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We introduce a semi-implicit Euler—Maruyama approximation which
preserves the noncolliding property for some class of noncolliding particle
systems such as Dyson—Brownian motions, Dyson—Ornstein—Uhlenbeck pro-
cesses and Brownian particle systems with nearest neighbor repulsion, and
study its rates of convergence in both L”-norm and pathwise sense.

1. Introduction. Let X = (X (r) = (X1(),..., Xq(t))*):>0 be a solution of the follow-
ing system of stochastic differential equations (SDEs):

dX; (1) = {ZL +bl~(X(t))}dt

j;ﬁi Xi(t) - Xj(t)
(1.1) ,
+Y o (X®)dW; (), i=1,....d,
j=1
with X(O) € Ad:{X:(Xl,...,xd)* ERd:xl <Xy < - <xd}, Yi.j = Vij.i >0,and W =
(W (1) = (Wi (1), ..., Wg(t))*)i>0 a d-dimensional standard Brownian motion defined on a

probability space (€2, F, IP) with a filtration (F;);>¢ satisfying the usual conditions.

The systems of SDEs (1.1) are used to model the stochastic evolution of d particles with
electrostatic repulsion and restoring force. An interesting feature of these systems is their
deep connection with the theory of eigenvalue distribution of randomly diffusing symmetric
matrices and Jack symmetric polynomials (see [2, 3, 6, 14, 20]). The existence and unique-
ness of a strong noncolliding solution to such kind of systems have been studied intensively
by many authors (see [4, 7, 12, 21] and the references therein). However, there are still few
results on the numerical approximation for these systems, in spite of their practical impor-
tance. To the best of our knowledge, the paper of Li and Menon [16] is the only work in
this direction. These authors introduced an explicit tamed Euler—Maruyama approximation
for Dyson—Brownian motion and studied its consistency via a couple of numerical experi-
ments. However, their scheme, unfortunately, does not preserve the noncolliding property of
solution, which is an important characteristic of the Dyson—Brownian motion.

Many authors have studied the numerical approximation for one-dimensional SDEs with
boundary (Bessel process and Cox-Ingersoll-Ross (CIR) process). Dereich, Neuenkirch and
Szpruch [5] introduced an implicit Euler—-Maruyama scheme for the CIR process and showed
that the rate of convergence is 1/2. That result was extended to one-dimensional SDEs with
boundary condition by Alfonsi [1] and Neuenkirch and Szpruch [18]. It was proved that if
the drift coefficient is one-sided Lipschitz and smooth, then the implicit Euler-Maruyama
scheme is well defined and converges to the unique solution in L? sense with convergence
rate 1/2 or 1 provided that the boundaries are not accessible. In the case of CIR and Bessel
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processes with accessible boundaries, the rates of strong convergence of discrete approxima-
tion schemes may be very slow (see Hutzenthaler et al. [11] and Hefter and Jentzen [10]). It
should be noted that if we consider d =2, b; =0 and (0;,j)1<;, j<a is a diagonal and constant
matrix, then X, — X is a Bessel process. The numerical approximation for multidimensional
SDEs with boundary has been studied by Gyongy [8] and Jentzen et al. [13]. These authors
introduced various explicit and implicit Euler—Maruyama schemes and studied their conver-
gence in the pathwise sense. The numerical approximation for multidimensional reflected
SDEs has also been addressed by many authors (see [19, 23, 24] and the references therein).
They proposed various methods such as Euler—Maruyama approximation and recursive pro-
jection scheme and studied their convergence in L”-norm. Note that the reflected SDEs have
an additional local time factor which forces the solution to stay inside the underlying domain.

The main aims of this paper are to introduce a numerical approximation method which
preserves the noncolliding property of the solutions to system (1.1) and to study its strong rate
of convergence both in L”-norm and in pathwise sense. To the best of our knowledge, this
is among the first papers to discuss the strong rate of approximation for a multidimensional
stochastic differential equation whose solution stays in a domain (see [24]). Note that the
singular coefficients X,+X] make the system difficult to deal with. In order to overcome this
obstacle, we need an upper bound for both moments and inverse moments of X; — X ;.

The remainder of this paper is organised as follows. In the next section, we introduce a
semi-implicit Euler-Maruyama approximation X for equation (1.1) and study its consis-
tency. More precisely, we first show that the rate at which X converges to X is of order
1/2 in the pathwise sense. Then under some key conditions on the integrability of X, we
show that the rate is of order 1/2 in the L?-norm. Finally, under further conditions on the
regularity of b;, we show that the rate is of order 1 in the L”-norm. In Section 3, we study
some generalized classes of interacting Brownian particle systems and Brownian particles
with nearest neighbor repulsion. We first show the existence and uniqueness of the solutions
to these systems and then we show that the solution satisfies the key integrability condition
which allows us to obtain the rates of convergence of X . In the Appendix A.1, we discuss
how to compute the implicit scheme in some particular cases.

2. Approximation for noncolliding processes. Throughout this paper, we suppose that
the following assumptions hold.

ASSUMPTION 2.1. (Al) X(0) € Ay almost surely.

(A2) The parameters y; ; are nonnegative constants satisfying y; ; = y;; for i, j =
1,...,dwithi# jand y; ;41 >0fori=1,...,d — 1.
(A3) The coefficients b; : RY > R,i=1,...,dare globally Lipschitz continuous, that is,

' |bi (x) — bi ()]
IbllLip := sup Sup ————— <00
i=l,..dx#y  |1X—Yl

(A4) The coefficients o; ; : RY > R, i, j=1,...,d are globally Lipschitz continuous and
bounded, that is,

loi,j (x) — oy, j (V)]
<0

lollLip :== sup sup ;
ivj=1,.d x£y lx — ¥yl
d
05 = sup sup Zai,k(x)z < 00.

i=1,...d xeRd _1
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2.1. Explicit Euler—-Maruyama scheme. Let us first consider the explicit Euler—
Maruyama approximation for noncolliding particle system (1.1) which is defined by
X™(©0)=X()andforr € (0, T]andi=1,...,d,

dXP =13 = Vij + b (X (1)) } dr
{J; X" () = X9 (1)) }

+ Za (X™ (0, (1)) dW; (1),

where n,(s) = kT /n = t,E") if s € [kT/n, (k+ 1)T/n). For X(0) € Ay, the explicit Euler—
Maruyama scheme is well defined. Since, foreachi =1, ...,d — 1, the quantity
v ()
X

) =X (")

= Xi+1(0) — X, (0)

Yi+1,k
+{k§,_1Xi+1(0)—Xk(0) §X(0) X(0)

T
b (XO) - b(X )]

d
Z 0i11,7(X(0) = 07 ; (X))} W; (1)
is normally distributed condltlonal on the state of the initial condition provided that
0i+1,j(X(0)) # 0;,j(X(0)). This implies
P(X™ (™) e Ag) < 1.

Therefore, the explicit Euler—Maruyama scheme is not suitable for approximating the non-
colliding process (1.1).

2.2. Semi-implicit Euler—-Maruyama scheme. In the following, we propose a semi-
implicit Euler—-Maruyama scheme for (1.1), which preserves the noncolliding property of
the solution. The construction of the semi-implicit scheme is based on the following result.

PROPOSITION 2.2. Leta = (aj,...,a7)* € R4, ci,j=c¢ji=0,forany 1 <i<j<d
and c; ;+1 > 0. The following system of equations has a unique solution:
Ci i
2.1 al+2 o i=1,....d,
J#l =5

which satisfies £ < &) < -+ < &4.

PROOF. The following proof is based on a homotopy argument presented in [9],
page 230. Denote J = (1,2, ...,d)* € Az and

gi(x)=gi(x1,... Xd)—a,—erZ i=1,....d
it xf
Note that g = (g1, ..., ga)* € C®(Aq; RY). We consider the following differential equation:
dx  dg(x) dx
— — t>0,
(22) @~ ox a T8I 1>

x(0) =
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where 3g(x) = (dg’ (X))l j- Note that for any y = (y1, . .., ya) € R?, since ¢; j = cj.;,
0g(x) > i (X)
< 9% y.y _,-Zj: 8)6] YjYi

Cij Ci,j 2
=2 G2 T e

iz i iz i T

=75 Z —yp?=0.

l¢‘] (-xl j)2
dg(X)

Therefore, 1; — is a strictly positive definite matrix. Since g € C®°(Ay; R%), equation
(2.2) has a local unlque solution which can be continued up to the boundary of A,. Denote
t* =inf{r > 0:x(¢) ¢ Ag4}. Fort < t*, thanks to the initial condition x(0) = J, we have

x(t) =g(x(®) +J+ (¢ — Dg).
Moreover,

dx|? 0 dx d dx
& =< g(")—",—x>+<gu), dt>§<g(J) > ‘ ‘Ig(J)I

dr ox dr dt

Thus
dx
'5 <lg|.

This estimation together with mean-value theorem yields |g(x(z))| < (2t 4+ 1)|g(J)| for ¢ €
[0, *). Hence the fact that g(x) blows up at the boundary of A, implies that * = co. Let
t =1, and we get

x(1) = g(x(1)) +J € Aq,

which means that £ = x(1) is a solution to equation (2.1).

Now we consider the uniqueness of solution to equation (2.1) in Ag. Let & = (&4, ..., &4),
= (1,..., Mq) € Ag be solutions of the equation (2.1). Then, since ¢; ; =c;; >0, it
follows from the identity
d
(2.3) ZAiZBi,jZZ{AiBi,j-i-Aij,i}, Ai, B j eR,
i=1 i i<j
that

& — > = (& — . & — )
d
=Z(‘§z MI)ZCZJ{
i=1 §i —

J#i

=2 el - ,u,_g_,uj)}{ 1 }

= §i—§&  Mi—uj

1 1
=Yl - 6) - -l e _Mj}so.

This concludes £ = . [

i
l/«i_Mj
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REMARK 2.3. An interesting consequence of Proposition 2.2 is that the nonlinear system
of equations (2.1) has exactly d! solutions on R¥.

REMARK 2.4. The system of equations (2.1) does not have a closed-form solution in
general. In Section A.1, we will construct an approximation scheme for its solution in some
particular cases.

Based on Proposition 2.2, a semi-implicit Euler-Maruyama scheme for noncolliding pro-
cess (1.1) is defined as follows: X (0) := X (0) and foreachk =0, ...,n — 1, X(”)(t,g?l) is
the unique solution in A, of the following equation:

g T

X0 ) = X0 (1) 4 {Z Vi +b,(x(n)(t(n)))}_
+1 k ! k

| | 7 X" @) =X @l "

+ Zd: o1, (X NIW; () = Wi (1))

We then define for t € (0, T\ {t(n), e, t,(,n)},

X @) = X1, { Vi.j b (X (), }
i () (77 (f)) ; Xi(n)(lcn(l‘)) _ X;")(Kn(t)) ( (77 (t)))

x (t —na (1)) + }[j(r (X (O W, (1) — W (na(0)},

j=1
where «,(s) = (k + DT /n =1, if s € [kT/n, (k + 1)T/n). Hence X (1) satisfies

Vi, j
7 X" () = X9 (ke (5))

X" = X; (0)+f { —i—b,-(X(")(n,,(s)))}ds

d t
+ Z/ 0. (X" (1a(5))) AW; (5).
j=1"0

We denote X; (1) = X;(t) — X;(1) and X" (1) := X" (1) — X" (1.
We also repeatedly use the following representation of the estimation error, e;(t) :=
Xi(t) — X" (t) and e(¢) := (e1(1), ..., eq(t))*. Then for k =0, ..., n — 1, we have

<n> <n> Yi,j Vi.j T
ei(tey)) =eilt +Z{ )y oy () () }
i X)) ij Gy

) - (XD )

(2.4)
d

+ 2 {ou (X (1) = 01 (X (N HW () = Wi "))
j=1

+ri(k),
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where
(n)
k+1 Vi, j Vi, j
ri(k) == Z/n { — }ds
i o Xi,j(s) X,"j(l‘lgr_l'_)l)
(n)
]
2.5) + f b (X () = (X (™))} ds

(n)

+Zf<> o0 (X)) =01 (X ()} W 0,

2.3. The case of constant diffusion coefficient. In this subsection, we consider the con-
vergence of X where diffusion coefficient is a constant.

The following result states that X ™) converges to X at the rate of almost 1/2 in the path-
wise sense provided that the system (1.1) has a strong solution in Ay on [0, T']. In Section 3,
we will show the existence and uniqueness for some classes of SDEs of the form (1.1).

THEOREM 2.5. Assume that o; j(x) = o; j and system of equations (1.1) has a unique
strong solution in Ag on [0, T]. Then there exists a finite random variable n which does not
depend on n such that

n a.s.

n 7. Jlogn
X (") — X (1) ))if—ﬁ

PROOF. Using the identity (2.3) and the fact thate; —e; = X ; — X" we get

jii
eI
d (n)
n
= Z| (fk+1)|
i=1
d 4 ) ( > ( ) Vi Vi T
:Z ( n el tk:—l —i—Ze, tkill—l { i,j i,] }
i=1 JFEi tj(tjgr_z_)l) X(n)(tliﬁ_)l)

+Y e ()i (X (1)) — bi (XD (1)) +Zez (e )ri (k)

d
= ei(t)ei(r))
i=1
(n) () (, () Yi.j Yi,j T
)~ X)) - I
i<j in(t/fljr)ﬂ X('n)(tlfljr)l) n

£ el (X)) ~ B (X)) + Zel ()b,
Using the fact that (x — y)(— — —) <0and xy <x?/2+y%/2x,y > 0, we have

le(t)I? ! ")+ 5 ! ()P

(n) (n) T”b”Lip d )
}Z‘l k+1) . + ey )ik,

i=1
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Hence we have, forany k =0,...,n — 1,

e(t)1” < le(™)* + le(r”) |Z|ez IS +2Z|ez ()l

k

<> _le(r") \Z\ ei (1)) \—+ZZZ\ez e

£=0 {=0i=1

where Cy := 2T||b||Lip. By taking the supremum with respect to k, we obtain for any m =
1,...,n,

m—1 d
el le(t™)? < ZI (25") |Zlez ) |—+2ZZ|€z ) i (0)]
=1, =0 i=1
dcC
< sup |e(t (") \Z sup ,En) il
k=l, ,m = 0 =1,...
m—1 d
+2 sup (™) > DI
..... m =0 i=1
and thus,
m—1 m—1 d
sup |e(t,§"))| < Z sup | (") |—+2 Z Z|rl(£)|
k=1,..., m (= Ok—l ,,,,, (=0 i=1

By using discrete Gronwall’s inequality (e.g., Chapter XIV, Theorem 1 and Remarks 1 and 2
in [17], pages 436—437), we obtain

m—1 1 m—1 d
sup Je(t")] 52{1 +> ? ex (Z dcl)} > i@

k=1,....m =0 =0 =0 i=1
(2.6) L =
<2{1+dCiexp(dCp} > > |ri(®)].
=0 i=1
Therefore,

SUPk—1,....n |e(’/§n))|
2{1 +dCyexp(dCy)}

—ZZ/ ) lyl,és)_xi,,-?x&s))’ds

i=1j#i

+ Z/o |bi (X (5)) — bi (X (na(s)))|ds

Xi j(s) — Xi j(kn(s))

- ds
info<s<7 Xi, j(5)?

EiZ/TVi,j

+dlblp [ 1X() = X(na(6)] .
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Moreover, forany 0 <s <t <T,

t
X1 (1) — X (s)| sf

{Z P bl X o) + V’f“’)‘}d”‘
S L

| Xi(u) — X j(u)]

d
+ Z loi jI|W;(t) — Wj(s)|.
j=1

Since X; € Ay fort € [0, T], we have
Vi, j
sup {
uel0,T] Jé‘: | Xi(u) — X ()]

b lp|X ()] + |bl-<0)|} <0,

and

Ogl?éTingl’j(s) > 0.

These estimates together with Lévy’s modulus of continuity theorem yield the desired result.
O

REMARK 2.6. The class of SDEs (1.1) with o; j(x) = 0; ; contains both Dyson—
Brownian motions (e.g., [1, 6]) and Dyson—Ornstein—Uhlenbeck processes (e.g., [20]).

In order to show the convergence of the semi-implicit Euler—Maruyama scheme in L”-
norm, we need the following hypothesis on the integrability and Kolmogorov-type condition
of X.

HYPOTHESIS 2.7. There exist constants p > 0 and 0 < C < o0 such that
sup E[}X(r)|ﬁ] + max sup E[|X,~7,~+1(t)}_’3] <C
t€[0,T] O<i<def0,1)

and

E[|X(t) — X ()" < Clt —s|P* forall0O<s <t <T.

In Section 3, we will introduce some conditions on y; j, b; and o; j, which guarantee that
Hypothesis 2.7 holds.

THEOREM 2.8. Suppose that the assumptions of Theorem 2.5 hold. Moreover, suppose
that Hypothesis 2.7 holds for some p =3p > 3. Then there exists C > 0 which depends on d
such that for any n € N,

M\ _ g, myp1r _ €
El:k:SB,I.)_7n|X(tk ) X (tk )| ] = nl/g'
PROOF. We will use the estimate (2.6) to show the desired result. Note that from (2.5)
we get

m—1 d d t’(nn) Vi i Vi
ri(0)] < / b L ‘ds
g;' | ;,Z;ﬁ; 0 1Xij(s)  Xijka(s))

2.7)

£m

d
+30 [ i xi60) = i (X ) 0.
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It follows from Holder’s inequality that

r(r{l)
E[(/o x,-,i<s> B X,-,jolcn(s)) ds)p]

STp_1/TE|:|Xi,j(S)_Xi,j(Kn(s))|pi|ds
0 | Xi, i ()P X, j(kn(s))|P

1

T
=17 [ @10~ X)) B[ 0] 7

x (B[ Xi.; (kn ()| 7P ds.

This estimate together with Hypothesis 2.7 implies

(1)

E[(/Ozm ,j(s) lj(Kn(s)) )] nl(’j/Z’

for some constant C > 0. Since each b; is Lipschitz continuous for i =1, ..., d, by using
Hypothesis 2.7, we have

i p
E|:</O |bi (X (5)) — bi (X (1 (s)))}ds) }
1 p T C
<T’~ ||b||Lip_/(; E[|X(s) = X(na(s))|"]ds < —
for some constant C > 0. It then follows from (2.7) that

(B o))

£=0i=1

for some constant C > 0. This estimate together with (2.6) yields the desired result. [

Now we prove that if the drift coefficients b; are smooth, then the semi-implicit Euler—
Maruyama scheme converges at the strong rate of order 1.

THEOREM 2.9. Suppose that the assumptions of Theorem 2.5 hold. Moreover, suppose
that Hypothesis 2.7 holds for some p =4p > 16 and b; € Cl% (R?; R). Then there exists C > 0
which depends on d such that, for anyn e Nwith T/n <1,

1 C
E[ sup [x(") — x® )] <
k=1,....n n
PROOF. Forx=(x1,...,xq) € Ag, we denote
Vi.i
fitwy =Y T
ji TN
The first- and second-order derivatives of f are given as follows:
o - itm =i,
O fi(x) = == i (i = xj)
Oxw | __Yim ifm 1,
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and
2..
S itm—e=i,
#i(xi—xj)
2.
— T itm=i e £,
aZfi (xi_xﬁ)
00 i (X) := = 2y, . . .
Lo i) = e _(xi/—:ﬁ ifm£i, =i,
l m
2.
l m
0 im £i €%, mL.

Recall that for k =0, ...,n — 1, we have
T
(1) = e (") + LA X () = X))

T
+ b (X (") = i (X (")) + i),
and by using Itd’s formula, we have

rik) =rV (k) +r® k) +r k) +rP ),

(2.8)

where

rD () = /zk“f”' WV (X (s)) ds dr,

(n)

tk 1 t
r? (k) = (J o 1P (X (9)) ds dr,
[ t
(3) k+1 k+1 (3)
(k) _Z hi”l (X (s)) AW (s)dr,

(n)
k) : _Zf() /(”)h“) X (5)) dW; (s) dr,

and for x = (xq,...,xg) € Ag,

d d
hO) == 3 9 i (fn ) + b)) — S T o £i(X),

m=1 m,k,k'=1 2

d d
BP0 = 3 9 O (fn®) + b )+ Y M by (x),

m=1 m,k,k'=1 2

d d
Wl @) =—0i; Y dnfi® and A1) =0i; Y dubi(x).

m=1 m=1

From (2.8), we have

T2
(1000 — LX) = A )

(2.9)
n n n n T 2
= e le) 5 (X 0) = B (X)) -+ o)
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and thus
e = sl — LA (XG20) ~ A ()
o e R TR NI
+2e; () i (X (tes)) — fi(X(")(ka))}%
+ 260 B (X)) = 0 (X )+ 260 )

F2UBX ") - by (X (ré“))}zn- .

Using the identity (2.3), the fact thate; —e; = X;; — X ; 2, the Lipschitz continuity of b;, the

inequality xy < x2/2 + y?/2 and the fact that T/n <1, we get

T\? T
D) = lelel™)P + Nt le() () + 24 blple{”)

+2Zel () ri (k) + 211bLiple(2) |—Zr,<k)+2r,<k)

3
< le(t")* + Cale (")) +2Zel ) rl(k>+52rl~(k>2,

where C; := d{3||b||fip + 2||b]|Lip}- Thus, we obtain

k—1

(i) [* = Y- Cale(e))? +22ez "))+ = Zr,m}

j=0

Hence for p = 2¢g > 4, we have

sup Je(i")P! <37CY s

..........

[

] =0

n

k=1 d

Zzez () rl(.])

j=0i=1

(2.10) +397124 sup
k=0,...,4

k=1 d

ZZW)

1011

+3%~1p=4 sup

.....

Now for r € [1, 2¢], we consider the upper bound of the rth moment of ri(l)( ), ri(2)( J),
rl@( j) and rl-(4) (j). Using Jensen’s inequality and the inequality xy < x2/2 + y?/2, there
exist K ,(1) s Kr(z), K r(3) and K, ) such that

nD )| < (d +d3) Z|8mﬁ(X)| ([ fn @] + [bm )"

m=1
d

+ Y okl lowml | kd f;(x)|"
k=1
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d

<(d+d3)~ iZ (19 i OO+ | fon QO+ 11 | 3 £ 0]

+ Z |ok,m|’|ok/,m|’!akak/ﬁ(x)r’}

m,k,k'=1

1 4r 1 2r 1 3r
< Kf”{ +2 }
g TR TR
and
2 1 ‘
WP )| < (d+d3)~ :z” 2 13mbillso (| fi GOI" + 11Bi15)
m=1
d Ok mak m
+ Y ||3kak’b %
m,k,k'=1
d r
< k® 1
— r {Z xk_xm + }
and
2r
WO | < d i1 Zra fiol" =KD Y| ——
AT
and

h @[ <d oy ;I Zna billh, < K.

m=1

Thus, from Hypothesis 2.7, there exist K r(1,2) and K 53’4) such that

E[lr" () T+E[rP )]
(n)

2(r—1) pt
() /mkfl /< E[la" (X)) + P (X)[']

T
1,2
<k )<n) ,

and by using Burkholder-Davis—Gundy’s inequality,

E[lr DI +E[r P ()]

d r—1
50
=1 n

tk+l H/k+ (g) X(S) dW (S)

t
‘ﬁ)@awﬂwo)

IE
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<cd- 122( )_2 f,i“ / Bh" (X(5)']

j=1m'=3
3r

<kon(T
n

Let M = Z Zl 1€ (t(-”)){riG) )+ rl-(4) (j)}. Then it follows from Hypothesis 2.7 and
the upper bound of hl(3n)1 (x) and hf} (x) that

d
EIM|Fyn 1= Mot + 3 eilie—)E[r (k= D+ k = 1)| Fn ]
i=1

= Mj—1.

n-martingale. By using Burkholder—Davis—Gundy’s in-

=1,..., =1,...,

-1 d q/2
2.11) <¢E HZZ|€ )P Gy +rP ) } }

j=0i=1
—1 d 3 4
<207 ey 37 3 nE T E (e (1)1 DI + Y (D).
j=0i=1

Therefore, by taking the expectation on (2.10), we obtain

1 q
T
<3q_1C3E[ sup Z|e(tj(-"))|2; }
=0,..., j=0
k—1 d . ) q
3q 122q 1E|: sup Zzel (”) ()(J)‘H”l( )(])}‘]
""" ] =0i=1

k—1 d
+3q—122’1“E[ sup IMqu]+32q‘12‘qE[ sup ri(j)° }
k=0,....0 k=0, tlj=0i=1
q
53‘1—1C§E[ sup |3 Je(t}")| H
(-1 d 2
39712302491 3 3 3wt R ey (1) 7| ()]
j=0i=1m=1
-1 d 4

#3220, 5 5 B ) )

j=0i=1m=3
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686
-1 d
+32071279g9 =N S L [ ()]
j=0i=1
. T 1.2 3.4
Z|e(t§”))| ;‘ :|+I€( R Ll

=37"1CIE| sup
=0,...,¢

From Holder’s inequality and the inequality xy < x2/2+ y?/2, we have
T
1(1 2 < 34-13-24q-1 /K(l Z)Zan HE[Jer ( (n))|2q])1/2< )
j=0i=1
T\4+1
1/2
Efle ")) ()

T
n

j=0

(3T)q 123q qu 1 K(l 2)
j—Oi 1
)Zq—i-l}

< (3T)I12% 3441 /KZ(;Z)ZZ{ [les(e™) 2q
j=0i=1

T 1
2){221@ [Jei (£{")*] +n2q},

j=0i=1
3q/2
(n) 12
()

for some constant I? (1’2) and
(3.4 153q-2 441, (3.4
1Y <3713 2q 8 e KD Zan
j=0i=1
(n) 1/2( >q+1
n

o

=30712%72a1) i eg [K Y ZZ [Je: (¢}
j=0i=1
T T\ 2q+1
< 347193345~ leg K53 n { [Jei ()]~ + (—) }
j= Ol 1 n n

-1 d T 1
+n2q,

4){ZZE |€z (n) Zq
j=0i=1

for some constant I? (3’ ), Finally, we have
—1 d
T R S D 3 Sh Lt (L)
1 2g+1
~ T\“4
()
n

j=0i=1m=1
T\%+
326] 123q Z(dT)q IZZ{K(I 2)(n) 2[1
j=0i=1
Ky
— n2q 9
for some qu.
Therefore, we obtain for some C > 0
O - wy2a1 L €
n q - _
g O] 2 T

By Gronwall’s inequality, we conclude the proof. [
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2.4. The case of general diffusion coefficient. We obtain the following results on the
rate of convergence for the semi-implicit Euler—Maruyama scheme in L? norm, under the
nonconstant diffusion coefficient.

THEOREM 2.10. Suppose that Hypothesis 2.7 holds for p = 6. Then there exists C > 0
which depends on d such that for any n e N with T /n < 1,

C

1 2
sup EHX(Z‘]E”)) _X(n)(tlgn)” ] / 1/2

k=1,...,n

REMARK 2.11. We note that the proof of Theorem 2.10 is also based on the identity
(2.9). However, since the coefficients b and o are Lipschitz continuous, it is difficult to com-
bine the proof of the theorems together.

PROOF OF THEOREM 2.10. We first recall that f;(x) := Z#l Vi / . It follows from
(2.4) that

a@%>{ﬁ<@ﬂ»—ﬁaW@%m:2=m@%

where R; (k) := Rp i (k) + Ry i (k) + ri (k) and

Ry i) = b (X (") = b (X V()

d
Rai )= Y- o1 (X 00)) = o1 (XD )W, 60) = W, 67

Jj=l1

Thus we have
n n n n n T 2
(0P =ler ) = [LA (X)) = R XD

T
+2€z(tk+1){ft(X(tk+1)) fi(X(")(tkH))};
+ 26 (£ R (k) + Ri (k)2

Using the identity (2.3), the fact that e; —e¢; = X ; — XE l), Lipschitz continuity of b; and
T/n <1, we get

() < et +2Ze, (i R(k>+ZR<k>2
i=1

d
2 b
< ’e(t(n) | +‘e (n) ’Zel ” ”Llp
n
i=1

d
Z (") m<k>+22e, (t")ri (k)
(2.12) = =

3||1b||L1p

I’l

3ZRU,<k)2+3Zrl(k>

i=1 i=1

+le(y")?
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< le(t") > + C3le(rt")| +2Zel (") Ry (k)

+ 22@ (tYri (k) +3 Z Roi(k)?*+3 Zr,- k)2,
i=1 i=1
where C3 :=2Vd||b lLip +3 ||b||fip. By the independence of the increments of the Brownian

motion W, the expectation of e; (t,E”))RU, i (k) is equal to zero. Therefore, by taking the ex-
pectation in (2.12) and using the Lipschitz continuity of o; ; conditional independence, we
obtain

E[[e(1¢,)] < E[e({") ] + CE[le(”) ] -

n

+2ZE ei (t")ri (0] + 3E[|r (k) ],

where C4 := C3 + 3d?||o ||%ip. Thus we have forany k=1, ..., n,

k=1 d

(2.13) +2 3 S Elei (1)ri ()]

{=0i=1
k—1

+3 Y E[|r 0]

£=0
Recall that r; (k) = rf,; (k) +rp i (k) + 15, (k), where

(n)

1= [ R X) = RG] s

Ukt (,,)
i) =3 [ o (X@) = 01 (X)) aW; )

We now estimate the expectation of |r(£)|?. By using Holder’s inequality and Hypothesis
2.7 with p = 6, we have

d
E[lrfwﬂz]—; [[rri @[]

(n)

> [l A ()~ APy

(n)

d _ d—-Dy}T % 11X 0) — Xi (¢
J i.j i,j gy
(2.14) <> — /;W IE[ 3 w 2]ds
i=1 j£i i | X j ()71 X, j @ )]
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d (M

(d — 1)7’1 : .
= [ R0 X))
Z

i=1j#i

_ )~ —6 1
x E[|X; ;)| T E|X; ()| 7] ds
d A T\3 T\?
ZZ4C(d—1)yi?j(—) :Cf(—> :
21 i n n

From the Lipschitz continuity of b; foreachi =1, ..., d and Jensen’s inequality, we have
2 d 2
E[|rp (O] = 3 Ellrsi (O]
i=1

(2.15) d”blILlp én+)1 ()2
. T/W E[|X (s) — X(2,"”)|"] ds

N T\3 T\?
SdC1/3||b||fip<;> :Cb<;> :

From Itd’s isometry and the Lipschitz continuity of o; ;, we have

QU

E[|ro ()] Z [[70.: (O)]]

d RO)

/(;H }01 J X(S)) Ui,j(X(tén)))‘z]ds
(2.16) i,j=1
™

<d2||0||L1p /z E[|X (s) — X (r (n))| ]ds

. T\? T\?
§d2c1/3||g||iip<;> :Cg(;) .

Next, we consider Zle Ele; (té"))ri (©)]. Since ¢; (té")) is .7:l(n>-measurable and the condi-
l
tional expectation E[rs ; (£) |.7-"t<n>] is equal to zero foreachi =1, ..., n, we obtain
¢
d
S Elei (1) r0.:(0)] ZE ei (1" E[ro.i (O Fy ]] =

i=1

Hence, from (2.14) and (2.15) and the inequality xy < x?/2 4+ y%/2, we have
ZE ei(t1i)ri (0] ZE ei (t)(r7.i(0) 4+ rp.i(0)]

2.17)

A

N —

EH (")

l\.)l'd

d
Z [r7.i(0) +rb,i<6>|2]§

A

N —

T T\2
Eue(ré”))ﬁ; +crren(y )
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Therefore, it follows from (2.13), (2.14), (2.15), (2.16), (2.17) and the fact T/n <1 that,
foreachk=1,...,n

k—1
Efle(t{”)]] < (Ca+ 1) ZE[|6(¢§">)|2]§
£=0

2(Cr+CpT?*  6(Cy+Cp+Cy)T?
+ + .
n n
From discrete type Gronwall’s inequality, we conclude the proof. [J

We obtain the following results on the rate of convergence in L?-sup norm.

COROLLARY 2.12.  Suppose that Hypothesis 2.7 holds for p = 6. Then there exists C >
0 which depends on d such that foranyn e Nwith T/n <1,

2]1/2§L

(2.18) E[ sup [x(y") - x™ (") -

k=1,...,n
REMARK 2.13. In the proof of Theorem 2.10, we use the fact that the expectations of

e (tlgn) )Rs.i (k) and e; (t,f") )rs,i (k) are zero. In order to show (2.18), it is needed to bound the
expectation of absolute values of these random variables. This reduces the rate of convergence
from 1/2 to 1/4.

PROOF OF COROLLARY 2.12. It follows from (2.12), Lipschitz continuity of o; ; and
Schwarz’s inequality that

Slup (n) | <C3Z| (n)

n—1

d
+2||U||L1pZZ|e (n) | {W Qﬁ)ﬁ Wj(ttgn)”
=1 j=1

n—1 d
+3dloliEp, D D le(r™) W, (e)) — W)
=1 1

Jj=

n—1
+2Z| M)Ir©]+3>|r@).
(=1

Therefore, since the random variables e(tZ )) and W; (t((i)]) - W; (té")) are independent, by

taking the expectation and by using Holder inequality, 7/n < 1, (2.14), (2.15) and (2.16), we
have

E[ sup |e(t{")]

=1,...,n

T
< {ch+2d||o||Lip(nT>1/2+3d||o||ﬁip;}k sup Effe(")[’]

=1,...,n
+2-3Y2(Cr+ Co+ CH'YPT sup Efle(r)]"
k=
L€+ Cr+CT?

n
Hence, Theorem 2.10 implies the proof of statement. [J
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3. Examples. In this section, we will study some classes of SDEs (1.1) which have a
unique noncolliding strong solution satisfying Hypothesis 2.7. Note that under Assumptions
(A1)—(A4), the coefficients of equation (1.1) are locally Lipschitz continuous on A,. There-
fore, given X (0) € Ay, equation (1.1) has a unique strong local solution up to the stopping
time

(3.1) T= 1nf{t >0: 15?151;171})(”1(0 — X;(t)|=0or lréliafxd|X,-(t)| = oo].

In order to show the existence and uniqueness of global solution to equation (1.1), it is suffi-
cient to prove that T = oo almost surely.

3.1. Interacting Brownian particles. We consider the following interacting Brownian
particle systems:

(1) — Y e
dX;(r) = {g X0 - X,0) +bi (X; (z))} dr
(3.2) .,
+Y 0 (X®)dW;(r), i=1,....d,
j=1
with X(0) € Ag ={(x1,...,x0)* €RY : x| <xp <--- < xg4}.

ASSUMPTION 3.1. Suppose that the domain of the drift coefficient b is R and it holds
that b; (x) < b;41(x) for any x € R.

These systems contain several classes of well-known particle systems such as the Dyson—
Brownian particle systems, Dyson—Ornstein—Uhlenbeck process, and the systems considered
by Cépa and Lépingle [4]. Graczyk and Malecki [7] studied a class of noncolliding particle
systems satisfying condition o; j(x) = §; jo;(x;), where §; ; is the Dirac delta function. In
particular, they obtained the following result.

PROPOSITION 3.2 ([7], Corollary 6.2). Suppose that:

e 0; j(x) =&; joi(x;) where o; is at least 1/2-Holder and aiz(x) <2y;
e b; be Lipschitz and b; (x) < bj+1(x), bij(x)x <c(1 + |x|2).

Then the system (3.2) has a unique strong solution in Ag for all t > 0.

In the following, we will establish a sufficient condition for the existence and uniqueness
of a solution to equation (3.2). Moreover, we show that Hypothesis 2.7 holds under a certain
condition on y, o and d.

We need the following elementary inequality whose proof is given in Appendix A.2.

LEMMA 3.3. Foranyd =2, p>0and (x1,...,xq) € Ag, it holds that
d—1 1

3\ ! 1
i) | o S—
Z Z (Xit1 — X)P (X1 — X)) (X — Xp) = < d) Z (Xi41 — x;)PT2

i=1 k#ii+1 iz

Recall that X; ; () = X; () — X;(¢). Then, for i > j, we have

ro2 t X :
Xl%/(f)ZXi,j(O)Jrf X.?’ ds—/ ) y,—J(s)
0 Xij(s) 0 (G Xik()Xjk(s)
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+ / ((Xi(s)) —bj(X(s))}ds

+ Z/o {01k (X(9)) — o)k (X (5))} dWi(s).
k=1

For each N > 0, we define the stopping time

(3.3) ™ ::inf{s>0 inf X,+1,(s)<1/Nor sup |X (s)|>N}

.....

Itis clear that Ty 1 7 as N — o0.

LEMMA 3.4. We recall that O'd is defined in (A4) of Assumption 2.1. Suppose that As-
sumption 3.1 holds. Assume that >1,pe [0 — 11, T >0and E[X;4+1,;(0)"P] <00

foreachi=1,...,d — 1. Then it holds that
d—1 d—1
Z Sup E[ l+1 l(t A T) [7 Z E l+1 I(O) p] epT”b”Llp
i—1 0=<t<T P

In particular,

d—1
sup sup E[X; j(tAT)7P] < (Z E[Xi_’_l’i(())p])gl’T”b“Lip'

i#j 0<t<T i=1
PROOF. By using Itd’s formula, we have
Xip1:@ Aty) P
=Xi+1,i(0)"F

IATN -2 1
+/ { O L) }ds
0 Xit1,i(s)? Xir1,i()P 7y Xik () Xig1k(s)

_/mm plbiv1(Xip1(s)) — bi(X; (S))}
0 X1+1 l(s)p_*_1

d NTIN _ 2
+y /(')’ p(p+ Dloit1k(X(s)) — o k(X(S))l

k=1 2Xi41, i(s)P+2

B d /t/\rN Ploip1 k(X () — o k(X (5))}
0

= Xit1i(s)P Tt
Since foreachi=1,...,d,

/t {oi11,k(X(5)) — 0i k(X (5))}
0

Xiy1,i(s)Pt!
thus the expectations of the above stochastic integrals are zero. Moreover, since (p + l)dcrj <
3y, by applying Lemma 3.3 we obtain
d—1
Z E[Xit1,i(t Atn) "]

i=1

d—1 d—1 IATN b; X; — bi(X;
SZE[Xi+1,i(0)_”]—ZE[/() Pbiti( +1(s)) ( (S))} ]

dWi (s).

2
<oy ds < Zo’sz(p—H)t,
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Since b; 1 > b; and b; is Lipschitz continuous, we have
d—1
D E[Xigrni(t ATn) P
i=1

d—1 Ny (B (Y .
B z+l,i(0)_p]—ZE|:/ol pibi(Xit1 () = bi(Xi(5))} ds]
i=1

P Xis1,i()PT!

d—1 d—1

< Y EXir1i0)” P]+p||b||Llpf D ElXisnr (s A )]s

Using Gronwall’s inequality, we get

ZE l+1 l(t A IN) p (ZE l+1 l(O) p])gl’t”b”Llp

i=1 i=1

Letting N — oo, we conclude the proof of the lemma. [

LEMMA 3.5. Suppose that Assumption 3.1 holds. Assume that 37 >2,pe [1 =Y 1],
d
T >0, E[|X(0)]”] < 00 and E[X;41,i(0)"P] < 0o for each i = 1,...,d - 1. Then there
exists a finite constant C such that

(3.4) sup sup E[|X;tAT)|P]<C

0<t<T 1<i<d

PROOF. Since |b; (x)| < |b; (0)| + [|D]|Lip|x| for any x € R, we have

IATN
|Xi(t ATv)| < | X (0)] 4 |Bi (0)|r + IIZ?IILipf0 |1 X (s)| ds

INTN d

+Zf |X1J(s)| A+ 2

j=1

INTN
/0 o1 i (X(5)) dW;(s).

A simple calculation yields

| Xi(t ATi)IP

Qdtyr 1 = <[Xi (0] + [b: )17 + 161,17~ 1/ X (s A Ty)|P ds

07! /—ds
; X5 ATwIP

d
+2
j=1

IATN p
/(; O‘,‘J(X(S)) de(S)

Denote Cop = (X' E[X;11,,(0)~P]ePTIPIL. From Lemma 3.4, Burkholder-Davis—
Gundy’s inequality and the boundedness of o; ;, by taking expectation,
E[|X;( A Tn)IP]
(2d +2)P-1

<E[|X;:(0)|"] + |b: (0)|"2”

t
+ B! /0 E[|X: (s A tv)|"] ds

+(d — DtPyPCo+ c(p)dt?*a) .
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It then follows from Gronwall’s inequality that E[|X; (z A ta)|”] is bounded by
Q2d +2)P N (E[| X: (0)|P] + b: (0)|PtP + (d — 1)tPy? Co + c(p)dt?/*a )

p—1 P p—1
o oA+ BN

Letting N — oo, we obtain
E[|X;(t AD)|P] < (2d +2)p_1(IE[|X,-(0)|p] + |bi (0)|P2?

+(d = DPyPCo+ c(p)dt?2a P )e @D DI

This implies the assertion of Lemma 3.5. [

The main result of this section reads as follows.

THEOREM 3.6. Suppose that Assumption 3.1 holds. Assume that >2,pell, ;;/ —

d

1, E[|X(0)|?] < 00 and E[X;41,i(0)"P] < oo foreachi=1,...,d — 1 Then equation (3.2)
has a unique strong solution X (t) such that X (t) € Ag almost surely for all t > 0. Moreover,
forany T > 0, there exists a finite constant C such that forany 0 <s <t <T,

(3.5) sup E[]X ) — X;(s)[P] < Ct —s5)P.
i=1,.

PROOF. By applying Lemma 3.4 and Lemma 3.5 with p = 1, we deduce that 7 = oo
which implies that the equation (3.2) has a unique global strong solution X (#) whose values
are in Ay forall ¢ > 0.

Now we consider the second statement (3.5). Forany 0 <s <t <T,

1 Xi (1) — Xi(s)I”
2d + 1)r-1

< B (1 = )7 + 1] (¢ — )P / X du

+> - s)P~!

[
P s |1 Xi ()P

O'l j X(u) dW (u)

It follows from Lemma 3.4, estimate (3.4) and Burkholder—Davis—Gundy’s inequality that
d roy p/2
BlJXi(0) ~ X, )] = C -7 + Y e ([ o (x)au) |
JZI )

<C(t — )P

This concludes the second assertion (3.5). [

REMARK 3.7. Under the assumption of Theorem 3.6, it is straightforward to verify that
the Hypothesis 2.7 holds with p = p.

REMARK 3.8. The existence and uniqueness of a noncolliding solution in this paper are
established under stricter conditions on y /o*2 than in [4, 21] and [7]. Note that these pa-
pers only considered a particular case of systems (1.1) where each coordinate X; is driven
by its own Brownian motion (which is independent of the other ones) and o; ;(X (1)) =
d;,joi(X;(t)), where §; ; is the Dirac delta function. In fact, the later more restrictive con-
dition allows to prove existence and uniqueness for a more general class of equations where
the driving Brownian motions can be correlated. More importantly, that condition allows us
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to obtain the moment estimate (3.5) which is the key to study the strong rate of convergence
for the discrete approximation for equation (1.1).

3.2. Brownian particles with nearest neighbor repulsion. In this section, we consider the
process X = (X1, ..., Xg) given by the following SDE:s:

d
_ Y . .
dX(r) = {Xl(t) %0 +b1(X1(t))}dt + ;al,,(X(z))dW,(z),
i =| 0= X0 | X=X oo
(3.6) +Y i (X®)dW;(1), i=2,....d—1,
j=1
_ Y
dX,(t) = {de(t) T + bd(Xd(t))} dr
+ 3 0. (X ) dW; (1),
j=1

with X (0) € Ag. Let the Assumptions (A1)—(A4) hold. Since the coefficients of equation
(3.6) are locally Lipschitz continuous in Ay, given X (0) € A4, equation (3.6) has a unique
strong local solution up to the stopping time t defined by (3.1).

REMARK 3.9. These kinds of systems were studied in [7, 15, 22]. In particular, [7]
considered the following SDEs:

N 14
dX(t) = —Xl(t) ~ X0 dt + o1 (Xl(l‘)) dWi(2),
dX; (1) = { Y + Y }dt
' Xi(t) = Xi—1(t)  Xi(t) — Xip1(t)

+oi(Xi(0)dW; (1), i=2,...,d—1,

y
X0 - Xy & HoaXa®) dWa ().

It is shown that the system has a unique strong solution with no collisions and no explosions
ifd=3,y >3 and |o;] < 1.

dXq(r) =

In the following, we apply the method introduced in the previous sections, which is es-
sentially different from the one in [7], to study the existence, uniqueness, noncollision and
nonexplosions of the solution to the general equation (3.6).

LEMMA 3.10. Forany d > 3 and p > 0, there exists a constant X (d, p) < 2 such that
d—2
1 1

x|

+ }
G2 = Xip) (e — X)PT T (g — xip )PP (i — xi)

d—1 1

<xd,p)) ————,
; (xip1 — x;)PF?

forany (x1,...,xq) € Ag.

PROOF Denote L = Zfl 1 m and E, = . We haVe Zi %.ierZ — 1
+

Denote

1
(i1 —x) L/ (P+D)

d-2 d—1

X(d, p)=sup{ Y (E1&” + 87 &): S TP =11,

i=1 i=1
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Since the set S;;dil ={&=(1,....84-1) € Rflfl : Zfl:_ll SipH = 1} is a compact subset of
RI-1 the supremum is attainable. On the other hand, for any & € S; d—1>

d-2 d-2
R N (GARTI AR ) 225”” S (aig! ! + 67 )

i=1 i=1

—Z(a &0 E T &0 e e

The last term is strictly positive since for any nonnegative constants a and b the quantity
(a — b)(aP*! — bPT1) is nonnegative and it equals to zero if and only if @ = b. This implies
the desired result. [

We denote X;1,;(t) = X;+1(t) — X;(¢). Let Ty be defined as in (3.3).

LEMMA 3.11. Suppose that Assumption 3.1 holds. Let p be a positive number satisfying
2Z2 > % Suppose that E[X;4+1,;(0)"P] < oo foreachi =1, ...,d — 1. Then for any
d
T > 0, it holds that

d—1 d—1

3 sup E[Xirrit A TP] < [ Y E[Xirr:(0)7P] el Wl
i=1 0<t<T i—1

In particular,

d—1
sup sup E[X;;(tAT)7P]< (Z E[XHLI.(())—P])epTllbllLip_

i<jO<t<T i=1

PROOF. By using Itd’s formula, for each 2 <i <d — 2, we have
XitritAnTy)™F

=Xi41,,(0)77

INTN —2 1 1 d
+/ { + + } s
Xit1, z(S)f”+ Xit1,i(8)  Xig2,iv1(8)  Xii—1(s)

/l‘/\l’N p{bH—l(XH-l(S)) —b (X (S))} ds
0 Xz+1 l(s)p+l

s i/omm PP+ D041 k(X () = oik XGNP

k=1 2Xi41,i(s)P T2
d_ rint . ,
N ploiv1k(X(s)) — 0ix (X (5))}
— : : dWy (s).
/;/o Xig14()P] K

In addition, we have
Xo1t ATn)P
_ NN py —2 1
=X, 1(0)"7 —i—/ { + }ds
21O X P X ) | Xaal)
_/’”N plb2(X2(s)) — b1(X1(s))}
0

X2, 1(s)PH!

ds
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4 rinty 1 X(5)) — o1k (X (s) 2
+Z/O p(p+ Doz k(X (s)) — o1, x(X(5))| ds

= 2X,1(s)PH2

dWi(s)

d  rint
B N plo2 k(X (s)) — o1, (X(s5))}
,2/0 X2,1(s)PH!

and
Xaga—1t ANTy)~?
IANTN -2 1
_ py
:Xd,d—l(o) p+/ { + }ds
0 Xada—1)PT M Xga—1(5)  Xa—1,a-2(s)

/MTN Plba(Xa(s)) —ba—1(Xa-1(s))} d
—_ S
0 Xa,d—1(s)PF!

d ATN — 2
. Z/O’ p(p+ Dlog (X (s)) —0q—1,,(X(s))] ds

k=1 2Xd,a-1(s5)P+?

—i/omm ploax(X(s)) — o4—1.£(X(5))}

Xg.a-1(s)P*! AWi(s).

k=1

)4 p+1

1 >
Since 72 = =@

by applying Lemma 3.10 we obtain

d—1
Z E[Xi+1,i(t Atn) 7]

izl
d—1
<Y E[Xi+1,i(0)77

i=1

d—1 ATN . . _h(YX.
] _ ZE[/(: Plbiv1(Xiy1(s)) — bi (X;i(s))} dsi|-

—~ Xiy1,i(s)PH!

The proof is concluded by following the same argument as in the proof of Lemma 3.4. [J

By using Lemma 3.11 and adapting the argument of the previous sections, we can show
the following result.

THEOREM 3.12. Suppose that Assumption 3.1 holds. Assume that there exists constant

p > 1 such that 2};—3 > %, E[1X(0)|”] < oo and E[X;+1,;(0)™P] < oo for each i =

1,...,d — 1. Then the equation (3.6) has a unique strong solution X (t) such that X (t) € A4
almost surely for all t > 0. Moreover, Hypothesis 2.7 holds for p = p.

APPENDIX

A.1. Numerical approximation for system of equation (2.1). In this section, we dis-
cuss how to approximate the solution of the system of equations (2.1). Denote x; = &;+1 — &;
and a; = b;+1 — b;. We can rewrite (2.1) as the following system of equations of variables x;,

I1<i<d-1:
2¢; Cit1,j Ci,j
X =a; + i,i+1 +Z< i+1,j _ i,] >
Xi Xj+--4+xi  xj+-o-+xio

j<i

(A.1)
Ci+l1,j G, j

_J';-l(xi+l+"'+xj—l _x,-+---+x,-_1)'
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It is clear that there is a one-to-one correspondence between (&;)1<;j<q and (x;)1<j<q4—1. Note
that since both systems (2.1) and (A.1) are highly nonlinear and very stiff, it is very hard
to find an effective numerical approximation scheme for them in the general case. In the
following, we will construct an iterative scheme for the system of equations (A.1) and show
its convergence in some particular cases.

We first consider the case that ¢; ; =0 for all i, j satisfying |i — j| > 2 which corresponds
to the system of Brownian particles with nearest neighbor repulsion. We denote ¢; j+1 = ¢;
and k =d — 1 for the sake of simplicity.

PROPOSITION A.1. Leta=<(ay,...,ar) € R¥ and ci>0foralli=1,...,k. The fol-
lowing system of equations:
2c| c
X ——=a— —,
X1 X2
2¢; Ci—1 Cixl
(A.2) Xj— =g T =2 k=1,
Xi Xi—1  Xi41
2ck Ck—1
Xy —— =ay — ——
Xk Xk—1
has a unique solution (x7, ..., x}) € R’i. Moreover, if we consider the sequence

xl.(o) = %(ai +,/al-2+8q), i=1,...,k,

1 Ck—1 ck—1\?
x,ﬁ”H) = —<ak ——w T (ak ~ ) + SCk),
2 k—1 k-1

then for eachi =1, ..., k, the sequence xlF”) decreases to x}* as n tends to infinity.

PROOF. The existence and uniqueness of a solution to (A.2) is a direct consequence of

Proposition 2.2. It is clear that xi(o) - 2(0({) =a;, and
X
n+D) __2e €2
X — =a; — —(,
1 (n+1) ()
X1 Xy
2¢; Ci— Ci
P Gl e Rt N £ S SR 250
i (n+1) (n) (n)
X Xic1 o Yiq
(D) _ 2k Ck—l
Xk wr) % T T
Xk Xk—1

Note that if ¢ > 0 then the mapping x > x — zx—‘ is strictly increasing on (0, +00). Since

xl.("H) — % <a; = xl.(o) — %, we have xi(”H) < xi(o) foralln > 0,1 <i <k. In particular,
X; X;
we have xi(l) < xl-(o). Using the induction method, we obtain that for each i, the sequence
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(x( ))n>0 is a decreasmg sequence of positive numbers. Indeed, suppose that x("+]) l( ")
foralli=1,2,...,k. Thenforanyi =2,...,k — 1, it holds

) _ 26\ w2y 2
Xi 0D i 0D

B 1 1 1 1 0
=1\ e T w )T e T w )7
i—1 i—1 Xit1 Xit1

which implies x """ > x"*? fori =2,...,k — 1. A similar argument yields that x"*" >

xi(n+2) for i =1 and i = k as well. Therefore, for each i, the sequence (xi( ))nZO converges to
the desired limits x*. [

Next, we consider the system (2.1) when d = 3.

PROPOSITION A.2. Leta,b € R. The following system of equations:

2 1 1
X——=a——+ ,
X y x+Yy
2 1 1
y__:b__+ ’
y X XxX—+Yy

has a unique solution (x*, y*) € R%r. Moreover, if we consider the sequence

x1=%(a+m), y1=%(b—'a'+[\/ '“'+[)+6),

and

Then

limx, =x* and limy, = y*.

PROOF. Step I: Itis clear that

2 1 1
Xn+1 — =a—-—
" Xn+1 Yn Xn + Yn
2 1 1
Y1 = ——=b——+ -
Yn+1 Xn Xn+ Yn

Since xp41 — 5 — <a then x,41 < %(\/a2+8 + a) for all n > 1. Similarly, y,+1 <
(b2 +8+Db) forall n > 1.
Step 2: We show that y; < y3. Indeed, we have
2 1

Vi —>b——
Y3 X2

(- L) )
=b——(Jla——+ +8—a+—— .
4 yi x1+y1 vy x1+y1
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Applying the simple estimate, v/a2 + b2 < |a| + |b|, we get

1 1

2 1 1
<a——+ ) +8<lal+—+ ++/8.
Yy x1+n Yo ox1+yn
Therefore,
2 1 Jal++2 2
y3i——>b——— =y — —
3 2y1 2 yi

This implies y3 > y;.
Step 3: Since the function x %(x + +/x2 + 8) is strictly increasing on R, for any k > 0,
we have the following relation:

—1 1 —1 1
X2 < Xk+4 & + < +
Vik+1  Xk+1+ Vk+1  Vk+3  Xk+3 + Vi+3
(A.3) y2 y2
& Vi1 + ko YVk+3 + k3
Xk+1 Xk+3

Similarly, for any k£ > 0, we have

2 2

X X
k+3 k41
(A4) Vit2 > Vk4d X3+ - < Xppq + —
Yi+3 Yi+1

Since x; > x3 > 0 and y3 > y; > 0, it follows from the relations (A.3) and (A.4) with k =0
that x < x4 and y> > y4. Using the relations (A.3) and (A.4) again with k = 1 yields x3 > x5
and y3 < ys5. By repeating this argument, we get

YE<Y3<)Ys<Yyr<--,
V2= Y4>Y6 >8>0
X >X3>X5>X7> -,

(A.5)
Xo < X4 <Xg<Xg <+

Step 4: It follows from Step 1 and (A.5) that the sequences (yax+1), (y2x), (X2k+1), (x2k)
converge to yi, y2, X1, X2, respectively. Moreover, yi, y2, X1, X2 satisfy

R 2 b 1 1
VI—F=x=b— >
1 X2 X2+
. 2 1 1
y2—7=b—A— ~ ~ >
2 X1 X1+
. 2 1 1
Xl — x> =a— T3
X1 Y2 X2+
R 2 1 1
Xo——=a——+—=.
X2 Yy oX1+n

The first two equations imply

2 1
(§2—91)<1+A - >
yiy2 (X1 +ynx2 +y2)

1 1
=()?2—)?1)(A ey — )
xix2  (p+yp2+y2)
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while the last two equations imply

1
(9?2—)?1)<1+AA - )
xix2  (r +yp2 +y2)

1
=02- y1)(y1y2 (X1 + 9D + 92))'

We show that X; = X, and y; = y, by contradiction method. Indeed, suppose that X; # X
then y; # y, and

2 1 2 1
(s (- )
192 Gr+IDE+ ) xXix2  (xr +yp2 +y2)

1 1 ) ( 1 1 )
_<)?1J?2 E1+IDE+3)/\0152 G +IDGE+3)/
This is not true since the term on the right-hand side is always strictly greater than the one on
the left-hand side. It means that X; = X and y; = y,. [

REMARK A.3. The iterative method in Proposition A.2 can be generalized for the case
that d > 4, but that result, unfortunately, cannot be.

A.2. Proof of Lemma 3.3. Foreach (x{,...,x4) € Ay, we denote
d-2 d

s5i=y. > :

S5 (i — x)P (i — x) (o — xi)”

d—1i—1

$=2% :

ST (i = x)P (xipr — x0) (6 — xk)

Using Young’s inequality,

P alt? 4 L[,P*'2 + ch+2 >aPbc, a,b,c>0,
p+2 p+2 p+2 -
we get
=% 3 :
P (k=i =Dk —1) (xjp1 —x;)PF=HL A=

| A

M&i

£,

1 { P 1
o k=i =Dk —i) L p+2 (i1 —xi)P+2

1 1 1 1
P2 p 2 (e }

_l’_

Next, using the convexity of the function a — a (r 2), we have the following estimate:
(A 6) —1 < —1 (—1 +---+ —1 ) k>1 0
. = ,Al, ..., Ak > V.
(a1+k+ak)p+2 k fr+2 lf+2

Since xx — xj41 = ZI;-;}_H(XJ'_H —xj) and x; — x; = le‘.;} (xj4+1 — x;j), by applying the
inequality (A.6), we get

p 1
SI—Z Z (k—z—l)(k 1){

i=1 k=i+2 p+2(-xi+l_-xi)p+2
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1 1 =l 1
p+2k—i—1 i1 (xj41 —Xj)p+2

N 11 K 1
p+2k—if ¢ (Xj1 — xj)PT?

= S11 + Sz,

where

1 1 1
S“_Z Z{p+2(k 1)(k—i)+P+2(k—i—1)(k—i)2}

i=1k=i+2
1
(Xjg1 — X)) PF2

d=2 d

1 1
512——2 2 (k—l)(k—l—l)< —i—1+k—i)

i=1k=i+2

X —
PERY R
io (K —xj)P

We have

d-2 d
p 1 1 )
S = -
8 Z{ +2 (k—i—l k—i

k=i+2

N 1 Zd: 1 1
P+2, 5, k=i =Dk =2 (xi1 —xP?2

Z ( 1 >+ 144t 1
T =lp+2U d—i) T p+2 & ke+ D2 (g —x)p 2

Since {(i, j,k) e N3 :1<i<d—2,i+2<k<d,i+1<j<k—1}={G j k) eN:2<
j<d—-1,1<i<j—1,j+1<k<d}, wecanrewrite Sy as

1 d—1j-1 d 1 1 1
5‘2:p+222 2 (k—i)(k—i—l)(k—i—1+k—i>

=2 i=1k=j+1
1
(xj41—x;)P+2

—1j-1
1 d—1] d

1 1 1
- p+2 ZZ Z ((k—i— e (k—i)2>(x.,-+1 —xj)P+?

j=2i=1k=j+1

—1j—-1

1 1 1
T p+2 Z Z((j —i)? (d—i)z)(xj+l —xj)P+2

j=2i=I
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| d=lgimly -1 |
T p+2 (Zﬁ_ 2 /<_2)(xj+1—xj')”+2

j=2 \k=1 k=d—j+1
d—1 ji— d—1
1 1 1
p+2 @ P k2><xl-+1—xi>f’+2’

where we replace the index j by i at the last equality. Therefore,

1
S1<Zip+2( _d—i)
d—i—1 i—ll d—1 1 1
p+2 Zk(k+1)2 Zﬁ_ 2 K2 (i1 —xi)p+2

=1 k=d—i+1

where we shall use from now on the convention that }"7_, a; = 0 if m > n. By following a
similar argument, we can bound S, as

1
i—1 d—i—1 1 d—1 1 1
p+2(zk(k+1)2 2 a2 ﬁ)}(xi+1—xi)l’+2'

k=1 k=1 k=i+1
Therefore,
d—1 o
(A7) Si+$H=> ’

= (i1 — xy) P2

where ¢; is defined by

p 1 1
Pl
p+2 i d—i
d—i—1

S ) Y ()

k=1 k=1

N M

k=i+1 k=d—i+1

From the fact that ) }_, {k—2 + we have

1 —9_ __1
k(k+1)2} =2 (n+1)2’
1 d-1 4 d-1

» o ) 1 1
R S ) Y N b — _ _
i p+2< P Ta—i) T o2t T T as 2o L

k=i k=d—i

1{11"—11"
4

-1
_?_ﬁ_zk(lwrl) Zd: (k+1)}

k=

p 1 1 1 2 2 2
:—(2_7_ .>+—{4_T_ ] +_}‘
p+2 i d-—i p+2 i d—i d
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By using the estimate % + ﬁ > 3, we get

3
pi<2-—. i=l..d-L

This estimate together with (A.7) implies the desired result.
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