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Consider a system of N parallel single-server queues with unit-exponen-
tial service time distribution and a single dispatcher where tasks arrive as a
Poisson process of rate λ(N). When a task arrives, the dispatcher assigns it
to one of the servers according to the Join-the-Shortest Queue (JSQ) policy.
Eschenfeldt and Gamarnik (Math. Oper. Res. 43 (2018) 867–886) identified
a novel limiting diffusion process that arises as the weak-limit of the ap-
propriately scaled occupancy measure of the system under the JSQ policy
in the Halfin–Whitt regime, where (N − λ(N))/

√
N → β > 0 as N → ∞.

The analysis of this diffusion goes beyond the state of the art techniques,
and even proving its ergodicity is nontrivial, and was left as an open ques-
tion. Recently, exploiting a generator expansion framework via the Stein’s
method, Braverman (2018) established its exponential ergodicity, and adapt-
ing a regenerative approach, Banerjee and Mukherjee (Ann. Appl. Probab. 29
(2018) 1262–1309) analyzed the tail properties of the stationary distribution
and path fluctuations of the diffusion.

However, the analysis of the bulk behavior of the stationary distribution,
namely, the moments, remained intractable until this work. In this paper, we
perform a thorough analysis of the bulk behavior of the stationary distribu-
tion of the diffusion process, and discover that it exhibits different qualitative
behavior, depending on the value of the heavy-traffic parameter β. Moreover,
we obtain precise asymptotic laws of the centered and scaled steady-state
distribution, as β tends to 0 and ∞. Of particular interest, we also establish
a certain intermittency phenomena in the β → ∞ regime and a surprising
distributional convergence result in the β → 0 regime.
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1. Introduction.

1.1. Background and motivation. For any β > 0, consider the following diffusion pro-
cess with state space (−∞,0] × (0,∞):

Q1(t) = Q1(0) + √
2W(t) − βt +

∫ t

0

(−Q1(s) + Q2(s)
)
ds − L(t),

Q2(t) = Q2(0) + L(t) −
∫ t

0
Q2(s) ds

(1.1)

for t ≥ 0, where W is the standard Brownian motion, L is the unique nondecreasing non-
negative process in DR[0,∞) satisfying

∫ ∞
0 1[Q1(t)<0] dL(t) = 0 and (Q1(0),Q2(0)) ∈

(−∞,0] × [0,∞). In this paper, we consider the stationary distribution of the above dif-
fusion process. In particular, we analyze the bulk behavior of the steady state for all fixed β

sufficiently large and small, and identify its scaling behavior as β → 0 and β → ∞.
In the context of task allocation in many-server systems, the diffusion process in (1.1)

arises as the weak limit of the sequence of scaled occupancy measures of systems under the
classical Join-the-Shortest Queue (JSQ) policy, as the system size (number of servers in the
system) becomes large. Specifically, consider a system with N parallel identical single-server
queues and a single dispatcher. Tasks with unit-mean exponential service requirements arrive
at the dispatcher as a Poisson process of rate λ(N), and are instantaneously forwarded to one
of the servers with the shortest queue length (ties are broken arbitrarily). For t ≥ 0, let

QN(t) := (
QN

1 (t),QN
2 (t), . . .

)
denote the system occupancy measure, where QN

i (t) is the number of servers under the JSQ
policy with a queue length of i or larger, at time t , including the possible task in service,
i = 1,2, . . . . Note that due to exchangeability of the servers and the Markovian service re-
quirements, QN(·) is a Markov process. In fact, it can also be seen that if λ(N) < N (i.e., load
per server λ(N)/N is less than 1), then QN is positive recurrent and has a unique stationary
distribution. Now consider an asymptotic regime where the number of servers grows large,
and additionally assume that

N − λ(N)√
N

→ β as N → ∞

for some positive coefficient β > 0, that is, the load per server approaches unity as 1−β/
√

N .
In terms of the aggregate traffic load and total service capacity, this scaling corresponds to the
so-called Halfin–Whitt heavy-traffic regime which was introduced in the seminal paper [12]
and has been extensively studied since. The set-up in [12], as well as the numerous model
extensions in the literature (see [8–10, 12, 23–25], and the references therein), primarily
considered a single centralized queue and server pool (M/M/N), rather than a scenario with
parallel queues. Eschenfeldt and Gamarnik [7] initiated the study of the scaling behavior
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for parallel-server systems in the Halfin–Whitt heavy-traffic regime. Define the centered and
scaled system occupancy measures as Q̄N(t) = (Q̄N

1 (t), Q̄N
2 (t), . . .), with

Q̄N
1 (t) = −N − QN

1 (t)√
N

≤ 0, Q̄N
i (t) = QN

i (t)√
N

≥ 0, i = 2,3, . . . .

The reason why QN
1 (t) is centered around N while QN

i (t), i = 2, . . . , are not, is because the
fraction of servers at time t with a queue length of exactly one tends to 1, whereas the fraction
of servers with a queue length of two or more tends to zero as N → ∞. For each fixed N ,
Q̄N is a positive recurrent continuous time Markov chain, and has a stationary distribution
as t → ∞. Denote by Q̄N(∞) a random variable distributed as the steady state of the pro-
cess Q̄N(t). Assuming (Q̄N

i (0))i≥1 → (Qi(0)))i≥1 with Qi(0) = 0 for i ≥ 3, it was shown
by Eschenfeldt and Gamarnik [7] that on any finite time interval [0, T ], the sequence of pro-
cesses {(Q̄N

1 (t), Q̄N
2 (t), . . .)}0≤t≤T converges weakly to the limit {(Q1(t),Q2(t), . . .)}0≤t≤T ,

where (Q1,Q2) is given by (1.1) and Qi(·) ≡ 0 for i ≥ 3. Subsequently, a broad class of other
schemes were shown to exhibit the same scaling behavior in this regime [17–19]. See [22]
for a recent survey.

In all the above works, the convergence of the scaled occupancy measure was estab-
lished in the transient regime on any finite time interval. Long time asymptotic properties
of the new diffusion process in (1.1) thus discovered in [7] is technically hard to analyze.
In fact, even establishing its ergodicity is nontrivial and was left as an open question in
[7]. The tightness of the diffusion-scaled occupancy measure under the JSQ policy, expo-
nential ergodicity of the diffusion process and the interchange of limits were established by
Braverman [4] via a sophisticated generator expansion framework using the Stein’s method.
There it was shown that the steady state of the N -server system Q̄N(∞) converges weakly to
(Q1(∞),Q2(∞),0,0, . . .) as N → ∞, where (Q1(∞),Q2(∞)) is distributed as the steady
state of the diffusion process (Q1,Q2). Thus, the steady state of the diffusion process in
(1.1) captures the asymptotic behavior of large-scale systems under the JSQ policy. Recently,
Banerjee and Mukherjee [3] considered the tail asymptotics of (Q1(∞),Q2(∞)), and estab-
lished that for each fixed β > 0, Q1(∞) has a Gaussian tail and Q2(∞) has an exponential
tail. A high-level heuristic for such tail behavior is that for any fixed β > 0, when −Q1 is
large enough, it behaves as an Ornstein–Uhlenbeck (OU) process (giving rise to the Gaussian
tail for Q1), and when Q2 is large it behaves as a Brownian motion with a negative drift (giv-
ing rise to the exponential tail for Q2). However, in order to characterize the bulk behavior
of the stationary distribution, such as its mean, one needs precise control over the diffusion
paths not only when −Q1 or Q2 is large, but also near the origin.

1.2. Key contributions and our approach. In this paper, we perform a thorough analysis
of the bulk behavior of the stationary distribution and, quite surprisingly, find that its qualita-
tive behavior is sensitive to the heavy-traffic parameter β . In particular, we show that

e−C1β
2 ≤ Eπ

(
Q2(∞)

) ≤ e−C2β
2

for all large enough β and

C1β
−1 ≤ Eπ

(
Q2(∞)

) ≤ C2β
−1

for all small enough β , where C1, C2 are positive constants that do not depend on β . More-
over, Q2 exhibits an intermittency phenomenon for large β in the sense that most of the

steady-state mass of Q2 is concentrated in the region (0, e−eC
∗β2

), that is,

P
(
Q2(∞) ≥ e−eC

∗β2 ) ≤ e−Dβ2
,
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for positive constants C∗, D (that do not depend on β). However, as we just saw, the expected
value decays only exponentially in β2. This indicates that in the steady-state dynamics, Q2

usually remains very close to zero, but in the rare events when it becomes large, it takes a
long time to become small again. A more detailed discussion on this behavior is given in
Remark 1. We also show that Q1(∞)+β converges weakly to a standard normal distribution
and Q2(∞) converges to zero in Lp for any p > 0 as β → ∞. Furthermore, as β → 0, the
random variable βQ2(∞) converges weakly to a Gamma(2) distribution (i.e., sum of two
independent unit-mean exponential random variables) and Q1(∞) converges to zero in Lp

for any p > 0. The distributional convergence result for βQ2(∞) is quite surprising, and
reveals an important feature about large-scale parallel-server systems, namely, although JSQ
achieves economies of scale in the Halfin–Whitt regime, it is a factor 2 worse compared to the
completely pooled (or centralized queueing) system. This is further discussed in Remark 3.

Understanding bulk behavior of stationary distributions of diffusion processes has always
been a challenging problem, and the current article is one of the few papers where such
precise characterization of the bulk behavior has been possible. State-of-the-art probabilistic
tools to analyze stationary distributions [1, 5, 6, 11] identify a large enough “small set” in
the state space along with a Lyapunov-type drift criterion which gives good control on the
exponential moments of return times to the small set [16]. These exponential moment bounds
translate to exponential ergodicity as well as exponential tail bounds for the stationary mea-
sure. However, this approach sheds little light on the behavior of the diffusion paths inside
the small set, which essentially determines the bulk behavior of the stationary distribution. In
this article, we achieve control inside the small set by exploiting an idea of using the theory
of regenerative processes, which was introduced in [3] (see Chapter 10 of [21], also [2], for
its usage in a somewhat related scenario). In this approach, we identify regeneration times in
the diffusion path (random times when the diffusion starts afresh, see Section 3 for further
details) and performing a detailed analysis of the excursions between two successive regener-
ation times. A key idea used in the analysis and control of these excursions is to define various
stopping times and bound them by the hitting times of some (reflected) Brownian motion with
appropriate drift or (reflected) OU process, which are analytically more tractable. The con-
struction of these bounding processes depends on understanding the specific dynamics of the
process in different parts of the state space, and in particular, on whether the heavy-traffic
parameter β is large or small. The hitting time estimates provide key insights into how the
behavior of the process changes depending on the value of β . Consequently, we uncover the
sensitivity of the stationary distribution on β .

1.3. Organization and notation. The rest of the article is arranged as follows. In Sec-
tion 2, we state the main results. Section 3 contains a brief overview of the regenerative
approach as introduced in [3]. The proofs of the main results in the large-β regime is pre-
sented in Section 4, while proofs of many intermediate lemmas in this regime are deferred
until Appendices B and C. The proofs of the main results in the small-β regime is presented
in Section 5, while proofs of many intermediate lemmas in this regime are deferred till Ap-
pendices D and E.

For any two real numbers x, y, we denote by x ∨ y and x ∧ y, max{x, y} and min{x, y},
respectively. We adopt the usual notation to describe asymptotic comparisons: For two func-
tions f,g : N → R, we say f (n) = O(g(n)),�(g(n)),�(g(n)), o(g(n)), and ω(g(n)) if for
some fixed positive constants c1 and c2, f (n) ≤ c1g(n), f (n) ≥ c2g(n), c2g(n) ≤ f (n) ≤
c1g(n), f (n)/g(n) → 0 as n → ∞, and f (n)/g(n) → ∞ as n → ∞, respectively. Conver-

gence in distribution and in probability are denoted by “
L−→′

’ and “
P−→,” respectively.
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2. Main results. In this section, we will state the main results and discuss their ram-
ifications. Recall the diffusion process {(Q1(t),Q2(t))}t≥0 defined by equation (1.1). As
mentioned in the Introduction, it is known [4] that for any β > 0, (Q1,Q2) is an ergodic
continuous-time Markov process. Let (Q1(∞),Q2(∞)) denote a random variable distributed
as the unique stationary distribution π of the process. In Sections 2.1 and 2.2, we will con-
sider π for all β large and small enough, respectively.

2.1. Large-β regime and asymptotics. All the results stated in this subsection are proved
in Section 4.3. Our first main result concerns the steady state of Q2. As we will see, although
the tail of the steady state of Q2 decays exponentially and the exponent is linear in β , the
prefactor decays exponentially in β2.

THEOREM 2.1. There exist β0 ≥ 1 and positive constants C+
1 , C+

2 , C−
1 , C−

2 , C−
1 , C−

2 ,

such that for all β ≥ β0 and y ≥ 4βe−C−
1 eC

−
2 β2

,

π
(
Q2(∞) ≥ y

) ≤ C+
1 e−C+

2 β2
(

1 + log
(

1

βy

)
1[y≤β−1]

)
e−C+

2 βy,

π
(
Q2(∞) ≥ y

) ≥ C−
1 e−C−

2 β2
(

1 + log
(

1

βy

)
1[y≤β−1]

)
e−C−

2 βy.

In particular, for any p > 0, Q2(∞) converges in Lp to zero as β → ∞.

Theorem 2.1 gives detailed characterization of the shape of the stationary distribution of
Q2. It not only captures the tail behavior, but also characterizes the distribution near zero.
It is worthwhile to point out that Theorem 2.1 provides several key insights that cannot be
captured by only the tail asymptotics. Consequently, the value of y for which the tail behav-
ior kicks in and the precise form of the prefactor in the tail probabilities become crucial in
understanding the bulk behavior of the steady state of Q2. This is elaborated in Remark 1
below.

REMARK 1 (Condensation of steady state and intermittency). Observe that Theorem 2.1
can be used to obtain sharp bounds on the steady-state mean of Q2. In fact, it shows that
despite having an exponentially decaying tail, Q2(∞) exhibits a condensation of steady-state

mass, namely, most of the steady-state mass of Q2 is concentrated in the region (0, e−eCβ2

)

although the mean is of the order of e−C′β2
(where C, C′ are positive constants not depending

on β). This indicates an intermittency phenomenon, that is, at most times, Q2 is very close to
zero, but in the rare occasions when Q2 gets to an appreciable positive level, it takes a while
to get back to near zero. From a high level, this can be understood as follows. First, note that
for any β > 0, E(Q1(∞)) = −β , that is, Q1 fluctuates around −β . Also, when Q2 is small,
Q1 behaves as an OU process with mean reverting toward −β . Now, when β is large, usually

Q2 is very small (of order e−eCβ2

), and the rare occasions when Q2 gets to an appreciable
positive level are precisely the times when Q1 hits 0 and gathers some local time. In turn,
this can be thought of as hitting times of an OU process to level β , which is exponential in
β2. Further, since the rate of decrease of Q2 is proportional to itself, whenever Q2 becomes

much higher than usual it takes exponentially long time to return to the level e−eCβ2

. This
explains the condensation and intermittency of Q2.

The observations in Remark 1 are formalized in the following corollary. We will use Eπ

to denote the expectation with respect to the stationary distribution π .
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COROLLARY 2.2. There exist β0 ≥ 1 and positive constants C1, C2, C∗, D such that for
all β ≥ β0,

e−C1β
2 ≤ Eπ

(
Q2(∞)

) ≤ e−C2β
2
,

π
(
Q2(∞) ≥ e−eC

∗β2 ) ≤ e−Dβ2
.

From Theorem 2.1 and Corollary 2.2, it is clear that in the large-β regime, Q2 spends
most times near zero and (1.1) indicates that during these times, Q1 + β behaves like an
Ornstein–Uhlenbeck process reflected downwards at β . So, we would expect Q1 +β to have
a steady-state distribution close to a standard Gaussian for large β . We formalize this notion
by proving in Theorem 2.4 that Q1(∞) + β converges in distribution to the standard normal
distribution as β → ∞. Proposition 2.3 provides moment bounds for Q1(∞), which is of
independent interest. Proposition 2.3 will be used to prove Theorem 2.4.

PROPOSITION 2.3. For any n ≥ 1,

lim sup
β→∞

Eπ

((
Q1(∞) + β

)2n)
< ∞.

THEOREM 2.4. As β → ∞, Q1(∞) + β converges weakly to the standard normal dis-
tribution.

2.2. Small-β regime and asymptotics. Note that when Q2 is small, Q1 behaves like a
reflected OU process but when Q2 is large, it increases the drift of Q1 toward zero, and
hence Q1 behaves roughly like a reflected Brownian motion with a large drift. As indicated
by Theorem 2.5 below, Q2 has steady-state mean of the order of β−1, and hence, it spends
considerable time taking large values, which draws Q1 toward zero. This is also reflected
by the fact that the steady-state mean of Q1 is −β . The technical challenge that arises is to
patch up the different behaviors of Q1 for small and large Q2 and to produce an estimate that
unifies these effects. We achieve this in Theorem 2.6 where we provide an upper bound on the
steady-state upper tails of −Q1 as a mixture of a Gaussian (from the OU behavior for small
Q2) and an exponential with mean

√
β (from the reflected “Brownian motion with drift”

behavior for large Q2). Theorems 2.5 and 2.6 will be crucial in proving the distributional
convergence result for Q2(∞) in Theorem 2.7, namely βQ2(∞) converges in distribution to
Gamma(2) as β → 0. All the results stated in this subsection are proved in Section 5.3.

THEOREM 2.5. There exist positive constants M0, C1+
s , C2+

s , C1−
s , C2−

s , β∗
s such that

for all β ≤ β∗
s and all y ≥ 8M0β

−1,

C1−
s e−C2−

s βy ≤ π
(
Q2(∞) ≥ y

) ≤ C1+
s e−C2+

s βy.

In particular, (
C1−

s e−8C2−
s M0

C2−
s

)
1

β
≤ Eπ

(
Q2(∞)

) ≤
(

8M0 + C1+
s

C2+
s

)
1

β
.

Theorem 2.5 should be contrasted with Corollary 2.2 in terms of the dependence on β in
the small-β regime. Note how the dependence of the prefactor on β crucially governs the
bulk behavior. Unlike the large-β regime, the steady-state expectation of Q2 tends to depend
inversely on β .

The next theorem bounds the lower tail of Q1(∞). As mentioned earlier, it captures the
two effects Gaussian and exponential, rising from the dynamics when Q2 is small and large,
respectively.
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THEOREM 2.6. There exist β ′
0 ∈ (0,1), and positive constants R, C, C ′, C′′ such that

for all β ≤ β ′
0 and all x ≥ 2β1/4,

π
(
Q1(∞) ≤ −x

) ≤ C
(
β1/4e−(x−2β)2/8 + β2e

−C′ x√
β
)
1[2β1/4≤x≤R

β
log( 1

β
)]

+ e−C′′x2
1[x>R

β
log( 1

β
)].

In particular, for every n > 0, Eπ(|Q1(∞)|n) → 0 as β → 0.

The moment bounds obtained from Theorems 2.5 and 2.6 along with the application of
Itô’s formula leads to a somewhat surprising distributional convergence result as stated in the
next theorem.

THEOREM 2.7. As β → 0, the law of βQ2(∞) converges weakly to a Gamma(2) distri-
bution, whose density is given by f (x) = xe−x , x ≥ 0.

REMARK 2 (β thresholds for small and large β regimes). It is a natural and important
question to ask how large β needs to be for the “large β regime” to actually manifest itself,
and similarly for the “small β regime.” Although we can obtain some thresholds for β from
the methods in the current article by making explicit choices of the bounds on β required in
our calculations and keeping track of these bounds, we believe that the obtained values will
not be optimal. Figure 1 gives numerical simulations for −Q1(∞) and Q2(∞) for different
values of β and visually depicts how the steady-state behavior changes as β varies. All the
figures in Figure 1 are obtained by simulating sample paths of (Q1(t),Q2(t)) and plotting
the histogram of occupancy measures of Q1 and Q2 over a time interval of length 1.5 × 104.
As can be observed, a “transition” occurs from one regime to the other as we vary β from 0.1
to 3. Mathematically characterizing these thresholds and studying the “intermediate” regime
is a challenging problem and we leave it as an open question.

REMARK 3 (Comparison with M/M/N). Theorem 2.7 should be contrasted with the cor-
responding result for the centralized queueing system. Let S̄N (t) denote the total number of
tasks in an M/M/N system at time t . In that case, note that the total number of idle servers
max{N − S̄N ,0} and the total number of waiting tasks max{S̄N − N,0} are comparable to
−QN

1 and QN
2 for the systems under the JSQ policy, respectively. It is known that in case of

M/M/N systems if the arrival rate λ(N) scales as in the Halfin–Whitt regime [12], Theorem 2,
then the centered and scaled total number of tasks in the system (S̄N(t)−N)/

√
N converges

weakly to a suitable diffusion process {S̄(t)}t≥0, and S̄N (∞)
L−→ S̄(∞), where S̄(∞) is the

steady state of S̄. As β → 0, [12], Proposition 2, implies that βS̄(∞) for the M/M/N queue
converges weakly to a unit-mean exponential distribution. In contrast, Theorems 2.6 and 2.7
shows that β(Q1(∞) + Q2(∞)) converges weakly to a Gamma(2) random variable. This
indicates that in the Halfin–Whitt regime, although systems under the JSQ policy and the
M/M/N system have similar order of performance (in the sense that in both cases the total
number of waiting tasks and idle servers scale with

√
N ), due to the distributed operation, in

terms of the number of waiting tasks JSQ is a factor 2 worse in expectation than the corre-
sponding centralized system.

3. Brief overview of the regenerative approach. In this section, we recall the regen-
erative approach introduced in [3], which provides a tractable expression for the stationary
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FIG. 1. Histogram plots for −Q1(∞) (left) and Q2(∞) (right) when the value of β is small (top), intermediate
(middle), and large (bottom). Observe the condensation of mass phenomenon for the distribution of Q2(∞) when
β = 3.

distribution. A stochastic process is called classical regenerative if it starts anew at random
times (called regeneration times), independently of the past. See [21], Chapter 10, for a rigor-
ous treatment of regenerative processes. The regeneration times split the process into renewal
cycles that are independent and identically distributed, except possibly the first cycle. Conse-
quently, the behavior inside a specific renewal cycle characterizes the steady-state behavior.
In order to define the regeneration times, we introduce a few notation:

τi(z) := inf
{
t ≥ 0 : Qi(t) = z

}
, i = 1,2 and σ(t) := inf

{
s ≥ t : Q1(s) = 0

}
.

Now fix any B > 0. For k ≥ 0, define the stopping times

α2k+1 := inf
{
t ≥ α2k : Q2(t) = B

}
,

α2k+2 := inf
{
t > α2k+1 : Q2(t) = 2B

}
, �k := α2k+2,

(3.1)
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with the convention that α0 = 0 and �−1 = 0. The dependence of B in the above stopping
times is suppressed for convenience in notation, since the value of B will be clear from the
context. For any fixed B > 0, [3], Lemma 3.1, states that the process {Q1(t),Q2(t)}t≥0 is a
classical regenerative process with regeneration times given by {�k}k≥0. Thus, invoking the
theory of regenerative processes, it can be concluded that the process described by (1.1) has
a unique stationary distribution π , which can be represented as

(3.2) π(A) = E(0,2B)(
∫ �0

0 1[(Q1(s),Q2(s))∈A] ds)

E(0,2B)(�0)

for any measurable set A ⊆ (−∞,0] × (0,∞). For convenience, rigorous statement of the
above, along with some other useful results, are included in Appendix A.

4. Analysis in the large-β regime. In this section, we will investigate the behavior of
the stationary distribution in the regime β ≥ β0 for sufficiently large β0, and take B = β−1

in (3.1). First, in Section 4.1, we obtain estimates on the expectations of several carefully
chosen hitting times. In Section 4.2, we will provide upper and lower bounds on the expected
inter-regeneration time E(0,2β−1)(�0). Further, the hitting-time results of Section 4.1 will be
used to obtain sharp bounds on the numerator on the right-hand side of (3.2), that is, the
amount of time the process spends on various regions within one renewal cycle. Combining
the results of Sections 4.1 and 4.2, we prove in Section 4.3 the main results for the large-β
regime.

To avoid cumbersome notation, we will use β0 to denote the lower bound on β for the
assertion of each of the following lemmas to hold (the lower bounds change between lemmas
and a common lower bound is obtained by taking the maximum of these bounds). Also, in
the proofs, we will denote by C, C′ generic positive constants which do not depend on β and
whose values might change from line to line and between steps of calculations.

4.1. Hitting time estimates. We start with a hitting-time estimate for Q2 to hit some �(β)

level starting from a larger level y. When Q2 is large, there is a deep interplay between the
rate of decrease of Q2 and the local time accumulated by Q1. Recall that, the rate of decay for
Q2 is proportional to itself. However, observe that when Q2 � β , Q1 has a drift toward zero,
and thus, spends most of the time around 0. This increases the local time process L, which
adds to Q2. Due to these two effects, it can be shown that Q2 roughly behaves as a Brownian
motion with drift −β , and so the expected time taken to hit some �(β) level starting from a
larger level y is approximately y

β
. The next lemma formalizes the above heuristic.

LEMMA 4.1. There exists β0 ≥ 1, C > 0, such that for all β ≥ β0 and all y ≥ β/4,

E(0,y)

(
τ2(β/4)

) ≤ C y

β
.

Now we provide a useful estimate on the hitting time of zero by Q1 when Q1(0) < 0 and
Q2(0) is small. From a high level, observe that if β is large and Q2 is considerably small
(less than β/2, say), then Q1 experiences a drift toward −β whenever it is in the region
[−β + Q2,0]. Also, the drift is given by −(β − Q2) + (−Q1) = �(β). Therefore, hitting
time of zero by Q1, in this case, can be thought of as the hitting time of a Brownian motion
with a negative �(β) drift to hit level β . As a result, for large enough β , the expected hitting
time to 0 can be shown to increase exponentially with β2. The next lemma formalizes the
above intuition.
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LEMMA 4.2. There exists β0 ≥ 1 and positive constants C+
1 , C+

2 , C−
1 , C−

2 that do not
depend on β such that for all β ≥ β0,

sup
y∈(0,β]

E(−β,y)

(
τ1(0)

) ≤ C+
1 eC

+
2 β2

, inf
y∈(0,β/2]E(−β/4,y)

(
τ1(0)

) ≥ C−
1 eC

−
2 β2

.(4.1)

Moreover, C−
1 , C−

2 above can be chosen so that for all β ≥ β0,

(4.2) sup
y∈(0,β/2]

P(−β/4,y)

(
τ1(0) ≤ C−

1 eC
−
2 β2) ≤ D1e−D2β

2
,

where D1, D2 are positive constants that do not depend on β .

From the heuristics given before Lemma 4.2, note that when Q2 < β , Q1 mostly stays
away from zero, and hence, the local time process L does not increase appreciably, resulting
in a roughly exponential decay of Q2. Consequently, starting from a suitable �(β) level
Q2(0), the expected time take by Q2 to hit a level y ≤ Q2(0) is O(log(β/y)). The next
lemma formalizes this.

LEMMA 4.3. There exist positive constants C and β0, such that for all fixed β ≥ β0 the

following holds: For all y ∈ [βe−C−
1 eC

−
2 β2

, β/4] (where C−
1 , C−

2 are the constants appearing
in Lemma 4.2),

sup
z∈[y,β/4]

E(0,z)

(
τ2(y)

) ≤ C log
(

β

y

)
.

It should be noted that in Lemma 4.3, although z, the initial value of Q2, can be anything
in the region [y,β/4], the upper bound of the expected hitting time to y does not depend
on z. By imposing some restriction on the value of z, this can be further improved. This is
achieved in the next lemma.

LEMMA 4.4. There exist positive constants C and β0, such that for all fixed β ≥ β0 the

following holds: For any z ∈ [β−1, β/4] and any y ∈ [βe−C−
1 eC

−
2 β2

, β/8] with z ≥ 2y,

E(0,z)

(
τ2(y)

) ≤ C log
(

z

y

)
.

There is a subtlety in the choice of the value of z in the statement of Lemma 4.4. Note
that it is crucial to have z ≥ β−1. This is because if z � β−1, Q2 can jump up to a �(β−1)

level first (as can be seen by lower bounding the sum Q1(t) + Q2(t) by a Brownian motion
with drift −β) and then decrease (roughly exponentially) to hit y. This produces an estimate
of approximately log(1/(βy)). An estimate in such a scenario is obtained in the following
lemma, where we obtain an upper bound on the expected amount of time spent by Q2 above
a suitable level y ≤ 2/β before hitting the level 2/β .

LEMMA 4.5. There exist positive constants C and β0, such that for all fixed β ≥ β0 the

following holds: For all y ∈ [2βe−C−
1 eC

−
2 β2

,2β−1] (where C−
1 , C−

2 are the constants appearing
in Lemma 4.2),

E(0,y/2)

(∫ τ2(2β−1)

0
1[Q2(s)≥y] ds

)
≤ C log

(
4

βy

)
.
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The next lemma essentially provides an upper bound for the steady-state tail probabil-
ities for Q2 in the region (β−1,∞). It will also be used in bounding the expected inter-
regeneration times E(0,2β−1)(�0), as stated in Lemma 4.7.

LEMMA 4.6. There exist positive constants CL, C′
L and β0 ≥ 1 such that for any fixed

β ≥ β0 the following holds: For all y ∈ [4β−1,∞),

P(0,2β−1)

(
τ2(y) < τ2

(
β−1)) ≤ CLe−C′

Lβy.

The proof of Lemma 4.6 relies on some very intricate understanding of the qualitative
behavior of the diffusion process, and follows using several intermediate steps, as further
explained below in Remark 4.

REMARK 4. Observe that from [3] we already know that for any fixed β > 0, the steady-
state tail probability π(Q2 > y) is upper bounded by C∗

1 e−C∗
2 βy for all y ≥ β +R+/β , where

C1, C2 and R+ are positive constants independent of β . However, it requires a significant
effort to get the tail estimate when y is in the region [β−1,∞). This is a crucial step, since
for large values of β , this produces huge improvement in understanding the bulk behavior of
Q2 (namely, to obtain sharper bounds on the steady-state expectation).

The key challenge stems from the fact that the diffusion process exhibits a different qual-
itative behavior in the region {−Q1 + Q2 < β} than in the region {−Q1 + Q2 > β}. This
is because in the latter region, when −Q1 + Q2 is large enough, the local time and the drift
acting on Q2 result in a net negative linear drift of approximately −β . Lemma A.3 exploits
this linear drift to produce the exponential tail estimate on Q2 in the latter region. However,
in the former region, Q1 has a negative drift, and consequently, it does not hit the origin as
often as in the latter region. Thus, with very little increment in the local time, Q2 decays
almost exponentially. Hence, a careful analysis is needed to combine the different behaviors
in different regions to obtain a unified tail estimate. Details of the above approach are given
in Appendix C.

Lemmas 4.1–4.5 are proved in Appendix B, and Lemma 4.6 is proved in Appendix C.

4.2. Bounds on the inter-regeneration times. In this section, we state and prove upper
and lower bounds on the expected inter-regeneration times E(0,2β−1)(�0), which will be used
in Section 4.3 to prove the main results.

LEMMA 4.7. There exist β0 > 0 and positive constants C1, C2, C′
1, C′

2 (not depending
on β) such that for all β ≥ β0,

C1eC2β
2 ≤ E(0,2β−1)(�0) ≤ C ′

1eC′
2β

2
.

The rest of this section is devoted in the proof of Lemma 4.7.

4.2.1. Proof of the upper bound. Recall that �0 = α2 where α1 and α2 are as defined in
(3.1) with B = β−1. Write α1,−β = inf{t ≥ α1 : Q1(t) = −β}. Then, using the strong Markov
property,

E(0,2β−1)(α2) = E(0,2β−1)(α21[α1,−β≤α2]) +E(0,2β−1)(α21[α1,−β>α2])

≤ sup
y∈(0,2β−1)

E(−β,y)

(
τ2(2/β)

) +E(0,2β−1)(α1,−β1[α1,−β≤α2])

+E(0,2β−1)(α21[α1,−β>α2])(4.3)
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= sup
y∈(0,2β−1)

E(−β,y)

(
τ2(2/β)

) +E(0,2β−1)(α1,−β ∧ α2)

≤ sup
y∈(0,2β−1)

E(−β,y)

(
τ2(2/β)

) +E(0,2β−1)(α1)

+E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

))
.

In the rest of the proof of the upper bound, we will prove bounds on the three terms on the
right-hand side of (4.3). From Lemma 4.4, note that for β ≥ β0 sufficiently large,

(4.4) E(0,2β−1)(α1) ≤ C.

Equations (4.13) and (4.16) provide upper bounds for

E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

))
and sup

y∈(0,2β−1)

E(−β,y)

(
τ2(2/β)

)
,

respectively. Combining (4.4), (4.13) and (4.16) will complete the proof of the upper bound.
First, we claim the following.

CLAIM 1. For all β > 0, the following holds:

(4.5) sup
x∈[−β,0],y∈(0,2β−1]

E(x,y)

(
τ1(−β) ∧ τ2(2/β)

) ≤ Cβ2.

PROOF. Note that for s < t ≤ τ1(−β) ∧ τ2(2/β),

Q1(t) ≤ Q1(s) + √
2
(
W(t) − W(s)

) + 2β−1(t − s).

This gives us

inf
x∈[−β,0],y∈(0,2β−1]

P(x,y)

(
τ1(−β) ∧ τ2(2/β) < β2) ≥ P

(√
2W

(
β2)

< −3β
)

≥ p > 0,

where p does not depend on β , x, y. Thus, for n ≥ 1, by the Markov property applied at time
(n − 1)β2,

sup
x∈[−β,0],y∈(0,2β−1]

P(x,y)

(
τ1(−β) ∧ τ2(2/β) ≥ nβ2)

≤ sup
x∈[−β,0],y∈(0,2β−1]

P(x,y)

(
τ1(−β) ∧ τ2(2/β) ≥ (n − 1)β2)

× sup
x∈[−β,0],y∈(0,2β−1]

P(x,y)

(
τ1(−β) ∧ τ2(2/β) ≥ β2) ≤ (1 − p)n,

which implies (4.5). �

Next, we will bound E(0,2β−1)(−Q1(α1)).

CLAIM 2. There exists β0 ≥ 1 such that for all β ≥ β0,

(4.6) E(0,2β−1)

(−Q1(α1)
) ≤ Cβ4.
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PROOF. Take (Q1(0),Q2(0)) = (0,2β−1). For x ≥ (2β)4,

P(0,2β−1)

(
Q1(α1) ≤ −x

)
= E(0,2β−1)

(
1[τ1(−x/2)<α1]Q1(α1) ≤ −x

)
≤ P(0,2β−1)

(
τ2

(
x1/4)

< α1
)

+ sup
y≤x1/4

P(−x/2,y)

(
τ1(−x) ∧ τ1(0) ≤ log

(
βx1/4))

≤ P(0,2β−1)

(
τ2

(
x1/4)

< α1
) + sup

y≤x1/4
P(−x/2,y)

(
τ1(0) ≤ log

(
βx1/4))

+ sup
y≤x1/4

P(−x/2,y)

(
τ1(−x) ≤ log

(
βx1/4)

, τ1(−x) ≤ τ1(0)
)
,

(4.7)

where we used the fact that Q2(t) decreases exponentially for t ≤ τ1(0). By Lemma 4.6,
there is β0 ≥ 1 such that for all β ≥ β0 and all x ≥ (2β)4,

(4.8) P(0,2β−1)

(
τ2

(
x1/4)

< α1
) ≤ Ce−C′βx1/4 ≤ Ce−C′x1/4

.

Now, we estimate supy≤x1/4 P(−x/2,y)(τ1(0) ≤ log(βx1/4)). Take (Q1(0),Q2(0)) = (−x/2,

y) for y ≤ x1/4. For t ≤ τ1(0),

Q1(t) = −x

2
+ √

2W(t) − βt +
∫ t

0

(−Q1(s) + ye−s)ds.

By Proposition 2.18 of [13], for t ≤ τ1(0), Q1(t) is stochastically bounded above by the
Ornstein–Uhlenbeck process

X(t) = −x

2
+ √

2W(t) +
∫ t

0

(
x1/4 − β − X(s)

)
ds.

By the Doob representation of Ornstein–Uhlenbeck processes, we can write

X(t) = −x

2
e−t + (

x1/4 − β
)(

1 − e−t ) + e−t W̃
(
e2t − 1

)
for some Brownian motion W̃ . Therefore, for x ≥ (2β)4 where β ≥ β0 for sufficiently large
β0,

(4.9) sup
y≤x1/4

P(−x/2,y)

(
τ1(0) ≤ log

(
βx1/4)) ≤ P

(
sup
t≤x

W̃ (t) ≥ x

4

)
≤ Ce−C′x.

Recall that for t ≤ τ1(0), Q1(t) ≥ Q1(0) + √
2W(t) − βt . Thus, for x ≥ (2β)4,

sup
y≤x1/4

P(−x/2,y)

(
τ1(−x) ≤ log

(
βx1/4)

, τ1(−x) ≤ τ1(0)
)

≤ P

(
inf

t≤C logx

√
2W(t) ≤ −x

2
+ Cβ logx

)

≤ P

(
inf

t≤C logx

√
2W(t) ≤ −x

2
+ Cx1/4 logx

)
≤ Ce−C′x.

(4.10)

Thus, combining (4.8), (4.9) and (4.10), we get for β0 ≥ 1 such that for all β ≥ β0 and all
x ≥ (2β)4,

P(0,2β−1)

(
Q1(α1) ≤ −x

) ≤ Ce−C′x1/4
.

Consequently, Claim 2 follows. �
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Note that

E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

))
= E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

)
1[Q1(α1)≥−β]

)
+E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

)
1[Q1(α1)<−β]

)
≤ sup

x∈[−β,0],y∈(0,2β−1]
E(x,y)

(
τ1(−β) ∧ τ2(2/β)

)
+E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

)
1[Q1(α1)<−β]

)
≤ sup

x∈[−β,0],y∈(0,2β−1]
E(x,y)

(
τ1(−β) ∧ τ2(2/β)

)
+E(0,2β−1)

(
1[Q1(α1)<−β]E(Q1(α1),β

−1)

(
τ1(−β)

))
.

By (4.5), supx∈[−β,0],y∈(0,2β−1]E(x,y)(τ1(−β)∧τ2(2/β)) ≤ Cβ2. Further, to estimate the sec-
ond term in the right-hand side above, we will make use of the following simple claim.

CLAIM 3. Fix any β > 0. For any x < −β , y > 0,

(4.11) E(x,y)

(
τ1(−β)

) ≤ C log
(
2 + |x + β|).

PROOF. Note that if (Q1(0),Q2(0)) = (x, y) where x < −β , then for t ≤ τ1(−β),
Q∗

1(t) = Q1(t) + β is stochastically bounded below by an Ornstein–Uhlenbeck process

X∗(t) = x + β + √
2W(t) −

∫ t

0
X∗(s) ds.

From the Doob representation X∗(t) = (x +β)e−t +e−tW ∗(e2t −1) (where W ∗ is a standard
Brownian motion), for t ≥ log(2 + |x + β|),

P(x,y)

(
τ1(−β) > t

) ≤ P
(
(x + β) + W ∗(·) hits zero after time e2t − 1

)
=

∫ ∞
e2t−1

|x + β|√
2πs3

e−(x+β)2/(2s) ds ≤ |x + β|
(e2t − 1)1/2

≤ C|x + β|e−t .

This completes the proof of the claim. �

Note that the statement of Claim 3 is for all β > 0 and it will be used subsequently in the
small β regime in Section 5. Now, using Jensen’s inequality, Claim 3, and (4.6),

E(0,2β−1)

(
1[Q1(α1)<−β]E(Q1(α1),β

−1)

(
τ1(−β)

))
≤ E(0,2β−1)

(
log

(
2 + ∣∣Q1(α1) + β

∣∣))
≤ log

(
2 +E(0,2β−1)

(−Q1(α1)
) + β

) ≤ C log
(
2 + C′β4) ≤ C logβ.

(4.12)

Thus, we get from (4.5) and (4.12)

(4.13) E(0,2β−1)

(
E(Q1(α1),β

−1)

(
τ1(−β) ∧ τ2(2/β)

)) ≤ Cβ2 + C logβ ≤ C′β2.

Next, we will estimate supy∈(0,2β−1)E(−β,y)(τ2(2/β)). Take (Q1(0),Q2(0)) = (−β,y),
where y < 2β−1. Define e0 = 0 and for k ≥ 0,

e2k+1 = inf
{
t ≥ e2k : Q1(t) = 0 or Q2(t) = 2β−1}

,

e2k+2 = inf
{
t ≥ e2k+1 : Q1(t) = −β or Q2(t) = 2β−1}

.
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Let Ne = inf{k ≥ 1 : Q2(e2k) = 2β−1}. Note that by the expectation upper bound given in
Lemma 4.2 and (4.5),

(4.14) sup
y∈(0,2β−1)

E(−β,y)(e2) ≤ CeC′β2
.

Define S(t) := Q1(t)+Q2(t). If (Q1(0),Q2(0)) = (0, y) for any y ≤ 2β−1, note that S(t) ≤
Q1(t)+ 2β−1 for t ≤ τ2(2β−1) and Q2(t) ≥ S(t) ≥ √

2W(t)−βt for all t , and hence we get
for β ≥ 2,

inf
y≤2β−1

P(0,y)

(
τ2

(
2β−1) ≤ τ1(−β)

) ≥ P
(√

2W(t) − βt hits 2β−1 before − β/2
)

= 1 − e−β2/2

e2 − e−β2/2

≥ (
1 − e−2)

e−2 = pe > 0,

where pe does not depend on β . This immediately gives us for k ≥ 1,

(4.15) sup
y∈(0,2β−1)

P(−β,y)(Ne ≥ k) ≤ (1 − pe)
k.

Thus, by (4.14) and (4.15),

sup
y≤2β−1

E(−β,y)

(
τ2(2/β)

) = sup
y≤2β−1

E(−β,y)

( ∞∑
k=1

1[Ne=k]e2k

)

= sup
y≤2β−1

E(−β,y)

( ∞∑
k=1

(e2k − e2k−2)1[Ne>k−1]
)

≤
∞∑

k=1

sup
y∈(0,2β−1)

E(−β,y)(e2) sup
y∈(0,2β−1)

P(−β,y)(Ne ≥ k)

≤ CeC′β2
∞∑

k=1

(1 − pe)
k = CeC′β2

.

(4.16)

Finally, using (4.4), (4.13) and (4.16) in (4.3), we obtain

E(0,2β−1)(α2) ≤ C′
1eC′

2β
2
,

which yields the upper bound claimed in the lemma.

4.2.2. Proof of the lower bound. By the strong Markov property applied at time inf{t ≥
α1 : Q1(t) = 0},

E(0,2β−1)(α2) ≥ inf
y∈(0,β−1]

E(0,y)

(
τ2

(
2β−1))

≥ inf
y∈(0,β−1]

P(0,y)

(
τ1(−β/4) < τ2

(
2β−1))

inf
y∈(0,2β−1]

E(−β/4,y)

(
τ1(0)

)
.

Recall that if (Q1(0),Q2(0)) = (0, y) for any y ∈ (0, β−1], Q2(t) = 2β−1 for some t if and
only if S(t) = 2β−1. Moreover, y + √

2W(t) − 3βt/4 ≥ S(t) ≥ Q1(t) for all t ≤ τ1(−β/4).
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Thus, for β ≥ 2,

sup
y∈(0,β−1]

P(0,y)

(
τ1(−β/4) > τ2

(
2β−1))

≤ sup
y∈(0,β−1]

P(0,y)

(
y + √

2W(t) − 3βt/4 hits 2β−1 before − β/4
)

≤ P
(√

2W(t) − 3βt/4 hits β−1 before − β/2
) = 1 − e−3β2/8

e3/4 − e−3β2/8
≤ e−3/4.

Combining this with the expectation lower bound in Lemma 4.2, we obtain for all β ≥ β0 for
sufficiently large β0,

E(0,2β−1)(α2) ≥ (
1 − e−3/4)

inf
y∈(0,2β−1]

E(−β/4,y)

(
τ1(0)

) ≥ C1eC2β
2
,

which yields the lower bound claimed in the lemma.

4.3. Proofs of the main results. Now, we can prove Theorem 2.1 about the detailed be-
havior of the stationary distribution of Q2 in the large-β regime.

PROOF OF THEOREM 2.1. Fix β ≥ β0 large enough. Recall (3.2) with B = β−1. Both
the proof of the upper bound and the lower bound consist of two cases: (a) when y ≥ 4β−1

and (b) when y ∈ [4βe−C−
1 eC

−
2 β2

,4β−1).
Proof of the upper bound. (a) Let y ≥ 4β−1. Then for α1, α2 as defined in (3.1) with

B = β−1,

E(0,2β−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
= E(0,2β−1)

(∫ α1

0
1[Q2(s)≥y] ds

)
≤ E(0,2β−1)

(
1[τ2(y)<τ2(β

−1)]
(
τ2

(
β−1) − τ2(y)

))
= P(0,2β−1)

(
τ2(y) < τ2

(
β−1))

E(0,y)

(
τ2

(
β−1))

,

(4.17)

where the last step follows from the strong Markov property. For the first term on the right-
hand side of (4.17), note that by Lemma 4.6,

(4.18) P(0,2β−1)

(
τ2(y) < τ2

(
β−1)) ≤ Ce−C′βy.

Now, for the second term on the right-hand side of (4.17), we will consider two cases de-
pending on whether y ∈ [4β−1, β/4] or y ≥ β/4. When y ∈ [4β−1, β/4], by Lemma 4.4,

(4.19) E(0,y)

(
τ2

(
β−1)) ≤ C log(βy).

For y ≥ β/4, note that

E(0,y)

(
τ2

(
β−1))

= E(0,y)

(
τ2(β/4)

) +E(0,y)

[(
σ

(
τ2(β/4)

) ∧ τ2
(
β−1)) − τ2(β/4)

]
+E(0,y)

[
τ2

(
β−1) − (

σ
(
τ2(β/4)

) ∧ τ2
(
β−1))]

,

(4.20)

where recall that σ(t) = inf{s ≥ t : Q1(s) = 0}. Now, by Lemma 4.1, E(0,y)(τ2(β/4)) ≤
Cy/β . Also, since Q2 decreases exponentially when Q1 is negative,

E(0,y)

[(
σ

(
τ2(β/4)

) ∧ τ2
(
β−1)) − τ2(β/4)

] ≤ log
(
β2/4

)
.
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Furthermore, by the strong Markov property and Lemma 4.4,

E(0,y)

[
τ2

(
β−1) − (

σ
(
τ2(β/4)

) ∧ τ2
(
β−1))]

≤ sup
z∈[β−1,β/4]

E(0,z)

(
τ2

(
(2β)−1))

≤ sup
z∈[β−1,β/4]

C log(2βz) ≤ C log
(
β2/2

)
.

Thus, using the above bounds in (4.20) we obtain for y ≥ β/4,

(4.21) E(0,y)

(
τ2

(
β−1)) ≤ C

(
y

β
+ logβ

)
.

Using (4.18), (4.19) and (4.21) in (4.17), and the lower bound on E(0,2β−1)(�0) obtained in
Lemma 4.7, we get for y ≥ 4β−1,

(4.22) π
(
Q2(∞) ≥ y

) ≤ C+
1 e−C+

2 β2
e−C+

2 βy

for appropriate choice of C+
1 , C+

2 .

(b) Now, consider y ∈ [4βe−C−
1 eC

−
2 β2

,4β−1). Then

E(0,2β−1)

(∫ �0

0
1[Q2(s)≥y] ds

)

≤ E(0,2β−1)

(
τ2(y/4)

) +E(0,y/4)

(∫ τ2(2β−1)

0
1[Q2(s)≥y/2] ds

)
≤ C log

(
8

βy

)
,

(4.23)

where the last step is a consequence of Lemma 4.4 and Lemma 4.5. This, along with the

lower bound on E(0,2β−1)(�0) obtained in Lemma 4.7, gives for y ∈ [4βe−C−
1 eC

−
2 β2

,4β−1),

(4.24) π
(
Q2(∞) ≥ y

) ≤ C+
1 e−C+

2 β2
log

(
8

βy

)
.

It is straightforward to check that the upper bound claimed in the theorem follows from (4.22)
and (4.24).

Proof of the lower bound. (a) As before, we will first consider y ≥ β−1. Writing τ ′
2 =

inf{t ≥ τ2(2y) : Q2(t) = y},

E(0,2β−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
≥ E(0,2β−1)

(
1[τ2(2y)<τ2(β

−1)]
(
τ ′

2 − τ2(2y)
))

= P(0,2β−1)

(
τ2(2y) < τ2

(
β−1))

E(0,2y)

(
τ2(y)

)
.

(4.25)

As 2y ≥ 2β−1, therefore, by Lemma A.4,

(4.26) P(0,2β−1
(
τ2(2y) < τ2

(
β−1)) ≥ (

1 − e−1)
e−β(2y−2β−1).

Furthermore, as Q2(t) ≥ S(t) ≥ S(0) + √
2W(t) − βt for all t , the hitting time of level y

for Q2 when (Q1(0),Q2(0)) = (0,2y) is stochastically bounded below by the hitting time
of level y by 2y + √

2W(t) − βt . Therefore,

(4.27) E(0,2y)

(
τ2(y)

) ≥ C
y

β
≥ C

1

β2 ,
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where C does not depend on β , y. Using (4.25), (4.26) and the upper bound on E(0,2β−1)(�0)

obtained in Lemma 4.7, we obtain for y ≥ β−1,

(4.28) π
(
Q2(∞) ≥ y

) ≥ C−
1 e−C−

2 β2
e−C−

2 βy

for appropriate choice of C−
1 , C−

2 .

(b) Now we consider y ∈ [4βe−C−
1 eC

−
2 β2

, β−1). As Q2(t) ≥ Q2(s)e−(t−s) for any 0 ≤ s < t ,
τ2(y) ≥ log(2/(βy)) (when (Q1(0),Q2(0)) = (0,2β−1)). Therefore,

E(0,2β−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
≥ E(0,2β−1)

(
α2 ∧ τ2(y)

)
≥ E(0,2β−1)

(
α2 ∧ log

(
2

βy

))
≥ log

(
2

βy

)
P(0,2β−1)

(
α2 ≥ log

(
2

βy

))
.

(4.29)

Define the stopping times:

G1 = inf
{
t ≥ α1 : Q1(t) = 0

}
, G2 = inf

{
t ≥ G1 : Q1(t) = −β/4

}
.

Q2 is decreasing on [α1,G1] and Q1(t) ≤ S(t) ≤ S(G1) + √
2(W(t) − W(G1)) − 3β(t −

G1)/4 for t ∈ [G1,G2]. As Q2(t) = 2β−1 for some t ∈ [G1,G2] if and only if S(t) = 2β−1,
therefore, by applying the strong Markov property at G1, for any β ≥ 2,

P(0,2β−1)

(
sup

t∈[0,G2]
Q2(t) < 2β−1

)
≥ inf

z∈(0,β−1)
P(0,z)

(
τ1(−β/4) < τ2

(
2β−1))

≥ inf
z∈(0,β−1)

P(0,z)

(
S(t) hits − β/4 before 2β−1)

≥ P
(√

2W(t) − 3βt/4 hits − β/2 before β−1)
= e3/4 − 1

e3/4 − e−3β2/8
≥ 1 − e−3/4.

By applying the strong Markov property at G2, for β ≥ β0 for sufficiently large β0 ≥ 1,

P(0,2β−1)

(
α2 ≥ log

(
2

βy

))

≥ P(0,2β−1)

(
sup

t∈[0,G2]
Q2(t) < 2β−1, α2 − G2 ≥ log

(
2

βy

))
≥ P(0,2β−1)

(
sup

t∈[0,G2]
Q2(t) < 2β−1

)
× inf

z∈(0,2β−1)
P(−β/4,z)

(
τ1(0) ≥ log

(
2

βy

))
(4.30)

≥ (
1 − e−3/4)

inf
z∈(0,2β−1)

P(−β/4,z)

(
τ1(0) ≥ C−

1 eC
−
2 β2)

(
as y ≥ 4βe−C−

1 eC
−
2 β2 )

≥ (
1 − e−3/4)(

1 −D1e−D2β
2)

(by (4.2))

≥ 1

2

(
1 − e−3/4)

.
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From (4.29) and (4.30), we obtain

E(0,2β−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
≥ C log

(
2

βy

)
,

which, along with the upper bound on the expectation of the renewal time obtained in

Lemma 4.7, gives us for y ∈ [4βe−C−
1 eC

−
2 β2

, β−1),

(4.31) π
(
Q2(∞) ≥ y

) ≥ C−
1 e−C−

2 β2
log

(
2

βy

)
.

It is straightforward to check that the lower bound claimed in the theorem follows from (4.28)
and (4.31). The Lp convergence claimed in the theorem is immediate from the upper bound.
�

PROOF OF COROLLARY 2.2. From the lower bound in Theorem 2.1,

Eπ

(
Q2(∞)

) ≥
∫ ∞
β−1

C−
1 e−C−

2 β2
e−C−

2 βy dy =
(

C−
1 e−C−

2

C−
2 β

)
e−C−

2 β2
,

which proves the lower bound on the expectation of Q2(∞). To get the upper bound, we will
first prove the condensation result. Note that from the upper bound in Theorem 2.1, it is clear
that if we pick a positive constant C∗ (not depending on β) such that

e−eC
∗β2 ≥ (

2β−1e−eC
+
2 β2/2) ∨ (

4βe−C−
1 eC

−
2 β2 )

,

then for all β ≥ β0 sufficiently large,

π
(
Q2(∞) ≥ e−eC

∗β2 ) ≤ 2C+
1 e−C+

2 e−C+
2 β2/2.

This, in turn, gives the upper bound on the expectation using the upper bound in Theorem 2.1
as follows:

Eπ

(
Q2(∞)

) ≤
∫ e−eC∗β2

0
π

(
Q2(∞) ≥ y

)
dy +

∫ β−1

e−eC∗β2 π
(
Q2(∞) ≥ y

)
dy

+
∫ ∞
β−1

π
(
Q2(∞) ≥ y

)
dy

≤ e−eC
∗β2 + 2C+

1 e−C+
2

β
e−C+

2 β2/2 +
(

C+
1 e−C+

2

C+
2 β

)
e−C+

2 β2
,

which proves the upper bound on the expectation. �

PROOF OF PROPOSITION 2.3. Initiate the diffusion process at stationarity, that is,
(Q1(0),Q2(0)) is distributed as the steady-state distribution π . To avoid more notation, we
will use Eπ to also denote the expectation operator corresponding to the law of the stationary
diffusion process on the path space with initial distribution π . For any n ≥ 1, applying Itô’s
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formula to (Q1(t) + β)2n, we obtain(
Q1(t) + β

)2n = (
Q1(0) + β

)2n + 2n
√

2
∫ t

0

(
Q1(s) + β

)2n−1
dW(s)

− 2n

∫ t

0

(
Q1(s) + β

)2n
ds

+ 2n

∫ t

0

(
Q1(s) + β

)2n−1
Q2(s) ds

− 2n

∫ t

0

(
Q1(s) + β

)2n−1
dL(s)

+ 2n(2n − 1)

∫ t

0

(
Q1(s) + β

)2n−2
ds.

(4.32)

By [3], Theorem 2.1, for any β > 0, π has an exponential tail in Q2 and a Gaussian
tail in Q1, and hence, for any m,n ≥ 1, Eπ(|Q1(0)|m|Q2(0)|n)) < ∞. From this ob-
servation, we conclude that the local martingale

∫ t
0 Qm

1 (s)Qn
2(s) dW(s) has a finite ex-

pected quadratic variation for each t and thus, by [20], page 73, Corollary 3, it is indeed
a true martingale having zero expectation for each t . Further, note that the times of in-
crease of L are precisely the times s when Q1(s) = 0 and, therefore, we can replace the
integral 2n

∫ t
0 (Q1(s) + β)2n−1 dL(s) above by 2n

∫ t
0 β2n−1 dL(s). Moreover, as the ini-

tial distribution is the stationary distribution π , for any integers k, l ≥ 0 and any t ≥ 0,
Eπ((Q1(t) + β)kQ2(t)

l) = Eπ((Q1(0) + β)kQ2(0)l). Thus, taking expectation with respect
to Eπ in (4.32) and applying Fubini’s theorem, we obtain for any β > 0, t > 0,

−2nEπ

(
Q1(0) + β

)2n + 2nEπ

((
Q1(0) + β

)2n−1
Q2(0)

)
+ 2n(2n − 1)Eπ

(
Q1(0) + β

)2n−2 − 2nβ2n−1Eπ(L(t))

t
= 0.

Note that L(t) ≥ 0 for all t ≥ 0. Moreover, as Q1(t) + β ≤ β and 2n − 1 is odd, (Q1(t) +
β)2n−1 ≤ β2n−1. Using these observations and Corollary 2.2 in the above equation,

2nEπ

(
Q1(0) + β

)2n ≤ 2nβ2n−1
Eπ

(
Q2(0)

) + 2n(2n − 1)Eπ

(
Q1(0) + β

)2n−2

≤ 2nβ2n−1e−C2β
2 + 2n(2n − 1)Eπ

(
Q1(0) + β

)2n−2
.

The lemma now follows by induction. �

PROOF OF THEOREM 2.4. For cleaner notation, we will suppress the dependence of the
stationary distribution on β .

We will use the method of moments. For any n ≥ 0, the 2n-th moment of the standard
normal distribution is given by m∗

2n = (2n)!
2nn! and (2n + 1)-moment is m∗

2n+1 = 0. Thus, this
distribution has moderately growing moments (i.e., m∗

n ≤ ACnn! for some A,C > 0 and all
integers n ≥ 1) in the sense of Definition 2.51 of [14]. By [14], Theorem 2.56, it suffices to
prove that for all n ≥ 1, Eπ((Q1(∞) + β)n) → m∗

n as β → ∞.
As before, let the diffusion process start at stationarity, that is, (Q1(0),Q2(0)) is dis-

tributed as the stationary distribution π . For any n ≥ 2, applying Itô’s formula to (Q1(t) +
β)n, taking expectation with respect to Eπ , and then applying Fubini’s theorem as in the
proof of Proposition 2.3 above, we obtain for any β > 0, t > 0,

−nEπ

(
Q1(0) + β

)n + nEπ

((
Q1(0) + β

)n−1
Q2(0)

)
+ n(n − 1)Eπ

(
Q1(0) + β

)n−2 − nβn−1Eπ(L(t))

t
= 0.

(4.33)
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From the evolution equation of Q2(t), it readily follows that for any t > 0,

Eπ(L(t))

t
= Eπ

(
Q2(0)

)
.

From this observation and Corollary 2.2,

(4.34) nβn−1Eπ(L(t))

t
≤ nβn−1e−C2β

2 → 0 as β → ∞.

By Proposition 2.3, there is β0 > 0 such that for all β ≥ β0, the following holds: for each n ≥
2, there is C′

n > 0 not depending on β such that Eπ((Q1(0)+β)2n−2) ≤ C′
n. Moreover, from

the upper tail estimate in Theorem 2.1, Eπ(Q2
2(0)) → 0 as β → ∞. Using these observations

along with the Cauchy–Schwarz inequality, we have

(4.35)
Eπ

(∣∣Q1(0) + β
∣∣n−1

Q2(0)
) ≤ (

Eπ

((
Q1(0) + β

)2n−2))1/2(
EπQ2

2(0)
)1/2

→ 0 as β → ∞.

We proceed by induction. It follows readily from the evolution equation of Q1(t) + Q2(t)

that Eπ(Q1(0) + β) = 0. Hence using induction along with (4.34) and (4.35) in (4.33), we
conclude that for each n ≥ 0, limβ→∞Eπ((Q1(0) + β)2n+1) exists and equals zero. Using
n = 2 in (4.33) along with (4.34) and (4.35), it follows that limβ→∞Eπ((Q1(0)+β)2) exists
and equals 2. Using this and induction along with (4.34) and (4.35) in (4.33), we conclude
that for each n ≥ 1, limβ→∞Eπ((Q1(0)+β)2n) exists and equals m∗

2n, completing the proof
of the theorem. �

5. Analysis in the small-β regime. In this section, we will investigate the behavior of
the stationary distribution in the regime when β ≤ β0 for sufficiently small β0. For any such
fixed β , take B = 2M0β

−1 in (3.1), where M0 = c′
1 is a fixed constant (independent of β)

that appears in Lemma A.1. As in the large-β regime in Section 4, our analysis in the small-β
regime relies on several key hitting time estimates. We state these results on hitting times in
Section 5.1. In Section 5.2, we will provide upper and lower bounds in the expected inter-
regeneration time E(0,4M0β

−1)(�0). The hitting-time results of Sections 5.1 will be used to
obtain sharp bounds on the numerator on the right-hand side of (3.2), that is, the amount of
time the process spends on various regions within one renewal cycle. Combining the results
of Sections 5.1 and 5.2, we prove in Section 5.3 the main results for the small-β regime.

As before, we will use β0 to denote the upper bound on β for the assertion of each of the
following lemmas to hold (specific upper bounds change between lemmas and a common
upper bound is obtained by taking the minimum of these bounds). Also, in the proofs, C, C′,
C′′, C1, C2 will represent generic positive constants that do not depend on β whose values
will change between steps and from line to line.

5.1. Hitting time estimates. As mentioned in Section 2.2, the main challenge in this
regime is to patch up the different behaviors of Q1 for small and large values of Q2. We
record the following estimates, which describe these different behaviors individually.

LEMMA 5.1. There exist β0 ∈ (0,1) and positive constant C, such that the following
hold for all fixed β ∈ (0, β0]. For every x ≥ 2β1/4,

sup
0<y≤β−1/2

E(0,y)

(∫ τ2(2β−1/2)

0
1[Q1(s)≤−x] ds

)
≤ Cβ−5/4e−(x−β)2/8.

Lemma 5.1 captures the behavior of Q1 when Q2 ≤ 2β−1/2. In this region, Q1 behaves
like a reflected Ornstein–Uhlenbeck process resulting in the Gaussian exponent in the bound.
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LEMMA 5.2. There exist β0 ∈ (0,1) and positive constants C, C ′, such that the following
hold for all fixed β ∈ (0, β0]. For every x ≥ 2β ,

E(0,4M0β
−1)

(∫ τ2(2M0β
−1)

0
1[Q1(s)≤−x] ds

)
≤ Cxβ−3e−C′ x

β .

Lemma 5.2 considers the region when Q2 is large, namely �(β−1). In this region, Q1 be-
haves roughly like a reflected Brownian motion with drift −β−1, resulting in the exponential

decay of the tail, that is, e−C′ x
β term in the bound.

LEMMA 5.3. There exist β0 ∈ (0,1) and positive constants C, C ′, such that the following
hold for all fixed β ∈ (0, β0]. For every x ≥ 2β1/2,

sup
β−1/2≤y≤2M0β

−1
E(0,y)

(∫ τ2(β
−1/2)∧τ2(4M0β

−1)

0
1[Q1(s)≤−x] ds

)
≤ Cxβ−5/2e

−C′ x√
β .

Lemma 5.3 patches up the behavior in the region where Q2 is O(β−1/2) with the behavior
where Q2 is �(β−1). The resulting bound we obtain decays exponentially in x/

√
β .

Recall that σ(t) = inf{s ≥ t : Q1(s) = 0}. The next two lemmas give estimates for the time
spent by Q1 below some negative threshold before Q1 hits zero, for the regions where Q2 is
O(β−1/2) and Q2 is �(β−1), respectively.

LEMMA 5.4. There exist β0 ∈ (0,1) and positive constants C, C ′, such that the following
hold for all fixed β ∈ (0, β0]. For every x ≥ 4β1/2,

sup
β−1/2≤y≤4M0β

−1
E(0,y)

((∫ σ(τ2(β
−1/2))

τ2(β
−1/2)

1[Q1(s)≤−x] ds

)
1[τ2(β

−1/2)<τ2(4M0β
−1)]

)

≤ C
(
β−7/2e

−C′ x√
β + e−(x−2β)2/4)

.

LEMMA 5.5. There exist β0 ∈ (0,1) and positive constants C, C ′, such that the following
hold for all fixed β ∈ (0, β0]. For every x ≥ 4β ,

E(0,4M0β
−1)

(∫ σ(τ2(2M0β
−1))

τ2(2M0β
−1)

1[Q1(s)≤−x] ds

)
≤ C

(
β−4e−C′ x

β + e−(x−2β)2/4)
.

Lemmas 5.1–5.5 will be combined to compute upper and lower bounds on the expected
regeneration times and to estimate the expected time spent by Q1 below −x between two
successive regeneration times, for any x ≥ 2β1/4. These, in turn, will be used to estimate
π(Q1(∞) ≤ −x) using the expression given in (3.2).

The next lemma supplies a key technical estimate by giving an upper bound on the proba-
bility of Q2 hitting a positive level y ≥ 8M0β

−1 between two successive renewal times.

LEMMA 5.6. There exist positive constants DS , D′
S , M0, β0 such that for all β ≤ β0,

P(0,4M0β
−1)

(
τ2(y) < τ2

(
2M0β

−1)) ≤ DSe−D′
Sβy, y ≥ 8M0β

−1.

REMARK 5. Observe that Lemma 5.6 is a major improvement over [3], Lemma 5.3
(see the statement in Lemma A.3). In Lemma A.3, a similar tail-bound is given for y ≥
β−1 logβ−1. Lemma 5.6 extends this tail bound for all y in the region [�(β−1),∞). This
extension is crucial in capturing the behavior of the stationary distribution near the steady-
state mean of Q2, which, as we will prove, is of order �(β−1).

Appendix D is devoted to the proofs of Lemmas 5.1–5.5, and Lemma 5.6 is proved in
Appendix E.
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5.2. Bounds on the inter-regeneration times. In this section, we state and prove upper
and lower bounds on the expected inter-regeneration times E(0,4M0β

−1)(�0), which will be
used in Section 5.3 to prove the main results.

LEMMA 5.7. There exist positive constants E1, E2, β0 such that for all fixed β ≤ β0,

E1

β2 ≤ E(0,4M0β
−1)(�0) ≤ E2

β2 .

Lemma 5.7 should be contrasted with Lemma 4.7, where the expected inter-regeneration
time grows exponentially with β2, instead of inverse-quadratically when β is small.

PROOF OF LEMMA 5.7. Let (Q1(0),Q2(0)) = (0,4M0β
−1). Recall that �0 = α2 where

α1 and α2 are as defined in (3.1) with B = 2M0β
−1. The proof consists of two main parts:

(i) First, we establish upper and lower bounds on the expected value of α1, and (ii) Next,
we obtain an upper bound on the expected value of α2 − α1. As we will see, since the lower
bound for α1 matches with that of �0 as stated in the lemma, this will complete the proof.

(i) Upper and lower bounds for α1. As Q2(t) ≥ S(t) ≥ S(0) + √
2W(t) − βt for all t ≥ 0,

α1 stochastically dominates the hitting time of level 2M0β
−1 by a Brownian motion with

drift −β starting from 4M0β
−1. Therefore,

(5.1) E(0,4M0β
−1)(α1) ≥ C

β2 .

From part (ii) of Lemma A.1, for β small enough to ensure 3M0β
−1 ≥ 1 and for t ≥ Cβ−2,

P(0,4M0β
−1)(α1 > t) ≤ P(0,4M0β

−1)

(
inf
s≤t

Q2(s) > M0β
−1

)
≤ c′

3
(
exp

(−c′
2β

−2/5t1/5) + exp
(−c′

2β
2t

) + β−2 exp
(−c′

2t
))

for positive constants C, c′
2, c′

3 not depending on β . Using this bound, we obtain

(5.2) E(0,4M0β
−1)(α1) =

∫ ∞
0

P(0,4M0β
−1)(α1 > t)dt ≤ C′

β2 .

(ii) Upper bound for α2 − α1. The proof follows the similar notation and arguments as in
the proof of Lemma 4.7. Recall α1,−β = inf{t ≥ α1 : Q1(t) = −β}. Then by repeating the
computation exactly along the lines of (4.3), we have

E(0,4M0β
−1)(α2 − α1)

≤ sup
y∈(0,4M0β

−1)

E(−β,y)

(
τ2

(
4M0β

−1))
+E(0,4M0β

−1)

(
E(Q1(α1),2M0β

−1)

(
τ1(−β) ∧ τ2

(
4M0β

−1)))
.

(5.3)

In the rest of the proof, we will estimate the two expectation on the right-hand side of (5.3).
We start with supy∈(0,4M0β

−1)E(−β,y)(τ2(4M0β
−1)). Take any y ∈ (0,4M0β

−1) and set the
starting configuration as (Q1(0),Q2(0)) = (−β,y). Recall S(t) = Q1(t)+Q2(t). Define the
following stopping times: S0 = 0 and for k ≥ 0:

S2k+1 = inf
{
t ≥ S2k : S(t) = 4M0β

−1 or S(t) ≤ −β−1}
,

S2k+2 = inf
{
t ≥ S2k+1 : S(t) = 4M0β

−1 or S(t) = −β
}
.
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Let NS = inf{k ≥ 0 : S(S2k+1) = 4M0β
−1}. As S(t) ≥ S(0)+√

2W(t)−βt for all t ≥ 0, for
any k ≥ 0 and β ≤ 2−1/2,

P(−β,y)

(
sup

t∈[S2k,S2k+1]
S(t) ≥ 4M0β

−1
)

≥ P
(√

2W(t) − βt hits (4M0 + 1)β−1 before − (2β)−1)
= 1 − e−1/2

e4M0+1 − e−1/2 = p > 0

using the fact that the scale function for
√

2W(t)−βt is s(x) = eβx , where p does not depend
on β , y. This immediately gives us

P(−β,y)(NS ≥ n) ≤ (1 − p)n, n ≥ 1,

which implies

(5.4) sup
y∈(0,4M0β

−1)

E(−β,y)(NS) ≤ C1.

To estimate E(−β,y)(S1), observe that for n ≥ 1,

P(−β,y)

(
S1 ≥ nβ−2)

≤ E(−β,y)

(
1[S1≥(n−1)β−2]

× sup
x∈[−β−1,0],

y∈(0,4M0β
−1]

P(x,y)

(
S(t) < 4M0β

−1 for all t ∈ [
0, β−2]))

≤ E(−β,y)

(
1[S1≥(n−1)β−2]P

(
sup
t<∞

(√
2W(t) − βt

)
< (4M0 + 1)β−1

))
= P(−β,y)

(
S1 ≥ (n − 1)β−2)(

1 − e−(4M0+1)) ≤ (
1 − e−(4M0+1))n,

(5.5)

where the last step follows by induction. This gives us

E(−β,y)(S1) =
∫ ∞

0
P(−β,y)(S1 ≥ t) dt

≤ 1 + β−2
∞∑

n=1

P(−β,y)

(
S1 ≥ nβ−2) ≤ C′

β2 ,

(5.6)

where C′ does not depend on β , y. For t ≤ τ1(0), Q∗
1(t) = Q1(t) + β is stochastically

bounded below by an Ornstein–Uhlenbeck process

X∗(t) = Q1(0) + β + √
2W(t) −

∫ t

0
X∗(s) ds,

which has the Doob representation X∗(t) = (Q1(0) + β)e−t + e−tW ∗(e2t − 1) (where W ∗
is a standard Brownian motion). Furthermore, note that if Q2(0) ≤ 4M0β

−1, then for all
t ≤ τ2(4M0β

−1), Q1(t) ≥ S(t) − 4M0β
−1. From these facts, it is straightforward to check

that S2 − S1 is stochastically dominated by the hitting time of level −β by the Ornstein–
Uhlenbeck process X∗ defined above taking Q1(0) = −(4M0 + 1)β−1, and hence,

(5.7) E(−β,y)(S2 − S1) ≤ C′′

β
,
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where C′′ does not depend on β , y. Combining (5.7) and (5.6), we obtain

(5.8) sup
y∈(0,4M0β

−1)

E(−β,y)(S2) ≤ C2

β2 .

Therefore, using (5.4), (5.8) and the strong Markov property,

sup
y∈(0,4M0β

−1)

E(−β,y)

(
τ2

(
4M0β

−1))
= sup

y∈(0,4M0β
−1)

E(−β,y)(S2NS+1)

= sup
y∈(0,4M0β

−1)

E(−β,y)(S2NS+2)

(5.9)

= sup
y∈(0,4M0β

−1)

E(−β,y)

( ∞∑
j=0

(S2j+2 − S2j )1[NS≥j ]
)

≤ sup
y∈(0,4M0β

−1)

E(−β,y)

( ∞∑
j=0

1[NS≥j ] sup
z∈(0,4M0β

−1)

E(−β,z)(S2)

)

= sup
y∈(0,4M0β

−1)

E(−β,y)(S2) sup
y∈(0,4M0β

−1)

E(−β,y)(NS) ≤ C1C2

β2 .

Now we estimate E(0,4M0β
−1)(E(Q1(α1),2M0β

−1)(τ1(−β) ∧ τ2(4M0β
−1))). Observe that

E(0,4M0β
−1)

(
E(Q1(α1),2M0β

−1)

(
τ1(−β) ∧ τ2

(
4M0β

−1)))
≤ sup

x∈[−β,0],y∈(0,4M0β
−1)

E(x,y)

(
τ1(−β) ∧ τ2

(
4M0β

−1))
+E(0,4M0β

−1)

(
1[Q1(α1)<−β]E(Q1(α1),2M0β

−1)

(
τ1(−β)

))
.

(5.10)

Writing for n ≥ 1

sup
x∈[−β,0],y∈(0,4M0β

−1)

P(x,y)

(
τ1(−β) ∧ τ2

(
4M0β

−1) ≥ nβ−2)
≤ sup

x∈[−β,0],y∈(0,4M0β
−1)

E(−β,y)

(
1[τ1(−β)∧τ2(4M0β

−1)≥(n−1)β−2]

× sup
z∈[−β,0],y∈(0,4M0β

−1]
P(z,y)

(
S(t) < 4M0β

−1 for all t ∈ [
0, β−2]))

and following the computations in (5.5)and (5.6), we obtain

(5.11) sup
x∈[−β,0],y∈(0,4M0β

−1)

E(x,y)

(
τ1(−β) ∧ τ2

(
4M0β

−1)) ≤ C3

β2 .

Therefore, to complete the proof of the upper bound of E(0,4M0β
−1)(α2 − α1), we need to

estimate the second term on the right-hand side of (5.10). From Claim (3), note that for any
x < −β , y > 0,

E(x,y)

(
τ1(−β)

) ≤ C log
(
2 + |x + β|).

Thus, by Jensen’s inequality,

E(0,4M0β
−1)

(
1[Q1(α1)<−β]E(Q1(α1),β

−1)

(
τ1(−β)

))
≤ E(0,4M0β

−1)

(
log

(
2 + ∣∣Q1(α1) + β

∣∣))
≤ log

(
2 +E(0,4M0β

−1)

(−Q1(α1)
) + β

)
.

(5.12)
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Thus, we need an estimate on E(0,4M0β
−1)(−Q1(α1)). Following the calculations in (4.7), we

obtain for x ≥ (8M0β
−1)4,

P(0,4M0β
−1)

(
Q1(α1) ≤ −x

)
≤ P(0,4M0β

−1)

(
τ2

(
x1/4)

< α1
) + sup

y≤x1/4
P(−x/2,y)

(
τ1(0) ≤ log

(
βx1/4

2M0

))

+ sup
y≤x1/4

P(−x/2,y)

(
τ1(−x) ≤ log

(
βx1/4

2M0

)
, τ1(−x) ≤ τ1(0)

)
.

(5.13)

From Lemma 5.6, we obtain C,C ′, β0 > 0 such that for all β ≤ β0 and all x ≥ (8M0β
−1)4,

P(0,4M0β
−1)

(
τ2

(
x1/4)

< α1
) ≤ Ce−C′βx1/4

.

By exactly the same argument used in deriving (4.9) and (4.10), we obtain constants C, C′,
β ′′ such that for all β ≤ β ′′ and all x ≥ (8M0β

−1)4,

sup
y≤x1/4

P(−x/2,y)

(
τ1(0) ≤ log

(
βx1/4

2M0

))
≤ Ce−C′x

and

sup
y≤x1/4

P(−x/2,y)

(
τ1(−x) ≤ log

(
βx1/4

2M0

)
, τ1(−x) ≤ τ1(0)

)
≤ Ce−C′x.

Using the above three bounds in (5.13), we obtain β ′′′ > 0 such that for all β ≤ β ′′′ and all
x ≥ (8M0β

−1)4,

P(0,4M0β
−1)

(
Q1(α1) ≤ −x

) ≤ Ce−C′βx1/4
,

which implies

(5.14) E(0,4M0β
−1)

(−Q1(α1)
) =

∫ ∞
0

P(0,4M0β
−1)

(
Q1(α1) ≤ −x

)
dx ≤ C4

β4 .

Using (5.14) in (5.12),

(5.15) E(0,4M0β
−1)

(
1[Q1(α1)<−β]E(Q1(α1),β

−1)

(
τ1(−β)

)) ≤ log
(

2 + C4

β4 + β

)
.

Using (5.11) and (5.15) in (5.10), we obtain β ′
s > 0 such that for all β ≤ β ′

s ,

(5.16)

E(0,4M0β
−1)

(
E(Q1(α1),2M0β

−1)

(
τ1(−β) ∧ τ2

(
4M0β

−1)))
≤ C3

β2 + log
(

2 + C4

β4 + β

)
≤ C5

β2 .

Using (5.9) and (5.16) in (5.3), we obtain β0 > 0 such that for all β ≤ β0,

(5.17) E(0,4M0β
−1)(α2 − α1) ≤ C6

β2 .

(5.1), (5.2) and (5.17) together prove the lemma. �
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5.3. Proofs of the main results.

PROOF OF THEOREM 2.5. As before, we will use Theorem A.2 with B = 2M0β
−1. To

prove the upper bound on the stationary probability, observe that for y ≥ 8M0β
−1,

E(0,4M0β
−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
= E(0,4M0β

−1)

(∫ α1

0
1[Q2(s)≥y] ds

)
≤ E(0,4M0β

−1)

(
1[τ2(y)<τ2(2M0β

−1)]
(
τ2

(
2M0β

−1) − τ2(y)
))

= P(0,4M0β
−1)

(
τ2(y) < τ2

(
2M0β

−1))
E(0,y)

(
τ2

(
2M0β

−1))
.

(5.18)

From Lemma 5.6, there exist positive constants DS , D′
S , M0, β0 such that for all β ≤ β0,

y ≥ 8M0β
−1,

(5.19) P(0,4M0β
−1)

(
τ2(y) < τ2

(
2M0β

−1)) ≤ DSe−D′
Sβy.

From part (ii) of Lemma A.1 and recalling that M0 = c′
1 and choosing β small enough such

that 6M0β
−1 ≥ 1, we obtain for t ≥ c′

4(
(y−M0β

−1)
β

∨ β−2),

P(0,y)

(
τ2

(
2M0β

−1)
> t

)
≤ P(0,y)

(
inf
s≤t

Q2(s) > M0β
−1

)
≤ c′

3
(
exp

(−c′
2β

−2/5t1/5) + exp
(−c′

2β
2t

) + β−2 exp
(−c′

2t
))

for positive constants c′
1, c′

2, c′
3, c′

4 not depending on β . From this, we obtain

(5.20) E(0,y)

(
τ2

(
2M0β

−1)) =
∫ ∞

0
P(0,y)

(
τ2

(
2M0β

−1)
> t

)
dt ≤ Cy

β
,

where C does not depend on β , y. Using (5.19) and (5.20) in (5.18),

(5.21) E(0,4M0β
−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
≤ DS

Cy

β
e−D′

Sβy.

From Lemma 5.7,

(5.22) E(0,4M0β
−1)(�0) ≥ E1

β2 .

Using the estimates (5.21) and (5.22) in the representation (3.2) of the stationary distribution,
we obtain

π
(
Q2(∞) ≥ y

) ≤ DSC

E1
yβe−D′

Sβy, y ≥ 8M0β
−1

which proves the upper bound on the stationary probability claimed in the theorem. To prove
the lower bound, note that for y ≥ 8M0β

−1, writing τ ′
2 = inf{t ≥ τ2(2y) : Q2(t) = y},

E(0,4M0β
−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
≥ E(0,4M0β

−1)

(∫ α1

0
1[Q2(s)≥2y] ds

)
≥ E(0,4M0β

−1)

(
1[τ2(2y)<τ2(2M0β

−1)]
(
τ ′

2 − τ2(2y)
))

= P(0,4M0β
−1)

(
τ2(2y) < τ2

(
2M0β

−1))
E(0,2y)

(
τ2(y)

)
.

(5.23)
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From Lemma A.4, taking B = 2M0β
−1,

(5.24)
P(0,4M0β

−1)

(
τ2(y) < τ2

(
2M0β

−1))
≥ (

1 − e−2M0
)
e−β(y−4M0β

−1), y ≥ 4M0β
−1.

Recall that Q2(t) ≥ S(t) ≥ S(0) + √
2W(t) − βt for all t ≥ 0. Therefore, if the starting con-

figuration is (Q1(0),Q2(0)) = (0,2y), τ2(y) is stochastically lower bounded by the hitting
time of level −y by the process (

√
2W(t) − βt)t≥0. This implies

(5.25) E(0,2y)

(
τ2(y)

) ≥ C′y
β

for some constant C′ not depending on y, β . Using (5.24) and (5.25) in (5.23),

(5.26) E(0,4M0β
−1)

(∫ �0

0
1[Q2(s)≥y] ds

)
≥ (

e4M0 − e2M0
)C′y

β
e−βy.

From Lemma 5.7,

(5.27) E(0,4M0β
−1)(�0) ≤ E2

β2 .

Using (5.26) and (5.27) in the representation (3.2) of the stationary distribution, we obtain

π
(
Q2(∞) ≥ y

) ≥ (e4M0 − e2M0)C′

E2
yβe−βy, y ≥ 8M0β

−1

which proves the lower bound on the stationary probability claimed in the theorem. The
bounds on the expectation follow from the probability bounds upon noting the following:

Eπ

(
Q2(∞)

) ≥
∫ ∞

8M0β
−1

π
(
Q2(∞) ≥ y

)
dy ≥ C1−

s e−8C2−
s M0

C2−
s β

,

Eπ

(
Q2(∞)

) ≤ 8M0β
−1 +

∫ ∞
8M0β

−1
π

(
Q2(∞) ≥ y

)
dy ≤

(
8M0 + C1+

s

C2+
s

)
1

β
. �

PROOF OF THEOREM 2.6. From [3], Theorem 2.1, and its proof, we know that
there exist constants R,C,C ′′ > 0 and β0 > 0, such that for all β ≤ β0 and all x ≥
R
β

log( 1
β
), π(Q1(∞) ≤ −x) ≤ Ce−C′′x2

. Thus, it suffices to prove that π(Q1(∞) ≤ −x) ≤
C(β1/4e−(x−2β)2/8 + β2e

−C′ x√
β ) for all x ≥ 2β1/4.

As mentioned earlier, in the proof, C, C′ will denote generic positive constants whose
values do not depend on β , x and might change from line to line. Take any β ≤ β0, where β0
is minimum over all β0’s given in Lemmas 5.1–5.5. Define the stopping time �−1 = inf{t ≥
τ2(2M0β

−1) : either {Q2(t) ≤ β−1/2,Q1(t) = 0} or Q2(t) = 4M0β
−1}. We can write

E(0,4M0β
−1)

(∫ �0

0
1[(Q1(s)≤−x] ds

)

= E(0,4M0β
−1)

(∫ �−1

0
1[(Q1(s)≤−x] ds

+ 1[Q2(�−1)≤β−1/2]
∫ �0

�−1

1[(Q1(s)≤−x] ds

)

≤ E(0,4M0β
−1)

(∫ �−1

0
1[(Q1(s)≤−x] ds

)

+ sup
0<y≤β−1/2

E(0,y)

(∫ τ2(4M0β
−1)

0
1[(Q1(s)≤−x] ds

)
.

(5.28)
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Note that

E(0,4M0β
−1)

(∫ �−1

0
1[(Q1(s)≤−x] ds

)

= E(0,4M0β
−1)

(∫ τ2(2M0β
−1)

0
1[(Q1(s)≤−x] ds

)

+E(0,4M0β
−1)

(∫ σ(τ2(2M0β
−1))

τ2(2M0β
−1)

1[(Q1(s)≤−x] ds

)
(5.29)

+E(0,4M0β
−1)

(
1[Q2(σ (τ2(2M0β

−1)))>β−1/2]

×
∫ σ(τ2(β

−1/2))∧τ2(4M0β
−1)

σ (τ2(2M0β
−1))

1[(Q1(s)≤−x] ds

)
.

By Lemmas 5.2 and 5.5, for any x ≥ 4β ,

E(0,4M0β
−1)

(∫ τ2(2M0β
−1)

0
1[(Q1(s)≤−x] ds

)

+E(0,4M0β
−1)

(∫ σ(τ2(2M0β
−1))

τ2(2M0β
−1)

1[(Q1(s)≤−x] ds

)
≤ C

(
β−4e−C′ x

β + e−(x−2β)2/4)
.

(5.30)

By Lemmas 5.3 and 5.4, for any x ≥ 4β1/2,

E(0,4M0β
−1)

(
1[Q2(σ (τ2(2M0β

−1)))>β−1/2]

×
∫ σ(τ2(β

−1/2))∧τ2(4M0β
−1)

σ (τ2(2M0β
−1))

1[(Q1(s)≤−x] ds

)

≤ sup
β−1/2≤y≤2M0β

−1
E(0,y)

(∫ τ2(β
−1/2)∧τ2(4M0β

−1)

0
1[(Q1(s)≤−x] ds

)

+ sup
β−1/2≤y≤2M0β

−1
E(0,y)

((∫ σ(τ2(β
−1/2))

τ2(β
−1/2)

1[(Q1(s)≤−x] ds

)

× 1[τ2(β
−1/2)<τ2(4M0β

−1)]
)

≤ C
(
β−7/2e

−C′ x√
β + e−(x−2β)2/4)

.

(5.31)

Using (5.30) and (5.31) in (5.29), we obtain for any x ≥ 4β1/2,

(5.32) E(0,4M0β
−1)

(∫ �−1

0
1[(Q1(s)≤−x] ds

)
≤ C

(
β−4e

−C′ x√
β + e−(x−2β)2/4)

.

Now we estimate the second term appearing on the right-hand side of (5.28). With any starting
configuration (Q1(0),Q2(0)) = (0, y) where y ∈ (0, β−1/2], define the stopping times �0 =
0 and for k ≥ 0,

�2k+1 = inf
{
t ≥ �2k : Q2(t) = 2β−1/2}

,

�2k+2 = inf
{
t ≥ �2k+1 : either

{
Q2(t) ≤ β−1/2,Q1(t) = 0

}
or

Q2(t) = 4M0β
−1}

.
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Let N� = inf{k ≥ 1 : Q2(�2k) = 4M0β
−1}. From Lemma 5.1, for any x ≥ 2β1/4,

sup
0<y≤β−1/2

E(0,y)

(∫ �1

0
1[Q1(s)≤−x] ds

)

= sup
0<y≤β−1/2

E(0,y)

(∫ τ2(2β−1/2)

0
1[Q1(s)≤−x] ds

)
≤ Cβ−5/4e−(x−β)2/8.

(5.33)

From Lemmas 5.3 and 5.4, for any x ≥ 2β1/2,

sup
0<y≤β−1/2

E(0,y)

(∫ �2

�1

1[Q1(s)≤−x] ds

)

≤ E(0,2β−1/2)

(∫ τ2(β
−1/2)∧τ2(4M0β

−1)

0
1[Q1(s)≤−x] ds

)

+E(0,2β−1/2)

((∫ σ(τ2(β
−1/2))

τ2(β
−1/2)

1[(Q1(s)≤−x] ds

)
1[τ2(β

−1/2)<τ2(4M0β
−1)]

)
≤ C

(
β−7/2e

−C′ x√
β + e−(x−2β)2/4)

.

(5.34)

As Q2(t) ≥ S(t) ≥ S(0) + √
2W(t) − βt ,

P(0,2β−1/2)

(
τ2

(
4M0β

−1)
< τ2

(
β−1/2))

≥ P
(
2β−1/2 + √

2W(t) − βt hits 4M0β
−1 before β−1/2)

= e2
√

β − e
√

β

e4M0 − e
√

β
≥ C

√
β.

This gives us

(5.35) sup
0<y≤β−1/2

E(0,y)(N�) ≤ C′β−1/2.

From (5.33), (5.34) and (5.35), we obtain for any x ≥ 2β1/4,

sup
0<y≤β−1/2

E(0,y)

(∫ τ2(4M0β
−1)

0
1[(Q1(s)≤−x] ds

)

= sup
0<y≤β−1/2

∞∑
k=0

(
1[N�≥2k+2]

∫ �2k+2

�2k

1[(Q1(s)≤−x] ds

)

≤ sup
0<y≤β−1/2

E(0,y)

(∫ �2

0
1[Q1(s)≤−x] ds

)
sup

0<y≤β−1/2
E(0,y)(N�)

≤ C
(
β−7/4e−(x−β)2/8 + β−4e

−C′ x√
β + β−1/2e−(x−2β)2/4)

.

(5.36)

Using (5.32) and (5.36) in (5.28), we obtain for any x ≥ max{4β1/2,2β1/4},
E(0,4M0β

−1)

(∫ �0

0
1[(Q1(s)≤−x] ds

)
≤ C

(
β−7/4e−(x−2β)2/8 + β−4e

−C′ x√
β
)
.

Take β ′
0 ∈ (0, β0] small enough such that β1/4 ≥ 2β1/2 and β−4e−C′β−1/4 ≤ 1, where C′ is

the constant appearing in the above equation. Then for every β ≤ β ′
0 and every x ≥ 2β1/4,

E(0,4M0β
−1)

(∫ �0

0
1[(Q1(s)≤−x] ds

)
≤ C

(
β−7/4e−(x−2β)2/8 + e

−C′ x
2
√

β
)
.
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Using the above bound and the lower bound on E(0,4M0β
−1)(�0) obtained in Lemma 5.7, the

theorem is proved. �

PROOF OF THEOREM 2.7. For cleaner notation, we will suppress the dependence of
the stationary distribution on β . As before, we will use Eπ to also denote the expectation
operator corresponding to the law of the stationary diffusion process on the path space with
initial distribution π .

For any n ≥ 0, as in the proof of Proposition 2.3, applying Itô’s formula to Q1(t)Q
n
2(t)

and then taking expectation with respect to Eπ and applying Fubini’s theorem, we obtain for
any β > 0, t > 0,∫ t

0
Eπ

(−(n + 1)Q1(s)Q
n
2(s) + Qn+1

2 (s) − βQn
2(s)

)
ds −Eπ

∫ t

0
Qn

2(s) dL(s) = 0

which, using the fact that π is stationary, gives for each t > 0,

(5.37)

−(n + 1)Eπ

(
Q1(0)Qn

2(0)
) +Eπ

(
Qn+1

2 (0)
) − βEπ

(
Qn

2(0)
)

= Eπ

∫ t
0 Qn

2(s) dL(s)

t
.

Using Itô’s formula and Fubini’s theorem for Qn+1
2 (t), we get for each t > 0,

(5.38)
Eπ

∫ t
0 Qn

2(s) dL(s)

t
= Eπ

(
Qn+1

2 (0)
)
.

Using (5.38) in (5.37),

(5.39) Eπ

(
Q1(0)Qn

2(0)
) = − β

n + 1
Eπ

(
Qn

2(0)
)
.

Applying the same procedure to Q2
1(t)Q

n
2(t), we obtain

(5.40)
−(n + 2)Eπ

(
Q2

1(0)Qn
2(0)

) + 2Eπ

(
Q1(0)Qn+1

2 (0)
)
)

+ 2Eπ

(
Qn

2(0)
) − 2βEπ

(
Q1(0)Qn

2(0)
) = 0.

Using (5.39) to replace Eπ(Q1(0)Qn
2(0)) and Eπ(Q1(0)Qn+1

2 (0)) appearing in (5.40) with
the terms − β

n+1Eπ(Qn
2(0)) and − β

n+2Eπ(Qn+1
2 (0)), respectively,

(5.41)

Eπ

(
Q2

1(0)Qn
2(0)

) = − 2β

(n + 2)2Eπ

(
Qn+1

2 (0)
)

+
(

2

n + 2
+ 2β2

(n + 1)(n + 2)

)
Eπ

(
Qn

2(0)
)
.

By Theorem 2.5, there is β∗
s > 0 such that for all β ≤ β∗

s , the following holds: for each n ≥ 0,
there is Cn > 0 not depending on β satisfying Eπ((βQ2(0))2n) ≤ Cn. Moreover, by Theo-
rem 2.6, Eπ(|Q1(0)|4) → 0 as β → 0. Using these observations and the Cauchy–Schwarz
inequality,

(5.42)
Eπ

(
Q2

1(0)
(
βQ2(0)

)n) ≤ (
Eπ

(
Q4

1(0)
))1/2(

Eπ

((
βQ2(0)

))2n)1/2

→ 0 as β → 0.

We proceed via induction. For n = 0, using (5.42) in (5.41), we conclude that limβ→0 Eπ(β ×
Q2(0)) exists and

lim
β→0

Eπ

(
βQ2(0)

) = 2.
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Suppose we have proved for some integer n ≥ 0 that limβ→0 Eπ((βQ2(0))n) = (n + 1)!.
Using this and (5.42) in (5.41), we conclude that limβ→0 Eπ((βQ2(0))n+1) exists and

lim
β→0

Eπ

((
βQ2(0)

)n+1) = (n + 2)!
completing the proof of the theorem. �

APPENDIX A: SUMMARY OF REQUIRED KNOWN AUXILIARY RESULTS

In this appendix, we recall some useful probability estimates from [3].

LEMMA A.1 ([3], Lemma 4.3). There exist positive constants c′
1, c′

2, c′
3, c′

4 not depending
on β such that the following hold:

(i) For β ≥ 1 and any y ≥ 1,

P(0,y+c′
1β)

(
inf
s≤t

Q2(s) > c′
1β

)
≤ c′

3 exp
(−c′

2β
2/5t1/5)

for all t ≥ c′
4y/β.

(ii) For β ∈ (0,1) and any y ≥ 1, for all t ≥ c′
4(

y
β

∨ β−2),

P(0,y+c′
1β

−1)

(
inf
s≤t

Q2(s) > c′
1β

−1
)

≤ c′
3
(
exp

(−c′
2β

−2/5t1/5) + exp
(−c′

2β
2t

)
+ β−2 exp

(−c′
2t

))
.

Recall the inter-regeneration times from Section 3. The next theorem guarantees that for
any B > 0, the process {Q1(t),Q2(t)}t≥0 is a classical regenerative process with regeneration
times given by {�k}k≥0. It also provides a tractable form for the steady-state measure.

THEOREM A.2 ([3], Proposition 3.2 and Theorem 3.3). Fix any B > 0. Set (Q1(0),

Q2(0)) = (x, y) (x ≤ 0, y > 0). There exist constants c
(1)
� , c

(2)
� > 0 (depending on x, y, B , β),

such that

P(x,y)(�0 > t) ≤ c
(1)
� exp

(−c
(2)
� t1/6)

.

In particular, E(x,y)�0 < ∞. The process described by equation (1.1) has a unique stationary
distribution π which can be represented as

π(A) = E(0,2B)(
∫ �0

0 1[(Q1(s),Q2(s))∈A] ds)

E(0,2B)(�0)

for any measurable set A ∈ (−∞,0] × (0,∞). Moreover, the process is ergodic in the sense
that for any measurable function f satisfying E(0,2B)(

∫ �0
0 f ((Q1(s),Q2(s))) ds) < ∞,

(A.1)
1

t

∫ t

0
f

((
Q1(s),Q2(s)

))
ds → E(0,2B)(

∫ �0
0 f ((Q1(s),Q2(s)) ds)

E(0,2B)(�0)

almost surely as t → ∞.

LEMMA A.3 ([3], Lemma 5.3). There exist constants R+,R−,C∗
1 ,C∗

2 > 0 that do not
depend on β such that

P(0,y+β)

(
τ2(2y + β) ≤ τ2

(
y0(β) + β

)) ≤ C∗
1 e−C∗

2 βy

for all y ≥ y0(β), where y0(β) = R+
β

if β ≥ 1 and y0(β) = R− max{ 1
β

log 1
β
, 1

β
} if β < 1.
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LEMMA A.4 ([3], Lemma 5.4). For any B > 0,

P(0,2B)

(
τ2(y) < τ2(B)

) ≥ (
1 − e−βB)

e−β(y−2B)

for all y ≥ 2B .

LEMMA A.5 ([3], Lemma A.4). There exist c′
1, c

′
2, c

′
3 > 0, not depending on β such that

for any y > c′
1(β ∨ β−1) + β ,

P(0,y)

(∫ t

0

(−Q1(s)
)
ds >

(
β ∧ β−1) t

2
, inf
s≤t

Q2(s) ≥ c′
1
(
β ∨ β−1) + β

)
≤ exp

(−c′
2t

1/5(
β ∨ β−1)2/5)

for t ≥ c′
3
(
β ∧ β−1)2

.

APPENDIX B: PROOFS OF HITTING TIME ESTIMATES IN THE LARGE-β REGIME

In this appendix, we will assume β to be sufficiently large in many calculations, often
without explicitly mentioning it.

PROOF OF LEMMA 4.1. Set (Q1(0),Q2(0)) = (0, y). From Lemma A.1, there exist pos-
itive constants c′

1, c′
2, c′

3, c′
4 not depending on β such that for any β ≥ 1 and any z ≥ 1,

P(0,z+c′
1β)

(
inf
s≤t

Q2(s) > c′
1β

)
≤ c′

3 exp
(−c′

2β
2/5t1/5)

for all t ≥ c′
4z/β . Without loss of generality, we can assume c′

1 > 1. This implies that there
exists C > 0 (not depending on β), such that for y ≥ c′

1β + 1,

(B.1) E(0,y)

(
τ2

(
c′

1β
)) ≤ C

y

β
.

Thus, the lemma will be proved if we can show supx≤0,y∈[β/4,c′
1β+1]E(x,y)(τ2(β/4)) ≤ C.

Note that

sup
x≤0,y∈[β/4,c′

1β+1]
E(x,y)

(
τ2(β/4)

)
= sup

x≤0,y∈[β/4,c′
1β+1]

E(x,y)

(
τ2(β/4),1[τ1(0)≤τ2(β/4)]

)
+ sup

x≤0,y∈[β/4,c′
1β+1]

E(x,y)

(
τ2(β/4),1[τ1(0)>τ2(β/4)]

)
.

As Q2 decays exponentially when Q1 < 0,

sup
x≤0,y∈[β/4,c′

1β+1]
E(x,y)

(
τ2(β/4),1[τ1(0)>τ2(β/4)]

) ≤ C.

Further, by the strong Markov property,

sup
x≤0,y∈[β/4,c′

1β+1]
E(x,y)

(
τ2(β/4),1[τ1(0)≤τ2(β/4)]

) ≤ sup
y∈[β/4,c′

1β+1]
E(0,y)

(
τ2(β/4)

)
.

Thus, to complete the proof, it suffices to show that

(B.2) sup
y∈[β/4,c′

1β+1]
E(0,y)

(
τ2(β/4)

) ≤ C.
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Thus, assume that in the starting configuration β/4 ≤ y ≤ c′
1β + 1. Define the following

stopping times: �∗
0 = 0 and for k ≥ 0,

�∗
3k+1 = inf

{
t ≥ �∗

3k : Q1(t) = −β/2 or Q2(t) = c′
1β + 2

}
,

�∗
3k+2 = inf

{
t ≥ �∗

3k+1 : Q2(t) ≤ c′
1β + 1

}
,

�∗
3k+3 = inf

{
t ≥ �∗

3k+2 : Q1(t) = 0 or Q2(t) ≤ β/4
}
.

Let N� = inf{k ≥ 0 : Q2(�
∗
3k) ≤ β/4}. Define �n = �∗

n∧N�
for n ≥ 1. Define q = e

− 1
4(c′1+2) .

Choose β0 ≥ max{1, (
8q

1−q
)1/2} satisfying q(c′

1β + 1 + β−1) ≤ c′
1β + 1 for all β ≥ β0. Take

any β ≥ β0 and choose n0 not depending on β such that qn0(c′
1β + 1) ≤ β/8. Define �n =

�N� for all n ≥ N�. We will show that there exists p > 0 such that for β ≥ β0,

(B.3) inf
y∈[β/4,c′

1β+1]
P(0,y)

(
Q2(�3n0) ≤ β/4

) ≥ pn0 > 0.

To see this, note that for any y ∈ [β/4, c′
1β + 1],

P(0,y)

(
Q2(�3) ≤ max

{
q
(
y + β−1)

, β/4
})

≥ P(0,y)

(
Q2(�1) < y + β−1,

inf
{
t ≥ �1 : Q1(t) = 0

} − �1 ≥ 1

4(c′
1 + 2)

)

≥ P(0,y)

(
Q2(�1) < y + β−1)

inf
z≤c′

1β+2
P(−β/2,z)

(
τ1(0) ≥ 1

4(c′
1 + 2)

)
,

(B.4)

where for the first inequality, note that if the process starts from a state with Q2 < y + β−1

and Q1 stays away from 0 for more than 1/(4(c′
1 + 2)) time, then Q2 must hit q(y + β−1)

(due to exponential decay of Q2), and the last step follows from the strong Markov property
of the process applied at time �1. Recall that S(t) < y + β−1 for all t ≤ �1 implies Q2(t) <

y + β−1 for all t ≤ �1 (this is because if t∗ denotes the first time Q2 hits the level y + β−1

from below, Q1(t
∗) = 0 and consequently, S(t∗) = Q2(t

∗) = y + β−1). Further, for t ≤ �1,

S(t) = S(0) + √
2W(t) − βt +

∫ t

0

(−Q1(s)
)
ds ≤ y + √

2W(t) − β

2
t.

Therefore,

P(0,y)

(
Q2(�1) < y + β−1) ≥ P

(
sup
t<∞

(√
2W(t) − β

2
t

)
< β−1

)
= 1 − e−1/2.(B.5)

Now we estimate infz≤c′
1β+2 P(−β/2,z)(τ1(0) ≥ 1

4(c′
1+2)

). Note that for t ≤ τ1(0), Q2 is de-

creasing and hence if (Q1(0),Q2(0)) = (−β/2, z) with z ≤ c′
1β + 2, then for t ≤ τ1(0) ∧

τ1(−β),

Q1(t) ≤ −β

2
+ √

2W(t) + (
c′

1β + 2
)
t ≤ −β

2
+ √

2W(t) + (
c′

1 + 2
)
βt as β ≥ 1.

Moreover, for t ≤ τ1(0),

Q1(t) ≥ −β

2
+ √

2W(t) − βt.
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Thus,

sup
z≤c′

1β+2
P(−β/2,z)

(
τ1(0) ≤ 1

4(c′
1 + 2)

)

≤ sup
z≤c′

1β+2
P(−β/2,z)

(
τ1(0) ∧ τ1(−β) ≤ 1

4(c′
1 + 2)

)

≤ P

(
−β

2
+ √

2W(t) + (
c′

1 + 2
)
βt hits zero before time

1

4(c′
1 + 2)

)

+ P

(
−β

2
+ √

2W(t) − βt hits − β before time
1

4(c′
1 + 2)

)
= P

(
sup

t≤ 1
4(c′1+2)

(√
2W(t) + (

c′
1 + 2

)
βt

) ≥ β/2
)

+ P

(
inf

t≤ 1
4(c′1+2)

(√
2W(t) − βt

) ≤ −β/2
)

≤ P

(
sup

t≤ 1
4(c′1+2)

(√
2W(t)

) ≥ β/4
)

+ P

(
inf

t≤ 1
4(c′1+2)

(√
2W(t)

) ≤ −β/4
)

≤ e−Cβ2
,

(B.6)

where C does not depend on β , y. Using (B.5) and (B.6) in (B.4), we obtain p > 0 such that
for all β ≥ β0,

inf
y∈[β/4,c′

1β+1]
P(0,y)

(
Q2(�3) ≤ max

{
q
(
y + β−1)

, β/4
}) ≥ p > 0.(B.7)

If q(y + β−1) ≤ β/4, this proves (B.3). If q(y + β−1) > β/4, we obtain

inf
y∈[β/4,c′

1β+1]
P(0,y)

(
Q2(�6) ≤ max

{
q2(

y + β−1) + qβ−1, β/4
})

≥ inf
y∈[β/4,c′

1β+1]

(
P(0,y)

(
Q2(�6) ≤ max

{
q2(

y + β−1) + qβ−1, β/4
}
,

β

4
< Q2(�3) ≤ q

(
y + β−1))

+ P(0,y)

(
Q2(�6) ≤ max

{
q2(

y + β−1) + qβ−1, β/4
}
,

Q2(�3) ≤ β

4

))
.

(B.8)

Applying the strong Markov property at �3 to the first probability on the right-hand side of
(B.8) and noting that if Q2(�3) > β/4, then Q1(�3) = 0, we obtain

P(0,y)

(
Q2(�6) ≤ max

{
q2(

y + β−1) + qβ−1, β/4
}
,
β

4
< Q2(�3) ≤ q

(
y + β−1))

≥ P(0,y)

(
β

4
< Q2(�3) ≤ q

(
y + β−1))

p,
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where we have used (B.7) to the process started at �3 along with the fact that q(y + β−1) ≤
c′

1β + 1 for β ≥ β0. Moreover, for the second probability on the right-hand side of (B.8),

P(0,y)

(
Q2(�6) ≤ max

{
q2(

y + β−1) + qβ−1, β/4
}
,Q2(�3) ≤ β

4

)
= P(0,y)

(
Q2(�3) ≤ β

4

)
≥ P(0,y)

(
Q2(�3) ≤ β

4

)
p.

From the above and (B.7), we get

inf
y∈[β/4,c′

1β+1]
P(0,y)

(
Q2(�6) ≤ max

{
q2(

y + β−1) + qβ−1, β/4
})

≥
(

inf
y∈[β/4,c′

1β+1]
P(0,y)

(
Q2(�3) ≤ q

(
y + β−1)))

p ≥ p2.

Writing f (y) = q(y + β−1), note that for any β ≥ max{1, (
8q

1−q
)1/2} and any y ≤ c′

1β + 1,
applying f n0 times to y gives us a number less than or equal to β/4. Thus, iterating (B.7)
n0 times, we obtain (B.3). This, in turn, implies for k ≥ 1,

(B.9) sup
y∈[β/4,c′

1β+1]
P(0,y)(N� ≥ kn0) ≤ (

1 − pn0
)k

.

Next, we want to prove that there exists a positive constant C > 0 that does not depend on
β ≥ 1 such that

(B.10) sup
y∈[β/4,c′

1β+1]
E(0,y)(�3) ≤ C.

To see this, observe that for t ≤ �1, Q1(t) ≤ S(t) ≤ c′
1β + 1 + √

2W(t) − β
2 t , and

hence, �1 is stochastically dominated by the hitting time of level −β/2 by c′
1β + 1 +√

2W(t) − β
2 t , and hence, supy∈[β/4,c′

1β+1]E(0,y)(�1) ≤ C(2c′
1 + 3). From Lemma A.1,

we get supy∈[β/4,c′
1β+1]E(0,y)(�2 − �1) ≤ C/β . Further, as Q2 decreases exponentially in

[�2,�3], �3 − �2 ≤ log(4(c′
1 + 1)). These observations lead to (B.10). Now, we can write

sup
y∈[β/4,c′

1β+1]
E(0,y)

(
τ2(β/4)

)

≤ sup
y∈[β/4,c′

1β+1]
E(0,y)

( ∞∑
k=1

1[N�=k]�3k

)

= sup
y∈[β/4,c′

1β+1]
E(0,y)

( ∞∑
k=1

(�3k − �3k−3)1[N�>k−1]
)

≤
∞∑

k=1

sup
y∈[β/4,c′

1β+1]
E(0,y)(�3) sup

y∈[β/4,c′
1β+1]

P(0,y)(N� > k − 1),

where the second equality follows by interchanging summation and the third inequality fol-
lows by applying the strong Markov property at �3k−3. Finally, combining (B.9) and (B.10),
we obtain

sup
y∈[β/4,c′

1β+1]
E(0,y)

(
τ2(β/4)

) ≤
∞∑

k=0

Cn0
(
1 − pn0

)k ≤ C′

which, in particular, proves (B.2), and hence completes the proof of the lemma. �
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PROOF OF LEMMA 4.2. First we will prove the upper bound in (4.1). Start from
(Q1(0),Q2(0)) = (−β,y) for 0 < y ≤ β . Define the stopping times: τ+

0 = 0 and for k ≥ 0,

τ+
2k+1 = inf

{
t ≥ τ+

2k : Q1(t) = 0 or Q1(t) = −β − 1
}
,

τ+
2k+2 = inf

{
t ≥ τ+

2k+1 : Q1(t) = 0 or Q1(t) = −β
}
.

Let N+ = inf{k ≥ 0 : Q1(τ
+
2k+1) = 0}. Note that for t ≤ τ1(0), Q1(t) ≥ Q1(0) + √

2W(t) −
βt . Therefore, for any y > 0,

P(−β,y)

(
τ1(0) < τ1(−β − 1)

) ≥ P
(−β + √

2W(t) − βt hits 0 before − β − 1
)

= 1 − e−β

eβ2 − e−β
≥ 1

2
e−β2

for sufficiently large β . Therefore, for any k ≥ 0,

(B.11) sup
y∈(0,β]

P(−β,y)

(
N+ ≥ k

) ≤
(

1 − 1

2
e−β2

)k

,

for all β ≥ β0 where β0 is chosen sufficiently large. If the starting configuration is set to
(Q1(0),Q2(0)) = (−β −1, z) for any z ∈ (0, β], then for t ≤ τ1(0), Q∗

1 = Q1 +β is stochas-
tically bounded from below by an Ornstein–Uhlenbeck process (that does not depend on β)
started from −1. To see this, note that for t ≤ τ1(0), Q2(t) = ze−t . Therefore, Q∗

1 has the
following representation for t ≤ τ1(0):

Q∗
1(t) = −1 + √

2W(t) +
∫ t

0

(−Q∗
1(s) + ze−s)ds.

By Proposition 2.18 of [13], Q∗
1(t) ≥ Z(t) for all t ≤ τ1(0), where Z is the Ornstein–

Uhlenbeck process that is the solution to the following SDE:

Z(t) = −1 + √
2W(t) −

∫ t

0
Z(s) ds,

where W is the same Brownian motion that drives Q∗
1. Thus, τ1(−β) is stochastically

bounded above by the hitting time of 0 by Z. Therefore,

(B.12) sup
z∈(0,β]

E(−β−1,z)

(
τ1(−β)

) ≤ C.

Now consider the starting configuration (Q1(0),Q2(0)) = (−β, z) for z ∈ (0, β]. Note that
on the event {τ1(0) ≥ log(1/β)}, Q2(t) ≤ 1 for t ∈ [log(1/β), τ1(0)]. Therefore, again using
Proposition 2.18 of [13], for any t ≥ log(1/β), Q∗

1(t) ≤ Z̃(t) where Z̃ is the solution to the
SDE:

Z̃(t) = √
2W(t) +

∫ t

0

(
1 − Z̃(s)

)
ds,

where W is the same Brownian motion that drives Q∗
1. Thus, writing τ̃ for the hitting time

of Z̃ on level −1, the event {τ1(0) ∧ τ1(−β − 1) > t} implies {τ̃ > t − log(1/β)} for any
t ≥ log(1/β). Hence,

sup
z∈(0,β]

E(−β,z)

(
τ1(0) ∧ τ1(−β − 1)

)
≤ log(1/β) + sup

z∈(0,β]

∫ ∞
log(1/β)

P(−β,z)

(
τ1(0) ∧ τ1(−β − 1) > t

)
≤ log(1/β) +

∫ ∞
log(1/β)

P
(
τ̃ > t − log(1/β)

)
= log(1/β) +E(τ̃ ) ≤ log(1/β) + C.

(B.13)
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Define the stopping time τ+ = inf{t ≥ τ1(−β) : Q1(t) = −β − 1 or Q1(t) = 0}. Combining
(B.12) and (B.13), we get

(B.14) sup
z∈(0,β]

E(−β−1,z)

(
τ+) ≤ log(1/β) + C.

Finally, combining (B.11), (B.13) and (B.14) and using strong Markov property, we have

sup
y∈(0,β]

E(−β,y)

(
τ1(0)

)
= sup

y∈(0,β]
E(−β,y)

( ∞∑
k=0

1[N+=k]τ+
2k+1

)

≤ sup
y∈(0,β]

E(−β,y)

(
τ1(0) ∧ τ1(−β − 1)

)
+ sup

y∈(0,β]
E(−β,y)

( ∞∑
k=1

(
τ+

2k+1 − τ+
2k−1

)
1[N+≥k]

)

≤ sup
y∈(0,β]

E(−β,y)

(
τ1(0) ∧ τ1(−β − 1)

)
+

∞∑
k=1

(
sup

y∈(0,β]
E(−β−1,y)

(
τ+))

sup
y∈(0,β]

P(−β,y)

(
N+ ≥ k

)

≤ (
log(1/β) + C

) ∞∑
k=0

sup
y∈(0,β]

P(−β,y)

(
N+ ≥ k

)

≤ (
log(1/β) + C

) ∞∑
k=0

(
1 − 1

2
e−β2

)k

= 2
(
log(1/β) + C

)
eβ2

,

which gives the required upper bound for β ≥ β0 for sufficiently large β0.
Now, we prove the lower bound in (4.1). Start from (Q1(0),Q2(0)) = (−β/4, y) where

y ≤ β/2. Define the stopping times: τ−
0 = 0 and for k ≥ 0,

τ−
2k+1 = inf

{
t ≥ τ−

2k : Q1(t) = 0 or Q1(t) = −3β/8
}
,

τ−
2k+2 = inf

{
t ≥ τ−

2k+1 : Q1(t) = 0 or Q1(t) = −β/4
}
.

Let N− = inf{k ≥ 0 : Q1(τ
−
2k+1) = 0}. Note that for t ∈ [τ−

2k, τ
−
2k+1] for any k ≥ 0,

Q1(t) = Q1(0) + √
2W(t) − βt +

∫ t

0

(−Q1(s) + Q2(s)
)
ds

≤ Q1(0) + √
2W(t) − βt/8.

Therefore, for any y > 0,

P(−β/4,y)

(
τ1(0) < τ1(−3β/8)

)
≤ P

(−β/4 + √
2W(t) − βt/8 hits 0 before − 3β/8

)
= 1 − e−β2/64

eβ2/32 − e−β2/64
≤ e−β2/32.

Therefore, for any k ≥ 0, by the union bound,

(B.15) sup
y∈(0,β/2]

P(−β/4,y)

(
N− ≤ k

) ≤ (k + 1)e−β2/32.
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Next, we show that for β ≥ 1,

(B.16) inf
y∈(0,β/2]E(−β/4,y)

(
τ−

1

) ≥ μ,

where μ does not depend on β . To see this, note that for t ∈ [0, τ−
1 ],

Q1(0) + √
2W(t) − βt ≤ Q1(t) ≤ Q1(0) + √

2W(t) − βt/8.

Thus, for any β ≥ 1,

inf
y∈(0,β/2]P(−β/4,y)

(
τ−

1 ≥ 1/16
)

≥ P

(
sup

t≤1/16

√
2W(t) ≤ β/8, inf

t≤1/16

√
2W(t) > −β/16

)
≥ P

(
sup

t≤1/16

√
2W(t) ≤ 1/8, inf

t≤1/16

√
2W(t) > −1/16

)
= p− > 0,

where p− does not depend on β . Therefore, for every β ≥ 1,

inf
y∈(0,β/2]E(−β/4,y)

(
τ−

1

) ≥
∫ 1/16

0
inf

y∈(0,β/2]P(−β/4,y)

(
τ−

1 ≥ t
)
dt ≥ p−/16 > 0.

We then have the following:

inf
y∈(0,β/2]E(−β/4,y)

(
τ1(0)

)

= inf
y∈(0,β/2]E(−β/4,y)

N−∑
k=0

(
τ−

2k+1 − τ−
2k

)

= inf
y∈(0,β/2]E(−β/4,y)

∞∑
k=0

(
τ−

2k+1 − τ−
2k

)
1[N−≥k]

≥
∞∑

k=0

(
inf

y∈(0,β/2]E(−β/4,y)

(
τ−

1

))(
inf

y∈(0,β/2]P(−β/4,y)

(
N− ≥ k

))

≥ μ

�eβ2/64�+1∑
k=0

inf
y∈(0,β/2]P(−β/4,y)

(
N− ≥ k

)
,

(B.17)

where the first inequality follows using the strong Markov property. Using (B.15), for all
k ≤ �eβ2/64� + 1,

inf
y∈(0,β/2]P(−β/4,y)

(
N− ≥ k

) ≥ 1

2
for all β ≥ β0 for sufficiently large β0. This fact, along with (B.17), implies that for all β ≥ β0,

inf
y∈(0,β/2]E(−β/4,y)

(
τ1(0)

) ≥ μ

2
eβ2/64,

which proves the lower bound in (4.1).
To prove (4.2), observe that for each k ≥ 0, τ−

2k+1 − τ−
2k is stochastically dominated by the

hitting time of level −β/8 by
√

2W(t) − βt/8. We have for any β ≥ 1 and any t ≥ 1,

sup
k≥0

sup
y∈(0,β/2]

P(−β/4,y)

(
τ−

2k+1 − τ−
2k ≥ t

)
≤ P

(√
2W(t) − βt/8 hits − β/8 after time t

)
≤ P

(√
2W(t) >

β

8
(t − 1)

)
≤ P

(√
2W(t) >

1

8
(t − 1)

)
≤ Ce−C′t .

(B.18)
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By (B.18), (B.16) and using Chernoff’s inequality (see [15], page 16, equation (2.2)),

sup
y∈(0,β/2]

P(−β/4,y)

(
n∑

k=0

(
τ−

2k+1 − τ−
2k

) ≤ nμ/2,N− > n

)
≤ Ce−C′n,

where μ is the constant (independent of β) that appears in (B.16). Therefore, recalling (B.15),
we obtain

sup
y∈(0,β/2]

P(−β/4,y)

(
τ1(0) ≤ μ

2
eβ2/64

)
≤ sup

y∈(0,β/2]
P(−β/4,y)

(
N− ≤ eβ2/64)

+ sup
y∈(0,β/2]

P(−β/4,y)

(�eβ2/64�+1∑
k=0

(
τ−

2k+1 − τ−
2k

) ≤ μ

2
eβ2/64,N− > eβ2/64

)

≤ Ce−β2/64 + Ce−C′eβ2/64
,

which proves (4.2). �

PROOF OF LEMMA 4.3. Fix y ∈ [βe−C−
1 eC

−
2 β2

, β/4]. Set the starting configuration
(Q1(0),Q2(0)) = (0, z) where z ∈ [y,β/4].

Recall from Lemma A.1 that there exist positive constants c′
1, c′

2, c′
3, c′

4 not depending on
β such that for any β ≥ 1 and any w ≥ 1,

P(0,w+c′
1β)

(
inf
s≤t

Q2(s) > c′
1β

)
≤ c′

3 exp
(−c′

2β
2/5t1/5)

for all t ≥ c′
4w/β . Without loss of generality, we can assume c′

1 > 1. Define the following
stopping times. 0 = 0 and for k ≥ 0,

5k+1 = inf
{
t ≥ 5k : Q1(t) = −β/4 or Q2(t) = c′

1β + 2
}
,

5k+2 = inf
{
t ≥ 5k+1 : Q2(t) ≤ c′

1β + 1
}
,

5k+3 = inf
{
t ≥ 5k+2 : Q1(t) = 0 or Q2(t) = y

}
,

5k+4 = inf
{
t ≥ 5k+3 : Q2(t) ≤ β/4 or Q2(t) = y

}
,

5k+5 = inf
{
t ≥ 5k+4 : Q1(t) = 0 or Q2(t) = y

}
.

Define N = inf{k ≥ 1 : Q2(5k) = y}.
We will first show that there exists p0 > 0 that do not depend on β such that for all β ≥ β0

for large enough β0,

(B.19) inf
w∈[y,β/4]P(0,w)

(
Q2(3) = y

) ≥ p0 > 0.

To see this, first observe that if Q1 < 0, then Q2 decreases exponentially. Thus, applying the

strong Markov property at 1 and recalling that y ≥ βe−C−
1 eC

−
2 β2

, we get

inf
w∈[y,β/4]P(0,w)

(
Q2(3) = y

) ≥ inf
w∈[y,β/4]P(0,w)

(
Q2(1) ≤ β/2

)
× inf

w∈(0,β/2]P(−β/4,w)

(
τ1(0) ≥ C−

1 eC
−
2 β2)

.
(B.20)
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Now, S(t) ≤ β/2 for t ≤ 1 implies Q2(t) ≤ β/2 for t ≤ 1 (by the same argument appearing
after (B.4)) and for t ≤ 1,

S(t) = S(0) + √
2W(t) − βt +

∫ t

0

(−Q1(s)
)
ds ≤ β

4
+ √

2W(t) − 3β

4
t.

Therefore, for any w ∈ [βe−C−
1 eC

−
2 β2

, β/4],
P(0,w)

(
Q2(1) ≤ β/2

) ≥ P

(
sup
t<∞

(√
2W(t) − 3β

4
t

)
< β/4

)
= 1 − e−3β2/16.

(B.21)

By Lemma 4.2,

inf
w∈(0,β/2]P(−β/4,w)

(
τ1(0) ≥ C−

1 eC
−
2 β2) ≥ 1 −D1e−D2β

2
.(B.22)

Using (B.21) and (B.22) in (B.20) gives (B.19). This, in turn, implies for k ≥ 1,

(B.23) sup
w∈[y,β/4]

P(0,w)(N ≥ k) ≤ (1 − p0)
k.

Next, we will show that

(B.24) sup
z∈[y,β/4]

E(0,z)(5) ≤ C log
(

β

y

)
.

To verify this, observe that for t ≤ 1, Q1(t) ≤ S(t) ≤ β
4 + √

2W(t) − 3β
4 t , and hence, 1

is stochastically dominated by the hitting time of level −β/4 by β
4 + √

2W(t) − 3β
4 t , and

hence, supz∈[y,β/4]E(0,z)(1) ≤ C. From Lemma A.1, supz∈[y,β/4]E(0,z)(2 − 1) ≤ C/β .

Further, as Q2 decreases exponentially in [2,3], 3 − 2 ≤ log(
c′

1β

y
). Moreover, by the

strong Markov property and Lemma 4.1,

sup
z∈[y,β/4]

E(0,z)(4 − 3) = sup
z∈[y,β/4]

E(0,z)

(
(4 − 3)1[Q1(3)=0]

)
≤ sup

β/4≤w≤c′
1β

E(0,w)

(
τ2(β/4)

) ≤ C
c′

1β

β
= Cc′

1.

Finally, as Q2 decreases exponentially on [4,5], 5 − 4 ≤ log(
β
4y

). These observations
yield (B.24).

Finally, using (B.23) and (B.24), we obtain

sup
z∈[y,β/4]

E(0,z)

(
τ2(y)

) ≤ sup
z∈[y,β/4]

E(0,z)

( ∞∑
k=1

1[N=k]5k

)

= sup
z∈[y,β/4]

E(0,z)

( ∞∑
k=1

(5k − 5k−5)1[N≥k]
)

≤
∞∑

k=1

sup
z∈[y,β/4]

E(0,z)(5) sup
w∈[y,β/4]

P(0,w)(N ≥ k)

≤ C log
(

β

y

) ∞∑
k=1

(1 − p0)
k = C′ log

(
β

y

)
,

which completes the proof of the lemma. �
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PROOF OF LEMMA 4.4. Take any z ∈ [β−1, β/4] and any y ∈ [βe−C−
1 eC

−
2 β2

, β/8] satis-
fying z ≥ 2y. We can write

E(0,z)

(
τ2(y)

) = E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)<τ1(−β/4)]

)
+E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)≥τ1(−β/4)]

)
.

(B.25)

Using the strong Markov property, we obtain

E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)<τ1(−β/4)]

)
≤ E(0,z)

(
τ2(y)1[τ2(y)≤τ1(−β/4)]

) +E(0,z)

(
τ2(y)1[τ2(β/4)<τ1(−β/4)∧τ2(y)]

)
≤ E(0,z)

(
τ2(y)1[τ2(y)≤τ1(−β/4)]

) +E(0,z)

(
τ2(β/4)1[τ2(β/4)<τ1(−β/4)∧τ2(y)]

)
+ P(0,z)

(
τ2(β/4) < τ1(−β/4)

)
E(0,β/4)

(
τ2(y)

)
≤ 2E(0,z)

(
τ1(−β/4)

) + P(0,z)

(
τ2(β/4) < τ1(−β/4)

)
E(0,β/4)

(
τ2(y)

)
.

(B.26)

For t ≤ τ1(−β/4), Q1(t) ≤ S(t) ≤ S(0) + √
2W(t) − 3βt/4 ≤ β/4 + √

2W(t) − 3βt/4.
Therefore, E(0,z)(τ1(−β/4)) ≤ C. Furthermore, for any u ≥ z, Q2(t) hits level u if and only
if S(t) hits level u and Q1(t) ≤ S(t) ≤ S(0) + √

2W(t) − 3βt/4 for t ≤ τ1(−β/4). Thus,

P(0,z)

(
τ2(u) < τ1(−β/4)

) ≤ P
(
z + √

2W(t) − 3βt/4 hits u before − β/4
)

= e3βz/4 − e−3β2/16

e3βu/4 − e−3β2/16
≤ e− 3β

4 (u−z).

(B.27)

Combining the above estimate with u = β/4 with Lemma 4.3 and noting that z ∈ [β−1, β/4]
and z ≥ 2y, we obtain

P(0,z)

(
τ2(β/4) < τ1(−β/4)

)
E(0,β/4)

(
τ2(y)

) ≤ Ce− 3β
4 (

β
4 −z) log

(
β

y

)

≤ log
(

z

y

)
+ Ce− 3β

4 (
β
4 −z) log

(
β

z

)

≤ log
(

z

y

)
+ Ce− 3

4 (
β
4z

−1) log
(

β

z

)
≤ C log

(
z

y

)
.

Since z ≥ 2y, using the above estimates in (B.26),

E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)<τ1(−β/4)]

) ≤ C log
(

z

y

)
.(B.28)

Now, we estimate the second term in (B.25). Using the strong Markov property at τ1(−β/4),

E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)≥τ1(−β/4)]

)
≤ E(0,z)

(
τ1(−β/4)

)
+E(0,z)

(
1[τ2(β/4)∧τ2(y)≥τ1(−β/4)]E(−β/4,Q2(τ1(−β/4)))

(
τ2(y)

))
≤ C +E(0,z)

(
1[τ2(β/4)∧τ2(y)≥τ1(−β/4)]E(−β/4,Q2(τ1(−β/4)))

(
τ2(y)

))
.

(B.29)
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Recall that when Q1 < 0, Q2 decays exponentially. Using this fact and the strong Markov
property, we obtain for any w ∈ [y,β/4],

E(−β/4,w)

(
τ2(y)

)
= E(−β/4,w)

(
τ2(y)1[τ1(0)≥τ2(y)]

) +E(−β/4,w)

(
τ2(y)1[τ1(0)<τ2(y)]

)
≤ E(−β/4,w)

(
τ2(y)1[τ1(0)≥τ2(y)]

) +E(−β/4,w)

(
τ1(0)1[τ1(0)<τ2(y)]

)
+ P(−β/4,w)

(
τ1(0) < τ2(y)

)
sup

u∈[y,β/4]
E(0,u)

(
τ2(y)

)
≤ 2 log

(
w

y

)
+ sup

u∈(0,β/2]
P(−β/4,u)

(
τ1(0) ≤ C−

1 eC
−
2 β2)

sup
u∈[y,β/4]

E(0,u)

(
τ2(y)

)
≤ 2 log

(
w

y

)
+ (

D1e−D2β
2)(

C log
(

β

y

))
,

(B.30)

where the last line follows from Lemma 4.2 and Lemma 4.3, and the second to last line can
be understood as follows. Note that Q2 decreases exponentially before τ1(0). Therefore, it
is clear that starting from (−β/4,w), τ2(y)1[τ1(0)≥τ2(y)] ≤ log(w/y). Also, if τ1(0) < τ2(y),
then again by the same reasoning τ1(0)1[τ1(0)<τ2(y)] ≤ log(w/y).

Now, using the above estimate in (B.29) and recalling z ∈ [β−1, β/4],
E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)≥τ1(−β/4)]

)
≤ C + 2E(0,z)1[τ2(y)≥τ1(−β/4)] log

(
Q2(τ1(−β/4))

y

)

+ (
D1e−D2β

2)(
C log

(
β

y

))

≤ C + 2E(0,z)1[τ2(y)≥τ1(−β/4)] log
(

Q2(τ1(−β/4))

y

)

+ C log
(

z

y

)
+ (

D1e−D2β
2)(

C log
(

β

z

))

≤ C + 2E(0,z)1[τ2(y)≥τ1(−β/4)] log
(

Q2(τ1(−β/4))

y

)
+ C log

(
z

y

)
+ (

D1e−D2β
2)(

2C log(β)
)

≤ C′ + 2E(0,z)1[τ2(y)≥τ1(−β/4)] log
(

Q2(τ1(−β/4))

y

)
+ C log

(
z

y

)
.

(B.31)

Write Q∗
2 = supt≤τ1(−β/4) Q2(t). Then

E(0,z)1[τ2(y)≥τ1(−β/4)] log
(

Q2(τ1(−β/4))

y

)

≤ E(0,z) log
(

Q∗
2

y

)
= log

(
z

y

)
+

∫ ∞
log( z

y
)
P(0,z)

(
Q∗

2 ≥ yeu)
du

≤ log
(

z

y

)
+

∫ ∞
log( z

y
)
e− 3β

4 (yeu−z) du (using (B.27)).
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Substituting v = yeu − z and recalling z ≥ β−1, the integral can be estimated as∫ ∞
log( z

y
)
e− 3β

4 (yeu−z) du =
∫ ∞

0
e− 3β

4 v dv

v + z
=

∫ ∞
0

e− 3βz
4 w dw

w + 1

≤
∫ ∞

0
e− 3

4 w dw

w + 1
= C,

where C does not depend on β , y, z. Thus,

E(0,z)1[τ2(y)≥τ1(−β/4)] log
(

Q2(τ1(−β/4))

y

)
≤ log

(
z

y

)
+ C.

Using the above estimate in (B.31), we obtain

(B.32) E(0,z)

(
τ2(y)1[τ2(β/4)∧τ2(y)≥τ1(−β/4)]

) ≤ C log
(

z

y

)
.

Using (B.28) and (B.32) in (B.25), we finally obtain

E(0,z)

(
τ2(y)

) ≤ C log
(

z

y

)
,

which completes the proof of the lemma. �

PROOF OF LEMMA 4.5. Let (Q1(0),Q2(0)) = (0, y/2) for some y ∈ [2βe−C−
1 eC

−
2 β2

,

2β−1]. Define the stopping times: f0 = 0 and for k ≥ 0,

f2k+1 = inf
{
t ≥ f2k : Q2(s) = y

}
,

f2k+2 = inf
{
t ≥ f2k+1 : Q2(s) = y/2 or Q2(s) = 2β−1}

.

Let Nf = inf{k ≥ 1 : Q2(f2k) = 2β−1}. Using strong Markov property,

E(0,y/2)(f2 − f1)

= E(0,y)

(
τ2

(
2β−1) ∧ τ2(y/2)

)
= E(0,y)

(
τ2

(
2β−1) ∧ τ2(y/2)1[τ2(2β−1)∧τ2(y/2)<τ1(−β/4)]

)
+E(0,y)

(
τ2

(
2β−1) ∧ τ2(y/2)1[τ2(2β−1)∧τ2(y/2)≥τ1(−β/4)]

)
(B.33)

≤ 2E(0,y)

(
τ1(−β/4)

) +E(0,y)

[((
τ2

(
2β−1) ∧ τ2(y/2)

) − τ1(−β/4)
)

× 1[τ2(2β−1)∧τ2(y/2)≥τ1(−β/4)]
]

≤ 2E(0,y)

(
τ1(−β/4)

) + sup
z∈(y/2,2β−1)

E(−β/4,z)

(
τ2(y/2)

)
.

For t ≤ τ1(−β/4), note that

Q1(t) ≤ S(t) ≤ S(0) + √
2W(t) − 3βt/4.

Hence, supy∈(0,2β−1]E(0,y)(τ1(−β/4)) ≤ C. Moreover, for any y ∈ [2βe−C−
1 eC

−
2 β2

,2β−1] and
any z ∈ (y/2,2β−1), by (B.30),

E(−β/4,z)

(
τ2(y/2)

)
≤ 2 log

(
2z

y

)
+ (

D1e−D2β
2)(

C log
(

2β

y

))
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≤ 2 log
(

4

βy

)
+ (

D1e−D2β
2)(

C log
(

2

βy

))
+ (

D1e−D2β
2)

(2C logβ)

≤ C log
(

4

βy

)
for all β ≥ β0 for sufficiently large β0, where C in the final bound does not depend on β , y.
Using these estimates in (B.33), we obtain C > 0, β0 ≥ 1 such that for all β ≥ β0 and all

y ∈ [2βe−C−
1 eC

−
2 β2

,2β−1],
(B.34) E(0,y/2)(f2 − f1) ≤ C log

(
4

βy

)
.

If (Q1(0),Q2(0)) = (0, y), then Q2(t) ≥ S(t) ≥ y +√
2W(t)−βt . Furthermore, for any t ≤

β−2, Q2(t) ≥ e−t y ≥ e−β−2
y > y/2 for all β ≥ β0 if β0 is chosen large enough. Therefore,

inf
y∈(0,2β−1]

P(0,y)

(
Q2 hits 2β−1 before y/2

)
≥ inf

y∈(0,2β−1]
P(0,y)

(
sup

t≤β−2
S(t) ≥ 2β−1

)
≥ P

(
sup

t≤β−2

√
2W(t) ≥ 3β−1

)
≥ pf > 0,

where pf does not depend on β . This gives us for k ≥ 1,

(B.35) sup
y∈(0,2β−1]

P(0,y/2)(Nf ≥ k) ≤ (1 − pf)
k.

Using (B.34) and (B.35), we obtain

E(0,y/2)

(∫ τ2(2β−1)

0
1[Q2(s)≥y] ds

)

≤ E(0,y/2)

( ∞∑
k=1

(f2k − f2k−1)1[Nf>k−1]
)

≤
∞∑

k=1

E(0,y/2)(f2 − f1) sup
y∈(0,2β−1]

P(0,y/2)(Nf ≥ k)

≤ C log
(

4

βy

) ∞∑
k=1

(1 − pf)
k = C′ log

(
4

βy

)
,

where C′ does not depend on β , y. This completes the proof of the lemma. �

APPENDIX C: PROOF OF LEMMA 4.6

Lemma A.3 gives us an upper bound on the tail probabilities of Q2 in the region
[β + y0(β),∞). In this appendix, we will extend these estimates to the region [β−1,∞).
In particular, we will prove Lemma 4.6. We start by recording a corollary to Lemma A.3
which will be useful in proving finer tail estimate.

LEMMA C.1 (Corollary to Lemma A.3). Take any ε ∈ (0,R+), where R+ is the constant
in Lemma A.3. There exist positive constants β0, C∗

1 , and C∗
2 , such that for all fixed β ≥ β0,

P(0,2(1+ε)β)

(
τ2(z) ≤ τ2

(
(1 + ε)β

)) ≤ C∗
1 e−C∗

2 βz

for z ≥ 4(1 + ε)β .
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PROOF. Take β0 ≥ 1 satisfying R+
β0

= εβ0. Consider any β ≥ β0. Recalling y0(β) =
R+β−1 from Lemma A.3, we have y0(β) + β ≤ (1 + ε)β . Also, 2y + β < 2(y + β) for
any y. For any z ≥ 2(1 + ε)β , write y = z

2 − β . Then y ≥ εβ ≥ R+β−1 by our choice of β0.
Therefore, by the strong Markov property and Lemma A.3, for any z ≥ 4(1 + ε)β ,

P(0,2(1+ε)β)

(
τ2(z) ≤ τ2

(
(1 + ε)β

)) = P(0,2(1+ε)β)

(
τ2

(
2(y + β)

) ≤ τ2
(
(1 + ε)β

))
≤ P(0,2(1+ε)β)

(
τ2(2y + β) ≤ τ2

(
y0(β) + β

))
≤ P(0,y+β)

(
τ2(2y + β) ≤ τ2

(
y0(β) + β

))
≤ C∗

1 e−C∗
2 βy.

As z ≥ 4(1 + ε)β , β ≤ z
4 , and hence, y = z

2 − β ≥ z
4 , completing the proof of the corollary.

�

As mentioned in Remark 4 in detail, the diffusion process starting in the region {−Q1 +
Q2 < β} shows a different qualitative behavior than the {−Q1 +Q2 > β} region. Lemma A.3
exploits the linear drift of Q2 to produce an exponential steady-state tail estimate in the latter
region. The next lemma studies the tail behavior of Q2 when {−Q1 + Q2 < β}.

LEMMA C.2. Fix any θ0 ∈ (0,1) and any A > max{θ0,
1
2}. There exist constants

C1,C2 > 0 (depending only on θ0, A) such that for all β ≥ θ
−1/2
0 and all θ ∈ [β−2, θ0],

sup
z∈[β−1,θβ]

P(0,z)

(
τ2(z + y) ≤ τ2

(
β−1)) ≤ C1e−C2βy, y ∈ [θβ,Aβ].

PROOF. Fix any θ0 ∈ (0,1) and any A > max{θ0,
1
2}. Take any β ≥ θ

−1/2
0 and any θ ∈

[β−2, θ0]. Finally, take any z ∈ [β−1, θβ]. Define σ = inf{t ≥ τ1(−(1 − θ)β/8) : Q1(t) = 0}.
Note that for y ∈ [θβ,Aβ],

P(0,z)

(
τ2(z + y) ≤ τ2

(
β−1))

≤ P(0,z)

(
τ2

(
z + (1 − θ)y

2A

)
≤ τ1

(−(1 − θ)β/8
))

+ P(0,z)

(
τ2

(
z + (1 − θ)y

2A

)
> τ1

(−(1 − θ)β/8
)
, σ ≤ τ2

(
β−1))

,

(C.1)

where the last probability uses the fact that as A > 1
2 , z + (1−θ)y

2A
< z + y. We will estimate

the two probabilities separately. Note that for t ≤ τ1(−(1 − θ)β/8),

L(t) = sup
s≤t

(√
2W(s) − βs +

∫ s

0

(−Q1(u) + Q2(u)
)
du

)

≤ sup
s≤t

(√
2W(s) − 7 + θ

8
βs

)
+

∫ t

0
Q2(s) ds.

Recall that

Q2(t) − Q2(0) = L(t) −
∫ t

0
Q2(s) ds.
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Therefore, using the fact that the scale function of
√

2W(t)−bβt is sb(u) = ebu for any b > 0
and u ∈ R,

P(0,z)

(
τ2

(
z + (1 − θ)y

2A

)
≤ τ1

(−(1 − θ)β/8
))

≤ P

(
sup
s<∞

(√
2W(s) − 7 + θ

8
βs

)
>

(1 − θ)y

2A

)
= e− (7+θ)(1−θ)βy

16A ≤ e− 7(1−θ0)βy

16A .

(C.2)

Now we estimate the second probability of (C.1). Applying the strong Markov property at
τ1(−(1 − θ)β/8),

P(0,z)

(
τ2

(
z + (1 − θ)y

2A

)
> τ1

(−(1 − θ)β/8
)
, σ ≤ τ2

(
β−1))

≤ sup
w∈[0,z+ (1−θ)y

2A
]
P(−(1−θ)β/8,w)

(
τ1(0) ≤ τ2

(
β−1))

.
(C.3)

Therefore, it suffices to estimate the probability appearing in the right-hand side above for
Q1(0) = −(1 − θ)β/8 and Q2(0) = w for w ∈ [0, z + (1−θ)y

2A
]. Toward this end, define the

following stopping times: σ0 = 0 and for k ≥ 0,

σ2k+1 = inf
{
t ≥ σ2k : Q1(t) = −(1 − θ)β/4 or 0

}
,

σ2k+2 = inf
{
t ≥ σ2k+1 : Q1(t) = −(1 − θ)β/8 or 0

}
.

Let N ∗ = inf{k ≥ 0 : Q1(σ2k+1) = 0}. Suppose N ∗ ≥ k. For t ∈ [σ2k, σ2k+1], Q1(t) ≥ −(1−
θ)β/4 and Q2(t) ≤ z + (1−θ)y

2A
≤ (1+θ)β

2 (as (1−θ)y
2A

≤ (1−θ)β
2 and z ≤ θβ). Therefore,

(C.4)
Q1(t) = −(1 − θ)β/8 + √

2W(t) − βt +
∫ t

0

(−Q1(s) + Q2(s)
)
ds

≤ −(1 − θ)β/8 + √
2W(t) − 1 − θ

4
βt.

Therefore, by the strong Markov property and scale function arguments, for any k ≥ 0,

P(−(1−θ)β/8,w)

(
Q1(σ2k+1) = 0,N ∗ ≥ k

)
≤ P

(√
2W(t) − 1 − θ

4
βt hits (1 − θ)β/8 before − (1 − θ)β/4

)

= 1 − e−(1−θ)2β2/16

e(1−θ)2β2/32 − e−(1−θ)2β2/16
≤ e−(1−θ)2β2/32 ≤ e−(1−θ0)

2β2/32.

Consequently, for any n ≥ 0, P(−(1−θ)β/8,w)(N ∗ ≤ n) ≤ (n + 1)e−(1−θ)2β2/32. Further, ob-
serve that τ1(0) ≥ ∑N ∗

k=1(σ2k+1 − σ2k). Moreover, if N ∗ ≥ k, then for t ∈ [σ2k, σ2k+1],
Q1(t) ≥ −(1 − θ)β/8 + √

2W(t) − βt and from (C.4), Q1(t) ≤ −(1 − θ)β/8 + √
2W(t) −

1−θ
4 βt . Therefore,

P(−(1−θ)β/8,w)

(
(σ2k+1 − σ2k) ≤ (1 − θ)/16

)
,N ∗ ≥ k)

≤ P

(
inf

t≤ (1−θ)
16

(√
2W(t) − βt

) ≤ −(1 − θ)β/8
)

+ P

(
sup

t≤ (1−θ)
16

(√
2W(t) − 1 − θ

4
βt

)
≥ (1 − θ)β/8

)
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≤ P

(
inf

t≤(1−θ)/16

√
2W(t) ≤ −(1 − θ)β/16

)
+ P

(
sup

t≤(1−θ)/16

√
2W(t) ≥ (1 − θ)β/8

)

≤ 8
√

2√
2πβ

√
1 − θ

e−(1−θ)β2/64 + 4
√

2√
2πβ

√
1 − θ

e−(1−θ)β2/16

≤ 12
√

2θ0√
2π

√
1 − θ0

e−(1−θ0)β
2/64,

where the last inequality follows from β ≥ θ
−1/2
0 . Hence, for any n ≥ 0 (whose value will be

appropriately chosen later),

sup
w∈[0,z+ (1−θ)y

2A
]
P(−(1−θ)β/8,w)

(
τ1(0) ≤ n(1 − θ)

16

)

≤ sup
w∈[0,z+ (1−θ)y

2A
]
P(−(1−θ)β/8,w)

(
n∑

k=0

(σ2k+1 − σ2k) ≤ n(1 − θ)

16
,N ∗ ≥ n

)

+ sup
w∈[0,z+ (1−θ)y

2A
]
P(−(1−θ)β/8,w)

(
N ∗ ≤ n

)

≤ (n + 1)e−(1−θ0)
2β2/32 + (n + 1)

12
√

2θ0√
2π

√
1 − θ0

e−(1−θ0)β
2/64.

(C.5)

If Q2(0) ≤ z + (1−θ)y
2A

, then as Q1(t) < 0 for all t < τ1(0),

Q2
(
τ1(0)

) ≤
(
z + (1 − θ)y

2A

)
e−τ1(0) ≤

(
θβ + (1 − θ)y

2A

)
e−τ1(0)

≤
(

1 + (1 − θ)

2A

)
ye−τ1(0).

Thus, for τ1(0) ≤ τ2(β
−1) to hold, we must have (1 + (1−θ)

2A
)ye−τ1(0) ≥ β−1 or equivalently,

τ1(0) ≤ log
[(

1 + (1 − θ)

2A

)
βy

]
.

This observation, combined with (C.5), taking n to be the greatest integer greater than or
equal to 16

(1−θ)
log[(1 + (1−θ)

2A
)βy], yields the following estimate:

sup
w∈[0,z+ (1−θ)y

2A
]
P(−(1−θ)β/8,w)

(
τ1(0) ≤ τ2

(
β−1))

≤ sup
w∈[0,z+ (1−θ)y

2A
]
P(−(1−θ)β/8,w)

(
τ1(0) ≤ log

[(
1 + (1 − θ)

2A

)
βy

])

≤
(

16

(1 − θ)
log

[(
1 + (1 − θ)

2A

)
βy

]
+ 2

)(
1 + 12

√
2θ0√

2π
√

1 − θ0

)
e−(1−θ0)

2β2/64.
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This, by (C.3), yields

P(0,z)

(
τ2

(
z + (1 − θ)y

2A

)
> τ1

(−(1 − θ)β/8
)
, σ ≤ τ2

(
β−1))

≤
(

16

(1 − θ)
log

[(
1 + (1 − θ)

2A

)
βy

]
+ 2

)

×
(

1 + 12
√

2θ0√
2π

√
1 − θ0

)
e−(1−θ0)

2β2/64.

(C.6)

Using the estimates (C.2) and (C.6) in (C.1) and noting y ≤ Aβ , we finally obtain

P(0,z)

(
τ2(z + y) ≤ τ2

(
β−1))

≤ e− 7(1−θ0)βy

16A +
(

16

(1 − θ)
log

[(
1 + (1 − θ)

2A

)
βy

]
+ 2

)(
1 + 12

√
2θ0√

2π
√

1 − θ0

)
× e−(1−θ0)

2β2/64

≤ e− 7(1−θ0)βy

16A +
(

16

(1 − θ)
log

[(
1 + (1 − θ)

2A

)
βy

]
+ 2

)(
1 + 12

√
2θ0√

2π
√

1 − θ0

)

× e− (1−θ0)2

A
βy/64

≤ e− 7(1−θ0)βy

16A +
(

16

(1 − θ0)
log

[(
1 + 1

2A

)
βy

]
+ 2

)(
1 + 12

√
2θ0√

2π
√

1 − θ0

)

× e− (1−θ0)2

A
βy/64,

which proves the lemma. �

The following corollary to Lemma C.2 records the tail bound of Q2 in the region β−1 ≤
y ≤ Aβ , by taking θ0 = 1

2 , β ≥ 2 and θ = 2β−2.

COROLLARY C.3. Fix any A > 1
2 . Then there exist constants C1,C2 > 0 (depending

only on A) such that for all β ≥ 2,

P(0,2β−1)

(
τ2

(
2β−1 + y

) ≤ τ2
(
β−1)) ≤ C1e−C2βy, y ∈ [

2β−1,Aβ
]
.

The next three lemmas “patch up” the different behaviors in the regions {−Q1 + Q2 < β}
and {−Q1 + Q2 > β} to extend Lemma A.3 to the region Q2 ∈ [β−1,∞) for large β . To
achieve this, we will show that for sufficiently small ε > 0, starting from (Q1(0),Q2(0)) =
(0, (1 + ε)β), the probability that Q2 hits the level 2(1 + ε)β before β−1 is bounded above
by 3/4 for sufficiently large β .

LEMMA C.4. Take any ε > 0 satisfying (1 + 2ε)e− 1
4(1+2ε) < 1 and any ψ ∈ ((1 +

2ε)e− 1
4(1+2ε) ,1). Then there exists β∗

0 ≥ 1 depending only on ε such that for all β ≥ β∗
0 ,

P(0,(1+ε)β)

(
τ2

(
(1 + 2ε)β

)
< τ2(ψβ)

) ≤ 1

2
.

PROOF. Take any β ≥ 1. For t ≤ τ1(−β/2), the sum S(t) = Q1(t) + Q2(t) is bounded
above as

S(t) ≤ (1 + ε)β + √
2W(t) − βt/2.
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For Q2 to hit the level (1+2ε)β , the sum S should also hit the same level as times of increase
of Q2 correspond to precisely times when Q1 = 0. Thus,

P(0,(1+ε)β)

(
τ2

(
(1 + 2ε)β

)
< τ1(−β/2)

) ≤ P

(
sup
t<∞

(√
2W(t) − βt/2

) ≥ εβ
)

= e−β2ε/2.

Consider the event {τ1(−β/2) ≤ τ2((1 + 2ε)β)}. Define the stopping time

σ ∗ = inf
{
t ≥ τ1(−β/2) : Q1(t) = 0 or Q1(t) = −β

}
.

Under the event {τ1(−β/2) ≤ τ2((1 + 2ε)β)}, for t ∈ [τ1(−β/2), σ ∗],
Q1(t) = −β/2 + √

2
(
W(t) − W

(
τ1(−β/2)

)) − β
(
t − τ1(−β/2)

)
+

∫ t

τ1(−β/2)

(−Q1(s) + Q2(s)
)
ds

≤ −β/2 + √
2
(
W(t) − W

(
τ1(−β/2)

)) + (1 + 2ε)β
(
t − τ1(−β/2)

)
,

and

Q1(t) ≥ −β/2 + √
2
(
W(t) − W

(
τ1(−β/2)

)) − β
(
t − τ1(−β/2)

)
.

Therefore,

P(0,(1+ε)β)

(
σ ∗ − τ1(−β/2) ≤ 1

4(1 + 2ε)
, τ1(−β/2) ≤ τ2

(
(1 + 2ε)β

))
≤ P

(
−β/2 + sup

t≤ 1
4(1+2ε)

(√
2W(t) + (1 + 2ε)βt

) ≥ 0
)

+ P

(
−β/2 + sup

t≤ 1
4(1+2ε)

(√
2W(t) − βt

) ≤ −β
)

≤ P

(
−β/2 + sup

t≤ 1
4(1+2ε)

√
2W(t) + β/4 ≥ 0

)

+ P

(
−β/2 + inf

t≤ 1
4(1+2ε)

√
2W(t) − β

4(1 + 2ε)
≤ −β

)

≤ P

(
sup

t≤ 1
4(1+2ε)

√
2W(t) ≥ β/4

)
+ P

(
inf

t≤ 1
4(1+2ε)

√
2W(t) ≤ −β/4

)

≤ 8
√

2√
2πβ

√
1 + 2ε

e− (1+2ε)β2

16

≤ 8√
π

e− β2

16 .

On the event {σ ∗ − τ1(−β/2) > 1
4(1+2ε)

, τ1(−β/2) ≤ τ2((1 + 2ε)β)},

Q2
(
σ ∗)

< (1 + 2ε)βe− 1
4(1+2ε) < ψβ.

Therefore,

P(0,(1+ε)β)

(
τ2

(
(1 + 2ε)β

)
< τ2(ψβ)

)
≤ P(0,(1+ε)β)

(
τ2

(
(1 + 2ε)β

)
< τ1(−β/2)

)
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+ P(0,(1+ε)β)

(
σ ∗ − τ1(−β/2) ≤ 1

4(1 + 2ε)
, τ1(−β/2) ≤ τ2

(
(1 + 2ε)β

))

≤ e−β2ε/2 + 8√
π

e− β2

16 .

Therefore, choosing any β∗
0 ≥ 1 satisfying e−(β∗

0 )2ε/2 + 8√
π

e− (β∗
0 )2

16 ≤ 1/2, we obtain for all

β ≥ β∗
0 ,

P(0,(1+ε)β)

(
τ2

(
(1 + 2ε)β

)
< τ2(ψβ)

) ≤ 1

2
,

proving the lemma. �

LEMMA C.5. Take any ε > 0 satisfying (1 + 2ε)e− 1
4(1+2ε) < 1. Then there exists β∗∗

0 ≥ 1
(depending only on ε) such that for all β ≥ β∗∗

0 ,

P(0,(1+ε)β)

(
τ2

(
2(1 + ε)β

)
< τ2

(
β−1)) ≤ 3

4
.

PROOF. Take ψ ∈ ((1 + 2ε)e− 1
4(1+2ε) ,1). By Lemma C.4, there exists β∗

0 ≥ 1 depending
only on ε such that for all β ≥ β∗

0 ,

(C.7)
P(0,(1+ε)β)

(
τ2

(
2(1 + ε)β

)
< τ2(ψβ)

)
≤ P(0,(1+ε)β)

(
τ2

(
(1 + 2ε)β

)
< τ2(ψβ)

) ≤ 1

2
.

Now, choosing θ = θ0 = ψ , A = 2(1 + ε), z = ψβ and y = 2(1 + ε)β − ψβ in Lemma C.2,
we obtain positive constants C1, C2 depending only on ε and β ′

0 ≥ 1 such that

(C.8)
P(0,ψβ)

(
τ2

(
2(1 + ε)β

) ≤ τ2
(
β−1)) ≤ C1e−C2β(2(1+ε)β−ψβ)

≤ C1e−C2β
2 ≤ 1

4

for all β ≥ β ′
0. Define σψ = inf{t > τ2(ψβ) : Q2(t) ≥ ψβ}. Using (C.7), (C.8) and the strong

Markov property at σψ , we obtain β∗∗
0 = max{β∗

0 , β ′
0,ψ

−1/2} such that for all β ≥ β∗∗
0 ,

P(0,(1+ε)β)

(
τ2

(
2(1 + ε)β

)
< τ2

(
β−1))

≤ P(0,(1+ε)β)

(
τ2

(
2(1 + ε)β

)
< τ2(ψβ)

)
+ P(0,(1+ε)β)

(
τ2(ψβ) ≤ σψ ≤ τ2

(
2(1 + ε)β

)
< τ2

(
β−1))

≤ P(0,(1+ε)β)

(
τ2

(
2(1 + ε)β

)
< τ2(ψβ)

) + P(0,ψβ)

(
τ2

(
2(1 + ε)β

) ≤ τ2
(
β−1))

≤ 3

4
,

proving the lemma. �

PROOF OF LEMMA 4.6. Take any ε > 0 satisfying (1 + 2ε)e− 1
4(1+2ε) < 1. The result of

the lemma with β0 = 2 when y ∈ [4β−1,4(1 + ε)β] is directly implied by Corollary C.3
taking A = (6 + 4ε). This, along with the strong Markov property, shows that it suffices to
prove

P(0,(1+ε)β)

(
τ2(y) < τ2

(
β−1)) ≤ CLe−C′

Lβy
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for y ∈ (4(1 + ε)β,∞). Therefore, we assume the starting configuration to be Q1(0) = 0 and
Q2(0) = (1 + ε)β . For any y ∈ (4(1 + ε)β,∞), define the following stopping times: φ0 = 0
and for k ≥ 0,

φ2k+1 = inf
{
t ≥ φ2k : Q2(t) = 2(1 + ε)β or Q2(t) = β−1}

,

φ2k+2 = inf
{
t ≥ φ2k+1 : Q2(t) = (1 + ε)β or Q2(t) = β−1}

.

Let NL = inf{k ≥ 1 : Q2(φ2k+1) = β−1}. By Lemma C.5 and the strong Markov property,
for any β ≥ β∗∗

0 and any k ≥ 1,

(C.9) P(0,(1+ε)β)

(
NL ≥ k

) ≤
(

3

4

)k

.

Therefore, for any β ≥ max{β0, β
∗∗
0 } (where β0 and β∗∗

0 appear in Lemma C.1 and
Lemma C.5 respectively) and any y > 4(1 + ε)β ,

P(0,(1+ε)β)

(
τ2(y) < τ2

(
β−1))

= P(0,(1+ε)β)

(
sup

0≤t≤φ2NL

Q2(t) > y
)

≤
∞∑

k=1

P(0,(1+ε)β)

(
sup

φ2k−1≤t≤φ2k

Q2(t) > y,NL ≥ k
)

≤
∞∑

k=1

E(0,(1+ε)β)I
(
NL ≥ k

)
P(0,2(1+ε)β)

(
τ2(y) < τ2

(
(1 + ε)β

))

≤
∞∑

k=1

P(0,(1+ε)β)

(
NL ≥ k

)
C∗

1 e−C∗
2 βy (by Lemma C.1)

≤
∞∑

k=1

(
3

4

)k

C∗
1 e−C∗

2 βy (by (C.9)) = 4C∗
1 e−C∗

2 βy,

where the second inequality uses the strong Markov property. This completes the proof of the
lemma. �

APPENDIX D: PROOFS OF HITTING TIME ESTIMATES IN THE SMALL-β REGIME

In this appendix, we will assume β to be sufficiently small in many calculations, often
without explicitly mentioning it.

PROOF OF LEMMA 5.1. Assume (Q1(0),Q2(0)) = (0, y) for any fixed 0 < y ≤ β−1/2.
Define the following stopping times: �0 = 0 and for k ≥ 0,

�2k+1 = inf
{
t ≥ �2k : Q1(t) = −β1/4}

,

�2k+2 = inf
{
t ≥ �2k+1 : Q1(t) = −β

}
.
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Define Nt = inf{k ≥ 1 : �k ≥ t}. Then for any x ≥ 2β1/4,

E(0,y)

(∫ t

0
1[Q1(s)≤−x] ds

)

=
∞∑

k=0

E(0,y)

((∫ �2k+2

�2k+1

1[Q1(s)≤−x] ds

)
1[Nt≥2k+2]

)

≤
∞∑

k=0

P(0,y)(Nt ≥ 2k + 2) sup
z≤2β−1/2

E(−β1/4,z)

(∫ τ1(−β)

0
1[Q1(s)≤−x] ds

)

≤ E(0,y)(Nt ) sup
z≤2β−1/2

E(−β1/4,z)

(∫ τ1(−β)

0
1[Q1(s)≤−x] ds

)
.

(D.1)

Now, we use the fact that with starting configuration (Q1(0),Q2(0)) = (−β1/4, z), for all
t ≤ τ1(0), Q1(t) + β is stochastically bounded below by an Ornstein–Uhlenbeck process X̂t

with X̂0 = −β1/4 + β . Denote by P̂u and Êu the probability and expectation under the law
of an Ornstein–Uhlenbeck process starting from u and τ̂ (v) the hitting time of level v by X̂.
Using this, we obtain for any x ≥ 2β1/4,

E(−β1/4,z)

(∫ τ1(−β)

0
1[Q1(s)≤−x] ds

)

≤ Ê−β1/4+β

(∫ τ̂ (0)

0
1[X̂(s)≤−x+β] ds

)
≤ Ê−β1/4+β

(
1
(
τ̂ (−x + β) < τ̂(0)

)(
τ̂ (0) − τ̂ (−x + β)

))
= P̂−β1/4+β

(
τ̂ (−x + β) < τ̂ (0)

)
Ê−x+β

(
τ̂ (0)

)
.

(D.2)

Recall that the scale function for the Ornstein–Uhlenbeck process is given by ŝ(u) =∫ u
0 ev2/2 dv. Using this,

(D.3) P̂−β1/4+β

(
τ̂ (−x + β) < τ̂(0)

) =
∫ β1/4−β

0 ev2/2 dv∫ x−β
0 ev2/2 dv

≤ C
β1/4(x − β)

e(x−β)2/2 − 1
.

From the Doob representation of Ornstein–Uhlenbeck process, it is straightforward to check
that there exists a positive constant C not depending on x such that

(D.4) Ê−x+β

(
τ̂ (0)

) ≤ C
(
(x − β) ∧ log

(
2 + (x − β)2))

.

Using (D.3) and (D.4) in (D.2), we obtain for any x ≥ 2β1/4,

(D.5)

sup
z≤2β−1/2

E(−β1/4,z)

(∫ τ1(0)

0
1[Q1(s)≤−x] ds

)

≤ Cβ1/4((x − β)2 ∧ (x − β) log(2 + (x − β)2))

e(x−β)2/2 − 1
.

Next, we produce an estimate on E(0,y)(Nt ). Note that for each k ≥ 0, �2k+1 − �2k

is stochastically bounded below by the hitting time of level −β1/4 by the process t �→
−β + (

√
2W(t) − βt) − sups≤t (

√
2W(s) − βs). Denote the hitting time of level −1 by the

process t �→ −1
2 + (

√
2W(t) − β5/4t) − sups≤t (

√
2W(s) − β5/4s) by �̂. By Brownian scal-

ing, choosing sufficiently small β0 and β ≤ β0, �2k+1 −�2k is stochastically bounded below
by β1/2�̂. As β ≤ 1, �̂, in turn, is stochastically bounded below by the hitting time of level
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−1 by the process t �→ −1
2 + (

√
2W(t)− t)− sups≤t (

√
2W(s)− s), which we denote by �̂∗.

Let {�̂∗
k}k≥0 be i.i.d. copies of �̂∗. It is easy to check that �̂∗ is a subexponential random

variable, and thus, using Chernoff’s inequality (see [15], page 16, equation (2.2)), we obtain
for any n ≥ 2β−1/2t/(E(�̂∗)),

P(0,y)(Nt ≥ 2n + 1)

≤ P(0,y)

(
n∑

k=0

(�2k+1 − �2k) < t

)
≤ P(0,y)

(
n∑

k=0

�̂∗
k < β−1/2t

)

≤ P(0,y)

(
n∑

k=0

(
�̂∗

k −E
(
�̂∗

k

))
< β−1/2t − nE

(
�̂∗

k

)) ≤ Ce−C′n.

From this, we immediately obtain for t ≥ E(�̂∗)β1/2,

(D.6) E(0,y)(Nt ) ≤ Cβ−1/2t.

Plugging in the estimates (D.5) and (D.6) in (D.1),

(D.7)

E(0,y)

(∫ t

0
1[Q1(s)≤−x] ds

)

≤ C
β−1/4t ((x − β)2 ∧ (x − β) log(2 + (x − β)2))

e(x−β)2/2 − 1
,

where C does not depend on β , t , y. Now, observe that for any n ≥ 1,

E(0,y)

(∫ τ2(2β−1/2)

0
1[Q1(s)≤−x] ds

)

≤ E(0,y)

(∫ nβ−1

0
1[Q1(s)≤−x] ds

)

+
∞∑

k=n+1

E(0,y)

((∫ kβ−1

0
1[Q1(s)≤−x] ds

)
1[(k−1)β−1≤τ2(2β−1/2)<kβ−1]

)

≤ E(0,y)

(∫ nβ−1

0
1[Q1(s)≤−x] ds

)

+
∞∑

k=n+1

kβ−1
P(0,y)

(
τ2

(
2β−1/2) ≥ (k − 1)β−1)

.

(D.8)

To estimate the probability appearing above, we define the stopping times S∗
0 and for k ≥ 0,

S∗
2k+1 = inf

{
t ≥ S∗

2k : S(t) = 2β−1/2 or S(t) ≤ −β−1/2}
,

S∗
2k+2 = inf

{
t ≥ S∗

2k+1 : S(t) = 2β−1/2 or S(t) = −β
}
.

Let NS∗ = inf{k ≥ 0 : S(S∗
2k+1) = 2β−1/2}. Then proceeding along the same lines as the

proofs of (5.4) and (5.5), we obtain constants p,q ∈ (0,1), C > 0 not depending on β , t , y

such that for any n ≥ 1,

P(0,y)(NS∗ ≥ n) ≤ (1 − p)n, P(0,y)

(
S∗

1 ≥ nβ−1) ≤ (1 − q)n.
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To see the second bound above, note that along the lines of (5.5),

P(0,y)

(
S∗

1 ≥ nβ−1) ≤ E(0,y)

(
1[S∗

1 ≥(n−1)β−1]P
(

sup
t≤β−1

(√
2W(t) − βt

)
< 3β−1/2

))
≤ P(0,y)

(
S∗

1 ≥ (n − 1)β−1)
P

(
sup

t≤β−1

(√
2W(t)

)
< 3β−1/2 + 1

)
.

Moreover, using the Doob representation for the Ornstein–Uhlenbeck process which can be
used to bound Q1 + β from below, it is straightforward to show that for n ≥ 1,

P(0,y)

(
S∗

2 − S∗
1 ≥ nβ−1/2) ≤ Cβ−1/2e−nβ−1/2 ≤ C′e−(n−1)β−1/2

.

Observing that τ2(2β−1/2) = S∗
2NS∗+1 and using the above estimates, we obtain for any

k,n ≥ 1 satisfying k ≥ 2n + 1,

P(0,y)

(
τ2

(
2β−1/2) ≥ kβ−1)

= P(0,y)

(
S∗

2NS∗+1 ≥ kβ−1)
≤ P(0,y)(NS∗ ≥ n) +

2n+1∑
i=1

P(0,y)

(
S∗

i+1 − S∗
i ≥ kβ−1/(2n + 1)

)
≤ (1 − p)n + (2n + 1)

(
(1 − q)k/(2n+1)) + C′e−((k/(2n+1))−1)β−1/2

.

Choosing any k ≥ 9 and taking n = (
√

k − 1)/2 in the above,

(D.9) P(0,y)

(
τ2

(
2β−1/2) ≥ kβ−1) ≤ Ce−C′√k.

Using (D.7) and (D.9) in (D.8), we have positive constants C, C′, C′′ such that for any
y ∈ (0, β−1/2), x ≥ 2β1/4 and n ≥ 1,

E(0,y)

(∫ τ2(2β−1/2)

0
1[Q1(s)≤−x] ds

)

≤ C
n((x − β)2 ∧ (x − β) log(2 + (x − β)2))

β5/4(e(x−β)2/2 − 1)
+

∞∑
k=n+1

kβ−1Ce−C′√k

≤ C
n((x − β)2 ∧ (x − β) log(2 + (x − β)2))

β5/4(e(x−β)2/2 − 1)
+ Ce−C′′√n

≤ Cnβ−5/4e−(x−β)2/4 + Ce−C′′√n.

Choosing n = (1+ (x −β)4)/(8C′′)2 in the above, we obtain a positive constants C such that
for any y ∈ (0, β−1/2), x ≥ 2β1/4,

(D.10) E(0,y)

(∫ τ2(2β−1/2)

0
1[Q1(s)≤−x] ds

)
≤ Cβ−5/4e−(x−β)2/8

completing the proof of Lemma 5.1. �

PROOF OF LEMMA 5.2. Let (Q1(0),Q2(0)) = (0,4M0β
−1). Define the following stop-

ping times: �∗
0 = 0 and for k ≥ 0,

�∗
2k+1 = inf

{
t ≥ �∗

2k : Q1(t) = −β or Q2(t) = 2M0β
−1}

,

�∗
2k+2 = inf

{
t ≥ �∗

2k+1 : Q1(t) = 0 or Q2(t) = 2M0β
−1}

.
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Define N ∗
t = inf{k ≥ 1 : �∗

k ≥ t or Q2(�
∗
k) = 2M0β

−1}. Observe that for any x ≥ 2β ,

sup
y≥2M0β

−1
E(−β,y)

(∫ τ1(0)∧τ2(2M0β
−1)

0
1[Q1(s)≤−x] ds

)
≤ sup

y≥2M0β
−1
P(−β,y)

(
τ1(−x) < τ1(0) ∧ τ2

(
2M0β

−1))
× sup

y≥2M0β
−1
E(−x,y)

(
τ1(0) ∧ τ2

(
2M0β

−1))
.

(D.11)

On the time interval [0, τ1(0) ∧ τ2(2M0β
−1)], Q1 is stochastically bounded below by the

process t �→ √
2W(t) + (2M0β

−1 − β)t . Using this and scale function arguments we obtain
for β ≤ β0 for sufficiently small β0 ∈ (0,1) and x ≥ 2β ,

sup
y≥2M0β

−1
P(−β,y)

(
τ1(−x) < τ1(0) ∧ τ2

(
2M0β

−1)) ≤ e(2M0β
−1−β)β − 1

e(2M0β
−1−β)x − 1

≤ Ce−C′β−1x,

where C, C′ are positive constants not depending on β , x. Denoting the hitting time of 0 by
process t �→ −x + √

2W(t) + (2M0β
−1 − β)t by τx ,

sup
y≥2M0β

−1
E(−x,y)

(
τ1(0) ∧ τ2

(
2M0β

−1)) ≤ E
(
τx) ≤ C′′xβ,

where C′′ does not depend on x, β . Using these estimates in (D.11), we obtain

(D.12) sup
y≥2M0β

−1
E(−β,y)

(∫ τ1(0)∧τ2(2M0β
−1)

0
1[Q1(s)≤−x] ds

)
≤ Cxβe−C′β−1x.

Using a similar argument as that used to derive (D.6) stochastically bounding β−2(�∗
2k+1 −

�∗
2k) from below by subexponential random variables and using Chernoff’s inequality, we

obtain n0 > 0 not depending on β , t such that for any n ≥ n0tβ
−2,

(D.13) P(0,4M0β
−1)

(
N ∗

t ≥ 2n + 1
) ≤ C′e−C′′n.

Using (D.13), and part (ii) of Lemma A.1 (recalling c′
1 = M0 and taking y = 3M0β

−1), we
obtain k0 > 0 such that for all k ≥ k0,

P(0,4M0β
−1)

(
N ∗

τ2(2M0β
−1)

≥ 2
(
n0kβ

−4) + 1
)

≤ P(0,4M0β
−1)

(
τ2

(
2M0β

−1) ≥ kβ−2)
+ P(0,4M0β

−1)

(
N ∗

kβ−2 ≥ 2n0
(
kβ−2)

β−2 + 1
)

≤ c′
3
(
exp

(−c′
2β

−2/5(
kβ−2)1/5) + exp

(−c′
2β

2(
kβ−2)) + β−2 exp

(−c′
2
(
kβ−2)))

+ C′e−C′′n0kβ
−4

.

From the above estimate, it follows by summing both sides over k ≥ k0 that

(D.14) E(0,4M0β
−1)

(
N ∗

τ2(2M0β
−1)

) ≤ Cβ−4.
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Using (D.12), (D.14) and the strong Markov property at stopping times �∗
2k+1 in the upper

bound

E(0,4M0β
−1)

(∫ τ2(2M0β
−1)

0
1[Q1(s)≤−x] ds

)

≤
∞∑

k=0

E(0,4M0β
−1)

((∫ �∗
2k+2

�∗
2k+1

1[Q1(s)≤−x] ds

)
1[N ∗

τ2(2M0β−1)
≥2k+1]

)
,

we obtain

E(0,4M0β
−1)

(∫ τ2(2M0β
−1)

0
1[Q1(s)≤−x] ds

)
≤ Cxβ−3e−C′β−1x

for all x ≥ 2β , which proves Lemma 5.2. �

PROOF OF LEMMA 5.3. We proceed as in Lemma 5.2 and define the stopping times
�∗∗

0 = 0 and for k ≥ 0,

�∗∗
2k+1 = inf

{
t ≥ �∗∗

2k : Q1(t) = −√
β or Q2(t) = 4M0β

−1 or Q2(t) = β−1/2}
,

�∗∗
2k+2 = inf

{
t ≥ �∗∗

2k+1 : Q1(t) = 0 or Q2(t) = 4M0β
−1 or Q2(t) = β−1/2}

.

Define N ∗∗
t = inf{k ≥ 1 : �∗∗

k ≥ t or Q2(�
∗∗
k ) = 4M0β

−1 or Q2(t) = β−1/2}. By the same
argument used in Lemma 5.2 by bounding Q1 from below by a Brownian motion with drift
β−1/2 − β for t ≤ τ1(0) ∧ τ2(β

−1/2), we can conclude for any x ≥ 2β1/2,

(D.15)
sup

β−1/2≤y≤4M0β
−1
E(−β1/2,y)

(∫ τ1(0)∧τ2(β
−1/2)

0
1[Q1(s)≤−x] ds

)

≤ Cxβ1/2e−C′β−1/2x.

Moreover, using the same approach as the one used to derive (D.9), for any k ≥ 9,

(D.16) sup
β−1/2≤y≤4M0β

−1
P(0,y)

(
τ2

(
4M0β

−1) ≥ kβ−2) ≤ Ce−C′√k.

Using a similar argument as that used to derive (D.6) stochastically bounding β−1(�∗∗
2k+1 −

�∗∗
2k) from below by subexponential random variables and using Chernoff’s inequality, we

obtain n′
0 > 0 not depending on β , t such that for any n ≥ n′

0tβ
−1,

(D.17) sup
β−1/2≤y≤4M0β

−1
P(0,y)

(
N ∗∗

t ≥ 2n + 1
) ≤ C′e−C′′n.

Using (D.16) and (D.17) and the calculation leading to (D.14), we obtain

(D.18) sup
β−1/2≤y≤4M0β

−1
E(0,y)

(
N ∗

τ2(β
−1/2)∧τ2(4M0β

−1)

) ≤ Cβ−3.

Using (D.15), (D.18) and the strong Markov property at stopping times �∗∗
2k+1 in the upper

bound

sup
β−1/2≤y≤4M0β

−1
E(0,y)

(∫ τ2(β
−1/2)∧τ2(4M0β

−1)

0
1[Q1(s)≤−x] ds

)

≤
∞∑

k=0

E(0,4M0β
−1)

((∫ �∗∗
2k+2

�∗∗
2k+1

1[Q1(s)≤−x] ds

)
1[N ∗

τ2(β−1/2)∧τ2(4M0β−1)
≥2k+1]

)
,
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we obtain

sup
β−1/2≤y≤4M0β

−1
E(0,y)

(∫ τ2(β
−1/2)∧τ2(4M0β

−1)

0
1[Q1(s)≤−x] ds

)

≤ Cxβ−5/2e−C′β−1/2x

for all x ≥ 2β1/2, which completes the proof of Lemma 5.3. �

PROOF OF LEMMA 5.4. Write

Iβ(x) =
∫ σ(τ2(β

−1/2))

τ2(β
−1/2)

1[Q1(s)≤−x] ds.

Observe that for any x > 0, y ∈ [β−1/2,4M0β
−1],

E(0,y)

(
Iβ(x)1[τ2(β

−1/2)<τ2(4M0β
−1)]

)
≤ E(0,y)

(
Iβ(x)1[Q1(τ2(β

−1/2))≥−x/2]
)

+E(0,y)

(
Iβ(x)1[Q1(τ2(β

−1/2))<−x/2,τ2(β
−1/2)<τ2(4M0β

−1)]
)
.

(D.19)

To estimate the first term above, apply the strong Markov property at τ2(β
−1/2) and recall

that Q1 +β is bounded below by an Ornstein–Uhlenbeck process X̂ for t ≤ τ1(0). Using this
observation and proceeding as in the proof of (D.5), we obtain for any x ≥ 4β ,

E(0,y)

(
Iβ(x)1[Q1(τ2(β

−1/2))≥−x/2]
)

≤ sup
z∈[−x/2,0]

E(z,β−1/2)

(∫ τ1(0)

0
1[Q1(s)≤−x] ds

)

≤ sup
z∈[−x/2,0]

Êz+β

(∫ τ̂ (β)

0
1[X̂(s)≤−x+β] ds

)
(D.20)

≤ sup
z∈[−x/2,0]

Êz+β

(
1
(
τ̂ (−x + β) < τ̂(β)

)(
τ̂ (β) − τ̂ (−x + β)

))
= sup

z∈[−x/2,0]
P̂z+β

(
τ̂ (−x + β) < τ̂(β)

)
)Ê−x+β

(
τ̂ (β)

)
≤ C′e−(x−2β)2/4.

In the above, we used

sup
z∈[−x/2,0]

P̂z+β

(
τ̂ (−x + β) < τ̂ (β)

)
) ≤

∫ x
2 −β

−β ev2/2 dv∫ x−β
−β ev2/2 dv

≤ x(x − β)e( x
2 −β)2/2

2(e(x−β)2/2 − 1)

≤ 2(x − β)2e−3(x−2β)2/8

3(1 − e−(x−β)2/2)
≤ Ce−3(x−2β)2/8.

To estimate Ê−x+β(τ̂ (β)), we decompose the path of X̂ on [0, τ̂ (β)] into excursions: the first
one from −x + β to 0, and then from 0 to ±β and then ±β to 0 until the first time β is
hit. Using this decomposition and standard estimates on Ornstein–Uhlenbeck processes, we
obtain

Ê−x+β

(
τ̂ (β)

) ≤ C
[
(x − β) ∧ log

(
2 + (x − β)2) + β2]

.
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The calculations are analogous to the ones used repeatedly in the article and we omit the
details.

To estimate the second term in the right-hand side of (D.19), note that on the event
{τ2(β

−1/2) < τ2(4M0β
−1)}, σ(τ2(β

−1/2)) < τ2(4M0β
−1). Thus, on this event, Iβ(x) ≤

τ2(4M0β
−1). Using this observation and the Cauchy–Schwarz inequality,

E(0,y)

(
Iβ(x)1[Q1(τ2(β

−1/2))<−x/2,τ2(β
−1/2)<τ2(4M0β

−1)]
)

≤ E(0,y)

(
τ2

(
4M0β

−1)
1[Q1(τ2(β

−1/2))<−x/2,τ2(β
−1/2)<τ2(4M0β

−1)]
)

≤ (
E(0,y)

(
τ2

(
4M0β

−1))2)1/2

× (
P(0,y)

(
Q1

(
τ2

(
β−1/2))

< −x/2, τ2
(
β−1/2)

< τ2
(
4M0β

−1)))1/2
.

(D.21)

From (D.16),

(D.22) sup
β−1/2≤y≤4M0β

−1
E(0,y)

(
τ2

(
4M0β

−1))2 ≤ Cβ−4.

Using the stopping times �∗∗
k defined in the proof of Lemma 5.3, for any y ∈ [β−1/2,

4M0β
−1] and any x ≥ 4

√
β ,

P(0,y)

(
Q1

(
τ2

(
β−1/2))

< −x/2, τ2
(
β−1/2)

< τ2
(
4M0β

−1))
≤ E(0,y)

( ∞∑
k=0

1[�∗∗
2k+1<τ1(−x/2)<�∗∗

2k+2,τ2(β
−1/2)<τ2(4M0β

−1)]

× 1[N ∗
τ2(β−1/2)∧τ2(4M0β−1)

≥2k+2]
)

≤ sup
β−1/2≤z≤4M0β

−1
P(−β1/2,z)

(
τ1(−x/2) < τ1(0) ∧ τ2

(
β−1/2))

×E(0,y)

(
N ∗

τ2(β
−1/2)∧τ2(4M0β

−1)

)
≤ Cβ−3e−C′β−1/2x,

(D.23)

where for the bound on the last line, we used (D.18) and the fact that starting from
(Q1(0),Q2(0)) = (−β1/2, z), β−1/2 ≤ z ≤ 4M0β

−1, Q1 is bounded from below by a Brow-
nian motion with drift β−1/2 − β for t ≤ τ1(0) ∧ τ2(β

−1/2). Also, C, C′ appearing in the
above bound do not depend on y. Using (D.22) and (D.23) in (D.21),

(D.24)

sup
β−1/2≤y≤4M0β

−1
E(0,y)

(
Iβ(x)1[Q1(τ2(β

−1/2))<−x/2,τ2(β
−1/2)<τ2(4M0β

−1)]
)

≤ Cβ−7/2e−C′β−1/2x.

Using (D.20) and (D.24) in (D.19) completes the proof of Lemma 5.4. �

PROOF OF LEMMA 5.5. We will proceed similarly as in Lemma 5.4. Write

Jβ(x) =
∫ σ(τ2(2M0β

−1))

τ2(2M0β
−1)

1[Q1(s)≤−x] ds,

E(0,4M0β
−1)

(
Jβ(x)

) ≤ E(0,4M0β
−1)

(
Jβ(x)1[Q1(τ2(2M0β

−1))≥−x/2]
)

+E(0,4M0β
−1)

(
Jβ(x)1[Q1(τ2(2M0β

−1))<−x/2]
)
.

(D.25)
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The first term is estimated as in (D.20) yielding for any x ≥ 4β ,

(D.26) E(0,y)

(
Jβ(x)1[Q1(τ2(2M0β

−1))≥−x/2]
) ≤ C′e−(x−2β)2/4.

To estimate the second term, recall α1 = τ2(2M0β
−1). Note that by the Cauchy–Schwarz

inequality and strong Markov property,

E(0,4M0β
−1)

(
Jβ(x)1[Q1(τ2(2M0β

−1))<−x/2]
)

≤ (
E(0,4M0β

−1)

(
σ(α1) − α1

)2)1/2

× (
P(0,4M0β

−1)

(
Q1

(
τ2

(
2M0β

−1))
< −x/2

))1/2

= (
E(0,4M0β

−1)

(
E(Q1(α1),2M0β

−1)

(
τ1(0)

)2))1/2

× (
P(0,4M0β

−1)

(
Q1

(
τ2

(
2M0β

−1))
< −x/2

))1/2
.

(D.27)

To estimate the first term in the product above, we again bound Q1 + β from below by
an Ornstein–Uhlenbeck process X̂ for t ≤ τ1(0). For any u > 0, decompose the path of X̂

starting from −u on [0, τ̂ (β)] into excursions: the first one from −x + β to 0, and then from
0 to ±β and from ±β to 0 until the first time β is hit. The number of excursions is distributed
as 1 + Geometric(1/2). Using this in a standard calculation to obtain the second moment (we
omit the details), we obtain for sufficiently small β ,

Ê−u

(
τ̂ (β)

)2 ≤ C
(
u ∧ (

log
(
2 + u2))2 + β

)
.

Using this and the estimate for E(0,4M0β
−1)(−Q1(α1)) obtained in (5.14), we deduce for

sufficiently small β ,

E(0,4M0β
−1)

(
E(Q1(α1),2M0β

−1)

(
τ1(0)

)2)
)

≤ CE(0,4M0β
−1)

(∣∣Q1(α1) + β
∣∣ ∧ (

log
(
2 + ∣∣Q1(α1) + β

∣∣2))2 + β
)

≤ C′β−4.

(D.28)

To estimate the second term in the product (D.26), we proceed similarly as in (D.23), but now
using the stopping times �∗

k defined in the proof of Lemma 5.2. For any x ≥ 4β ,

P(0,4M0β
−1)

(
Q1

(
τ2

(
2M0β

−1))
< −x/2

)
≤ E(0,4M0β

−1)

( ∞∑
k=0

1[�∗
2k+1<τ1(−x/2)<�∗

2k+2]1[N ∗
τ2(2M0β−1)

≥2k+2]
)

≤ sup
z≥2M0β

−1
P(−β,z)

(
τ1(−x/2) < τ1(0) ∧ τ2

(
2M0β

−1))
E(0,y)

(
N ∗

τ2(2M0β
−1)

)
≤ Cβ−4e−C′β−1x,

(D.29)

where for the bound on the last line, we used (D.14) and the fact that starting from
(Q1(0),Q2(0)) = (−β, z), z ≥ 2M0β

−1, Q1 is bounded from below by a Brownian motion
with drift 2M0β

−1 − β for t ≤ τ1(0) ∧ τ2(2M0β
−1).

Using (D.28) and (D.29) in (D.27),

(D.30) E(0,4M0β
−1)

(
Jβ(x)1[Q1(τ2(2M0β

−1))<−x/2]
) ≤ Cβ−4e−C′β−1x.

Using (D.26) and (D.30) in (D.25) completes the proof of (v). �
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APPENDIX E: PROOF OF LEMMA 5.6

In this section, we will prove Lemma 5.6. We begin with the following estimate, which is
a consequence of Lemma A.3.

LEMMA E.1. There exist positive constants CS , C′
S , C′′

S such that for any β ∈ (0, e−1),

P(0,2CSβ−1 logβ−1)

(
τ2(y) < τ2

(
CSβ−1 logβ−1)) ≤ C′

Se−C′′
Sβy

for all y ≥ 4CSβ−1 logβ−1.

PROOF. Take CS = R− +1, C′
S = C∗

1 and C′′
S = C∗

2 (where R−, C∗
1 , C∗

2 are the constants
appearing in Lemma A.3). β < e−1 ensures β−1 logβ−1 > β−1. Write z = (y − β)/2. Then
z + β = (y + β)/2 ≥ 2CSβ−1 logβ−1 for all y ≥ 4CSβ−1 logβ−1. Therefore, we can derive
the lemma from Lemma A.3 by noting that y0(β) defined in the lemma satisfies y0(β) + β ≤
CSβ−1 logβ−1 and observing that for all y ≥ 4CSβ−1 logβ−1,

P(0,2CSβ−1 logβ−1)

(
τ2(y) < τ2

(
CSβ−1 logβ−1))

= P(0,2CSβ−1 logβ−1)

(
τ2(2z + β) < τ2

(
CSβ−1 logβ−1))

≤ P(0,2CSβ−1 logβ−1)

(
τ2(2z + β) < τ2

(
y0(β) + β

))
≤ P(0,z+β)

(
τ2(2z + β) < τ2

(
y0(β) + β

)) ≤ C′
Se−C′′

Sβy,

where the second to last inequality follows from the strong Markov property and the last one
follows from Lemma A.3. �

The following lemma gives an estimate analogous to that in Lemma E.1 in the region
y ∈ [8M0β

−1,4CSβ−1 logβ−1], where M0 > 0 does not depend on β .

LEMMA E.2. Recall the constant CS defined in Lemma E.1. There exist positive con-
stants M0, C1

S , C2
S , βS′

0 such that for all β ≤ βS′
0 and for all y ∈ [8M0β

−1,4CSβ−1 logβ−1],
P(0,y/2)

(
τ2(y) < τ2

(
2M0β

−1)) ≤ C1
Se−C2

Sβy.

PROOF. We recall from Lemma A.5 that for β ≤ 1, there exist positive constants c′
1, c′

2,
c∗

3 not depending on β such that for any y > c′
1β

−1,

P(0,y)

(∫ t

0

(−Q1(s)
)
ds >

βt

2
, inf
s≤t

Q2(s) ≥ c′
1β

−1 + β

)
≤ exp

(−c′
2t

1/5β−2/5)
for t ≥ c∗

3β
2. Take M0 = c′

1. By the explicit choice of constants made in Lemma A.5, c′
1,

c′
2 are the same constants as the ones appearing in Lemma A.1. Write It = ∫ t

0 (−Q1(s)) ds

and tk = kβ2, k = 0,1,2, . . . . Take any k ≥ (βy)5. Note that if k
k+1 ≥ 2

3 , then the event
{It > 3βt/4 for some t ∈ [tk, tk+1]} implies

Itk+1 > 3βtk/4 ≥ βtk+1/2.

Moreover, there exists β1 > 0 such that for all β ≤ β1, the event {τ2(2M0β
−1) > t for some

t ∈ [tk, tk+1]} implies

Q2(t) ≥ 2M0β
−1e−β2

> M0β
−1 + β
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for all t ∈ [τ2(2M0β
−1), tk+1] which, in turn, implies τ2(M0β

−1 + β) > tk+1. Therefore,
there exists k1 ≥ 1 and β1 > 0 such that for all y ∈ [8M0β

−1,4CSβ−1 logβ−1] and all β ≤
β1,

P(0,y/2)

(
It > 3βt/4 and τ2

(
2M0β

−1)
> t for some t ≥ k1(βy)5β2)

≤
∞∑

k=�k1(βy)5�
P(0,y/2)

(
It > 3βt/4 and τ2

(
2M0β

−1)
> t

for some t ∈ [tk, tk+1])
≤

∞∑
k=�k1(βy)5�

P(0,y/2)

(
Itk+1 > βtk+1/2 and τ2

(
M0β

−1 + β
) ≥ tk+1

)

≤
∞∑

k=�k1(βy)5�
e−c′

2k
1/5 ≤ e−c′′

2βy

(E.1)

for some positive constant c′′
2 that does not depend on β . For any y ∈ [8M0β

−1,4CSβ−1 ×
logβ−1],

P(0,y/2)

(
τ2(y) < τ2

(
2M0β

−1))
≤ P(0,y/2)

(
τ2(y) ≤ k1(βy)5β2)

+ P(0,y/2)

(
It > 3βt/4 and τ2

(
2M0β

−1)
> t for some t ≥ k1(βy)5β2)

+ P(0,y/2)

(
k1(βy)5β2 < τ2(y) < τ2

(
2M0β

−1)
,It ≤ 3βt/4

for all t ∈ [
k1(βy)5β2, τ2

(
2M0β

−1)])
.

Note that with starting configuration (Q1(0),Q2(0)) = (0, y/2), τ2(y) in the above ex-
pression also corresponds to the hitting time of the level y by the sum S(t) = Q1(t) +
Q2(t) = S(0) + √

2W(t) − βt + It = y
2 + √

2W(t) − βt + It . Further, note that as y ≤
4CSβ−1 logβ−1, k1(βy)5β2 ≤ k1(4CS)5β2(logβ−1)5. Thus,

P(0,y/2)

(
τ2(y) < τ2

(
2M0β

−1))
≤ P(0,y/2)

(
sup

t≤k1(4CS)5β2(logβ−1)5
S(t) > y

)
+ P(0,y/2)

(
It > 3βt/4 and τ2

(
2M0β

−1)
> t for some t ≥ k1(βy)5β2)

+ P(0,y/2)

(
sup
t<∞

(√
2W(t) − βt/4

)
> y/2

)
≤ P(0,y/2)

(
sup

t≤k1(4CS)5β2(logβ−1)5
S(t) > y

)
+ e−c′′

2βy + e−βy/8,

(E.2)

where the last line is a consequence of (E.1) and the fact that supt<∞(
√

2W(t) − βt/4) is
exponentially distributed with mean 4β−1. To complete the proof, we need to estimate the
first probability on the right-hand side above. To do this, first note that

Q1(t) ≥ √
2W(t) − βt − sup

s≤t

(√
2W(s) − βs

)
.

Therefore, there exists β2 > 0 such that for any β ≤ β2 and any y ∈ [8M0β
−1,4CSβ−1 ×

logβ−1],
P(0,y/2)

(
inf

t≤k1(4CS)5β2(logβ−1)5
Q1(t) < −√

β
)
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≤ P(0,y/2)

(
inf

t≤k1(4CS)5β2(logβ−1)5

(√
2W(t) − βt

)
< −√

β/2
)

+ P(0,y/2)

(
sup

t≤k1(4CS)5β2(logβ−1)5

(√
2W(t) − βt

)
>

√
β/2

)
≤ P(0,y/2)

(
inf

t≤k1(4CS)5β2(logβ−1)5

(√
2W(t)

)
< −√

β/4
)

+ P(0,y/2)

(
sup

t≤k1(4CS)5β2(logβ−1)5

(√
2W(t)

)
>

√
β/4

)
≤ e

− 1
32k1(4CS)5β(logβ−1)5 .

If inft≤k1(4CS)5β2(logβ−1)5 Q1(t) ≥ −√
β , then for any t ≤ k1(4CS)5β2(logβ−1)5,

S(t) ≤ S(0) + √
2W(t) − βt + k1(4CS)5β5/2(

logβ−1)5
.

Therefore, there exists β3 > 0 such that for all β ≤ β3 and any y ∈ [8M0β
−1,4CSβ−1 ×

logβ−1],
P(0,y/2)

(
sup

t≤k1(4CS)5β2(logβ−1)5
S(t) > y

)
≤ P(0,y/2)

(
inf

t≤k1(4CS)5β2(logβ−1)5
Q1(t) < −√

β
)

+ P

(
sup
t<∞

(√
2W(t) − βt

)
> y/4

)
≤ e

− 1
32k1(4CS)5β(logβ−1)5 + e−βy/4 ≤ 2e−βy/4,

(E.3)

where in the last inequality, we used the information that y ≤ 4CSβ−1 logβ−1. Using (E.3)
in (E.2), the proof of the lemma is completed by choosing βS′

0 = min{β1, β2, β3}. �

Now we “patch up” the estimates obtained in Lemma E.1 and Lemma E.2 to prove
Lemma 5.6.

PROOF OF LEMMA 5.6. Choose M0 as in Lemma E.2. If y ∈ [8M0β
−1,4CSβ−1 ×

logβ−1], then the bound is furnished by Lemma E.2. Therefore, it suffices to consider
y > 4CSβ−1 logβ−1. Define the following stopping times: S0 = 0 and for k ≥ 0,

S2k+1 = inf
{
t ≥ S2k : Q2(t) = 2M0β

−1 or Q2(t) = 2CSβ−1 logβ−1}
,

S2k+2 = inf
{
t ≥ S2k+1 : Q2(t) = 2M0β

−1 or Q2(t) = CSβ−1 logβ−1}
.

Let NS = inf{k ≥ 0 : Q2(S2k+1) = 2M0β
−1}. Note that by Lemma E.2, there exists β∗

1 > 0
such that for all β ≤ β∗

1 ,

sup
x≥0

P(−x,CSβ−1 logβ−1)

(
τ2

(
2CSβ−1 logβ−1)

< τ2
(
2M0β

−1))
≤ P(0,CSβ−1 logβ−1)

(
τ2

(
2CSβ−1 logβ−1)

< τ2
(
2M0β

−1))
≤ C1

Se−2C2
SCS logβ−1

<
1

2
,

where the first inequality above follows from the strong Markov property applied at the stop-
ping time inf{t > 0 : Q2(t) = CSβ−1 logβ−1}. This immediately gives us

(E.4) E(0,4M0β
−1)(NS) =

∞∑
k=0

P(0,4M0β
−1)(NS ≥ k) ≤ 1 +

∞∑
k=1

2−k = 2.
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For y > 4CSβ−1 logβ−1, by applying the strong Markov property at S2k+1 for k ≥ 0 and
using Lemma E.1, we obtain β∗

2 > 0 such that for all β ≤ β∗
2 ,

P(0,4M0β
−1)

(
τ2(y) < τ2

(
2M0β

−1))
≤

∞∑
k=0

P(0,4M0β
−1)

(
sup

t∈[S2k+1,S2k+2]
Q2(t) > y,NS > k

)

≤
∞∑

k=0

E(0,4M0β
−1)1[NS>k]P(0,2CSβ−1 logβ−1)

(
τ2(y) < τ2

(
CSβ−1 logβ−1))

≤ E(0,4M0β
−1)(NS)C′

Se−C′′
Sβy ≤ 2C′

Se−C′′
Sβy.

This completes the proof of the lemma by choosing β0 = min{β∗
1 , β∗

2 }. �
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