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In this paper, we give an explicit bound on the distance to chi-square
for the likelihood ratio statistic when the data are realisations of independent
and identically distributed random elements. To our knowledge, this is the
first explicit bound which is available in the literature. The bound depends on
the number of samples as well as on the dimension of the parameter space.
We illustrate the bound with three examples: samples from an exponential
distribution, samples from a normal distribution and logistic regression.

1. Introduction. One of the most celebrated theorems in theoretical statistics is Wilks’
theorem, which states that under appropriate conditions, 2× a log-likelihood ratio statistic
is approximately chi-square distributed. This result is very useful when testing the null hy-
pothesis H0 : θ ∈ �0 against the alternative hypothesis H1 : θ ∈ �, where �0 ⊂ �, using a
generalised likelihood ratio test. Such tests arise, for example, in the area of model reduction,
with the aim of finding a relatively simple model which explains the data reasonably well;
see, for example, Chapter 6.5 in [6]. For this test, the number of degrees of freedom of the
asymptotic chi-square distribution under the null hypothesis is r = dim(�) − dim(�0); see
[25], as well as Chapter 12 in [16] and Chapter 16 in [23] for more details. This test is intrigu-
ing because of its generality; in [8] the term Wilks’ phenomenon is coined for the fact that
the asymptotic distribution of the likelihood ratio statistic does not depend on the “nuisance”
parameters of the particular random mechanism which underlies the observations.

For any generalised likelihood ratio test, there are only finitely many observations avail-
able. The quality of the approximation will depend on the number of observations, and also
on the distribution of the observations under the null hypothesis. As noted, for example, in
[24], the quality of the chi-square approximation for a small sample size is unknown. To
date, bounds on the distance to the chi-square distribution are only available in special cases.
This paper addresses the problem through the use of Stein’s method. The key ingredients are
[10], where Stein’s method for chi-square approximation is developed, and [1], where the
distance to normality for maximum likelihood estimators is bounded using Stein’s method
for multivariate normal approximation. We shall apply these results in order to obtain our
main theorem, Theorem 2.3. This theorem gives an explicit bound on the distance between
the log-likelihood ratio statistic and the corresponding chi-square distribution.

Our results are the first ones which give an explicit bound to the chi-square distribution in
Wilks’ theorem under a general setting. These bounds are not optimised with respect to the
constants. Their importance is of theoretical nature, but they can also be viewed as indicative
of situations when the chi-square approximation does not hold. To illustrate this point, if d

is the dimension of the parameter space �, r the number of degrees of freedom and n the

number of observations, then our bounds tend to 0 as n → ∞ when d is o
(
n

1
18

)
when r

is fixed, and when d is o
(
n

1
23

)
when r is allowed to be of the same order as d . Hence the
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dimension of the parameter space is allowed to increase with n, but only very slowly. In
particular, in the regime considered in [22], that d grows linearly with n, our bounds will
tend to infinity with increasing sample size, as they should in this case. In the special case of

logistic regression, [19] reported that the chi-square asymptotic is still valid when d = o
(
n

2
3

)
.

While the criterion d = o
(
n

1
23

)
is not as strong, our bound is explicit and is derived in a more

general setting.
This paper opens up some avenues for further research. The first avenue relates to the order

of the bound. In [10], for the Pearson chi-square statistic with fixed number of cells, a bound
to the chi-square distribution of order n−1 is obtained, through making use of the quadratic
form of the chi-square statistic. In contrast, Theorem 2.3 gives a bound of the order n−1/2 for
fixed d , with no clear possibility of improving the bounds. It has been suggested in the past
that Pearson’s chi-square statistic is closer to a chi-square distribution than the corresponding
log-likelihood ratio statistic; see, for example, the chapter on historical perspective in [20].
It is probable that including a Bartlett correction in the log-likelihood ratio statistic as in
[26] will improve its asymptotic performance; see Chapter 6.11 in [6]. In future work, it will
be interesting to explore the discrepancy between the two tests. As a related question, in
[22] it is shown that when the ratio d(n)/n → κ > 0, a scaled chi-square statistic provides
a good approximation for a class of logistic models; it would be interesting to explore this
approximation further. Moreover, the bounds which are derived in this paper are not claimed
to be tight—indeed the Cauchy–Schwarz inequality is repeatedly used. Obtaining tighter
bounds remains an open problem.

A second avenue concerns the assumptions. In this paper, the observations X are assumed
to be independent and identically distributed. As our proof is mainly based on Stein’s method,
generalisations to weakly dependent observations are straightforward in principle; see, for
example, [4] and references therein. For simplicity of exposition, this paper concentrates on
the classical i.i.d. case.

Moreover, for convenience in this paper we assume throughout that � is open, and �0 is
either open or a one-point set. In [25], it is assumed that �0 is a hyperplane in the Euclidean
space �. This assumption is weakened in [5], but an essential assumption for the chi-square
asymptotics to hold is that the sets �0 and � are (locally) equal to linear spaces (see [23],
page 228); open sets, for example, satisfy this condition, but half-lines are not locally linear
at their boundary points. A key assumption is that the true parameter does not lie on the
boundary of the parameter space. This assumption is not easy to verify; when it is violated,
then a rather different asymptotic behaviour can occur; see, for example, [5, 9, 21] and [11].
Allowing for more general parameter spaces is another item for further research.

The third avenue for further research concerns the method used for the proofs. This paper
relies heavily on Stein’s method. The conditions in our paper are such that the log-likelihood
is locally linear, and hence resembles a quantitative approach to locally asymptotically nor-
mal models in the sense of Le Cam [14]. In contrast to Le Cam’s general theory, instead
of considering any small perturbation around the true parameter, we restrict attention to the
maximum-likelihood estimator. This restriction allows to apply results from [2]. Expanding
the results to provide a quantitative framework for Le Cam’s theory will be part of future
work.

The paper is structured as follows. Section 2 gives the general result. The proof is presented
in modular form as a collection of lemmas, because the different steps in the approximation
may be of independent interest. The proof also relies on Theorem 2.1 which is of interest in
its own right as it gives an explicit bound on the distance to chi-square (in terms of smooth
test functions) for a general standardised chi-square-type statistic based on score functions.
Section 3 illustrates the result in three examples. First, we consider an example with a one-
dimensional parameter, namely the exponential distribution. The second example is that of
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the normal distribution with two-dimensional parameter (μ,σ 2). The last example is logistic
regression. Finally, Section 4 gives the proof of Theorem 2.1.

2. The general result. Before stating the general result, we introduce some notation. Let
Cn

b (R) denote the space of bounded functions on R with bounded kth order derivatives for
k ≤ n. For h ∈ Cn

b , we let |||h|||m = max{‖h(k)‖, k = 0,1, . . . , n}. Let ∇ = ( ∂
∂θi

, i = 1, . . . , d)ᵀ

denote the gradient operator, so that ∇∇ᵀ = ( ∂2

∂θi ∂θj
)i,j=1,...,d is the Hessian operator. The

third-order tensor ∇(3) := ∇ ⊗ ∇ ⊗ ∇ is so that (∇(3))i,j,k = ∂3

∂θi ∂θj ∂θk
for i, j, k = 1, . . . , d

and for d × 1 vectors u,v,w,

∇(3)f [u,v,w] =
d∑

j=1

d∑
k=1

d∑
s=1

ujvkws

∂3

∂θj ∂θk∂θs

f

is a scalar, while the vector ∇(3)f [v,w] is given by

∇(3)f [v,w] =
d∑

j=1

d∑
k=1

d∑
s=1

vkws

∂3

∂θj ∂θk∂θs

f.

Let X = (X1, . . . ,Xn) be independent and identically distributed (i.i.d.) observations from
a distribution with probability density function f (x|θ), where θ = (θ1, . . . , θd)ᵀ ∈ � ⊂ R

d .
The test problem is

H0 : θ0,j = 0, j = 1, . . . , r

against the general alternative H1 : θ ∈ �. Here, � is open, and �0 is either open or a one-
point set. Assume that dim(�) = d; then �0 = {θ ∈ � : θ0,j = 0 for j = 1, . . . , r} has dimen-
sion d − r . Writing θ = (θ [1:r], θ [r+1:d])ᵀ where θ [1:r] is the vector of the first r components
of θ and θ [r+1:d] is the vector of the remaining d − r components of θ , the null hypothesis
translates to H0 : θ0,[1:r] = 0.

Let L(θ;x) =∏n
i=1 f (xi |θ) denote the likelihood function. Set

θ̂
res

(x) = argmax
θ∈�0

L(θ;x) = (
0[1:r], θ̂

∗
[r+1:d](x)

)ᵀ
θ̂n(x) = argmax

θ∈�

L(θ;x);
under the conditions which will be specified, these quantities exist. The log-likelihood ratio
statistic is

(2.1) −2 log� = 2 log
(

T1

T2

)
with T1 = L(θ̂n(x);x)

L(θ0;x)
and T2 = L(θ̂

res
(x);x)

L(θ0;x)

with θ0 the unknown true parameter. Thus, T1 is the likelihood ratio for testing the simple
null hypothesis that θ = θ0 against the alternative that θ ∈ �, whereas T2 is the likelihood
ratio for testing the simple null hypothesis that θ = θ0 against the alternative that θ ∈ �0.

The Fisher information matrix for one random vector is denoted by I (θ0), which again
is assumed to exist. We write �(θ;x) =∑n

i=1 �xi (θ) with �xi (θ) = log(f (xi |θ)). The score
function for θ0 is

(2.2) S(θ0) = S(θ0,x) = ∇ logL(θ0;x) = √
n

(
ξ(θ0,x)

η(θ0,x)

)

with column vectors ξ = (ξ1, . . . , ξr)
ᵀ ∈ R

r and η = (η1, . . . , ηd−r )
ᵀ ∈ R

d−r . We omit the
arguments x and θ when they are obvious from the context. In the sequel, expectations are
taken under the true parameter θ0 unless otherwise indicated; Eθ signifies that the expectation
is taken under f (x|θ). We often abbreviate θ̂

∗
(x) = θ̂

∗
[r+1:d](x).
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2.1. The assumptions on the probability density function. We write

(2.3) I (θ0) =
(

A B

Bᵀ C

)
,

where for any r ∈ {1,2, . . . , d}, A = Aᵀ ∈ R
r×r , B ∈ R

r×(d−r), and C = Cᵀ ∈ R
(d−r)×(d−r).

We assume that the submatrices in (2.3) satisfy that C is invertible and that A − BC−1Bᵀ is
positive definite. We make the following assumptions:

(C.1) Identifiability: the densities defined by any two different values of θ are distinct;
(C.2) �(θ;x) is three times differentiable with respect to the unknown vector parameter, θ ,

and the third partial derivatives are continuous in θ ;
(C.3) for any θ0 ∈ � and for X denoting the support of the data,

(a) there exists ε1(θ0) > 0 and functions Mrst (x) (they can depend on θ0), such that
for θ = (θ1, θ2, . . . , θd) and r, s, t, j = 1,2, . . . , d ,∣∣∣∣ ∂3

∂θr ∂θs∂θt

�(θ;x)

∣∣∣∣≤ Mrst (x) ∀x ∈ X, |θj − θ0,j | < ε1(θ0),

with E[Mrst (X)] < ∞;
(b) there exists ε2(θ0) > 0 and functions M∗

k∗j∗l∗(x), such that for all k∗, j∗, l∗, j ∈
{1,2, . . . , d − r} it holds that for all x ∈ X, if |θ∗

j − θ∗,j | < ε2(θ0) then
∣∣∣∣ ∂3

∂θk∗+r ∂θj∗+r∂θl∗+r

�
(
θ∗,x

)∣∣∣∣≤ M∗
k∗j∗l∗(x).

In addition, E[M∗
k∗j∗l∗(X)] < ∞;

(C.4) for all θ ∈ �, Eθ [�Xi (θ)] = 0;
(C.5) I (θ) is finite, symmetric and positive definite, and for r, s = 1,2, . . . , d ,

n
[
I (θ)

]
rs = Eθ

{
∂

∂θr

�(θ;X)
∂

∂θs

�(θ;X)

}
= −Eθ

{
∂2

∂θr ∂θs

�(θ;X)

}
.

This condition implies that nI (θ) is the covariance matrix of ∇(�(θ;x));
(C.6) for κ = 2,4,

E
((

Mkjv(X)
)κ |∣∣θ̂n(x)(m) − θ0,(m)

∣∣< ε
)
< ∞,

E
((

M∗
k∗j∗v∗(X)

)κ |∣∣θ̂∗(x)(m∗) − θ∗,(m∗)
∣∣< ε

)
< ∞,

where Mkjv(x) and M∗
k∗j∗v∗(X) are as in (C.3);

(C.7) the random variables Yi,j (θ) = ∂
∂θi

logf (Xj |θ) have finite absolute moments up to 8th
order.

Assumptions (C.1), (C.2), (C.3)(a), (C.4) and (C.5) are classical regularity conditions that
were formulated mainly in the 1940s in order to make informal derivations mathematically
thorough. Even though these conditions could be relaxed, mainly with respect to requirements
related to the partial derivatives of the log-likelihood function, they are still of great interest
because of their simple nature which can lead to simple and easy to understand proofs. Under
these conditions, [7] proves that

√
n
(
θ̂n(X) − θ0

) d−−−→
n→∞

[
I (θ0)

]− 1
2 Z,

where for d fixed, Id×d is the d × d identity matrix, Z ∼ Nd(0, Id×d), and
d−→ denotes con-

vergence in distribution. Under the same conditions, [1] gives an explicit upper bound to the
distance of the distribution of the MLE to the normal for i.i.d. random vectors.
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There are different sets of assumptions available which ensure existence and asymptotic
normality of the MLE. In Theorem 5.39 of [23], the asymptotic normality of the MLE is
proven under weaker assumptions; mainly a Lipschitz condition on the Hellinger distance,
but without an explicit bound on the rate of convergence. Furthermore, [23] proves similar
results for the asymptotic normality of the wider class of M-estimators; the explicit bounds
in [1] have not yet been extended to such conditions.

Let the subscript (m) ∈ {1,2, . . . , d} denote an index for which the deviation |θ̂n(x)(m) −
θ0,(m)| is the largest among the d components;

(m) ∈ {1, . . . , d} such that
∣∣θ̂n(x)(m) − θ0,(m)

∣∣= max
j=1,...,d

∣∣θ̂n(x)j − θ0,j

∣∣
and similarly (m∗) ∈ {1,2, . . . , d − r} is defined with θ0 replaced by θ∗ = (θ∗,1, . . . , θ∗,d−r ).

2.2. A chi-square approximation. First, we give a general chi-square approximation re-
sult which may be of independent interest and which is crucial for our overall bound; the
proof is found in Section 4.

THEOREM 2.1. Let Zi,j , i = 1, . . . , r, j = 1, . . . , n be mean zero random variables such
that Zi,j is independent of {Zk,�, k = 1, . . . , r, � �= j} and Zi,j has the same distribution as
Zi,�, for i = 1, . . . , r . Moreover, assume that Zi,j has moments up to order 8 so that

(2.4) β(I) = E

(∏
i∈I

Zi,1

)
,

for I a multiset of indices in {1, . . . , r}, exists for |I | ≤ 8. Let

Zi = 1√
n

n∑
j=1

Zi,j ; i = 1, . . . , r, and Z = (Z1, . . . ,Zr)
ᵀ.

Let τi,k = Cov(Zi,1,Zk,1) and assume that the r × r matrix τ = (τi,k)i,k=1,...,r is invertible.
Let U = τ−1 and let T = ZᵀUZ. Then for all functions g ∈ C3

b(R),

∣∣E[g(T ))
]−E

[
g(χr)

]∣∣≤ 16|||g|||3
r
√

n
R(r)

with

R(r) = 4√
n

+ 1

2
√

n
E
(
W 2)

+√B1(r, n)
(2.5)

×
(

r

2
+ 3

2

√√√√ r∑
i,k,a,b,,e,f =1

Ui,kUa,bUe,f β(i, a, b)β(k, e, f ) + r
3
2

n

)

+
√

B2(r, n)√
n

(
1

4

(√
E
(
W 2
)+ √

r
)+√E(W 2

)
n− 1

2 + r2 + 2r

)
,

where W =∑r
i,k=1 Ui,kZi,1Zk,1,

B1(r, n) = 4rn

n − 1
+ 1

n
E
(
W 2)
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and

B2(r, n) = 96E
(
W 2)+ 1

n

(
1

n
E
(
W 4)+ 24E

(
W 3)

+ 32
r∑

a,b,i,k,c,d,e,f

Ua,bUi,kUc,dUe,f β(i, a, c, e, b)β(c, k, f )

+ 16
r∑

a,b,i,k,c,d,e,f

Ua,bUi,kUc,dUe,f β(i, a, c, e)β(b, d, k, f )

)
.

REMARK 2.2.

1. If E(Wk) is of order rk for k = 2,3,4, which is the case when U is diagonal with
entries of order 1, and Z′

i,j s being of order 1, then B1 = O
(
r + r2

n

)
, B2 = O

(
r2 + r8

n

)
and

the overall bound tends to 0 as n → ∞ if r = o
(
n

3
8

)
. As the proof of Theorem 2.1 involves

repeated applications of the Cauchy–Schwarz inequality, we do not expect this bound to be
tight.

2. Theorem 2.1 can be applied to the score-test like statistic(
ξ
η

)ᵀ [
I (θ0)

]−1
(
ξ
η

)
,

which is closely related to the classical score test statistic in which I (θ0) is replaced by
I (θ̂). Using Taylor expansion to assess [I (θ0)]−1 − [I (θ̂)]−1, it is straightforward to obtain
a bound on the distance to the appropriate chi-square distribution for the score test. Due to
space issues, we do not pursue this application here.

2.3. A bound on the distance to chi-square for Wilks’ statistic. The main result of this
paper is as follows.

THEOREM 2.3. Let X1,X2, . . . ,Xn be i.i.d. Rt -valued, t ∈ Z
+, random vectors with

probability density (or mass) function f (x1|θ), for which the parameter space � is an open
subset of Rd . Assume that the MLE exists and is unique and that (C.1)–(C.7) are satisfied.
Then for −2 log� as in (2.1), h ∈C

3
b(R) and K ∼ χ2

r , it holds that∣∣E[h(−2 log�)
]−E

[
h(K)

]∣∣
≤ 16|||h|||3

r
√

n
R(r)(2.6)

+ 1√
n

(∥∥h′∥∥(K1(θ0) + K∗
1 (θ0)

)+ K2(θ0) + K∗
2 (θ0)

)
,

where R(r) is given in (2.5) in Theorem 2.1 with

(2.7) Zi,j = ∂

∂θi

log
(
f (Xj |θ0)

)− d−r∑
k=1

(
BC−1)

i,k

∂

∂θk+d

log
(
f (Xj |θ0)

)
.

In addition, for 0 < ε ≤ ε(θ0),

K1(θ0) = 3n

d∑
j=1

d∑
k=1

[
E
(
Q2

jQ
2
k

)] 1
2

[
Var
(

∂2

∂θj ∂θk

logf (X1|θ0)

)] 1
2
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+
d∑

l=1

d∑
m=1

[[
I (θ0)

]−1]
lm(2.8)

×
d∑

j=1

d∑
k=1

√√√√Var
(

∂2

∂θl ∂θj

logf (X1|θ0)

)[
E
(
Q6

j

)
E
(
Q6

k

)
E
(
T 6

mk

)] 1
6

and

K2(θ0)

= 2‖h‖√n

ε2 E

(
d∑

j=1

Q2
j

)

+ ∥∥h′∥∥√n
7

3

d∑
j=1

d∑
k=1

d∑
l=1

[
E
(
Q2

jQ
2
kQ

2
l

)] 1
2
[
E
[(

Mjkl(X)
)2||Q(m)| < ε

]] 1
2

+ ‖h′‖√
n

d∑
q=1

d∑
k=1

∣∣[[I (θ0)
]−1]

kq

∣∣
(2.9)

×
d∑

j=1

d∑
l=1

d∑
s=1

√
E
(
Q2

jQ
2
l Q

2
s

)[
E
(
T 4

kj ||Q(m)| < ε
)] 1

4

× [E((Mqsl(X)
)4||Q(m)| < ε

)] 1
4

+ ‖h′‖
4
√

n

d∑
b=1

d∑
k=1

d∑
s=1

d∑
q=1

d∑
l=1

d∑
j=1

∣∣[[I (θ0)
]−1]

qb

∣∣√E(Q2
kQ

2
sQ

2
jQ

2
l

)

× [E((Mbsk(X)
)4||Q(m)| < ε

)] 1
4
[
E
((

Mqjl(X)
)4||Q(m)| < ε

)] 1
4

and K∗
1 (θ0),K

∗
2 (θ0) are the versions of K1(θ0) and K2(θ0), respectively, under the null hy-

pothesis. Here,

Q = θ̂n(X) − θ0; Q∗ = (
Q∗

1, . . . ,Q
∗
d−r

)ᵀ;
T = (Ti,j )i,j=1,...,d; T ∗ = (

T ∗
i,j

)
i,j=1,...,d−r

with

Q∗
j = Q∗

j (X, θ∗) := θ̂∗(X)j − θ∗
j ∀j = 1,2, . . . , d − r,

Tlj = Tlj (θ0,X) = ∂2

∂θl ∂θj

�(θ0;X) + n
[
I (θ0)

]
lj , j, l ∈ {1,2, . . . , d},(2.10)

T ∗
lj = T ∗

lj (θ0,X) = ∂2

∂θl+r ∂θj+r

�(θ0;X) + nClj , j, l ∈ {1,2, . . . , d − r}.

REMARK 2.4. The differentiability assumptions for Theorem 2.3 are made for conve-
nience rather than for mathematical requirement. Indeed in [15] the classical assumptions for
asymptotic normality of maximum likelihood estimators are weakened by replacing differen-
tiability requirements with Hellinger-differentiability conditions; see also [18]. This avenue
of research will be part of future investigation. Further discussion about alternative assump-
tions for Wilks’ theorem can be found in Chapter 12 of [16].
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REMARK 2.5. (1) At first glance, the bound seems complicated. However, the examples
that follow show that the terms are easily calculated.

(2) For Qj as in (2.10), to see that E(Q2
j ) = O( 1

n
), from the asymptotic normality of the

MLE, it follows that
√

nE(θ̂n(X) − θ0) −−−→
n→∞ 0 and Cov(

√
n[I (θ0)] 1

2 (θ̂n(X) − θ0)) −−−→
n→∞

Id×d . Therefore, for j = 1, . . . , d , E(Qj ) = o
(

1√
n

)
, and

n
[
I (θ0)

] 1
2 Cov

(
θ̂n(X)

)[
I (θ0)

] 1
2 −−−→

n→∞ Id×d .

Hence

Var
(
θ̂n(X)j

)= O
(

1

n

)
, ∀j ∈ {1,2, . . . , d}

and

(2.11) E
(
Q2

j

)= Var
(
θ̂n(X)j

)+ [E(Qj )
]2 = O

(
1

n

)
.

(3) With Tlj as in (2.10), using (C.5) and the fact that X1,X2, . . . ,Xn are i.i.d. yields

E
(
T 2

lj

)= E

(
∂2

∂θl ∂θj

�(θ0;X) + n
[
I (θ0)

]
lj

)2

= Var
(

∂2

∂θl ∂θj

�(θ0;X)

)
(2.12)

= nVar
(

∂2

∂θl ∂θj

log
(
f (X1|θ0)

))
,

showing that E(T 2
lj ) is O(n).

(4) For fixed d , the upper bound we give in (2.6) is O
(
n−1/2

)
. The expression for R(r)

given in Theorem 2.1, is O(1). In addition, using (2.11) and (2.12) it can be deduced that

K1(θ0) = O(1), K∗
1 (θ0) =O(1), K2(θ0) = O(1), K∗

2 (θ0) =O(1).

Hence, the upper bound in Theorem 2.3 is O
(
n−1/2

)
.

(5) If the dimensionality of the parameter is not fixed but if the entries of I (θ0) are of
order 1, the entries of the matrix U are of order O

(
(d − r)2

)
. In addition, Zi,j as in (2.7)

are also of order O((d − r)2), and hence W in (2.5) is of order O(r2(d − r)6). Therefore,
the first term of the bound is O(

√
r5(d − r)18n−1) which is of maximal order O(

√
d23n−1).

This term is small when d = o(n
1
23 ). For fixed r , the term is small when d = o(n

1
18 ). Using

(2.11) and (2.12), the second and third terms (related to K1(θ0) and K∗
1 (θ0)) of the bound are

of order d2n−1/2, while the fourth and fifth terms (related to K2(θ0) and K∗
2 (θ0)) are both

O(d3n−1/2). Hence, the overall order of the bound in the chi-square approximation for the
likelihood ratio test is at most of order d23/2n−1/2 when both r and d are not fixed and the
chi-square approximation is justified when d = o(n1/23). The proof of Theorem 2.3 involves
repeated applications of the Cauchy–Schwarz inequality, and hence we do not expect this
bound to be tight.

(6) Due to the smoothness assumptions in this paper, the bound in Theorem 2.3 is not
given in a standard probability distance. Instead it could be re-phrased in terms of the integral
probability metric

d(μ, ν) = sup
h∈C2

b(R):|||h|||3≤1

|Eh(X) −Eh(Y )|

where X ∼ μ and Y ∼ ν. For more details on such metrics see for example [27] and [12].
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2.4. Investigation of the rate of d with respect to n. Remark 2.5 indicates that our bound
still goes to zero even when both the number d of the explanatory parameters as well as the
number r of the restricted parameters under the null hypothesis are allowed to grow at a quite
low rate with the sample size. In order to investigate further how large d (and also r) can
be for the χ2 approximation to be valid, we run some simple simulations from the specific
example of the multivariate Student’s t-distribution with v degrees of freedom; from now on,
this is denoted by tv . As in [17], n independent draws from the multivariate tv distribution
with mean vector μ and covariance matrix � are realised as the product Yiri, i = 1, . . . , n,
with

Yi |μ,�, r
ind∼ N(μ,�), for i = 1,2, . . . , n,

ri |v i.i.d∼ Gamma
(

v

2
,
v

2

)
, for i = 1,2, . . . , n.

When both Y = (Y1, Y2, . . . , Yn) and r = (r1, r2, . . . , rn) are considered observed, then
(Y1, Y2, . . . , Yn, r1, r2, . . . , rn) comprise the complete data. Therefore, the complete-data like-
lihood function can be factored into the product of two distinct functions: the likelihood of
(μ,�) corresponding to the conditional distribution of Y given r , and the likelihood function
of v corresponding to the marginal distribution of r . In this case, the maximum likelihood
estimators for μ and � are

μ̂ =
∑n

i=1 riYi∑n
i=1 ri

,

�̂ = 1

n

n∑
i=1

ri(Yi − μ̂)(Yi − μ̂)ᵀ.

(2.13)

Consider the test problem H0 = μ = 0 against the general alternative where both μ and � are
unrestricted. Using (2.13), the MLE under the alternative is θ̂n(X) = (μ̂, �̂)ᵀ, while under
the null, �̂∗ = 1

n

∑n
i=1 riYiY

ᵀ
i . The log-likelihood ratio statistic is

(2.14) −2 log� = 2
(
�(μ̂, �̂|Y , r) − �(�̂∗|Y , r)

)
.

Below we investigate the behaviour of the log-likelihood ratio statistic through some simula-
tions.

Results from simulations. First, we generate 100 trials of n random independent ob-
servations, x, from the standard multivariate t10 distribution with dimension d . We take
n = 50,100,500,1000 and in all cases d = 0.1n,0.2n, . . . ,0.8n, resulting in 4 vectors of
length 8 each, and consider the test for the null hypothesis μ = 0. In general, there are d2 + d

(d2 for �̂ and d for μ̂) quantities to be estimated and under the null we restrict d parameters.
At each trial, we evaluate −2 log� as in (2.14), which in turn for each combination of n and
d , as above, gives a vector of 100 values. In two different experiments, we apply to these
values the functions h1(x) = x and h2(x) = (x2 + 2)−1. Then, for j = 1,2, we calculate the
sample means Ê[hj (−2 log�)] and the relative differences

RDhj
:= |Ê[hj (−2 log�)] − Ẽ[hj (K)]|

Ẽ[hj (K)] , j = 1,2,

where K ∼ χ2
d and Ẽ[hj (K)] is the approximation of E[hj (K)] up to three decimal places.

To gauge the quality of the approximation, for each of the 4 vectors we find mc∗
j (n), which

for each n denotes the smallest value of d such that RDhj
> c∗, where j = 1,2 and c∗

takes values in the set {0.1,0.3,0.5}. The behaviour for these values of d was monotone in
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our simulations. For mk
j = (mk

j (50),mk
j (100),mk

j (500),mk
j (1000)) the fitted slope against

log(n) for the results related to m0.3
1 , m0.5

1 and m0.5
2 is equal to 1, while the slopes related to

m0.1
1 , m0.1

2 and m0.3
2 are, up to 3 decimal places, equal to 0.956, 0.986, 0.943, respectively.

Additionally, for h1 the median of the observed absolute deviations of (estimated) expec-
tations was 22.18. For each of n = 50,100,500,1000, we found the first d such that the
absolute deviation exceeded this median; in the coarse grained setup, we obtained, in order
of n, d = 35,60,200,300. A log-log fit resulted in a slope of 0.8554.

This set of simulations assumes independent observations. As an example for dependent
observations, we use the t-distribution but now with covariance matrix � = AT A, where
A has i.i.d. uniform[0,1] entries. We use the same test function h1 and 4 replicas each for
n = 50,100,250,500,750 with d = 0.1n,0.2n, . . . ,0.8n; giving 160 observations. To gauge
the distance, for each of the 4 observation vectors for each n we found the first d = 0.1 ∗ n

such that the difference between the estimated expectation and the corresponding chi-square
expectation exceeds the median (16.41) of these differences. We then fitted a slope in the
log-log plot of logd against logn. (We also considered h2 in this simulation but the absolute
difference decreased with increasing n, and for the relative difference there was no variation
in the value of d , and hence we did not fit a slope.) The fitted slope for exceedances of
the median was 0.837. This result indicates that in the presence of dependence, d should
not grow as fast as n. The estimated slopes indicate an exponent nγ of γ > 2

3 , where 2
3 is

the value obtained for the logistic regression case. However, the function considered is very
special, and hence we cannot draw a general conclusion. Keeping in mind that the simulations
are only indicative, they would however suggest that d could grow much faster with n than
the theoretical results ensure.

2.5. Proof of Theorem 2.3. The log-likelihood ratio statistic can be expressed as in (2.1).
The expected Fisher information matrix is given in (2.3); with C−1 assumed to exist. From
now on, we will use the notation introduced in (2.10). The different steps are disentangled into
results which hold for every realisation x, and results which hold when taking expectations
over test functions.

2.5.1. Approximation for 2 logT1 and for 2 logT2. The first step in the proof is to derive
an approximation for 2 logT1.

LEMMA 2.6. Under the assumptions of Theorem 2.3,

2 logT1 = n
(
θ̂n(X) − θ0

)ᵀ
I (θ0)

(
θ̂n(X) − θ0

)+ R1 + R2,

where using the notation in (2.10),

R1 = R1(X, θ0) = −QᵀT Q

and

R2 = R2(X, θ0) = ∇(3)

{
1

3
�(θ̃;X) − �(

˜̃
θ;X)

}
[Q,Q,Q]

for some θ̃,
˜̃
θ between θ̂n(X) and θ0.

PROOF. The regularity condition (C.2) and a third-order Taylor expansion of �(θ0;x)

about θ̂n(x) yield

�(θ0;x) = �
(
θ̂n(x);x)− Qᵀ∇�

(
θ̂n(x);x)

+ 1

2
Qᵀ∇∇ᵀ(�

(
θ̂n(x);x)Q − 1

6
∇(3)�(θ̃;x)[Q,Q,Q],
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where θ̃ is between θ0 and θ̂n(x). As ∇�(θ̂n(x);x) = 0,

2 logT1 = −Qᵀ∇∇ᵀ(�
(
θ̂n(x);x)Q + 1

3
∇(3)�(θ̃;X)[Q,Q,Q]

= nQᵀI (θ0)Q − Qᵀ{∇∇ᵀ(�
(
θ̂n(x);X)− nI (θ0)

}
Q

+ 1

3
∇(3)�(θ̃;X)[Q,Q,Q].

Then, a first-order Taylor expansion of ∇∇ᵀ�(θ̂n(x);X) about θ0 gives

2 logT1 = nQᵀI (θ0)Q + R1 + R2

= n
(
θ̂n(X) − θ0

)ᵀ
I (θ0)

(
θ̂n(X) − θ0

)+ R1 + R2.

This completes the proof. �

From Lemma 2.6, the next approximation of the log-likelihood ratio is almost immediate.
Using (2.1), Lemma 2.6 and its analogous expression for 2 logT2 with θ̂n(x) replaced by
θ̂

res
(x),

−2 log� = n
(
θ̂n(X) − θ0

)ᵀ
I (θ0)

(
θ̂n(X) − θ0

)+ R1 + R2

− n
(
θ̂res(X) − θ0

)ᵀ
C
(
θ̂res(X) − θ0

)− R∗
1 − R∗

2 ,

where R1 and R2 are as in Lemma 2.6 and R∗
1 and R∗

2 are the corresponding expressions with

θ̂n(x) replaced by θ̂
res

(x).

2.5.2. Approximation for the score function. From now on, let

G = G(X) =
(
ξ
η

)ᵀ [
I (θ0)

]−1
(
ξ
η

)
− ηᵀC−1η.

It is straightforward to simplify this expression to give

G = (
ξ − BC−1η

)ᵀ(
A − BC−1Bᵀ)−1(

ξ − BC−1η
)
.

LEMMA 2.7. Under the assumptions of Theorem 2.3,

n
(
θ̂n(X) − θ0

)ᵀ
I (θ0)

(
θ̂n(X) − θ0

)
=
(
ξ
η

)ᵀ [
I (θ0)

]−1
(
ξ
η

)

− (R3 + R4)
ᵀ(R3 + R4) + 2

√
n
(
θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 (R3 + R4),

with

R3 = R3(X, θ0) = 1√
n

[
I (θ0)

]− 1
2 Qᵀ(∇∇ᵀ(�(θ0;X)

)+ n
[
I (θ0)

])
,

(2.15)

R4 = R4(X, θ0) = 1

2
√

n

[
I (θ0)

]− 1
2
(∇(3)�(θ;X)|θ=θ∗

0

)[Q,Q]

for some θ∗
0 between θ0 and θ̂n(x).
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PROOF. For θ∗
0 between θ0 and θ̂n(x), similarly as in [1], the regularity condition (C.2)

allows to expand the vector

nI (θ0)Q =∇�(θ0;x) + T Q + 1

2

(∇(3)�(θ;x)|θ=θ∗
0

)[Q,Q]
and, therefore,

√
n
[
I (θ0)

] 1
2
(
θ̂n(x) − θ0

)
= 1√

n

[
I (θ0)

]− 1
2
{∇(�(θ0;x)

)+ Qᵀ(∇∇ᵀ(�(θ0;x)
)+ nI (θ0)

}

+ 1

2
√

n

[
I (θ0)

]− 1
2
{(∇(3)�(θ;x)|θ=θ∗

0

)[Q,Q]}.
Using the score vector notation (2.2),

(2.16)
√

n
[
I (θ0)

] 1
2
(
θ̂n(X) − θ0

)= [
I (θ0)

]− 1
2

(
ξ
η

)
+ R3 + R4,

where R3 and R4 are as in (2.15). Using (2.16) and that I (θ0) is a symmetric matrix leads to

n
(
θ̂n(X) − θ0

)ᵀ
I (θ0)

(
θ̂n(X) − θ0

)
=
(
ξ
η

)ᵀ [
I (θ0)

]−1
(
ξ
η

)
+ (R3 + R4)

ᵀ(R3 + R4)(2.17)

+ 2
(
ξ
η

)ᵀ [
I (θ0)

]− 1
2 (R3 + R4).

However, from (2.16),(
ξ
η

)ᵀ [
I (θ0)

]− 1
2 = √

n
(
θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 − (R3 + R4)

ᵀ,

so that (
ξ
η

)ᵀ [
I (θ0)

]− 1
2 (R3 + R4) = √

n
(
θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 (R3 + R4)

− (R3 + R4)
ᵀ(R3 + R4).

Using this in (2.17) yields the assertion. �

A similar result holds for T2. Following exactly the same steps as for Lemma (2.7), but
now with θ∗ instead of θ0,

2 logT2 = ηᵀC−1η − R∗
1 + R∗

2 − (R∗
3 + R∗

4
)ᵀ(

R∗
3 + R∗

4
)

(2.18)
+ 2

√
n
(
θ̂∗(X) − θ∗

)ᵀ
C

1
2
(
R∗

3 + R∗
4
)
.

Combining (2.1), Lemma 2.6 and (2.18) with the notation (2.5.2) gives

−2 log� = G + RA1 + RA2 + RB1 + RB2,(2.19)

where

RA1 = R1 − R3
ᵀR3 + 2

√
n
(
θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 R3,

RA2 = −R1
∗ + (R∗

3
)ᵀ

R∗
3 − 2

√
n
(
θ̂∗(X) − θ∗

)ᵀ
C

1
2 R∗

3 ,
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RB1 = R2 − R4
ᵀ(R3 + R4) − R3

ᵀR4
(2.20)

+ 2
√

n
(
θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 R4,

RB2 = −R∗
2 + (R∗

4
)ᵀ(

R∗
3 + R4

∗)+ (R∗
3
)ᵀ

R∗
4

− 2
√

n
(
θ̂∗(X) − θ∗

)ᵀ
C

1
2 R∗

4 .

Here, R1,R2 are as in Lemma 2.6 and R∗
1 ,R∗

2 are their respective versions under the null
hypothesis. Furthermore, R3 and R4 are as in Lemma 2.7, and R3

∗ and R4
∗ are the corre-

sponding remainder terms from Lemma 2.7 with θ̂n(x) replaced by θ̂
res

(x). Note that RA1

and RB1 contain the terms that are obtained through 2 logT1, whereas RA2 and RB2 contain
the quantities that are due to 2 logT2.

2.5.3. Bounding the remainder terms. In this section, we shall bound expectations of the
log-likelihood ratio statistics under smooth test functions. Let h ∈ C

3
b(R) and K ∼ χ2

r . Using
the triangle inequality and (2.19),∣∣E[h(−2 log�)

]−E
[
h(K)

]∣∣
= ∣∣E[h(G + RA1 + RA2 + RB1 + RB2)

]−E
[
h(K)

]∣∣
≤ ∣∣E[h(G + RA1 + RA2 + RB1 + RB2) − h(G + RB1 + RB2)

]∣∣
+ ∣∣E[h(G + RB1 + RB2) − h(G)

]∣∣+ ∣∣E[h(G)
]−E

[
h(K)

]∣∣.
The terms to bound are hence

(2.21)
∣∣E[h(G + RA1 + RA2 + RB1 + RB2) − h(G + RB1 + RB2)

]∣∣
and

(2.22)
∣∣E[h(G + RB1 + RB2) − h(G)

]∣∣
as well as

(2.23)
∣∣E[h(G)

]−E
[
h(K)

]∣∣.
The bound for |E[h(−2 log�)]−E[h(K)]| is split into the above three terms in order to help
in the understanding of this proof. The quantity in (2.23) will be bounded using Theorem 2.1,
while we distinguish between (2.21) and (2.22) because the terms RA1 and RA2 are uniformly
bounded, whereas RB1 and RB2 are not (some conditioning on the distance between the MLE
and the value of the parameter will be needed in order to treat RB1 and RB2 ). We now proceed
to bound these three terms in (2.21), (2.22) and (2.23) in order to complete the proof of
Theorem 2.3.

1. Bounding term (2.21). For some t (X) between G + RA1 + RA2 + RB1 + RB2 and G +
RB1 + RB2 , a first- order Taylor expansion yields

(2.21) = ∣∣E[h′(t (X)
)
(RA1 + RA2)

]∣∣≤ ∥∥h′∥∥E[|RA1 | + |RA2 |
]
.

We start by bounding E|RA1 |, where

E|RA1 | ≤ E|R1| +E
∣∣Rᵀ

3R3
∣∣+ 2

√
nE
∣∣(θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 R3

∣∣.(2.24)

With the notation in (2.10), as R1 = −QᵀT Q,

E|R1| ≤
d∑

j=1

d∑
k=1

E|QjQkTkj |
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≤
d∑

j=1

d∑
k=1

[
E
(
Q2

jQ
2
k

)] 1
2
[
E
(
T 2

kj

)] 1
2(2.25)

= √
n

d∑
j=1

d∑
k=1

[
E
(
Q2

jQ
2
k

)] 1
2

[
Var
(

∂2

∂θj ∂θk

logf (X1|θ0)

)] 1
2
.

Using Hölder’s inequality twice,

E
∣∣R3

ᵀR3
∣∣

≤ 1

n

d∑
l=1

d∑
m=1

[[
I (θ0)

]−1]
lm

d∑
j=1

d∑
k=1

E|QjQkTljTmk|
(2.26)

≤ 1√
n

d∑
l=1

d∑
m=1

[[
I (θ0)

]−1]
lm

×
d∑

j=1

d∑
k=1

√√√√Var
(

∂2

∂θl ∂θj

logf (X1|θ0)

)[
E
(
Q6

j

)
E
(
Q6

k

)
E
(
T 6

mk

)] 1
6 .

Moreover,

2
√

nE
∣∣(θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 R3

∣∣
≤ 2

d∑
l=1

d∑
j=1

E|QlQjTlj |(2.27)

≤ 2
√

n

d∑
l=1

d∑
j=1

√
E
(
Q2

l Q
2
j

)√√√√Var
(

∂2

∂θl ∂θj

logf (X1|θ0)

)
.

Combining the results in (2.24), (2.25), (2.26) and (2.27) yields

E|RA1 | ≤
1√
n
K1(θ0),

with K1(θ0) as in (2.8). In order to bound E|RA2 |, we follow exactly the same process that
was followed to bound E|RA1 |, but now under the null hypothesis, to conclude that E|RA2 | ≤

1√
n
K∗

1 (θ0) and, therefore,

(2.21) ≤ ‖h′‖√
n

(
K1(θ0) + K∗

1 (θ0)
)
.(2.28)

2. Bounding term (2.22). The terms in RB1 and RB2 of (2.20) may not be uniformly bounded
in θ . The triangle inequality leads to

(2.22) ≤ ∣∣E[h(G + RB1 + RB2) − h(G + RB2)
]∣∣(2.29)

+ ∣∣E[h(G + RB2) − h(G)
]∣∣.(2.30)

Bound for (2.29). Let 0 < ε ≤ ε(θ0). With Q(m) as in (2.10), the law of total expectation,
the Cauchy–Schwarz inequality and Markov’s inequality yield

(2.29) ≤ E
∣∣h(G + RB1 + RB2) − h(G + RB2)

∣∣
≤ 2‖h‖P(|Qm| ≥ ε

)
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+E
[∣∣h(G + RB1 + RB2) − h(G + RB2)

∣∣||Q(m)| < ε
]
P
(|Q(m)| < ε

)

≤ 2
‖h‖
ε2 E

(
d∑

j=1

Q2
j

)
+E

[∣∣h(G + RB1 + RB2) − h(G + RB2)
∣∣||Q(m)| < ε

]
.

A first-order Taylor expansion gives

E
[∣∣h(G + RB1 + RB2) − h(G + RB2)

∣∣||Q(m)| < ε
]

≤ ∥∥h′∥∥E[|RB1 |||Q(m)| < ε
]

(2.31)
≤ ∥∥h′∥∥E[(|R2| +

∣∣R4
ᵀ(R3 + R4)

∣∣+ ∣∣R3
ᵀR4

∣∣
+ 2

√
n
∣∣(θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 R4

∣∣)||Q(m)| < ε
]
.

From now on, we denote

(2.32) �qsl := �qsl(X, θ0) = ∂3

∂θq ∂θs ∂θl

�
(
θ∗

0 ;X)
and we bound the terms in (2.31) in turns.

Bound for E|R2|. With R2 as in Lemma 2.6, it is straightforward that for �qml as in (2.32),

E
(|R2|||Q(m)| < ε

)≤ 4

3

d∑
j=1

d∑
k=1

d∑
s=1

E
(|QjQkQs�jks |||Q(m)| < ε

)

≤ 4

3

d∑
j=1

d∑
k=1

d∑
s=1

√
E
(
Q2

jQ
2
kQ

2
s

)[
E
((

Mjks(X)
)2||Q(m)| < ε

)] 1
2 .

Bound for E(|R4
ᵀR3|||Q(m)| < ε) and E(|R3

ᵀR4|||Q(m)| < ε). With �qsl as in (2.32) and
Tkj as in (2.10), using Hölder’s inequality and [1], Lemma 4.1, we obtain that

E
(∣∣R4

ᵀR3
∣∣||Q(m)| < ε

)

≤ 1

2n

d∑
q=1

d∑
k=1

∣∣[[I (θ0)
]−1]

kq

∣∣

×
d∑

j=1

d∑
l=1

d∑
s=1

E
[|QjQlQsTkj�qsl |||Q(m)| < ε

]

≤ 1

2n

d∑
q=1

d∑
k=1

∣∣[[I (θ0)
]−1]

kq

∣∣

×
d∑

j=1

d∑
l=1

d∑
s=1

√
E
(
Q2

jQ
2
l Q

2
s

)[
E
(
T 4

kj ||Q(m)| < ε
)] 1

4

× [E((Mqml(X)
)4||Q(m)| < ε

)] 1
4 .

(2.33)

Since R3
ᵀR4 = R4

ᵀR3, E(|R3
ᵀR4|||Q(m)| < ε) can also be bounded by (2.33).

Bound for E(|R4
ᵀR4|||Q(m)| < ε). Again with [1], Lemma 4.1, and the Cauchy–Schwarz

inequality, and with �qml as in (2.32),

E
(∣∣R4

ᵀR4
∣∣||Q(m)| < ε

)

≤ 1

4n

d∑
b=1

d∑
k=1

d∑
s=1

d∑
q=1

d∑
l=1

d∑
j=1

∣∣[[I (θ0)
]−1]

qb

∣∣
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×E
[|QkQsQjQl�bsk�qjl|||Q(m)| < ε

]
(2.34)

≤ 1

4n

d∑
b=1

d∑
k=1

d∑
s=1

d∑
q=1

d∑
l=1

d∑
j=1

∣∣[[I (θ0)
]−1]

qb

∣∣

×
√
E
(
Q2

kQ
2
sQ

2
jQ

2
l

)
× [E((Mbsk(X)

)4||Q(m)| < ε
)] 1

4
[
E
((

Mqjl(X)
)4||Q(m)| < ε

)] 1
4 .

Bound for E(2
√

n|(θ̂n(X) − θ0)
ᵀ[I (θ0)] 1

2 R4|||Q(m)| < ε). A similar process as the one to
obtain the bounds in (2.33) and (2.34) yields

E
(
2
√

n
∣∣(θ̂n(X) − θ0

)ᵀ[
I (θ0)

] 1
2 R4

∣∣||Q(m)| < ε
)

≤
d∑

l=1

d∑
j=1

d∑
q=1

E
(|QlQjQq�ljq |||Q(m)| < ε

)
(2.35)

≤
d∑

l=1

d∑
j=1

d∑
q=1

√
E
(
Q2

l Q
2
jQ

2
q

)[
E
((

Mljq(X)
)2||Q(m)| < ε

)] 1
2 .

Combining (2.29), (2.31), (2.33), (2.34) and (2.35),

(2.29) ≤ 1√
n
K2(θ0),(2.36)

with K2(θ0) as in (2.9).
Bound for (2.30). With Q∗

(m) as in (2.10), the law of total expectation, the Cauchy–Schwarz
inequality and Markov’s inequality yield

(2.30) ≤ E
∣∣h(G + RB2) − h(G)

∣∣
≤ 2‖h‖P(∣∣Q∗

m

∣∣≥ ε
)

+E
[∣∣h(G + RB2) − h(G)

∣∣∣∣|Q∗
(m)

∣∣< ε
]
P
(∣∣Q∗

(m)

∣∣< ε
)
.

Finding an upper bound for this expression follows the same arguments as the one to bound
(2.29) and, therefore, it will not be repeated; the result is

(2.30) ≤ 1√
n
K∗

2 (θ0),(2.37)

where K∗
2 (θ0) is the version of K2(θ0) under the null hypothesis.

3. Bounding term (2.23). With Zi,j as in (2.7), and the notation of Theorems 2.1 and 2.2,

E
[
ZᵀZ

]= E
[(

ξ − BC−1η
)ᵀ(

ξ − BC−1η
)]

= A − BC−1Bᵀ.

Thus Zi,j , i = 1, . . . , r, j = 1, . . . , n satisfy the assumptions of Theorem 2.1 with

(2.38) τ = A − BC−1Bᵀ,

which is assumed to be positive definite; hence its inverse U exists. Applying Theorem 2.1
gives the bound

(2.39)
∣∣E[h(G)

]−E
[
h(K)

]∣∣≤ 16|||h|||3
r
√

n
R(r)
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with R(r) given in (2.5). The results in (2.39), (2.28), (2.36) and (2.37) conclude the proof of
Theorem 2.3. �

The next section gives three examples to illustrate the approach. First, we consider an
example with a one-dimensional parameter, namely the exponential distribution. The second
example is that of the normal distribution with two-dimensional parameter (μ,σ 2). The last
example is logistic regression.

3. Examples.

3.1. Single-parameter-case example: The exponential distribution. Here, we apply The-
orem 2.3 in an example from a single-parameter distribution. We highlight that in the single-
parameter case the interest is on assessing the asymptotic χ2

1 distribution of 2(l(θ̂n(X);X) −
l(θ0;X)), where θ0 is the true value of the unknown parameter θ . The log-likelihood ratio
in (2.1) reduces to −2 log� = 2 logT1, so that there is no need to introduce T2 as defined in
(2.1) and the terms K∗

1 (θ0) and K∗
2 (θ0) in the expression of (2.6) vanish.

To illustrate the single-parameter case, we consider an example from the exponential dis-
tribution with mean θ0. For X ∼ Exp( 1

θ
), θ > 0 the p.d.f. is f (x|θ) = 1

θ
exp{−x

θ
}, for x > 0.

COROLLARY 3.1. Let X1,X2, . . . ,Xn be i.i.d. random variables that follow the Exp( 1
θ0

)

distribution. The MLE exists, it is unique, equal to θ̂n(X) = X̄ and the regularity conditions
(C.1)–(C.7) are satisfied. For h ∈ C

3
b(R) and K ∼ χ2

1 ,∣∣E[h(2(�(θ̂n(X);X)− �(θ0;X)
))]−E

[
h(K)

]∣∣
(3.1)

≤ 8
‖h‖
n

+ 16‖h‖3√
n

(
17

2
√

n
+
√

4n

n − 1
+ 9

n

(
7

2
+ 1

n

)

+
√

864n2 + 10,472n + 14,833

n3/2

(
1 +

√
9n− 1

2 + 3
))

+ ‖h′‖√
n

{
6

√
3 + 6

n
+
√

15 + 130

n
+ 120

n2

(
1120

3
+ 320(3 + 6

n
)

1
4 + 4√

n

)
(3.2)

+ 6400√
n

√
105 + 2380

n
+ 7308

n2 + 5040

n3

}
.

REMARK 3.2. (1) The upper bound in (3.1) is O( 1√
n
).

(2) The bound does not depend on the parameter θ0.

PROOF. It is easy to check that the assumptions of Theorem 2.3 hold. Here, we choose
ε(θ0) = 1

2θ0 and with x̄ = 1
n

∑n
i=1 xi ,

Mi,j,k(x) = M1,1,1(x) = 96

θ4
0

n∑
i=1

xi + 16

θ3
0

= 96n

θ4

(
3x̄ + 1

2
θ0

)
.

In addition, straightforward calculations lead to θ̂n(X) = X̄. The expected Fisher information
number for one random variable is I (θ0) = 1

θ2
0

. We start with the calculation of the first term

of the bound in (2.6). With d = 1 and r = 1, the W = (ξ ,η) reduces to ξ = 1√
n

∑n
j=1 Yj ,
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where Yj (θ0) = d
dθ

logf (Xj |θ0) = Xj−θ0

θ2
0

. In addition, since I (θ0) is now a scalar and equal

to 1
θ2

0
, the matrix τ as in (2.38) is also equal to 1

θ2
0

which means that U = τ−1 = θ2
0 . In

addition, D = BC−1 = 0 in this example and Zi,j = Zj = Yj (θ0). Therefore, in our example
W = UZ2

1 = θ2
0 Z2

1 and the aim is to bound R(r) as in (2.5). With

E
(
W 2)= θ4

0E
(
Z4

1
)= 1

θ4
0

E(X1 − θ0)
4 = 9,

E
(
W 3)= θ6

0E
(
Z6

1
)= 1

θ6
0

E(X1 − θ0)
6 = 265,

E
(
W 4)= θ8

0E
(
Z8

1
)= 1

θ8
0

E(X1 − θ0)
8 = 14,833,

then in this example

B1(r, n) = 4n

n − 1
+ 9

n
,

B2(r, n) = 864 + 1

n

(
14,833

n
+ 6360 + θ8

0
(
32E

(
Z5

1
)
E
(
Z3

1
)+ 16E2(Z4

1
)))

= 864 + 1

n

(
14,833

n
+ 6360 + 2816 + 1296

)

= 864 + 1

n

(
14,833

n
+ 10,472

)
.

In addition, simple steps lead to√√√√ r∑
i,k,a,b,,e,f =1

Ui,kUa,bUe,f β(i, a, b)β(k, e, f ) = 2.

Therefore,

R(r) = 4√
n

+ 9

2
√

n
+
√

4n

n − 1
+ 9

n

(
7

2
+ 1

n

)

+
√

864n2 + 10,472n + 14,833

n3/2

(
1 +

√
9n− 1

2 + 3
)
.

(3.3)

The next task is to bound K1(θ0) as in (2.8), for d = 1. Using the definition of Qj in (2.10),
Q1 = X̄ − θ0. The moments of Q1 are calculated using standard results from [13] along with
the fact that X̄ ∼ G(n, n

θ0
), giving

3n

√
E(Q1)4

[
Var
(

d2

dθ2 logf (X1|θ0)

)] 1
2 = 6

√
3 + 6

n
.(3.4)

For the second quantity in (2.8), with the definition of T11 in (2.10),

1

i(θ0)

[
Var
(

d2

dθ2 logf (X1|θ0)

)] 1
2 [
E
(
Q6)] 1

3
[
E
(
T 6

11
)] 1

6

= 2
[
E(X̄ − θ0)

6] 1
3

[
E

(
−2nX̄

θ3
0

+ 2n

θ2
0

)6] 1
6

(3.5)

= 4n

θ3
0

√
E(X̄ − θ0)6 = 4√

n

√
15 + 130

n
+ 120

n2 .
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Combining (3.4) and (3.5),

(3.6) K1(θ0) = 6

√
3 + 6

n
+ 4√

n

√
15 + 130

n
+ 120

n2 .

We proceed to find a bound for K2(θ0), as defined in (2.9). The calculation of the first term
is straightforward:

2
√

n
‖h‖
ε2 E(X̄ − θ0)

2 = 2‖h‖θ2
0√

nε2 .

The second term of (2.9) requires the calculation of conditional expectations related to
M111(X). For ε = 1

2θ0,

√
n
∥∥h′∥∥7

3

√
E
(
Q6

1

)[
E
[(

M111(X)
)2||Q1| < ε

]] 1
2

= √
n
∥∥h′∥∥7

3

√
E(X̄ − θ0)6

[
E

[
962n2

θ8

(
3X̄ + 1

2
θ0

)2∣∣∣|X̄ − θ0| < 1

2
θ0

]] 1
2

≤ 448‖h′‖θ3
0

3θ4
0

√
15 + 130

n
+ 120

n2

(
2θ0 + 1

2
θ0

)

= 1120

3

∥∥h′∥∥
√

15 + 130

n
+ 120

n2 .

Bounding the third term of (2.9) requires the calculation of conditional expectations related to
T11 of (2.10) and M111(X). It is easy to see that T11 can be written as a continuous, increasing
function of Q1. Therefore, employing Lemma 2.1 of [2], leads to

‖h′‖√
n

1

i(θ0)

√
E
(
Q6

1

)[
E

(
T 4

11||Q1| < 1

2
θ0

)] 1
4
[
E

((
M111(X)

)4||Q1| < 1

2
θ0

)] 1
4

≤ 128n
3
2 ‖h′‖

θ5
0

√
θ6

0

n3

(
15 + 130

n
+ 120

n2

)[
E(X̄ − θ0)

4] 1
4

5

2
θ0.

An upper bound for the fourth term of (2.9) is found in a similar way. Collecting these bounds
give

K2(θ0) ≤ 8‖h‖√
n

+ ∥∥h′∥∥
√

15 + 130

n
+ 120

n2

(
1120

3
+ 320(3)

1
4√

n

(
2

n
+ 1

) 1
4
)

(3.7)

+ 6400‖h′‖√
n

√
105 + 2380

n
+ 7308

n2 + 5040

n3 .

Combining the results in (3.3), (3.6) and (3.7) yields the assertion. �

REMARK 3.3. We chose ε(θ0) to be the mid-point of the interval (0, θ0) as there is a
trade off on its choice for K2(θ0). A more systematic choice of ε(θ0) based on numerical
solutions of inequalities could be of interest in principle. As our bounds are not optimised
with respect to the constants, for space reasons this systematic choice is not carried out.

Empirical results. Here, we study the accuracy of our bounds by simulations. We start
by generating 100 trials of n random independent observations, x, from Exp( 1

θ
), where n =

1000 × j, j = 1,2, . . . ,1000 and θ = 3. We evaluate the MLE, θ̂n(X) of the parameter in
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TABLE 1
Simulation results for the exponential distribution example

n Qht
(θ0) Upper bound Error

104 0.009 5.934 5.925
105 0.007 1.516 1.509
106 0.001 0.443 0.442

each trial and then the log-likelihood ratio statistic, 2(l(θ̂n(X);X) − l(θ0;X)), which in turn
gives a vector of 100 values. It is easy to show that for this example

2
(
l
(
θ̂n(X);X)− l(θ0;X)

)= 2n

(
log
(

θ0

X̄

)
+ X̄

θ0
− 1

)
.

We apply to these values the function ht (x) = (x2 +2)−1 and we calculate their sample mean,
denoted by Ê[ht (2(l(θ̂n(X);X)− l(θ0;X)))]. The function ht is a member of the class C3

b(R)

with

‖ht‖ = 0.5,
∥∥h′

t

∥∥= 3
√

1.5

16
,

∥∥h′′
t

∥∥= 0.5, ‖ht‖3 = 15

128

√
25 + 11

√
5.

We use these values to calculate the bound in (3.1). We define

(3.8) Qht (θ0) := ∣∣Ê[ht

(
2
(
l
(
θ̂n(X);X)− l(θ0;X)

))]− Ẽ
[
ht (K)

]∣∣,
where Ẽ[ht (K)] = 0.373 is the approximation of E[ht (K)] up to three decimal places, where
K ∼ χ2

1 . We compare Qht (θ0) with the bound in (3.1), using the difference between their
values as a measure of the error. The results for n = 10j , j = 4,5,6 are presented in Table 1
and are based on this particular function ht , while our theoretical bounds hold for any test
function that belongs in the class C3

b(R).
The table indicates that both the bound and the error decrease as the sample size gets

larger. When at each step we increase the sample size by a factor of ten, then the value of
the upper bound drops by approximately a

√
10 factor, which is expected as the expression

in (3.1) is O(n−1/2). It is instructive to examine the contributions of each term to the bound.
For example, when n = 105, where the bound is equal to 1.516,

16‖ht‖3

r
√

n
R(r) = 0.304,

‖h′
t‖√
n

K1(θ0) = 0.008,
1√
n
K2(θ0) = 1.204.

We see that the bound is mostly dependent on the quantity related to K2(θ0) due to the large
and nonoptimised constants in (3.7).

3.2. Example: The normal distribution. Here, we apply Theorem 2.3 in the case of
X1,X2, . . . ,Xn i.i.d. random variables from N(μ,σ 2) with θ = (μ,σ 2) ∈ R×R

+. We con-
sider the test problem H0 : μ = 0 against the general alternative. It is well known that under
the alternative, the MLE is equal to θ̂n(X) = (μ̂, σ̂ 2)ᵀ = (X̄, 1

n

∑n
i=1(Xi − X̄)2)ᵀ; see, for

example, [7], page 116. Under the null, simple calculations show that the MLE for σ 2 is
θ̂∗(X) = 1

n

∑n
i=1 X2

i . In addition, the regularity conditions are satisfied.
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COROLLARY 3.4. Let X1,X2, . . . ,Xn be i.i.d. random variables that follow the
N(μ,σ 2) distribution. For the likelihood ratio test H0 : μ = 0 against the general alternative,
for h ∈ C

3
b(R) and K ∼ χ2

1 , it holds that

∣∣E[h(−2 log�)
]−E

[
h(K)

]∣∣
≤ ‖h‖

n

(
8

σ 2 + 32
)

+ 16‖h‖3√
n

(
11

2
√

n
+
√

4n

n − 1
+ 3

n

(
1

2
+ 1

n

)

+
√

288n2 + 504n + 105

n3/2

(
1

4
(1 + √

3) +
√

3
(
n− 1

2 + 1
)))

+ ‖h′‖√
n

(
16,086 + 13,527,826√

n
+ 448

√
2

n
+ σ 2

2
(3.9)

+ 860

√
1 + 648

((
3

2
+ σ 2

4

)2
+ 3

n2

)
+ 7416√

n

(
3

n2 + σ 4

16

) 1
4

+ 1√
n

(
1 + 839,808

((
3

2
+ σ 2

4

)4
+ 105

n4

)) 1
4

×
(

21,984 + 23,616
(

3

n2 + σ 4

16

) 1
4
)

+ 87,104√
n

√
3

n2 + σ 4

16
+ 38,512√

n

×
√

1 + 839,808
((

3

2
+ σ 2

4

)4
+ 105

n4

))
.

REMARK 3.5. (1) For fixed σ 2, the upper bound in Corollary 3.4 is of order 1√
n

. There
is no claim that the constants are optimal.

(2) The normal bound is only small when σ 2 is neither too large nor too small, so that
n−1 � σ 2 � n1/2.

PROOF. We will use the result of Theorem 2.3. In this case d = 2 and r = 1. The expected
Fisher information matrix for one random variable is

(3.10) I (θ0) =
⎛
⎜⎝

1

σ 2 0

0
1

2σ 4

⎞
⎟⎠ , so that

[
I (θ0)

]−1 =
(
σ 2 0
0 2σ 4

)
.

The assumptions (C.1)–(C.7) are verified for ε(θ0) < ∞ and

sup
θ :|θm−θ0,m|<ε

∣∣∣∣ ∂3

∂θ3
1

�(θ;X)

∣∣∣∣= 0 =: M111(X)
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as well as

sup
θ :|θm−θ0,m|<ε

∣∣∣∣ ∂3

∂θ3
2

�(θ;X)

∣∣∣∣
= sup

θ :|θm−θ0,m|<ε

∣∣∣∣∣− n

θ3
2

+ 3

θ4
2

n∑
i=1

(Xi − θ1)
2

∣∣∣∣∣(3.11)

≤ n

(σ 2 − ε)3 + 9n

(σ 2 − ε)4

(
σ̂ 2 + (X̄ − μ)2 + ε2)=: M222(X).

Moreover,

sup
θ :|θm−θ0,m|<ε

∣∣∣∣ ∂3

∂θ1 ∂θ2
2

�(θ;X)

∣∣∣∣
= sup

θ :|θm−θ0,m|<ε

∣∣∣∣ ∂3

∂θ2
2 ∂θ1

�(θ;X)

∣∣∣∣(3.12)

≤ 2n

(σ 2 − ε)3

(|X̄ − μ| + ε
)=: M122(X)

and

sup
θ :|θm−θ0,m|≤ε

∣∣∣∣ ∂3

∂θ2
1 ∂θ2

�(θ;X)

∣∣∣∣
= sup

θ :|θm−θ0,m|<ε

∣∣∣∣ ∂3

∂θ2 ∂θ2
1

�(θ;X)

∣∣∣∣(3.13)

= sup
θ :|θm−θ0,m|<ε

∣∣∣∣ n

θ2
2

∣∣∣∣≤ n

(σ 2 − ε)2 =: M112(X).

We start with the calculation of the first term of the bound in (2.6). From (3.10), we have
that A = 1

σ 2 , B = 0, C = 1
2σ 4 , so that τ = 1

σ 2 and, therefore, U = σ 2 and D = BC−1 =
0. Therefore, in our example, for j = 1,2, . . . , n we have that Z1,j = Zj = Y1,j (θ0) =
∂

∂θ1
logf (Xj |θ0) = Xj−μ

σ 2 . Now, W = UZ2
1 = (X1−μ)2

σ 2 and

E
(
W 2)= 1

σ 4E
(
(X1 − μ)4)= 3,

E
(
W 3)= 1

σ 6E
(
(X1 − μ)6)= 15,

E
(
W 4)= 1

σ 8E
(
(X1 − μ)8)= 105.

Therefore,

B1(r, n) = 4n

n − 1
+ 3

n
,

B2(r, n) = 288 + 1

n

(
105

n
+ 360 + 32σ 8

E
(
Z5

1
)
E
(
Z3

1
)+ 16σ 8

E
2(Z4

1
))

= 288 + 1

n

(
105

n
+ 504

)
.
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In addition, because E(Z3
1) = 1

σ 6E[(X1 − μ)3] = 0,

√√√√ r∑
i,k,a,b,,e,f =1

Ui,kUa,bUe,f β(i, a, b)β(k, e, f ) = 0

and, therefore,

R(r) = 4√
n

+ 3

2
√

n
+
√

4n

n − 1
+ 3

n

(
1

2
+ 1

n

)

+
√

288n2 + 504n + 105

n3/2

(
1

4
(1 + √

3) +
√

3
(
n− 1

2 + 1
))

,

(3.14)

which is then used to obtain an upper bound for the first term in the general expression of
(2.6). We now proceed to bound K1(θ0) in (2.8). In regards to the first quantity, the expres-
sions for the partial derivatives of the log-likelihood and the fact that in the case of i.i.d.
random variables from the normal distribution, X̄ and σ̂ 2 are independent random variables
([3], page 218) lead to

3n

2∑
j=1

2∑
k=1

[
E
(
Q2

jQ
2
k

)] 1
2

[
Var
(

∂2

∂θj ∂θk

logf (X1|θ0)

)] 1
2

= 3n

√
E
(
σ̂ 2 − σ 2

)4√Var
(

1

σ 6 (X1 − μ)2
)

+ 6n

√
E(X̄ − μ)2E

(
σ̂ 2 − σ 2

)2√Var
(

1

σ 4 (X1 − μ)

)

≤ 3n

√
16σ 8

n2

√
2

σ 8 + 6n

√
2
σ 6

n2

√
1

σ 6 = 18
√

2.

(3.15)

For the second quantity in (2.8), let Gκ ∼ χ2
κ ; then

E
(
Q6

1
)= E(X̄ − μ)6 = 15

σ 6

n3 ,

E
(
Q6

2
)= E

(
σ̂ 2 − σ 2)6 = σ 12

n6 E(Gn−1 − n)6

= σ 12

n3

(
120 + 940

n
− 114

n2 − 945

n3

)
≤ 1060

n3 σ 12.

(3.16)

Using now (3.10),

E
(
T 6

11
)= 0, E

(
T 6

12
)= E

(
T 6

21
)= 1

σ 18E

(
n∑

i=1

(
Xi − μ

σ

))6

= 15n3

σ 18 ,

E
(
T 6

22
)= 1

σ 24E(Gn − n)6 = 40n3

σ 24

(
3 + 52

n
+ 96

n2

)
≤ 6040n3

σ 24 .
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With inequalities (3.10) and (3.16), this yields

2∑
l=1

2∑
m=1

[[
I (θ0)

]−1]
lm

2∑
j=1

2∑
k=1

√√√√Var
(

∂2

∂θl ∂θj

logf (X1|θ0)

)

× [E(Q6
j

)
E
(
Q6

k

)
E
(
T 6

mk

)] 1
6

≤ 212√
n

.

(3.17)

Combining the results in (3.15) and (3.17),

K1(θ0) ≤ 26 + 212√
n

.(3.18)

Following the same steps as in (3.15) and (3.17) under the null hypothesis μ = 0, with
θ̂∗(X)1 = 1

n

∑n
i=1 X2

i ,

K∗
1 (θ0) ≤ 33 + 220√

n
.(3.19)

We proceed to find a bound for K2(θ0), as defined in (2.9). The calculation of the first term
is straightforward and

2
√

n
‖h‖
ε2

2∑
j=1

E
(
Q2

j

)= 2
√

n
‖h‖
ε2

(
σ 2

n
+ σ 4

n

(
2 − 1

n

))

≤ 2‖h‖σ 2
√

nε2

(
1 + 2σ 2).

(3.20)

Using (3.11), (3.12) and (3.13), we are able to find an upper bound for the second term in
(2.9). Simple calculations yield

√
n
∥∥h′∥∥7

3

2∑
j=1

2∑
k=1

2∑
m=1

[
E
(
Q2

jQ
2
kQ

2
m

)] 1
2
[
E
[(

Mjkm(X)
)2||Q(m)| < ε

]] 1
2

= ∥∥h′∥∥{ 7
√

6σ 4

(σ 2 − ε)2 + 56
√

2σ 5

(σ 2 − ε)3

√
σ 2

n
+ ε2(3.21)

+ 7
√

2120σ 6

3(σ 2 − ε)3

√
1 + 162

(σ 2 − ε)2

((
ε + ε2 + σ 2

)2 + 3σ 4

n2

)}
.

The third term of (2.9) requires the calculation of conditional expectations related to Tkj of
(2.10) and Mqml(X), where k, j, q,m, l ∈ {1,2}. It is easy to see that both T12 and T22 can be
written as continuous, increasing functions of Q1 and Q2. Therefore, with Q(m) as in (2.10)
and for Gn ∼ χ2

n , employing Lemma 4.1 of [1], leads to

E
(
T 4

11||Q(m)| < ε
)= 0,(3.22)

E
(
T 4

12||Q(m)| < ε
)= E

(
1

σ 16

(
n∑

i=1

(Xi − μ)

)4∣∣∣|Q(m)| < ε

)

≤ n4

σ 16E(X̄ − μ)4 = 3n2

σ 12 ,
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E
(
T 4

22||Q(m)| < ε
)= E

((
n

σ 4 − 1

σ 2

n∑
i=1

(Xi − μ)2

)4∣∣∣|Q(m)| < ε

)

≤ E

(
n

σ 4 − 1

σ 2

n∑
i=1

(Xi − μ)2

)4

= 1

σ 16E(Gn − n)4 = 12n2

σ 16

(
1 + 4

n

)
≤ 60n2

σ 16 .

Using the results of (3.11), (3.12) and (3.22), after simple calculations, we get for the third
term of (2.9) that

‖h′‖√
n

2∑
q=1

2∑
k=1

∣∣[[I (θ0)
]−1]

kq

∣∣

×
2∑

j=1

2∑
l=1

2∑
m=1

[
E
(
Q2

jQ
2
l Q

2
m

)] 1
2
[
E
(
T 4

kj ||Q(m)| < ε
)] 1

4

× [E(M4
qml(X)||Q(m)| < ε

)] 1
4(3.23)

≤ ‖h′‖√
n

(
35σ 4

(σ 2 − ε)2 + 339σ 6

(σ 2 − ε)3

(
3

n2 +
(

ε

σ

)4) 1
4
)

+ 2700σ 6‖h′‖√
n(σ 2 − ε)3

(
1 + 52,488

(σ 2 − ε)4

((
ε + ε2 + σ 2)4 + 105σ 8

n4

)) 1
4
.

To find an upper bound for the fourth term of (2.9), using (3.10), (3.11), (3.12),

‖h′‖
4
√

n

2∑
b=1

2∑
k=1

2∑
m=1

2∑
q=1

2∑
l=1

2∑
j=1

∣∣[[I (θ0)
]−1]

qb

∣∣√E(Q2
kQ

2
mQ2

jQ
2
l

)

× [E((Mbmk(X)
)4||Q(m)| < ε

)] 1
4
[
E
((

Mqjl(X)
)4||Q(m)| < ε

)] 1
4

≤ ‖h′‖√
n

{
13σ 8

(σ 2 − ε)4 + 147σ 10

(σ 2 − ε)5

(
3

n2 +
(

ε

σ

)4) 1
4

+ 1361σ 12

(σ 2 − ε)6

√
3

n2 +
(

ε

σ

)4
(3.24)

+
(

1 + 52,488

(σ 2 − ε)4

((
ε + ε2 + σ 2)4 + 105σ 8

n4

)) 1
4

×
(

12σ 10

(σ 2 − ε)5 + 369σ 12

(σ 2 − ε)6

(
3

n2 +
(

ε

σ

)4) 1
4
)

+
√

362,096σ 12

(σ 2 − ε)6

√
1 + 52,488

(σ 2 − ε)4

((
ε + ε2 + σ 2

)4 + 105σ 8

n4

)}
.

The bounds in (3.20), (3.21), (3.23) and (3.24) depend on the constant ε as defined in the
statement of Theorem 2.3. For the choice of ε, (3.11), (3.12) and (3.13) require that 0 < ε <

σ 2. There is trade off related to the choice of ε between the expressions (3.20) and (3.24).
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We choose ε = σ 2

2 . Using this value in (3.20), (3.21), (3.23) and (3.24), leads to

K2(θ0) ≤ 8‖h‖√
nσ 2

(
1 + 2σ 2)+ ∥∥h′∥∥{28

√
6 + 448

√
2

n
+ σ 2

2
+ 348√

n

+ 860

√
1 + 648

((
3

2
+ σ 2

4

)2
+ 3

n2

)
+ 7416√

n

(
3

n2 + σ 4

16

) 1
4

+ 1√
n

(
1 + 839,808

((
3

2
+ σ 2

4

)4
+ 105

n4

)) 1
4

(3.25)

×
(

21,984 + 23,616
(

3

n2 + σ 4

16

) 1
4
)

+ 87,104√
n

√
3

n2 + σ 4

16
+ 38,512√

n

√
1 + 839,808

((
3

2
+ σ 2

4

)4
+ 105

n4

)}
.

It remains to find an upper bound for K∗
2 (θ0), which is the version of K2(θ0) under the null

hypothesis of μ = 0. This requires the calculation of conditional expectations related to T ∗
11

of (2.10) and M∗
111(X) as defined in (C.3)(b). Simple calculations yield

M∗
111(X) = n

(σ 2 − ε)3 + 3

(σ 2 − ε)4

n∑
i=1

X2
i , T ∗

11 = n

σ 4 − 1

σ 6

n∑
i=1

X2
i .

Using the above results and Lemma 4.1 from [1], we obtain that for ε = σ 2

2 ,

K∗
2 (θ0) = 2

√
n
‖h‖
ε2 E

(
Q∗

1
)2

+ √
n
∥∥h′∥∥7

3

√
E
(
Q∗

1

)6√
E
[(

M∗
111(X)

)2|∣∣Q∗
(m)

∣∣< ε
]

+ 2‖h′‖σ 4
√

n

√
E
(
Q∗

j

)6[
E
((

T ∗
11
)4|∣∣Q∗

(m)

∣∣< ε
)] 1

4

(3.26)
× [E((M∗

111(X)
)4|∣∣Q∗

(m)

∣∣< ε
)] 1

4

+ σ 4‖h′‖
2
√

n

√
E
(
Q∗

1

)8√
E
((

M∗
111(X)

)4|∣∣Q∗
(m)

∣∣< ε
)

≤ 16‖h‖√
n

+ 15,958
∥∥h′∥∥+ 13,527,046√

n

∥∥h′∥∥.
Applying the results of (3.14), (3.18), (3.19), (3.25) and (3.26), to the expression of the gen-
eral upper bound in (2.6) yields (3.9). �

Empirical results. As in the exponential distribution example, we assess the accuracy of
our bounds by simulations. We start by generating 100 trials of n random independent ob-
servations, x, from N(μ,σ 2), where n = 1000 × j, j = 1,2, . . . ,1000 and μ = 0, σ = 1. We
evaluate the log-likelihood ratio statistic, −2 log�, in each trial, which in turn gives a vector
of 100 values. For this example, simple steps yield

−2 log� = n

(
log
( ∑n

i=1 X2
i∑n

i=1(Xi − X̄)2

))
.



634 A. ANASTASIOU AND G. REINERT

TABLE 2
Simulation results for the normal distribution example

n QN
ht

Upper bound Error

104 0.023 2960.752 2960.729
105 0.020 323.226 323.206
106 0.016 40.924 40.908

We apply to these values the function ht (x) = (x2 +2)−1 again and we calculate their sample
mean, denoted by Ê[ht (−2 log�)]. We define

(3.27) QN
ht

:= ∣∣Ê[ht (−2 log�)
]− Ẽ

[
ht (K)

]∣∣,
where Ẽ[ht (K)] = 0.373. We compare QN

ht
with the bound in (3.9), using the difference be-

tween their values as a measure of the error. The results for n = 10j , j = 4,5,6 are presented
in Table 2 below. The table indicates that when at each step the sample size is increased,
then the value of the upper bound decreases. The values of the bound are quite large, but
this is due to the large constants in (3.9). Smaller constants are obtainable, but this, in our
understanding, will make the bound in (3.9) more tedious and difficult to present. Our main
purpose has been to show the order of the bound with respect to the sample size, n.

3.3. Example: Logistic regression. In binomial regression, the data are i.i.d. observations
(Xi, Yi), i = 1, . . . , n, where Xi ∈ R

d and Yi ∈ {0,1}; see, for example, [23], page 66. The
binary regression model is that

Pθ (Yi = 1|Xi = x) = ψ
(
θᵀx

)
for θ ∈ R

d and ψ : R → [0,1] continuously differentiable, monotone, with derivatives
bounded away from 0 and ∞. For logistic regression,

ψ(θ) = 1

1 + e−θ

and here we restrict ourselves to this case, although generalisations are straightforward. We
assume that the distribution of X is such that X has finite moments up to order 6. To ensure
that the MLE, θ̂n(X), for θ exists and is unique, we assume that the Xi ’s do not concentrate
on a (d − 1)-dimensional affine subspace of Rd .

Consider as in [22] to test the simple hypothesis that θ0 = 0 against the general alternative.
The likelihood in this case is

L
(
θ; (xi, yi), i = 1, . . . , n

)= n∏
i=1

{
ψ
(
θᵀxi

)yi
(
1 − ψ

(
θᵀxi

))1−yi
}

so that the score function is

S(θ) = y − ψ(θᵀx)

ψ(θᵀx)(1 − ψ(θᵀx))
ψ ′(θᵀx)x

while the Fisher information matrix is I (θ) = E[ψ ′(θᵀX))XXᵀ]. For testing H0 : θ1 = 0, we
have for x = (x1, . . . , xd),

ξ(x) = 1√
n

(
y1 − ψ

(
θᵀx

))
x1
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and

η(x) = 1√
n

((
y2 − ψ

(
θᵀx

))
x2, . . . ,

(
yp − ψ

(
θᵀx

))
xp

)ᵀ
.

To check the assumptions on the third derivative of the log-likelihood, we calculate

∂3

∂θk ∂θj ∂θi

�
(
θ; (x, y)

)= eθᵀx(1 + e2θᵀx − 4eθᵀx)

(1 + eθᵀx)4
xixjxk

so that ∣∣∣∣ ∂3

∂θk ∂θj ∂θi

�
(
θ; (x, y)

)∣∣∣∣≤ |xixjxk| =: Mk,j,i(x).

In particular, E(Mk,j,i(X)2) = E(X2
i X

2
jX

2
k) and E(Mk,j,i(X)4) = E(X4

i X
4
jX

4
k).

In order to apply Theorem 2.1, we use the variables

Zi,j = ∂

∂θj

(yi logψ
(
θᵀxi

)+ (1 − yi) log
(
1 − ψ

(
θᵀxi

))= (
yi − ψ

(
θᵀxi

))
xi,j

for i = 1, . . . , n, j = 1, . . . , d . Due to the binomial structure and the fact that |yi −
ψ(θᵀXi)| ≤ 1, it holds that E|Zi,j | ≤ E|Xi,j |.

Note that for logistic regression the MLE in general does not have a closed form. Hence
we cannot evaluate (2.10) explicitly, although with given data sets a numerical evaluation is
possible. For our purposes, it suffices to illustrate the applicability of the bound as well as its
behaviour in terms of d and n.

4. Proof of Theorem 2.1.

PROOF. Here is the proof of Theorem 2.1. The proof is based on Stein’s method, as
follows. From [10], a random variable X has the chi-square distribution with r degrees of
freedom if and only if

(4.1) E

[
Xf ′′(X) + 1

2
(r − X)f ′(X)

]
= 0

for all twice differentiable functions f : R+ → R such that the expectations in (4.1) exist.
Moreover, if g is bounded and has three bounded derivatives, then the Stein equation

(4.2) xf ′′(x) + 1

2
(r − x)f ′(x) = g(x) −E

[
g(χr)

]
has solution f which satisfies

(4.3)
∥∥f (k)

∥∥≤ 4

r + k − 1

(
3
∥∥g(k−1∥∥+ ∥∥g(k−2)

∥∥)
for k = 2,3,4. Using (4.2) with solution f = fg , for any random variable T ,

(4.4) E
[
g(T )

]−E
[
g(χr)

]= E

[
Tf ′′(T ) + 1

2
(r − T )f ′(T )

]
.

For T = ZᵀUZ, we expand

T = 1

n

r∑
i=1

r∑
k=1

Ui,k

n∑
j=1

n∑
�=1

Zi,jZk,�.
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Now, for any s, k = 1, . . . , r , from the definition of the inverse,

(4.5)
r∑

i=1

Ui,kτi,s =
r∑

i=1

Uk,iτi,s = 1(s = k)

and as T is a quadratic form, it has mean

(4.6) E[T ] = trace(Uτ) = r.

As Zi,j is independent of Zk,� for � �= j, k = 1, . . . , r , T is a sum of locally dependent sum-
mands. For j, � = 1, . . . , n, set

T j = 1

n

r∑
i=1

r∑
k=1

∑
s �=j

∑
t �=j

Zi,sUi,kZk,t .

Then T j is independent of Za,j for all a = 1, . . . , r . Moreover, using the symmetry of U ,

(4.7) T − T j = 1

n

r∑
i=1

r∑
k=1

Ui,kZi,j

(
Zk,j + 2

∑
s �=j

Zk,s

)
.

Next, Taylor expansion gives

E
[
Tf ′(T )

]= 1

n

r∑
i=1

r∑
k=1

Ui,k

n∑
j=1

n∑
�=1

E
[
Zi,jZk,�f

′(T j )](4.8)

+ 1

n

r∑
i=1

r∑
k=1

Ui,k

n∑
j=1

n∑
�=1

E
[
Zi,jZk,�

(
T − T j )f ′′(T j )](4.9)

+ 2R1,

with

(4.10) R1 = 1

4n

r∑
i,k=1

Ui,k

n∑
j,�=1

E
[
Zi,jZk,�

(
T − T j )2f (3)(T j + ρT

)]

for some 0 < ρ < 1. We shall return to this remainder term later. First, from the independence,
(4.8) yields

1

n

r∑
i=1

r∑
k=1

Ui,k

n∑
j=1

n∑
�=1

E
[
Zi,jZk,�f

′(T j )]

=
r∑

i=1

r∑
k=1

Ui,kτi,kE
[
f ′(T )

]+ 2R2

= rE
[
f ′(T )

]+ 2R2,

where we used (4.6) in the last step, and

(4.11) R2 = 1

2

r∑
i=1

r∑
k=1

Ui,kτi,k

(
1

n

n∑
j=1

E
[
f ′(T j )]−E

[
f ′(T )

])
.

For (4.9), with (4.7),

1

n

r∑
i=1

r∑
k=1

Ui,k

n∑
j=1

n∑
�=1

E
[
Zi,jZk,�

(
T − T j )f ′′(T j )]
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= 1

n2

r∑
i,k,a,b=1

Ui,kUa,bβ(i, k, a, b)

n∑
j=1

E
[
f ′′(T j )]

+ 1

n2

r∑
i,k,a,b=1

Ui,kUa,bβ(i, a, b)

(
n∑

j=1

∑
� �=j

E
[
Zk,�f

′′(T j )]

+ 2
n∑

j=1

∑
s �=j

E
[
Zg,sf

′′(T j )])

+ 2

n2

r∑
i,k,a,b=1

Ui,kUa,bτi,a

n∑
j=1

∑
s �=j

∑
� �=j

E
[
Zk,�Zg,sf

′′(T j )]

= 2R3 + 2R4 + 2

n2

r∑
k,b=1

Uk,b

n∑
j=1

∑
s �=j

∑
� �=j

EZk,�Zg,sf
′′(T j ),

where we used (4.5) in the last step and put

(4.12) R3 = 1

2n2

r∑
i,k,a,b=1

Ui,kUa,bβ(i, k, a, b)

n∑
j=1

E
[
f ′′(T j )]

and

(4.13) R4 = 3

2n2

r∑
i,k,a,b=1

Ui,kUa,bβ(i, a, b)

n∑
j=1

∑
� �=j

E
[
Zk,�f

′′(T j )].
Thus for (4.4),

E
[
g(T )

]−E
[
g(χr)

]
= E

[
Tf ′′(T ) + 1

2
(r − T )f ′(T )

]

= 1

n

r∑
k,b=1

Uk,b

n∑
s=1

n∑
�=1

E

[
Zk,�Zg,s

(
f ′′(T ) − 1

n

∑
j �=�,s

f ′′(T j ))]−
4∑

i=1

Ri

= −
4∑

i=1

Ri + R5 + R6

with

(4.14) R5 = 1

n
E
[
Tf ′′(T )

]
and

(4.15) R6 = 1

n2

r∑
k,b=1

Uk,b

n∑
s=1

n∑
�=1

E

[
Zk,�Zg,s

∑
j �=�,s

(
f ′′(T ) − f ′′(T j ))].

It remains to bound the remainder terms. To this purpose, we carry out an ancillary calcula-
tion. With (4.7) and using the independence,

E
[(

T − T j )2]
= 1

n2

∑
a,b,i,k

Ua,bUi,kE

[
Zi,jZa,j

(
Zb,j + 2

∑
� �=j

Zb,�

)(
Zk,j + 2

∑
s �=j

Zk,s

)]
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= 1

n2

∑
a,b,i,k

Ua,bUi,k

(
β(a, b, i, k) + 4(n − 1)τi,aτb,k

)

= 1

n2

( ∑
a,b,i,k

Ua,bUi,kβ(a, b, i, k) + 4(n − 1)r

)

= 1

n
B1(r, n),

where we employed (4.5) and (4.6) for the last step and

B1(r, n) = 4rn

n − 1
+ 1

n
E
(
W 2)

with W =∑r
i,k=1 Ui,kZi,1Zk,1. Similarly,

E
[(

T − T j )4]
= 1

n4

∑
a,b,i,k,c,d,e,f

Ua,bUi,kUc,dUe,fE

[
Zi,jZa,jZc,jZe,j

×
(
Zb,j + 2

∑
� �=j

Zb,�

)(
Zk,j + 2

∑
s �=j

Zk,s

)

×
(
Zd,j + 2

∑
t �=j

Zd,t

)(
Zf,j + 2

∑
u�=j

Zf,u

)]

= 1

n4

∑
a,b,i,k,c,d,e,f

Ua,bUi,kUc,dUe,f

(
β(a, b, c, d, e, f, i, k)

+ 24β(i, a, c, e, b, d)τ (k, f )(n − 1) + 32β(i, a, c, e, b)β(c, k, f )(n − 1)

+ 16β(i, a, c, e)
(
β(b, d, k, f )(n − 1) + 6n(n − 1)τb,dτk,f

)

≤ 1

n2 B2(r, n)

with

B2(r, n) = 96E
(
W 2)

+ 1

n

(
1

n
E
(
W 4)+ 24E

(
W 3)

+ 32
∑

a,b,i,k,c,d,e,f

Ua,bUi,kUc,dUe,f β(i, a, c, e, b)β(c, k, f )

+ 16
∑

a,b,i,k,c,d,e,f

Ua,bUi,kUc,dUe,f β(i, a, c, e)β(b, d, k, f )

)
.

Now the ingredients are in place to bound |Ri |, i = 1, . . . ,6.

Bounding R1. For R1 from (4.10) and the Cauchy–Schwarz inequality, using the notation
(2.4),

R1 = 1

4n

r∑
i,k=1

Ui,k

n∑
j,�=1

E
[
Zi,jZk,�

(
T − T j )2f (3)(T j + ρT

)]
(4.16)

= R1,1 + R1,2
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with

|R1,1| ≤ 1

4n

∥∥f (3)
∥∥ n∑

j=1

E
[|W |(T − T j )2]

≤ 1

4n

∥∥f (3)
∥∥√B2(r, n)

√
E
[
W 2
]

and

|R1,2| ≤ 1

4n

∥∥f (3)
∥∥ n∑

j=1

E

[∣∣∣∣∣
r∑

i,k=1

Ui,kZi,j

∑
� �=j

Zk,�

∣∣∣∣∣(T − T j )2]

≤ 1

4n2

∥∥f (3)
∥∥√B2(r, n)

n∑
j=1

√√√√√E

[(
r∑

i,k=1

Ui,kZi,j

∑
� �=j

Zk,�

)2]
.

We calculate

E

[(
r∑

i,k=1

Ui,kZi,j

∑
� �=j

Zk,�

)2]
=

r∑
i,k=1

Ui,k

r∑
a,b=1

Ua,bτi,aτb,k

(4.17)
= r

and thus

|R1,2| ≤
√

r

4n

∥∥f (3)
∥∥√B2(r, n).

Hence, for (4.16),

|R1| ≤ 1

4n

∥∥f (3)
∥∥√B2(r, n)

(√
E
(
W 2
)+ √

r
)
.

Bounding R2. For R2 from (4.11), by Taylor expansion and the Cauchy–Schwarz inequality,

|R2| ≤ 1

2n

∥∥f ′′∥∥ n∑
j=1

∣∣∣∣∣
r∑

i=1

r∑
k=1

Ui,kτi,k

∣∣∣∣∣E[∣∣T − T j
∣∣]

≤ r

2
√

n

∥∥f ′′∥∥√B1(r, n).

Bounding R3. For R3 from (4.12), it is straightforward to bound

|R3| ≤ 1

2n

∥∥f ′′∥∥∣∣∣∣∣
r∑

i,k,a,b=1

Ui,kUa,bβ(i, k, a, b)

∣∣∣∣∣= 1

2n

∥∥f ′′∥∥E(W 2).
Bounding R4. For R4 from (4.13), for � �= j we introduce

T j,� = 1

n

r∑
i=1

r∑
k=1

∑
s �=j

∑
t �=j,�

Zi,sUi,kZk,t .

Then T j,� is independent of Za,� for all a = 1, . . . , r . Moreover, as for (4.7),

T j − T j,� = 1

n

r∑
i=1

r∑
k=1

Ui,kZi,�

(
Zk,� + 2

∑
s �=j,�

Zk,s

)
.

Thus, for � �= j ,

E
[
Zk,�f

′′(T j )]= E
[
Zk,�

(
T j − T j,�)f (3)(T j + ρ

(
T j,� − T j )]
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for some 0 < ρ < 1. Hence using the Cauchy–Schwarz inequality,

|R4| ≤ 3

2

∥∥f (3)
∥∥ 1√

n

√
B1(r, n)

√√√√√E

[(
r∑

i,k,a,b=1

Ui,kUa,bβ(i, a, b)Zk,�

)2]

≤ 3

2

∥∥f (3)
∥∥ 1√

n

√
B1(r, n)

√√√√ r∑
i,k,a,b,e,f =1

Ui,kUa,bUe,f β(i, a, b)β(k, e, f ),

where we used (4.5).

Bounding R5. Bounding R5 from (4.14) is straightforward using Lemma 2.1 from [10]
which states that for g bounded, the solution f of the Stein equation satisfies ‖xf ′′(x)‖ ≤
4‖g‖,

|R5| = 1

n

∣∣E[Tf ′′(T )
]∣∣≤ 4

n
‖g‖.

Bounding R6. For R6 from (4.15),

R6 = 1

n2

r∑
k,b=1

Uk,b

n∑
s=1

n∑
�=1

∑
j �=�,s

E
[
Zk,�Zb,s

(
T − T j )f (3)(T j )](4.18)

+ 1

2n2

r∑
k,b=1

Uk,b

(4.19)

×
n∑

s=1

n∑
�=1

∑
j �=�,s

E
[
Zk,�Zb,s

(
T − T j )2f (4)(T j + ρ

(
T − T j ))]

for some 0 < ρ < 1. Now, for j �= �, s, with (4.7) and using the independence,

∑
s �=�

r∑
k,b=1

Uk,bE
[
Zk,�Zb,s

(
T − T j )f (3)(T j )]

= 1

n

∑
s �=�

r∑
k,b=1

Uk,b

r∑
c,d=1

Uc,dτ (c, d)E
[
Zk,�Zb,sf

(3)(T j )]

= r

n

∑
s �=�

r∑
k,b=1

Uk,bE
[
Zk,�Zb,sf

(3)(T j )]

= r

n

∑
s �=�

E

[
r∑

k,b=1

Uk,bZk,�Zb,s

(
f (3)(T j )− f (3)(T j,�))]

so that

∑
s �=�

r∑
k,b=1

Uk,bE
[
Zk,�Zb,s

(
T − T j )f (3)(T j )]

≤ r

n
3
2

∥∥f (4)
∥∥√B1(r, n)

√√√√√E

[(
r∑

k,b=1

Uk,bZk,�

∑
s �=�

Zb,s

)2]

= ∥∥f (4)
∥∥( r

n

) 3
2√

B1(r, n),
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where we used (4.18). Hence for (4.18), with the Cauchy–Schwarz inequality,

1

n2

∣∣∣∣∣
r∑

k,b=1

Uk,b

n∑
s=1

n∑
�=1

∑
j �=�,s

E
[
Zk,�Zg,s

(
T − T j )f (3)(T j )]∣∣∣∣∣

≤
(

r

n

) 3
2 ∥∥f (4)

∥∥√B1(r, n).

For (4.20), again with the Cauchy–Schwarz inequality,

1

2n2

∣∣∣∣∣
r∑

k,b=1

Uk,b

n∑
s=1

n∑
�=1

∑
j �=�,s

E
[
Zk,�Zb,s

(
T − T j )2f (4)(T j + ρ

(
T − T j ))]∣∣∣∣∣

≤ ∥∥f (4)
∥∥ 1

2n2

n∑
j=1

√√√√√E

[(
r∑

k,b=1

Uk,b

∑
s �=j

∑
� �=j

Zk,�Zb,s

)2]√
E
[(

T − T j
)4]

.

We calculate

E

[(
r∑

k,b=1

Uk,b

∑
s �=j

∑
� �=j

Zk,�Zb,s

)2]

= (n − 1)E
(
W 2)+ (n − 1)2(r2 + 2r

)
.

Hence,

1

2n2

∣∣∣∣∣
r∑

k,b=1

Uk,b

n∑
s=1

n∑
�=1

∑
j �=�,s

E
[
Zk,�Zb,s

(
T − T j )2

× f (4)(T j + ρ
(
T − T j ))]∣∣∣∣∣

≤ 1

2n

∥∥f (4)
∥∥√B2(r, n)

√
E
(
W 2
)
n− 1

2 + r2 + 2r.

Thus,

|R6| ≤ 1

n

∥∥f (4)
∥∥( r

3
2√
n

√
B1(r, n) +√B2(r, n)

√
E
(
W 2
)
n− 1

2 + r2 + 2r

)
.

Collecting the bounds gives that

6∑
i=1

|Ri |

≤ 4

n
‖g‖

+ ∥∥f ′′∥∥( r

2
√

n

√
B1(r, n) + 1

n
E
(
W 2))

+ ∥∥f (3)
∥∥( 3

2
√

n

√
B1(r, n)

√√√√ r∑
i,k,a,b,e,f =1

Ui,kUa,bUe,f β(i, a, b)β(k, e, f )
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+ 1

4n

√
B2(r, n)

(√
E
(
W 2
)+ √

r
))

+ 1

2n

∥∥f (4)
∥∥( r

3
2√
n

√
B1(r, n) +√B2(r, n)

√
E
(
W 2
)
n− 1

2 + r2 + 2r

)
.

Employing the bounds ‖f (k)‖ ≤ 16
r

|||g|||3 from (4.3) for the solution of the Stein equation
gives the assertion. �
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