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DYNAMICS OF OBSERVABLES IN RANK-BASED MODELS AND
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In the seminal work (Stochastic Portfolio Theory: Stochastic Modelling
and Applied Probability (2002) Springer), several macroscopic market ob-
servables have been introduced, in an attempt to find characteristics captur-
ing the diversity of a financial market. Despite the crucial importance of such
observables for investment decisions, a concise mathematical description of
their dynamics has been missing. We fill this gap in the setting of rank-based
models. The results are then used to study the performance of multiplicatively
and additively functionally generated portfolios.

1. Introduction. A key characteristic of an equity market is its diversity
which, on an intuitive level, describes how evenly the investors distribute their
capital among the publicly traded companies. In the seminal work [10] (see also
[11–13]), Fernholz has initiated the program of capturing the concept of diversity
mathematically, and thus, quantifying its implications on the performance of in-
vestment portfolios. Given the market weights μ1(t),μ2(t), . . . ,μn(t) at a time
t ≥ 0 (i.e., the fractions of market capital invested in the n publicly traded compa-
nies at that time), he suggested to measure the market diversity by

(1.1) Dp(t) :=
(

n∑
i=1

μi(t)
p

)1/p

for some p ∈ (0,1)

(see [10], Example 3.4.4). The choice p ∈ (0,1) ensures that the right-hand side
of (1.1) is a concave function of μ1(t),μ2(t), . . . ,μn(t) and attains its maximum
for the uniform capital distribution μ1(t) = μ2(t) = · · · = μn(t) = 1

n
. The limiting

case

(1.2) H(t) := lim
p↑1

p

1 − p
logDp(t) = −

n∑
i=1

μi(t) logμi(t),
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known as the market entropy, retains the latter two properties and can therefore be
regarded as an alternative measure of the market diversity (cf. [10], Section 2.3).
We refer to [10], Figures 6.7, 7.3 and 6.2, for plots of the process D1/2(·) for
the largest 1000 companies in the U.S., the process D0.76(·) for the companies
forming the S&P 500 index and the process H(·) for the companies in the Center
for Research in Securities Prices (CRSP) database of major U.S. stock exchanges
(including the NYSE, the AMEX and the NASDAQ), respectively.

Despite the considerable interest in the quantities Dp(·), p ∈ (0,1) and
H(·) (and the associated functionally generated portfolios, see below), a con-
cise mathematical description of their dynamics has been missing so far. The
challenge lies thereby in the fact that, while the vector of market weights
(μ1(·),μ2(·), . . . ,μn(·)) is typically modeled by a Markov process, the Markov
property is generally not inherited by Dp(·), p ∈ (0,1) or H(·). Our first main
goal in this paper is to capture the dynamics of nonlinear macroscopic observables
of the point process of logarithmic market capitalizations, such as Dp(·) and H(·),
in the context of rank-based (a.k.a. first-order) models and when the number of
companies n is large. We choose to work with rank-based models because they are
known to form the simplest class of market models that is able to reproduce the
true long-term average capital distribution of a financial market (see [10], Chap-
ter 5, [2] and [11], Chapter 13). We point to [10], Figure 5.1, for a plot of the latter
for the stocks in the CRSP database.

In the context of stochastic portfolio theory, the term rank-based model refers
to modeling the market weights process μ(·) = (μ1(·),μ2(·), . . . ,μn(·)) via(

eX
(n)
1 (·)∑n

i=1 eX
(n)
i (·) ,

eX
(n)
2 (·)∑n

i=1 eX
(n)
i (·) , . . . ,

eX
(n)
n (·)∑n

i=1 eX
(n)
i (·)

)
,

where the processes X
(n)
i , i = 1,2, . . . , n form the unique weak solution of the

system of stochastic differential equations (SDEs)

(1.3)
dX

(n)
i (t) = b

(
F�(n)(t)

(
X

(n)
i (t)

))
dt + σ

(
F�(n)(t)

(
X

(n)
i (t)

))
dB

(n)
i (t),

i = 1,2, . . . , n,

with coefficient functions b : [0,1] → R and σ : [0,1] → (0,∞), the empirical cu-
mulative distribution functions F�(n)(t)(x) := 1

n

∑n
i=1 1{X(n)

i (t)≤x} and independent

standard Brownian motions B
(n)
1 ,B

(n)
2 , . . . ,B

(n)
n . The system (1.3) is a special case

of the systems of SDEs studied in [3]; in particular, the main result of [3] shows
the weak uniqueness for (1.3) (the weak existence for (1.3) falls under the classi-
cal result of [29], Exercise 12.4.3). More recently, the interacting particle system
described by (1.3) and its variants have attracted much attention due to their ap-
pearance in stochastic portfolio theory and an open problem of Aldous [1] (see
[10], Section 5.5, [2], [11], Section 13, [16–19, 26, 28] for the former and [6, 7, 9,
24, 25, 27, 31] for the latter).
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The n → ∞ asymptotics of nonlinear macroscopic observables that we derive
herein rely on the law of large numbers for rank-based models in [18], Corol-
lary 2.13 (see also [8], Corollary 1.6, [28], Theorem 1.2) and the associated central
limit theorem in [22], Theorem 1.2. Both of these results hold under the following
(stronger than the original) assumption.

ASSUMPTION 1.1. (a) There exists a probability measure λ on R possessing
a bounded density function and satisfying

(1.4) ∀θ > 0 :
∫
R

eθ |x|λ(dx) < ∞

such that the initial locations of the particles X
(n)
1 (0),X

(n)
2 (0), . . . ,X

(n)
n (0) are i.i.d.

according to λ for all n ∈ N.
(b) The coefficient functions b and σ are differentiable with locally Hölder con-

tinuous derivatives.

We now state the versions of [18], Corollary 2.13 and [22], Theorem 1.2
used in this paper for future reference. Hereby, we write M1(R) for the space
of probability measures on R equipped with the topology of weak convergence,
C([0,∞),M1(R)) for the space of continuous functions from [0,∞) to M1(R)

endowed with the topology of locally uniform convergence, as well as Mfin(R) and
Mfin([0, t]×R), t > 0 for the spaces of finite signed measures on R and [0, t]×R,
t > 0 viewed as the duals of C0(R) and C0([0, t] × R), t > 0 with the associated
weak-∗ topologies, respectively.

PROPOSITION 1.2 (cf. [18], Corollary 2.13). Under Assumption 1.1, the pro-
cesses of empirical measures �(n)(·) = 1

n

∑n
i=1 δ

X
(n)
i (·), n ∈ N converge in proba-

bility in C([0,∞),M1(R)) to a deterministic limit �(·), where the corresponding
process of cumulative distribution functions R(t, ·) := F�(t)(·), t ≥ 0 is the unique
generalized solution of the Cauchy problem for the porous medium equation

(1.5) Rt = −B(R)x + �(R)xx, R(0, ·) = Fλ(·)
in the sense of [14], Definition 3, B(r) := ∫ r

0 b(a)da, �(r) := ∫ r
0

1
2σ(a)2 da, and

Fλ(·) is the cumulative distribution function of λ.

PROPOSITION 1.3 (cf. [22], Theorem 1.2). Let Assumption 1.1 be satisfied
and G be the mild solution of the stochastic partial differential equation (SPDE)

(1.6)
Gt = −(b(R)G

)
x +

(
σ(R)2

2
G

)
xx

+ σ(R)R1/2
x Ẇ ,

G(0, ·) = β
(
Fλ(·)),
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with the function R from Proposition 1.2, the space-time white noise Ẇ , and a
standard Brownian bridge β independent of Ẇ . Then the sequences of processes

(1.7)
t 
→ √

n
(
F�(n)(t)(x) − R(t, x)

)
dx, n ∈ N and

t 
→ √
n
(
F�(n)(s)(x) − R(s, x)

)
dx ds, n ∈ N,

with values in Mfin(R) and Mfin([0, t]×R), t > 0, respectively, converge jointly in
the finite-dimensional distribution sense to

(1.8) t 
→ G(t, x)dx and t 
→ G(s, x)1[0,t]×R(s, x)ds dx.

We are now ready to give the first two main results of the present work, which
yield a comprehensive description of the large n asymptotic dynamics for nonlin-
ear macroscopic observables of the form

(1.9) JJ ;f1,...,fk

(
α(·)) := J

(∫
R

f1 dα(·), . . . ,
∫
R

fk dα(·)
)
,

where α(·) ∈ C([0,∞),M1(R)), J is a continuously differentiable function, and

(1.10)

f1, . . . , fk ∈ E


:=
{
f ∈ C
(R) :

∣∣∣∣d
f

dx

(x)

∣∣∣∣≤ CeC|x|, x ∈ R for some C ≥ 0
}
,

with 
 = 1 in Theorem 1.4 and 
 = 3 in Theorem 1.5 below. For simplicity, we use
henceforth the bilinear form notation 〈f, ν〉 for

∫
R

f dν and write (f1, . . . , fk) ∈
EU


 for a U ⊆ R
k whenever f1, . . . , fk ∈ E
 and(〈f1, ν〉, . . . , 〈fk, ν〉) ∈ U

for all ν ∈ M1(R) fulfilling
∫
R

eθ |x|ν(dx) < ∞, θ > 0.

THEOREM 1.4. Let Assumption 1.1 be satisfied and (f1, . . . , fk) ∈ EU
1 for a

convex open U ⊆R
k . Then, for all J ∈ C1(U), one has

(1.11)

√
n
(
JJ ;f1,...,fk

(
�(n)(·))−JJ ;f1,...,fk

(
�(·)))

n→∞−→ −
k∑

j=1

JJxj
;f1,...,fk

(
�(·)) ∫

R

f ′
j (x)G(·, x)dx

in the finite-dimensional distribution sense.

Theorem 1.4 provides the fundamental tool in establishing the central limit the-
orem for the hitting times of nonlinear macroscopic observables.
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THEOREM 1.5. Let Assumption 1.1 be satisfied, (f1, . . . , fk) ∈ EU
3 for a con-

vex open U ⊆ R
k , and J ∈ C1(U). Suppose a ∈ R is such that

(1.12)
τ := inf

{
t ≥ 0 : JJ ;f1,...,fk

(
�(t)

)= a
}
< ∞ and

dJJ ;f1,...,fk
(�(·))

dt
(τ ) �= 0.

Then the sequence of hitting times

(1.13) τ (n) := inf
{
t ≥ 0 : JJ ;f1,...,fk

(
�(n)(t)

)= a
}
, n ∈ N

converges in distribution when properly rescaled:

(1.14)
√

n
(
τ (n) − τ

) n→∞−→
∑k

j=1 JJxj
;f1,...,fk

(�(τ ))
∫
R

f ′
j (x)G(τ, x)dx

dJJ ;f1,...,fk
(�(·))

dt
(τ )

.

REMARK 1.6. We emphasize that Theorems 1.4 and 1.5 apply, in particular,
to the (appropriately normalized) processes Dp(·), p ∈ (0,1) and H(·) of (1.1) and
(1.2), respectively, allowing to approximate them by Gaussian processes (Theorem
1.4) and their hitting times by Gaussian random variables (Theorem 1.5). For the
exact statements, please see Corollary 5.3 and Remark 5.5 below.

REMARK 1.7. The condition of finiteness of all exponential moments on
λ in Assumption 1.1(a) enters naturally in the context of market observables
from stochastic portfolio theory, which often (e.g., in the case of Dp(·), p ∈
(0,1)) involve powers of the market capitalizations that, in turn, are images of
X

(n)
1 (·),X(n)

2 (·), . . . ,X(n)
n (·) under the exponential function.

1.1. Application to functionally generated portfolios. Theorems 1.4 and 1.5
can be used to obtain concentration of measure estimates on the performance of
functionally generated portfolios, both additive and multiplicative, as defined in
[10], Chapter 3 and [20], respectively. For functionally generated portfolios, the
portfolio weights process π(·) = (π1(·),π2(·), . . . , πn(·)), which records the frac-
tions of capital invested in the n companies over time, is given in terms of a func-
tion �̃ of the market weights and its derivatives. The crucial observation in [10],
Chapter 3 and [20] is that, for two carefully constructed classes of portfolio weights
processes π(·), the value Xπ(·)

Xμ(·) of π(·) relative to that of the market portfolio μ(·),
with

(1.15)

dXπ(·)
Xπ(·) =

n∑
i=1

πi(·)dX
(n)
i (·)

X
(n)
i (·) ,

dXμ(·)
Xμ(·) =

n∑
i=1

μi(·)dX
(n)
i (·)

X
(n)
i (·) and Xπ(0) = Xμ(0),

admits a pathwise representation. Let us be more specific in this direction.
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For a twice continuously differentiable function �̃ on an open neighborhood
of the unit simplex {x ∈ (0,1)n : ∑n

i=1 xi = 1} ⊂ R
n, one formally defines the

portfolio weights processes π�̃;×(·) and π�̃;+(·) multiplicatively and additively
generated by �̃ according to

π
�̃;×
i (·) =

(
(log �̃)xi

(
μ(·))+ 1 −

n∑
j=1

μj(·)(log �̃)xj

(
μ(·)))μi(·),

i = 1,2, . . . , n,

π
�̃;+
i (·) =

(
�̃xi

(μ(·)) −∑n
j=1 μj(·)�̃xj

(μ(·))
�̃(μ(·)) − 1

2
∑n

i,j=1
∫ ·

0 �̃xixj
(μ(s))d[μi,μj ](s)

+ 1
)
μi(·),

i = 1,2, . . . , n,

respectively. The key feature of the functionally generated portfolios π�̃;×(·),
π�̃;+(·) is that their values V �̃;×(·), V �̃;+(·) relative to that of the market
portfolio μ(·) admit pathwise representations, which under the usual convention
V �̃;×(0) = V �̃;+(0) = 1 read

V �̃;×(t) = �̃(μ(t))

�̃(μ(0))
exp

(
−1

2

n∑
i,j=1

∫ t

0

�̃xixj
(μ(·))

�̃(μ(·)) d[μi,μj ](·)
)
,

t ≥ 0,

(1.16)

V �̃;+(t) = 1 + �̃
(
μ(t)

)− �̃
(
μ(0)

)
− 1

2

n∑
i,j=1

∫ t

0
�̃xixj

(
μ(·))d[μi,μj ](·), t ≥ 0

(1.17)

(cf. [11], equation (11.2), [20], equation (4.3)).
The function �̃ usually corresponds to a function � of the form

(1.18) � :Rn →R, x 
→ J

(
1

n

n∑
i=1

f1(xi), . . . ,
1

n

n∑
i=1

fk(xi)

)

and with the homogeneity property

(1.19) ∀x ∈ R
n, r ∈R : �(x) = �(x1 + r, x2 + r, . . . , xn + r)

via the relation

(1.20) �(x) = �̃

(
ex1∑n
i=1 exi

,
ex2∑n
i=1 exi

, . . . ,
exn∑n
i=1 exi

)
, x ∈ R

n.

We assume henceforth that �̃ is positive and concave in the setting of (1.16) or
concave in the setting of (1.17), since then the respective excess growth processes,
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defined as

��̃;×(t) = −1

2

n∑
i,j=1

∫ t

0

�̃xixj
(μ(·))

�̃(μ(·)) d[μi,μj ](·), t ≥ 0,

��̃;+(t) = −1

2

n∑
i,j=1

∫ t

0
�̃xixj

(
μ(·))d[μi,μj ](·), t ≥ 0,

are nondecreasing (see [20], Example 3.5). In particular, by (1.16), (1.17) the as-
sociated value processes V �̃;×(·) or V �̃;+(·) reach levels v > 1 before the hitting
times τ (n) of levels a = v�̃(μ(0)) or a = v − 1 + �̃(μ(0)), respectively, whose
asymptotics are described by Theorem 1.5.

More precise estimates on the processes V �̃;×(·) and V �̃;+(·) can be obtained
under the additional assumptions

(1.21)

∀n ∈ N, i = 1,2, . . . , n − 1 :
1

i

i∑
j=1

b

(
j

n

)
>

1

n − i

n∑
j=i+1

b

(
j

n

)
and σ(·) = 1

(see [25], Remark on page 2187, for a detailed discussion of the first assumption;
in addition, note that the constant 1 in the second assumption can be turned into
any other positive constant by a deterministic time change). Indeed, under the as-
sumptions in (1.21), [16], Corollary 8, applies and can be naturally combined with
Theorem 1.5. In order to avoid cumbersome notation, we state the next corollary
for the multiplicative generation only and refer to Remark 1.10 for a discussion of
the additive case.

COROLLARY 1.8. Let Assumption 1.1, the assumptions in (1.21), and for all
n ∈N,

(1.22)

ess sup
ω,t

n∑
i,j=1

�̃xixj
(μ(·))

�̃(μ(·))
d[μi,μj ](·)

dt

− ess inf
ω,t

n∑
i,j=1

�̃xixj
(μ(·))

�̃(μ(·))
d[μi,μj ](·)

dt
∈ (0,∞)

be satisfied. Then, for the functions J and f1, f2, . . . , fk of (1.18), (1.20), a, τ as

in (1.12), r× := − lim
t→∞

1
2t

∫ t
0

�̃xi xj
(μ(·))

�̃(μ(·)) d[μi,μj ](·) and r, s > 0, the stopping time

(1.23) η�̃;× := inf
{
t ≥ 0 : V �̃;×(t) = a

�̃(μ(0))
e(r×−r)(τ−s/

√
n)

}
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obeys for all ε > 0 the estimate

(1.24)

P
(
η�̃;× ≥ τ + s/

√
n
)≤ 2�(s/χ)

(
1 + on(1)

)
+
∥∥∥∥dκ(n)

dζ (n)

∥∥∥∥
L2(ζ (n))

e−c×(r,ε)(τ−s/
√

n).

Hereby, � is the standard normal tail cumulative distribution function; χ is the
standard deviation of the random variable on the right-hand side of (1.14); on(1)

is a quantity tending to 0 as n → ∞; κ(n) and ζ (n) are the laws of the vector
of differences between the consecutive order statistics of (X

(n)
1 ,X

(n)
2 , . . . ,X

(n)
n ) at

time 0 and in stationarity, respectively; and

c×(r, ε)

= min1≤j≤n−1(
∑j

i=1 b( i
n
) − j

n

∑n
i=1 b( i

n
))2

2 − 2 cos π
n

· max
(

r2

(C×)2 ,

4ε
(
ε + v×)(√1 + r2

2ε(ε + v×)2 max(|C×,↑|, |C×,↓|)2 − 1
))

,

(1.25)

with C×, C×,↑, C×,↓, and v× being the overall expression, the essential supre-
mum, the essential infimum and the variance under ζ (n) of the expression inside
the essential supremum in (1.22).

REMARK 1.9. Inequality (1.24) can be interpreted as follows. If one invests
in the portfolio generated multiplicatively by a function �̃ satisfying the condition
(1.22) and aims for the associated process �̃(μ(·)) to reach an admissible value
of a (i.e., one for which (1.12) holds), then one will achieve a logarithmic return
relative to the market portfolio μ(·) of loga − log �̃(μ(0))+ (r× − r)(τ − s/

√
n)

before time τ + s/
√

n with a confidence probability of at least one minus the
right-hand side of (1.24). We note that, in the practically relevant regime a ≥
JJ ;f1,...,fk

(�(0)) and r× ≥ r , by increasing the values of a and s one can increase
both the relative return and the confidence probability for sufficiently large n, at
the expense of thereby increasing the upper bound τ + s/

√
n on the investment

horizon.

REMARK 1.10. In the case of additive generation, a concentration estimate
similar to (1.24) holds for

η�̃;+ := inf
{
t ≥ 0 : V �̃;+(t) = 1 + a − �̃

(
μ(0)

)+ (
r+ − r

)
(τ − s/

√
n)
}
,
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assuming

(1.26)

ess sup
ω,t

n∑
i,j=1

�̃xixj

(
μ(·))d[μi,μj ](·)

dt

− ess inf
ω,t

n∑
i,j=1

�̃xixj

(
μ(·))d[μi,μj ](·)

dt
∈ (0,∞)

instead of (1.22) and with r+ := − limt→∞ 1
2t

∑n
i,j=1

∫ t
0 �̃xixj

(μ(·))d[μi,μj ](·)
taking the place of r×. We leave the straightforward adaptation to this case of the
proof of Corollary 1.8, given Proposition 5.9 below, to the reader.

The rest of the paper is structured as follows. In Section 2, we collect some re-
sults from [15, 22] and [4] that are used repeatedly in the proofs of Theorems 1.4
and 1.5. Section 3 is then devoted to the proof of Theorem 1.4. The latter is based
on Proposition 1.3, but requires significant additional work due to the exponential
growth at infinity of the derivatives of functions in E1 and the nonlinearity of J .
In particular, the proof invokes the mean stochastic comparison of [15] and the
quantitative propagation of chaos result of [22], Theorem 1.6. Subsequently, we
give the proof of Theorem 1.5 in Section 4, which relies on the previously men-
tioned tools and a creative reduction to the estimate on the expected Wasserstein
distance W1 between the empirical measure of an i.i.d. sample and the underlying
distribution in [4], Theorem 3.2. Next, in Section 5, we apply Theorems 1.4 and
1.5 to the main examples of diversity measures from stochastic portfolio theory.
Lastly, in Section 5.3, we provide the proof of Corollary 1.8.

2. Preliminaries. The general propagation of chaos paradigm (see [30]) sug-
gests that under Assumption 1.1, for large values of n, the weak solution of (1.3)
should be well approximated by the strong solution of

(2.1)
dX

(n)

i (t) = b
(
R
(
t,X

(n)

i (t)
))

dt + σ
(
R
(
t,X

(n)

i (t)
))

dB
(n)
i (t),

i = 1,2, . . . , n

with the initial condition X
(n)

i (0) = X
(n)
i (0), i = 1,2, . . . , n, the function R

from Proposition 1.2 and the same Brownian motions B
(n)
1 ,B

(n)
2 , . . . ,B

(n)
n as in

(1.3). Indeed, under Assumption 1.1, the coefficient functions (t, x) 
→ b(R(t, x)),
(t, x) 
→ σ(R(t, x)) are uniformly Lipschitz in x on any strip of the form [0, T ] ×
R by [22], Proposition 2.5, so that the strong existence and uniqueness for (2.1)
readily follow. The propagation of chaos estimates from [22], Theorem 1.6, quan-
tify the term “well approximated.”
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PROPOSITION 2.1 (cf. [22], Theorem 1.6). Let Assumption 1.1 be satisfied.
Then, for all p,T > 0, one can find a constant C = C(p,T ) < ∞ such that

(2.2) E

[
sup

t∈[0,T ]
∣∣X(n)

i (t) − X
(n)

i (t)
∣∣p]≤ Cn−p/2, i = 1,2, . . . , n, n ∈N.

Next, we introduce the process of empirical measures

(2.3) �(n)(·) = 1

n

n∑
i=1

δ
X

(n)
i (·)

and recall that the Wasserstein distance of order one is defined for any ν1, ν2 ∈
M1(R) with finite first moments by

(2.4) W1(ν1, ν2) = inf
Z1

d=ν1,Z2
d=ν2

E
[|Z1 − Z2|].

Each �(n)(t) constitutes the empirical measure of an i.i.d. sample from the prob-
ability measure �(t) introduced in Proposition 1.2. Hence, we may aim to bound
the associated expected W1-distance E[W1(�

(n)(t), �(t))] by means of [4], The-
orem 3.2, which requires a moment estimate for �(t). The latter, in turn, can
be obtained under Assumption 1.1 from the mean stochastic comparison re-
sults of [15] as follows. With C

↑
b := maxa∈[0,1] b(a), C

↓
b := mina∈[0,1] b(a) and

Cσ := maxa∈[0,1] |σ(a)|, consider the Brownian motions with drift:

dY↑(t) = C
↑
b dt + Cσ dB

(1)
1 (t), Y↑(0)

d= λ,(2.5)

dY↓(t) = C
↓
b dt + Cσ dB

(1)
1 (t), Y↓(0)

d= λ.(2.6)

The next proposition is then a direct consequence of [15], inequality (1.5) and
page 318, Remark (4).

PROPOSITION 2.2. Let Assumption 1.1 be satisfied. Then, for all i =
1,2, . . . , n, n ∈N, T > 0, M ∈ R and θ > 0, one has the comparison results

P

(
sup

t∈[0,T ]
∣∣X(n)

i (t)
∣∣≥ M

)
∨ P

(
sup

t∈[0,T ]
∣∣X(n)

i (t)
∣∣≥ M

)
≤ 2P

(
sup

t∈[0,T ]
Y↑(t) ≥ M

)
+ 2P

(
sup

t∈[0,T ]
(−Y↓(t)

)≥ M
)
,

(2.7)

E

[
sup

t∈[0,T ]
eθ |X(n)

i (t)|]∨E

[
sup

t∈[0,T ]
eθ |X(n)

i (t)|]
≤ E

[
sup

t∈[0,T ]
eθY↑(t)

]
+E

[
sup

t∈[0,T ]
e−θY↓(t)

]
< ∞.

(2.8)
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In particular, the bound of (2.8) allows us to use [4], Theorem 3.2, to estimate
each of the quantities E[W1(�

(n)(t), �(t))]. Hereby, we keep in mind the alterna-
tive representation of the W1-distance as the L1-distance between the cumulative
distribution functions (see, e.g., [4], Theorem 2.9):

(2.9) W1(ν1, ν2) =
∫
R

∣∣Fν1(x) − Fν2(x)
∣∣dx.

PROPOSITION 2.3. Let Assumption 1.1 be satisfied. Then, for all T > 0, one
can find a constant C = C(T ) < ∞ such that

(2.10) sup
t∈[0,T ]

E
[
W1

(
�(n)(t), �(t)

)]≤ Cn−1/2, n ∈ N.

3. Proof of Theorem 1.4. Our starting point for the proof of Theorem 1.4 is
the identity

√
n
(
JJ ;f1,...,fk

(
�(n)(·))−JJ ;f1,...,fk

(
�(·)))

= √
n
(〈
f1, �

(n)(·) − �(·)〉, . . . , 〈fk, �
(n)(·) − �(·)〉)

× ∇J
(〈
f1, �̃

(n)(·)〉, . . . , 〈fk, �̃
(n)(·)〉)

(3.1)

due to the mean value theorem, where �̃(n)(·) = ξ (n)(·)�(n)(·) + (1 − ξ (n)(·))�(·)
and ξ (n)(·) can be chosen as stochastic processes with values in M1(R) and [0,1],
respectively, by the Borel selection result of [5], Theorem 6.9.6. The proof of The-
orem 1.4 is carried out by studying the convergence of the vector-valued stochastic
processes

I
(n)
1 (·) := √

n
(〈
f1, �

(n)(·) − �(·)〉, . . . , 〈fk, �
(n)(·) − �(·)〉),(3.2)

I
(n)
2 (·) := (〈

f1, �̃
(n)(·)〉, . . . , 〈fk, �̃

(n)(·)〉)(3.3)

as n → ∞. In both cases, it is helpful to introduce, for each M > 0, an auxil-
iary function hM ∈ C∞(R) with values in [0,1] such that hM(x) = 1 if |x| ≤ M ,
hM(x) = 0 if |x| > M + 1, and

(3.4) sup
M>0

sup
x∈R

∣∣h′
M(x)

∣∣∨ sup
M>0

sup
x∈R

∣∣h′′
M(x)

∣∣< ∞.

In addition, we denote (1 − hM) by ĥM for each M > 0.
Convergence of I

(n)
1 (·). With the mild solution G of the SPDE (1.6), we claim

that

(3.5) I
(n)
1 (·) n→∞−→ −

(∫
R

f ′
1(x)G(·, x)dx, . . . ,

∫
R

f ′
k(x)G(·, x)dx

)
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in the finite-dimensional distribution sense. To this end, we write each component
−√

n〈fj , �
(n)(·) − �(·)〉 of −I

(n)
1 (·) as

√
n

∫
R

f ′
j (x)hM(x)

(
Fρ(n)(·)(x) − R(·, x)

)
dx

+ √
n

∫
R

fj (x)h′
M(x)

(
Fρ(n)(·)(x) − R(·, x)

)
dx

+ √
n

∫
R

f ′
j (x)ĥM(x)

(
Fρ(n)(·)(x) − R(·, x)

)
dx

+ √
n

∫
R

fj (x)ĥ′
M(x)

(
Fρ(n)(·)(x) − R(·, x)

)
dx

(3.6)

using fj = fjhM + fj ĥM and integration by parts (observe that the boundary
terms thereby vanish thanks to fj ĥM ∈ E0, the estimate (2.8) and Markov’s in-
equality).

Taking first the n → ∞ limit and then the M → ∞ limit of the first summand
in (3.6) for j = 1,2, . . . , k gives

(3.7)
(∫

R

f ′
1(x)G(·, x)dx, . . . ,

∫
R

f ′
k(x)G(·, x)dx

)
in the finite-dimensional distribution sense. Indeed, by Proposition 1.3 the n → ∞
limit results in the mean zero Gaussian process

(3.8)
(∫

R

f ′
1(x)hM(x)G(·, x)dx, . . . ,

∫
R

f ′
k(x)hM(x)G(·, x)dx

)
.

For its convergence in finite-dimensional distribution as M → ∞ to the mean zero
Gaussian process in (3.7), it suffices to verify the convergence of the corresponding
covariance functions. Upon a decomposition of f ′

1, f
′
2, . . . , f

′
k into the positive and

negative parts, the positivity of the covariance function of G (see [22], Remark 1.4)
and the monotone convergence theorem allow to reduce the convergence of the co-
variance functions to a statement about the uniform boundedness of the variances
involved.

LEMMA 3.1. Let Assumption 1.1 be satisfied. Then, for all t ≥ 0 and j ∈
{1,2, . . . , k},

(3.9)

sup
M>0

E

[(∫
R

f ′
j (x)+hM(x)G(t, x)dx

)2]

∨E

[(∫
R

f ′
j (x)−hM(x)G(t, x)dx

)2]
< ∞.

Assuming Lemma 3.1, the proof of (3.5) hinges on the next lemma, which
shows that the contributions of the second, third and fourth summands in (3.6)
to the n → ∞ limit of I

(n)
1 (·) become negligible as M tends to infinity.



DYNAMICS OF OBSERVABLES 2861

LEMMA 3.2. Let Assumption 1.1 be satisfied. Then, for any ε > 0, t ≥ 0,
f0 ∈ E0 and uniformly bounded family of functions gM : R → R, M > 0 such that
gM(x) = 0, x ∈ [−M,M] for each M > 0,

lim sup
M→∞

lim sup
n→∞

P

(∣∣∣∣√n

∫
R

f0(x)gM(x)
(
F�(n)(t)(x) − R(t, x)

)
dx

∣∣∣∣> ε

)
(3.10)

= 0.

We proceed to the proofs of the two lemmas.

PROOF OF LEMMA 3.1. For all M > 0, we have

E

[(∫
R

f ′
j (x)+hM(x)G(t, x)dx

)2]

≤ lim inf
n→∞ E

[(∫
R

f ′
j (x)+hM(x)

√
n
(
F�(n)(t)(x) − R(t, x)

)
dx

)2](3.11)

by Proposition 1.3, Skorokhod’s representation theorem and Fatou’s lemma. With
fj,M;+(x) := ∫ x

0 f ′
j (y)+hM(y)dy, integration by parts yields for the term inside

the latter limit inferior

nE
[〈
fj,M;+, �(n)(t) − �(t)

〉2]
≤ 2nE

[〈
fj,M;+, �(n)(t) − �(n)(t)

〉2]+ 2nE
[〈
fj,M;+, �(n)(t) − �(t)

〉2]
.

(3.12)

Next, we insert the definitions of �(n)(t), �(n)(t), apply the Cauchy–Schwarz in-

equality and exploit the independence of X
(n)

1 (t)
d= X

(n)

2 (t)
d= · · · d= X

(n)

n (t)
d= �(t)

to get

2E

[
n∑

i=1

(
fj,M;+

(
X

(n)
i (t)

)− fj,M;+
(
X

(n)

i (t)
))2]

+ 2E
[(

fj,M;+
(
X

(n)

1 (t)
)− 〈

fj,M;+, �(t)
〉)2]

.

(3.13)

Since f1, . . . , fk ∈ E1, we can pick a constant C < ∞ independent of j and M

such that |f ′
j,M;+(x)| ≤ CeC|x|, x ∈ R and |fj,M;+(x)| ≤ CeC|x|, x ∈ R. This, the

convexity of the absolute value function and the observation (X
(n)
1 (t),X

(n)

1 (t))
d=

(X
(n)
2 (t),X

(n)

2 (t))
d= · · · d= (X

(n)
n (t),X

(n)

n (t)) allow to bound the expression in
(3.13) from above by

2nC2
E
[
1{|X(n)

1 (t)|≥|X(n)
1 (t)|}e

2C|X(n)
1 (t)|(X(n)

1 (t) − X
(n)

1 (t)
)2]

+ 2nC2
E
[
1{|X(n)

1 (t)|>|X(n)
1 (t)|}e

2C|X(n)
1 (t)|(X(n)

1 (t) − X
(n)

1 (t)
)2]

+ 2C2
E
[
e2C|X(n)

1 (t)|].
(3.14)
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By dropping the indicator random variables, using the Cauchy–Schwarz inequality
twice and invoking the estimate (2.8) and the p = 4 version of inequality (2.2)
we conclude that the quantity in (3.14) is uniformly bounded in n and M . An
analogous argument for the second expectation in (3.9) completes the proof of the
lemma. �

PROOF OF LEMMA 3.2. With F0,M(x) := ∫ x
0 f0(y)gM(y)dy, we integrate by

parts to rewrite the probability in (3.10) as

P
(∣∣√n

〈
F0,M,�(n)(t) − �(t)

〉∣∣> ε
)

≤ P
(∣∣√n

〈
F0,M,�(n)(t) − �(n)(t)

〉∣∣> ε/2
)

+ P
(∣∣√n

〈
F0,M,�(n)(t) − �(t)

〉∣∣> ε/2
)(3.15)

(note that the boundary terms in the integration by parts vanish thanks to F0,M ∈ E0
and the estimate (2.8) in conjunction with Markov’s inequality).

Now, we employ Markov’s inequality, plug in the definitions of �(n)(t), �(n)(t)

and recall (X
(n)
1 (t),X

(n)

1 (t))
d= (X

(n)
2 (t),X

(n)

2 (t))
d= · · · d= (X

(n)
n (t),X

(n)

n (t)) to
control the first probability on the right-hand side of (3.15) by

(3.16)
2
√

n

ε
E
[∣∣F0,M

(
X

(n)
1 (t)

)− F0,M

(
X

(n)

1 (t)
)∣∣].

In view of the assumptions on f0 and gM , M > 0, we can find a constant C < ∞
independent of M such that |f0(x)| ≤ CeC|x|, x ∈ R and |gM(x)| ≤ C1{|x|>M},
x ∈ R, M > 0. This and the convexity of the absolute value function show that the
expression in (3.16) is not greater than

2
√

nC2

ε
E
[
eC|X(n)

1 (t)|1{|X(n)
1 (t)|>M}1{|X(n)

1 (t)|≥|X(n)
1 (t)|}

∣∣X(n)
1 (t) − X

(n)

1 (t)
∣∣]

+ 2
√

nC2

ε

×E
[
eC|X(n)

1 (t)|1{|X(n)
1 (t)|>M}1{|X(n)

1 (t)|>|X(n)
1 (t)|}

∣∣X(n)
1 (t) − X

(n)

1 (t)
∣∣].

(3.17)

Leaving out the second indicator random variables from both expectations and
applying Hölder’s inequality twice we end up with

2
√

nC2

ε
E
[
e3C|X(n)

1 (t)|]1/3
P
(∣∣X(n)

1 (t)
∣∣> M

)1/3
E
[∣∣X(n)

1 (t) − X
(n)

1 (t)
∣∣3]1/3

+ 2
√

nC2

ε
E
[
e3C|X(n)

1 (t)|]1/3

× P
(∣∣X(n)

1 (t)
∣∣> M

)1/3
E
[∣∣X(n)

1 (t) − X
(n)

1 (t)
∣∣3]1/3

,

(3.18)
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which tends to 0 when one takes the limits superior n → ∞, M → ∞ due to the
estimates (2.8), (2.7) and the p = 3 version of inequality (2.2).

An appeal to Markov’s inequality and the independence of X
(n)

1 (t)
d= X

(n)

2 (t)
d=

· · · d= X
(n)

n (t)
d= �(t) reveal that the second probability on the right-hand side of

(3.15) is at most

(3.19)
4

ε2E
[(

F0,M

(
X

(n)

1 (t)
)− 〈

F0,M,�(t)
〉)2]

.

Moreover, by the definition of F0,M , M > 0 and the assumptions on f0 and gM ,
M > 0 we have F0,M(x) = 0, x ∈ [−M,M], M > 0 and |F0,M(x)| ≤ CeC|x|, |x| >
M , M > 0, which allows to upper bound the latter expectation by

(3.20)
C2

E
[
1{|X(n)

1 (t)|>M}e
2C|X(n)

1 (t)|]
≤ C2

P
(∣∣X(n)

1 (t)
∣∣> M

)1/2
E
[
e4C|X(n)

1 (t)|]1/2
.

To complete the proof of the lemma, we pass to the limits superior n → ∞, M →
∞ relying on the estimates (2.7), (2.8) one more time. �

CONVERGENCE OF I
(n)
2 (·). We claim that, for all t ≥ 0, it holds

(3.21) I
(n)
2 (t)

n→∞−→ (〈
f1, �(t)

〉
, . . . ,

〈
fk, �(t)

〉)
in probability, which together with (3.1) and (3.5) yields Theorem 1.4. To obtain
(3.21), we need to establish limn→∞〈fj , �̃

(n)(t)〉 = 〈fj , �(t)〉 in probability for
every fixed t ≥ 0 and j ∈ {1,2, . . . , k}. Consider the decomposition

(3.22)

〈
fj , �̃

(n)(t)
〉= 〈

fj , �(t)
〉+ ξ (n)(t)

〈
fjhM,�(n)(t) − �(t)

〉
+ ξ (n)(t)

〈
fj ĥM,�(n)(t) − �(t)

〉
,

valid for any M > 0. We have limn→∞ ξ (n)(t)〈fjhM,�(n)(t) − �(t)〉 = 0 in prob-
ability due to |ξ (n)(t)| ≤ 1 and Proposition 1.2 (note that fjhM is continuous and
bounded). Finally, |ξ (n)(t)| ≤ 1, integration by parts (in which the boundary terms
vanish thanks to the estimate (2.8) and Markov’s inequality), the union bound and
Lemma 3.2 give

lim sup
M→∞

lim sup
n→∞

P
(∣∣ξ (n)(t)

〈
fj ĥM,�(n)(t) − �(t)

〉∣∣> ε
)

≤ lim sup
M→∞

lim sup
n→∞

P

(∣∣∣∣∫
R

f ′
j (x)ĥM(x)

(
F�(n)(t)(x) − R(t, x)

)
dx

∣∣∣∣> ε/2
)

(3.23)

+ lim sup
M→∞

lim sup
n→∞

P

(∣∣∣∣∫
R

fj (x)ĥ′
M(x)

(
F�(n)(t)(x) − R(t, x)

)
dx

∣∣∣∣> ε/2
)

= 0

for all ε > 0, so that limn→∞〈fj , �̃
(n)(t)〉 = 〈fj , �(t)〉 in probability as desired.

�
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4. Proof of Theorem 1.5. With the simplified notation

(4.1) Z(n)(·) := JJ ;f1,...,fk

(
�(n)(·)) and Z(·) := JJ ;f1,...,fk

(
�(·)),

the main idea behind our proof of Theorem 1.5 lies in translating the convergence
of

√
n(τ (n) −τ) to that of

√
n(Z(τ (n))−Z(τ)) by an application of the mean value

theorem to Z(·) and in reducing the latter convergence to that of
√

n(Z(n)(τ ) −
Z(τ)), for which Theorem 1.4 can be used. In this process, it is convenient to
work with the truncated versions τ̂ (n) := τ (n) ∧ (τ + 1), n ∈ N of the hitting times
τ (n), n ∈ N. The convergence in distribution of

√
n(τ (n) − τ) to a limit is then

equivalent to the convergence in distribution of
√

n(τ̂ (n) − τ) to the same limit
thanks to the following proposition, which is proved further below in this section.

PROPOSITION 4.1. In the setting of Theorem 1.5, τ (n) n→∞−→ τ in probability.

Our starting point for the proof of the convergence of
√

n(τ̂ (n) − τ) is the iden-
tity

(4.2) 1{τ (n)≤τ+1}Z(n)(τ̂ (n))= 1{τ (n)≤τ+1}Z(τ).

The latter stems from the continuity of Z(n)(·) and Z(·): for Z(n)(·), it is a direct
consequence of the definitions and, for Z(·), one can write 〈f1, �(·)〉, . . . , 〈fk, �(·)〉
as E[f1(X

(1)

1 (·))], . . . ,E[fk(X
(1)

1 (·))] and conclude by taking the expectation in
Itô’s formula and using Fubini’s theorem (recall f1, . . . , fk ∈ E3 ⊂ E2 and the esti-
mate (2.8)). We observe in passing that, for the same reasons in conjunction with
the dominated convergence theorem, Z(·) is actually continuously differentiable.

Next, we expand (4.2) into

1{τ (n)≤τ+1}
√

n
(
Z
(
τ̂ (n))− Z(τ)

)
= −1{τ (n)≤τ+1}

√
n
(
Z(n)(τ ) − Z(τ)

)
+ 1{τ (n)≤τ+1}

√
n
(
Z(n)(τ ) − Z(τ)

)
− 1{τ (n)≤τ+1}

√
n
(
Z(n)(τ̂ (n))− Z

(
τ̂ (n))).

(4.3)

In view of the continuous differentiability of Z(·), the mean value theorem and
Proposition 4.1, the left-hand side of (4.3) converges in distribution as n → ∞
if and only if

√
n(τ̂ (n) − τ) converges in distribution as n → ∞, and the two

limits differ by a factor of Z′(τ ) �= 0 (cf. (1.12)). Concurrently, the first line on
the right-hand side of (4.3) tends to

∑k
j=1 JJxj

;f1,...,fk
(�(τ ))

∫
R

f ′
j (x)G(τ, x)dx

in distribution as n → ∞ by Proposition 4.1 and Theorem 1.4.
To obtain Theorem 1.5, it now suffices to verify that the second line on the

right-hand side of (4.3) converges to 0 in probability as n → ∞. As a result of
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(3.1), written in terms of I
(n)
1 (·), I

(n)
2 (·) from (3.2), (3.3), the desired convergence

follows from √
n
(
Z(n)(τ ) − Z(τ)

)− √
n
(
Z(n)(τ̂ (n))− Z

(
τ̂ (n)))

= I
(n)
1 (τ )∇J

(
I

(n)
2 (τ )

)− I
(n)
1

(
τ̂ (n))∇J

(
I

(n)
2

(
τ̂ (n)))

= I
(n)
1 (τ )

(∇J
(
I

(n)
2 (τ )

)− ∇J
(
I

(n)
2

(
τ̂ (n))))

+ (
I

(n)
1 (τ ) − I

(n)
1

(
τ̂ (n)))∇J

(
I

(n)
2

(
τ̂ (n))),

(3.5), (3.21) and the next two lemmas.

LEMMA 4.2. In the setting of Theorem 1.5,

(4.4) ∇J
(
I

(n)
2

(
τ̂ (n))) n→∞−→ ∇J

(〈
f1, �(τ )

〉
, . . . ,

〈
fk, �(τ )

〉)
in probability.

LEMMA 4.3. In the setting of Theorem 1.5, I
(n)
1 (τ ) − I

(n)
1 (τ̂ (n))

n→∞−→ 0 in
probability.

We complete the proof of Theorem 1.5 by establishing Proposition 4.1,
Lemma 4.2 and Lemma 4.3.

PROOF OF PROPOSITION 4.1. Our proof of the proposition relies on the fol-
lowing lemma that extends the convergence result of Proposition 1.2 to test func-
tions in E0.

LEMMA 4.4. Let Assumption 1.1 be satisfied. Then, for all f0 ∈ E0, T ≥ 0 and
ε > 0,

(4.5) lim
n→∞P

(
sup

t∈[0,T ]
∣∣〈f0, �

(n)(t)
〉− 〈

f0, �(t)
〉∣∣> ε

)
= 0.

PROOF. Recalling the auxiliary functions hM , M > 0 and ĥM , M > 0 from
the beginning of Section 3, we know from Proposition 1.2 that, for any M > 0 and
ε > 0,

(4.6) lim
n→∞P

(
sup

t∈[0,T ]
∣∣〈f0hM,�(n)(t)

〉− 〈
f0hM,�(t)

〉∣∣> ε
)

= 0.

Therefore, it is enough to check that

(4.7)

lim sup
M→∞

lim sup
n→∞

P

(
sup

t∈[0,T ]
∣∣〈f0ĥM,�(n)(t)

〉∣∣> ε
)

= 0,

lim sup
M→∞

sup
t∈[0,T ]

∣∣〈f0ĥM,�(t)
〉∣∣= 0.
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For the first assertion in (4.7), we use the definition of �(n)(t), the observation

X
(n)
1 (·) d= X

(n)
2 (·) d= · · · d= X

(n)
n (·), the estimate |f0(x)ĥM(x)| ≤ CeC|x|1{|x|>M},

x ∈ R and the Cauchy–Schwarz inequality to deduce that

E

[
sup

t∈[0,T ]
∣∣〈f0ĥM,�(n)(t)

〉∣∣]

= E

[
sup

t∈[0,T ]

∣∣∣∣∣1n
n∑

i=1

f0
(
X

(n)
i (t)

)
ĥM

(
X

(n)
i (t)

)∣∣∣∣∣
]

≤ E

[
sup

t∈[0,T ]
∣∣f0

(
X

(n)
1 (t)

)
ĥM

(
X

(n)
1 (t)

)∣∣]
≤ CE

[
sup

t∈[0,T ]
(
eC|X(n)

1 (t)|1{|X(n)
1 (t)|>M}

)]
≤ CE

[
sup

t∈[0,T ]
e2C|X(n)

1 (t)|]1/2
E

[
sup

t∈[0,T ]
1{|X(n)

1 (t)|>M}
]1/2

.

(4.8)

Since supt∈[0,T ] 1{|X(n)
1 (t)|>M} = 1{supt∈[0,T ] |X(n)

1 (t)|>M}, the first assertion in (4.7)

now follows from Markov’s inequality and the estimates (2.8), (2.7).

For the second assertion in (4.7), we recall that X
(n)

1 (t)
d= �(t), t ≥ 0, allowing

us to bound supt∈[0,T ] |〈f0ĥM,�(t)〉| by

E

[
sup

t∈[0,T ]
∣∣f0

(
X

(n)

1 (t)
)
ĥM

(
X

(n)

1 (t)
)∣∣]

≤ CE

[
sup

t∈[0,T ]
e2C|X(n)

1 (t)|]1/2
P

(
sup

t∈[0,T ]
∣∣X(n)

1 (t)
∣∣> M

)1/2
(4.9)

via the procedure in the last paragraph. The estimates (2.8), (2.7) yield the result.
�

Back to the proof of Proposition 4.1, given Lemma 4.4, the uniform continuity
of the function J on compact neighborhoods of the set{(〈

f1, �(t)
〉
, . . . ,

〈
fk, �(t)

〉) : t ∈ [0, τ + 1]}⊂ R
k

implies

(4.10) lim
n→∞P

(
sup

t∈[0,τ+1]
∣∣Z(n)(t) − Z(t)

∣∣> ε
)

= 0, ε > 0.

Since Z′(τ ) �= 0 (cf. (1.12)) and Z′(·) is continuous, there exist [0,1] � υm ↓ 0
such that Z(τ + υm) > Z(τ) for all m ∈ N if Z′(τ ) > 0, or Z(τ + υm) < Z(τ)

for all m ∈ N if Z′(τ ) < 0. Applying (4.10) with ε := |Z(τ + υm) − Z(τ)|/2 =
|Z(τ + υm) − a|/2 consecutively, we find that

(4.11) lim
n→∞P

(
τ (n) > τ + υm

)= 0
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for all m. At the same time, for all υ > 0, we have by (4.10):

(4.12)

lim
n→∞P

(
τ (n) ≤ τ − υ

)
≤ lim

n→∞P

(
sup

t∈[0,τ−υ]
∣∣Z(n)(t) − Z(t)

∣∣≥ min
t∈[0,τ−υ]

∣∣a − Z(t)
∣∣)= 0.

This completes the proof of Proposition 4.1. �

PROOF OF LEMMA 4.2. In view of the continuity of ∇J , it suffices to show
that

(4.13)
〈
fj , �̃

(n)(τ̂ (n))〉 n→∞−→ 〈
fj , �(τ )

〉
, j = 1,2, . . . , k

in probability. Since �̃(n)(τ̂ (n)) is a convex combination of �(n)(τ̂ (n)) and �(τ̂ (n)),
we may swap �̃(n)(τ̂ (n)) for �(τ̂ (n)) on the left-hand side of (4.13) by Lemma 4.4
with T := τ + 1. Then Proposition 4.1 and the continuity of 〈fj , �(·)〉 give the
lemma. �

PROOF OF LEMMA 4.3. We need to verify that

(4.14)

√
n
〈
fj , �

(n)(τ ) − �(n)(τ̂ (n))〉− √
n
〈
fj , �(τ ) − �

(
τ̂ (n))〉 n→∞−→ 0,

j = 1,2, . . . , k

in probability. For a fixed j ∈ {1,2, . . . , k}, we start by establishing the correspond-
ing convergence under the assumption that fj ∈ C3

c (R) ⊂ E3.
Step 1: convergence (4.14) for fj ∈ C3

c (R). Inserting the definition of �(n)(·)
and applying Itô’s formula, we find for the first term in (4.14):

√
n
〈
fj , �

(n)(τ ) − �(n)(τ̂ (n))〉
= 1√

n

n∑
i=1

(
fj

(
X

(n)
i (τ )

)− fj

(
X

(n)
i

(
τ̂ (n))))

= 1√
n

n∑
i=1

∫ τ

τ̂ (n)
b
(
F�(n)(t)

(
X

(n)
i (t)

))
f ′

j

(
X

(n)
i (t)

)

+ σ(F�(n)(t)(X
(n)
i (t)))2

2
f ′′

j

(
X

(n)
i (t)

)
dt

+ 1√
n

n∑
i=1

∫ τ

τ̂ (n)
σ
(
F�(n)(t)

(
X

(n)
i (t)

))
f ′

j

(
X

(n)
i (t)

)
dB

(n)
i (t).

(4.15)
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To simplify the second line in (4.15), we introduce the discrete antiderivatives

(4.16)

(Inb)(r) := 1

n

n∑
i=1

b(i/n)1{r≥i/n},

(
In

σ 2

2

)
(r) := 1

n

n∑
i=1

σ(i/n)2

2
1{r≥i/n}, r ∈ [0,1].

Since the order statistics X
(n)
(1) (t) ≤ X

(n)
(2) (t) ≤ · · · ≤ X

(n)
(n)(t) are almost surely dis-

tinct for Lebesgue almost every t ≥ 0 by [23], theorem on page 439, for the func-
tion x 
→∑

1≤i1<i2≤n 1{xi1=xi2 }, we can now use summation by parts, the piecewise

constant nature of (Inb)(F�(n)(t)(·)), and the convention X
(n)
(n+1)(t) = ∞ to com-

pute

1

n

n∑
i=1

b
(
F�(n)(t)

(
X

(n)
i (t)

))
f ′

j

(
X

(n)
i (t)

)

= 1

n

n∑
i=1

b(i/n)f ′
j

(
X

(n)
(i) (t)

)

=
n∑

i=1

(
(Inb)(i/n) − (Inb)

(
(i − 1)/n

))
f ′

j

(
X

(n)
(i) (t)

)

=
n∑

i=1

(Inb)(i/n)
(
f ′

j

(
X

(n)
(i) (t)

)− f ′
j

(
X

(n)
(i+1)(t)

))
= −

∫
R

(Inb)
(
F�(n)(t)(x)

)
f ′′

j (x)dx.

(4.17)

Similarly, we see that

1

n

n∑
i=1

σ(F�(n)(t)(X
(n)
i (t)))2

2
f ′′

j

(
X

(n)
i (t)

)

= −
∫
R

(
In

σ 2

2

)(
F�(n)(t)(x)

)
f ′′′

j (x)dx.

(4.18)

Consequently, we arrive at√
n
〈
fj , �

(n)(τ ) − �(n)(τ̂ (n))〉
= −√

n

∫ τ

τ̂ (n)

∫
R

(Inb)
(
F�(n)(t)(x)

)
f ′′

j (x)

+
(
In

σ 2

2

)(
F�(n)(t)(x)

)
f ′′′

j (x)dx dt

+ N(n)(τ ) − N(n)(τ̂ (n)),
(4.19)
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where

(4.20) N(n)(t) := 1√
n

n∑
i=1

∫ t

0
σ
(
F�(n)(s)

(
X

(n)
i (s)

))
f ′

j

(
X

(n)
i (s)

)
dB

(n)
i (s), t ≥ 0.

On the other hand, integration by parts and the notion of a generalized solution
for the PDE (1.5) (see [14], Definition 3) imply that

√
n
〈
fj , �(τ ) − �

(
τ̂ (n))〉= −√

n

∫ τ

τ̂ (n)

∫
R

B
(
R(t, x)

)
f ′′

j (x)

+ �
(
R(t, x)

)
f ′′′

j (x)dx dt,

(4.21)

which can be combined with (4.19) to

√
n
〈
fj , �

(n)(τ ) − �(n)(τ̂ (n))〉− √
n
〈
fj , �(τ ) − �

(
τ̂ (n))〉

= −√
n

∫ τ

τ̂ (n)

∫
R

(
(Inb)

(
F�(n)(t)(x)

)− B
(
R(t, x)

))
f ′′

j (x)

+
((

In

σ 2

2

)(
F�(n)(t)(x)

)− �
(
R(t, x)

))
f ′′′

j (x)dx dt

+ N(n)(τ ) − N(n)(τ̂ (n)).
(4.22)

To prove that the right-hand side of (4.22) converges to 0 in probability we note
that the Lipschitz property of b, σ 2

2 (cf. Assumption 1.1(b)) yields

lim
n→∞

√
n sup

r∈[0,1]
∣∣(Inb)(r) − B(r)

∣∣
= lim

n→∞
√

n sup
r∈[0,1]

∣∣∣∣(In

σ 2

2

)
(r) − �(r)

∣∣∣∣= 0.

(4.23)

Since, in addition, B , � are Lipschitz (cf. Assumption 1.1(b)) and f ′′
j , f ′′′

j are
bounded, it suffices to obtain the limits in probability

lim
n→∞

√
n

∫ τ

τ̂ (n)

∫
R

∣∣F�(n)(t)(x) − R(t, x)
∣∣dx dt = 0 and

lim
n→∞

(
N(n)(τ ) − N(n)(τ̂ (n)))= 0.

(4.24)

For the first convergence in (4.24), we recall the representation of the W1-
distance in (2.9) and apply the triangle inequality for the latter together with
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Markov’s inequality and Fubini’s theorem to find, for all ε, ε′ > 0,

P

(∣∣∣∣√n

∫ τ

τ̂ (n)
W1

(
�(n)(t), �(t)

)
dt

∣∣∣∣> ε

)

≤ P
(∣∣τ̂ (n) − τ

∣∣> ε′)+ P

(√
n

∫ τ+ε′

τ−ε′
W1

(
�(n)(t), �(t)

)
dt > ε

)

≤ P
(∣∣τ̂ (n) − τ

∣∣> ε′)+
√

n

ε

∫ τ+ε′

τ−ε′
E
[
W1

(
�(n)(t), �(n)(t)

)]
+E

[
W1

(
�(n)(t), �(t)

)]
dt.

(4.25)

In view of Propositions 4.1, 2.1 and 2.3, this estimate tends to 0 for all ε > 0 when
we take n → ∞ and then ε′ ↓ 0.

For the second convergence in (4.24), we compute the quadratic variation pro-
cess

(4.26)
[
N(n)](t) =

∫ t

0

1

n

n∑
i=1

σ
(
F�(n)(s)

(
X

(n)
i (s)

))2
f ′

j

(
X

(n)
i (s)

)2 ds, t ≥ 0,

bound the resulting integrand by a constant C < ∞, and use the martingale rep-
resentation theorem (see, e.g., [21], Chapter 3, Theorem 4.6 and Problem 4.7) to
conclude

(4.27) P
(∣∣N(τ)−N

(
τ̂ (n))∣∣> ε

)≤ P
(∣∣τ̂ (n) − τ

∣∣> ε′)+P

(
sup

t∈[0,Cε′]
∣∣B(1)

1 (t)
∣∣> ε

)
.

Thanks to Proposition 4.1, it is now enough to send n → ∞ followed by ε′ ↓ 0.
Step 2: convergence (4.14) for general fj ∈ E3. With the functions hM , M > 0

and ĥM , M > 0 introduced at the beginning of Section 3, we decompose the left-
hand side of (4.14) into

√
n
〈
fjhM,�(n)(τ ) − �(n)(τ̂ (n))〉− √

n
〈
fjhM,�(τ) − �

(
τ̂ (n))〉

+ √
n
〈
fj ĥM,�(n)(τ ) − �(n)(τ̂ (n))〉− √

n
〈
fj ĥM,�(τ) − �

(
τ̂ (n))〉.(4.28)

The first line in (4.28) converges to 0 in probability as n → ∞ by Step 1, so we
focus on the second line in (4.28). To move from �(n)(·) to �(n)(·) therein, we will
prove that, for all ε > 0,

lim sup
M→∞

lim sup
n→∞

P
(∣∣√n

〈
fj ĥM,�(n)(τ ) − �(n)(τ̂ (n))

− �(n)(τ ) + �(n)(τ̂ (n))〉∣∣> ε
)= 0.

(4.29)
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We recall that τ̂ (n) ∈ [0, τ + 1], insert the definitions of �(n), �(n) and exploit
Markov’s inequality to bound the probability in (4.29) by

2
√

n

ε
E

[
sup

t∈[0,τ+1]

∣∣∣∣∣1n
n∑

i=1

(
(fj ĥM)

(
X

(n)
i (t)

)− (fj ĥM)
(
X

(n)

i (t)
))∣∣∣∣∣
]

≤ 2
√

n

ε
E

[
sup

t∈[0,τ+1]
∣∣(fj ĥM)

(
X

(n)
1 (t)

)− (fj ĥM)
(
X

(n)

1 (t)
)∣∣],

(4.30)

where we have used (X
(n)
1 (·),X(n)

1 (·)) d= (X
(n)
2 (·),X(n)

2 (·)) d= · · · d= (X
(n)
n (·),

X
(n)

n (·)). Due to the mean value theorem for fj ĥM , the inequality |(fj ĥM)′(x)| ≤
CeC|x|1{|x|>M}, x ∈ R, the convexity of the absolute value function and Hölder’s
inequality the right-hand side of (4.30) is less or equal to

2
√

n

ε
E

[
sup

t∈[0,τ+1]
∣∣X(n)

1 (t) − X
(n)

1 (t)
∣∣3]1/3

·
(
CE

[
sup

t∈[0,τ+1]
e3C|X(n)

1 (t)|]1/3
P

(
sup

t∈[0,τ+1]
∣∣X(n)

1 (t)
∣∣> M

)1/3

+ CE

[
sup

t∈[0,τ+1]
e3C|X(n)

1 (t)|]1/3
P

(
sup

t∈[0,τ+1]
∣∣X(n)

1 (t)
∣∣> M

)1/3)
.

(4.31)

At this point, (4.29) becomes a consequence of the inequality (2.2) with p = 3 and
the estimates (2.8), (2.7).

With At := b(R(t, ·)) d
dx

+ σ(R(t,·))2

2
d2

dx2 , t ≥ 0, we may now replace �(n)(·) by

�(n)(·) in the second line of (4.28) and deduce by means of Itô’s formula that
√

n
〈
fj ĥM,�(n)(τ ) − �(n)(τ̂ (n))〉

= 1√
n

n∑
i=1

(
(fj ĥM)

(
X

(n)

i (τ )
)− (fj ĥM)

(
X

(n)

i

(
τ̂ (n))))

= 1√
n

n∑
i=1

∫ τ

τ̂ (n)

(
At (fj ĥM)

)(
X

(n)

i (t)
)

dt + N
(n)

(τ ) − N
(n)(

τ̂ (n)),
(4.32)

where

N
(n)

(t) := 1√
n

n∑
i=1

∫ t

0
σ
(
R
(
s,X

(n)

i (s)
))

(fj ĥM)′
(
X

(n)

i (s)
)

dB
(n)
i (s),

t ≥ 0.

(4.33)

Next, we take the expectation in Itô’s formula for (fj ĥM)(X
(1)

1 (τ )) − (fj ĥM) ×
(X

(1)

1 (t)), t ≥ 0 relying on X
(1)

1 (t)
d= �(t), t ≥ 0 and employ Fubini’s theorem
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(note fj ĥM ∈ E2 and the estimate (2.8)), followed by an evaluation at t = τ̂ (n) to
get

(4.34)
〈
fj ĥM,�(τ) − �

(
τ̂ (n))〉= ∫ τ

τ̂ (n)
E
[(
At (fj ĥM)

)(
X

(1)

1 (t)
)]

dt.

We proceed using the union bound, Markov’s inequality and τ̂ (n) ∈ [0, τ + 1]:
P
(∣∣√n

〈
fj ĥM,�(n)(τ ) − �(n)(τ̂ (n))〉− √

n
〈
fj ĥM,�(τ) − �

(
τ̂ (n))〉∣∣> ε

)
≤ 2

ε
E

[∫ τ+1

0

∣∣∣∣∣ 1√
n

n∑
i=1

((
At (fj ĥM)

)(
X

(n)

i (t)
)

−E
[(
At (fj ĥM)

)(
X

(n)

i (t)
)])∣∣∣∣∣dt

]

+ P
(∣∣N(n)

(τ ) − N
(n)(

τ̂ (n))∣∣> ε/2
)

≤ 2

ε

∫ τ+1

0
SD

((
At (fj ĥM)

)(
X

(1)

1 (t)
))

dt

+ P
(∣∣N(n)

(τ ) − N
(n)(

τ̂ (n))∣∣> ε/2
)
,

(4.35)

where we have applied Fubini’s theorem, Jensen’s inequality and the independence

of X
(n)

1 (t)
d= X

(n)

2 (t)
d= · · · d= X

(n)

n (t)
d= �(t) and have written SD for the standard

deviation operator. Since the standard deviation of a random variable does not
exceed its L2-norm, the boundedness of b, σ (cf. Assumption 1.1(b)), fj ∈ E2 and
the properties of ĥM imply an estimate of the form

(4.36) SD
((
At (fj ĥM)

)(
X

(1)

1 (t)
))≤ E

[
CeC|X(1)

1 (t)|1{|X(1)
1 (t)|>M}

]1/2
.

Moreover, its right-hand side tends to 0 as M → ∞ uniformly in t ∈ [0, τ ] by the
Cauchy–Schwarz inequality and the estimates (2.8), (2.7).

To complete the proof, we need to analyze the last probability in (4.35). For this
purpose, we compute

(4.37)
[
N

(n)]
(t) = 1

n

n∑
i=1

∫ t

0
σ
(
R
(
s,X

(n)

i (s)
))2

(fj ĥM)′
(
X

(n)

i (s)
)2 ds, t ≥ 0.

Thus, the martingale representation theorem (see, e.g., [21], Chapter 3, Theo-
rem 4.6 and Problem 4.7) and the union bound give, for all ε′ > 0,

P
(∣∣N(n)

(τ ) − N
(n)(

τ̂ (n))∣∣> ε/2
)

≤ P
(∣∣[N(n)]

(τ ) − [
N

(n)](
τ̂ (n))∣∣> ε′)+ P

(
sup

t∈[0,ε′]
∣∣B(1)

1 (t)
∣∣> ε/2

)
.

(4.38)
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Due to τ̂ (n) ∈ [0, τ + 1], Markov’s inequality, X
(n)

1 (·) d= X
(n)

2 (·) d= · · · d= X
(n)

n (·) d=
X

(1)

1 (·), Fubini’s theorem, the boundedness of σ (cf. Assumption 1.1(b)), fj ∈ E1
and the properties of ĥM we have an estimate of the type

P
(∣∣[N(n)]

(τ ) − [
N

(n)](
τ̂ (n))∣∣> ε′)

≤ 1

ε′
∫ τ+1

0
E
[
CeC|X(1)

1 (t)|1{|X(1)
1 (t)|>M}

]
dt.

(4.39)

The latter converges to 0 as M → ∞ thanks to the Cauchy–Schwarz inequality
and the estimates (2.8), (2.7). It remains to observe that the second probability on
the right-hand side of (4.38) vanishes as ε′ ↓ 0. �

5. Applications in stochastic portfolio theory.

5.1. Dynamics of the market diversity. Consider a stock market with n com-
panies, as described by the market weight processes μ1(·),μ2(·), . . . ,μn(·), that
is, the fractions of the total market capital invested in the different companies at
any given time. In this context, a concept that has attracted much interest, both for
scientific reasons and its importance in investment decisions, is the market diver-
sity. Informally speaking, a market is thought of as diverse when one can be certain
that no single company will end up with the vast majority of the market capital. In
[10], Fernholz has proposed to formalize the notion of diversity as follows.

DEFINITION 5.1 ([10], Definition 2.2.1). A market is called diverse if for
some ε > 0 it holds max1≤i≤n μi(t) ≤ 1 − ε for all t ≥ 0 almost surely. A mar-
ket is referred to as weakly diverse on a finite time interval [0, T ] if for some ε > 0
one has

(5.1)
1

T

∫ T

0
max

1≤i≤n
μi(t)dt ≤ 1 − ε

almost surely.

Subsequently, it is noticed in [10] that the vector of the market weight processes
μ(·) := (μ1(·),μ2(·), . . . ,μn(·)) takes values in the closed unit simplex

(5.2) �
n :=

{
x ∈ [0,1]n :

n∑
i=1

xi = 1

}
,

whereas the diversity condition max1≤i≤n μi(t) ≤ 1 − ε is violated when μ(·)
enters the corresponding open neighborhoods of the vertices of �

n
. Hence, it is

natural to use a symmetric concave function on �
n
, which necessarily attains its

minimum at the vertices, to quantify the diversity of a market (or the lack thereof).
The main examples of such functions discussed in [10] are:
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(i) the entropy function H(t) = −∑n
i=1 μi(t) logμi(t), t ≥ 0,

(ii) the 
p-norms Dp(t) = (
∑n

i=1 μi(t)
p)1/p , t ≥ 0 for p ∈ (0,1),

(iii) and the geometric mean S(t) = (
∏n

i=1 μi(t))
1/n, t ≥ 0.

In particular, the entropy function and the 
p-norms for p ∈ (0,1) can be employed
to test if a market is diverse in the sense of Definition 5.1 (cf. [10], Proposition
2.3.2).

PROPOSITION 5.2. A market is diverse if and only if for some ε′ > 0 it holds
H(t) ≥ ε′ for all t ≥ 0 almost surely or, equivalently, for some p ∈ (0,1) and
ε′′ > 0 one has Dp(t) ≥ 1 + ε′′ for all t ≥ 0 almost surely.

Our Theorem 1.4 can be utilized to capture the dynamics of the entropy H(·),
the 
p-norms Dp(·), p ∈ (0,1) and the geometric mean S(·) in rank-based models
with a large number n of companies. In that setting, the market weight processes
are defined in terms of the solution to (1.3) by

(5.3) μi(·) = eX
(n)
i (·)

eX
(n)
1 (·) + eX

(n)
2 (·) + · · · + eX

(n)
n (·)

, i = 1,2, . . . , n

and give rise to the associated entropy, 
p-norm and geometric mean processes via
the items (i), (ii), (iii) above.

COROLLARY 5.3. Under Assumption 1.1, the following convergences hold in
the finite-dimensional distribution sense:

(a) for the entropy process H(·),
√

n

(
H(·) − logn − log

〈
ex, �(·)〉+ 〈xex, �(·)〉

〈ex, �(·)〉
)

n→∞−→ −
(

1

〈ex, �(·)〉 + 〈xex, �(·)〉
〈ex, �(·)〉2

)∫
R

exG(·, x)dx

− 1

〈ex, �(·)〉
∫
R

(
ex + xex)G(·, x)dx,

(5.4)

(b) for an 
p-norm process Dp(·) with p ∈ (0,1),

√
n

(
n

p−1
p Dp(·) − 〈epx, �(·)〉1/p

〈ex, �(·)〉
)

n→∞−→ −〈epx, �(·)〉1/p−1

〈ex, �(·)〉
∫
R

epxG(·, x)dx

+ 〈epx, �(·)〉1/p

〈ex, �(·)〉2

∫
R

exG(·, x)dx,

(5.5)
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(c) for the the geometric mean process S(·),
√

n

(
nS(·) − e〈x,�(·)〉

〈ex, �(·)〉
)

n→∞−→ − e〈x,�(·)〉

〈ex, �(·)〉
∫
R

G(·, x)dx

(5.6)

+ e〈x,�(·)〉

〈ex, �(·)〉2

∫
R

exG(·, x)dx.

PROOF. The corollary is a direct consequence of Theorem 1.4. For the sake of
completeness, we write out the functions J , f1, . . . , fk in each of the three cases.

(a) For the normalized entropy process H(·) − logn, take

(5.7)
J : (0,∞) ×R →R, (x1, x2) 
→ logx1 − x2

x1
,

f1(x) = ex, f2(x) = xex.

(b) For every normalized 
p-norm process n
p−1
p Dp(·), define

(5.8)
J : (0,∞) × (0,∞) →R, (x1, x2) 
→ x

1/p
1

x2
,

f1(x) = epx, f2(x) = ex.

(c) For the normalized geometric mean process nS(·), pick

(5.9)
J : R× (0,∞) →R, (x1, x2) 
→ ex1

x2
,

f1(x) = x, f2(x) = ex.

It is elementary to check the assumptions of Theorem 1.4 for all of these functions.
�

5.2. Hitting times of the market diversity. In this subsection, we specialize
Theorem 1.5 to the measures of diversity from Section 5.1. To this end, we denote
by H ∗(·), D∗

p(·), p ∈ (0,1) and S∗(·) the limiting entropy, 
p-norms and geometric
mean processes, respectively,

(5.10)

H ∗(·) = log
〈
ex, �(·)〉− 〈xex, �(·)〉

〈ex, �(·)〉 ,

D∗
p(·) = 〈epx, �(·)〉1/p

〈ex, �(·)〉 , p ∈ (0,1),

S∗(t) = e〈x,�(·)〉

〈ex, �(·)〉 .
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The functions J , f1, . . . , fk in the three cases, given explicitly in (5.7), (5.8) and
(5.9), respectively, satisfy the assumptions in Theorem 1.5, so that one only needs
to verify the statements in (1.12) for the coefficients b, σ and levels a of interest.
The next proposition provides the dynamics of H ∗(·), D∗

p(·), p ∈ (0,1) and S∗(·),
thus, yielding a sufficient condition on b, σ and a for Theorem 1.5 to apply.

PROPOSITION 5.4. Under Assumption 1.1, consider

(5.11) �p(·) := epx�(·)
〈epx, �(·)〉 ∈ C

([0,∞),M1(R)
)
, p ∈ [0,1).

Then one has for the processes H ∗(·), D∗
p(·), p ∈ (0,1) and S∗(·) of (5.10):

dH ∗(t)
dt

= −1

2

〈
σ
(
R(t, ·))2, �1(t)

〉
(5.12)

− cov�1(t)

(
x, b

(
R(t, ·))+ σ(R(t, ·))2

2

)
,

dD∗
p(t)

dt
= D∗

p(t)

(〈
b
(
R(t, ·))+ pσ(R(t, ·))2

2
, �p(t)

〉
(5.13)

−
〈
b
(
R(t, ·))+ σ(R(t, ·))2

2
, �1(t)

〉)
,

dS∗(t)
dt

= S∗(t)
(〈

b
(
R(t, ·)), �(t)

〉
(5.14)

−
〈
b
(
R(t, ·))+ σ(R(t, ·))2

2
, �1(t)

〉)
.

In particular, whenever b + σ 2

2 is an increasing function and a ∈ (−∞,H ∗(0)],
a ∈ (0,D∗

p(0)], p ∈ (0,1) or a ∈ (0, S∗(0)], the assertions in (1.12) hold, and
hence, also the conclusion of Theorem 1.5 for the resulting hitting times of the

normalized processes H(·) − logn, n
p−1
p Dp(·), p ∈ (0,1) or nS(·).

REMARK 5.5. More specifically, whenever b + σ 2

2 is an increasing function
and a ∈ (−∞,H ∗(0)], a ∈ (0,D∗

p(0)], p ∈ (0,1) or a ∈ (0, S∗(0)], the conclusion
of Theorem 1.5 reads as follows (recall (5.7), (5.8), (5.9)):

dH ∗(τH )

dt
· √n

(
τ

(n)
H − τH

)
n→∞−→

(
1

〈ex, �(τH )〉 + 〈xex, �(τH )〉
〈ex, �(τH )〉2

)∫
R

exG(τH , x)dx

− 1

〈ex, �(τH )〉
∫
R

ex(x + 1)G(τH , x)dx,
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dD∗
p(τD)

dt
· √n

(
τ

(n)
D − τD

)
n→∞−→ 〈epx, �(τD)〉1/p−1

〈ex, �(τD)〉
∫
R

epxG(τD, x)dx

− 〈epx, �(τD)〉1/p

〈ex, �(τD)〉2

∫
R

exG(τD, x)dx,

dS∗(τS)

dt
· √n

(
τ

(n)
S − τS

)
n→∞−→ e〈x,�(τS)〉

〈ex, �(τS)〉
∫
R

G(τS, x)dx

− e〈x,�(τS)〉

〈ex, �(τS)〉2

∫
R

exG(τS, x)dx,

where dH ∗(τH )
dt

,
dD∗

p(τH )

dt
, dS∗(τH )

dt
are given by (5.13), (5.14), (5.15), while τ

(n)
H , τH ,

τ
(n)
D , τD , τ

(n)
S , τS are the hitting times of H(·) − logn, H ∗(·), n

p−1
p Dp(·), D∗

p(·),
nS(·), S∗(·), respectively.

REMARK 5.6. It is worth mentioning that the process of push-forwards of
�p(t), t ≥ 0 under R(t, ·), t ≥ 0, respectively, has appeared previously in [19]
under the name “asymptotic weighted capital measure.” Therein, it plays a cru-
cial role in the analysis of the long-term behavior of the capital distribution in

large rank-based models. Remarkably, a monotonicity assumption on b + σ 2

2 , as
in Proposition 5.4, also appears in [19]. In [19], Corollary 1, it is shown to imply
the monotonicity in p of the limiting (as n → ∞) long-term growth rate of the
portfolio generated by Dp(·). As our proof of Proposition 5.4 below reveals, the

assumption of an increasing b + σ 2

2 ensures that the limiting market diversity, as
measured by H ∗(·), D∗

p(·), p ∈ (0,1) or S∗(·), is decreasing in time, sometimes a
desirable modeling assumption.

We prepare the following continuous version of Chebyshev’s sum inequality for
the proof of Proposition 5.4.

LEMMA 5.7. For all ν ∈ M1(R) and increasing functions f , g on R inte-
grable with respect to ν,

(5.15) 〈fg, ν〉 ≥ 〈f, ν〉〈g, ν〉.

PROOF. Since g is increasing, there exists an x0 ∈ R such that g(x) ≤ 〈g, ν〉 if
x < x0 and g(x) ≥ 〈g, ν〉 if x > x0. By distinguishing between x < x0 and x ≥ x0
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and using that f is increasing, we deduce

(5.16) f (x)
(
g(x) − 〈g, ν〉)≥ f (x0)

(
g(x) − 〈g, ν〉), x ∈ R.

Integrating both sides with respect to ν and rearranging we arrive at (5.15). �

We are now ready to present the proof of Proposition 5.4.

PROOF OF PROPOSITION 5.4. We recall the notation At = b(R(t, ·)) d
dx

+
σ(R(t,·))2

2
d2

dx2 , t ≥ 0 and that, for any f ∈ E2,

(5.17)
〈
f,�(t)

〉− 〈
f,�(0)

〉= ∫ t

0

〈
Asf, �(s)

〉
ds, t ≥ 0

(cf. (4.34)). Due to the boundedness of b, σ (cf. Assumption 1.1(b)) and f ∈ E2
the dominated convergence theorem implies that the function s 
→ 〈Asf, �(s)〉 is
continuous on [0,∞), and thus,

(5.18)
d〈f,�(t)〉

dt
= 〈

At f, �(t)
〉
, t ≥ 0.

Therefore, in the setting of Theorem 1.5,

(5.19)
dJJ ;f1,...,fk

(�(t))

dt
=

k∑
j=1

JJxj
;f1,...,fk

(
�(t)

)〈
At fj , �(t)

〉
, t ≥ 0.

To obtain the differential equations (5.13), (5.14) and (5.15) it suffices to insert
into (5.19) the formulas from (5.7), (5.8) and (5.9), respectively, and to simplify
the result.

Supposing, in addition, that b+ σ 2

2 is increasing we can first employ Lemma 5.7

with ν = �1(t), f (x) = x and g(x) = b(R(t, x)) + σ(R(t,x))2

2 to find

(5.20) cov�1(t)

(
x, b

(
R(t, ·))+ σ(R(t, ·))2

2

)
≥ 0, t ≥ 0.

Consequently, we read off from (5.13) that

(5.21)
dH ∗(t)

dt
≤ −1

2
min

r∈[0,1]σ(r)2, t ≥ 0,

so (1.12) must hold for all a ∈ (−∞,H ∗(0)], and the conclusion of Theorem 1.5
applies to the hitting times of such a by H(·) − logn.

Now, we take ν = �p(t), f (x) = b(R(t, x)) + σ(R(t,x))2

2 and g(x) = e(1−p)x ,
with p ∈ [0,1), in Lemma 5.7 to get

(5.22)

〈
b
(
R(t, ·))+ σ(R(t, ·))2

2
, �1(t)

〉

≥
〈
b
(
R(t, ·))+ σ(R(t, ·))2

2
, �p(t)

〉
, t ≥ 0.
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The values of p ∈ (0,1) and p = 0 reveal

(5.23)

d logD∗
p(·)

dt
≤ −1 − p

2
min

r∈[0,1]σ(r)2, p ∈ (0,1) and

d logS∗(·)
dt

≤ −1

2
min

r∈[0,1]σ(r)2,

respectively, yielding the remaining assertions. �

REMARK 5.8. A verification of the conditions in (1.12) beyond the setup in
Proposition 5.4 seems to require information on �(·) or, equivalently, R that needs
to be deduced on a case-by-case basis. This is possible, for example, when (1.3) is
of the special form

(5.24) dX
(n)
i (t) = (

2C1F�(n)(t)

(
X

(n)
i (t)

)+C2
)

dt + σ dB
(n)
i (t), i = 1,2, . . . , n

for some C1 �= 0, C2 ∈ R and σ > 0. Indeed, then the Cauchy problem for the
porous medium equation (1.5) reduces to the one for the generalized Burgers equa-
tion

(5.25) Rt = −(C1R
2 + C2R

)
x + σ 2

2
Rxx, R(0, ·) = Fλ(·).

The solution of the latter is provided by the Cole–Hopf transformation R =
−2C1

σ 2 (logϕ)x , where ϕ is the solution of the Cauchy problem for the heat equation

(5.26) ϕt = −C2ϕx + σ 2

2
ϕxx, ϕ(0, x) = e

− σ2
2C1

∫ x
0 Fλ(y)dy

.

For any fixed λ ∈ M1(R) (perhaps retrieved from the observed market capitaliza-
tions), ϕ is given explicitly by a convolution with the heat kernel, and one can
check if the conditions in (1.12) are valid for the resulting �(·) = Rx(·, x)dx.

5.3. Performance of functionally generated portfolios. This last subsection is
devoted to a discussion of the performance of multiplicatively and additively gen-
erated portfolios π�̃;× and π�̃;+, as defined in the Introduction. We focus initially
on their associated nondecreasing excess growth processes

(5.27)

−1

2

n∑
i,j=1

∫ t

0

�̃xixj
(μ(·))

�̃(μ(·)) d[μi,μj ](·), t ≥ 0 and

−1

2

n∑
i,j=1

∫ t

0
�̃xixj

(
μ(·))d[μi,μj ](·), t ≥ 0

which enter the value processes V �̃;×(·) and V �̃;+(·) relative to that of the market
portfolio μ(·) according to (1.16) and (1.17), respectively. Under the assumptions
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in (1.21), as well as (1.22) or (1.26), respectively, the former obey the concentra-
tion of measure estimate from [16], Corollary 8 (note the symmetry of �̃ due to
(1.20), (1.18); the strong law of large numbers for the process μ(·) in [2], equation
(4.5); and that the derivation of [16], Corollary 8, for multiplicatively generated
portfolios carries over mutatis mutandis to the case of additive generation).

PROPOSITION 5.9. Suppose the assumptions in (1.21), as well as (1.22) or
(1.26) are satisfied for some n ∈ N. Then, for all r, t, ε > 0 and in the notation of
Corollary 1.8, Remark 1.10,

(5.28)

P

(
− 1

2t

n∑
i,j=1

∫ t

0

�̃xixj
(μ(·))

�̃(μ(·)) d[μi,μj ](·) ≤ r× − r

)

≤
∥∥∥∥dκ(n)

dζ (n)

∥∥∥∥
L2(ζ (n))

e−c×(r,ε)t

or

(5.29)

P

(
− 1

2t

n∑
i,j=1

∫ t

0
�̃xixj

(
μ(·))d[μi,μj ](·) ≤ r+ − r

)

≤
∥∥∥∥dκ(n)

dζ (n)

∥∥∥∥
L2(ζ (n))

e−c+(r,ε)t ,

respectively. Hereby,

c+(r, ε)

:= min1≤j≤n−1(
∑j

i=1 b( i
n
) − j

n

∑n
i=1 b( i

n
))2

2 − 2 cos π
n

· max
(

r2

(C+)2 ,

4ε
(
ε + v+)(√1 + r2

2ε(ε + v+)2 max(|C+,↑|, |C+,↓|)2 − 1
))

,

with C+, C+,↑, C+,↓ and v+ being the overall expression, the essential supre-
mum, the essential infimum and the variance under ζ (n) of the expression inside
the essential supremum in (1.26).

If, in addition, Assumption 1.1 holds, one can combine Proposition 5.9 with
Theorem 1.4 by using the union bound and obtain, for all r, s, t, ε > 0, the perfor-
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mance estimates

P

(
V �̃;×(t) ≤ JJ ;f1,...,fk

(�(t)) − s/
√

n

�̃(μ(0))
e(r×−r)t

)

≤ �(s/χt )
(
1 + on(1)

)+
∥∥∥∥dκ(n)

dζ (n)

∥∥∥∥
L2(ζ (n))

e−c×(r,ε)t

(5.30)

or

P
(
V �̃;+(t) ≤ 1 +JJ ;f1,...,fk

(
�(t)

)− s/
√

n − �̃
(
μ(0)

)+ (
r+ − r

)
t
)

≤ �(s/χt )
(
1 + on(1)

)+
∥∥∥∥ dκ(n)

dζ (n)

∥∥∥∥
L2(ζ (n))

e−c+(r,ε)t ,
(5.31)

respectively, where � is the standard normal tail cumulative distribution function,
χt is the standard deviation of the time t value of the Gaussian process on the right-
hand side of (1.11) and on(1) is a quantity tending to 0 as n → ∞. Complementary
to the performance estimates (5.30), (5.31) for fixed times, Corollary 1.8, which is
proved next, provides a bound on the random time it takes to reach the desired
performance.

PROOF OF COROLLARY 1.8. Our starting point is the observation that

(5.32) P
(
η�̃;× ≥ τ + s/

√
n
)≤ P

(
η�̃;× ≥ τ (n))+ P

(
τ (n) ≥ τ + s/

√
n
)
.

By the definition of η�̃;×, the first of the latter two summands is less or equal to

P

(
V �̃;×(τ (n))≤ a

�̃(μ(0))
e(r×−r)(τ−s/

√
n)

)

= P

(
−1

2

n∑
i,j=1

∫ τ (n)

0

�̃xixj
(μ(·))

�̃(μ(·)) d[μi,μj ](·) ≤ (
r× − r

)
(τ − s/

√
n)

)(5.33)

(recall (1.16) and �̃(μ(τ (n))) = a). Since the excess growth process is nondecreas-
ing, the probability on the right-hand side of (5.33) is at most

P
(
τ (n) ≤ τ − s/

√
n
)

(5.34)

+ P

(
−1

2

n∑
i,j=1

∫ τ−s/
√

n

0

�̃xixj
(μ(·))

�̃(μ(·)) d[μi,μj ](·) ≤ (
r× − r

)
(τ − s/

√
n)

)
.

Using (1.14) for the second summand on the right-hand side of (5.32) and the first
summand in (5.34), then (5.28) for the second summand in (5.34) we get (1.24).

�
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