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This paper proposes an adaptive timestep construction for an Euler–
Maruyama approximation of SDEs with nonglobally Lipschitz drift. It is
proved that if the timestep is bounded appropriately, then over a finite time
interval the numerical approximation is stable, and the expected number of
timesteps is finite. Furthermore, the order of strong convergence is the same
as usual, that is, order 1

2 for SDEs with a nonuniform globally Lipschitz
volatility, and order 1 for Langevin SDEs with unit volatility and a drift with
sufficient smoothness. For a class of ergodic SDEs, we also show that the
bound for the moments and the strong error of the numerical solution are uni-
form in T , which allow us to introduce the adaptive multilevel Monte Carlo
method to compute the expectations with respect to the invariant distribution.
The analysis is supported by numerical experiments.

1. Introduction. In this paper, we consider an m-dimensional stochastic differential
equation (SDE) driven by a d-dimensional Brownian motion:

(1) dXt = f (Xt)dt + g(Xt)dWt,

with a fixed initial value x0. The standard theory assumes the drift coefficient f : Rm → Rm

and the diffusion coefficient g :Rm →Rm×d are both globally Lipschitz. Under this assump-
tion, there is well-established theory on the existence and uniqueness of strong solutions, and
the numerical approximation X̂t obtained from the explicit Euler–Maruyama discretization

X̂(n+1)h = X̂nh + f (X̂nh)h + g(X̂nh)�Wn

using a uniform timestep of size h with Brownian increments �Wn, plus a suitable interpo-
lation within each timestep, is known [18] to have a strong error which is O(h1/2).

The interest in this paper is in other cases in which g is again globally Lipschitz, but f is
only locally Lipschitz. If, for any α,β ≥ 0, f also satisfies the one-sided growth condition〈

x,f (x)
〉≤ α‖x‖2 + β,

where 〈·, ·〉 denotes an inner product, then it is again possible to prove the existence and
uniqueness of strong solutions (see Theorems 2.3.5 and 2.4.1 in [22]). Furthermore (see
Lemma 3.2 in [12]), these solutions are stable in the sense that for any T ,p > 0,

E
[

sup
0≤t≤T

‖Xt‖p
]
< ∞.

The problem is that the numerical approximation X̂t given by the uniform timestep explicit
Euler–Maruyama discretization may not be stable. Indeed, for the SDE

(2) dXt = −X3
t dt + dWt,
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it has been proved [15] that for any T > 0 and p ≥ 2,

lim
h→0

E
[‖X̂T ‖p]= ∞.

This behaviour has led to research on numerical methods which achieve strong conver-
gence for these SDEs with a nonglobally Lipschitz coefficient; see [12, 16, 17, 23–25, 29, 32,
39] and references therein.

The other motivation for this paper is the analysis of a class of ergodic SDEs which expo-
nentially converge to some invariant measure π , especially the Finitely Extensible Nonlinear
Elastic (FENE) model in [2]. To ensure the ergodicity, we assume that the SDEs have a locally
Lipschitz drift f :Rm →Rm satisfying the dissipative condition: for some α,β > 0,

(3)
〈
x,f (x)

〉≤ −α‖x‖2 + β,

and a bounded and non-degenerate diffusion coefficient g : Rm → Rm×d . Evaluating the
expectation of some function ϕ(x) with respect to that invariant measure π is of great interest
in mathematical biology, physics and Bayesian inference in statistics:

π(ϕ) �
∫

ϕ(x)dπ(x) = lim
t→∞E

[
ϕ(Xt)

]
,

which drives us to consider the stability and strong convergence of the algorithm in the infinite
time interval. Several different methodologies have been developed to estimate the expecta-
tion π(ϕ).

First, we can compute the probability density function ρ(x) of π by solving the corre-
sponding stationary Fokker–Planck equation; see [36] and references therein. The second
approach is based on the ergodicity of the SDEs:

(4) lim
T →∞

1

T

∫ T

0
ϕ(Xt)dt = π(ϕ) a.s.,

where the limit does not depend on initial value x0. This approach uses discretized numerical
schemes to approximate the SDEs and requires the numerical solution X̂t to preserve the
ergodicity; see [11, 20, 21, 26, 34, 38] and the references therein.

Finally, without requiring the ergodicity of the schemes, for exponentially ergodic SDEs,
we can choose a sufficiently large T such that∣∣E[ϕ(XT )

]− π(ϕ)
∣∣≤ ε.

Then, for this fixed T , we can use all the methods mentioned in finite time analysis to estimate
E[ϕ(XT )]. Milstein and Tretyakov [30] analyse the error of this kind of approach based on
their quasi-symplectic method.

In this paper, we propose instead to use the standard explicit Euler–Maruyama method,
but with an adaptive timestep hn which is a function of the current approximate solution
X̂tn . Adaptive timesteps have been used in previous research to improve the accuracy of
numerical approximations; see [6, 13, 19, 27, 31] and the references therein. The idea of using
an adaptive timestep in this paper comes from considering the divergence of the uniform
timestep method for the SDE (2). When there is no noise, the requirement for the explicit
Euler approximation of the corresponding ODE to have a stable monotonic decay is that its
timestep satisfies h < X̂−2

tn . An intuitive explanation for the instability of the uniform timestep
Euler–Maruyama approximation of the SDE is that there is always a very small probability
of a large Brownian increment �Wn which pushes the approximation X̂tn+1 into the region
h > 2X̂−2

tn+1
leading to an oscillatory superexponential growth. Using an adaptive timestep can

avoid this problem, as proved by Lemaire [21] for the time-averaging approach. His adaptive
construction has similarities to the one used in this paper.
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For the ergodic SDEs, by setting a suitable condition for h, we can show that, instead
of an exponential bound, the numerical solution has a uniform bound with respect to T for
both moments and the strong error. Then, multilevel Monte Carlo (MLMC) methodology
[7, 8] is employed and non-nested timestepping is used to construct an adaptive MLMC
[9]. Following the idea of Glynn and Rhee [10] to estimate the invariant measure of some
Markov chains, we introduce an adaptive MLMC algorithm for the infinite time interval, in
which each level 	 has a different time interval length T	, to achieve a better computational
performance.

The rest of the paper is organized as follows. The adaptive algorithm is presented and
the main theorems both in the finite and infinite time intervals are stated in Section 2. Sec-
tion 3 introduces the MLMC schemes, and the relevant numerical experiments are provided
in Section 4. Section 5 has the proofs of the main theorems. Finally, Section 6 concludes.

In this paper, we consider both the finite time interval [0, T ] with T > 0 a fixed positive
real number and the infinite time interval [0,∞). Let (
,F,P) be a probability space with
normal filtration (Ft )t∈[0,∞) for Section 2 and (Ft )t∈(−∞,0] for Section 3 corresponding to
a d-dimensional standard Brownian motion Wt = (W(1),W(2), . . . ,W(d))Tt . We denote the

vector norm by ‖v‖ � (|v1|2 + |v2|2 + · · · + |vm|2) 1
2 , the inner product of vectors v and w by

〈v,w〉 � v1w1 + v2w2 + · · · + vmwm, for any v,w ∈ Rm and the Frobenius matrix norm by

‖A‖ �
√∑

i,j A2
i,j for all A ∈Rm×d .

2. Adaptive algorithm and theoretical results.

2.1. Adaptive Euler–Maruyama method. The proposed adaptive Euler–Maruyama dis-
cretisation is

(5) tn+1 = tn + hn, X̂tn+1 = X̂tn + f (X̂tn)hn + g(X̂tn)�Wn,

where hn � h(X̂tn) and �Wn �Wtn+1 −Wtn , and there is fixed initial datum t0 = 0, X̂0 = X0.
One key point in the analysis is to prove that tn increases without bound as n increases.

More specifically, the analysis proves that for any T > 0, almost surely for each path there is
an N such that tN ≥ T .

We use the notation t � max{tn : tn ≤ t}, nt � max{n : tn ≤ t} for the nearest time point
before time t , and its index. We define the piece-wise constant interpolant process Xt = X̂t

and also define the standard continuous interpolant [18] as

X̂t = X̂t + f (X̂t )(t − t) + g(X̂t )(Wt − Wt),

so that X̂t is the solution of the SDE

(6) dX̂t = f (X̂t )dt + g(X̂t )dWt = f (Xt)dt + g(Xt)dWt.

In the following subsections, we state the key results on stability and strong convergence
in both finite and infinite time intervals, and related results on the number of timesteps, intro-
ducing various assumptions as required for each. The main proofs are deferred to Section 6.

2.2. Finite time interval.

2.2.1. Stability.

ASSUMPTION 1 (Local Lipschitz and linear growth). Assume f and g are both locally
Lipschitz, so that for any R > 0 there is a constant CR such that

(7)
∥∥f (x) − f (y)

∥∥+ ∥∥g(x) − g(y)
∥∥≤ CR‖x − y‖
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for all x, y ∈ Rm with ‖x‖,‖y‖ ≤ R. Furthermore, there exist constants α,β ≥ 0 such that
for all x ∈ Rm, f satisfies the one-sided linear growth condition

(8)
〈
x,f (x)

〉≤ α‖x‖2 + β,

and g satisfies the linear growth condition

(9)
∥∥g(x)

∥∥2 ≤ α‖x‖2 + β.

Together, (8) and (9) imply the following condition:

〈
x,f (x)

〉+ 1

2

∥∥g(x)
∥∥2 ≤ 3

2

(
α‖x‖2 + β

)
,

which is a key assumption in the analysis of Mao and Szpruch [25] and Mao [23] for SDEs
with volatilities which are not globally Lipschitz. However, in our analysis we choose to use
this slightly stronger assumption, which provides the basis for the following lemma on the
stability of the SDE solution.

LEMMA 1 (SDE stability). If the SDE satisfies Assumption 1, then for all p > 0,

E
[

sup
0≤t≤T

‖Xt‖p
]
< ∞.

PROOF. The proof is given in Lemma 3.2 in [12]; the statement of that lemma makes
stronger assumptions on f and g, corresponding to (12) and (13), but the proof only uses the
conditions in Assumption 1. �

We now specify the critical assumption about the adaptive timestep.

ASSUMPTION 2 (Adaptive timestep). The adaptive timestep function h : Rm → R+ is
continuous and strictly positive, and there exist constants α,β > 0 such that for all x ∈ Rm,
h satisfies the inequality

(10)
〈
x,f (x)

〉+ 1

2
h(x)

∥∥f (x)
∥∥2 ≤ α‖x‖2 + β.

Note that if another timestep function hδ(x) is smaller than h(x), then hδ(x) also satisfies
the Assumption 2. Note also that the form of (10), which is motivated by the requirements of
the proof of the next theorem, is very similar to (8). Indeed, if (10) is satisfied then (8) is also
true for the same values of α and β .

THEOREM 1 (Finite time stability). If the SDE satisfies Assumption 1, and the timestep
function h satisfies Assumption 2, then T is almost surely attainable (i.e., for ω ∈ 
,
P(∃N(ω) < ∞ s.t. tN(ω) ≥ T ) = 1) and for all p > 0 there exists a constant Cp,T which
depends solely on p, T and the constants α, β in Assumption 2, such that

E
[

sup
0≤t≤T

‖X̂t‖p
]
< Cp,T .

PROOF. The proof is deferred to Section 6.1. �
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2.2.2. Strong convergence. Standard strong convergence analysis for an approximation
with a uniform timestep h considers the limit h → 0. This clearly needs to be modified when
using an adaptive timestep, and we will instead consider a timestep function hδ(x) controlled
by a scalar parameter 0 < δ ≤ 1, and consider the limit δ → 0.

Given a timestep function h(x) which satisfies Assumption 2, ensuring stability as ana-
lyzed in the previous section, there are two quite natural ways in which we might introduce δ

to define hδ(x):

hδ(x) = δ min
(
T ,h(x)

)
,

hδ(x) = min
(
δT ,h(x)

)
.

The first refines the timestep everywhere, while the latter concentrates the computational
effort on reducing the maximum timestep, with h(x) introduced to ensure stability when
‖X̂t‖ is large.

In our analysis, we will cover both possibilities by making the following assumption.

ASSUMPTION 3. The timestep function hδ , satisfies the inequality

(11) δ min
(
T ,h(x)

)≤ hδ(x) ≤ min
(
δT ,h(x)

)
,

Examples of suitable h(x) and hδ(x) are given in Section 4. Given this assumption, we
obtain the following theorem.

THEOREM 2 (Strong convergence). If the SDE satisfies Assumption 1, and the timestep
function hδ satisfies Assumption 3 with h satisfying Assumption 2, then for all p > 0,

lim
δ→0

E
[

sup
0≤t≤T

‖X̂t − Xt‖p
]
= 0.

PROOF. The proof is essentially identical to the uniform timestep Euler–Maruyama anal-
ysis in Theorem 2.2 in [12] by Higham, Mao and Stuart. The only change required by the use
of an adaptive timestep is to note that

X̂s − Xs = f (Xs)(s − s) + g(Xs)(Ws − Ws)

and s − s < δT and E[‖Ws − Ws‖2 | Fs] = d(s − s). �

To prove an order of strong convergence requires new assumptions on f and g.

ASSUMPTION 4 (Lipschitz properties). There exists a constant α > 0 such that for all
x, y ∈ Rm, f satisfies the one-sided Lipschitz condition

(12)
〈
x − y,f (x) − f (y)

〉≤ 1

2
α‖x − y‖2,

and g satisfies the Lipschitz condition

(13)
∥∥g(x) − g(y)

∥∥2 ≤ 1

2
α‖x − y‖2.

In addition, f satisfies the polynomial growth Lipschitz condition

(14)
∥∥f (x) − f (y)

∥∥≤ (
γ
(‖x‖q + ‖y‖q)+ μ

)‖x − y‖,
for some γ,μ,q > 0.
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Note that setting y = 0 gives〈
x,f (x)

〉≤ 1

2
α‖x‖2 + 〈

x,f (0)
〉≤ α‖x‖2 + 1

2
α−1∥∥f (0)

∥∥2
,∥∥g(x)

∥∥2 ≤ 2
∥∥g(x) − g(0)

∥∥2 + 2
∥∥g(0)

∥∥2 ≤ α‖x‖2 + 2
∥∥g(0)

∥∥2
.

Hence, Assumption 4 implies Assumption 1, with the same α and an appropriate β .

THEOREM 3 (Strong convergence order). If the SDE satisfies Assumption 4, and the
timestep function hδ satisfies Assumption 3 with h satisfying Assumption 2, then for all p > 0
there exists a constant Cp,T such that

E
[

sup
0≤t≤T

‖X̂t − Xt‖p
]
≤ Cp,T δp/2.

PROOF. The proof is deferred to Section 6.2. �

To bound the expected number of timesteps, we require an assumption on how quickly
h(x) can approach zero as ‖x‖ → ∞.

ASSUMPTION 5 (Timestep lower bound). There exist constants ξ, ζ, q > 0, such that the
adaptive timestep function satisfies the inequality

h(x) ≥ (
ξ‖x‖q + ζ

)−1
.

LEMMA 2 (Number of timesteps). If the SDE satisfies Assumption 1, and the timestep
function hδ satisfies Assumption 3, with h satisfying Assumptions 2 and Assumption 5, then
for all p > 0 there exists a constant cp,T such that

E
[
(NT − 1)p

]≤ cp,T δ−p,

where NT is the number of timesteps required by a path approximation.

PROOF. By Assumption 3 and Assumption 5, we have

NT =
NT∑
k=1

1 =
NT∑
k=1

hδ(X̂tk )

hδ(X̂tk )
≤
∫ T

0

1

hδ(Xt)
dt + 1 ≤

∫ T

0

(
ξ‖Xt‖q + ζ + 1

)
δ−1 dt + 1.

Therefore, by Jensen’s inequality, we obtain

(15) E
[
(NT − 1)p

]≤ T p−1δ−p
∫ T

0
E
[(

ξ‖Xt‖q + ζ + 1
)p]dt

and the result is then an immediate consequence of Theorem 1. �

The conclusion from Theorem 3 and Lemma 2 is that

E
[

sup
0≤t≤T

‖X̂t − Xt‖p
]1/p ≤ C

1/p
p,T c

1/2
1,T

(
E[NT ])−1/2

which corresponds to order 1
2 strong convergence when comparing the accuracy to the ex-

pected cost.
First-order strong convergence is achievable for the SDEs with uniform diffusion coeffi-

cient in which m = d and g is the identity matrix Im, but this requires stronger assumptions
on the drift f .
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ASSUMPTION 6 (Enhanced Lipschitz properties). Assume f satisfies the Assumption 4
and in addition, f is differentiable, and f and ∇f satisfy the polynomial growth Lipschitz
condition,

(16)
∥∥f (x) − f (y)

∥∥+ ∥∥∇f (x) − ∇f (y)
∥∥≤ (

γ
(‖x‖q + ‖y‖q)+ μ

)‖x − y‖,
for some γ,μ,q > 0.

THEOREM 4 (Strong convergence for SDEs with uniform diffusion coefficient). If m =
d , g ≡ Im, f satisfies Assumption 6, and the timestep function hδ satisfies Assumption 3, then
for all T ,p ∈ (0,∞) there exists a constant Cp,T such that

E
[

sup
0≤t≤T

‖X̂t − Xt‖p
]
≤ Cp,T δp.

PROOF. The proof is given in Theorem 4 in [3]. �

Comment: First-order strong convergence can also be achieved for a general g(x) by us-
ing an adaptive timestep Milstein discretization, provided ∇g satisfies an additional Lipschitz
condition. However, this numerical approach is only practical in cases in which the commu-
tativity condition is satisfied and, therefore, there is no need to simulate the Lévy areas which
the Milstein method otherwise requires [18].

2.3. Infinite time interval. Now, we focus on a class of ergodic SDEs and show that the
moment bounds and strong error bound are uniform in T under stronger assumptions.

2.3.1. Stability.

ASSUMPTION 7 (Dissipative condition). f and g satisfy the locally Lipschitz condition
(7) and there exist constants α,β > 0 such that for all x ∈ Rm, f satisfies the dissipative
one-sided linear growth condition

(17)
〈
x,f (x)

〉≤ −α‖x‖2 + β,

and g is globally bounded and nondegenerate:

(18)
∥∥g(x)

∥∥2 ≤ β.

Theorem 4.4 in [26] and Theorem 6.1 in [28] show that this Assumption ensures the ex-
istence and uniqueness of the invariant measure. We can also prove the following uniform
moment bound for the SDE solution.

LEMMA 3 (SDE stability in infinite time interval). If the SDE satisfies Assumption 7 with
X0 = x0, then for all p ∈ (0,∞), there is a constant Cp which only depends on x0 and p such
that, ∀t ≥ 0,

E
[‖Xt‖p]≤ Cp.

PROOF. The result follows Proposition 3.1(i) in [38]. �

We now specify the critical assumption about the adaptive timestep for the infinite time
interval.
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ASSUMPTION 8 (Adaptive timestep for infinite time interval). The adaptive timestep
function h :Rm → (0, hmax] is continuous and bounded, with 0 < hmax < ∞, and there exist
constants α,β > 0 such that for all x ∈ Rm, h satisfies the inequality

(19)
〈
x,f (x)

〉+ 1

2
h(x)

∥∥f (x)
∥∥2 ≤ −α‖x‖2 + β.

Compared with the Assumption 2 in the finite time analysis, this assumption additionally
bound h to achieve the uniform bound.

THEOREM 5 (Stability in infinite interval). If the SDE satisfies Assumption 7, and the
timestep function h satisfies Assumption 8, then for all p ∈ (0,∞) there exists a constant
Cp which depends solely on p, x0, hmax and the constants α, β in Assumption 8 such that,
∀t ≥ 0,

E
[‖X̂t‖p]< Cp, E

[‖Xt‖p]< Cp.

PROOF. The proof is deferred to Section 6.3. �

2.3.2. Strong convergence. To prove an order of strong convergence again requires new
assumptions on f and g.

ASSUMPTION 9 (Contractive Lipschitz properties). For some fixed p∗ ∈ (2,∞), there
exist constants λ,η > 0 such that for all x, y ∈ Rm, f and g satisfy the contractive Lipschitz
condition

(20)
〈
x − y,f (x) − f (y)

〉+ p∗ − 1

2

∥∥g(x) − g(y)
∥∥2 ≤ −λ‖x − y‖2,

and g satisfies the Lipschitz condition

(21)
∥∥g(x) − g(y)

∥∥2 ≤ η‖x − y‖2.

In addition, f satisfies the polynomial growth Lipschitz condition (14).

This assumption ensures that two solutions to this SDE starting from different places but
driven by the same Brownian increment, will come together exponentially, as shown in the
following lemma.

LEMMA 4 (SDE contractivity). If the SDE satisfies Assumption 9 for some fixed p∗ ∈
(2,∞), then for p ∈ (0,p∗] any two solutions to the SDE: Xt and Yt , driven by the same
Brownian motion but starting from x0 and y0, satisfy that, ∀t > 0,

E
[‖Xt − Yt‖p]≤ e−λpt‖x0 − y0‖p.

PROOF. First, we can define et � Xt − Yt , and since Xt and Yt are driven by the same
Brownian motion, we get

det = (
f (Xt) − f (Yt )

)
dt + (

g(Xt) − g(Yt )
)

dWt

By Itô’s formula, we have for any 0 < t ≤ T ,

eλpt‖et‖p − ‖e0‖p

≤
∫ t

0
λpeλps‖es‖p ds +

∫ t

0
p
〈
es, f (Xs) − f (Ys)

〉
eλps‖es‖p−2 ds
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+
∫ t

0

p(p − 1)

2

∥∥g(Xs) − g(Ys)
∥∥2eλps‖es‖p−2 ds

+
∫ t

0
peλps‖es‖p−2〈es,

(
g(Xs) − g(Ys)

)
dWs

〉
.

Therefore, by taking expectations on both sides and using the contractive Lipschitz property
(20), we obtain that

E
[
eλpt‖et‖p]≤ ‖e0‖p. �

This lemma means that the error made in previous time steps will decay exponentially and
then we can prove a uniform bound for the strong error.

THEOREM 6 (Strong convergence order in infinite time interval). If the SDE satisfies
Assumption 9, and the timestep function hδ satisfies Assumption 3 with h satisfying Assump-
tion 8, then for all p ∈ (0,p∗] there exists a constant Cp such that, ∀t ≥ 0,

E
[‖X̂t − Xt‖p]≤ Cpδp/2.

PROOF. The proof is deferred to Section 6.4. �

For the finite time interval [0, T ], we can show that the expected number of timesteps per
path increases linearly in T which is the same as for the case of uniform timesteps.

LEMMA 5 (Number of timesteps). If the SDE satisfies Assumption 9, and the timestep
function hδ satisfies Assumption 3, with h satisfying Assumption 5 and Assumption 8, then
for all T ,p ∈ (0,∞) there exists a constant cp such that

E
[
(NT − 1)p

]≤ cpT pδ−p,

where NT is again the number of timesteps required by a path approximation.

PROOF. Similar to the proof of Lemma 2, the uniform moment bound from Theorem 5
and the equation (15) give the result. �

Again, we can prove first-order strong convergence for SDEs with a uniform diffusion
coefficient.

ASSUMPTION 10 (Enhanced contractive Lipschitz properties). Assume f satisfies As-
sumption 9 and in addition, f is differentiable, and f and ∇f satisfy the polynomial growth
Lipschitz condition (16).

THEOREM 7 (Strong convergence for SDEs with uniform diffusion coefficient in infinite
time interval). If m = d , g ≡ Im, f satisfies Assumption 10, and the timestep function hδ

satisfies Assumption 3 with h satisfying Assumption 8, then for all p ∈ (0,∞) there exists a
constant Cp such that, ∀t ≥ 0,

E
[‖X̂t − Xt‖p]≤ Cpδp.

PROOF. The proof is given in Theorem 3 in [4]. �
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3. Adaptive multilevel Monte Carlo for invariant distributions. We are interested in
the problem of approximating

π(ϕ) := Eπϕ =
∫
Rm

ϕ(x)π(dx),

where π is the invariant measure of the SDE (1). Numerically, we can approximate this
quantity by simulating E[ϕ(XT )] for a sufficiently large T . In the following subsections, we
will introduce our adaptive multilevel Monte Carlo algorithm and its numerical analysis.

3.1. Algorithm. To estimate E[ϕ(XT )], the simplest Monte Carlo estimator is

1

N

N∑
n=1

ϕ
(
X̂

(n)
T

)
,

where X̂
(n)
T is the terminal value of the nth numerical path in the time interval [0, T ] us-

ing a suitable adaptive function hδ . It can be extended to multilevel Monte Carlo by using
nonnested timesteps as explained in [9]. Consider the identity

(22) E[ϕL] = E[ϕ0] +
L∑

	=1

E[ϕ	 − ϕ	−1],

where ϕ	 := ϕ(X̂	
T ) with X̂	

T being the numerical estimator of XT , which uses adaptive func-
tion hδ with δ = M−	 for some fixed M > 1. Then the standard MLMC estimator is the
following telescoping sum:

1

N0

N0∑
n=1

ϕ
(
X̂

(n,0)
T

)+
L∑

	=1

{
1

N	

N	∑
n=1

(
ϕ
(
X̂

(n,	)
T

)− ϕ
(
X̂

(n,	−1)
T

))}
,

where X̂
(n,	)
T is the terminal value of the nth numerical path in the time interval [0, T ] using

a suitable adaptive function hδ with δ = M−	.
Unlike the standard MLMC with a fixed time interval [0, T ], we now allow different levels

to have different lengths of time interval T	, satisfying 0 < T0 < T1 < · · · < T	 < · · · < TL =
T , which means that as the level 	 increases, we obtain a better approximation not only by
using smaller timesteps but also by simulating a longer time interval. However, the difficulty
is how to construct a good coupling on each level 	 since the fine path and coarse path have
different lengths of time interval T	 and T	−1.

Following the idea of Glynn and Rhee [10] to estimate the invariant measure of some
Markov chains, we perform the coupling by starting a level 	 fine path simulation at time t

f
0 =

−T	 and a coarse path simulation at time tc0 = −T	−1 and terminate both paths at t = 0. Since
the drift f and diffusion coefficient g do not depend explicitly on time t , the distribution of
the numerical solution simulated on the time interval [−T	,0] is the same as one simulated on
[0, T	]. The key point here is that the fine and coarse paths share the same driving Brownian
motion during the overlap time interval [−T	−1,0]. Owing to the result of Lemma 4, two
solutions to the SDE satisfying Assumption 9, starting from different initial points and driven
by the same Brownian motion will converge exponentially. Therefore, the fact that different
levels terminate at the same time is crucial to the variance reduction of the multilevel scheme.

Our new multilevel scheme still satisfies the identity (22) but with ϕ	 = ϕ(X̂	
0) with X̂	

0
being the terminal value of the numerical path approximation on the time interval [−T	,0]
using adaptive function hδ with δ = M−	. The corresponding new MLMC estimator is

(23) Ŷ := 1

N0

N0∑
n=1

ϕ
(
X̂

(n,0)
0

)+
L∑

	=1

{
1

N	

N	∑
n=1

(
ϕ
(
X̂

(n,	)
0

)− ϕ
(
X̂

(n,	−1)
0

))}
,
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Algorithm 1: Outline of the algorithm for a single adaptive MLMC sample for scalar
SDE on level 	 in time interval [−T	,0]
t := −T	; tc := −T	−1; tf := −T	;
hc := 0; hf := 0;
�Wc := 0; �Wf := 0;
X̂c = x0; X̂f = x0;
while t < 0 do

told := t ;
t := min(tc, tf );
�W := N(0, t − told);
�Wc := �Wc + �W ;
if t = −T	−1 then

�Wc := 0;
end
�Wf := �Wf + �W ;
if t = tc then

update coarse path X̂c using hc and �Wc;
compute new adapted coarse path timestep hc = h2δ(X̂c);
hc := min(hc,−tc);
tc := tc + hc;
�Wc := 0;

end
if t = tf then

update fine path X̂f using hf and �Wf ;
compute new adapted fine path timestep hf = hδ(X̂f );
hf := min(hf ,−tf );
tf := tf + hf ;
�Wf := 0;

end
end
Result: X̂f − X̂c

where X̂
(n,	)
0 is the terminal value of the nth numerical path through the time interval [−T	,0]

using the adaptive function hδ with δ = M−	. Algorithm 1 outlines the detailed implementa-
tion of a single adaptive MLMC sample using a nonnested adaptive timestep on level 	 with
M = 2.

3.2. Numerical analysis. First, we state the exponential convergence to the invariant
measure of the original SDE, which can help us to measure the approximation error caused
by truncating the infinite time interval.

LEMMA 6 (Exponential convergence). If the SDE satisfies Assumptions 1 and 9 and ϕ

satisfies the polynomial growth Lipschitz condition (14), then there exists a constant μ0 > 0
depending on x0 and the constants in Lemmas 3 and 4 such that

(24)
∣∣E[ϕ(Xt) − π(ϕ)

]∣∣≤ μ0e−λt .
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PROOF. We can define a new random variable Y0 which follows the invariant measure π ,
then the solution Yt to the SDE with the initial value Y0 will also follow the invariant measure
for any t > 0. Therefore, by the polynomial growth Lipschitz property of ϕ and Lemmas 3
and 4 and Hölder inequality, there exist constants μ0,μ1 > 0 such that∣∣E[ϕ(Xt) − π(ϕ)

]∣∣
= ∣∣E[ϕ(Xt) − ϕ(Yt )

]∣∣≤ E
[(

γ
(‖Xt‖q + ‖Yt‖q)+ μ

)‖Xt − Yt‖]
≤ E

[∣∣γ (‖Xt‖q + ‖Yt‖q)+ μ
∣∣2]1/2

E
[‖Xt − Yt‖2]1/2

≤ μ1E
[‖X0 − Y0‖2]1/2e−λt ≤ 2μ1

[‖x0‖ + C1
]
e−λt := μ0e−λt . �

Note that Assumption 9 is a sufficient condition for this lemma. We use it here to show
that the contractivity rate λ is a lower bound for the true convergence rate λ∗ and it is λ that
determines the choice of T	 shown in the following results.

Now, we first bound the variance of the MLMC correction for each level.

LEMMA 7 (Variance of MLMC corrections for a bounded diffusion coefficient). If ϕ

satisfies the polynomial growth Lipschitz condition (14), the SDE satisfies Assumption 9 and
the timestep function hδ satisfies Assumption 3 with h satisfying Assumption 8 and δ = M−	

for each level, then for each level 	, there exist constants c1 and c2 such that the variance of
correction V	 := V[ϕ(X̂	

0) − ϕ(X̂	−1
0 )] satisfies

(25) V	 ≤ c1M
−	 + c2e−2λT	−1 .

PROOF. By the polynomial growth Lipschitz condition (14) of ϕ, Hölder inequality and
Theorem 5, there exists a constant κ > 0 such that

V	 ≤ E
[∣∣ϕ(X̂	

0
)− ϕ

(
X̂	−1

0

)∣∣2]≤ κE
[∥∥X̂	

0 − X̂	−1
0

∥∥p∗]2/p∗
.

X̂	
t and X̂	−1

t share the same driving Brownian motion from −T	−1 to 0. We can define the
corresponding solution to the SDE (1) starting from x0 at time −T	−1 and driven by the same
Brownian motion as X̂	−1

t through time interval [−T	−1,0] by Xc
t , and the solution starting

from x0 at time −T	 driven by the same Brownian motion as X̂	
t through the time interval

[−T	,0] by X
f
t .

Then, by Jensen’s inequality, we obtain that

E
[∥∥X̂	

0 − X̂	−1
0

∥∥p∗]≤ 3p∗−1(E1 + E2 + E3),

where

E1 = E
[∥∥Xc

0 − X̂	−1
0

∥∥p∗]
,

E2 = E
[∥∥X̂	

0 − X
f
0

∥∥p∗]
,

E3 = E
[∥∥Xf

0 − Xc
0

∥∥p∗]
.

Theorem 6 implies that there exists a constant Cp∗ which does not depend on T	 such that

E1 ≤ Cp∗M−p∗(	−1)/2, E2 ≤ Cp∗M−p∗	/2,

and Lemma 3 and Lemma 4 imply that there exists a constant C depending on x0 and C4 in
Lemma 1 such that

E3 ≤ E
[∥∥Xf

−T	−1
− x0

∥∥p∗]
e−p∗λT	−1

≤ 2p∗−1(‖x0‖p∗ +E
[∥∥Xf

−T	−1

∥∥p∗])
e−p∗λT	−1 ≤ Ce−p∗λT	−1 .
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Finally, by the fact that av + bv ≥ (a + b)v for any a, b > 0 and 0 < v < 1, there exist
constants c1, c2 > 0 such that

V	 ≤ κ
[
3p∗−1(Cp∗M−p∗(	−1)/2 + Cp∗M−p∗	/2 + Ce−p∗λT	−1

)]2/p∗

≤ c1M
−	 + c2e−2λT	−1 . �

Given this, we obtain the following theorem for the complexity of the MLMC algorithm
to achieve a specified mean square error accuracy.

THEOREM 8 (MLMC for invariant measure). If ϕ satisfies the polynomial growth Lip-
schitz condition (14), the SDE satisfies Assumption 9 and the timestep function hδ satisfies
Assumption 3 with h satisfying Assumption 8 and δ = M−	 for each level, then by choosing
suitable values for L and T	, N	 for each level 	, there exists a constant c3 such that the
MLMC estimator (23) has a mean square error (MSE) with bound

E
[(

Ŷ − π(ϕ)
)2]≤ ε2,

and an expected computational cost CMLMC with bound

CMLMC ≤ c3ε
−2| log ε|3.

PROOF. By Jensen’s inequality, the mean square error can be decomposed into three
parts:

E
[(

Ŷ − π(ϕ)
)2]= V[Ŷ ] + ∣∣E[Ŷ ] − π(ϕ)

∣∣2
≤ V[Ŷ ] + 2

∣∣E[Ŷ ] −E
[
ϕ(XTL

)
]∣∣2 + 2

∣∣E[ϕ(XTL
)
]− π(ϕ)

∣∣2,
which enables us to achieve the MSE bound by bounding each part by ε2/3.

If we set

(26) T	 = (	 + 1) logM/2λ,

then V	 ≤ (c1 + c2)M
−	, which has the same order of magnitude as the variance bound for

the standard MLMC theorem. Lemma 6 implies that

2
∣∣E[ϕ(XTL

)
]− π(ϕ)

∣∣2 ≤ 2μ2
0e−2λTL ≤ ε2

3

provided

(27) L ≥
⌈

2| log ε|
logM

+ log(6μ2
0)

logM

⌉
.

By Theorems 5 and 6, the polynomial growth Lipschitz condition (14) of ϕ and Hölder’s
inequality, there exist constants κ1, κ2 > 0 such that

2
∣∣E[Ŷ ] −E

[
ϕ(XTL

)
]∣∣2 = 2

∣∣E[ϕ(X̂L
TL

)− ϕ(XTL
)
]∣∣2

≤ 2κ1E
[∥∥X̂L

TL
− XTL

∥∥4]1/2 ≤ κ2M
−L ≤ ε2

3
,

provided

(28) L ≥
⌈

2| log ε|
logM

+ log(3κ2)

logM

⌉
.
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Combining the requirements (27) and (28), we choose to define

(29) L =
⌈

2| log ε|
logM

+ log(max(6μ2
0,3κ2))

logM

⌉
,

giving L = O(| log ε|) as ε → 0. Therefore, we have V	 = O(M−	) and C	 = O(	M	),
where C	 is the expected cost of a sample on level 	. Following the analysis in [8], choosing

N	 =
⌈

3(c1 + c2)
M−	

√
	 + 1

ε−2
L∑

	′=0

√
	′ + 1

⌉
,

to ensure that the overall variance is less than ε2

3 , then the expected total cost is bounded by,
for some constant C0,

CMLMC ≤ 3C0(c1 + c2)ε
−2

(
L∑

	=0

√
	 + 1

)2

+ C0

L∑
	=0

(	 + 1)M	.

Since
L∑

	=0

√
	 + 1 ≤

∫ L+1

0

√
x + 1 dx ≤ 2

3
(L + 2)3/2 = O

(| log ε|3/2)
and

L∑
	=0

(	 + 1)M	 ≤ (L + 1)2ML = O
(
ε−2| log ε|2),

we obtain the desired final result that there exists a constant c3 such that

CMLMC ≤ c3ε
−2| log ε|3. �

For the SDEs with a uniform diffusion coefficient, the computational cost can be reduced
to O(ε−2).

THEOREM 9 (SDEs with uniform diffusion coefficient). If ϕ satisfies the polynomial
growth Lipschitz condition (14), and for the SDE, m = d , g ≡ Im, f satisfies Assumption 6,
and the timestep function hδ satisfies Assumption 3 with h satisfying Assumption 8 and δ =
M−	 for each level, then for each level 	, there exist constants c1 and c2 such that

(30) V	 ≤ c1M
−2	 + c2e−2λT	−1 .

Furthermore, by choosing suitable L, T	 and N	 for each level 	 in the MLMC estimator
(23), one can achieve the MSE bound ε2 at an expected computational cost bounded by

CMLMC ≤ c3ε
−2,

for some constant c3 > 0.

PROOF. Following a similar argument to the proof of Lemma 7, Theorem 7 implies V	 ≤
c1M

−2	 + c2e−2λT	−1 , and by choosing T	 to be

(31) T	 = (	 + 1) logM/λ,

we obtain V	 ≤ (c1 + c2)M
−2	. The computational cost of a single MLMC sample on level 	

satisfies

C	 ≤ C0(	 + 1)M	 ≤ CM(1+ε)	
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for any 0 < ε � 1 and some C > 0. Therefore, the standard MLMC Theorem 1 in [8] is
applicable with γ < β , giving an O(ε−2) complexity. �

Note that the choice of T	 (31) for the equation with uniform diffusion coefficient is dif-
ferent from (26) for SDEs with a bounded diffusion coefficient. In other words, the strong
convergence result and the contractive convergence rate λ together determine T	. In some
cases, λ needs to be estimated numerically through Lemma 4. The difference in the variance
convergence rate also affects the choice of M . Based on the analysis in [7], the optimal M

for SDEs with general g is in the range 4–8, while in the uniform diffusion coefficient case
the optimal M is around 2.

4. Examples and numerical results. In this section, we first give suggestions on the
choice of adaptive function together with some example SDEs, then present numerical results
for a finite time interval and their extension to the infinite time interval.

• Scalar SDEs. For any scalar SDE satisfying Assumption 1, we can choose the adaptive
function:

hδ(x) = max(1, |x|)
max(1, |f (x)|)δ.

• Multidimensional SDEs. For SDEs with a drift which, for some ξ, η > 0, satisfying the
condition

(32)
〈
x,f (x)

〉≤ −ξ‖x‖∥∥f (x)
∥∥+ η,

one can use

hδ(x) = max(1,‖x‖)
max(1,‖f (x)‖)δ.

Alternatively, if condition (32) is not satisfied, we can use

hδ(x) = max(1,‖x‖2)

max(1,‖f (x)‖2)
δ.

It is straightforward to check that these selected hδ(x) satisfy Assumptions 3 and 5. These
are only general suggestions and users can design a more specific and efficient adaptive func-
tion based on the applications. For example, consider the Ginzburg–Landau equation, which
describes a phase transition from the theory of superconductivity [15, 18],

dXt =
((

η + 1

2
σ 2
)
Xt − λX3

t

)
dt + σXt dWt,

where η ≥ 0, λ,σ > 0. The drift and diffusion coefficients satisfy Assumptions 1 and 4 and,
therefore, all of the theory is applicable, with a suitable choice for hδ(x) being

hδ(x) = δ min
(
T ,λ−1x−2).

The second example is the stochastic Lorenz equation, which is a three-dimensional system
modelling convection rolls in the atmosphere [14]:

dX
(1)
t = (

α1X
(2)
t − α1X

(1)
t

)
dt + β1X

(1)
t dW

(1)
t

dX
(2)
t = (

α2X
(1)
t − X

(2)
t − X

(1)
t X

(3)
t

)
dt + β2X

(2)
t dW

(2)
t

dX
(3)
t = (

X
(1)
t X

(2)
t − α3X

(3)
t

)
dt + β3X

(3)
t dW

(3)
t
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where α1, α2, α3, β1, β2, β3 > 0. The diffusion coefficient is globally Lipschitz, and since
〈x,f (x)〉 consists solely of quadratic terms, the drift satisfies the one-sided linear growth
condition. Noting that ‖f ‖2 ≈ x2

1(x2
2 + x2

3) < ‖x‖4 as ‖x‖ → ∞, an appropriate maximum
timestep is

h(x) = min
(
T ,γ ‖x‖−2),

for any γ > 0. However, the drift does not satisfy the one-sided Lipschitz condition and,
therefore, the theory on the order of strong convergence is not applicable.

The test case taken from [16] is

dXt = −(Xt + X3
t

)
dt + dWt, x0 = 1,

with T = 1. The three methods tested are the tamed Euler scheme, the implicit Euler scheme
and the new Euler scheme with adaptive timestep. We can set hmax = 1, M = 2 and choose
the adaptive function h, hδ to be

h(x) = max(1, |x|)
max(1, |x + x3|) , hδ(x) = 2−	h(x).

Figure 1 shows the the root-mean-square error plotted against the average number of
timesteps. The plot on the left shows the error in X̂T at the terminal time, while the plot
on the right shows the error in the maximum magnitude of the solution over the whole in-
terval. The error in each case is computed by comparing the numerical solution to a second
solution with a timestep, or δ, which is 2 times smaller.

When looking at the error in the final solution, all 3 methods have similar accuracy with
first-order strong convergence. However, as reported in [16], the cost of the implicit method
per timestep is much higher. The plot of the error in the maximum magnitude shows that the
new method is slightly more accurate, presumably because it uses smaller timesteps when
the solution is large. The plot was included to show that comparisons between numerical
methods depend on the choice of accuracy measure being used.

Next, we extend it to adaptive MLMC for the infinite time interval, since it also satisfies
the dissipative condition (8) and the contractive condition (20). Our interest is to compute
π(ϕ) where ϕ(x) = (x + 1)2 satisfies a polynomial growth Lipschitz condition.

Since the probability density function π is

exp(−x2 − 1
2x4)∫∞

−∞ exp(−x2 − 1
2x4)dx

,

FIG. 1. Numerical results for finite time interval.
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FIG. 2. Variance of corrections on each level 	.

we can use numerical integration to calculate an approximate value: ϕ(π) ≈ 1.2896 with
accuracy 10−5, and use this value as a benchmark for our numerical tests.

Next, we need to determine T	 for each level. Linear perturbations to the SDE satisfy the
ODE

dYt = −(1 + 3X2
t

)
Yt dt

and, therefore, λ ≥ 1. Hence we choose to use T	 = (	 + 1) log 2 to ensure that the truncation
error is acceptably small.

Figure 2 displays the variance of the multilevel correction on each level as a function of
T ; this is to be compared to the bound in result (30). The exponential part dominates the
variance at the beginning, so the variance decays exponentially. As time increases, the M−2	

term becomes the major part of the variance, and the variance stops decreasing.
Figure 3 presents the MLMC results. The top right plot shows first-order convergence

for the weak error and the top left plot shows second-order convergence for the multilevel
correction variance. Hence the computational cost for RMS accuracy ε is O(ε−2) which is
verified in the bottom right plot, while the bottom left plot shows the number of MLMC sam-
ples on each level as a function of the target accuracy. Here, we also compared our MLMC
scheme with standard Monte Carlo (Standard MC) method directly simulating X̂TL

, the adap-
tive scheme proposed by Lemaire using same step sequence as in example 7.1 in [21], and the
MATLA in [34] with timestep h = 0.1. Both standard MC and adaptive scheme by Lemaire
have the order O(ε−3). MLMC and MATLA have the optimal complexity O(ε−2). In this
case, MATLA performs better due to the relative short mixing time and low correlations.
However, MATLA and adaptive scheme by Lemaire only simulate one path and are difficult
to perform parallel computing.

5. Extension to a larger class of ergodic SDEs. In this section, we extend our adaptive
scheme to a larger class of ergodic SDEs: the SDEs with negative Lyapunov exponent and
then propose a new MLMC scheme with change of measure for the SDEs with a positive Lya-
punov exponent, that is, a chaotic system. For a detailed analysis of the Lyapunov exponent
for the nonlinear stochastic system, please refer to Arnold [1].
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FIG. 3. Adaptive MLMC for invariant distribution.

5.1. Systems with negative Lyapunov exponent. In practice, the condition (20) in As-
sumption 9 is restrictive and means the SDE is contractive everywhere in the whole space.
However, this condition is only a sufficient condition to make the adaptive MLMC work.
Numerically, our adaptive MLMC does not need contractivity everywhere but does require
contractivity in a global sense. Therefore, intuitively, our scheme works well for systems with
negative Lyapunov exponent. We present the numerical results for both a 100-dimensional
SDE with double-well potential energy and the FENE model.

5.1.1. Double-well potential energy. First, we apply adaptive MLMC for a 100-dimen-
sional SDEs with double-well potential energy:

dXt =
(
Xt − 1

100
‖Xt‖2Xt

)
dt + dWt, x0 = 0,

where 0 is the original point in R100. Our interest is to compute π(ϕ) with φ(x) = ‖x‖2

satisfying the polynomial growth Lipschitz condition. Although this SDE does not satisfy
Assumption 9, it has negative Lyapunov exponent and the numerical estimation of the con-
tractivity rate λ in Lemma 4 is 0.15. We choose T	 based on equation (31).

Figure 4 shows the variance decays due to the contractivity and the first- order strong
convergence. The convergence results for the adaptive MLMC method and comparisons with
other schemes are shown in Figure 5. We use MATLA with timestep h = 0.02 as the optimal
scaling suggested in [33] and the adaptive scheme proposed by Lemaire using same step
sequence as in Example 7.1 in [21].
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FIG. 4. Variance of corrections on each level 	 for 100-dimensional double-well potential SDE.

5.1.2. FENE model. The Finitely Extensible Nonlinear Elastic (FENE) model is a
Langevin equation describing the motion of a long-chained polymer in a liquid [2, 9]. The
unusual feature of the FENE model is that the potential V (x) becomes infinite for finite val-
ues of x. In the simplest case of a molecule with a single bond, Xt is three-dimensional and

FIG. 5. Adaptive MLMC for invariant distribution (double well).
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the SDE takes the form

dXt = − 16Xt

1 − ‖Xt‖2 dt + dWt, X0 = 0,

which is defined on ‖Xt‖ < 1. The drift term ensures that ‖Xt‖ < 1 for all t > 0 almost
surely. Also, it can be verified that 〈x,f (x)〉 ≤ 0.

Because the SDE is not defined on all of R3, the theory in this paper is not applicable.
However, it was one of the original motivations for the analysis in this paper, since it seems
natural to use an adaptive timestep, taking smaller timestep as ‖X̂t‖ approaches 1, to maintain
good accuracy, as the drift varies so rapidly near the boundary, and to greatly reduce the
possibility of needing to clamp the computed solution to prevent it from crossing a numerical
boundary at radius 1 − δ for some δ � 1 [9].

Numerically, we use the adaptive function h, hδ to be

h(x) = (
1 − ‖x‖)2/8, hδ(x) = 2−	h(x)

to reduce the timestep when ‖X̂t‖ approaches the maximum radius. All three methods (Tamed
Euler, Implicit Euler, Adaptive Euler) are clamped so that they do not exceed a radius of
rmax = 1 − 10−10; if the new computed value X̂tn+1 exceeds this radius then it is replaced by
(rmax/‖X̂tn+1‖)X̂tn+1 .

The numerical results in Figure 6 show that the new scheme is considerably more accurate
than either of the others, confirming that an adaptive timestep is desirable in this situation in
which the drift varies enormously as ‖X̂t‖ approaches the maximum radius. Figure 7 shows
that the adaptive MLMC also works well and achieves the optimal computational cost O(ε−2)

for the invariant measure computation. All other methods are not applicable here.

5.2. Chaotic system. For chaotic systems with a positive Lyapunov exponent, for exam-
ple, the stochastic Lorenz equation, our schemes will fail due to the loss of contractivity. In
[5], we deal with these chaotic systems by introducing a coupling term between the coarse
and fine paths, which leads to a change of measure, and hence a Radon–Nikodym derivative
in the Monte Carlo estimates. We give a brief outline of this shemem. Instead of considering

FIG. 6. Numerical results for FENE model in finite time interval.
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FIG. 7. Adaptive MLMC for invariant distribution (FENE).

the fine and coarse paths of the original SDEs under the same measure P:

dX
f
t = f

(
X

f
t

)
dt + σ dWP

t ,

dXc
t = f

(
Xc

t

)
dt + σ dWP

t .

We add a spring term with spring coefficient S > 0 for both fine path and coarse paths and
consider both paths under different measures:

Qf : dY
f
t = f

(
Y

f
t

)
dt + σ dW

Qf

t ,

Qc : dY c
t = f

(
Y c

t

)
dt + σ dW

Qc

t ,

with

(33)
dW

Qf

t = S

σ

(
Y c

t − Y
f
t

)
dt + dWP

t ,

dW
Qc

t = S

σ

(
Y

f
t − Y c

t

)
dt + dWP

t .

Therefore, under simulation measure P, we obtain

dY
f
t = S

(
Y c

t − Y
f
t

)
dt + f

(
Y

f
t

)
dt + σ dWP

t ,

dY c
t = S

(
Y

f
t − Y c

t

)
dt + f

(
Y c

t

)
dt + σ dWP

t .
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The Girsanov theorem gives

EP[ϕ(Xf
T

)]−EP[ϕ(Xc
T

)]= EQf [
ϕ
(
Y

f
T

)]−EQc[
ϕ
(
Y c

T

)]
= EP

[
ϕ
(
Y

f
T

)dQf

dPT

− ϕ
(
Y c

T

)dQc

dPT

]
,

where dQf

dPT
is the corresponding Radon–Nikodym derivative with following form:

dQf

dPT

= exp
(
−
∫ T

0

〈
S

σ

(
Y

f
t − Y c

t

)
,dWP

t

〉
− 1

2

∫ T

0

S2

σ 2

∥∥Yf
t − Y c

t

∥∥2 dt

)
and dQc

dPT
is similar.

The benefit of this technique is that under measure P, we recover the contractivity between
Y c

t and Y
f
t using sufficiently large S > 0,

d
(
Y

f
t − Y c

t

)= −2S
(
Y

f
t − Y c

t

)
dt + (

f
(
Y

f
t

)− f
(
Y c

t

))
dt,

and the variance of the level estimator increases linearly in T instead of the exponential
increase of standard MLMC. For the detailed numerical scheme, see Section 2 in [5]. Note
that it is not possible in general to use different simulation times T	 on different multilevel
levels as in the current MLMC scheme. Instead the same simulation time T has to be used on
all levels, with T being adjusted (automatically) to ensure the necessary weak convergence as
the target error approaches zero.

6. Proofs. This section has the proofs of the four main theorems in this paper, two on
stability, and two on the order of strong convergence.

6.1. Theorem 1.

PROOF. The proof proceeds in four steps. First, we introduce a constant K to modify our
discretisation scheme. Second, we derive an upper bound for ‖X̂K

t ‖p . Third, we show that
the moments E[sup0≤t≤T ‖X̂K

t ‖p] are each bounded by a constant Cp,T which depends on p

and T but is independent of K . Finally, we reach the desired conclusion by taking the limit
K → ∞ and using the monotone convergence theorem.

The proof is given for p ≥ 4; the result for 0 ≤ p < 4 follows from Hölder’s inequality.
Step 1: K-Scheme definition.
For any K > ‖X0‖, we modify our discretisation scheme to

(34) X̂K
tn+1

= PK

(
X̂K

tn
+ f

(
X̂K

tn

)
hn + g

(
X̂K

tn

)
�Wn

)
,

where PK(Y ) � min(1,K/‖Y‖)Y and, therefore, ‖X̂K
tn

‖ ≤ K,∀n. The piecewise constant

approximation for intermediate times is again X
K

t = X̂K
t , and the continuous approximation

is

X̂K
t = PK

(
X̂K

t + f
(
X̂K

t

)
(t − t) + g

(
X̂K

t

)
(Wt − Wt)

)
.

Since h(x) is continuous and strictly positive, it follows that

hK
min � inf‖x‖≤K

h(x) > 0.

This strictly positive lower bound for the timesteps implies that T is attainable.
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Step 2: pth moment of K-Scheme solution.
‖PK(Y )‖ ≤ ‖Y‖, so if we define φ(x) � x + h(x)f (x), then (34) gives∥∥X̂K

tn+1

∥∥2 ≤ ∥∥X̂K
tn

∥∥2 + 2hn

(〈
X̂K

tn
, f

(
X̂K

tn

)〉+ 1

2
hn

∥∥f (X̂K
tn

)∥∥2
)

+ 2
〈
φ
(
X̂K

tn

)
, g
(
X̂K

tn

)
�Wn

〉+ ∥∥g(X̂K
tn

)
�Wn

∥∥2
.

Using condition (10) for h(x), then gives

(35)

∥∥X̂K
tn+1

∥∥2 ≤ ∥∥X̂K
tn

∥∥2 + 2α
∥∥X̂K

tn

∥∥2
hn + 2βhn

+ 2
〈
φ
(
X̂K

tn

)
, g
(
X̂K

tn

)
�Wn

〉+ ∥∥g(X̂K
tn

)
�Wn

∥∥2
.

Similarly, for the partial timestep from t to t , since (t − t) ≤ hnt ,

(36)
〈
X̂K

t , f
(
X̂K

t

)〉+ 1

2
(t − t)

∥∥f (X̂K
t

)∥∥2 ≤ α
∥∥X̂K

t

∥∥2 + β,

and, therefore, we obtain

(37)

∥∥X̂K
t

∥∥2 ≤ ∥∥X̂K
t

∥∥2 + 2α
∥∥X̂K

t

∥∥2
(t − t) + 2β(t − t)

+ 2
〈
X̂K

t + f
(
X̂K

t

)
(t − t), g

(
X̂K

t

)
(Wt − Wt)

〉
+ ∥∥g(X̂K

t

)
(Wt − Wt)

∥∥2
.

Summing (35) over multiple timesteps and then adding (37) gives

∥∥X̂K
t

∥∥2 ≤ ‖X0‖2 + 2α

(
nt−1∑
k=0

∥∥X̂K
tk

∥∥2
hk + ∥∥X̂K

t

∥∥2
(t − t)

)
+ 2βt

+ 2
nt−1∑
k=0

〈
φ
(
X̂K

tk

)
, g
(
X̂K

tk

)
�Wk

〉
) +

nt−1∑
k=0

∥∥g(X̂K
tk

)
�Wk

∥∥2

+ 2
〈
X̂K

t + f
(
X̂K

t

)
(t − t), g

(
X̂K

t

)
(Wt − Wt)

〉
+ ∥∥g(X̂K

t

)
(Wt − Wt)

∥∥2
.

Rewriting the first summation as a Riemann integral, and the second as an Itô integral,
raising both sides to the power p/2 and using Jensen’s inequality, we obtain

(38)

∥∥X̂K
t

∥∥p ≤ 7p/2−1

{
‖X0‖p +

(
2α

∫ t

0

∥∥XK

s

∥∥2 ds

)p/2
+ (2βt)p/2

+
∣∣∣∣2∫ t

0

〈
φ
(
X

K

s

)
, g
(
X

K

s

)
dWs

〉∣∣∣∣p/2
+
(

nt−1∑
k=0

∥∥g(XK

tk

)
�Wk

∥∥2

)p/2

+ ∣∣2〈XK

t + f
(
X

K

t

)
(t − t), g

(
X

K

t

)
(Wt − Wt)

〉∣∣p/2

+ ∥∥g(XK

t

)
(Wt − Wt)

∥∥p

}
.

Step 3: Expected supremum of pth moment of K-Scheme.
For any 0 ≤ t ≤ T , we take the supremum on both sides of inequality (38) and then take

the expectation to obtain

E
[

sup
0≤s≤t

∥∥X̂K
s

∥∥p
]
≤ 7p/2−1(I1 + I2 + I3 + I4 + I5),
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where

I1 = ‖X0‖p +E

[(
2α

∫ t

0

∥∥XK

s

∥∥2 ds

)p/2]
+ (2βt)p/2,

I2 = E

[
sup

0≤s≤t

∣∣∣∣2∫ s

0

〈
φ
(
X

K

u

)
, g
(
X

K

u

)
dWu

〉∣∣∣∣p/2]
,

I3 = E

[(
nt−1∑
k=0

∥∥g(XK

tk

)
�Wk

∥∥2

)p/2]
,

I4 = E
[

sup
0≤s≤t

∣∣2〈XK

s + f
(
X

K

s

)
(s − s), g

(
X

K

s

)
(Ws − Ws)

〉∣∣p/2
]
,

I5 = E
[

sup
0≤s≤t

∥∥g(XK

s

)
(Ws − Ws)

∥∥p
]
.

We now consider I1, I2, I3, I4, I5 in turn. Using Jensen’s inequality, we obtain

I1 ≤ ‖X0‖p + (2α)p/2T p/2−1
∫ t

0
E
[

sup
0≤u≤s

∥∥X̂K
u

∥∥p
]

ds + (2βT )p/2.

For I2, we begin by noting that due to condition (10), for u < t we have∥∥φ(XK

u

)∥∥2 = ∥∥XK

u

∥∥2 + 2h
(
X

K

u

)(〈
X

K

u ,f
(
X

K

u

)〉+ 1

2
h
(
X

K

u

)∥∥f (XK

u

)∥∥2
)

≤ ∥∥XK

u

∥∥2 + 2h
(
X

K

u

)(
α
∥∥XK

u

∥∥2 + β
)

≤ (1 + 2αT )
∥∥XK

u

∥∥2 + 2βT ,

and hence by Jensen’s inequality∥∥φ(XK

u

)∥∥p/2 ≤ 2p/4−1((1 + 2αT )p/4∥∥XK

u

∥∥p/2 + (2βT )p/4).
In addition, the linear growth condition (9) gives∥∥g(XK

u

)∥∥p/2 ≤ 2p/4−1(αp/4∥∥XK

u

∥∥p/2 + βp/4),
and combining the last two inequalities, there exists a constant cp,T depending on p and T ,
in addition to α, β , such that∥∥φ(XK

u

)T
g
(
X

K

u

)∥∥p/2 ≤ cp,T

(∥∥XK

u

∥∥p + 1
)
.

Then, by the Burkholder–Davis–Gundy inequality, there is a constant Cp such that

I2 ≤ Cp2p/2E

[(∫ t

0

∥∥φ(XK

u

)T
g
(
X

K

u

)∥∥2 du

)p/4]
≤ Cp2p/2T p/4−1E

[∫ t

0

∥∥φ(XK

u

)T
g
(
X

K

u

)∥∥p/2 du

]
≤ cp,T Cp2p/2T p/4−1

(∫ t

0
E
[

sup
0≤u≤s

∥∥X̂K
u

∥∥p
]

ds + T

)
.

For I3, we start by observing that by standard results there exists a constant cp which
depends solely on p such that for any tk ≤ s < tk+1,

(39) E
[

sup
tk≤u≤s

‖Wu − Wtk‖p | Ftk

]
= cp(s − s)p/2.
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Using Jensen’s inequality and (39) with s ≡ tk+1 so that s − s = hk ,

I3 ≤ T p/2−1E

[
nt−1∑
k=0

hk

∥∥g(XK

tk

)∥∥p ‖�Wk‖p

h
p/2
k

]

≤ T p/2−1cpE

[∫ t

0

∥∥g(XK

s

)∥∥p ds

]
.

Using condition (9), and Jensen’s inequality, we then obtain

I3 ≤ (2T )p/2−1cp

(
αp/2

∫ t

0
E
[

sup
0≤u≤s

∥∥X̂K
u

∥∥p
]

ds + βp/2T

)
.

For I4, using (36) and following the same argument as for I2, there exists a constant cp,T

depending on both p and T such that∥∥XK

s + f
(
X

K

s

)
(s − s)

∥∥p/2∥∥g(XK

s

)∥∥p/2 ≤ cp,T

(∥∥XK

s

∥∥p + 1
)
.

Therefore, again using (39),

I4 ≤ 2p/2E
[

sup
0≤s≤t

∣∣〈XK

s + f
(
X

K

s

)
(s − s), g

(
X

K

s

)
(Ws − Ws)

〉∣∣p/2
]

≤ cp,T 2p/2E

[
nt−1∑
k=0

(∥∥XK

tk

∥∥p + 1
)

sup
tk≤s<tk+1

∥∥(Ws − Ws)
∥∥p/2

+ (∥∥XK

t

∥∥p + 1
)

sup
t≤s≤t

∥∥(Ws − Ws)
∥∥p/2

]

≤ cp/2cp,T 2p/2T p/4−1E

[
nt−1∑
k=0

(∥∥XK

tk

∥∥p + 1
)
hk + (∥∥XK

t

∥∥p + 1
)
(t − t)

]

≤ cp/2cp,T 2p/2T p/4−1
(∫ t

0
E
[

sup
0≤u≤s

∥∥X̂K
u

∥∥p
]

ds + T

)
.

Similarly, using the same definition for cp , we have

I5 ≤ cp(2T )p/2−1
(
αp/2

∫ t

0
E
[

sup
0≤u≤s

∥∥X̂K
u

∥∥p
]

ds + βp/2T

)
.

Collecting together the bounds for I1, I2, I3, I4, I5, we conclude that there exist constants
C1

p,T and C2
p,T such that

E
[

sup
0≤s≤t

∥∥X̂K
s

∥∥p
]
≤ C1

p,T + C2
p,T

∫ t

0
E
[

sup
0≤u≤s

∥∥X̂K
u

∥∥p
]

ds,

and Grönwall’s inequality gives the result

E
[

sup
0≤t≤T

∥∥X̂K
t

∥∥p
]
≤ C1

p,T exp
(
C2

p,T T
)
� Cp,T < ∞.

Step 4: Expected supremum of pth moment of X̂t .
For any ω ∈ 
, X̂t = X̂K

t for all 0 ≤ t ≤ T , if and only if, sup0≤t≤T ‖X̂t‖ ≤ K . Therefore,
by the Markov inequality,

P
(

sup
0≤t≤T

‖X̂t‖ < K
)

= P
(

sup
0≤t≤T

∥∥X̂K
t

∥∥< K
)

≥ 1 −E
[

sup
0≤t≤T

∥∥X̂K
t

∥∥4
]
/K4 → 1
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as K → ∞. Hence, almost surely, sup0≤t≤T ‖X̂t‖ < ∞ and T is attainable. Also,

lim
K→∞ sup

0≤t≤T

∥∥X̂K
t (ω)

∥∥= sup
0≤t≤T

∥∥X̂t (ω)
∥∥

and for 0 < K1 ≤ K2,

sup
0≤t≤T

∥∥X̂K1
t (ω)

∥∥≤ sup
0≤t≤T

∥∥X̂K2
t (ω)

∥∥≤ sup
0≤t≤T

∥∥X̂t (ω)
∥∥.

Therefore, by the monotone convergence theorem,

E
[

sup
0≤t≤T

‖X̂t‖p
]
= lim

K→∞E
[

sup
0≤t≤T

∥∥X̂K
t

∥∥p
]
≤ Cp,T . �

6.2. Theorem 3.

PROOF. The approach which is followed is to bound the approximation error et � X̂t −
Xt by terms which depend on either X̂s − Xs or es , and then use local analysis within each
timestep to bound the former, and Grönwall’s inequality to handle the latter.

The proof is again given for p ≥ 4; the result for 0 ≤ p < 4 follows from Hölder’s inequal-
ity.

We start by combining the original SDE with (6) to obtain

det = (
f (Xt) − f (Xt)

)
dt + (

g(Xt) − g(Xt)
)

dWt,

and then by Itô’s formula, together with e0 = 0, we get

‖et‖2 ≤ 2
∫ t

0

〈
es, f (X̂s) − f (Xs)

〉
ds − 2

∫ t

0

〈
es, f (X̂s) − f (Xs)

〉
ds

+
∫ t

0

∥∥g(Xs) − g(Xs)
∥∥2 ds + 2

∫ t

0

〈
es,

(
g(Xs) − g(Xs)

)
dWs

〉
.

Using the conditions in Assumption 4, (12) implies that

〈
es, f (X̂s) − f (Xs)

〉≤ 1

2
α‖es‖2,

(14) implies that∣∣〈es, f (X̂s) − f (Xs)
〉∣∣≤ ‖es‖L(X̂s,Xs)‖X̂s − Xs‖

≤ 1

2
‖es‖2 + 1

2
L(X̂s,Xs)

2‖X̂s − Xs‖2,

where L(x, y)� γ (‖x‖q + ‖y‖q) + μ, and (13) gives

∥∥g(Xs) − g(Xs)
∥∥2 ≤ 1

2
α‖Xs − Xs‖2 ≤ α‖es‖2 + α‖X̂s − Xs‖2.

Hence,

‖et‖2 ≤ (2α + 1)

∫ t

0
‖es‖2 ds +

∫ t

0

(
L(X̂s,Xs)

2 + α
)‖X̂s − Xs‖2 ds

+ 2
∫ t

0

〈
es,

(
g(Xs) − g(Xs)

)
dWs

〉
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and then by Jensen’s inequality we obtain

‖et‖p ≤ (3T )p/2−1(2α + 1)p/2
∫ t

0
‖es‖p ds

+ (3T )p/2−1
∫ t

0

(
L(X̂s,Xs)

2 + α
)p/2‖X̂s − Xs‖p ds

+ 3p/2−12p/2
∣∣∣∣∫ t

0

〈
es,

(
g(Xs) − g(Xs)

)
dWs

〉∣∣∣∣p/2
.

Taking the supremum of each side, and then the expectation yields

E
[

sup
0≤s≤t

‖es‖p
]
≤ (3T )p/2−1(2α + 1)p/2

∫ t

0
E
[

sup
0≤u≤s

‖eu‖p
]

ds

+ (3T )p/2−1
∫ t

0
E
[(

L(X̂s,Xs)
2 + α

)p/2‖X̂s − Xs‖p]ds

+ 3p/2−12p/2E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

〈
eu,

(
g(Xu) − g(Xu)

)
dWu

〉∣∣∣∣p/2]
.

By Hölder’s inequality,

E
[(

L(X̂s,Xs)
2 + α

)p/2‖X̂s − Xs‖p]
≤ (

E
[(

L(X̂s,Xs)
2 + α

)p]
E
[‖X̂s − Xs‖2p])1/2

,

and E[(L(X̂s,Xs)
2 + α)p] is uniformly bounded on [0, T ] due to the stability property in

Theorem 1.
In addition, by the Burkholder–Davis–Gundy inequality (which gives the constant Cp

which depends only on p) followed by Jensen’s inequality plus the Lipschitz condition for g,
we obtain

E

[
sup

0≤s≤t

∣∣∣∣∫ s

0

〈
eu,

(
g(Xu) − g(Xu)

)
dWu

〉∣∣∣∣p/2]

≤ CpE

[(∫ t

0
‖es‖2∥∥g(Xs) − g(Xs)

∥∥2 ds

)p/4]

≤ CpT p/4−1
(

1

2
α

)p/4
E

[∫ t

0
‖es‖p/2‖Xs − Xs‖p/2 ds

]

≤ CpT p/4−1
(

1

2
α

)p/4
E

[∫ t

0

1

2
‖es‖p + 1

2
‖Xs − Xs‖p ds

]

≤ CpT p/4−1
(

1

2
α

)p/4
E

[∫ t

0

(
1

2
+ 2p−2

)
‖es‖p + 2p−2‖X̂s − Xs‖p ds

]
.

Hence, using E[‖X̂s − Xs‖p] ≤ (E[‖X̂s − Xs‖2p])1/2, there are constants C1
p,T , C2

p,T such
that

(40)

E
[

sup
0≤s≤t

‖es‖p
]
≤ C1

p,T

∫ t

0
E
[

sup
0≤u≤s

‖eu‖p
]

ds

+ C2
p,T

∫ t

0

(
E
[‖X̂s − Xs‖2p])1/2 ds.
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For any s ∈ [0, T ], X̂s − Xs = f (X̂s)(s − s) + g(X̂s)(Ws − Ws), and hence, by a combi-
nation of Jensen’s and Hölder’s inequalities, we get

(41)
E
[‖X̂s − Xs‖2p]≤ 22p−1(E[∥∥f (X̂s)

∥∥4p]
E
[
(s − s)4p])1/2

+ 22p−1(E[∥∥g(X̂s)
∥∥4p]

E
[‖Ws − Ws‖4p])1/2

.

E[‖f (X̂s)‖4p] and E[‖g(X̂s)‖4p] are both uniformly bounded on [0, T ] due to stability and
the polynomial bounds on the growth of f and g. Furthermore, we have E[(s − s)4p] ≤
(δT )4p ≤ δ2pT 4p , and by standard results there is a constant cp such that E[‖Ws −Ws‖4p] =
E[E[‖Ws − Ws‖4p | Fs]] ≤ cp(δT )2p . Hence, there exists a constant C3

p,T > 0 such that

E[‖X̂s − Xs‖2p] ≤ C3
p,T δp and, therefore, equation (40) gives us

E
[

sup
0≤s≤t

‖es‖p
]
≤ C1

p,T

∫ t

0
E
[

sup
0≤u≤s

‖eu‖p
]

ds + C2
p,T

√
C3

p,T T δp/2,

and Grönwall’s inequality then provides the final result. �

6.3. Theorem 5.

PROOF. For simplicity, for α > 0, we can define M̂
α,p
t � sup0≤s≤t eαps‖X̂s‖p , and

M
α,p

t � sup0≤s≤t eαps‖Xs‖p , which implies

(42) M
α,p

t ≤ eαphmaxM̂
α,p
t ,

since Xs = X̂s and |s − s| ≤ hmax, and

(43)

∫ t

0
eγps/2‖Xs‖p/2 ds ≤ M

α,p/2
t

∫ t

0
e(γ−α)ps/2ds

≤ 2e(γ−α)pt/2

p(γ − α)
eαphmax/2M̂

α,p/2
t

provided γ > α > 0. For M̂
α,p
t , Young’s inequality gives, for any ξ > 0,

(44) M̂
α,p/2
t ≤ ξM̂

α,p
t + 1

4ξ
.

By Theorem 1, we know T is almost surely attainable. Therefore, we can directly analyse
our discretization scheme without the K truncation. The proof proceeds in three steps. First,
we derive an upper bound for eαpt‖X̂t‖p . Second, we show that the moments E[M̂α,p

t ] and
E[Mα,p

t ] are each bounded by Cpeαpt where Cp is a constant which only depends on p, x0,
hmax and the constants α, β in Assumption 8. Finally, we get the uniform bound for E[‖X̂t‖p]
and E[‖Xt‖p]. The proof is given for p ≥ 4; the result for 0 < p < 4 follows from Hölder’s
inequality.

Step 1: If we define φ(x) � x + h(x)f (x), then (5) gives

‖X̂tn+1‖2 = ‖X̂tn‖2 + 2hn

(〈
X̂tn, f (X̂tn)

〉+ 1

2
hn

∥∥f (X̂tn)
∥∥2
)

+ 2
〈
φ(X̂tn), g(X̂tn)�Wn

〉+ ∥∥g(X̂tn)�Wn

∥∥2
.

Using condition (19) for h then gives

‖X̂tn+1‖2 ≤ ‖X̂tn‖2 − 2α‖X̂tn‖2hn + 2βhn

+ 2
〈
φ(X̂tn), g(X̂tn)�Wn

〉+ ∥∥g(X̂tn)�Wn

∥∥2
.
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Since 1− 2αhn ≤ e−2αhn and g and h are both bounded, we multiply by e2αtn+1 on both sides
to obtain

(45)

e2αtn+1‖X̂tn+1‖2

≤ e2αtn‖X̂tn‖2 + 2e2α(tn+hmax)βhn + e2α(tn+hmax)β‖�Wn‖2

+ 2e2αtn+1
〈
φ(X̂tn), g(X̂tn)�Wn

〉
.

Similarly, for the partial timestep from t to t , since (t − t) ≤ hnt ,

(46)
〈
X̂t , f (X̂t )

〉+ 1

2
(t − t)

∥∥f (X̂t )
∥∥2 ≤ −α‖X̂t‖2 + β,

and, therefore, we obtain

(47)
e2αt‖X̂t‖2 ≤ e2αt‖X̂t‖2 + 2e2α(t+hmax)β(t − t) + e2α(t+hmax)β‖Wt − Wt‖2

+ 2e2αt 〈φ(X̂t ), g(X̂t )(Wt − Wt)
〉
.

Summing (45) over multiple timesteps and then adding (47) gives

(48)

e2αt‖X̂t‖2 ≤ ‖x0‖2 + 2βe2αhmax

(
nt−1∑
k=0

e2αtkhk + e2αt (t − t)

)

+ 2
nt−1∑
k=0

e2αtk+1
〈
φ(X̂tk ), g(X̂tk )�Wk

〉
)

+ βe2αhmax

nt−1∑
k=0

e2αtk‖�Wk‖2

+ 2e2αt 〈X̂t + f (X̂t )(t − t), g(X̂t )(Wt − Wt)
〉

+ βe2α(t+hmax)‖Wt − Wt‖2.

Bounding the first summation using a Riemann integral, and rewriting the second as an Itô
integral, raising both sides to the power p/2 and using Jensen’s inequality, we obtain

(49)

eαpt‖X̂t‖p ≤ 6p/2−1eαphmax

{
‖x0‖p +

(
2β

∫ t

0
e2αs ds

)p/2

+
∣∣∣∣2∫ t

0
e2α(s+h(Xs))

〈
φ(Xs), g(Xs)dWs

〉∣∣∣∣p/2

+
(
β

nt−1∑
k=0

e2αtk‖�Wk‖2

)p/2

+ ∣∣2e2αt 〈Xt + f (Xt)(t − t), g(Xt)(Wt − Wt)
〉∣∣p/2

+ βp/2eαpt‖Wt − Wt‖p

}
.

Step 2: For any 0 ≤ t ≤ T , we take the supremum on both sides of inequality (49) and then
take the expectation to obtain

E
[
M̂

α,p
t

]= E
[

sup
0≤s≤t

eαps‖X̂s‖p
]
≤ 6p/2−1eαphmax(I1 + I2 + I3 + I4 + I5),
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where

I1 = ‖x0‖p +
(

2β

∫ t

0
e2αs ds

)p/2
,

I2 = E

[
sup

0≤s≤t

∣∣∣∣2∫ s

0
e2α(u+h(Xu))〈φ(Xu), g(Xu)dWu

〉∣∣∣∣p/2]
,

I3 = E

[(
β

nt−1∑
k=0

e2αtk‖�Wk‖2

)p/2]
,

I4 = E
[

sup
0≤s≤t

∣∣2e2αs 〈Xs + f (Xs)(s − s), g(Xs)(Ws − Ws)
〉∣∣p/2

]
,

I5 = E
[

sup
0≤s≤t

βp/2eαps‖Ws − Ws‖p
]
.

We now consider I1, I2, I3, I4, I5 in turn.

I1 = ‖x0‖p + (2β)p/2
(

e2αt − 1

2α

)p/2
≤ ‖x0‖p + (β/α)p/2eαpt .

By the Burkholder–Davis–Gundy inequality, there exists a constant C1
p such that

I2 = E

[
sup

0≤s≤t

∣∣∣∣2∫ s

0
e2α(u+h(Xu))〈φ(Xu), g(Xu)dWu

〉∣∣∣∣p/2]

≤ E

[
C1

p

(∫ t

0
e4αu

∥∥φ(Xu)
T g(Xu)

∥∥2 du

)p/4]
.

Due to condition (19), for u < t we have∥∥φ(Xu)
∥∥2 = ‖Xu‖2 + 2h(Xu)

(〈
Xu,f (Xu)

〉+ 1

2
h(Xu)

∥∥f (Xu)
∥∥2
)

≤ ‖Xu‖2 + 2h(Xu)
(−α‖Xu‖2 + β

)
≤ ‖Xu‖2 + 2βhmax,

hence by Jensen’s inequality and the boundedness condition (18) of g, we obtain∥∥φ(Xu)
T g(Xu)

∥∥p/2 ≤ 2p/4−1βp/4(‖Xu‖p/2 + (2βhmax)
p/4).

One variant of the Jensen’s inequality is

(50)
∣∣∣∣∫ t

0
�(s)eγ s ds

∣∣∣∣p ≤
(∫ t

0
eγ s ds

)p−1 ∫ t

0

∣∣�(s)
∣∣peγ s ds,

for some function �. Therefore, using Jensen’s inequality (50) with γ = 2α, followed by (43)
with γ = (1 + 4/p)α and then (44) with ξ = e−αpt/2ζ , there exists a constant C2

p which is
linearly dependent on ζ−1 such that

I2 ≤ E

[
C1

p

(
e2αt/(2α)

)p/4−1
∫ t

0
eα(p/2+2)u

∥∥φ(Xu)
T g(Xu)

∥∥p/2 du

]
≤ E

[
C1

p

(
e2αt/α

)p/4−1
βp/4

∫ t

0
eα(p/2+2)u(‖Xu‖p/2 + (2βhmax)

p/4)du

]

≤ E

[
C1

p

2

(
β

α

)p/4
eαp(t+hmax)/2M̂

α,p/2
t

]
+ C1

pβp/2
(

2hmax

α

)p/4 2eαpt

p + 4
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≤ C1
p

2

(
β

α

)p/4
eαphmax/2ζE

[
M̂

α,p
t

]+ C2
peαpt .

Using discrete version of Jensen’s inequality (50), we obtain

I3 ≤ βp/2
(∫ t

0
e2αsds

)p/2−1
E

[
nt−1∑
k=0

hke2αtk
‖�Wk‖p

h
p/2
k

]

≤ cp

(
β

∫ t

0
e2αsds

)p/2
≤ cp(β/2α)p/2eαpt ,

where cp is defined in equation (39).
In considering I4, we start by observing that for tk ≤ s < tk+1,

(51) E
[

sup
tk≤u≤s

∥∥(Wu − Wtk)
∥∥p | Fs

]
= cp(s − s)p/2 ≤ cphp/2−1

max (s − s).

In addition, using (46) and following the same argument as for I2, we have∥∥Xs + f (Xs)(s − s)
∥∥p/2∥∥g(Xs)

∥∥p/2 ≤ 2p/4−1βp/4(‖Xs‖p/2 + (2βhmax)
p/4).

Therefore, combining the estimation (51), (43) with γ = 2α and (44) with ξ = e−αpt/2ζ ,
there exists a C3

p which is linearly dependent on ζ−1 such that

I4 ≤ 2p/2E
[

sup
0≤s≤t

eαps
∣∣〈Xs + f (Xs)(s − s), g(Xs)(Ws − Ws)

〉∣∣p/2
]

≤ 2p/2E
[

sup
0≤s≤t

eαps
∥∥Xs + f (Xs)(s − s)

∥∥p/2∥∥g(Xs)
∥∥p/2∥∥(Ws − Ws)

∥∥p/2
]

≤ 23p/4−1βp/4E

[
nt−1∑
k=0

eαptk
(‖Xtk‖p/2 + (2βhmax)

p/4) sup
tk≤s<tk+1

‖Ws − Ws‖p/2

+ eαpt (‖Xt‖p/2 + (2βhmax)
p/4) sup

t≤s<t
‖Ws − Ws‖p/2

]

≤ 23p/4−1βp/4cp/2h
p/4−1
max E

[∫ t

0
eαps(‖Xs‖p/2 + (2βhmax)

p/4)ds

]
≤ 23p/4βp/4cp/2h

p/4−1
max (pα)−1eαphmax/2ζE

[
M̂

α,p
t

]+ C3
peαpt .

Similarly, again using the same definition for cp , we have

I5 ≤ cpβp/2hp/2−1
max eαpt/(αp).

Collecting together the bounds for I1, I2, I3, I4, I5, we conclude that we can choose ζ > 0
sufficiently small so that there exist constants C4

p and C5
p such that

E
[
M̂

α,p
t

]≤ 1

2
E
[
M̂

α,p
t

]+ C4
p‖x0‖p + C5

peαpt ,

and hence

E
[
M̂

α,p
t

]≤ 2C4
p‖x0‖p + 2C5

peαpt .

Step 3: Due to the definition of M
α,p

t and inequality (42), for any t ≥ 0,

E
[‖Xt‖p]≤ e−αptE

[
M

α,p

t

]≤ e−αpteαphmaxE
[
M̂

α,p
t

]
≤ eαphmax

(
2C4

p‖x0‖p + 2C5
p

)
� Cp

and similarly

E
[‖X̂t‖p]≤ e−αptE

[
M̂

α,p
t

]≤ 2C4
p‖x0‖p + 2C5

p < Cp. �
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6.4. Theorem 6.

PROOF. Similar to Section 6.2, we start by combining the original SDE (1) with (6) to
obtain

et =
∫ t

0

(
f (Xs) − f (Xs)

)
ds +

∫ t

0

(
g(Xs) − g(Xs)

)
dWs,

and then by Itô’s formula and Young’s inequality, together with e0 = 0, and λ, η as defined
in Assumption 9, we get

eλpt/2‖et‖p ≤
∫ t

0

pλ

2
eλps/2‖es‖p ds +

∫ t

0
p
〈
es, f (Xs) − f (Xs)

〉
eλps/2‖es‖p−2 ds

+
∫ t

0

p(p − 1)

2

∥∥g(Xs) − g(Xs)
∥∥2eλps/2‖es‖p−2 ds

+
∫ t

0
p
〈
es,

(
g(Xs) − g(Xs)

)
eλps/2‖es‖p−2 dWs

〉
≤
∫ t

0

pλ

2
eλps/2‖es‖p ds +

∫ t

0
p
〈
es, f (X̂s) − f (Xs)

〉
eλps/2‖es‖p−2 ds

−
∫ t

0
p
〈
es, f (X̂s) − f (Xs)

〉
eλps/2‖es‖p−2 ds

+ p

∫ t

0

(
p − 1

2
+ λ

4η

)∥∥g(X̂s) − g(Xs)
∥∥2eλps/2‖es‖p−2 ds

+ p

∫ t

0

(
p − 1

2
+ η(p − 1)2

λ

)∥∥g(X̂s) − g(Xs)
∥∥2eλps/2‖es‖p−2 ds

+
∫ t

0
p
〈
es,

(
g(Xs) − g(Xs)

)
eλps/2‖es‖p−2 dWs

〉
Using the conditions in Assumption 9, (21) implies that∥∥g(X̂s) − g(Xs)

∥∥2 ≤ η‖X̂s − Xs‖2.

(20) and (21) imply that

〈
es, f (X̂s) − f (Xs)

〉+ (
p − 1

2
+ λ

4η

)∥∥g(X̂s) − g(Xs)
∥∥2 ≤ −3λ

4
‖es‖2.

(14) and Young’s inequality imply that∣∣〈es, f (X̂s) − f (Xs)
〉∣∣≤ ‖es‖L(X̂s,Xs)‖X̂s − Xs‖

≤ λ

8
‖es‖2 + 2

λ
L(X̂s,Xs)

2‖X̂s − Xs‖2,

where L(x, y)� γ (‖x‖q + ‖y‖q) + μ. Hence,

eλpt/2‖et‖p ≤
∫ t

0
−pλ

8
eλps/2‖es‖p ds

+
∫ t

0
pL̂(X̂s,Xs)‖X̂s − Xs‖2eλps/2‖es‖p−2 ds

+
∫ t

0
p
〈
es,

(
g(Xs) − g(Xs)

)
eλps/2‖es‖p−2 dWs

〉
,
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where L̂(x, y) = 2
λ
L(x, y)2 + (p−1)η

2 + η2(p−1)2

λ
. Young’s inequality implies

eλpt/2‖et‖p ≤
∫ t

0
2
(

8(p − 2)

pλ

)p/2−1
L̂(X̂s,Xs)

p/2eλps/2‖X̂s − Xs‖p ds

+
∫ t

0
p
〈
es,

(
g(Xs) − g(Xs)

)
eλpt/2‖es‖p−2 dWs

〉
.

Taking the expectation of each side yields

(52)

E
[
eλpt/2‖et‖p]
≤ 2

(
8(p − 2)

pλ

)p/2−1 ∫ t

0
E
[
L̂(X̂s,Xs)

p/2‖X̂s − Xs‖p]eλps/2 ds.

By Hölder’s inequality,

E
[
L̂(X̂s,Xs)

p/2‖X̂s − Xs‖p]≤ (
E
[
L̂(X̂s,Xs)

p]E[‖X̂s − Xs‖2p])1/2
,

and E[L̂(X̂s,Xs)
p] can be bounded by a constant C1

p due to the stability property in Theo-
rem 5. Then following the same analysis for E[‖X̂s −Xs‖2p] in Section 6.2 together with the
uniform moments bound, there exists a constant C2

p such that

E
[
eλpt/2‖et‖p]≤ 2

(
8(p − 2)

pλ

)p/2−1 ∫ t

0
C2

pδp/2eλps/2 ds,

which provides the final result:

E
[‖et‖p]≤ 4

λp

(
8(p − 2)

pλ

)p/2−1√
C1

pC2
pδp/2 � Cpδp/2 ∀t ≥ 0. �

7. Conclusions and future work. The central conclusion from this paper is that by us-
ing an adaptive timestep it is possible to make the Euler–Maruyama approximation stable for
SDEs with a globally Lipschitz diffusion coefficient and a drift which is not globally Lips-
chitz but is locally Lipschitz and satisfies a one-sided linear growth condition. If the drift also
satisfies a one-sided Lipschitz condition then the order of strong convergence is 1

2 , when look-
ing at the accuracy versus the expected cost of each path. For the important class of SDEs
with uniform diffusion coefficient, the order of strong convergence is 1. For ergodic SDEs
satisfying the dissipative and contractive condition, we have shown that the moments and
strong error of the numerical solutions are bounded and independent of time T . Moreover,
we extend this adaptive scheme to MLMC for the infinite time interval by allowing different
lengths of time intervals and carefully coupling the fine path and coarse path in each level 	.
All the schemes work well and numerical experiments support the theoretical results.

One direction for extension of the theory for finite time interval is to SDEs with a diffusion
coefficient which is not globally Lipschitz, but instead satisfies the Khasminskii-type condi-
tion used by Mao and Szpruch [23, 25], Sabanis [35] and Szpruch and Zhāng [37]. Another
possibility is to use a Lyapunov function V (x) in place of ‖x‖2 in the stability analysis; this
might enable one to prove stability and convergence for a larger set of SDEs.

Another extension direction for the theory in the infinite time interval is to address SDEs
which do not satisfy the contractive property. Numerically, our scheme works well for all
the dissipative systems with negative Lyapunov exponent as shown in Section 5.1, but the
numerical analysis needs to be done in the future. For the chaotic systems with positive Lya-
punov exponent, a further paper [5] will address this challenge by using change of measure
as outlined in Section 5.2.
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