CORRECTION NOTE: A STRONG ORDER $1 / 2$ METHOD FOR MULTIDIMENSIONAL SDES WITH DISCONTINUOUS DRIFT

By Gunther Leobacher ${ }^{1}$ and Michaela Szölgyenyi ${ }^{2}$
University of Graz and University of Klagenfurt

There is a gap in the proof of [3], Theorem 3.20. For closing this gap, weak additional assumptions on the regularity of the exceptional set Θ are needed. In this note, we close the gap and state the corrected version of the main theorems of [3]. The changes we state below only apply from Section 3 onward. The onedimensional case in Section 2 is not affected.

For the multidimensional case, the function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ defined in [3], equation (2), needs to be C^{3}; we define

$$
\phi(u)= \begin{cases}(1+u)^{4}(1-u)^{4} & \text { if }|u| \leq 1, \tag{1}\\ 0 & \text { else. }\end{cases}
$$

This function has the properties:

1. ϕ is C^{3} on all of \mathbb{R};
2. $\phi(0)=1, \phi^{\prime}(0)=0, \phi^{\prime \prime}(0)=-8$;
3. $\phi(u)=\phi^{\prime}(u)=\phi^{\prime \prime}(u)=\phi^{\prime \prime \prime}(u)=0$ for all $|u| \geq 1$.

With this, we define for some $c \in(0, \operatorname{reach}(\Theta))$ and for all $x \in \Theta^{c}$,

$$
\begin{equation*}
G(x):=x+(x-p(x)) \cdot n(p(x))\|x-p(x)\| \phi\left(\frac{\|x-p(x)\|}{c}\right) \alpha(p(x)) \tag{2}
\end{equation*}
$$

where for all $\xi \in \Theta$,

$$
\begin{equation*}
\alpha(\xi):=\lim _{h \rightarrow 0+} \frac{\mu(\xi-h n(\xi))-\mu(\xi+h n(\xi))}{2 n(\xi)^{\top} \sigma(\xi) \sigma(\xi)^{\top} n(\xi)} . \tag{3}
\end{equation*}
$$

Note that (3) replaces [3], equation (6), and G has precisely the same form as in [3], equation (5), only now we use the new versions of α, ϕ.

Due to the change in the definition of ϕ, the following lemma needs to be adapted.

[^0]Lemma 1 (Replaces [3], Lemma 3.18). Assume [3], Assumptions 3.1-3.4. Fix $\varkappa>1$ and let

$$
\begin{aligned}
c_{0}:= & \min \left(1, \frac{\varepsilon_{0}}{\varkappa \max (K, 1)},\right. \\
& \left.\left(1+\frac{d}{3} \sup _{\xi \in \Theta}\left(\max _{1 \leq i \leq d}\left|\alpha_{i}(\xi)\right|+\frac{d}{4} \frac{\varkappa}{\varkappa-1} \max _{1 \leq i, j \leq d}\left|\frac{\partial \alpha_{i}(\xi)}{\partial x_{j}}\right|\right)\right)^{-1}\right) .
\end{aligned}
$$

Then for every choice of $c \in\left(0, c_{0}\right)$ we have that $G^{\prime}(x)$ is invertible for every $x \in \mathbb{R}^{d}$.

Proof. Note that $c_{0}>0$, since α and α^{\prime} are bounded by [3], Assumption 3.4. Let $x \in \mathbb{R}^{d}$ and recall equation (7) from the proof of [3], Theorem 3.14,

$$
\begin{aligned}
G^{\prime}(x)= & \operatorname{id}_{\mathbb{R}^{d}}+\bar{\phi}^{\prime}(\|x-p(x)\|) \alpha(p(x)) n(p(x))^{\top} \\
& +\bar{\phi}(\|x-p(x)\|) \alpha^{\prime}(p(x)) \mathcal{I}_{\xi}\left(\mathscr{T}^{-1}(x)\right)\left(\operatorname{id}_{\mathbb{R}^{d}}-n(p(x)) n(p(x))^{\top}\right) \\
= & 1+\mathcal{A}(x)
\end{aligned}
$$

We begin by estimating the operator norm of $\mathcal{A}(x)$ for given $c \in\left(0, c_{0}\right)$.

$$
\begin{aligned}
&\|\mathcal{A}(x)\| \\
& \leq\left\|\bar{\phi}^{\prime}(\|x-p(x)\|)\right\| d \max _{1 \leq i \leq d}\left|\alpha_{i}(p(x))\right| \\
&+\bar{\phi}(\|x-p(x)\|)\left\|\mathcal{I}_{\xi}\right\|\left\|\mathrm{id}_{\mathbb{R}^{d}}-n(p(x)) n(p(x))^{\top}\right\| d^{2} \max _{1 \leq i, j \leq d}\left|\frac{\partial \alpha_{i}(p(x))}{\partial x_{j}}\right| \\
& \quad \leq \frac{c d}{3} \max _{1 \leq i \leq d}\left|\alpha_{i}(p(x))\right|+\frac{c^{2} d^{2}}{12} \frac{1}{1-\left|y_{1}\right|\left\|n^{\prime}\right\|} \max _{1 \leq i, j \leq d}\left|\frac{\partial \alpha_{i}(p(x))}{\partial x_{j}}\right|,
\end{aligned}
$$

where we used that $\left\|\bar{\phi}^{\prime}(\|x-p(x)\|)\right\| \leq \frac{c}{3}$ and $|\bar{\phi}(\|x-p(x)\|)| \leq \frac{c^{2}}{12}$ for $x \in \Theta^{c}$ (by estimating the maxima), and that $\left\|\operatorname{id}_{\mathbb{R}^{d}}-n(p(x)) n(p(x))^{\top}\right\| \leq 1$. Furthermore, $\left\|\mathcal{I}_{\xi}\right\| \leq \frac{1}{1-\left|y_{1}\right|\left\|n^{\prime}\right\|}$, since $\left\|y_{1} n^{\prime}\right\|<\frac{1}{\varkappa}<1$ by $c<\frac{\varepsilon_{0}}{\varkappa \max (K, 1)}$, [3], Lemma 3.17, and [3], Remark 3.16. Hence

$$
\frac{1}{1-\left|y_{1}\right| \| n^{\prime} \mid} \leq \frac{\varkappa}{\varkappa-1}
$$

Therefore, $\|\mathcal{A}(x)\| \leq \frac{c d}{3}\left(\max _{1 \leq i \leq d}\left|\alpha_{i}(p(x))\right|+\frac{c d}{4} \frac{\varkappa}{\varkappa-1} \max _{1 \leq i, j \leq d}\left|\frac{\partial \alpha_{i}(p(x))}{\partial x_{j}}\right|\right)$.
We want c small enough to have $\|\mathcal{A}(x)\|<1$ and to that end we choose $c<1$ and

$$
c<\left(1+\frac{d}{3}\left(\max _{1 \leq i \leq d}\left|\alpha_{i}(p(x))\right|+\frac{d}{4} \frac{\varkappa}{\varkappa-1} \max _{1 \leq i, j \leq d}\left|\frac{\partial \alpha_{i}(p(x))}{\partial x_{j}}\right|\right)\right)^{-1} .
$$

Hence $G^{\prime}(x)$ is invertible for $x \in \Theta^{c}$ by [3], Lemma 3.17. For $x \in \mathbb{R}^{d} \backslash \Theta^{c}, G^{\prime}(x)=$ $\mathrm{id}_{\mathbb{R}^{d}}$.

We will need the following additional assumption.
AsSumption 1. The exceptional set Θ of μ is C^{4}. Every unit normal vector n of Θ has a bounded second and third derivative.

Lemma 2. Assume [3], Assumptions 3.1 and 3.2, and Assumption 1. Let $c \in$ $\left(0, \varepsilon_{0}\right)$.

Then the function $\tilde{\phi}: \Theta^{c} \backslash \Theta \rightarrow \mathbb{R}$ with $\tilde{\phi}(x)=(x-p(x)) \cdot n(p(x)) \| x-$ $p(x) \| \phi\left(\frac{\|x-p(x)\|}{c}\right)$ is three times differentiable with a bounded first, second and third derivative.

Proof. For $x \in \Theta^{c} \backslash \Theta$, we have $(x-p(x)) \cdot n(p(x))\|x-p(x)\|=s d(x, \Theta)^{2}$ with $s \in\{-1,1\}$. By [1], Corollary 4.5, $d(\cdot, \Theta)$ is C^{4} on $\Theta^{c} \backslash \Theta$.

Since $p^{\prime}(x)$ maps into the tangent space of Θ in $p(x)$, it holds that ($x-$ $p(x))^{\top} p^{\prime}(x)=0$. Thus we have $\left(d(x, \Theta)^{2}\right)^{\prime}=\left(\|x-p(x)\|^{2}\right)^{\prime}=2(x-p(x))^{\top} \times$ $\left(\mathrm{id}_{\mathbb{R}^{d}}-p^{\prime}(x)\right)=2(x-p(x))^{\top}$. Note that $(x-p(x))^{\top}$ is bounded by c on Θ^{c}.

The function $p: \Theta^{c} \rightarrow \Theta$ is C^{3} by Assumption 1, [3], Assumptions 3.1 and 3.2, and [1], Theorem 4.1.

By [3], Assumptions 3.1 and 3.2, and [3], Lemma 3.10, the first derivative of every unit normal vector n is bounded, and by Assumption 1 the second and third derivative of n are bounded. Now [2], Corollary 4, implies that $p^{\prime}, p^{\prime \prime}$, and $p^{\prime \prime \prime}$ are bounded on Θ^{c}.

Now it follows from the chain and product rule that the function $x \mapsto d(x, \Theta)^{2}$ and its derivatives up to order 4 are bounded on $\Theta^{c} \backslash \Theta$.

Note further that

$$
\phi\left(\frac{\|x-p(x)\|}{c}\right)= \begin{cases}\left(1-\frac{d(x, \Theta)^{2}}{c^{2}}\right)^{4} & d(x, \Theta)<c \\ 0 & \text { else } .\end{cases}
$$

In total, by the chain and product rule, the first three derivatives of $\tilde{\phi}$ are bounded.

Lemma 3. Assume [3], Assumptions 3.1, 3.2 and 3.4, and Assumption 1. Let $c \in\left(0, \varepsilon_{0}\right)$.

Then the function $\alpha \circ p: \Theta^{c} \backslash \Theta \rightarrow \mathbb{R}^{d}$ is three times differentiable with a bounded first, second and third derivative.

Proof. By [3], Assumption 3.4, α is three times differentiable with a bounded first, second and third derivative. As shown in the proof of Lemma 2, $p: \Theta^{c} \rightarrow \Theta$
is C^{3} and $p^{\prime}, p^{\prime \prime}$ and $p^{\prime \prime \prime}$ are bounded on Θ^{c}. The chain and product rules now assure that $(\alpha \circ p)^{\prime},(\alpha \circ p)^{\prime \prime},(\alpha \circ p)^{\prime \prime \prime}$ are bounded.

From now on, choose c as in Lemma 1.
Lemma 4. Let [3], Assumptions 3.1-3.5, and Assumption 1 be satisfied. Then $G^{\prime \prime}$ is bounded and it is differentiable with bounded derivative on $\Theta^{c} \backslash \Theta$.

Proof. A sufficient condition for this is, by the definition of G and the product rule, that the functions $x \mapsto \tilde{\phi}(x)$ and $x \mapsto \alpha(p(x))$ have this property. This is guaranteed by Lemmas 2 and 3 .

In the proof of [3], Theorem 3.20, we write "in the same way we see that $G^{\prime \prime}$ is differentiable with bounded derivative on $\Theta^{c} \backslash \Theta$ and is therefore intrinsic Lipschitz by [3], Lemma 3.8. Moreover, both $G^{\prime \prime}$ and σ are bounded on $\Theta^{c} \backslash \Theta$." This statement holds under the additional Assumption 1 and is proven in Lemma 4.

Theorem 5 (Replaces [3], Theorem 3.20). Let [3], Assumptions 3.1-3.5, be satisfied. In addition, let Assumption 1 hold.

Then the SDE for $G(X)$ has Lipschitz coefficients.
Theorem 6 (Replaces [3], Theorem 3.21). Let [3], Assumptions 3.1-3.5, be satisfied. In addition, let Assumption 1 hold.

Then the d-dimensional SDE (1) has a unique global strong solution.
Theorem 7 (Replaces [3], Theorem 3.23). Let [3], Assumptions 3.1-3.5, be satisfied. In addition, let Assumption 1 hold.

Then [3], Algorithm 3.22, converges with strong order $1 / 2$ to the solution X of the d-dimensional SDE (1).

Acknowledgments. The authors thank Thomas Müller-Gronbach for pointing out an inaccuracy in the definition of α.

REFERENCES

[1] Dudek, E. and Holly, K. (1994). Nonlinear orthogonal projection. Ann. Polon. Math. 59 131. MR1270298
[2] Leobacher, G. and Steinicke, A. (2018). Existence, uniqueness and regularity of the projection onto differentiable manifolds. Available at arXiv:1811.10578.
[3] Leobacher, G. and Szölgyenyi, M. (2017). A strong order $1 / 2$ method for multidimensional SDEs with discontinuous drift. Ann. Appl. Probab. 27 2383-2418. MR3693529

Institute of Mathematics
and Scientific Computing
University of Graz
Heinrichstrasse 36
8010 Graz
AUSTRIA
E-MAIL: gunther.leobacher@uni-graz.at

Department of Statistics
University of Klagenfurt
Universitätsstrasse 65-67
9020 KLagenfurt
AUSTRIA
E-MAIL: michaela.szoelgyenyi@aau.at

[^0]: Received December 2018.
 ${ }^{1}$ Supported by the Austrian Science Fund (FWF): Project F5508-N26, which is part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications."
 ${ }^{2}$ Supported by the AXA Research Fund grant "Numerical Methods for Stochastic Differential Equations with Irregular Coefficients with Applications in Risk Theory and Mathematical Finance."

