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DECOMPOSITIONS OF LOG-CORRELATED FIELDS
WITH APPLICATIONS
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École Polytechnique Fédérale de Lausanne∗, Norwegian University of Science
and Technology (NTNU)†, University of Helsinki‡ and Aalto University§

In this article, we establish novel decompositions of Gaussian fields tak-
ing values in suitable spaces of generalized functions, and then use these
decompositions to prove results about Gaussian multiplicative chaos.

We prove two decomposition theorems. The first one is a global one and
says that if the difference between the covariance kernels of two Gaussian
fields, taking values in some Sobolev space, has suitable Sobolev regular-
ity, then these fields differ by a Hölder continuous Gaussian process. Our
second decomposition theorem is more specialized and is in the setting of
Gaussian fields whose covariance kernel has a logarithmic singularity on the
diagonal—or log-correlated Gaussian fields. The theorem states that any log-
correlated Gaussian field X can be decomposed locally into a sum of a Hölder
continuous function and an independent almost �-scale invariant field (a spe-
cial class of stationary log-correlated fields with ’cone-like’ white noise rep-
resentations). This decomposition holds whenever the term g in the covari-
ance kernel CX(x, y) = log(1/|x − y|) + g(x, y) has locally Hd+ε Sobolev
smoothness.

We use these decompositions to extend several results that have been
known basically only for �-scale invariant fields to general log-correlated
fields. These include the existence of critical multiplicative chaos, analytic
continuation of the subcritical chaos in the so-called inverse temperature pa-
rameter β, as well as generalised Onsager-type covariance inequalities which
play a role in the study of imaginary multiplicative chaos.

1. Introduction. Gaussian multiplicative chaos (GMC) measures are random
measures that can be formally thought of as the exponential of a log-correlated
Gaussian field. They have connections to many models in mathematical physics
such as 2d quantum gravity [10, 14, 21], SLE [4, 15, 31] and random matrices [8,
22, 35], as well as to number theory [29]. A good review of Gaussian multiplicative
chaos theory is given in [28].
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Many of the key results in the theory are proven under rather strong assumptions
on the field, which one would not expect to be required. The goal of this article is
to partially rectify the situation via new decomposition methods for the underly-
ing log-correlated field. Before describing our results in more detail, let us briefly
recall how GMC measures are constructed.

A typical construction of a GMC measure goes as follows: given a sequence of
continuous approximations Xn of a given log-correlated field X, that is, a Gaussian
field with a covariance kernel satisfying EX(x)X(y) = − log |x − y| + O(1), one
constructs a sequence of approximating measures

dμn(x) = eβXn(x)− β2

2 EXn(x)2
dx,

where β ∈ R is a parameter. Then, under fairly general conditions for the approx-
imations Xn, for β ∈ (−√

2d,
√

2d) the sequence μn converges in probability in
the weak∗-topology of Radon measures (see Definition 5.1 for the definition of this
concept), and the limiting measure μ is almost surely nonzero and singular with
respect to the Lebesgue measure [7, 20, 28, 30]. The range |β| < √

2d of parameter
values is called subcritical, the case |β| = √

2d is called critical and |β| > √
2d is

supercritical. For critical and supercritical β , the standard normalization scheme
yields a limiting measure that is almost surely 0.

In the critical β = √
2d case, there are two ways to modify the renormalization

to obtain a nontrivial limiting measure. The first way is the so-called Seneta–Heyde
normalization, where one looks at the sequence

dμ(crit)
n (x) =

√
EXn(x)2 dμn(x),

where the extra factor
√
EXn(x)2 blows up at just the right rate to yield a nontrivial

limiting measure. The second approach (yielding the same limiting object up to
a deterministic multiplicative constant) is known as the derivative normalization,
where one looks at the derivative of μn with respect to β at β = √

2d and defines

dμ′
n(x) = − d

dβ

∣∣∣∣
β=√

2d

dμn(x) = −(
Xn(x) − √

2dEXn(x)2)
dμn(x).

The existence and uniqueness of critical Gaussian chaos has been studied in var-
ious papers [12, 13, 18, 27]. In particular, the existence was established basically
only for so-called ∗-scale invariant fields, which form a rather specific class of
log-correlated fields.

GMC measures are closely related to another model of random measures called
multiplicative cascades. Multiplicative cascades are based on a tree structure,
which makes the analysis of these models relatively simple due to the indepen-
dence relations that the tree structure induces. Independence properties are also
present to some degree in certain very specific approximations of log-correlated
Gaussian fields—in particular in the white noise type approximations of �-scale
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invariant fields. The special structure of these fields has allowed one to prove in
the GMC setting many important results that were already known for cascades and
whose proofs heavily depended on the cascade structure. Such results include the
aforementioned existence of critical chaos [12, 13] and analyticity of subcritical
chaos in the parameter β [4].

Our first decomposition theorem is a general result stating that if the differ-
ence between the covariance kernels of two (possibly distribution valued) Gaussian
fields is regular enough, then the fields can be constructed on the same probability
space so that they differ by a Hölder continuous Gaussian process only. One should
note that this is trivial if the difference of the two covariances is a covariance in
itself—in this case the Hölder continuous process could be chosen to be inde-
pendent of one of the fields, while the general result is less obvious. The precise
statement of the theorem is the following: for definitions of the relevant function
spaces, see Section 2.2.

THEOREM A. For an exponent α ∈ R and a domain U ⊂ Rd , let X1 and
X2 be two centered Gaussian fields which are random elements in Hα

loc(U) with
covariance kernels C1 and C2. Let us assume4 that C1,C2 ∈ L1

loc(U × U) and
that for some ε > 0 one has C1 − C2 ∈ Hd+ε

loc (U × U). Then, for any bounded
subdomain U ′ with U ′ ⊂ U , we may construct copies of the fields X1 and X2 on a
common probability space in such a way that

X1 = X2 + G on U ′

for some Gaussian process G which is almost surely Hölder continuous on U ′.

In this paper, we use the result only in the setting of log-correlated fields, but we
expect that the theorem might turn out to be useful in other applications as well.

Our second decomposition theorem, which is more specialized in that it applies
only to log-correlated fields and is only local in nature, has the benefit of con-
structing a Hölder continuous Gaussian process which is independent of one of
the fields. We will later leverage this independence to prove analyticity of multi-
plicative chaos in the inverse temperature parameter and suitable Onsager inequal-
ities for logarithmic covariances. The theorem states that locally we can write any
log-correlated Gaussian field as a sum of a Hölder continuous function and a very
special log-correlated field with particular scaling properties. We will refer to this
class of special fields as almost �-scale invariant ones; see Remark 4.2 for discus-
sion about such objects. To avoid technical details, we state a restricted version of
the theorem here; for a more extensive version of the theorem, see Theorem 4.5 in
Section 4.

4The regularity assumption of C1 and C2 can be easily relaxed—only the regularity of the differ-
ence C1 − C2 is important. In fact, the same proof would work if we just assumed C1, C2 to be in
some suitable space of generalized functions, but to avoid unnecessary abstraction, we focus on the
case stated in the theorem.
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THEOREM B. Assume that X is a log-correlated field on a domain U ⊂ Rd ,
whose covariance CX(x, y) = log(1/|x −y|)+g(x, y) satisfies g ∈ Hd+ε

loc (U ×U)

for some ε > 0 (again, see Section 2.2 for the definition of the local Sobolev space).
Then, any point x0 ∈ U has a neighbourhood in which X can be decomposed
(possibly on an extended probability space) as

X = L + R,

where L is an almost �-scale invariant field (see Remark 4.2 for the notion), and R

is a regular Gaussian field with Hölder continuous realisations. Moreover, L and
R are independent.

Theorem A would of course yield a more global version of such a result, but
without the independence assumption.

Theorem A is proven in Section 3 and Theorem B is proven in Section 4. They
have several strong corollaries that are the the topic of the remaining sections of the
paper. Namely, we deduce the existence of critical chaos (Theorem 5.3 below) and
analyticity (Theorem 6.1 below) for a fairly general class of log-correlated fields.
These have been known open questions and are interesting since in applications
one meets mostly fields that are not of �-scale invariant type. The general result on
analyticity also implies strong regularity of the dependence on β and provides new
gateways for establishing convergence to chaos for real values of β . In addition, we
prove a general Onsager-type covariance inequality in all dimensions (previously
corresponding inequalities have been proven in the case g ≡ 0 in dimension 2),
which is a key tool for bounding the growth rate of moments of general imaginary
Gaussian chaos in [19]. We also expect that the decomposition result might be
helpful in studying the fine distribution of the maxima of general log-correlated
fields, and also for analogous extensions of the theory of supercritical chaos; see
Remark 5.6.

2. Preliminaries.

2.1. Log-correlated fields. A (distribution-valued) centered Gaussian process
X on a domain U ⊂ Rd with a covariance (kernel)

(2.1) CX(x, y) = EX(x)X(y) = log |x − y|−1 + g(x, y),

where g ∈ C(U × U) is called a log-correlated field. Naturally, then CX is sym-
metric and positive semidefinite: CX(x, y) = CX(y, x) and∫

CX(x, y)f (x)f (y)dx dy ≥ 0

for all f ∈ C∞
c (Rd). Conversely, given such a covariance kernel, and assuming,

for example, that

(2.2)

⎧⎪⎪⎨⎪⎪⎩
g ∈ L1(U × U) ∩ C(U × U),

g is bounded from above in U × U and

U ⊂ Rd is a bounded domain.
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one may easily prove the existence of a Gaussian field with covariance (2.1) and
with nice regularity properties like a.s. X ∈ Hs(Rd) for any s < 0, when the field
is understood as zero outside of U (see, e.g., [19], Proposition 2.3). It will be
convenient to extend CX(x, y) to Rd × Rd by setting CX(x, y) = 0 whenever
(x, y) /∈ U × U .

The Gaussian multiplicative chaos “eβX” is defined by replacing X by suitable
approximations Xn, which are a.s. continuous Gaussian fields. One exponentiates,
renormalizes and then removes the smoothing by taking an appropriate limit in
n. We refer to, for example, the review [28] for basic definitions and properties
of multiplicative chaos. Usually the approximating fields Xn are given in terms
of the problem under consideration, or often they are just standard mollifications
of X. Most of the approximations one encounters have certain useful properties in
common, that are described by the notion of a “standard approximation.”

DEFINITION 2.1 (Standard approximation). Let the covariance CX be as in
(2.1) and (2.2). We say that a sequence (Xn)n≥1 of continuous jointly Gaussian
centered fields on U is a standard approximation of X if it satisfies:

(i) One has

lim
(m,n)→∞EXm(x)Xn(y) = CX(x, y),

where convergence is in measure with respect to the Lebesgue measure on U ×U .
(ii) There exists a sequence (cn)

∞
n=1 such that c1 ≥ c2 ≥ · · · > 0, limn→∞ cn =

0, and for every compact K ⊂ U ,

sup
n≥1

sup
x,y∈K

∣∣∣∣EXn(x)Xn(y) − log
1

max(cn, |x − y|)
∣∣∣∣ < ∞.

(iii) We have

sup
n≥1

sup
x,y∈U

[
EXn(x)Xn(y) − log

1

|x − y|
]

< ∞.

A typical standard approximation is obtained by mollifications Xεn := ψεn ∗ X,
where ψ ≥ 0 is a compactly supported smooth test function with integral 1, ψε :=
ε−dψ(ε−1·) and εn ↘ 0 as n → ∞ (see, e.g., [19], Lemma 2.8).

2.2. Classical function spaces. We recall here the standard definition of L2-
based Sobolev spaces of smoothness index s ∈ R. One sets

(2.3) Hs(Rd) =
{
ϕ ∈ S ′(Rd) : ‖ϕ‖2

Hs(Rd )
=

∫
Rd

(
1 + |ξ |2)s ∣∣ϕ̂(ξ)

∣∣2 dξ < ∞
}
,

where ϕ̂ stands for the Fourier transform of the tempered distribution ϕ—our con-
vention for the Fourier transform is

ϕ̂(ξ) =
∫

Rd
e−2πiξ ·xϕ(x) dx
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for any Schwartz function ϕ ∈ S(Rd). Some basic facts about the spaces Hs(Rd)

are, for example, that they are Hilbert spaces, for s > 0, H−s(Rd) is the dual
of Hs(Rd) with respect to the standard dual pairing, Hs(Rd) is a subspace of
C0(Rd) for s > d/2, that is, there is a continuous embedding into the space of
continuous functions vanishing at infinity, and for s < −d/2, compactly supported
Borel measures (especially δ-masses) are elements of Hs(Rd).

Given a domain U ⊂ Rd , a distribution λ belongs to the local Sobolev space
Hs

loc(U) if for every test function ϕ ∈ C∞
c (U) one has ϕλ ∈ Hs(Rd). Moreover,

we say that λj → λ in Hs
loc(U) if ‖ϕ(λj − λ)‖Hs(Rd ) → 0 as j → ∞ for any

ϕ ∈ C∞
c (U).

We shall make use of the standard Sobolev embedding

(2.4) ‖f ‖Lq(Rd ) ≤ C′‖f ‖Hs(Rd ) if
s

d
= 1

2
− 1

q
, s < d/2,

and of the supercritical Sobolev embeddings (say for δ ∈ (0,1))

(2.5) ‖f ‖Cδ(Rd ) ≤ C′‖f ‖Hd/2+δ(Rd ) and ‖f ‖C1+δ(Rd ) ≤ C′‖f ‖Hd/2+1+δ(Rd ).

Here, for δ ∈ (0,1), Cδ(Rd) denotes the space of δ-Hölder continuous functions
vanishing at infinity and C1+δ(Rd) the space of once differentiable functions van-
ishing at infinity whose derivatives are in Cδ(Rd) and both spaces are endowed
with their standard norms; for a proof of the embeddings and further details see,
for example, [33], Section 2.8.1.

We also need a basic result from interpolation theory of function spaces: let
s1, s2, s

′
1, s

′
2 ∈ R with s1 < s2 and s′

1 < s′
2, and assume that the linear operator T

(perhaps originally defined only on say C∞
c (Rd)) extends both to a bounded opera-

tor T : Hs1(Rd) → Hs′
1(Rd) and to a bounded operator T : Hs2(Rd) → Hs′

2(Rd).
Then for any θ ∈ (0,1) the operator T also extends to a bounded operator
T : Hs(Rd) → Hs′

(Rd), where s = (1 − θ)s1 + θs2, s′ = (1 − θ)s′
1 + θs′

2 with
the norm bound

(2.6)

∥∥T : Hs(Rd) → Hs′(
Rd)∥∥

≤ C
∥∥T : Hs1

(
Rd) → Hs′

1
(
Rd)∥∥1−θ∥∥T : Hs2

(
Rd) → Hs′

2
(
Rd)∥∥θ

(see [33], Section 2.4). Moreover, for a fixed function f an application of Hölder’s
inequality and definition (2.3) yields

(2.7) ‖f ‖Hs(Rd ) ≤ ‖f ‖1−θ

Hs1 (Rd )
‖f ‖θ

Hs2 (Rd )
.

In the proof of the analytic dependence of multiplicative chaos on the inverse
temperature parameter, it will be convenient to employ Hilbert space valued Hardy
spaces. Thus, let E be a separable Hilbert space, D the open unit disk and p ∈
(1,∞). A function f : D → E belongs to the E-valued Hardy space Hp(D,E) if
f is analytic, that is, for all e ∈ E the map z �→ 〈f (z), e〉E is analytic, and

‖f ‖Hp(D,E) := sup
0<r<1

(∫ 2π

0

∥∥f (
reit )∥∥p

E dt

)1/p

< ∞.
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It is also easy to check by using the Cauchy integral formula that we have the
uniform bound

(2.8) sup
|z|≤1/2

∥∥f (z)
∥∥
E ≤ Cp‖f ‖Hp(D,E).

The space Hp(D,E), p ∈ (1,∞), is reflexive and separable, and hence has the
Radon–Nikodym property. This can be verified by an elementary argument, or one
may deduce it from the general results of [9]. One actually notes that Hp(D,E) is
isometrically isomorphic to a closed a subspace M ⊂ Lp(∂D,E) via the Poisson
extension. Here, Lp(∂D,E) is the standard E-valued Lebesgue space, which is
separable and reflexive for p ∈ (1,∞), and M consists of those elements whose
negative Fourier coefficients vanish. For general balls B ⊂ C, the function f :
B → E belongs to the Hardy space Hp(B,E) if f ◦ φ ∈ Hp(D,E), where φ :
D→ B is a bijective affine map, φ(z) = az + b.

Finally, to conclude this section, we record a simple approximation result in
Sobolev spaces which is certainly a well-known fact, but for the reader’s conve-
nience we provide a proof.

LEMMA 2.2. Let K ∈ Hs(R2d) for some s ≥ 0 be symmetric (K(x, y) =
K(y,x) for x, y ∈ Rd) and real valued. Then for each ε > 0, we can find a sym-
metric real-valued function Kε ∈ C∞

c (R2d) such that ‖K − Kε‖Hs < ε and the
integral operator on L2(Rd) associated with the kernel Kε is of finite rank.

PROOF. One may obtain a very quick proof by applying a suitable wavelet
decomposition of the given function (or by working with Fourier series). However,
we give here an argument that utilises the very definition of the Sobolev norm. Let
us begin by defining a function K(R) for R > 1 by

K(R)(x) =
∫
|ξ |≤R

e2πiξ ·xK̂(ξ) dξ =
∫
|ξ |≤R

cos(ξx)K̂(ξ) dξ,

by the symmetry of K . We also have that K(R) is real since K̂ is real. Obviously,
K(R) → K in Hs(R2d) as R → ∞. Fix ϕ0 ∈ C∞

c (Rd) nonnegative with ϕ0(0) = 1,
define ϕδ ∈ C∞

c (R2d) by setting ϕδ(x1, x2) = ϕ0(δx1)ϕ0(δx2) for x1, x2 ∈ Rd , and
set K(R,δ) := ϕδK

(R). Then it is a classical fact (e.g., easily checked by using the
density of smooth functions in Hs ) that K(R,δ) → K(R) in Hs as δ → 0. In order
to produce a finite rank approximation, we observe that ξ �→ gξ := ϕδ cos(ξ ·) is a
continuous map R2d → Hs(R2d). If s ∈ N, this follows easily by differentiating,
and it thus holds for all s. The continuity of ξ �→ gξ allows us to approximate in a
standard manner the integral representation

K(R,δ) =
∫
|ξ |≤R

K̂(ξ)gξ

by a discrete sum
∑N

n=1 angξn with judiciously chosen N , an ∈ R and ξn ∈
B(0,R). Finally, symmetrisation produces the desired approximation kernel. �

We now turn to our first decomposition result.
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3. Global decomposition of Gaussian fields: Proof of Theorem A. We start
by recalling some basic facts on covariances and integral operators needed for our
purposes here. Assume that K ∈ L2(R2d) is real valued and symmetric. Then K is
the kernel of a self-adjoint Hilbert–Schmidt operator T = TK on L2(Rd), and we
also denote K = KT . In particular, T is compact and basic spectral theory yields
(due the fact that K is real) the existence of orthogonal and real-valued eigenfunc-
tions g1, g2, . . . ∈ L2(Rd) and real eigenvalues (λk)k≥1 such that the (square of
the) Hilbert–Schmidt norm ‖T ‖2

HS := ∫
R2d K2(x, y) dx dy = ∑∞

k=0 |λk|2 is finite.
We may then write

K(x,y) =
∞∑

k=1

λkgk(x)gk(y),

with convergence in L2(R2d), or equivalently, T = ∑∞
k=1 λkgk ⊗ gk . Con-

versely, each such sum with real-valued orthonormal gk :s and real-valued square-
summable (λk)k≥1 defines a Hilbert–Schmidt operator with a real and symmetric
kernel. The kernel K is called positive if

∫
R2d K(x, y)ϕ(x)ϕ(y) ≥ 0 for all (real

valued) test functions ϕ ∈ C∞
c (Rd), which is equivalent to positivity T ≥ 0 in the

standard operator sense, again since K is real and symmetric.
The absolute value of the operator T , denoted by |T |, is the operator with kernel

(3.1) K|T |(x, y) :=
∞∑

k=1

|λk|gk(x)gk(y).

Actually, |T | is the unique bounded operator such that |T | ≥ 0 and |T |2 = T 2.
The nonlinear operation (sometimes called operator Hilbert transform) T �→ |T |
obviously satisfies ‖|T |‖HS = ‖T ‖HS, or equivalently, it keeps the L2-norm of the
kernel invariant. By definition, the operators T ± := (|T | ± T )/2 are positive and
Hilbert–Schmidt. The proof of Theorem A will be based on use of the decomposi-
tion T = T + − T − in combination with an auxiliary result stating that not just the
L2-norm, but also the smoothness property KT ∈ Hs(R2d), s > 0, remains intact
under the operation T �→ |T |:

LEMMA 3.1. Let K be a symmetric and square-integrable kernel on Rd , and
denote by T the corresponding operator on L2(Rd). Assume that in addition K ∈
Hs(Rd × Rd) with s > 0 Then also K|T | ∈ Hs(Rd × Rd).

PROOF. We use the identity |T |2 = T 2 to relate the Sobolev norms of the
kernels K = KT and K|T |. Let us first assume that K is smooth with compact
support and T is finite rank—then the same holds for K|T | and |T | according to
(3.1) and by the very definition of eigenfunctions. We denote by Fi the Fourier
transform with respect to the variables xd(i−1)+1, . . . , xd(i−1)+d , i = 1,2, so that
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K̂ = F1F2K , and we write eu(x) = e2πiu·x for any u ∈ Rd . Our assumptions on
K and K|T | imply that we may safely compute for any fixed ξ ∈ Rd

(̂
T 2eξ

)
(ξ) =

∫
Rd

e−2πiξ ·x
∫

Rd×Rd
K(x, y)K(y, v)e2πiξ ·v dy dv dx

=
∫

Rd
(F1K)(ξ, y)(F2K)(y,−ξ) dy.

Due to symmetry of K , we actually have (F2K)(y,−ξ) = (F1K)(ξ, y), whence

(3.2)
(̂
T 2eξ

)
(ξ) =

∫
Rd

∣∣(F1K)(ξ, y)
∣∣2 dy =

∫
Rd

∣∣K̂(ξ, η)
∣∣2 dη,

where the last equality follows from Parseval’s theorem with respect to the vari-
able y. Since |T |2 = T 2, performing the same computation for K|T | yields the
equality ∫

Rd

∣∣K̂|T |(ξ, η)
∣∣2 dη =

∫
Rd

∣∣K̂(ξ, η)
∣∣2 dη.

By symmetry, we have K̂(ξ, η) = K̂(η, ξ), and similarly for K|T |, so that∫
Rd

∣∣K̂(ξ, η)
∣∣2 dξ =

∫
Rd

∣∣K̂|T |(ξ, η)
∣∣2 dξ and∫

Rd

∣∣K̂(ξ, η)
∣∣2 dη =

∫
Rd

∣∣K̂|T |(ξ, η)
∣∣2 dη.

This yields for any s > 0

(3.3)

∫
Rd×Rd

∣∣K̂(ξ, η)
∣∣2(

1 + |ξ |2s + |η|2s)dξ dη

=
∫

Rd×Rd

∣∣K̂|T |(ξ, η)
∣∣2(

1 + |ξ |2s + |η|2s)dξ dη.

Since for s ≥ 0 it holds that (1 + |ξ |2s + |η|2s) � (1 + |ξ |2 + |η|2)s we see that the
knowledge K ∈ Hs(Rd × Rd) implies that also K|T | ∈ Hs(Rd × Rd).

In order to deal with the general case, we use Lemma 2.2 to approximate a gen-
eral K ∈ Hs(R2d) by a sequence of kernels Kn which are smooth, have compact
support, and the associated operators TKn have finite rank. In particular, Lemma 2.2
implies that ‖TKn − T ‖HS = ‖K − Kn‖L2(R2d ) → 0 as n → ∞. We next make
use of the fact that ‖TKn − TK‖HS → 0 implies ‖|TKn | − |TK |‖HS → 0 according
to [11] (see also [26], especially the discussion of the special case f (t) = |t | on
page 376). Equivalently, K|Tn| → K|T | in L2(R2d).

We still need to argue that this implies that K|T | ∈ Hs(R2d). For this, we note
that since KTn → KT ∈ Hs(R2d) and the first part of the proof of this lemma im-
plies that ‖K|Tn|‖Hs(R2d ) � ‖KTn‖Hs(R2d ), the sequence ‖K|Tn|‖Hs(R2d ) is bounded.
Now by a standard Banach–Alaoglu argument, one can extract from K|Tn| a weakly
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convergent subsequence, with limit say K̃ ∈ Hs(R2d). But since we already know
that K|Tn| → K|T | in L2(R2d), a standard argument shows that we must have
K̃ = K|T |, which implies that K|T | ∈ Hs(R2d) and concludes our proof. �

The rest of the proof will be divided into separate lemmas.

LEMMA 3.2. Under the assumptions of Theorem A, there exist almost surely
Hölder continuous and centered Gaussian processes G± on Rd such that their
covariances satisfy

CG+(x, y) − CG−(x, y) = C1(x, y) − C2(x, y) for x, y ∈ U ′.

PROOF. Let ψ0 ∈ C∞
c (U) satisfy ψ0 ≡ 1 in a neighbourhood of U ′, and note

that under the assumptions of Theorem A, the kernel K(x,y) := ψ0(x)ψ0(y) ×
(C1(x, y) − C2(x, y)) is an element of Hd+ε(Rd × Rd). Denote by T = TK the
operator on L2(Rd) with kernel K . Lemma 3.1 then implies that the kernels K±
of the positive and symmetric operators T ± := (|T | ± T )/2 also belong to the
space Hd+ε(Rd × Rd). Due to the Sobolev embedding (2.5), they thus are Hölder
continuous, and by standard regularity theory of Gaussian processes (see, e.g., [1],
Theorem 1.3.5), they are covariances of centered Gaussian process G± on Rd with
almost surely Hölder continuous realizations. The statement follows since we have
CG+ − CG− = C1 − C2 on U ′ × U ′. �

LEMMA 3.3. Let Ak , A′
k , k ≥ 1 be jointly Gaussian centered variables. In a

similar way, assume that Bk , B ′
k , k ≥ 1 are jointly Gaussian centred variables,

but possibly defined on a different probability space, and assume that there is the
equality of distributions (

Ak + A′
k

)
k≥1 ∼ (

Bk + B ′
k

)
k≥1.

Then we may realize all the variables Ak , A′
k , Bk , B ′

k , k ≥ 1 as jointly Gaussian
variables on a common probability space in such a way that the distributions of
the double sequences (Ak,A

′
k)k≥1 and (Bk,B

′
k)k≥1 remain intact, and at the same

time there is the almost sure equality Ak + A′
k = Bk + B ′

k for all k ≥ 1.

PROOF. Let G = G0 ⊕ G⊥
0 be a Gaussian (centred) Hilbert space, where both

of the mutually orthogonal subspaces G0 and G⊥
0 are infinite-dimensional. In turn,

denote by M the Gaussian Hilbert space obtained as the closed L2-span of all the
variables Ak , A′

k , k ≥ 1. Let M0 ⊂ M stand for the closed linear span of Ak + A′
k ,

k ≥ 1, in M so that M = M0 + M⊥
0 . Let �A : M → G be an isometric imbedding

(not necessarily surjective) such that �A(M0) ⊂ G0 and �A(M⊥
0 ) ⊂ G⊥

0 . We may
then pick an analogous isometric embedding �B from the linear span of all the
variables Bk , B ′

k , k ≥ 1, into G such that �A(Ak + A′
k) = �B(Bk + B ′

k) for all
k ≥ 1. Then the variables �A(Ak), �A(A′

k), �B(Bk), and �B(B ′
k) have the desired

properties. �
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LEMMA 3.4. Under the assumptions of Theorem A and in the notation of
Lemma 3.2, we may construct jointly Gaussian copies of the fields X1, X2, G± on
U ′ on a common probability space so that almost surely

X1 + G− = X2 + G+ on U ′.

PROOF. By construction, just by computing covariances, ψ0X1 + G− (where
G− is independent of X1) has the same distribution as ψ0X2 + G+ (where G+ is
independent of X2). Here, ψ0 is from the proof of Lemma 3.2, and we view both of
these sums as Hmin (α,0)(Rd)-valued random variables. Due to the compact support
of ψ0, we may pick a cube Q0 = (−a, a]d ⊂ Rd so large that the support of ψ0,
and hence of all the fields we are considering here are contained already in the
cube 1

2Q0 = (−a/2, a/2]d . Develop the Gaussian field ψ0X1 into Fourier series

ψ0X1 = ∑
k∈Zd

Akek,

where (ek)k∈Zd stands for the standard Fourier basis in the cube Q0. In a simi-
lar vein, let (A′

k)k∈Zd , (Bk)k∈Zd , and (B ′
k)k∈Zd , respectively, stand for the Fourier

coefficients of G−, ψ0X2, and G+, respectively. The claim is now an easy conse-
quence of Lemma 3.3. �

PROOF OF THEOREM A. The statement follows immediately from Lemma 3.4
by choosing G := G+ − G− on U ′. �

REMARK 3.5. As suggested to us by an anonymous referee, we now discuss
the optimality of Theorem A, namely we discuss what happens if we only assume
that C1 − C2 ∈ Hd

loc(R
2d). More precisely, we will provide an example of such a

situation where the conclusion of Theorem A does not hold. Our example, which
is in the case d = 1, is built from the kernel

K(x) = ϕ(x) log log
1

|x| ,

where ϕ : R2 → [0,∞) is a smooth symmetric function which is nonzero at the
origin and whose support is contained in the open unit ball of R2. One can then
readily check that the gradient of K is square integrable, so that K ∈ H 1(R2).

Now K = K(x,y) is symmetric, so the positive definite kernels K±—that is
the kernels of the operators T|K| ± TK—are covariance kernels. Moreover, by
Lemma 3.1, K± ∈ H 1(R2), and they of course satisfy K+ − K− = K . Thus, since
K is unbounded, at least one of the kernels K+, K− is also unbounded near the
origin. Let C1 be (one of) the unbounded one(s) and choose C2 ≡ 0.

Let X1 be a centered Gaussian field with covariance C1 and set X2 ≡ 0. If
X1 were almost surely Hölder continuous, then C1 would be continuous (after
possibly modifying it in a set of Lebesgue measure zero). This contradicts the
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unboundedness of C1 at zero and shows that Theorem A does not hold in case we
simply assume that C1 − C2 ∈ Hd

loc(R
2d).

It is an open question what happens if one replaces in Theorem A the scale Hs

by some other scale, for example, the Besov spaces Bs
p,q , which also cover the

Hölder-spaces.

We now move on to proving our local decomposition.

4. Local decomposition of log-correlated fields: Proof of Theorem B. In
this section, we establish our basic result on local splitting of log correlated fields.
We start by constructing a suitable split of �-scale invariant fields.

4.1. Decomposing �-scale invariant fields. Roughly speaking, a �-scale in-
variant log-correlated Gaussian field Y has a translation invariant covariance CY

of the form CY (x, y) = K(x − y) with the representation

(4.1) K(x) :=
∫ ∞

0
k
(
eux

)
du, x �= 0,

where k(x − y) is a covariance on Rd , with some regularity, k(0) = 1, and k has
suitable decay at infinity, for example,

(4.2)
∣∣k(x)

∣∣ � |x|−a for some a > 0,

which in particular makes K well defined. We call k the “seed covariance function”
of the construction.

These fields are quite natural because (4.1) implies that they possess a certain
self-similar structure, and they appear in the characterisation of �-scale invariant
measures [2]. Moreover, several basic results related to multiplicative chaos have
been previously established only in connection of these fields, including the con-
struction of critical and supercritical chaos, analytic continuation in the inverse
temperature parameter, and sharp estimates for maxima of log-correlated Gaussian
fields [4, 12, 13, 23, 24]. In the following auxiliary result, we revisit the construc-
tion of such fields and, in particular, introduce a useful split of the constructed field
Y = L + S into independent summands where L is an “almost �-scale invariant”
field (see Remark 4.2 below for clarification of our terminology here) and S has
Hölder continuous realisations. For our later purposes, nonrotationally invariant
�-scale invariant covariance kernels are not so useful, so in the what follows we
will always assume rotational symmetry.5

5Thus, the covariance kernel CY satisfies CY (x, y) = K(x − y), where K : Rd → R is rotation
symmetric.
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PROPOSITION 4.1. Fix δ ∈ (0,1) and assume that k : Rd → R is a rotation in-
variant and ε-Hölder-continuous function with some ε > 0. Moreover, let k be such
that (x, y) �→ k(x−y) yields a translation invariant covariance on Rd . We also as-
sume that k(0) = 1 and k satisfies the decay (4.2). Then there is a constant ε0 > 0
and almost surely continuous centered (jointly) Gaussian fields (x, t) �→ Lt(x) and
(x, t) �→ St (x), indexed by (x, t) ∈ Rd × (0,∞) with the following properties:

(i) The fields L{·}(·) and S{·}(·) are independent of each other. In addition, for
any 0 ≤ t0 < t1 < · · · < tn, the increment fields Ltj − Ltj−1 on Rd , j = 1, . . . , n,
are independent, and the same is true for the increments of S{·}(·). For arbitrary
x, x′ ∈ Rd and t, t ′ ∈ (0,∞), we have

ELt(x)Lt ′
(
x′) =

∫ t∧t ′

0
k
(
eu(

x − x′))(1 − e−δu)
du and

ESt (x)St ′
(
x′) =

∫ t∧t ′

0
k
(
eu(

x − x′))e−δu du.

(4.3)

(ii) Almost surely the realizations (x, t) �→ Lt(x) and (x, t) �→ St (x) are ε0-
Hölder continuous on any compact subset of Rd × (0,∞).

(iii) The field S{·}(·) extends continuously to Rd × [0,∞]. Moreover, the field
S := S∞ is almost surely ε0-Hölder continuous, and we have almost surely

‖St − S‖Cε0 (B) → 0 as t → ∞
for any closed ball B ⊂ Rd . The covariance CS is Hölder continuous.

(iv) As t → ∞, it holds that Lt → L almost surely, where L is a log-correlated
field on Rd , and the convergence is in Hs

loc(R
d) for any s < 0. The fields (Lt )t≥0

provide a standard approximation of L in the sense of Definition 2.1.
(v) For t > 0, set Yt := Lt +St , and denote Y := L+S. The field Y is a �-scale

invariant log-correlated field whose covariance kernel is obtained from (4.1), and
Yt → Y almost surely in Hs

loc(R
d) for any s < 0 as t → ∞. Moreover, the fields

(Yt )t≥0 provide a standard approximation of Y .
(vi) Assume in addition that k ∈ Hs

loc(R
d) for some s > d . Then the covariance

CY satisfies

CY (x, y) = log
(
1/|x − y|) + g(x, y),

where g ∈ Hs′
loc(R

2d) with some s′ > d .

PROOF. We first verify that the expressions on the right-hand side of (4.3) are
covariances on Rd ×(0,∞). In the case of S, we need to prove for any x1, . . . , xn ∈
Rd , any t1, . . . , tn ∈ (0,∞), and arbitrary reals a1, . . . , an that one has

n∑
j,k=1

akaj

∫ tk∧tj

0
k
(
eu(xj − xk)

)
e−δu du ≥ 0.
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By symmetry, we may assume that 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn < ∞. Set t0 = 0. The
desired positivity is then seen directly from the covariance property of k by writing
the left-hand side in the form

n∑
�=1

∫ t�

t�−1

(
n∑

j,k=�

akaj k
(
eu(xj − xk)

))
e−δu du.

Moreover, the covariance is clearly locally ε-Hölder with respect to the space-
variables and even locally Lipschitz with respect to the t-variables. In particular, it
is jointly ε-Hölder over compacts, and the existence of an almost surely locally ε0-
Hölder field S{·}(·) follows from the standard regularity theory of Gaussian fields;
see, for example, [1], Theorem 1.3.5. The proof for the field L{·}(·) is similar, and
we may naturally construct both fields on a common probability space so that they
will be independent of each other. This yields (i) and (ii) as the stated independence
of increments follows from the covariance structure.

In order to verify (iii), it is convenient to reparametrize by considering S̃t (x) :=
Slog(1/t)(x), t ∈ (0,1]. Then the field S̃ has the covariance structure

(4.4) E S̃t (x)S̃t ′
(
x′) =

∫ 1

t∨t ′
k
(
u−1(

x − x′))uδ−1 du,

which yields an extension to a covariance on Rd × [0,1]. In order to estimate the
continuity of the extended covariance, we set ε′ = 1/2 min(ε, δ). We clearly have
δ-Hölder continuity with respect to the t-variables, and given |x − x0| ≤ r ≤ 1 and
|y − y0| ≤ r ≤ 1 one obtains∣∣CS̃

(
x, y, t, t ′

) − CS̃

(
x0, y0, t, t

′)∣∣
≤

∫ 1

0

∣∣k(
u−1(x − y)

) − k
(
u−1(x0 − y0)

)∣∣uδ−1 du

�
∫ 1

0
(2r/u)ε

′
uδ−1 du � rε′

.

Thus S̃ has a ε′-Hölder continuous covariance, which again implies existence of a
modification that is a.s. Hölder continuous on compacts, and we may assume that
we obtained our initial construction of S from such a S̃. This and decreasing the
ε0 obtained in (ii) if needed clearly yields (iii).

Towards (iv) and (v), we first note that since Yt = Lt + St , with independence
of the summands, the uniform convergence properties of the field St and its covari-
ance as t → ∞ established in (iii) show that it is enough to treat Yt . First of all,
CYt (x, y) = Kt(x − y), where

Kt(x) :=
∫ t

0
k
(
eux

)
du.
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We shall perform comparison with the special case6 k = k(0) where k(0)(x) :=
(1 + |x|2)−(d+1)/2. Then it follows that

K
(0)
t (x) =

∫ |x|et

|x|
dy

y(1 + y2)(d+1)/2 = F
(|x|) − F

(|x|et ),
where F(y) := ∫ ∞

y u−1(1 + u2)−(d+1)/2 is positive, continuous and decreasing
on (0,∞), and it obviously satisfies limy→∞ F(y) = 0 and limy→0+ F(y) −
log(1/y) = 0. Actually, we note that F(y) − log(1/y) has smooth continuation
over 0. From this, one deduces that the covariances K

(0)
t (x) satisfy the conditions

of Definition 2.1, and together with the martingale property of (Y
(0)
t )t≥0 we deduce

that the fields (Y
(0)
tn )n≥1 yield a standard approximation to the limit field Y (0) with

covariance kernel CY(0) (x, y) = F(|x − y|). In order to treat the general case, we
denote by e1 the first unit vector and note that for any k satisfying the conditions
of the theorem, one has K

(0)
t (0) = Kt(0) and

K(x) − Kt(x) = K(0)(x) − K
(0)
t (x) + r

(
et |x|) for x �= 0,

where r(y) := ∫ ∞
y u−1(k − k(0))(ue1) du. The function r is continuous and uni-

formly bounded on [0,∞) with limy→∞ r(y) = 0. To check these claims, one
applies the Hölder continuity of k(0) − k, the fact that k(0)(0) = k(0) = 1 and the
estimate (4.2). Since we know the desired claim (namely being a standard approx-
imation) for the fields Y

(0)
t , the above equality implies it for the fields Yt .

In order to prove the stated convergence in Hs
loc(R

d), we fix s ∈ (−1/2,0) and
pick a test function φ ∈ C∞

c (Rd). By definition and (ii), t �→ φYt is a martingale
that takes values in Cc(Rd), hence in Hs(Rd), whence (as the latter space is a sepa-
rable Hilbert-space; see, e.g., [16], Theorem 3.61, Theorem 1.95) the convergence
follows as soon as we prove the L2(Hs(Rd))-boundedness of the martingale. By
the proof of [19], Proposition 2.3), we have for any fixed s < 0 and all t ≥ 0,

E‖φYt‖2
Hs(Rd )

≤ cs

∫
Rd×Rd

φ(x)φ(y)CYt (x, y)

|x − y|d+2s
dx dy

�
∫
(suppφ)2

1 + log+(|x − y|−1)

|x − y|d+2s
dx dy < ∞,

which is the desired uniform bound. It is then clear that the limit field Y has the
stated covariance structure (4.1). The facts that L is log-correlated and Y is �-
scale invariant follow immediately from the covariance structures and the relevant
definitions. This concludes the proof of (iv) and (v).

Finally, we turn to the statement (vi) and examine the local smoothness of g

in the decomposition (2.1) for the field Y . Recall that we are now assuming that

6It is well known [32], Theorem 1.14, that k̂(0)(z) = cd
2 e−2π |z|, where cd > 0 is the area of the

unit d-sphere Sd ⊂ Rd+1. As k̂(0)(z) > 0, k(0) gives rise to a translation invariant covariance.
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k ∈ Hs
loc(R

d) for some s > d . Let us assume first in addition that k has compact
support, whence K also has, and then the Fourier transform K̂ is smooth. It is
readily checked that h(· − ·) ∈ Hs

loc(R
2d) if h(·) ∈ Hs

loc(R
d) with s ≥ 0, which

means that, as everything is translation invariant, to get a hold of the regularity of
g(x, y) we only need to study the local smoothness of K − log(1/| · |) as a function
on Rd . We may write for ξ �= 0,

K̂(ξ) =
∫ 1

0
k̂(uξ)ud−1 du = |ξ |−d

∫ |ξ |
0

k̂(ue1)u
d−1 du

= |Sn−1|−1|ξ |−d − |Sn−1|−1|ξ |−d
∫
|z|>|ξ |

k̂(z) dz,

where e1 is the first unit vector, |Sn−1| stands for the (n − 1)-measure of the unit
(n − 1)-sphere and we used that k(0) = 1 = ∫

Rd k̂(z) dz. Since outside the origin
the Fourier-transform of log(1/| · |) is given by the function |Sn−1|−1|ξ |−d , the
above equality enables us to write

K = log
(
1/| · |) + h + h0,

where the Fourier transform of h0 ∈ S ′(Rd) is supported in B(0,1), so that h0 is
smooth, and

ĥ(ξ) :=
⎧⎪⎨⎪⎩−|Sn−1|−1|ξ |−d

∫
|z|>|ξ |

k̂(z) dz for |ξ | > 1,

0 for |ξ | ≤ 1.

It is then enough to check that ‖h‖
Hs′ (Rd )

< ∞ for some s′ > d , which in turn

follows as soon as we verify that |ĥ(ξ)| ≤ |ξ |−a for some a > 3d/2. By Cauchy–
Schwarz,

|ξ |d ∣∣ĥ(ξ)
∣∣ ≤

(∫
|z|>|ξ |

∣∣̂k(z)
∣∣2(

1 + |z|2)s
dz

)1/2(∫
|z|>|ξ |

(
1 + |z|2)−s

dz

)1/2

≤ C|ξ |d/2−s,

which yields the claim (recall here that we are assuming that s > d , k is compactly
supported, and that k ∈ Hs

loc(R
d), which in the compactly supported case is of

course equivalent to k ∈ Hs(Rd)). To finish, our computations in this part did not
use the fact that k is a covariance. By writing K(x) = ∫ ∞

|x| k(ue1)u
−1 du, we see

that the smoothness of K − log(1/| · |) on a given ball B(0,R) depends only on
(say) values of k on B(0,2R), and we infer that the general situation reduces to
the case of compact k. �

REMARK 4.2. In case k is compactly supported, the covariance structure (4.3)
of the field L shows that the field admits a representation in terms of a weighted



3802 J. JUNNILA, E. SAKSMAN AND C. WEBB

hyperbolic white noise on Rd × (0,1) such that formally L(x) is given by inte-
grating the white noise against the function h(x − ·, ·), where

h(x, t) :=
{(
F−1

√
k̂
)
(x/t), t ≤ 1,

0, t > 1.

The covariance structure of the white noise is given by EW(K1)W(K2) =∫
K1∩K2

y−(d+1)(1−yδ) dx dy for, say, compact subsets K1,K2 ⊂ Rd ×(0,1). One
may note that h is supported in a cone {(x, t) ∈ Rd × (0,∞) : |x| ≤ ct, t ≤ 1}. See
in this connection also Lemma 4.4 below. The “almost” in the notion of almost
�-scale invariant refers to this mild extra weight in the hyperbolic white noise and
is visible in the covariance structure (4.3) through the 1 − e−δu-term.

REMARK 4.3. The reason why we restrict ourselves here to rotationally in-
variant functions is that for the �-scale invariant log-correlated field Y the function
g in the representation (2.1) is not in general continuous at the diagonal, but it is
so in case k is rotationally invariant.

As suggested to us by an anonymous reviewer, we now provide an example of
such a phenomenon. Let us consider the case d = 2, and let k : R2 → R be given
by k(x, y) = k0(x)k0(2y), where we assume that k0 : R → R is Hölder continu-
ous, k0(0) = 1, k0 decays algebraically at infinity, and gives rise to a translation
invariant covariance k0(x − x′) on R2. To prove that the function g from (2.1) is
not continuous up to the diagonal, it is sufficient to prove that the limit

lim
r→0+ g

(
r(e1, e2),0

) = lim
r→0+

[∫ ∞
0

k
(
eur(e1, e2)

)
du − log r−1

]
depends on the unit vector (e1, e2) ∈ R2. Comparing the cases (e1, e2) = (1,0) and
(e1, e2) = (0,1), we find with our definitions∫ ∞

0
k
(
eur(1,0)

)
du −

∫ ∞
0

k
(
eur(0,1)

)
du =

∫ ∞
0

(
k0

(
eur

) − k0
(
2eur

))
du

=
∫ log 2

0
k0

(
eur

)
du

→ log 2

as r → 0, and hence g is not continuous up to the diagonal.

Having in mind applications to analytic continuation of multiplicative chaos and
to Onsager-type inequalities, we record explicitly the following almost “cascade-
like” independence property.

LEMMA 4.4. If in Proposition 4.1 the covariance function k is supported on
B(0,1), then the fields Yt have the following independence of increments prop-
erty: for |x − y| ≥ e−t , one has Yu(x) − Yt (x) ⊥ Ys(y) for all u ≥ t and s > 0.
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Especially,

EYu(x)Yu′(y) = EYt (x)Yt (y) if u,u′ ≥ t and |x − y| ≥ e−t .

Similar statements hold true for the fields Lt .

PROOF. This is an immediate consequence of the covariance structure (4.3).
�

4.2. Decomposing log-correlated fields. The following theorem contains The-
orem B from the Introduction, and it can be used both in order to construct locally
log-correlated fields with a given covariance where g is almost arbitrary, or in or-
der to split a given log-correlated field into a sum of a regular field and an (almost)
�-scale invariant field.

THEOREM 4.5. Let C(x, y) = log(1/|x − y|) + g(x, y), where g ∈ Hs
loc(U ×

U) for some s > d . Fix δ > 0 and let k : Rd → R be any function satisfying the
conditions of Proposition 4.1 (also the assumption of k ∈ Hs

loc(R
d) from the state-

ment (vi)) with the additional assumptions that k ∈ L1(Rd) and
∫

Rd k > 0. Then
for all small enough ε > 0 it holds that:

(i) The function C|B(0,ε)×B(0,ε) is the covariance of a log-correlated field X on
the ball B(0, ε).

(ii) In the neighbourhood B(0, ε), (a copy of) the field X can be written as the
sum of independent Gaussian fields

X = L + R,

where R has almost surely Hölder-continuous realizations, and L is the almost �-
scale invariant field from Proposition 4.1 obtained by using a dilation of the seed
covariance k(λ0·) with a suitable dilation factor λ0 ≥ 1.

PROOF. We shall base the proof on a couple of auxiliary lemmas that will be
used to show that one may add any (small enough and smooth enough) function to
the covariance of the field S in Proposition 4.1 and still obtain a covariance.

LEMMA 4.6. (i) Assume that h ∈ Hs(R2d), where s > 0. Then for all real test
functions ϕ ∈ C∞

0 (Rd) it holds that∣∣∣∣∫
Rd×Rd

h(x, y)ϕ(x)ϕ(y) dx dy

∣∣∣∣ ≤ ‖h‖Hs(R2d )‖ϕ‖2
H−s/2(Rd )

.

(ii) Let δ > 0 and the field S be as in Proposition 4.1. The covariance kernel
CS(x, y) satisfies ∫

R2d
CS(x, y)ϕ(x)ϕ(y) ≥ c‖ϕ‖2

H−d/2−δ/2(Rd )
,

where c > 0 is a positive constant.
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PROOF. (i) The quantity on the left-hand side equals∣∣∣∣∫
Rd×Rd

ĥ(ξ1, ξ2)ϕ̂(ξ1)ϕ̂(ξ2) dξ1 dξ2

∣∣∣∣
=

∣∣∣∣∫
Rd×Rd

ĥ(ξ1, ξ2)
(|ξ1|2 + 1

)s/4(|ξ2|2 + 1
)s/4

× ϕ̂(ξ1)

(1 + |ξ1|2)s/4

ϕ̂(ξ2)

(1 + |ξ2|2)s/4 dξ1 dξ2

∣∣∣∣,
and the result follows by Cauchy–Schwarz and by noting that (|ξj |2 + 1) ≤ (1 +
|ξ1|2 + |ξ2|2).

(ii) The assumption that k is integrable with
∫

Rd k > 0 yields that k̂ is contin-
uous with k̂(0) > 0. We may thus pick b > 0 so that k̂(ξ) ≥ b if |ξ | ≤ b. By the
covariance property of k(x − y), we also have k̂ ≥ 0 everywhere. As we have
CS(x, y) = H(x − y) with H(x) := ∫ ∞

0 k(eux)e−δu du, it follows that

Ĥ (ξ) =
∫ ∞

0
e−(d+δ)uk̂

(
e−uξ

)
du ≥ b

∫ ∞
log+(|ξ |/b)

e−(d+δ)u du ≥ c
(
1 + |ξ |)−d−δ

with c > 0. We may then estimate∫
R2d

CS(x, y)ϕ(x)ϕ(y) =
∫

Rd
ϕ(x)

(∫
Rd

CS(x, y)ϕ(y) dy

)
dx

=
∫

Rd
Ĥ (ξ)

∣∣ϕ̂(ξ)
∣∣2 dξ

�
∫

Rd

(
1 + |ξ |)−d−δ∣∣ϕ̂(ξ)

∣∣2 dξ � ‖ϕ‖2
H−d/2−δ/2(Rd )

. �

LEMMA 4.7. Let V ⊂ R2d be a neighbourhood of the origin and assume that
δ ∈ (0,1/2). Assume that F ∈ Hd+2δ(V ) satisfies F(0) = 0, and let ψ ∈ C∞

c (R2d)

be supported in B(0,1). Then

lim
ε→0+

∥∥ψ(·/ε)F∥∥
Hd+δ(R2d ) = 0.

PROOF. For a given ε > 0, let us denote by Tε the linear operator

(Tεf )(x) = ψ

(
x

ε

)(
f (x) − f (0)

)
.

For fixed ε > 0, it is obviously bounded on any Sobolev space Hs(R2d) with s > d

since point evaluations are then continuous on Hs(R2d) by the Sobolev embedding
(2.5). Towards our claim, we first prove that there is a finite constant C, indepen-
dent of ε > 0, so that

(4.5) ‖Tεf ‖Hd(R2d ) ≤ C‖f ‖Hd+δ(R2d ) for all f ∈ Hd+δ(R2d)
,
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and

(4.6) ‖Tεf ‖Hd+1(R2d ) ≤ C‖f ‖Hd+1+δ(R2d ) for all f ∈ Hd+1+δ(R2d)
.

We first consider (4.5), for which it is enough to bound ‖Tεf ‖L2(R2d ) and
‖DdTεf ‖L2(R2d ). Again by (2.5), we have the obvious bound ‖Tεf ‖L2(R2d ) �
‖f ‖Hd+δ(R2d ), and the d:th derivative can be estimated by

(4.7)

∫
R2d

∣∣Dd(Tεf )
∣∣2

� ε−2d
∫
|x|≤ε

∣∣f (x) − f (0)
∣∣2 dx +

d∑
k=1

ε2k−2d
∫
|x|≤ε

∣∣Dkf (x)
∣∣2 dx

� ‖f ‖2
Hd+δ(R2d )

+
d∑

k=1

ε2k−2d

(∫
|x|≤ε

∣∣Dkf (x)
∣∣qk dx

)2/qk

×
(∫

|x|≤ε
1dx

)1−2/qk

� ‖f ‖2
Hd+δ(R2d )

+ ‖f ‖2
Hd(R2d )

� ‖f ‖2
Hd+δ(R2d )

.

Here, we applied the Sobolev embedding (2.4) on (components of) the function
Dkf with the exponent q = qk such that 1

qk
= 1

2 − (d−k)
2d

so that 1 − 2/qk = (d −
k)/d . This yields (4.5). In turn, we proceed similar to obtain

(4.8)

∫
R2d

∣∣Dd+1(Tεf )
∣∣2

� ε−2d−2
∫
|x|≤ε

∣∣f (x) − f (0)
∣∣2 dx

+
d+1∑
k=1

ε2k−2d−2
∫
|x|≤ε

∣∣Dkf (x)
∣∣2 dx

� ‖f ‖2
Hd+1+δ(R2d )

+
d+1∑
k=1

ε2k−2d−2
(∫

|x|≤ε

∣∣Dkf (x)
∣∣q̃k dx

)2/q̃k
(∫

|x|≤ε
1dx

)1−2/q̃k

� ‖f ‖2
Hd+1+δ(R2d )

,

where the first part was handled by the fact that the latter embedding in (2.5) yields
a uniform Lipschitz bound on f . This time we applied (2.4) with the exponents
1
q̃k

= 1
2 − (d+1−k)

2d
so that 1 − 2/q̃k = (d + 1 − k)/d for 1 ≤ k ≤ d + 1.

By applying interpolation (2.6) on the inequalities (4.5) and (4.6) with respect
to the smoothness index, we obtain that ‖Tεf ‖Hd+δ(R2d ) ≤ C‖f ‖Hd+2δ(R2d ) with
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a uniform bound with respect to ε. In order to apply this to prove that the stated
limit is zero, it is now enough to use the density of smooth functions to be able to
assume that F ∈ C∞

c (R2d) with F(0) = 0. In that case, we see immediately from
(4.7) that ‖TεF‖Hd(R2d ) → 0 as ε → 0+. As we already know that at the same
time ‖TεF‖Hd+1(R2d ) stays bounded, again interpolation (now for a fixed single
function, see (2.7)) implies that ‖TεF‖Hd+δ(R2d ) → 0 as ε → 0+. �

We now continue the proof of the Theorem 4.5 and consider first part (ii). We
write CX = log(1/|x − y|) + g(x, y). By Proposition 4.1, for our given function
k, there exists a �-scale invariant field Y in some neighbourhood of the origin for
which we have CY (x, y) = log(1/|x − y|) + g0(x, y), where g0 ∈ Hs

loc(R
2d) with

s > d . Let Y , S, L stand for the fields from Proposition 4.1, where the construc-
tion is performed by using the dilated seed covariance function k(λ0·), where the
dilation factor λ0 will be determined in the course of the proof. We may write

(4.9)
CX(x, y) = CY (x, y) + (g − g0)(x, y)

= CL(x, y) + (
CS(x, y) + (g − g0)(x, y)

)
.

Assume first that a := g(0,0) − g0(0,0) ≥ 0. Then we set F(x, y) = (g −
g0)(x, y) − a and pick a nonnegative test function ψ ∈ C∞

c (R2d) such that
ψ|B(0,2)(x) = 1 and ψ = 0 outside B(0,3). Since in a suitable neighbourhood
V of the origin F ∈ Hs

loc(V ) with s > d , with F(0,0) = 0, by combining Lem-
mas 4.6 and 4.7 we see that CS + ψεF is positive definite for small enough
ε > 0. Especially, then CS + F is a Hölder continuous covariance kernel on
B(0, ε) by (2.5), and we may construct on B(0, ε) a centred Gaussian field R0
with CR0 = CS + F with a.s. Hölder continuous realizations. Let G ∼ N(0,1) be
a Gaussian variable independent from R0 and L. Set R := R0 + √

aG. It follows
that on B(0, ε) × B(0, ε) it holds that

CX = CL + CR0 + a = CL + CR,

which yields the claim in the case a ≥ 0 (thus in this case we may take λ0 = 1).
The case a := g(0,0) − g0(0,0) < 0 can be reduced to the previous case if we

show that by replacing k by the dilation k(λ0·) we may decrease g0(0,0) as much
as we want. Namely, denote by g̃0 the function g0 after the replacement, and note
that directly from formula (4.1) we obtain that

g0(0,0) − g̃0(0,0) = lim
x→0

(∫ ∞
0

k
(
eux

)
du −

∫ ∞
0

k
(
euλ0x

)
du

)

= lim
x→0

∫ logλ0

0
k
(
eux

)
du = logλ0,

from which the claim follows since we may choose λ0 ≥ e−a . We have thus com-
pleted the proof of (ii), which clearly implies (i). �
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REMARK 4.8. We observe that the condition on smoothness of k and g are sat-
isfied if these functions have Cd+ε

loc -smoothness. However, the actual requirement
of Hd+ε

loc -smoothness is in a certain sense much less restrictive as it, for example,
allows for local behaviour of type |x − x0|ε .

5. Critical multiplicative chaos. We recall that the definition of critical chaos
was given in Section 1. Critical chaos appears in many facets of the multiplicative
chaos theory, even when dealing with noncritical chaos. In particular, it encodes
the location of maxima of the log-correlated Gaussian field and it appears as a
building block for the supercritical chaos [6, 24, 28].

As noted in the Introduction, existence of the correctly normalized critical chaos
has been proven only in the setting of �-scale invariant fields (again, we refer to
[12, 13, 18, 27] here), and our goal is to extend this to a more general class of
log-correlated fields. The basic idea will be to use Theorem A to reduce to the �-
scale invariant case and apply the known results of [12, 13, 18, 27]. Before going
into this, we will introduce the notion of convergence of random measures which
is relevant to the critical case.

DEFINITION 5.1. Let K ⊂ Rd be a compact subset, and let μ,μ1,μ2, . . .

be random Borel probability measures on K (defined on a common probability

space). We say that μn → μ weak∗ in probability, denoted by μn
w∗−→
P

μ, if for

every φ ∈ C(K) one has

(5.1)
∫
K

φ(x)μn(dx) −→
P

∫
K

φ(x)μ(dx).

We collect in the following lemma some basic properties of weak∗ convergence
in probability. Below, when we speak of convergence of continuous random func-
tions in probability, we refer to convergence in probability with respect to the sup-
norm unless others stated. We note that as a compact set K ⊂ Rd is separable, also
C(K) is separable.

LEMMA 5.2. Assume that μ,μ1,μ2, . . . are random Borel probability mea-
sures on a compact subset K ⊂ Rd .

(i) Assume that μn
w∗−→
P

μ over a compact set K . Then the the total masses

μn(K) stay uniformly bounded in probability, that is,

P
{
μn(K) > λ for some n

} → 0 as λ → ∞.

(ii) If (5.1) holds true for elements in a countable dense set {φj }∞j=1 ⊂ C(K),

then it follows that μn
w∗−→
P

μ.
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(iii) Assume that f,fn ∈ C(K) (n ≥ 1) are random continuous functions on K

with the property that fn → f in probability in C(K), and assume that μn
w∗−→
P

μ.

Then

fnμn
w∗−→
P

f μ as n → ∞.

PROOF. (i) This follows easily by applying (5.1) with the choice φ ≡ 1. In
turn, (ii) follows by approximating given φ ∈ C(K) up to ε by suitable φj and
invoking part (i) of the lemma. Finally, (iii) follows by a similar argument. �

The following theorem generalizes the result on the existence of critical chaos
[13] for a large class of log-correlated fields, and in particular verifies that �-scale
invariance is not needed a priori. The mollification Xε := ψε ∗ X in the stated
result below may be performed by using any compactly supported and nonnegative
smooth test function with integral 1.

THEOREM 5.3. Let X be a log-correlated Gaussian field with a covariance
given by the decomposition (2.1) with g ∈ Hs

loc(U × U). Then the corresponding
critical chaos exists, that is, there is a locally finite random Borel measure μ√

2d

on U such that for a mollification Xε of the field X we have the convergence

(5.2)
(
log(1/ε)

)1/2 exp
(√

2dXε(x) − dEXε(x)2)
dx

w∗−→
P

μ√
2d

over any compact subset K ⊂ U . The random limit measure μ√
2d is independent

of the mollification used.

PROOF. According to Theorem A, we may write

X = Y + R,

where Y is a �-scale invariant field for which [13], Theorem 5, holds and R is a
Gaussian field with a.s. locally Hölder continuous realizations. Hence the critical
chaos constructed from the approximations Yt of Y converges to a limit measure
on U as t → ∞. Let us call it ν√

2d . Proposition 4.1 verifies that for any sequence
tn ↗ ∞ the approximations Ytn of the field Y satisfy the conditions of [18], The-
orem 1.1. and Theorem 4.4, whence we deduce the convergence in probability for
the standard convolution approximations (we write (Y )ε to denote a convolution
approximation of Y —this is to avoid confusion with Yt which referred to the ap-
proximation of Y from Proposition 4.1),

(5.3)
(
log(1/ε)

)1/2 exp
(√

2d(Y )ε(x) − dE (Y )ε(x)2)
dx

w∗−→
P

ν√
2d on U.
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We may then write(
log(1/ε)

)1/2 exp
(√

2dXε(x) − dEXε(x)2)
dx

= fε(x)
(
log(1/ε)

)1/2 exp
(√

2d(Y )ε(x) − dE (Y )ε(x)2)
dx,

where the random continuous function fε on U is given by the expression

fε(x) := exp
(
d
(
E (Y )ε(x)2 −EXε(x)2))

exp
(√

2d(R)ε(x)
)
.

Let K ⊂ U be compact. Obviously, (R)ε → R in probability in C(K), so in view
of Lemma 5.2(iii), to prove the stated convergence on K it only remains to prove
that E (Y )ε(x)2 − EXε(x)2 converges uniformly on K as ε → 0. This however
follows simply because both Y and X have covariances of the form log 1

|·−·| plus

some Hölder continuous functions gY and gX , respectively. Therefore,

E (Y )ε(x)2 −EXε(x)2 = (
(ψε ⊗ ψε) ∗ (

gY − gX))
(x, x),

which clearly converges uniformly to gY − gX . This completes the proof. �

We will next show that one can also construct the critical chaos via the
so called derivative normalization, which is obtained by taking the derivative

− d
dβ

|β=√
2deβXε(x)− β2

2 EXε(x)2
and letting ε → 0.

THEOREM 5.4. Let X be a log-correlated Gaussian field with a covariance
given by the decomposition (2.1) with g ∈ Hs

loc(U × U) for some s > d . Then for
any compact K ⊂ U , the derivative renormalization measures(−Xε(x) + √

2dEXε(x)2)
e
√

2dXε(x)−dEXε(x)2

for the mollifications Xε of the field X converge weak∗ in probability over K as
ε → 0 to

√
π/2μ√

2d , where μ√
2d is the critical chaos measure given in Theo-

rem 5.3.

PROOF. We again use Theorem A and write X = Y + R with Y a �-scale
invariant field which this time satisfies the assumptions of [27], Theorem 1.2. Thus,
[27], Theorem 1.2, yields that the derivative renormalization measures constructed
from (Y )ε converge weak∗ in probability to

√
π/2ν√

2d , where ν is as in the proof
of Theorem 5.3. Next, we split the renormalization in two parts by writing(−Xε(x) + √

2dEXε(x)2)
e
√

2dXε(x)−dEXε(x)2

= (−(Y )ε(x) + √
2dE (Y )ε(x)2)

e
√

2d(Y )ε(x)−dE (Y )ε(x)2

× e
√

2d(R)ε(x)−d(EXε(x)2−E (Y )ε(x)2)

+ (−(R)ε(x) + √
2d

(
EXε(x)2 −E (Y )ε(x)2))

e
√

2dXε(x)−dEXε(x)2
.
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On any compact set K ⊂ U , the second term goes to 0 weak∗ in probability (by,
e.g., Theorem 5.3) since the factor (−(R)ε(x) + √

2d(EXε(x)2 −E (Y )ε(x)2)) is
almost surely uniformly bounded and converges uniformly in probability as ε → 0,
a fact which can be deduced as in the proof of Theorem 5.3. Similarly, the first term
converges to

√
π/2μ√

2d as we wanted. �

Finally, we note7 that in two dimensions the critical chaos can also be seen as
a suitable normalized limit of subcritical chaoses as β → 2 along the real axis. As
opposed to the two previous results, we do not choose now as a reference field
a �-scale invariant one, but the Gaussian free field (GFF) with Dirichlet bound-
ary conditions in a suitable planar domain—more precisely, it is the centered log-
correlated Gaussian field whose covariance is given by the Dirichlet Green’s func-
tion of the domain. As first conjectured in [12], Conjecture 9, it is natural to expect
a version of the following result to be true in all dimensions, but we lack a suitable
reference field for which the result would have been proven.

THEOREM 5.5. Let X be a log-correlated Gaussian field on a planar domain
U with a covariance given by the decomposition (2.1) with g ∈ Hs

loc(U × U) for
some s > 2. Then over any compact K ⊂ U we have the convergence in probability

lim
β↗2

μβ

2 − β
= √

2πμ2

in the space of nonnegative Radon measures under the weak∗-topology, where μ2
is the critical chaos measure given in Theorem 5.3 and

μβ(dx) = lim
ε→0

eβXε(x)− β2

2 EXε(x)2
dx

is the subcritical chaos measure with parameter β < 2.

PROOF OF THEOREM 5.5. If we have a finite number of random variables,
each converging in probability, their sum also converges in probability, so using
regularity of the critical measure it is enough to consider convergence in an open
ball B := B(x0, r) ⊂ U such that B(x0,2r) ⊂ U . Then by Theorem A, we may
inside B write X = L+R, where L is a GFF on B(x0,2r) with Dirichlet boundary
conditions, and R is a Hölder-regular field. Let

dμGFF
β (x) = lim

ε→0
eβLε(x)− β2

2 ELε(x)2
dx

and let μGFF
2 (x) be the corresponding critical chaos. Then by [3], Theorem 1.1, we

have

μGFF
β

2 − β
→ √

2πμGFF
2

7We thank A. Sepúlveda for asking us a question that led to this application.
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as β ↗ 2, with convergence weak∗ in probability (over B). Clearly also, as β ↗ 2,

eβR(x)− β2

2 ER(x)2−β2ER(x)L(x) → e2R(x)−2ER(x)2−4ER(x)L(x)

in probability in C(B). Here, ER(x)L(x) can be understood as the limit as ε → 0
of

1

2

(
EXε(x)2 −ELε(x)2 −ERε(x)2)

.

The claim now follows from Lemma 5.2. �

REMARK 5.6. We note that based on our result in the critical case, a natural
question a reader familiar with multiplicative chaos literature might have is can
we prove something similar in the supercritical case and what can we say about
the maximum of the field. While there are indeed things that can be proven about
supercritical multiplicative chaos and the maximum of the field using our decom-
position results, we fear that obtaining as precise results as in the critical case
would require a significant amount of work. Nevertheless, we sketch here a few
arguments concerning supercritical chaos utilizing our Theorem A.

As proven in [24], Corollary 2.3, given a �-scale invariant log-correlated field Y

on some domain U ⊂ Rd , with Yt being the �-scale invariant cut-off parametrized
such that EYt(x)2 = t , and under suitable regularity assumptions on the associated
seed covariance k, for β >

√
2d , the family of random measures

t
3β

2
√

2d e
t (

β√
2
−√

d)2

eβYt (x)− β2

2 t dx

converges in law, as t → ∞, with respect to the weak convergence of measures to
a nontrivial purely atomic limiting measure, whose law can be characterised ex-
plicitly in terms of the law of the critical measure—a property known as freezing.
We refer readers interested in further details to [24].

Now given an arbitrary log-correlated field X on U , we wish to construct a
random measure which would give a precise definition of eβX(x) dx for β >

√
2d

in the same sense as for Y . To do this, we use Theorem A to write X = Y + G

for some Hölder-continuous Gaussian field G. We then introduce the following,
rather noncanonical, approximation of X: for t > 0, let Xt(x) := Yt (x) + G(x).
With some effort, which we choose not to document here as we suspect it to be
of little use to the reader, one can then convince oneself (using of course [24],
Corollary 2.3) that

t
3β

2
√

2d e
t (

β√
2
−√

d)2

eβXt (x)− β2

2 t dx

converges in law (with respect to the weak topology) as t → ∞ to something.
Thus what Theorem A can be used for in this setting is constructing a candi-

date for what eβX(x) dx should mean for β >
√

2d . The drawback being that the
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construction is rather noncanonical in that it involves coupling to an arbitrary �-
scale invariant field, and it does not seem to us that it is obvious that the law of
the limiting measure is the same for all �-scale invariant fields. It is also not clear
how easily one can get a hold of basic properties of the measure such as freezing.
From the point of view of applications, from say random matrix theory, where the
associated field is Gaussian only asymptotically in some sense, it would be more
satisfying if one had a construction for the supercritical measure say in terms of
convolution approximations instead of a coupling to �-scale invariant ones as these
might be impossible to realize in the non-Gaussian setting. We suspect that resolv-
ing such uniqueness and freezing questions requires a nontrivial amount of further
work.

The difficulties one runs into when trying to use our decomposition results to
relate the maximum of a general log-correlated field to the maximum of say a �-
scale invariant one are rather similar in nature. We omit further discussion on this
and leave formulating precise statements to the reader.

6. Analytic dependence on β . J. Barral [5] made the important observation
that evaluations of subcritical cascade measures against test functions continue
analytically in the intermittency parameter β to the the domain

(6.1) A := span
(±√

2d ∪ B(0,
√

d)
)
,

that is, to the open domain that is the union of the ball B(0,
√

d) and the quadri-
lateral domain defined by the four lines passing through points ±√

2d at angles
±π/4. This is illustrated in Figure 1.

In the case of multiplicative chaos, this is easy to check in the L2-range |β| <√
d . In [4], Appendix 1, it was noted, that the analytic dependence also holds

FIG. 1. The extended subcritical regime for complex β , namely the set A from (6.1). The circle
corresponds to the L2-phase.
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for the Gaussian chaos constructed from certain 1-dimensional essentially �-scale
invariant fields. The case of more general fields has remained an open question.

Our next result resolves positively this problem with the aid of the decomposi-
tion of Theorem 4.5. For the reader’s convenience, we shall give all the details of
the argument here, although after Theorem 4.5 a considerable portion of the proof
basically repeats the ideas in [4, 5] and [17], Lemma 15.

THEOREM 6.1. Let X be a log-correlated field in a domain U ⊂ Rd with the
covariance structure (2.1), where g ∈ Hs

loc(U ×U) with s > d . Then for every β ∈
A there exist H−d

loc (U)-valued random variables μβ , all on the same probability
space, which for any fixed β ∈ (0,

√
2d) almost surely agrees with the standard

definition of the chaos “exp(βX).” Moreover, for any ψ ∈ C∞
c (U), almost surely

the map β �→ ψμβ is holomorphic in A with values in H−d(Rd).

PROOF. We pick an arbitrary x0 ∈ U and claim first that there is a neighbour-
hood Ux0 := B(x0, rx0) with rx0 ∈ (0,1/3) such that for any fixed ψx0 ∈ C∞

c (Ux0)

there exists a random holomorphic H−d(Rd)-valued map

A � β �→ ηx0(β) ∈ H−d(
Rd)

,

where for any fixed real value of the inverse temperature β ∈ R ∩ A there is an
almost sure agreement with the standard chaos measure:

(6.2) ηx0(β) = “ψx0 exp(βX)” almost surely as elements in H−d(
Rd)

.

Let X = L + R (a.s.) be a decomposition8 of X on Ux0 as in Theorem 4.5(ii),
where we choose k to be smooth and supported on B(0,1). Let β0 ∈ A be arbitrary.
We will first indicate how the claim can be deduced from the fact that for arbitrary
β0 ∈ A there exists an exponent p = p(β0) ∈ (1,2) and a radius δ := δβ0 > 0 so
that by denoting Bβ0 := B(β0, δ) we have Bβ0 ⊂ A and the uniform estimate

(6.3) E

∣∣∣∣∫
Ux0

ψ(x)νn,β(x) dx

∣∣∣∣p ≤ C‖ψ‖p
L∞(Ux0 ),

holds true for all integers n ≥ 1, β ∈ Bβ0 and ψ ∈ L∞(Ux0), with the constant C

independent of these quantities. Above we wrote

νn,β(x) := exp
(
βLn(x) − β2

2
ELn(x)2

)
, n ∈ N,

where Ln was defined Proposition 4.1 (now t = n). We will postpone the proof of
(6.3) and first show how it implies our claim.

8We may move originally to a copy of X in a probability space where there is room for producing
countably many such a.s. decompositions of X simultaneously, as this will be required for in the
proof.
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The inequality (6.3) transfers to

(6.4) E

∣∣∣∣∫
Ux0

ψ(x)μn,β(x) dx

∣∣∣∣p ≤ C‖ψ‖p
L∞(Ux0 ),

with

μn,β(x) := exp(β

(
Ln(x) + R(x) − β2

2
E

(
Ln(x) + R(x)

)2
)

= exp
(
βR(x) − β2

2
ER(x)2

)
νn,β(x),

which yields on Ux0 an approximation of the actual chaos we are after. Namely,

(6.4) follows as one applies (6.3) to exp(βR(x) − β2

2 ER(x)2)ψ(x) instead of
ψ , conditions on L, and the fact that by Fernique’s theorem E‖ exp(βR(x) −
β2

2 ER(x)2)‖p
L∞(Ux0 ) < ∞ for all p < ∞. Clearly, Bβ0 � β �→ ψx0μn,β takes val-

ues in the H−d(Rd) valued Hardy space Hp(Bβ0,H
−d(Rd)) (recall here the defi-

nition and basic properties of Hilbert space valued Hardy spaces from Section 2.2).
Thus, by construction, (ψx0μn,β)n≥1 is a Hp(Bβ0,H

−d(Rd))-valued martingale,
and its p-boundedness obviously follows as soon as we establish the uniform
pointwise estimate

(6.5) E‖ψx0μn,β‖p

H−d (Rd )
≤ C′ for all n ≥ 1 and β ∈ ∂Bβ0 .

In order to obtain this bound, by translation invariance we may assume that x0 = 0.
Since then supp(ψ0) ⊂ [−1/3,1/3]d , we may compute the Sobolev norm in terms
of the the standard Fourier coefficients.9 In particular, the concavity of x �→ xp/2

for x ≥ 0 (recall that 1 < p < 2) and (6.4) yield

E‖ψx0μn,β‖p

H−d (Rd )
� E

( ∑
k∈Zd

(
1 + |k|2)−d ∣∣ ̂(ψx0μn,β)(k)

∣∣2)p/2

≤ ∑
k∈Zd

(
1 + |k|2)−dp/2

E
∣∣ ̂(ψx0μn,β)(k)

∣∣p < C.

Hence we have a bounded martingale with values in the Hardy space, so again by
[16], Theorem 3.61, Theorem 1.95, we have almost sure convergence in the Hardy
space Hp(B(β0, δ),H

−d(Rd)). Finally, one observes by (2.8) that due to the con-
vergence in the Hardy space we have almost sure uniform pointwise convergence
in B(β0,

1
2δ) of the sequence ψx0μβ,n.

We may then cover A by countably many such discs B(β0,
1
2δ). It follows that

almost surely the sequence ψx0μn,β of analytic H−d(Rd)-valued functions on A

9This is a well-known fact, which follows easily from the definition for integer values of the
smoothness index s, and generalizes by interpolation to all s ≥ 0.
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converges locally uniformly. We denote the almost sure limit, that is then an ana-
lytic H−d(Rd)-valued random function on the domain A by ηx0 . The construction
is completed as soon as we check (6.2). Thus, let β ∈ (−√

2d,
√

2d) = A ∩ R.
By Proposition 4.1, (Ln)n≥1 yields a standard approximation of L, which implies
that (Ln + R)n≥1 provides one for X. It then follows from standard multiplicative
chaos theory that ηx0(β) coincides with “ψx0 exp(βX).”

In order to complete the proof of the claim, we made in the beginning of the
proof, it remains to prove (6.3). To that end, by translation invariance we may obvi-
ously replace Ux0 by the unit cube [0,1)d ⊂ Rd and assume that ψ ∈ L∞((0,1)d).
Set kn := 2�en/2� so that kn ∼ en is even and larger than en, and divide [0,1)d

into (kn)
d copies of the small cube [0,1/kn)

d , call them Qj , j = (j1, . . . , jd) ∈
{1, . . . , kn}d . Let An ⊂ {1, . . . , kn}d consist of those d-tuples whose all compo-
nents are odd, so that {1, . . . , kn}d = ⋃

r∈{0,1}d
⋃

j∈An
{j + r}. Our aim is to prove

exponential decay for the quantity

Mn := E

∣∣∣∣∫[0,1)d
ψ(x)

(
νn+1,β(x) − νn,β(x)

)
dx

∣∣∣∣p.

We note that by Proposition 4.1(i) the fields �n(·) = Ln+1 − Ln and νn,β(·) are
independent. In order to simplify notation, we assume that our probability space
is of product form � = �′ × �′′, P = P′ × P′′, and the fields νn,β depend only
on ω′, and �n on ω′′. We also note that E (�n(x)2) = 1 for any x. Moreover,
by Lemma 4.4, the restrictions of the field �n to different cubes Qj and Qj ′ ,
j, j ′ ∈ An are independent. Since [0,1)d may be expressed as the disjoint union
of 2d translates of the set

⋃
j∈An

Qj , we may use the von Bahr–Esseen inequality
[34] to estimate

Mn ≤ E2d(p−1)
∑

r∈{0,1}d

∣∣∣∣∫⋃
j∈An

Qj+r

ψ(x)
(
νn+1,β(x) − νn,β(x)

)
dx

∣∣∣∣p

= 2d(p−1)
∑

r∈{0,1}d
Eω′

(
Eω′′

∣∣∣∣∫⋃
j∈An

Qj

ψ(x)νn,β

(
ω′, x

)

× (
eβ�n(ω′′,x)−β2/2 − 1

)
dx

∣∣∣∣p)
≤ Cp2d(p−1)

∑
j∈{1,...,kn}d

Eω′
(
Eω′′

∣∣∣∣∫
Qj

ψ(x)νn,β

(
ω′, x

)

× (
eβ�n(ω′′,x)−β2/2 − 1

)
dx

∣∣∣∣p)
=: Cp2d(p−1)

∑
j∈{1,...,kn}d

M ′
n(j).
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We may use Hölder’s inequality and translation invariance to bound

M ′
n(j) ≤ ‖ψ‖p

L∞([0,1)d )
(kn)

−dpEω′
∣∣νn,β

(
ω′,0

)∣∣pEω′′
∣∣eβ�n(ω′′,0)−β2/2 − 1

∣∣p
� ‖ψ‖p

L∞([0,1)d )
e−ndp exp

(
n
(
p2 − p

)
(Reβ)2/2 + np(Imβ)2/2

)
.

Putting the above estimates together, it follows that Mn � exp(cβn), where cβ :=
(p2 − p)(Reβ)2/2 + p(Imβ)2/2 − d(p − 1). We may choose p > 1 so that this
quantity is negative assuming that

(Reβ)2 + 1

p − 1
(Imβ)2 <

2d

p
.

One easily checks for each β0 ∈ A we may choose p > 1 so that above inequal-
ity is satisfied in a neighbourhood B(β0, δ) of the point β0. Finally, the obtained
exponential decay of the increments clearly yields (6.3).

In order to complete the proof of the theorem, we may pick a cover of U by
neighbourhoods Uj := B(xj , εxj

), j = 1, . . . (here xj replaces x0 above) so that
each compact subset of U intersects only finitely many of the neighbourhoods
Uj . We choose the related elements ψxj

∈ C∞
c (Uj ) so that they form a partition

of unity in U , and form the H−d(Rd) valued random variables ηxj
as above. By

construction, the random H−d
loc (U)-valued analytic function on A

μβ := ∑
j

ηxj
(β)

has all the properties stated in the theorem. Only one thing perhaps needs to be
discussed: that for each fixed j ≥ 1 the analytic continuation ηxj

(β) is a.s. σ(X)-
measurable, that is, a.s. it is a function of the original field X. Let h : A → D be
the Riemann map that fixes origin and maps R ∩ A onto R ∩ D. Set η̃xj

(β) :=
ηxj

(h−1(β)). Then we have ηxj
(β) = η̃xj

(β̃) with β̃ := h(β), and we may instead
consider the map β̃ �→ η̃xj

(β̃), which is analytic on the unit disc. Hence we have
the power series expansion

η̃xj
(β̃) =

∞∑
k=0

Akβ̃
k,

which converges locally uniformly in H−d(Rd). The coefficients Ak are
H−d(Rd)-valued random variables, which a.s. can be computed as

Ak = (k!)−1
[(

d

dβ̃

)k

η̃xj
(β̃)

]
β̃=0

= (k!)−1 lim
m→∞mk

(
k∑

j=0

(−1)k−j

(
k

j

)
η̃xj

(j/m)

)

= (k!)−1 lim
m→∞mk

(
k∑

j=0

(−1)k−j

(
k

j

)
ηxj

(
h−1(j/m)

))
.
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This yields what we wanted, since a.s. all the values ηxj
(h−1(j/m)) are obtained

as in the standard definition of the chaos, and hence are functions of X. �

REMARK 6.2. The above theorem does not take any stand on what is the
optimal Sobolev regularity of the complex chaos μβ , and this will be one of the
topics of a sequel to the present paper.

7. Generalized Onsager inequalities. As the last application of Theo-
rem 4.5, we shall prove a local Onsager-type inequality (namely a variant of an
inequality first discovered by Onsager in [25]) for general log-correlated fields. As
mentioned in the Introduction, this result is crucial (see [19]) in order to obtain
obtain good enough moment bounds for imaginary chaos in general dimensions,
so that the moments determine the chaos uniquely. The idea of the proof is again
that it is simple for �-scale invariant fields and extends to general log-correlated
fields through Theorem B.

THEOREM 7.1. Assume that X is a log-correlated field on a domain U ⊂ Rd

with 0 ∈ U and with the same conditions on the covariance as in Theorem 4.5.
Then there is a neighbourhood Bε(0) ⊂ U of the origin so that X satisfies an
Onsager-type inequality in Bε(0): for any n ≥ 1, q1, . . . , qn ∈ {−1,1} and distinct
x1, . . . , xn ∈ Bε(0) it holds that

(7.1) − ∑
1≤j<k≤n

qjqkEX(xj )X(xk) ≤ 1

2

n∑
j=1

log
1

1
2 mink �=j |xj − xk|

+ Cn,

where C is independent of the points xj or n, but may depend on the neighbour-
hood B(0, ε).

PROOF. Let B(0, ε) be a neighbourhood for which a decomposition X =
L + R, given by Theorem 4.5(ii), is valid, obtained by some allowed seed co-
variance function k that is supported on B(0,1) (observe that any dilatation k(λ0·)
is then also supported in B(0,1) for λ0 ≥ 1). Especially, Lemma 4.4 applies to the
field L. By independence, it is obviously enough to prove the result separately for
both of the fields L and R. Since CR is locally bounded, say |CR(x, y)| ≤ A for
x, y ∈ B(0, ε), we obtain

− ∑
1≤j<k≤n

qjqkER(xj )R(xk) = −1

2
E

∣∣∣∣∣
n∑

j=1

qjR(xj )

∣∣∣∣∣
2

+ 1

2

n∑
j=1

ER(xj )
2 ≤ nA/2.

In turn, to treat the contribution of L we may assume that ε < 1/2 and de-
note for each j ∈ {1, . . . , n} half of the shortest distance to the neighbours by
rj := 1

2 mink �=j |xk − xj |. Define the variables Gj for j = 1, . . . , n by setting
Gj = Llog(1/rj ), Lemma 4.4 implies for distinct j , k that

EL(xj )L(xk) = EGjGk.
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By recalling (4.3), it thus follows that

− ∑
1≤j<k≤n

qjqkEL(xj )L(xk) = −1

2
E

∣∣∣∣∣
n∑

j=1

qjGj

∣∣∣∣∣
2

+ 1

2

n∑
j=1

EG2
j

≤ 1

2

n∑
j=1

log(1/rj ).

Put together, the claim follows with C = A/2. �
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