}
.

Then clearly Vx,i is a 1-dimension subspace of Vi . Define a linear functional g0 : Vx,i → R

as

(3.11) g0
(
ke(x, i)

) = k,

and then obviously ‖g0‖ = 1. By the Hahn–Banach theorem, we can extend g0 to g, a linear
functional from Vi to R such that

(3.12) g(zi) = g0(zi) ∀zi ∈ Vx,i, ‖g‖ = ‖g0‖ = 1.

Thus for any z
(1)
i , z

(2)
i ∈ Wi we have

(3.13)
∣∣g(

z
(1)
i

) − g
(
z
(2)
i

)∣∣ ≤ ∥∥z(1)
i − z

(2)
i

∥∥
Vi

.

Using the fact that f (·) is bounded and Fréchet differentiable, and Wi is compact, it is easy
to see that g(px

i (t)) is differentiable with respect to t . By the definition of px
i (t), after some

algebra we arrive at

dg(px
i (t))

dt
=

(∫
Wi

g(zi)e
tf (x

(i)
zi

)+(1−t)dx
i (zi ) dμi(zi)∫

Wi
etf (x

(i)
zi

)+(1−t)dx
i (zi ) dμi(zi)

)′

t

(3.14)
= Eφi

t

[(
f

(
x

(i)
Zi

) − dx
i (Zi)

)(
g(Zi) −Eφi

t

[
g(Zi)

])]
,
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where the expectation is taken with respect to Zi , which obeys the measure φi
t � μi defined

as

dφi
t

dμi

(zi) := etf (x
(i)
zi

)+(1−t)dx
i (zi )∫

Wi
etf (x

(i)
zi

)+(1−t)dx
i (zi ) dμi(zi)

.

Recall that θ = (θ1, . . . , θn) is a fixed point in W . It is easy to check that(
f

(
tx(i)

zi
+ (1 − t)x

(i)
θi

) − dx
i

(
tzi + (1 − t)θi

))′
t

= (
fi

(
tx(i)

zi
+ (1 − t)x

(i)
θi

) − dx
i

)
(zi − θi).

Therefore, writing the following difference as the integral of derivative, we can see that for
any zi ∈ Wi , ∣∣f (

x(i)
zi

) − dx
i (zi) − (

f
(
x

(i)
θi

) − dx
i (θi)

)∣∣
=

∣∣∣∣∫ 1

0

(
fi

(
tx(i)

zi
+ (1 − t)x

(i)
θi

) − dx
i

)
(zi − θi) dt

∣∣∣∣
≤

∫ 1

0

∣∣(fi

(
tx(i)

zi
+ (1 − t)x

(i)
θi

) − fi(x)
)
(zi − θi)

∣∣dt(3.15)

+
∫ 1

0

∣∣(fi(x) − dx
i

)
(zi − θi)

∣∣dt

≤ ciiM
2 + ∥∥fi(x) − dx

i

∥∥M.

Noting that Eφi
t
[g(Zi) −Eφi

t
[g(Zi)]] = 0, we have

(3.16) Eφi
t

[(
f

(
x

(i)
θi

) − dx
i (θi)

)(
g(Zi) −Eφi

t

[
g(Zi)

])] = 0.

From (1.5) and (3.13) it is clear that for each z
(1)
i , z

(2)
i ∈ Wi we have |g(z

(1)
i ) − g(z

(2)
i )| ≤ M ,

which implies that

(3.17) Eφi
t

[∣∣g(Zi) −Eφi
t

[
g(Zi)

]∣∣] ≤ M.

Subtracting Eφi
t
[(f (x

(i)
θi

) − dx
i (θi))(g(Zi) −Eφi

t
[g(Zi)])] from the right-hand side of (3.14),

with (3.15), (3.16) and (3.17) we have

(3.18)
∣∣∣∣dg(px

i (t))

dt

∣∣∣∣ ≤ ciiM
3 + ∥∥fi(x) − dx

i

∥∥M2,

and consequently by (3.10), (3.11) and (3.12) we see that∥∥x̂i − px
i

∥∥
Vi

= g
(
x̂i − px

i

) = g
(
px

i (1) − px
i (0)

)
≤ ciiM

3 + ∥∥fi(x) − dx
i

∥∥M2.
(3.19)

Therefore, from (3.7), (3.19) and the basic inequalities (a + b)2 ≤ 2a2 + 2b2, (a2 + b2)1/2 ≤
a + b, we have (

n∑
i=1

∥∥x̂i − px
i

∥∥2
Vi

) 1
2

≤
(

n∑
i=1

(
ciiM

3 + ∥∥fi(x) − dx
i

∥∥M2)2

) 1
2

≤ √
2M3

(
n∑

i=1

c2
ii

) 1
2

+ √
2M2n

1
2 ε.

(3.20)
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3.2.2. The construction and properties of the measure νp . Before constructing the mea-
sure νp , let us take a look at the term

(3.21) max
ν�μ,ν=ν1×ν2×···×νn

{
f

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}
.

In order to achieve the maximum, a natural question one might ask is: when (m(ν)) is fixed,
what is the minimum value of

∑n
i=1 D(νi ‖ μi)? For every y = (y1, . . . , yn) ∈ W , we consider

the following problem:

min

{
n∑

i=1

D(νi ‖ μi) :

ν is a product probability measure with ν � μ and m(ν) = y

}
.

(3.22)

In this subsection, we show several properties of the minimizer of (3.22). We prove that

PROPOSITION 1. If a measure νy = ν
y
1 × ν

y
2 × · · · × ν

y
n satisfies that for each i ∈ [n],

ν
y
i � μi, m

(
ν

y
i

) = yi, and
dν

y
i

dμi

(zi) = eRi(zi)

for a linear functional Ri(·) : Vi →R,

(3.23)

then νy achieves the minimum in (3.22).

PROOF. For each i, assume that ν
y
i satisfies (3.23). For any other measure ν̃

y
i with

m(̃ν
y
i ) = yi and ν̃

y
i � μi , since log

dν
y
i

dμi
(·) is linear by (3.23), we have

(3.24)
∫
Wi

log
dν

y
i

dμi

(zi) dν̃
y
i (zi) =

∫
Wi

log
dν

y
i

dμi

(zi) dν
y
i (zi) = D

(
ν

y
i ‖ μi

)
.

Combining (3.24) and the fact that D(̃ν
y
i ‖ ν

y
i ) ≥ 0, we have

0 ≤ D
(̃
ν

y
i ‖ ν

y
i

) =
∫
Wi

dν̃
y
i

dμi

(zi) log

dν̃
y
i

dμi
(zi)

dν
y
i

dμi
(zi)

dμi(zi) = D
(̃
ν

y
i ‖ μi

) − D
(
ν

y
i ‖ μi

)
,

and it completes the proof. �

Now let us consider the properties of νy satisfying (3.23). From (3.23) we can see that
∀zi ∈ Wi ,

(3.25) log
dν

y
i

dμi

(zi) = Ri(zi).

Recalling that Eν
y
i
[Zi] = m(ν

y
i ), by (3.23) and (3.25), we see that

D
(
ν

y
i ‖ μi

) =
∫
Wi

dν
y
i

dμi

(zi) log
dν

y
i

dμi

(zi) dμi(zi)

(3.26)
=

∫
Wi

Ri(zi) dν
y
i (zi) = Ri

(
m

(
ν

y
i

))
.
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Note that we did not prove that for any y ∈ W there exists a measure νy satisfying (3.23).
For each p ∈ D′(ε), we construct νp = (ν

p
1 , . . . , ν

p
n ) directly at (3.27) below, and show that it

satisfies (3.23), and hence it shares the property (3.26). For each p = p(d) ∈ D′(ε), recalling
that di is a linear functional from Vi to R, we can define ν

p
i , a measure on Vi , as

(3.27)
dν

p
i

dμi

(zi) := edi(zi)∫
Wi

edi(zi ) dμi(zi)
= eλ(pi)+di(zi),

where λ(pi) is a normalizing number satisfies that eλ(pi) = (
∫
Wi

edi(zi ) dμi(zi))
−1. From the

construction of p(d) in (3.6), it is easy to see that∫
Wi

zi dν
p
i (zi) =

∫
Wi

zie
λ(pi)+di(zi) dμi(zi) = pi.

The same approach we used in (3.26) can be applied here to show that

(3.28) D
(
ν

p
i ‖ μi

) = λ(pi) + di(pi),

and consequently

(3.29)
n∑

i=1

(
λ
(
px

i

) + dx
i (xi)

) −
n∑

i=1

D
(
ν

px

i ‖ μi

) =
n∑

i=1

dx
i

(
xi − px

i

)
.

3.2.3. The approximation (2.7). Due to (3.29), for the approximation (2.7) it suffices to
bound ∣∣∣∣∣f (

px) +
n∑

i=1

dx
i

(
xi − px

i

) − f (x)

∣∣∣∣∣ ≤ �1 + �2,

where

�1 := ∣∣f (x̂) − f (x)
∣∣ + ∣∣∣∣∣

n∑
i=1

fi

(
x

(i)
θi

)
(x̂i − xi)

∣∣∣∣∣,(3.30)

�2 := ∣∣f (x̂) − f
(
px)∣∣ + ∣∣∣∣∣

n∑
i=1

dx
i

(
x̂i − px

i

)∣∣∣∣∣
(3.31)

+
∣∣∣∣∣

n∑
i=1

(
dx
i − fi

(
x

(i)
θi

))
(x̂i − xi)

∣∣∣∣∣.
So the proof of the approximation (2.7) consists of the bounds for �1 and �2, which will be
given separately below.

Bound for �1. Recall the definition of μ̃ from (2.1). We show the following proposition.

PROPOSITION 2. Let all notation be as in Theorem 1. We have the following bound

Eμ̃

[(
f (X) − f (X̂)

)2] ≤ M2

(
a

n∑
i=1

cii +
n∑

i=1

b2
i

)
(3.32)

+ M4

(
a

n∑
i,j=1

c2
ij +

n∑
i,j=1

bibj cij

)
.
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PROOF. Let

h(X) := f (X) − f (X̂),

and then clearly

(3.33)
∣∣h(X)

∣∣ ≤ 2a.

From the definition of x̂ in (2.2), we have

(3.34) x̂j (x) =
∫
Wj

zj e
f (x

(j)
zj

)
dμj (zj )∫

Wj
e
f (x

(j)
zj

)
dμj (zj )

.

Note that x̂j (·) is a functional from V to Vj . We claim that x̂j (·) is Fréchet differentiable (in
(1.4)) we just define the notion of Fréchet differentiability for real-valued functional. We can
define it for vector-valued functional similarly; see [10], Chapter 2. For r ∈ V we let

r
(j)
0 := (r1, . . . , rj−1,0, rj+1, . . . , rn).

Define φj (x)(·) : V → Vj as

φj (x)(r) :=
∫
Wj

zjf
′(x(j)

zj )(r
(j)
0 )e

f (x
(j)
zj

)
dμj (zj )∫

Wj
e
f (x

(j)
zj

)
dμj (zj )

−
∫
Wj

zj e
f (x

(j)
zj

)
dμj (zj )

∫
Wj

f ′(x(j)
zj )(r

(j)
0 )e

f (x
(j)
zj

)
dμj (zj )

(
∫
Wj

e
f (x

(j)
zj

)
dμj (zj ))2

.

By writing out x̂j (x + r) and x̂j (x) according to their definitions and calculating their dif-
ference, due to the fact that Wj is compact and f (·) is bounded and Fréchet differentiable,
we can check that x̂j (x + r) − x̂j (x) − φj (x)(r) = o(r). We define the partial differential
dx̂j (x)

dxi
(·) : Vi → Vj as

d x̂j (x)

dxi

(ri) := φj

(
(0, . . . , ri, . . . ,0)

)
.

Recall the definition of μ̃ (2.1). From the definition of φj (x)(·) we can write that for j �= i,

dx̂j (x)

dxi

(·) = Eμ̃

[
Xjfi(X)(·) − x̂j fi(X)(·) | Xk = xk for k �= j

]
= Eμ̃

[
(Xj − x̂j )

(
fi(X) − fi

(
X

(j)
θj

))
(·) | Xk = xk for k �= j

]
(3.35)

+Eμ̃

[
(Xj − x̂j )fi

(
X

(j)
θj

)
(·) | Xk = xk for k �= j

]
.

By the definition of x̂j we have that for any r ∈ V

(3.36) Eμ̃

[
(Xj − x̂j )fi

(
X

(j)
θj

)
(r) | Xk = xk for k �= j

] = 0.

Due to the fact that∥∥(
fi(X) − fi

(
X

(j)
θj

))
(·)∥∥ =

∥∥∥∥∫ 1

0
fij

(
tX + (1 − t)X

(j)
θj

)
(·,Xj − θj ) dt

∥∥∥∥ ≤ cijM,

we have

(3.37)
∥∥Eμ̃

[
(Xj − x̂j )

(
fi(X) − fi

(
X

(j)
θj

))
(·) | Xk = xk for k �= j

]∥∥ ≤ cijM
2.



NONLINEAR LARGE DEVIATIONS: BEYOND THE HYPERCUBE 827

Combining (3.35), (3.36) and (3.37), we see that for j �= i

(3.38)
∥∥∥∥dx̂j (x)

dxi

(·)
∥∥∥∥ ≤ cijM

2.

Obviously dx̂i (x)
dxi

(·) ≡ 0. For t ∈ [0,1] and x ∈ W , we define a linear functional ui(t, x)(·) :
Vi →R as

(3.39) ui(t, x)(·) := fi

(
tx + (1 − t)x̂

)
(·).

Then it is clear that

(3.40) h(x) =
∫ 1

0

n∑
i=1

ui(t, x)(xi − x̂i) dt.

Following the same idea from [7], (3.3), to the end of the proof of [7], Lemma 3.1, we can
verify that ∣∣Eμ̃

[(
ui(t,X) − ui

(
t,X

(i)
θi

))
(Xi − X̂i)h

(
X

(i)
θi

)]∣∣
≤ 2aM

(
tMcii + (1 − t)M3

n∑
j=1

c2
ij

)
(3.41)

and ∣∣Eμ̃

[
ui(t,X)(Xi − X̂i)

(
h(X) − h

(
X

(i)
θi

))]∣∣
≤ biM

(
Mbi + M3

n∑
j=1

bj cij

)
.

(3.42)

Due to the fact that Eμ̃[ui(t,X
(i)
θi

)(Xi − X̂i)h(X
(i)
θi

)] = 0, we have the following decomposi-
tion

Eμ̃

[
ui(t,X)(Xi − X̂i)h(X)

]
= Eμ̃

[(
ui(t,X) − ui

(
t,X

(i)
θi

))
(Xi − X̂i)h

(
X

(i)
θi

)]
+Eμ̃

[
ui(t,X)(Xi − X̂i)

(
h(X) − h

(
X

(i)
θi

))]
.

Thus by (3.40), (3.41) and (3.42), using the above decomposition we have

Eμ̃

[
h2(X)

] =
∫ 1

0

n∑
i=1

Eμ̃

[
ui(t,X)(Xi − X̂i)h(X)

]
dt

≤ M2

(
a

n∑
i=1

cii +
n∑

i=1

b2
i

)
+ M4

(
a

n∑
i,j=1

c2
ij +

n∑
i,j=1

bibj cij

)
.

�

We provide the following proposition, which is also needed for bounding �1.

PROPOSITION 3. If we denote

G(x) :=
n∑

i=1

fi

(
x

(i)
θi

)
(xi − x̂i),

then

Eμ̃

[
G2(X)

] ≤ M2
n∑

i=1

b2
i + M3

n∑
i,j=1

bi(cji + bj cjiM).
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PROOF. Taking derivative of G and using (3.38), we have∥∥∥∥∂G(x)

∂xi

(·)
∥∥∥∥

=
∥∥∥∥∥fi

(
x

(i)
θi

)
(·) +

n∑
j �=i

(
fji

(
x

(j)
θj

)
(xj − x̂j , ·) + fj

(
x

(j)
θj

)(−∂ x̂j (x)

∂xi

(·)
))∥∥∥∥∥(3.43)

≤ bi +
n∑

j �=i

(
cjiM + bj cjiM

2) ≤ bi +
n∑
j

(
cjiM + bj cjiM

2)
.

Following the same idea from [7], (3.11), to the end of the proof of [7], Lemma 3.2, we finish
the proof. �

Next we combine the above two propositions. Denote

B1,1 :=
(
M2

(
a

n∑
i=1

cii +
n∑

i=1

b2
i

)
+ M4

(
a

n∑
i,j=1

c2
ij +

n∑
i,j=1

bibj cij

)) 1
2

,

(3.44)

B1,2 :=
(
M2

n∑
i=1

b2
i + M3

n∑
i,j=1

bi(cji + bj cjiM)

) 1
2

.

And let

A1 := {
x ∈ W ,

∣∣f (x) − f (x̂)
∣∣ ≤ 2B1,1

}
,

A2 :=
{
x ∈ W ,

∣∣∣∣∣
n∑

i=1

fi

(
x

(i)
θi

)
(xi − x̂i)

∣∣∣∣∣ ≤ 2B1,2

}
.

Define A := A1 ∩A2. Then with Proposition 2 and Proposition 3 it is easy to see that Pμ̃(A) ≥
1
2 . Therefore, with the fact that 2(B1,1 + B1,2) < B1 (defined in (1.10)), we have

log
∫
W

ef (x) dμ(x) ≤ log
∫
A

ef (x) dμ(x) + log 2

≤ log
∫
A

e
f (x̂)+∑n

i=1 fi(x
(i)
θi

)(xi−x̂i ) dμ(x)(3.45)

+ B1 + log 2.

Bound for �2. For |f (x̂) − f (px)|, rewriting it as

f (x̂) − f
(
px) =

∫ 1

0

n∑
i=1

fi

(
t x̂ + (1 − t)

(
x̂ − px))(

x̂i − px
i

)
dt,

by (3.20) and Cauchy’s inequality we have∣∣f (x̂) − f
(
px)∣∣ ≤

n∑
i=1

bi

∥∥x̂i − px
i

∥∥
Vi

≤
(

n∑
i=1

b2
i

) 1
2
(√

2M3

(
n∑

i=1

c2
ii

) 1
2

+ √
2M2n

1
2 ε

)
.

(3.46)

For |∑n
i=1(fi(x

(i)
θi

) − dx
i )(x̂i − xi)|, using (1.8) and the Cauchy–Schwarz inequality we have∣∣∣∣∣

n∑
i=1

(
fi(x) − dx

i

)
(x̂i − xi)

∣∣∣∣∣ ≤ M
√

n

(
n∑

i=1

∥∥fi(x) − dx
i

∥∥2

) 1
2

≤ Mnε,
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and thus by decomposing fi(x
(i)
θi

) − dx
i as fi(x

(i)
θi

) − fi(x) and fi(x) − dx
i we get∣∣∣∣∣

n∑
i=1

(
fi

(
x

(i)
θi

) − dx
i

)
(x̂i − xi)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

(
fi

(
x

(i)
θi

) − fi(x)
)
(x̂i − xi)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

(
fi(x) − dx

i

)
(x̂i − xi)

∣∣∣∣∣(3.47)

≤
n∑

i=1

M2cii + Mnε.

For the last term |∑n
i=1 dx

i (x̂i − px
i )|, noting that

∑n
i=1 ‖dx

i ‖2 ≤ 2
∑n

i=1 b2
i + 2ε2n, by (3.20)

and Cauchy’s inequality we have∣∣∣∣∣
n∑

i=1

dx
i

(
x̂i − px

i

)∣∣∣∣∣
≤

(
2

n∑
i=1

b2
i + 2ε2n

) 1
2
(√

2M3

(
n∑

i=1

c2
ii

) 1
2

+ √
2M2n

1
2 ε

)
.

(3.48)

Recalling the definition of �2, with (3.46), (3.47), (3.48) and the definition of B2 in (1.11),
it is clear that

(3.49) �2 ≤ B2.

3.2.4. Proof of (1.9).

PROOF. By the definition of �2 (3.31) it is easy to verify that∣∣∣∣∣f (x̂) − f
(
px) +

n∑
i=1

fi

(
x

(i)
θi

)
(xi − x̂i) −

n∑
i=1

dx
i

(
xi − px

i

)∣∣∣∣∣ ≤ �2.

Define

C(d) := {
x : x ∈ W,dx = d

}
.

Using (3.45) and (3.49) we have

log
∫
W

ef (x) dμ(x)

≤ log 2 + B1 + B2

+ log
∑

d∈D(ε)

∫
x∈C(d)

ef (p(d))+∑n
i=1 di(xi−p(d)i) dμ(x).

(3.50)

From (3.27) it is clear that ∫
W

e
∑n

i=1 λ(p(d)i)+∑n
i=1 di(xi )dμ(x) = 1.

Combining the above equality and (3.28), we get the following bound∫
x∈C(d)

ef (p(d))+∑n
i=1 di(xi−p(d)i) dμ(x)

≤ ef (p(d))−∑n
i=1 di(p(d)i)−∑n

i=1 λ(p(d)i)

= ef (p(d))−∑n
i=1 D(ν

p(d)
i ‖μi).

(3.51)
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Plugging (3.51) into (3.50) and noting the fact that for any d ∈ D(ε)

f
(
p(d)

) −
n∑

i=1

D
(
ν

p(d)
i ‖ μi

) ≤ max
ν�μ,ν=ν1×ν2×···×νn

{
f

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}
,

we finish the proof of the upper bound. �

4. Proofs of applications. In this section we give the proofs of our examples.

4.1. Proof of Theorem 2. In this subsection we prove Theorem 2. Throughout the proof,
C will denote any positive constant that does not depend on N . Recall the definitions in
Section 1.2.1, and write n = (N

2

)
for the total number of edges in G. Write T̃ (x) as the

normalized version of T (x), that is,

T̃ (x) := T (x)/Nk−2.

For u > 1, by the above definition we see that

(4.1) T (x) ≥ uE
[
T (X)

] ⇐⇒ T̃ (x) ≥ tn, with t = E[T (X)]
nNk−2 u.

Thanks to the choice of t we have ψl(u) = φl(t), where

φl(t) := inf

{ ∑
1≤i<j≤N

l∑
s=1

xijs log
xijs

1/l
: xij ∈ W0, T̃

(
(xij )1≤i<j≤N

) ≥ tn

}
.

Similar to the proof of [7], Theorem 1.1, for K,δ > 0 to be determined later we define

g(x) := nKh
(((

T̃ (x)/n
) − t

)
/δ

)
,

where h(x) = −1 if x < −1, h(x) = 0 if x > 0, and for x ∈ [−1,0]
(4.2) h(x) = 10(x + 1)3 − 15(x + 1)4 + 6(x + 1)5 − 1.

By our choice of h we can see that it is negative on (−1,0), with bounded first and second
derivatives. Denote by μij the measure of Xij for 1 ≤ i < j ≤ N , and μ the measure of X.
Using the definition of g(·) we further see that

(4.3) P
(
T̃ (X) ≥ tn

) ≤
∫
Wn

0

eg(x)dμ(x).

For s ∈ [l], let es be the length l vector with sth coordinate 1 and other coordinates 0. Recall-
ing that μij is the uniform distribution on {es, s ∈ [l]}, we see that for any yij ∈ W0, the only
distribution with νij � μij and m(νij ) = yij is νij (es) = yijs for all s ∈ [l]. Therefore, it is
easy to see that

max
ν�μ,ν=ν1×ν2×···×νn

{
g
((

m(νij )
)
1≤i<j≤N

) − ∑
1≤i<j≤N

D(νij ‖ μij )

}

= max
yij∈W0,1≤i<j≤N

{
g
(
(yij )1≤i<j≤N

) − ∑
1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l

}
.

Let K = φl(t)/n. We claim that

max
yij∈W0,1≤i<j≤N

{
g
(
(yij )1≤i<j≤N

) − ∑
1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l

}

≤ −φl(t − δ).

(4.4)
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This is because, for y = (yij )1≤i<j≤N , if T̃ (y) ≥ tn, we have g(y) = 0, and thus

g(y) − ∑
1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l
= − ∑

1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l

≤ −φl(t) ≤ −φl(t − δ).

If T̃ (y) ≤ (t − δ)n, we have g(y) = −Kn, and then

g(y) − ∑
1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l
≤ −Kn = −φl(t) ≤ −φl(t − δ).

If T̃ (y) = (t − δ′)n for some δ′ ∈ (0, δ), we have

g(y) − ∑
1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l
≤ − ∑

1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l

≤ −φl

(
t − δ′) ≤ −φl(t − δ).

Observe that if we denote by D(ε) a
√

nε-covering for the gradient of T̃ (x) in the sense of
(1.8), then D((δε)/(4K)) is a

√
nε-covering for the gradient of g(x). Applying Theorem 1

for g(·), with (4.3) and (4.4) we get

(4.5) logP
(
T̃ (X) ≥ tn

) ≤ −φl(t − δ) + B1 + B2 + log 2 + log
∣∣D(

(δε)/(4K)
)∣∣.

Next we analyze the right-hand side of (4.5). First we bound φl(t) − φl(t − δ).

4.1.1. Upper bound of φl(t) − φl(t − δ). Obviously φl(t) ≥ φl(t − δ). If φl(t) = φl(t −
δ), then 0 is an upper bound. Now we consider the case that φl(t) > φl(t − δ), and by the
definition of φl , the only possibility is that φl(t − δ) is achieved on some x∗ = (x∗

ij )1≤i<j≤N

with x∗
ij ∈ W0 and T̃ (x∗) ∈ [(t − δ)n, tn). Note that in addition we can assume x∗

ij1 ≥ x∗
ij2 ≥

· · · ≥ x∗
ij l for all 1 ≤ i < j ≤ N , since when ({x∗

ij1, x
∗
ij2, . . . , x

∗
ij l})1≤i<j≤N is fixed, the choice

x∗
ij1 ≥ x∗

ij2 ≥ · · · ≥ x∗
ij l achieves the maximum of T̃ (·) by the rearrangement inequality. Thus

if this decreasing relation is not satisfied, we can choose another x′ satisfying it with T̃ (x′) >

T̃ (x∗), and φl(t − δ) is achieved on x′ too, and we must have T̃ (x′) ∈ [(t − δ)n, tn) otherwise
φl(t) = φl(t − δ).

For any x = (xij )1≤i<j≤N with xij ∈ W0, T̃ (x) = (t − δ′)n for some δ′ ∈ [0, δ], and xij1 ≥
xij2 ≥ · · · ≥ xijl for any 1 ≤ i < j ≤ N , we consider y = (yij )1≤i<j≤N , where for some
γ > 0 to be determined later,

yij := (1 − γ )xij + γ e1, e1 = (1,0, . . . ,0).

By the definition of y and T̃ we have

Nk−2(
T̃ (y) − T̃ (x)

)
= ∑

q1,...,qk∈[N]

( ∏
{r,r ′}∈E

(
xqrqr′1 + γ

l∑
s=2

xqrqr′ s

)

+ (1 − γ )m
l∑

s=2

∏
{r,r ′}∈E

xqrqr′ s −
l∑

s=1

∏
{r,r ′}∈E

xqrqr′ s

)
.

(4.6)
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Next we show that

Nk−2(
T̃ (y) − T̃ (x)

)
≥ (m − 1)γ 2

∑
q1,q2,...,qk∈[N]

( ∑
{r,r ′}∈E

1 − xqrqr′1
xqrqr′1

∏
{r,r ′}∈E

xqrqr′1

)
.

(4.7)

We fix (q1, q2, . . . , qk) ∈ [N ]k for our analysis. Denote by

I = ∏
{r,r ′}∈E

(
xqrqr′1 + γ

l∑
s=2

xqrqr′ s

)

− (m − 1)γ 2
( ∑

{r,r ′}∈E

∑
s≥2 xqrqr′ s
xqrqr′1

∏
{r,r ′}∈E

xqrqr′1

)
.

For each l′ ∈ [l], we let

Ml′ :=
{ ∏

{r,r ′}∈E

xqrqr′ sr,r′ : (sr,r ′){r,r ′}∈E ∈ [l]m, max
{r,r ′}∈E

sr,r ′ = l′
}
.

By the decreasing assumption on x, we see that each term in Ml′ is greater than or equal to∏
{r,r ′}∈E xqrqr′ l′ . By direct calculation, one can check that, for 2 ≤ l′ ≤ l, in the expansion of∏
{r,r ′}∈E(xqrqr′1 + γ

∑l
s=2 xqrqr′ s), the summation of the coefficients of those terms in Ml′

is g0(l
′) where

g0
(
l′
) := (

1 + (
l′ − 1

)
γ

)m − (
1 + (

l′ − 2
)
γ

)m
.

Similarly, for 2 ≤ l′ ≤ l, as γ < m−1, one can check that in the expansion of I , all the co-
efficients of terms in Ml′ are positive, and the summation of them is g0(l

′) − m(m − 1)γ 2.
From the above analysis we have that

(4.8) I ≥ ∏
{r,r ′}∈E

xqrqr′1 + ∑
2≤s≤l

[(
g0(s) − m(m − 1)γ 2) ∏

{r,r ′}∈E

xqrqr′ s

]
.

It is direct to check that g0(·) is increasing on Z+. Note that we can rewrite

(1 − γ )m
l∑

s=2

∏
{r,r ′}∈E

xqrqr′ s −
l∑

s=1

∏
{r,r ′}∈E

xqrqr′ s

= − ∏
{r,r ′}∈E

xqrqr′1 − g0(1)

l∑
s=2

∏
{r,r ′}∈E

xqrqr′ s .

(4.9)

Combining (4.8) and (4.9), and using the monotonicity of g0(·), we see that

I + (1 − γ )m
l∑

s=2

∏
{r,r ′}∈E

xqrqr′ s −
l∑

s=1

∏
{r,r ′}∈E

xqrqr′ s

≥ (
g0(2) − m(m − 1)γ 2 − g0(1)

) ∑
2≤s≤l

∏
{r,r ′}∈E

xqrqr′ s ≥ 0,

where the last inequality is due to the fact that g0(2) − m(m − 1)γ 2 − g0(1) ≥ 0. Summing
over all possible (q1, q2, . . . , qk) ∈ [N ]k leads to (4.7).

For any λ > 1/l, we denote by N(λ) the number of homomorphisms of H in G whose
edges all satisfy xij1 > λ. Note that xij1 ≥ 1/l always holds since xij1 ≥ xijs for any s ∈ [l].
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Denote by C(N,H) the total number of different homomorphisms of H in a N vertices
complete graph. Then we have

Nk−2T̃ (x) ≥ ∑
q1,q2,...,qk∈[N]

∏
{r,r ′}∈E

xqrqr′1 ≥ N(λ)λm + (
C(N,H) − N(λ)

) 1

lm
,

which with the fact T̃ (x) = (t − δ′)n implies that

(4.10) N(λ) ≤ ((
t − δ′)Nk/2 − C(N,H)/lm

)
/
(
λm − 1/lm

)
.

We denote by �1 the set of homomorphisms of H in G who have at least an edge with
xij1 ≤ λ. Since xij1 ≤ λ implies that (1 − xij1)/xij1 ≥ (1 − λ)/λ, we have∑

q1,q2,...,qk∈[N]

( ∑
{r,r ′}∈E

1 − xqrqr′1
xqrqr′1

∏
{r,r ′}∈E

xqrqr′1

)

≥ 1 − λ

λ

∑
(q1,q2,...,qk)∈�1

∏
{r,r ′}∈E

xqrqr′1,

(4.11)

where in the right-hand side we use (q1, q2, . . . , qk) ∈ �1 to represent those (q1, q2, . . . , qk)

with corresponding homomorphism H (i.e., the homomorphism with vertices (q1, q2, . . . ,

qk)) in �1. Note that

l
∑

(q1,q2,...,qk)∈�1

∏
{r,r ′}∈E

xqrqr′1 ≥ ∑
(q1,q2,...,qk)∈�1

l∑
s=1

∏
{r,r ′}∈E

xqrqr′ s

≥ T̃ (x)Nk−2 − N(λ).

Combining above inequality and (4.10), we get∑
(q1,q2,...,qk)∈�1

∏
{r,r ′}∈E

xqrqr′1

≥ Nk[(1 − 1/N)
(
t − δ′)/2

− ((
t − δ′)/2 − C(N,H)/

(
Nklm

))
/
(
λm − 1/lm

)]
/l.

Due to the fact that C(N,H)/Nk converges to a positive constant as N → ∞, and that t is
of order 1/lm−1 by (4.1), we can choose λ = 1 − c/l for some constant c > 0 such that

(4.12)
∑

(q1,q2,...,qk)∈�1

∏
{r,r ′}∈E

xqrqr′1 ≥ CNkl−(m+1).

Combining (4.7), (4.11) and (4.12), we see that T̃ (y) − T̃ (x) ≥ Cγ 2N2l−(m+2). Thus if
we choose γ = C0δ

1/2l(m+2)/2 for a suitable C0 > 0, we have T̃ (y) − T̃ (x) ≥ δn and thus
T̃ (y) ≥ tn. From the convexity of x logx, we have

φl(t) ≤ ∑
1≤i<j≤N

l∑
s=1

yijs log
yijs

1/l

≤ (1 − γ )
∑

1≤i<j≤N

l∑
s=1

xijs log
xijs

1/l
+ γ n log l(4.13)

≤ φl(t − δ) + C0N
2δ1/2l(m+2)/2 log l,

where in the last inequality we let x = x∗.
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4.1.2. Upper bound for φl(t). Denote by �t1/kN� the smallest integer greater than
t1/kN . Choose r = C1�t1/kN�, and let x = (xij )1≤i<j≤N where

xij =
{
e1, if 1 ≤ i < j ≤ r,

(1/l, . . . ,1/l), otherwise.

Then it is easy to check that for a suitable C1 > 0 we have T̃ (x) ≥ tn for all N . Thus

(4.14) φl(t) ≤ ∑
1≤i<j≤N

l∑
s=1

xijs log
xijs

1/l
≤ Ct2/kN2 log l.

4.1.3. Final calculation. We give the proofs of the upper bound and lower bound of
Theorem 2 separately below.

PROOF OF THE UPPER BOUND IN THEOREM 2. Recalling that K = φl(t)/n, with (4.14)
and the fact that t is of the order l−(m−1), we can see that

K ≤ Cl−
2(m−1)

k log l.

We work with the L1 norm in this problem. It is easy to verify that for g(x) we have

∣∣g(x)
∣∣ ≤ nK,

∥∥∥∥∂g(x)

∂xij

∥∥∥∥ ≤ CKb′
ij

δ
,(4.15)

∥∥∥∥ ∂2g(x)

∂xij ∂xkl

∥∥∥∥ ≤ CKc′
ij,kl

δ
+ CKb′

ij b
′
kl

nδ2 ,(4.16)

where

(4.17) b′
i ≤ C, c′

ij,kl ≤
{
CN−1, if

∣∣{i, j, k, l}∣∣ = 2 or 3,

CN−2, otherwise.

Denoting the
√

nε-covering set in [7], Theorem 1.2, as D̃(ε). Since we are working with L1
norm and each xij is l dimensional, it is not hard to observe that for any ε′ > 0, D(ε′) :=
D̃(ε′/

√
l)×· · ·× D̃(ε′/

√
l) (the product of l sets) is a

√
nε′-covering of the gradient of T̃ (x)

in the sense of (1.8). Therefore, by [7], Lemma 5.2, we get

(4.18) log
∣∣D(

(δε)/(4K)
)∣∣ ≤ C

l3NK4

δ4ε4 (logN).

Now we bound the right-hand side of (4.5). It is clear that in this example M ≤ 2. Using
(4.15), (4.16) and (4.17), by some algebra it is easy to check that under the conditions that

(4.19) Nδ2 > 1, k/δ > 1, Nδε/K > 1, ε < 1,

we have

(4.20) B1 = CN
3
2 K

3
2 δ−1, B2 = CN2εKδ−1.

Thus with (4.5), (4.13), (4.18) and (4.20), we see that

logP
(
T̃ (X) ≥ tn

)
≤ −φl(t) + log 2 + CN2δ1/2l(m+2)/2 log l + CN

3
2 K

3
2 δ−1(4.21)

+ CN2εKδ−1 + C
l3NK4

δ4ε4 (logN).
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Denote by Ti(X) the number of homomorphisms of H in G whose edges are all of color i, and
let T̃i(X) := Ti(X)/Nk−2. Then obviously Ti(X) has the same distribution as the number of
homomorphisms of H in G(N, l−1)—the Erdős–Rényi random graph with probability l−1,
and thus by [15], Theorem 1.2 and Theorem 1.5, we have

(4.22) − logP
(
T̃i(X) ≥ t l−1n

) ≥ CN2l−�.

Due to the fact that P(T̃ (X) ≥ tn) = P(
∑l

i=1 T̃i(X) ≥ tn) ≤ ∑l
i=1 P(T̃i(X) ≥ t l−1n), from

(4.22) we further get

(4.23) − logP
(
T̃ (X) ≥ tn

) ≥ − log lP
(
T̃i(X) ≥ t l−1n

) ≥ CN2l−� − log l.

Choosing ε = N−1/5δ−3/5K3/5l3/5(logN)1/5, δ = N−(2�+m+2)/(19+8m+21�) × (logN)−4,
with (4.22) and (4.23) it is directly to derive that

φl(t)

− logP(T̃ ≥ tn)
≤ 1 + CN− m/2+�+1

19+8m+21� l
m+2�+2

2 (log l)(logN)−2

+ CN
m+2�+2

19+8m+21�
− 1

2 l−
3(m−1)−�k

k (log l)
3
2 (logN)4

+ CN− 1
5 + 8

5
m+2�+2

19+8m+21� l
3
5 − 16(m−1)

5k
+�(log l)

8
5 (logN)

33
5 + o(1).

Using above equation and the fact that (m − 1)/k < �/2, we can check that if l ≤
N1/(19+8m+21�), then the right-hand side goes to 0 as N → ∞, and it is directly to verify
that condition (4.19) holds. Recalling that ψl(u) = φl(t), we finish the proof. �

Next we show the lower bound.

PROOF OF THE LOWER BOUND IN THEOREM 2. Fix any z ∈ Wn
0 such that T̃ (z) ≥

(t + δ0)n, with δ0 to be determined later. Recall that es is the l-dimension vector with 1 on
the sth coordinate and 0 on others. Let Zij , 1 ≤ i < j ≤ N be independent random vectors
with P(Zij = es) = zijs , and denote by μ̂ the measure of Z = (Zij )1≤i<j≤N . Let � be the set
of x ∈ Wn

0 such that T̃ (x) ≥ tn, and let �′ be the subset of � where∣∣∣∣∣ ∑
1≤i<j≤N

l∑
k=1

(
xijk log zijk − xijk log

1

l
− zijk log(lzijk)

)∣∣∣∣∣ ≤ ε0n.

Then we have

P
(
T̃ (X) ≥ tn

) =
∫
�

1dμ(x)

≥
∫
�′

e
∑

1≤i<j≤N

∑l
k=1(−xijk log zijk+xijk log zijk) dμ(x)(4.24)

≥ ezijk log(lzijk)−ε0nPμ̂

(
Z ∈ �′).

Denote

H(x) := ∑
1≤i<j≤N

l∑
k=1

(
xijk log(lzijk) − zijk log(lzijk)

)
.

Obviously Eμ̂[H(Z)] = 0. By direct calculation we have

(4.25) Varμ̂
(
H(Z)

) = ∑
1≤i<j≤N

[
l∑

k=1

zijk log(zijk) −
(

l∑
k=1

zijk log(zijk)

)2]
.
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Noting that

log
(

1

l

)
≤

l∑
k=1

zijk log(zijk) ≤ 0,

with (4.25) it is clear that

Varμ̂
(
H(Z)

) ≤ Cn(log l)2.

Thus by choosing ε0 = C2N
−1(log l) for a suitable C2 > 0 we have

(4.26) Pμ̂

(∣∣H(Z)
∣∣ > ε0n

) ≤ C(log l)2

ε2
0n

= 1

4
.

Let S(x) := T̃ (x)− T̃ (z). Using the similar approach as in [7], (4.3)–(4.4), we can verify that

Eμ̂

[
S2] ≤ CN2.

Thus by choosing δ0 = C3N
−1 for a suitable C3 > 0, we get

(4.27) Pμ̂

(
T̃ (Z) ≤ tn

) ≤ CN2

δ2
0n2

= 1

4
.

Using (4.26) and (4.27) we see that Pμ̂(Z ∈ �′) ≥ 1/2, therefore, with (4.24) and by taking
the sup over z we get

logP
(
T̃ (X) ≥ tn

) ≥ −φl(t + δ0) − ε0n − log 2

≥ −φl(t) − CN2δ
1/2
0 l(m+2)/2 log l − CN(log l) − log 2.

Consequently with (4.23) we see that

−φl(t)

− logP(T̃ (X) ≥ tn)
≥ 1 − CN− 1

2 l�+m+2
2 logN + o(1),

which completes the proof. �

4.2. Proof of Theorem 3. In this subsection we show Theorem 3 in our second example
about continuous weighted triangle counts. Throughout the proof, C will denote any positive
constant that does not depend on N . We follow the routine of the above example. In the proof
we use the definitions in Section 1.2.2. Define the normalized weighted triangle counts T̃ (x)

as

T̃ (x) := T (x)/N.

For any 1 < u < 8, we let t = u(N − 2)/(24N). Since n = N(N − 1)/2 and by calculation
E[T (X)] = N(N − 1)(N − 2)/48, we see that {T (x) ≥ uE[T (X)]} = {T̃ (x) ≥ tn}. Define

φn(t) := inf
{ ∑

1≤i<j≤N

(
−1 + λyij

e
−λyij

1 − e
−λyij

+ log
(

λyij

1 − e
−λyij

))
:

yij ∈ (0,1) such that T̃ (y) ≥ tn

}
.

Obviously φn(t) = ψn(u). Let g(x) = nKh(((T̃ (x)/n) − t)/δ) for h(·) defined in (4.2), with
K = φn(t)/n and δ to be determined later. Then same as the argument of showing (4.4), we
have

max
y=(yij )1≤i<j≤N , yij∈(0,1)

{
g(y) − ∑

i<j

D
(
νyij ‖ μij

)} ≤ −φn(t − δ).
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Applying Theorem 1 for g(x) and some ε to be determined later, we get

logP
(
T̃ (X) ≥ tn

) ≤ logE
[
eg(x)]

≤ −φn(t − δ) + log 2 + B1 + B2 + log
∣∣D(ε)

∣∣,(4.28)

where B1, B2 are as defined in Theorem 1, and D(ε) will be constructed later. Next we upper
bound the rightmost side of (4.28).

4.2.1. The upper bound for φn(t)−φn(t −δ). Recall the definition of νa in Section 1.2.2.
For λa > 0 we define f1(λ

a) :=Eνa [X]. After calculation we have

f1(x) = 1

x
− 1

ex − 1
,

and we can check that on any bounded interval [−M0,M0], there exists cM0 > 0 such that

(4.29) f ′
1(x) < −cM0 .

For λa > 0 we define f2(λ
a) := D(νa||U), which after some calculation is

f2(x) = −1 + xe−x

1 − e−x
+ log

(
x

1 − e−x

)
.

We can check that

f ′
2(x) < 0 when x < 0;

f ′
2(x) > 0 when x > 0;∣∣f ′

2(x)
∣∣ ≤ CD for some CD < ∞.

(4.30)

We assume that t − δ > 1/24, since later we will choose δ → 0 as N → 0, and by our
choice t > 1/24 as N → 0. In order to bound φn(t) − φn(t − δ), we use the same strategy
as Section 4.1.1. If φn(t) �= φn(t − δ), we assume that φn(t − δ) is achieved on some z =
(zij )1≤i<j≤N such that T̃ (z) = (t − δ′)n for some δ′ ∈ [0, δ]. In addition we assume that
zij ≥ 1/2 for all i < j , since otherwise according to (4.30) we can change those zij < 1/2 to
1/2 without increasing

∑
i<j D(νzij ||U), which results in a bigger T̃ (z), and we can consider

the new z instead. For some s ∈ (1/2,1) to be determined later, we define A(s) := {{i, j} :
zij ≥ s} and Vs(i) := |{k ∈ [N ] : zik ≥ s}| (here | · | refers to cardinality). Write B(s) as the set
of triangles whose three edges all belong to A(s). Observing that for each edge {i, j} ∈ A(s),
the number of triangles in B(s) containing {i, j} is at least Vs(i) + Vs(j) − N − 1, we get
that ∣∣B(s)

∣∣ ≥ 1

3

∑
{i,j}∈A(s)

(
Vs(i) + Vs(j) − N − 1

)

= 1

3

(
N∑

i=1

(
Vs(i)

)2 − ∣∣A(s)
∣∣(N − 1)

)
(4.31)

≥ 1

3

(
4|A(s)|2

N
− ∣∣A(s)

∣∣(N − 1)

)
,

where the second equality is by the fact that each Vs(i) appears Vs(i) times in the summation,
and the last inequality is by Cauchy’s inequality and the fact that

∑N
i=1 |Vs(i)| = 2|A(s)|.

Since

(4.32)
(
N

3

)
≥ T (z) ≥ ∣∣B(s)

∣∣(s3 − 1/8
) +E

[
T (X)

]
,
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with the fact that E[T (X)] = N3/48 + o(N2), substituting (4.31) into (4.32) we can verify
that there exist s ∈ (0,1) and cs > 0 independent of N such that |A(s)| ≤ (1 − cs)n. We find
csn number of edges in A(s)C , and increase the weights on them by σ > 0 to be determined
later, getting a new weight vector z̃ = (̃zij )1≤i<j≤N . Later we can verify that σ → 0 as N →
∞, and thus the weight-increasing operation is feasible, that is, z̃ij ≤ 1 for all {i, j}, as N is
large enough. Since for each edge there are N − 2 triangles containing it, after the operation,
with the fact that zij > 1/2 for all {i, j}, each edge in A(s)C at least contribute σ/5 more to
T̃ (z). Therefore, we get

T̃ (̃z) − T̃ (z) ≥ csnσ

5
,

which implies that we can choose σ = c′
sδ

′ for some c′
s > 0 to make T̃ (̃z) ≥ tn. Since for

N large enough we can find s1 < 1 such that s + σ < s1, with (4.29), we see that for those
zij ∈ A(s)C , we have |λzij − λz̃ij | ≤ cs1σ for some cs1 > 0, and thus with (4.30) we have
D(νz̃ij ‖ U) − D(νzij ‖ U) ≤ CDcs1σ . Therefore, we have that

φn(t) − φn(t − δ) ≤ ∑
i<j

D
(
νz̃ij ‖ μij

) − ∑
i<j

D
(
νzij ‖ μij

)
(4.33)

≤ CDcs1σn ≤ CDcs1c
′
sδ

′n ≤ CN2δ.

4.2.2. Bound for K . In order to bound K , we just need to bound φn(t). Obviously we
can choose zij = st for some st ∈ (0,1) such that T̃ (z) ≥ tn for all n, and thus φn(t) ≤ CN2,
which implies that K ≤ C since K = φn(t)/n.

4.2.3. Final calculation. We give the proofs of the upper bound and lower bound of
Theorem 3 separately below.

PROOF OF THE UPPER BOUND IN THEOREM 3. From our choice of g, it is easy to verify
that

(4.34) B1 = CN3/2δ−1 + CNδ−2, B2 = CNδ−2 + N2δ−1ε.

One can check that in the sense of (1.8), the
√

nδε/(4K)-covering of the gradient of T̃ (x) is
a

√
nε-covering of the gradient of g(x), by [7], Lemma 5.2, and the fact that K is bounded by

a constant, we have that for g(x), log |D(ε)| ≤ CNδ−4ε−4 logN . Choosing ε = N−1/5δ2/5,
by (4.28), (4.33) and (4.34) we get

logP
(
T̃ (X) ≥ tn

)
≤ −φn(t) + CN2δ + C

N
3
2

δ
+ C

N

δ2 + CN
9
5 δ− 8

5 (logN)
1
5 .

(4.35)

For any s∗ ∈ (0,1), based on the graph G and weight X, we construct a graph G′
s∗(X) by

making those edges with weight > s∗ as connected and other edges as disconnected. Write
Ts∗(X) as the number of triangles in G′

s∗(X). Then it is not hard to see that we can choose
0 < su < 1 and 1 < u′ < 8 such that{

T (X) ≥ uE
[
T (X)

]} ⊂ {
Tsu(X) ≥ u′

E
[
Tsu(X)

]}
.

Since G′
su

(X) is just the Erdős–Rényi random graph G(N,1 − su), with [15], Theorem 1.2
and Theorem 1.5, we see that

(4.36) − logP
(
T̃ (X) ≥ tn

) ≥ − logP
(
Tsu(X) ≥ u′

E
[
Tsu(X)

]) ≥ CN2.
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Choosing δ = N−1/10 and dividing both sides of (4.35) by − logP(T̃ (X) ≥ tn), we get the
desired upper bound. �

PROOF OF THE LOWER BOUND IN THEOREM 3. Fix any z = (zij )1≤i<j≤N with zij ∈
(0,1) and T̃ (z) ≥ (t + δ0)n with δ0 to be determined later. Consider Z = (Zij )1≤i<j≤N with
Zij (i < j ) independently from νzij . Denote by μ̂z the distribution of Z. Denote

� := {
x = (xij )1≤i<j≤N : xij ∈ (0,1), T̃ (x) ≥ tn

}
and

�′ := � ∩
{
x = (xij )1≤i<j≤N :

∣∣∣∣∑
i<j

(
−λzij

xij −
(
−1 + λzij

e
−λzij

1 − e
−λzij

))∣∣∣∣ < ε0n

}
,

for ε0 to be determined later. Noting that P(T̃ (X) ≥ tn) = E[1�] and �′ ⊂ �, we have

P
(
T̃ (X) ≥ tn

)
≥ E

[
1�′e

∑
i<j (−λzij

xij+log(
λzij

1−e
−λzij

))−∑
i<j (−λzij

xij+log(
λzij

1−e
−λzij

))]
(4.37)

≥ e−∑
i<j D(ν

zij ‖U)−ε0nPμ̂z

(
Z ∈ �′).

By direct integration, we can see that for some C4 > 0

Eμ̂z

[(∑
i<j

(
−λzij

Zij −
(
−1 + λzij

e
−λzij

1 − e
−λzij

)))2]
≤ C4n.

Thus by choosing ε0 = (4C4/n)1/2 and using the Markov’s inequality, we get

Pμ̂z

(∑
i<j

(
−λzij

Zij −
(
−1 + λzij

e
−λzij

1 − e
−λzij

))
≥ ε0n

)
≤ C4

ε2
0n

= 1

4
.

Using the similar method as in [7], (4.4), by choosing δ0 = CN−1, we have that Pμ̂z (T̃ (Z) ≤
tn) ≤ 1/4. Thus Pμ̂z (Z ∈ �′) ≥ 1/2, and with (4.37) by taking sup over z we get

logP
(
T̃ (X) ≥ tn

) ≥ −φn(t + δ0) − ε0n − log 2.

Combining above inequality and (4.33) we get

logP
(
T̃ (X) ≥ tn

) ≥ −φn(t) + CN − log 2,

which implies the lower bound with (4.36). �

4.3. Proof of Theorem 4. In this section we show Theorem 4, which is an extension of
[4]. Throughout the proof, C will denote any positive constant that does not depend on n.
Note that in this example N is the dimension of W1, and it has no relation with n. Recall the
definitions in Section 1.2.3. For convenience we define

f (x) := HJ,h
n (x) = 1

2

n∑
i,j=1

An(i, j)xT
i J xj +

n∑
i=1

xT
i h

and

f̃ (x) := 1

2

n∑
i,j=1

An(i, j)xT
i J xj .
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Without the loss of generality we assume that μi’s are supported on the unit ball BRN (1) in
R

N . Using the similar argument to [4], Lemma 3.1, we can further assume that

(4.38) max
i,j

∣∣An(i, j)
∣∣ = o(1) and An(i, i) = 0 for all i.

We work with the L1 norm, and note that

sup
x∈B

RN (1)

‖x‖L1 = √
N.

By the definition of f and (1.17), it is direct to verify that

a = O(n),

bi = O

(∑
j

∣∣An(i, j)
∣∣) + O(1),(4.39)

cij = O
(∣∣An(i, j)

∣∣).
Using (4.39) it is straightforward to verify that the lower bound part is implied by Theorem 1,
that is,

lim
n→∞

1

n

[
log

∫
Wn

1

eH
J,h
n (x) dμ(x)

− max
ν�μ,ν=ν1×ν2×···×νn,

{
HJ,h

n

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}]
≥ 0.

Next we consider the upper bound part. If we calculate B1 and B2 in Theorem 1, then they are
of the wrong order. In order to show Theorem 4, we need to incorporate the special property
of f into the proof of Theorem 1. For f and f̃ we have that

fi(x)(z) = ∑
j �=i

An(j, i)x
T
j J z + hT z, f̃i(x)(z) = ∑

j �=i

An(j, i)x
T
j J z.

Defining μ̃ same as (2.1), we claim that

(4.40) Eμ̃

[(
f̃ (X) − f̃ (X̂)

)2] = o
(
n2)

,

and

(4.41) Eμ̃

[(
n∑

i=1

f̃i(X)(Xi − X̂i)

)2]
= o

(
n2)

.

We defer their proofs to a later place, and first show how to finish the proof with them. By
(4.40) and (4.41) we see that there exists σn → 0 such that Pμ̃(�n) ≥ 1

2 , where

�n :=
{
x ∈ supp(μ) : ∣∣f̃ (x) − f̃ (x̂)

∣∣, ∣∣∣∣∣
n∑

i=1

f̃i(x)(xi − x̂i)

∣∣∣∣∣ ≤ σnn

}
.

Given any ε > 0, by [4], Lemma 3.4, it is not hard to see that we can construct a D(ε) such
that log |D(ε)| = o(n). For each d ∈ D(ε), we consider

Ed :=
{
x ∈ supp(μ) :

n∑
i=1

∥∥fi(x) − di

∥∥2 ≤ nε2

}
∩ �n.

If Ed is not empty, we pick one element zd ∈ Ed and fix the choice. Consider

D̃(ε) := {
zd : d ∈ D(ε), Ed �= ∅

}
.
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Then for any x ∈ �n, recalling the definition of dx from (3.7), we can find yx := zdx ∈ D̃(ε),
such that by the triangle inequality

n∑
i=1

∥∥fi(x) − fi(yx)
∥∥2 ≤

n∑
i=1

∥∥fi(x) − dx
i

∥∥2 +
n∑

i=1

∥∥dx
i − fi(zdx )

∥∥2

≤ 2nε2.

(4.42)

Obviously |D̃(ε)| ≤ |D(ε)| by the construction of D̃(ε), and thus

(4.43) log
∣∣D̃(ε)

∣∣ = o(n).

Let ŷx = ((ŷx)1, . . . , (ŷx)n), where

(ŷx)i = Eμi
[xie

∑
j �=i An(i,j)xT

i J (yx)j+xT
i h]

Eμi
[e

∑
j �=i An(i,j)xT

i J (yx)j+xT
i h]

= Eμi
[xie

fi(yx)(xi)]
Eμi

[efi(yx)(xi)] .

Next we do the following approximation for x ∈ �n:

f (x) ≈ f (ŷx) −
n∑

i=1

D
(
ν

ŷx

i ‖ μi

) +
n∑

i=1

log
dν

ŷx

i

dμi

(xi).

More precisely, we show that for any x ∈ �n∣∣∣∣∣f (x) −
(
f (ŷx) −

n∑
i=1

D
(
ν

ŷx

i ‖ μi

) +
n∑

i=1

log
dν

ŷx

i

dμi

(xi)

)∣∣∣∣∣
≤ 2σnn + 2

√
2Nnε.

(4.44)

If (4.44) holds, then by (4.43) and the same method as Section 3.2.4, we see that

log
∫
Wn

1

ef (x) dμ(x)

≤ max
ν�μ,ν=ν1×ν2×···×νn

{
f

(
m(ν)

) −
n∑

i=1

D(νi ‖ μi)

}

+ 2σnn + 2
√

2Nnε + log 2 + log
∣∣D(ε)

∣∣.
Dividing both sides by n, and noting the fact that ε is arbitrary, we complete the proof by
letting ε → 0.

Now we show (4.44). Comparing the above equality with (3.23) in Proposition 1, by (3.25)
and (3.26) we see that for any z ∈ R

d

log
dν

ŷx

i

dμi

(z) − D
(
ν

ŷx

i ‖ μi

) = fi(yx)
(
z − (ŷx)i

)
.

Therefore, we have∣∣∣∣∣f (x) −
(
f (ŷx) −

n∑
i=1

D
(
ν

ŷx

i ‖ μi

) +
n∑

i=1

log
dν

ŷx

i

dμi

(xi)

)∣∣∣∣∣
≤ ∣∣f̃ (x) − f̃ (yx)

∣∣ + ∣∣f̃ (yx) − f̃ (ŷx)
∣∣(4.45)

+
∣∣∣∣∣

n∑
i=1

f̃i(yx)
(
xi − (yx)i

)∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

f̃i(yx)
(
(yx)i − (ŷx)i

)∣∣∣∣∣,
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where in the last line we replace f by f̃ since it is easy to check that all the terms involving
h cancel in the first line. Recalling that yx ∈ �n, by the definition of �n we see that

(4.46)
∣∣f̃ (yx) − f̃ (ŷx)

∣∣ + ∣∣∣∣∣
n∑

i=1

f̃i(yx)
(
(yx)i − (ŷx)i

)∣∣∣∣∣ ≤ 2σnn.

Thus it remains to bound |f̃ (x)− f̃ (yx)| and |∑n
i=1 f̃i(yx)(xi − (yx)i)|. For |f̃ (x)− f̃ (yx)|,

we have∣∣f̃ (x) − f̃ (yx)
∣∣ =

∣∣∣∣∣1

2

n∑
i,j=1

An(i, j)
(
xT
i J

(
xj − (yx)j

) + (
xT
i − (yx)

T
i

)
J (yx)j

)∣∣∣∣∣
≤

∣∣∣∣1

2

∑
i

(
f̃i(x) − f̃i(yx)

)
(xi)

∣∣∣∣ + ∣∣∣∣1

2

∑
j

(
f̃j (x) − f̃j (yx)

)
(yx)

∣∣∣∣(4.47)

≤ √
N

√
n

(∑
i

∥∥f̃i(x) − f̃i(yx)
∥∥2

)1/2
≤ √

2Nnε,

where the last inequality is by (4.42). For |∑n
i=1 f̃i(yx)(xi − (yx)i)|, note that∣∣∣∣∣

n∑
i=1

f̃i(yx)
(
xi − (yx)i

)∣∣∣∣∣ =
∣∣∣∣∣

n∑
i,j=1

An(i, j)
(
xT
i − (yx)

T
i

)
J (yx)j

∣∣∣∣∣
=

∣∣∣∣∑
j

(
f̃j (x) − f̃j (yx)

)
(yx)

∣∣∣∣,
which we already bound in (4.47). Thus combining (4.45), (4.46) and (4.47), we get (4.44).

In the following we prove (4.40) and (4.41). We need the following two inequalities. By
(1.17) and (4.39), there exists ηn = o(n), such that for any w1,w2, . . . ,wn ∈ Wn

1

n∑
i=1

∥∥f̃i(wi)
∥∥2 ≤ C

(
n +

n∑
i=1

(
n∑

j=1

∣∣An(i, j)
∣∣)2)

≤ C

(
n + n

n∑
i,j=1

∣∣An(i, j)
∣∣2)

≤ C
(
n + ntr

(
A2

n

)) = ηnn
2,

(4.48)

and by (1.17) again, there exists Mn = O(1) such that for all x ∈ Wn
1

n∑
i=1

∥∥f̃i(x)
∥∥ ≤

n∑
i=1

∥∥∥∥∑
j �=i

An(i, j)Jxj

∥∥∥∥∞

≤ √
N‖J‖∞ sup

x∈[0,1]n
∑
i∈[n]

∣∣∣∣ ∑
j∈[n]

An(i, j)xj

∣∣∣∣ ≤ Mnn.

(4.49)

PROOF OF (4.40). If we directly apply Proposition 2 for f̃ , then we can see that only∑n
i,j=1 bibj cij is of wrong order, which comes from (3.42). Let θ = (0,0, . . . ,0) in R

N . Here
we show

(4.50)
n∑

i=1

Eμ̃

[
ui(t,X)(Xi − X̂i)

(
h(X) − h

(
X

(i)
θi

))] = o
(
n2)

,
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which gives (4.40). Recall that

h(x) = f̃ (x) − f̃ (x̂), ui(t, x) = f̃i

(
tx + (1 − t)x̂

)
.

By arrangement we have

h(x) − h
(
x

(i)
θi

) = f̃ (x) − f̃
(
x

(i)
θi

) + 1

2

∑
l,j

An(l, j)(x̂l)
T J

(
x̂j − x̂

(i)
θi j

)
+ 1

2

∑
l,j

An(l, j)
(
x̂l − x̂

(i)
θi l

)T
J x̂

(i)
θi j

(4.51)

= f̃ (x) − f̃
(
x

(i)
θi

) + 1

2

∑
j

f̃j (x̂)
(
x̂j − x̂

(i)
θi j

)
+ 1

2

∑
l

f̃l

(
x̂

(i)
θi

)(
x̂l − x̂

(i)
θi l

)
.

We also have

f̃ (x) − f̃
(
x

(i)
θi

) = 1

2

∑
l,j

An(l, j)(xl)
T Jxj − 1

2

∑
l,j

An(l, j)
((

x
(i)
θi

)
l

)T
Jx

(i)
j

= ∑
j �=i

An(i, j)(xi)
T Jxj = f̃i(x)(xi).

(4.52)

By Cauchy’s inequality we have∣∣∣∣∣
n∑

i=1

E
[(∥∥f̃i(X)

∥∥ + ∥∥f̃i(X̂)
∥∥)(∥∥f̃i(X)

∥∥)]∣∣∣∣∣
≤

(
E

n∑
i=1

∥∥f̃i(X)
∥∥2

)
+

(
E

n∑
i=1

∥∥f̃i(X̂)
∥∥2

)1/2(
E

n∑
i=1

∥∥f̃i(X)
∥∥2

)1/2

= o
(
n2)

,

where the last line is by (4.48). Thus with (4.52) we see that∣∣∣∣∣
n∑

i=1

E
[
ui(t,X)(Xi − X̂i)

(
f̃ (X) − f̃

(
X(i)))]∣∣∣∣∣

=
∣∣∣∣∣

n∑
i=1

E
[(

t f̃i(X) + (1 − t)f̃i(X̂)
)
(Xi − X̂i)

(
f̃i(X)(Xi)

)]∣∣∣∣∣(4.53)

≤ N

∣∣∣∣∣
n∑

i=1

E
[(∥∥f̃i(X)

∥∥ + ∥∥f̃i(X̂)
∥∥)(∥∥f̃i(X)

∥∥)]∣∣∣∣∣ = o
(
n2)

.

Next we define �j,i(x) := x̂j − x̂(i)
j , and then by (3.38), (4.38) and (4.39) we see that for

any x ∈ Wn
1 ,

(4.54) max
i,j

∣∣�j,i(x)
∣∣ ≤ √

N max
i,j

∣∣An(i, j)
∣∣ = o(1).
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By (4.49), for any x ∈ Wn
1 ,
n∑

i,j=1

∥∥f̃j (x̂)
∥∥(∥∥f̃i(x)

∥∥ + ∥∥f̃i(x̂)
∥∥)

≤
(

n∑
i=1

∥∥f̃j (x̂)
∥∥)(

n∑
i=1

∥∥f̃i(x)
∥∥ +

n∑
i=1

∥∥f̃i(x̂)
∥∥)

≤ 2M2
nn2.

(4.55)

Noting that |f̃j (x̂)(�j,i(x)T )(ui(t, x)(xi − x̂i))| ≤ ||f̃j (x̂)||(||f̃i(x)||+||f̃i(x̂)||), with (4.54)
and (4.55) we see that∣∣∣∣∣

n∑
i=1

E

[
ui(t,X)(Xi − X̂i)

(
1

2

∑
j

f̃j (X̂)
(
X̂j − X̂(i)

j

))]∣∣∣∣∣
=

∣∣∣∣∣1

2
E

[
n∑

i,j=1

f̃j (X̂)
(
�j,i(X)T

)(
ui(t,X)(Xi − X̂i)

)]∣∣∣∣∣ = o
(
n2)

.

(4.56)

Similarly we can show that

(4.57)

∣∣∣∣∣
n∑

i=1

E

[
ui(t,X)(Xi − X̂i)

(
1

2

∑
l

f̃j

(
X̂(i)

)(
X̂l − X̂(i)

l

))]∣∣∣∣∣ = o
(
n2)

,

and thus with (4.53), (4.56), (4.57) and (4.51), we get (4.50) and finish the proof. �

PROOF OF (4.41). Denote

G(x) :=
n∑

i=1

f̃i(x)(xi − x̂i).

Then by the definition of X̂i we have

Eμ̃

[
G

(
X(i))f̃i

(
X(i))(Xi − X̂i)

] = 0.

Noting that f̃i(X
(i)) = f̃i(X), it is enough to show that

(4.58) Eμ̃

[
n∑

i=1

f̃i

(
X(i))(Xi − X̂i)

(
G(X) − G

(
X(i)))] = o

(
n2)

.

After some algebra we have

G(X) − G
(
X(i))

=
n∑

j=1

n∑
l=1

An(l, j)
(
XT

l J (Xj − X̂j ) − (
X

(i)
l

)T
J

(
X

(i)
j − X̂(i)

j

))

=
n∑

j �=i

f̃j (X)
(
X̂(i)

j − X̂j

) + (
2f̃i(X) − f̃i

(
X̂(i)

))
(Xi).

(4.59)

By the definition of �j,i , we have

Eμ̃

[∣∣∣∣∣
n∑

i=1

f̃i

(
X(i))(Xi − X̂i)

(
n∑

j �=i

f̃j (X)
(
X̂j − X̂(i)

j

))∣∣∣∣∣
]

(4.60)

≤ Eμ̃

[
max
i,j

∥∥�j,i(X)
∥∥ · √N

(
n∑

i=1

∥∥f̃i

(
X(i))∥∥)(

n∑
j=1

∥∥f̃j (X)
∥∥)]

= o
(
n2)

.
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Also we have

Eμ̃

[∣∣∣∣∣
n∑

i=1

f̃i

(
X(i))(Xi − X̂i)

((
2f̃i(X) − f̃i

(
X̂(i)

))
(Xi)

)∣∣∣∣∣
]

(4.61)

≤ Eμ̃

[
N

n∑
i=1

∥∥f̃i

(
X(i))∥∥(

2
∥∥f̃i(X)

∥∥ + ∥∥f̃i(X̂)
∥∥)] = o

(
n2)

,(4.62)

where the last line is by Cauchy’s inequality and (4.48). Combining (4.58), (4.59), (4.60) and
(4.62), we finish the proof. �
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