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EXTINCTION IN LOWER HESSENBERG BRANCHING PROCESSES
WITH COUNTABLY MANY TYPES

BY PETER BRAUNSTEINS∗,1 AND SOPHIE HAUTPHENNE∗,†,2

University of Melbourne∗ and Swiss Federal Institute of Technology Lausanne†

We consider a class of branching processes with countably many types
which we refer to as Lower Hessenberg branching processes. These are mul-
titype Galton–Watson processes with typeset X = {0,1,2, . . .}, in which in-
dividuals of type i may give birth to offspring of type j ≤ i + 1 only. For
this class of processes, we study the set S of fixed points of the progeny gen-
erating function. In particular, we highlight the existence of a continuum of
fixed points whose minimum is the global extinction probability vector q and
whose maximum is the partial extinction probability vector q̃. In the case
where q̃ = 1, we derive a global extinction criterion which holds under sec-
ond moment conditions, and when q̃ < 1 we develop necessary and sufficient
conditions for q = q̃. We also correct a result in the literature on a sequence
of finite extinction probability vectors that converge to the infinite vector q̃.

1. Introduction. Multitype Galton–Watson branching processes (MGWBPs)
describe the evolution of a population of independent individuals who live for a
single generation and, at death, randomly give birth to offspring that may be of
various types. Classical reference books on MGWBPs include Harris [17], Mode
[26], Athreya and Ney [2] and Jagers [20]. MGWBPs have been used to model
populations in several fields, including in molecular biology, ecology, epidemiol-
ogy and evolutionary theory, as well as in particle physics, chemistry and computer
science. Recent books with a special emphasis on applications are Axelrod and
Kimmel [22] and Haccou, Jagers and Vatutin [16]. Branching processes with an
infinite number of types have been used to model the dynamics of escape mutants
[31] and the spread of parasites through a host population [3, 4]; see also [22],
Chapter 7, for other biological applications of infinite-type branching processes.

One of the main quantities of interest in a MGWBP is the probability that the
population eventually becomes empty or extinct. Let the vector Zn = (Zn,�)�∈X
record the number of type-� individuals alive in generation n of a population whose
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members take types that belong to the countable set X . We let

(1.1) qi = P
[

lim
n→∞

∑
�∈X

Zn,� = 0
∣∣∣ ϕ0 = i

]

be the probability of global extinction given that the population begins with a sin-
gle individual of type ϕ0 = i, and we refer to q := (qi)i∈X as the global extinction
probability vector. When the set X contains only finitely many types, many of the
fundamental questions concerning q have been resolved. In particular, it is well
known that (i) q is the minimal nonnegative solution of the fixed-point equation
s = G(s), where G(s) := (Gi(s))i∈X , defined in (2.2), records the probability gen-
erating function associated with the reproduction law of each type, and that (ii) if
the process is irreducible, then the set of fixed-point solutions

(1.2) S = {
s ∈ [0,1]X : s = G(s)

}
contains at most two elements, q and 1. In addition, there is a well-established
extinction criterion, namely q = 1 if and only if the Perron–Frobenius eigenvalue
of the mean progeny matrix (defined in (2.3)) is less than or equal to one.

If we allow X to contain countably infinitely many types, then this complicates
matters considerably. Indeed, even the definition of extinction is no longer unam-
biguous. We let

(1.3) q̃i = P
[

lim
n→∞Zn,� = 0,∀� ∈X

∣∣ ϕ0 = i
]
,

be the probability of partial extinction given that the population begins with a
single individual of type i, and we refer to q̃ = (q̃i)i∈X as the partial extinction
probability vector. While global extinction implies partial extinction, there may be
a positive chance that every type eventually disappears from the population while
the total population size grows without bound; it is then possible that q < q̃ (see
[18], Section 5.1, for an example).

At least partly due to these challenges, the set S is yet to be fully characterised in
the infinite-type setting. There is, however, a number of papers that make progress
towards this goal: Moyal [27] gives general conditions for S to contain at most
a single solution s such that supi∈X si < 1; Spataru [32] gives a stronger results
by stating that S contains at most two elements, q and 1; however, Bertacchi and
Zucca [6, 7] prove the inaccuracy of the latter by providing an irreducible example
where S contains uncountably many elements such that supi∈X si = 1. Both q and
q̃ are elements of the set S. It is well known that q is the minimal element, but as
yet, there has been no attempt to identify the precise location of q̃ . We observe that
due to the existence of irreducible MGWBPs with q < q̃ < 1, the partial extinction
probability vector q̃ may be neither the minimal element of S, which is q , nor the
maximal element of S, which is 1.
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Extending the extinction criterion established in the finite-type case to the
infinite-type setting has also proven difficult. To resolve the problem in the infinite-
type setting, we should give both a partial and a global extinction criterion. A num-
ber of authors have progressed in this direction [6, 10, 17, 18, 27, 32, 33]. In the
infinite-type case, the analogue of the Perron–Frobenius eigenvalue is the conver-
gence norm ν(M) of M defined in (2.4), which gives a partial extinction criterion:
q̃ = 1 if and only if ν(M) ≤ 1; see [33], Theorem 4.1. However, when partial
extinction is almost sure we are still lacking general necessary and sufficient con-
ditions for q = 1. It turns out that there can be no global extinction criterion based
solely upon M , as highlighted through [33], Example 4.4, but as pointed out by
the author, other moment conditions have not been clearly identified. In addition,
when q̃ < 1, following the terminology in [6], the process can exhibit strong local
survival q = q̃ < 1, or nonstrong local survival q < q̃ < 1. It is again challenging
to derive a general criterion separating the two cases.

The main contribution of this paper is to use a unified probabilistic approach to
characterise the set S and to derive a global extinction criterion applicable when
q̃ = 1 for a class of branching processes with countably infinitely many types
called lower Hessenberg branching processes (LHBPs). In these processes, which
have the typeset X = {0,1,2, . . .}, the primary constraint is that type-i individuals
can produce offspring of type no larger than i + 1; as a consequence, their (infi-
nite) mean progeny matrices have a lower Hessenberg form. The probabilistic ap-
proach we employ relies on a single pathwise argument: we reduce the study of the
LHBP to that of a much simpler Galton–Watson process in a varying environment
(GWPVE), embedded in the LHBP. GWPVEs are single-type Galton–Watson pro-
cesses whose offspring distributions vary deterministically with the generation. In
our context, the embedded GWPVE is explosive, in the sense that individuals may
have an infinite number of offspring. In particular, we show the equivalence be-
tween global extinction of the LHBP and extinction of the embedded GWPVE,
and between partial extinction of the LHBP and the event that all generations of
the embedded GWPVE are finite. Based on this relationship, we obtain several
results for LHBPs:

(i) We prove that there is a continuum of fixed-points solutions s ∈ S, whose
componentwise minimum and maximum are the global and partial extinction prob-
ability vectors q and q̃ , respectively (Theorem 4.1).

(ii) We establish a connection between the growth rates of the embedded GW-
PVE and the convergence rate of si to 1 as i → ∞ for any s ∈ S \ {q,1}; this
yields a physical interpretation for the fixed points lying in between q and q̃ (The-
orem 4.4).

(iii) In the nontrivial case where q̃ = 1, we provide a necessary and sufficient
condition for global extinction which holds under some second moment conditions
(Theorem 5.1). This is the first extinction criterion for irreducible processes that
also applies to cases exhibiting nonexponential growth. We illustrate the broad
applicability of the criterion through some examples.
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(iv) Finally, under additional assumptions, we build on the global extinction
criterion to derive necessary and sufficient conditions for strong local survival
(Theorem 7.1).

While there is a vast literature on GWPVEs, the explosive case, which has already
been studied for standard Galton–Watson processes [28, 29], is yet to be consid-
ered in the context of varying environment. In order to prove our main theorems,
we both apply known results on GWPVEs and develop new ones. On the way to
studying properties of the embedded GWPVE, we also derive a new partial ex-
tinction criterion for LHBPs which is computationally more efficient than other
existing criteria.

The paper is organised as follows. In Section 2, we define LHBPs and introduce
the tools we use to study them. In Section 3, we construct the embedded GWPVE
and derive relationships between it and its corresponding LHBP. In Section 4, we
develop (i) and (ii). In Section 5, we deal with (iii). In Section 6, we illustrate the
results of Section 5 through two examples. In Section 7, we address (iv). Finally,
in Section 8 we discuss possible extensions of our results.

A number of our results use a sequence of truncated branching processes, la-
belled {Z̃(k)

n }n≥0, which are formed by taking the original process {Zn} and delet-
ing the descendants of each individual whose type is larger than k. In particular,
these results require the extinction probability vectors of {Z̃(k)

n }, labelled q̃(k), to
converge componentwise to q̃ as k → ∞. This convergence was established in
Lemma 3.2 of [18] under general conditions, however, it turns out that this lemma
is incorrect as it stands. In Appendix A, we point out where the lemma and its proof
break down, and in Theorem A.1 we recover its assertion under stricter conditions
by using an alternative approach to prove it.

In this paper, we let 1 and 0 denote the column vectors of 1’s and 0’s, respec-
tively, and we let ei represent the vector with all entries equal to zero, except entry
i which is equal to 1, the size of these vectors being defined by the context. For
any vectors x and y, we write x ≤ y if xi ≤ yi for all i, and x < y if x ≤ y with
xi < yi for at least one entry i.

2. Preliminaries. Consider a MGWBP with the type set X = N0 := {0,1,2,

. . .}. We assume that the process initially contains a single individual whose type
is denoted by ϕ0. The process then evolves according to the following rules:

(i) each individual lives for a single generation, and
(ii) at death individuals of type i give birth to r = (r�)�∈{0,1,...,i+1} offspring,

that is, r0 individuals of type 0, r1 individuals of type 1, . . . , and ri+1 individuals
of type i + 1, where the vector r is chosen independently of that of all other indi-
viduals according to a probability distribution, pi(·), specific to the parental type
i ∈ X .

We refer to this as a lower Hessenberg branching process (LHBP).
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We construct the LHBP on the Ulam–Harris space [17], Chapter VI, labelled
(�,F,P), as follows. Let J =⋃

n≥0 Jn where Jn describes the virtual nth gen-
eration. That is, J0 = X , where ϕ0 ∈ J0 specifies the type of the root, and for
n ≥ 1, Jn = X×(N × X × N)n, where (ϕ0; i1, j1, y1; . . . ; in, jn, yn) denotes the
inth child of type jn born to (ϕ0; i1, j1, y1; . . . ; in−1, jn−1, yn−1) and yn denotes
the individual’s unique identification number. The identification number is not re-
quired to define the branching process with countably many types; however, it is
necessary to formally define the embedded branching processes considered in the
sequel (see [11], Footnote 2, for an illustration). Each virtual individual I ∈ J
is assigned a random offspring vector N(I ) = (N�(I ))�∈X that takes values in
Rj := {r ∈ (N0)

X : r� = 0 ∀� > j + 1} when I is of type j and has distribution
pj (·), independently of all other individuals. The random set of individuals who
appear in the population, X =⋃

n≥0 Xn, is then defined recursively from the values
of N(I ) as follows:

(2.1) X0 = {ϕ0}, Xn = {
x = (x̃; in, jn, n) ∈ Jn : x̃ ∈ Xn−1, in ≤ Njn(x̃)

}
.

The population in generation n is described by the vector Zn with entries

Zn,j = ∑
I∈Jn

1(I ∈ Xn, jn = j), j ∈ X .

We will often refer to branching processes by their sequence of population vectors
{Zn}n≥0.

We define the progeny generating vector G(·) : [0,1]X → [0,1]X , where

(2.2) Gi(s) = Gi(s0, s1, . . . , si+1) = ∑
r∈Ri

pi(r)sr = ∑
r∈Ri

pi(r)

i+1∏
k=0

s
rk
k ,

and the mean progeny matrix M = (Mi,j )i,j∈X , where

(2.3) Mi,j =
(

∂Gi(s)

∂sj

)∣∣∣∣
s=1

is the expected number of type-j children born to a parent of type i. By assump-
tion, M is an infinite lower Hessenberg matrix. To avoid trivialities, we assume that
Mi,i+1 > 0 for all i ∈ X . To M , we associate a weighted directed graph, referred
to as the mean progeny representation graph. This graph has vertex set X and con-
tains an edge from i to j of weight Mi,j if and only if Mi,j > 0. The branching
process is said to be irreducible if there is a path between any two vertices in the
mean progeny representation graph on X . We define the convergence norm of M ,

(2.4) ν(M) = lim sup
n

n

√(
Mn

)
ij ,

which, when the process is irreducible, is independent of i and j .
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The global and partial extinction probability vectors q and q̃ , defined in (1.1)
and (1.3), are both solutions to the fixed-point equation s = G(s), and are thus
elements of the set S defined in (1.2). This can be seen by conditioning on the
children of the initial individual and then observing that the process becomes
partially (globally) extinct if and only if the daughter processes of these chil-
dren become partially (globally) extinct. Moreover, following the standard argu-
ments, we can prove that q is the componentwise minimal element of S (see [27],
Theorem 3.1). By the lower Hessenberg assumption, s = G(s) can be written as
si = Gi(s0, . . . , si, si+1) for all i ≥ 0. Thus, by the monotonicity of Gi(·), each
entry si of any s ∈ S is uniquely determined by s0. It is then natural to consider the
one-dimensional projection sets of S,

Si = {
x ∈ [0,1] : ∃s ∈ S, such that si = x

}
, i ∈ X .

We define two sequences of finite-type branching processes on (�,F,P). The
first, {Z̃(k)

n }n≥0,k≥−1, is such that the random offspring vector of any virtual indi-
vidual I ∈ J is given by

Ñ
(k)

(ω, I ) =
{
N(ω, I ), t (I ) ≤ k,

0, t (I ) > k,

for any ω ∈ �, where t (I ) is the type of virtual individual I . For any k ≥ −1,
outcomes of {Z̃(k)

n } are thus constructed by taking the corresponding outcome of
{Zn} and removing the descendants of all individuals of type i > k. These types are
said to be sterile. The second, {Z(k)

n }n≥0,k≥−1, is such that the random offspring
vector of any virtual individual I ∈ J is given by

N (k)(ω, I ) =
{
N(ω, I ), t (I ) ≤ k,

et (I ), t (I ) > k,

for any ω ∈ �. For any k ≥ −1, outcomes of {Z(k)
n } are thus constructed by taking

the corresponding outcome of {Zn} and replacing the descendants of all individuals
of type i > k with an infinite string of type-i descendants. These types are said to
be immortal. An illustration of {Zn}, {Z̃(1)

n } and {Z(1)
n } for a specific ω ∈ � is

given in Figure 1. By construction, for all ω ∈ �, (i) for each fixed value of k, if

FIG. 1. The processes {Zn}, {Z̃(1)
n } and {Z(1)

n } for a specific ω ∈ �.



2788 P. BRAUNSTEINS AND S. HAUTPHENNE

ϕ0 ≤ k + 1 then the sterile and immortal individuals are necessarily of type k + 1,
(ii)

(2.5) Z
(k)
n,�(ω) = Z̃

(k)
n,�(ω) for all n ≥ 0 and 0 ≤ � ≤ k,

and (iii)

(2.6) lim
n→∞Z

(k)
n,k+1(ω) =

∞∑
n=0

Z̃
(k)
n,k+1(ω).

We denote the progeny generating vector of {Z(k)
n } by G(k)(s), which has entries

(2.7) G
(k)
i (s) =

{
Gi(s), 0 ≤ i ≤ k,

sk+1, i = k + 1.

By equation (2.5), the global extinction probability vectors of {Z(k)
n } and {Z̃(k)

n },
denoted by q̃(k) and q(k), are given by

q̃(k) = lim
n→∞G(k,n)(0, . . . ,0,1) and q(k) = lim

n→∞G(k,n)(0, . . . ,0,0),

where G(k,n)(·) is the n-fold composition of G(k)(·). As demonstrated in [18],
Lemma 3.1, the sequence {q(k)}k≥−1 increases componentwise to q . In addi-
tion, if {Zn} is irreducible and nonsingular (i.e., there exists i ∈ X such that∑

v:|v|=1 pi(v) < 1), then the sequence {q̃(k)}k≥−1 decreases componentwise to
q̃ (see Theorem A.1 in Appendix A); recall that [18], Lemma 3.2, is an incor-
rect version of the same result. Unless stated otherwise, we assume that {Zn} is
nonsingular and irreducible.

3. An embedded GWPVE with explosions. We construct the embedded
GWPVE {Yk} on (�,F,P) from the paths of {Zn} by selecting all individuals
whose type is strictly larger than that of all their ancestors, and connecting each
selected individual to their nearest (in generation) selected ancestor (see Figure 2).
More formally, we define a function f (·) : J → J that takes a line of descent
(ϕ0; i1, j1, y1; . . . ; in, jn, yn) and deletes each triple (ik, jk, yk) whose type is not
strictly larger than all its ancestors. For each ω ∈ �, the family tree of {Yk} is then
given by f (X(ω)), where X(ω) is defined in (2.1). Variants of {Yk} (which do not
permit explosion) can be found in [10] and [15].

We take the convention that {Yk} starts at the generation number corresponding
to the initial type ϕ0 in {Zn}. By construction, for any ω ∈ � we then have

(3.1) Yk(ω) =
∞∑

n=0

Z̃
(k−1)
n,k (ω) = lim

n→∞Z
(k−1)
n,k (ω),

that is, the kth generation of {Yk} is made up every sterile (type-k) individual pro-

duced over the lifetime of {Z̃(k−1)

n }n≥0. By the lower Hessenberg assumption, each
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FIG. 2. An outcome of {Zn} and {Yk} for a specific ω ∈ �. The highlighted type-k individuals

represent the sterile individuals in the corresponding realisation of {Z̃(k−1)
n }.

sterile type-k individual that appears in {Z̃(k−1)

n }n≥0 is a descendant of a sterile

type-(k − 1) individual that appears in {Z̃(k−2)

n }n≥0. Thus, because the daughter

processes of these type-(k − 1) individuals in {Z̃(k−1)

n } are i.i.d., Yk satisfies the
branching process equation

(3.2) Yk
d=

Yk−1∑
i=1

ξk,i,

where {ξk,i}i≥1 is a sequence of i.i.d. random variables such that, ξk,i
d=∑∞

n=0 Z̃
(k−1)
n,k conditional on ϕ0 = k−1. This means {Yk} is indeed a GWPVE; it is,

however, not a classical one because {Yk} may have a positive chance of explosion,
that is, individuals in {Yk} may give birth to an infinite number of offspring with
positive probability. The next lemma states that {Yk} explodes by generation k if

and only if {Z̃(k−1)

n }n≥0 survives globally, and {Yk} becomes extinct by generation
k if and only if {Z(k−1)

n }n≥0 becomes globally extinct.

LEMMA 1. For any k ≥ ϕ0,

(3.3)
{
ω ∈ � : Yk(ω) < ∞} a.s.=

{
ω ∈ � : lim

n→∞ Z̃
(k−1)

n (ω) = 0
}
,

and

(3.4)
{
ω ∈ � : Yk(ω) = 0

} a.s.=
{
ω ∈ � : lim

n→∞Z(k−1)
n (ω) = 0

}
.

PROOF. To prove (3.3), first suppose that ω ∈ {limn Z̃
(k−1)

n = 0}. Then there
exists a generation N < ∞ such that Z̃

(k−1)

n (ω) = 0 for all n ≥ N . This means∑∞
n=0 Z̃

(k−1)
n,k (ω) = ∑N

n=0 Z̃
(k−1)
n,k (ω) < ∞, which implies ω ∈ {Yk < ∞}. It then

remains to prove P(Yk < ∞, lim infn |Z̃(k−1)

n | > 0) = 0. Because Mi,i+1 > 0 for
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any i ≤ k − 1, we have Pi (
∑k

n=0 Z̃
(k−1)
n,k = 0) ≤ 1 − εi , for some εi > 0. Thus, for

any z̃
(k−1)
0 ∈ (N0)

k+1, we have

P

(
k∑

n=0

Z̃
(k−1)
n,k = 0,

∣∣Z̃(k−1)

k

∣∣> 0
∣∣∣ Z̃(k−1)

0 = z̃
(k−1)
0

)
≤ 1 − ε,

where ε := min0≤i≤k{εi} > 0. By the Markov property, we then have

P
(
Yk < ∞, lim inf

n→∞
∣∣Z̃(k−1)

n

∣∣> 0
)

≤ P

(
∃N≥ 0 :

∞∑
m=N

Z̃
(k−1)
m,k = 0,

∣∣Z̃(k−1)

n

∣∣> 0 ∀n

)

= P

(
∃N ≥ 0 :

∞⋂
�=0

(
N+(�+1)k∑
m=N+�k

Z̃
(k−1)
m,k = 0,

∣∣Z̃(k−1)

N+(�+1)k

∣∣> 0

))

≤
∞∑

N=0

∏
�≥0

(1 − ε) = 0,

leading to (3.3). The same arguments lead to (3.4). �

Since{
ω ∈ � : lim inf

n
Z̃

(k−1)

n (ω) > 0
}

⊆
{
ω ∈ � : lim inf

n
Z̃

(k)

n (ω) > 0
}
,

and {
ω ∈ � : lim

n
Z(k−1)

n (ω) = 0
}

⊆
{
ω ∈ � : lim

n
Z(k)

n (ω) = 0
}
,

the process {Yk} has two absorbing states, 0 and ∞. The next corollary formalises
the equivalence between the following events:

{Zn} experiences: {Yk} reaches:

both partial and global extinction ≡ the absorbing state 0

neither partial nor global extinction ≡ the absorbing state ∞
partial extinction but not global extinction ≡ neither 0 nor ∞.

COROLLARY 1. The global extinction event Eg
a.s.= {ω ∈ � : limk→∞ Yk(ω) =

0}, and the partial extinction event Ep
a.s.= {ω ∈ � : Yk(ω) < ∞,∀k ≥ ϕ0}.

PROOF. The result follows from Lemma 1 and the arguments in the proofs of
[18], Lemma 3.1, and Theorem A.1, respectively. �

By Corollary 1, we can express any question about the extinction probability
vectors q and q̃ in terms of the process {Yk}. In the sequel we use the shorthand
notation Pi (·) for P(·|Yi = 1) and Ei (·) for E(·|Yi = 1).
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COROLLARY 2. For any k ≥ 0 and 0 ≤ i ≤ k,

q
(k)
i = Pi (Yk+1 = 0) and q̃

(k)
i = Pi (Yk+1 < ∞),

and for any i ≥ 0,

qi = Pi

(
lim

k→∞Yk = 0
)

and q̃i = Pi (∀k ≥ i, Yk < ∞).

PROOF. The results are immediate consequences of Lemma 1 and Corollary 1.
�

To take advantage of Corollary 2, we require the progeny generating function
of each generation of the embedded GWPVE. For k ≥ 0, we let

(3.5) gk(s) := Ek

(
sYk+11{Yk+1 < ∞})=∑

�≥0

P

( ∞∑
n=1

Z̃
(k)
n,k+1 = �

∣∣∣ ϕ0 = k

)
s�,

where s ∈ [0,1]. Due to the possibility of explosion, we may have 1 > gk(1) =
Pk(Yk+1 < ∞) = q̃

(k)
k . By (3.2), the generating function of Yk+1, conditional on

Yi = 1 for i ≤ k, is given by

gi→k(s) := gi ◦ gi+1 ◦ · · · ◦ gk(s), s ∈ [0,1].
Consequently, by Corollary 2, we have q

(k)
i = gi→k(0), q̃

(k)
i = gi→k(1), qi =

limk→∞ gi→k(0), and q̃i = limk→∞ gi→k(1).
The next two lemmas provide respectively an explicit and an implicit relation

between the sequence of progeny generating functions {gk(·)} and the progeny
generating vector G(·). The first requires the following technical assumption.

ASSUMPTION 1. For all k ≥ 0,

(3.6) Pk

(
lim

n→∞
k∑

i=0

Z
(k)
n,i → 0

)
+ Pk

(
lim

n→∞
k∑

i=0

Z
(k)
n,i → ∞

)
= 1.

LEMMA 2. If Assumption 1 holds, then for all k ≥ ϕ0, the progeny generating
function of {Yk} at generation k is given by

gk(s) = lim
n→∞G

(k,n)
k (s0, s1, . . . , sk, s), s ∈ [0,1],

where (s0, s1, . . . , sk) ∈ [0,1)k+1.

PROOF. By (3.1) and (3.5),

(3.7) gk(s) = Ek

(
s

limn→∞ Z
(k)
n,k+11

{
lim

n→∞Z
(k)
n,k+1 < ∞

})
.
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By Assumption 1 and the fact that (s0, . . . , sk) ∈ [0,1)k+1,

Pk

(
lim

n→∞
k∏

i=0

s
Z

(k)
n,i

i = 0

)
+ Pk

(
lim

n→∞
k∏

i=0

s
Z

(k)
n,i

i = 1

)
= 1,

that is, limn→∞
∏k

i=0 s
Z

(k)
n,i

i is an indicator function. In addition, Lemma 1 im-

plies {limn→∞ Z
(k)
n,k+1 < ∞} a.s.= {limn→∞ Z̃

(k)

n = 0} = {limn→∞
∏k

i=0 s
Z̃

(k)
n,i

i =
1} = {limn→∞

∏k
i=0 s

Z
(k)
n,i

i = 1}. Thus, (3.7) can be rewritten as

gk(s) = Ek

(
lim

n→∞ s
Z

(k)
n,k+1

k∏
i=0

s
Z

(k)
n,i

i

)
= lim

n→∞G
(k,n)
k (s0, s1, . . . , sk, s),

where the last equality follows from the dominated convergence theorem. �

LEMMA 3. For any k ≥ 0, the progeny generating function gk(·) satisfies

(3.8) gk(s) = Gk

(
g0→k(s), g1→k(s), . . . , gk(s), s

)
.

PROOF. By conditioning on the offspring of a type-k individual in {Z̃(k)

n },
gk(s)

= E

[
s
∑∞

n=1 Z̃
(k)
n,k+11

{ ∞∑
n=1

Z̃
(k)
n,k+1 < ∞

} ∣∣∣ ϕ0 = k

]

=∑
z≥0

E

[
s
∑∞

n=1 Z̃
(k)
n,k+11

{ ∞∑
n=1

Z̃
(k)
n,k+1 < ∞

} ∣∣∣ ϕ0 = k, Z̃
(k)

1 = z

]

× P
[
Z̃

(k)

1 = z | ϕ0 = k
]
.

Then, by the Markov property and the independence between the daughter pro-
cesses of individuals from the same generation,

E

[
s
∑∞

n=1 Z̃
(k)
n,k+11

{ ∞∑
n=1

Z̃
(k)
n,k+1 < ∞

} ∣∣∣ ϕ0 = k, Z̃
(k)

1 = (z0, . . . , zk, zk+1)

]

= szk+1

k∏
i=0

E

[
s
∑∞

n=1 Z̃
(k)
n,k+11

{ ∞∑
n=1

Z̃
(k)
n,k+1 < ∞

} ∣∣∣ ϕ0 = i

]zi

(3.9)

= szk+1

k∏
i=0

gi→k(s)
zi ,
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where (3.9) follows from (3.2). This leads to

gk(s) =∑
z≥0

k∏
i=0

gi→k(s)
zi szk+1P

[
Z̃

(k)

1 = z | ϕ0 = k
]
,

which completes the proof. �

4. Fixed points and extinction probabilities. We now characterise the set S

defined in (1.2). The main results in this section rely on the relation between S and
the set

S[e] = {
s ∈ [0,1]X : sk = gk(sk+1) ∀k ≥ 0

}
,

which corresponds to the set of fixed points of the embedded GWPVE. Be-
cause each gk(·) is a monotone increasing function, like S, the set S[e] is one-
dimensional. In this section, we assume that Assumption 1 holds. For any vector
s ∈ S, we write s̄(k) := (s0, s1, . . . , sk) for the restriction of s to its first k + 1 en-
tries.

The next lemma establishes a relationship between S and S[e].

LEMMA 4. S = S[e] ∪ {1}.
PROOF. Suppose s ∈ S and s �= 1. For any k,n ≥ 0, s̄(k+1) satisfies s̄(k+1) =

G(k,n)(s̄(k+1)). Because {Zn} is irreducible and s �= 1 we have si < 1 for all i ∈ X
(see [32], Theorem 2). Thus, using Lemma 2, gk(sk+1) = limn→∞ G

(k,n)
k (s̄(k+1)) =

sk for all k ≥ 0, leading to s ∈ S[e]. Now suppose s ∈ S[e]. Then, by Lemma 3, for
all k ≥ 0,

sk = gk(sk+1) = Gk

(
g0→k(sk+1), g1→k(sk+1), . . . , gk(sk+1), sk+1

)= Gk(s),

therefore, s ∈ S. �

We now characterise the one-dimensional projection sets Si and identify which
elements of S correspond to the global and partial extinction probability vectors.

THEOREM 4.1. If S = {1}, then q = q̃ = 1; otherwise,

q = minS and q̃ = supS \ {1}.
In particular, Si = [qi, q̃i] ∪ 1 for all i ≥ 0.

PROOF. We show that

(4.1) q = minS[e] and q̃ = maxS[e],

and for any i ≥ 0, S
[e]
i = [qi, q̃i], where

S
[e]
i = {

x ∈ [0,1] : ∃s ∈ S[e], such that si = x
}
.



2794 P. BRAUNSTEINS AND S. HAUTPHENNE

FIG. 3. A visual representation of possible sets Si in the irreducible case.

These results follow from the fact that gi(·) and g−1
i (·) are monotone increasing

functions, and therefore so are gi→j (·) and g−1
i→j−1(·) := g−1

j−1 ◦ · · · ◦ g−1
i (·) for

j > i. Let s ∈ S[e], then for all 0 ≤ i < k,

q
(k−1)
i = gi→k−1(0) ≤ si = gi→k−1(sk) ≤ gi→k−1(1) = q̃

(k−1)
i .

Taking the limit as k → ∞ we obtain qi ≤ si ≤ q̃i for all i ≥ 0, which shows (4.1).
Now suppose qi ≤ si ≤ q̃i . For any j < i, define sj := gj→i−1(si); then

qj = gj→i−1(qi) ≤ sj ≤ gj→i−1(q̃i) = q̃j .

Similarly, for any j > i, define sj := g−1
i→j−1(si); then

qj = g−1
i→j−1(qi) ≤ sj ≤ g−1

i→j−1(q̃i) = q̃j .

This shows that for any i ≥ 0 and for any si ∈ [qi, q̃i], it is possible to construct a
vector s belonging to S[e]. �

Theorem 4.1 implies that S contains one, two, or uncountably many elements.
More specifically, it shows that q is the minimal element of S which is the begin-
ning of a continuum of elements whose supremum is q̃ , as illustrated in Figure 3.

REMARK 1. In the reducible case, there may be an additional countable num-
ber of fixed points s such that q̃ ≤ s ≤ 1. We refer to [9], Section 4.4, for the
details.

With the goal of giving a probabilistic interpretation to the intermediate fixed
points s ∈ S such that q < s < q̃ , we now derive properties of the infinite-
dimensional set S. We begin by deriving a sufficient condition for

(4.2) lim
i→∞ si = 1 for all s ∈ S \ {q},

that is, for S to contain at most a single element (corresponding to q) whose entries
do not converge to 1. In a more general setting, sufficient conditions for (4.2) can
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be found in Moyal ([27], Lemmas 3.3 and 3.4), the most notable being ‘infqi > 0’.
The same author also conjectures a more general condition:

sup
i

p
(1)
i < 1 where p

(1)
i := ∑

v:|v|=1

pi(v).

In the case of LHBPs, we now provide a stronger result.

THEOREM 4.2. If

(4.3)
∞∑
i=0

(
1 − p

(1)
i

)= ∞,

then (4.2) holds.

The proof of Theorem 4.2 uses the following lemma which we state separately
because, for LHBPs, it generalises the conditions of [10], Theorem 1.

LEMMA 5. If (4.3) holds, then P(Yk → 0) + P(Yk → ∞) = 1.

PROOF. Following Lindvall [23], we have P(Yk → 0) + P(Yk → ∞) = 1 if
and only if

(4.4)
∞∑

k=0

(
1 − g′

k(0)
)= ∞.

Suppose (4.3) holds without (4.4), that is, assume (4.3) and

(4.5)
∞∑

k=0

(
1 − g′

k(0)
)
< ∞.

In this case, there can be only finitely many k such that g′
k(0) = 0. Thus, (4.5)

holds if and only if there exists � ≥ 0 such that

(4.6)
∞∏

k=�

g′
k(0) ≡ P�(Yk = 1,∀k ≥ �) > 0.

In addition, because Mi,i+1 > 0 for all i ≥ 0, in every generation of the embedded
process (including any for which g′

k(0) = 0) individuals have a positive chance
of giving birth to at least one offspring. In combination with (4.6), this implies
that there exists c > 0 such that for any l ≥ 0, Pl(Yk ≥ 1,∀k ≥ l) ≥ c. Recall that
each individual in {Yk} corresponds to an individual in {Zn}. If the correspond-
ing individual in {Zn} has no offspring then neither does the individual in {Yk},
whereas if the corresponding individual in {Zn} has two or more offspring then
the individual in {Yk} must have at least two offspring with probability greater
than or equal to c2. Thus, for all k ≥ 0, 1 − g′

k(0) ≥ c2(1 − p
(1)
k ), which implies
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∑∞
k=0(1−g′

k(0)) ≥ c2∑∞
k=0(1−p

(1)
k ) = ∞, contradicting (4.5). Therefore, if (4.3)

holds, we must have (4.4). �

PROOF OF THEOREM 4.2. By Lemma 4, we may assume s ∈ S[e]. Thus, for
all k ≥ 0,

(4.7) s0 = g0→k−1(sk) = E0
(
s
Yk

k 1{Yk < ∞})= q
(k−1)
0 + E0

(
s
Yk

k 1{0 < Yk < ∞}).
Suppose lim infk sk < 1. In this case, there exists an infinite sequence {ki}i≥1 such
that ski

< 1 − ε for all i ≥ 1 and some ε > 0. For each i ≥ 1 and K ≥ 1,

E0
(
s
Yki

ki
1{0 < Yk < ∞})≤ P0(0 < Yki

< K) + (1 − ε)K.

By Lemma 5, for any K ≥ 1, we have P0(0 < Yki
< K) → 0 as i → ∞. Letting

K be arbitrarily large, we obtain lim infk E0(s
Yk

k 1{0 < Yk < ∞}) = 0. Because
q

(k)
0 → q0 as k → ∞, from (4.7) we then obtain s0 = q0. The only element s ∈ S[e]

such that lim infk sk < 1 is therefore s = q . �

Now that we have general sufficient conditions for 1 − si → 0, we investigate
properties of this convergence. The next two theorems use the following lemma.

LEMMA 6. If {an}n≥0 and {bn}n≥0 are sequences of nonnegative real numbers
such that an ∈ (0,1) for all n ≥ 0, and bn → ∞, then

lim sup
n

abn
n = exp

{
− lim inf

n
bn(1 − an)

}
,(4.8)

lim inf
n

abn
n = exp

{
− lim sup

n
bn(1 − an)

}
.(4.9)

PROOF. For any n ≥ 0, we have

abn
n =

(
1 − bn(1 − an)

bn

)bn

.

The result then follows from limn→∞(1 − c/n)n = e−c for any c ∈ R. �

The next result shows that if the entries of q converge to 1, then they converge
slower than those of any other s ∈ S \ {q}, whereas the entries of q̃ converge to 1
faster than those of any other s ∈ S \ {q̃,1}.

THEOREM 4.3. If (4.3) holds then, for any s ∈ S \ {q, q̃,1},

lim
k→∞

1 − qi

1 − si
= ∞ and lim

k→∞
1 − q̃i

1 − si
= 0.
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PROOF. Suppose s ∈ S \ {q, q̃,1}. In that case, by Theorem 4.1, q < s < q̃ . In
addition, by Lemma 4, for all k ≥ 0,

s0 = E0
(
s
Yk

k 1{Yk < ∞})
= q

(k−1)
0 + E0

(
s
Yk

k 1{0 < Yk < ∞})(4.10)

= q̃
(k−1)
0 + E0

((
s
Yk

k − 1
)
1{0 < Yk < ∞}).(4.11)

Without loss of generality, we assume that q < q̃ , which by Corollary 2 is equiv-
alent to P0(0 < Yk < ∞,∀k ≥ 0, ) > 0. In this case, by (4.10) and the fact that
q

(k)
0 → q0, we have

s0 = q0 ⇔ lim
k→∞ E0

(
s
Yk

k | 0 < Yk < ∞)= 0.

Because s
Yk

k is nonnegative and uniformly bounded by 1, we can write

s0 = q0 ⇔ P0
(
s
Yk

k → 0 | ∀k ≥ 0,0 < Yk < ∞)= 1.

By Lemma 5, we may then apply Lemma 6 to obtain

s0 = q0 ⇔ P0
(
Yk(1 − sk) → ∞ | ∀k ≥ 0,0 < Yk < ∞)= 1,

hence limk→∞(1 − qi)/(1 − si) = ∞. Using (4.11), a similar argument yields

s0 = q̃0 ⇔ P0
(
Yk(1 − sk) → 0 | ∀k ≥ 0,0 < Yk < ∞)= 1,

and limk→∞(1 − q̃i)/(1 − si) = 0. �

The next theorem demonstrates that the rate at which 1 − si decays is closely
linked to the asymptotic growth of {Yk}. In this context, we define a growth rate to
be a sequence of real numbers {Ck}k≥0 such that

lim
k→∞

Yk

Ck

= W
({Ck}) exists a.s.,

where W({Ck}) is a nonnegative, potentially defective, random variable with
P(0 < W({Ck}) < ∞) > 0. We let

gW({Ck})(z) = E0
(
zW({Ck})1

{
W
({Ck})< ∞})

.

Growth rates of nondefective GWPVEs (q̃ = 1) have been studied by a number
of authors. Although it is natural to assume that {E0[Yk+1]}k≥0 is a growth rate,
it may not always be the case. Sufficient conditions for {E0[Yk+1]} to be a growth
rate are given in [19], and conditions for it to be the only distinct growth rate are
discussed in [12, 13, 21]. Examples of GWPVEs with multiple growth rates can
be found in [14, 24].
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THEOREM 4.4. Suppose (4.3) holds. If s ∈ S \ {1} and there exists some
growth rate {Ck} such that gW({Ck})(0) < s0 < gW({Ck})(1), then

lim
k→∞(1 − sk)Ck = c ∈ (0,∞),

where c is such that s0 = gW({Ck})(e−c).

PROOF. By the arguments in the proof of Lemma 4, any s ∈ S \ {1} is such
that si < 1 for all i ∈ X , and s ∈ S[e]. Therefore, for all k ≥ 1,

(4.12) s0 = E0
(
s
Yk

k 1{Yk < ∞})= E0
(
s
Yk

k

)
,

which can be rewritten as

(4.13)

s0 = E0
((

s
Ck

k

)Yk/Ck1
{
W
({Ck})= 0

})
+ E0

((
s
Ck

k

)Yk/Ck1
{
0 < W

({Ck})< ∞})
+ E0

((
s
Ck

k

)Yk/Ck1
{
W
({Ck})= ∞})

.

By assumption, we have

(4.14)
gW({Ck})(0) = P0

(
W
({Ck})= 0

)
< s0 < gW({Ck})(1)

= P0
(
W
({Ck})< ∞)

.

If lim infk(sk)Ck = 0, then taking lim infk in (4.13) gives s0 ≤ P0(W({Ck}) = 0),
which contradicts (4.14). A similar argument applies to the limit superior, leading
to

(4.15) 0 < lim inf
k

s
Ck

k ≤ lim sup
k

s
Ck

k < 1.

By (4.12), we then have

s0 = lim sup
k→∞

E0
((

s
Ck

k

)Yk/Ck
)

= E0

(
lim sup
k→∞

(
s
Ck

k

)Yk/Ck
)

(4.16)

= E0

((
lim sup
k→∞

s
Ck

k

)W({Ck}))
,(4.17)

where (4.16) follows from the dominated convergence theorem, and (4.17) requires
(4.15). If we repeat the same argument with lim sup replaced by lim inf, we finally
obtain

s0 = gW({Ck})
(
lim sup

k

s
Ck

k

)
= gW({Ck})

(
lim inf

k
s
Ck

k

)
.

By (4.3) and Theorem 4.2, we have sk → 1, and thus through (4.15) we obtain
Ck → ∞. Lemma 6 then gives limk→∞(sk)

Ck = e−c, where c = limk→∞(1 −
sk)Ck . This means s0 = E0(e

−cW({Ck})) = gW({Ck})(e−c). �
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We conclude this section with a summary of our findings on the set S. The set S

is made up of a continuum of elements whose minimum is q and whose maximum
is q̃ , with the additional fixed point 1. Under Condition (4.3), for any s ∈ S, with
the possible exception of q , we have 1 − si → 0 as i → ∞. The decay rates of
1 − qi and 1 − q̃i are unique, whereas the intermediate elements q < s < q̃ may
share one or several decay rates, which have a one-to-one correspondence with the
growth rates of {Yk}. Furthermore, these intermediate elements completely specify
the generating functions gW({Ck})(·) and thereby the distributions of W({Ck}). This
gives a physical meaning to the intermediate elements: in short, they describe the
evolution of {Yk} when there is partial extinction without global extinction. While
this physical interpretation is in terms of the growth of {Yk}, we expect that it is
closely related to the growth of {|Zn|}.

5. Extinction criteria. While there exist several well-established partial ex-
tinction criteria, determining a global extinction criterion when q̃ = 1 remains an
open question. When q̃ = 1, the embedded GWPVE {Yk} is nonexplosive, and
we can directly apply known extinction criteria for GWPVEs. These criteria are
generally expressed in terms of the first and second factorial moments

μk := g′
k(1) and ak := g′′

k (1), k ≥ 0.

The next lemma provides recursive expressions for these moments in terms of
those of the offspring distributions of {Zn}. We let

(5.1)

mi→k := Ei[Yk+1] = g′
i→k(1) =

k∏
j=i

μj ,

G′
k,i(s) := ∂Gk(u)

∂ui

∣∣∣∣
u=s

, G′′
k,ij (s) := ∂2Gk(u)

∂ui∂uj

∣∣∣∣
u=s

,

Ak,ij := G′′
k,ij (1),

and we take the convention that
∏k−1

i=k · = 1 and gk+1→k(s) = s.

LEMMA 7. Suppose q̃ = 1, then

(5.2) μ0 = M0,1

1 − M0,0
and a0 = μ2

0A0,00 + A0,11 + 2μ0A0,01

1 − M0,0
,

and for k ≥ 1,

(5.3) μk = Mk,k+1

1 −∑k
i=0 Mk,imi→k−1

,

and
(5.4)

ak =
∑k

i=0 Mk,i

∑k−1
j=i ajmi→j−1(

∏k
�=j+1 μ2

�) +∑k+1
i=0

∑k+1
j=0 mi→kmj→kAk,ij

1 −∑k
i=0 Mk,imi→k−1

.
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PROOF. By Lemma 3, for any k ≥ 0,

g′
k(s) = d

ds

[
Gk

(
g0→k(s), . . . , gk+1→k(s)

)]

=
k+1∑
i=0

g′
i→k(s)G

′
k,i

(
g0→k(s), . . . , gk+1→k(s)

)
,

(5.5)

where g′
i→k(s) =∏k

j=i g
′
j (gj+1→k(s)). The assumption q̃ = 1 implies gi→k(1) =

1 for all i, k and, therefore, μk = g′
k(1) =∑k

i=0 Mk,imi→k + Mk,k+1, which leads
to the expression for μ0 and the recursive equation (5.3).

Next, by differentiating (5.5) with respect to s, we obtain

g′′
k (s) =

k+1∑
i=0

g′′
i→k(s)G

′
k,i

(
g0→k(s), . . . , gk+1→k(s)

)

+
k+1∑
i=0

g′
i→k(s)

k+1∑
j=0

g′
j→k(s)G

′′
k,ij

(
g0→k(s), . . . , gk+1→k(s)

)
,

where, for 0 ≤ i ≤ k,

g′′
i→k(s) =

k∑
j=i

(j−1∏
�=i

g′
�

(
g�+1→k(s)

))
g′′

j

(
gj+1→k(s)

)( k∏
�=j+1

g′
�

(
g�+1→k(s)

))2

.

This implies

ak = g′′
k (1) =

k∑
i=0

Mk,i

k∑
j=i

ajmi→j−1

(
k∏

�=j+1

μ2
�

)
+

k+1∑
i=0

k+1∑
j=0

mi→kmj→kAk,ij ,

which gives

ak

(
1 −

k∑
i=0

Mk,imi→k−1

)

=
k∑

i=0

Mk,i

k−1∑
j=i

ajmi→j−1

(
k∏

�=j+1

μ2
�

)
+

k+1∑
i=0

k+1∑
j=0

mi→kmj→kAk,ij ,

leading to the expression for a0 and the recursive equation (5.4). �

When q̃ = 1 is not assumed, the recursive expressions (5.2)–(5.4) can still be
used to compute two sequences, which may not correspond to the first and second
factorial moments of the progeny distributions of {Yk}, but which we shall even
so denote by {μk} and {ak}. For these sequences to correspond to well-defined
moments, their elements must be nonnegative and finite, that is, the denominator
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common to (5.3) and (5.4) must be strictly greater than 0 for all k ≥ 0. Thus, if we
let

xk :=
k∑

i=0

Mk,imi→k−1,

we require

(5.6) 0 ≤ xk < 1 for all k ≥ 0.

By giving a physical interpretation to xk , we now show that, in the irreducible case,
(5.6) holds if and only if q̃ = 1. Note that, if there exists k such that xk = 1, then
q̃ < 1, as justified in the proof of the lemma.

LEMMA 8. If {Zn} is irreducible, then q̃ = 1 if and only if 0 ≤ xk < 1 for all
k ≥ 0.

PROOF. For any k ≥ 0, we embed a process {E(k)
n (Z̃

(k)

n )} in {Z̃(k)

n : ϕ0 = k}
by taking all type-k individuals that appear in {Z̃(k)

n } and defining the direct de-
scendants of these individuals as the closest (in generation) type-k descendants

in {Z̃(k)

n }; the process {E(k)
n (Z̃

(k)

n )} evolves as a single-type Galton–Watson pro-

cess that becomes extinct if and only if type k becomes extinct in {Z̃(k)

n }. Because

Mi,i+1 > 0 for all i ≥ 0, the extinction of type k in {Z̃(k)

n } is almost surely equiva-

lent to the extinction of the whole process {Z̃(k)

n }. Hence, for any k ≥ 0,

q̃(k) < 1 if and only if m
E

(k)
n (Z̃

(k)

n )
> 1,

where m
E

(k)
n (Z̃

(k)

n )
is the mean number of offspring born to an individual in

{E(k)
n (Z̃

(k)
)}. The value of m

E
(k)
n (Z̃

(k)

n )
is obtained by taking the weighted sum of all

first return paths to k in the mean progeny representation graph of {Z̃(k)

n }. By con-

ditioning on the progeny of an individual of type k in {Z̃(k)

n }, the lower-Hessenberg
structure then leads to

m
E

(k)
n (Z̃

(k)

n )
= Mk,0m0→k−1 + Mk,1m1→k−1 + · · · + Mk,k = xk.

Thus, if 0 < xk < 1 for all k ≥ 0 then q̃(k) = 1 for all k and, therefore, by Theo-
rem A.1, q̃ = limk→∞ q̃(k) = 1. Similarly, if there exists k such that xk > 1, then
q̃ ≤ q̃(k) < 1. Now suppose there exists k such that xk = 1. Then by the irreducibil-
ity of {Zn} there exists k∗ > k such that there is a first return path with strictly pos-
itive weight of the form k → k + 1 → ·· · → k∗ → · · · → k in the mean progeny

representation graph of {Z̃(k∗)
n }. This implies

m
E

(k)
n (Z̃

(k∗)

n )
> m

E
(k)
n (Z̃

(k)

n )
= 1,

and hence q̃ ≤ q̃(k∗) < 1. �
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Combining Lemmas 7 and 8 with [21], Theorem 1, which to the authors’ knowl-
edge is the most general extinction criterion currently available for GWPVEs, we
obtain for an irreducible LHBP.

THEOREM 5.1. If {μk} and {ak} are given by (5.2)–(5.4), then

(5.7) 0 < μk < ∞ ∀k ≥ 0 ⇔ q̃ = 1,

and when q̃ = 1, if supk ak/μk < ∞ and infk
∑

{v:vk+1≥2} pk(v) > 0, then

(5.8)
∞∑

k=0

1

m0→k

= ∞ ⇔ q = 1,

where m0→k is defined in (5.1).

PROOF. The global extinction criterion (5.8) follows from (i) ⇔ (iv) in [21],
Theorem 1. Indeed, our assumptions imply Condition (A) of that theorem, as well
as infk ak/μk > 0. �

REMARK 2. Theorem 5.1 demonstrates that by computing the sequence {μk}
required for (5.8) we are implementing a partial extinction criterion. We note that
it is more efficient to compute {μk} through Lemma 7 than to evaluate the conver-
gence norm of M as the limit of the sequence of spectral radii of the north-west
truncations of the mean progeny matrix M (see [30], Theorem 6.8).

REMARK 3. If lim infk m0→k = 0 then, through the Markov inequality, we
obtain q = 1. Thus, in this case the conditions of Theorem 5.1 do not need to be
verified.

When the conditions of Theorem 5.1 do not hold, one may still be able to apply
[21], Theorem 1, directly. Condition (A) in that theorem holds under an assumption
on the third factorial moments g′′′

k (1) ([21], Condition (C)), which can also be
shown to satisfy recursive equations. Alternatively, it may be possible to apply
the next theorem, which corresponds to [1], Theorem 1 (see, e.g., the proof of
Proposition 1).

THEOREM 5.2. If q̃ = 1 and Ak,ij < ∞ for all k, i, j ≥ 0, then for any 1 ≤
i < k,

1 −
[

1

mi→(k−1)

+ 1

2

k−1∑
j=i

g′′
j (0)

μjmi→j

]−1

≤ q
(k)
i ≤ 1 −

[
1

mi→(k−1)

+
k−1∑
j=i

aj

μjmi→j

]−1

.
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Roughly speaking, Theorem 5.1 states that the boundary between almost sure
global extinction and potential global survival is the expected linear growth of
{Yk}, that is, E0(Yk) = m0→k−1 = Ck, for some constant C > 0. It is, however, not
immediately clear how to interpret this criteria in terms of the expected growth of
the original LHBP {Zn}. The next theorem develops a link between the expected
growth of {Yk} and the exponential growth rate of the mean total population size
in {Zn},
(5.9) ξ(M) := lim inf

n

n

√
Ei |Zn| = lim inf

n

n

√(
Mn1

)
i ,

which, when M is irreducible, is independent of i. We note that in an irreducible
MGWBP with finitely many types ξ(M) = ν(M), whereas when there are in-
finitely many types it is possible that ν(M) < ξ(M).

THEOREM 5.3. Assume ν(M) ≤ 1. If ξ(M) > 1, then

(5.10) lim sup
n

n
√

m0→n ≥ ξ(M),

and if ξ(M) < 1, then

(5.11) lim inf
n

n
√

m0→n ≤ lim sup
n

(
E0|Zn|)1/n

.

PROOF. We have m0→(n−1) =∑n
k=0 E0(Zn,k)mk→(n−1), where mn→(n−1) :=

1, which gives

(5.12) E0|Zn| inf
0≤k≤n

mk→(n−1) ≤ m0→(n−1) ≤ E0|Zn| sup
0≤k≤n

mk→(n−1).

Now suppose ξ(M) > 1. In order to prove (5.10) we need to show that

(5.13) �n0 < ∞ such that inf
0≤k≤n

mk→(n−1) < 1 ∀n > n0.

Indeed, if (5.13) holds, because mn→(n−1) := 1 we have

lim sup
n

inf
0≤k≤n

mk→(n−1) = 1,

and thus by (5.12),

lim sup
n

n
√

m0→(n−1) ≥ lim sup
n

(
E0|Zn| inf

0≤k≤n
mk→(n−1)

)1/n

≥ lim inf
n

(
E0|Zn|)1/n lim sup

n

(
inf

0≤k≤n
mk→(n−1)

)1/n

= ξ(M).

To show (5.13), assume there exists n0 := sup{n : inf0≤k≤n mk→(n−1) = 1} < ∞,
and observe that for any n ≥ 0 the recursion

inf
0≤k≤n

mk→(n−1) = min
{(

inf
0≤k≤n−1

mk→(n−2)

)
μn−1,μn−1,1

}
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holds. This implies that for all n > n0,

inf
0≤k≤n

mk→(n−1) =
(

inf
0≤k≤n−1

mk→(n−2)

)
μn−1,

and inf0≤k≤n mk→(n−1) = mn0→(n−1), which gives

m0→n

(
inf

0≤k≤n
mk→n

)−1 = m0→(n0−1) for all n > n0.

By equation (5.12), we then have E0|Zn| ≤ m0→(n0−1), for all n > n0, which con-
tradicts the fact that ξ(M) > 1 and shows (5.13). When ξ(M) < 1, a similar argu-
ment can be used to obtain (5.11). �

By Theorem 5.3, if both limn
n
√

m0→n and limn(E0|Zn|)1/n exist (which is the
case in our illustrative examples), then by the root test for convergence,

ξ(M) > 1 ⇒
∞∑

j=0

1

m0→j

< ∞ and ξ(M) < 1 ⇒
∞∑

j=0

1

m0→j

= ∞.

Thus, if ξ(M) �= 1 then in Theorem 5.1
∑∞

j=0 1/m0→j = ∞ may be replaced by
ξ(M) < 1. One contribution of Theorem 5.1, which is motivated by the examples
in [5], is to provide an extinction criterion applicable even when ξ(M) = 1, as we
demonstrate in Example 2.

6. Illustrative examples. We now illustrate the results of the previous section
through two examples. Example 1 demonstrates that the mean progeny matrix M

is not sufficient to determine whether q < 1 or q = 1. This fact was highlighted in
[33], Example 4.4, however, in that example, the process behaves asymptotically
as a GWPVE because

∑
j �=i+1 Mi,j → 0 as i → ∞. In addition, the proof relies

on an explicit expression of the progeny generating vector. Through Example 1,
we provide a streamlined proof which applies to a significantly broader class of
branching processes.

In Example 2, we apply Theorem 5.1 to a LHBP with ξ(M) = 1. This example
also motivates Section 7 on strong and nonstrong local survival.

The proofs related to the examples are collected in Appendix B.

EXAMPLE 1. Consider a LHBP {Zn} with mean progeny matrix

(6.1) M =

⎡
⎢⎢⎢⎢⎢⎢⎣

b c 0 0 0 . . .

a b c 0 0
0 a b c 0
0 0 a b c
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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and progeny generating vector G(·). We assume that a, c > 0 and that there exists
a constant B < ∞ such that

(6.2) Ak,ij = ∂2Gk(s)

∂si∂sj

∣∣∣∣
s=1

≤ B for all k, i, j ≥ 0.

Apart from these assumptions, we impose no other condition on {Zn}. We now
consider a modification of {Zn}, which we denote by {Z〈u〉

n } for some parameter
u ≥ 1, whose progeny generating vector, G〈u〉(s), is given by

(6.3)

G
〈u〉
i (si−1, si, si+1) = 1

�ui�Gi

(
si−1, si, s

�ui�
i+1

)

+
(

1 − 1

�ui�
)
Gi(si−1, si,1), i ≥ 0.

This modification decreases the probability that a type-i individual has any type-
(i + 1) offspring by a factor of 1/�ui�, but when the type-i individual does have
type-(i + 1) offspring, their number is increased by a factor of �ui�, which causes
the mean progeny matrix to remain unchanged. Before providing results on the
extinction of {Z〈u〉

n }, we require the following lemma on branching processes with
the tridiagonal mean progeny matrix (6.1).

LEMMA 9. Suppose {Zn} has a mean progeny matrix given by (6.1), then
q̃ = 1 if and only if

(6.4) b < 1 and (1 − b)2 − 4ac ≥ 0,

and when (6.4) holds

(6.5) μk ↗ μ := 1 − b −√
(1 − b)2 − 4ac

2a
as k → ∞.

Note that the partial extinction criterion (6.4) was given previously in [18] and
is implied by [8], Theorem 1. We are now in a position to characterise the global
extinction probability of {Z〈u〉

n }.

PROPOSITION 1. Consider the branching processes {Z〈u〉
n } defined in Exam-

ple 1, and suppose b < 1 and (1 − b)2 − 4ac > 0. If μ < 1 then q = 1, whereas if
μ ≥ 1, then

u > μ ⇒ q = 1 and u < μ ⇒ q < 1,

where μ is given in (6.5).

An important sub-case of Example 1 is u = 1, the set of unmodified branching
processes. Note that this is the only case where the second moments of the off-
spring distributions are uniformly bounded. For this sub-class of processes, when
combined with Lemma 5, Proposition 1 yields the following.
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FIG. 4. The mean progeny representation graph corresponding to Example 2.

COROLLARY 3. If u = 1 and (4.3) holds then q = 1 if and only if μ ≤ 1.

EXAMPLE 2. Let {Zn} have a mean progeny matrix M such that M0,1 = 1,
and for i ≥ 1,

(6.6) Mi,i−1 = γ
i + 1

i
and Mi,i+1 = (1 − γ )

i + 1

i
, 0 ≤ γ ≤ 1,

with all remaining entries being 0. The mean progeny representation graph cor-
responding to this process is illustrated in Figure 4. We assume that there exists
B < ∞ such that Ak,ij ≤ B for all i, j, k ≥ 0 and that infk

∑
v:vk+1≥2 pk(v) > 0.

For this example, it is not difficult to show that ξ(M) = 1 if and only if ν(M) ≤
1, which is the case for a range of values of γ , as we shall see.

PROPOSITION 2. For the set of branching processes described in Example 2,
q = 1 if and only if γ = 0.

Proposition 2 states that the process experiences almost sure global extinction
if and only if type-i individuals can only have type-(i + 1) offspring, that is, if it
coincides exactly with the embedded GWPVE.

We choose

Gk(s) =

⎧⎪⎪⎨
⎪⎪⎩

1

4
s4

1 + 1

4
, k = 0,

k + 1

4k

(
γ sk−1 + (1 − γ )sk+1

)4 + 3k − 1

4k
, k ≥ 1,

which satisfies (6.6), and in Figure 5 we plot q
(8000)
0 ≈ q0 and q̃

(8000)
0 ≈ q̃0 for γ ∈

[0,1]. Although we proved that q0 = 1 when γ = 0, we observe that q
(8000)
0 ≈ 0.95

for this value of γ . This is because, when γ = 0, Theorem 5.2 implies

q0 − q
(k)
0 ∼

(
k∑

�=0

1

�

)−1

∼ log−1(k),

so the convergence of q(k) to q = 1 is slow. For GWPVEs with q < 1, little atten-
tion has been paid to this convergence rate in the literature, so for this example not
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FIG. 5. The extinction probabilities q
(8000)
0 (solid) and q̃

(8000)
0 (dashed) for γ ∈ [0,1].

much can be said when γ > 0. Using Lemmas 7 and 8, we numerically determine
that q̃ = 1 if and only if γ ≤ γ ∗ where

(6.7) γ ∗ = max{γ : 0 < μk < ∞ ∀k ≥ 0} ≈ 0.1625.

Note that in this particular example a sufficient condition for q̃ = 1 is the existence
of some k such that μk < μk−1 (see the proof of Proposition 2). Thus, γ ∗ can
be evaluated particularly efficiently. Given q

(8000)
0 ≤ q0 ≤ q̃0 ≤ q̃(8000), by visual

inspection, the curves of partial and global extinction seem to merge from some
value of γ ; however, the cut-off is not clear and further analysis is required to pin-
point the precise value. We are also interested in understanding whether this value
depends only on the mean progeny matrix or whether other offspring distributions
lead to different values. We address these questions in the next section.

7. Strong local survival. Each irreducible infinite-type branching process
falls into one of the four categories q = q̃ = 1, q < q̃ = 1, q < q̃ < 1 or q = q̃ < 1.
The results in the previous section deal with the classification of LHBPs with
q̃ = 1. In the present section, we build on these results to establish a method
for determining whether LHBPs with q̃ < 1 experience strong local survival
(q = q̃ < 1), or nonstrong local survival (q < q̃ < 1). Other attempts at distin-
guishing between these two cases can be found, for instance, in [6, 7] and [25].

For any k ≥ 0, we partition M into four components,

M =
[
M̃(k) M̄12

M̄21
(k)M̃

]
,

where M̃(k) is of dimension (k + 1) × (k + 1) and the other three submatrices are
infinite. We then construct a LHBP branching processes on (�,F,P), denoted as
{(k)Z̃n}, with mean progeny matrix (k)M̃ , and global and partial extinction proba-
bility vectors (k)q and (k)q̃ , respectively. Sample paths of {(k)Z̃n} are constructed
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from those of {Zn} by immediately killing all offspring of type i ≤ k, and rela-
belling the types so that type i ≥ k + 1 becomes i − k − 1. We now use {(k)Z̃n} to
derive a criterion for strong local survival. In the next theorem, we let sp(·) denote
the spectral radius.

THEOREM 7.1. Assume that q̃ > 0, that there exists k ∈ N such that

(7.1) sp
(
M̃(k))> 1 and ν

((k)M̃
)≤ 1,

and that M̄21 contains a finite number of strictly positive entries. Then there is
strong local survival in {Zn} if and only if {(k)Z̃n} becomes globally extinct, that
is,

(7.2) q = q̃ < 1 if and only if (k)q = (k)q̃ = 1.

PROOF. We use [7], Theorem 4.2, which we restate using our notation: let
{Z(G)

n } and {Z(G∗)
n } be two branching processes on the countable type set X with

respective probability generating functions G(·) and G∗(·), and global extinction
probability vectors q and q∗. Let A ⊆ X be a nonempty subset of types and denote
by q(A) and q∗(A) the respective vectors of probability of local extinction in A.
If {Z(G)

n } and {Z(G∗)
n } differ on A only, that is, if Gi(s) = G∗

i (s) for all i ∈ X \ A

and Gi(s) �= G∗
i (s) for all i ∈ A, then

(7.3) q = q(A) ⇔ q∗ = q∗(A).

We apply this result with A = {0,1, . . . , k}, {Z(G)
n } = {Zn}, and {Z(G∗)

n } being such
that G∗

i (s) = 1 for all i ∈ A, that is, all types in A are sterile. We need to show that
(7.3) is equivalent to (7.2).

We first observe that q(A) = q̃ since, by (7.1), in {Zn}, types in X \ A are
only able to survive through the presence of types in A. Next, since types in A

are sterile in {Z(G∗)
n }, q∗ = q∗(A) if and only if q∗

i = q∗
i (A) for all i ≥ k + 1.

It is clear that (q∗
k+1, q

∗
k+2, . . .) = (k)q by construction. It remains to show that

(q∗
k+1(A), q∗

k+2(A), . . .) = 1. We couple the process {(k)Z̃n : ϕ0 = � − 1} and the

process {Z(G∗)
n : ϕ0 = k + �}, � ≥ 1. Let k + �̄ be the largest type in {Z(G∗)

n } able to
generate offspring in A. Then since ν((k)M̃) ≤ 1, with probability one there exists
a generation N such that (k)Z̃n,0 + · · · + (k)Z̃n,�̄ = 0 for all n ≥ N . This implies

that with probability one, Z
(G∗)
n,k+1 + · · · + Z

(G∗)
n,k+�̄

= 0 for all n ≥ N , which shows
(q∗

k+1(A), q∗
k+2(A), . . .) = 1. �

When ν((k)M̃) ≤ 1, we may apply Theorem 5.1 to determine whether (k)q = 1.
We are now in a position to answer the questions posed at the end of the previous
section. The next result is proved in Appendix B.
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PROPOSITION 3. For the branching processes described in Example 2,

γ = 0 ⇒ q = q̃ = 1,

γ ∈ (0, γ ∗] ⇒ q < q̃ = 1,

γ ∈ (γ ∗,1/2
) ⇒ q < q̃ < 1,

γ ∈ (1/2,1] ⇒ q = q̃ < 1,

where γ ∗ is given in (6.7).

Proposition 3 demonstrates that the curves for partial and global extinction rep-
resented in Figure 5 merge at γ = 1/2 and that this value is independent of the
particular offspring distributions. At the critical value γ = 1/2, there exists no k

satisfying (7.1), causing this case to remain untreated.

8. Conclusion. Besides exploring the set of fixed points for LHBPs, we have
introduced a method of classifying LHBPs into one of the categories q = q̃ = 1,
q < q̃ = 1, q < q̃ < 1 or q = q̃ < 1. Through Examples 1 and 2, we showed that
our results can be used to rigorously determine which category the process falls
in; however, in practical situations where rigorous proofs may not be possible, our
results can still be applied computationally as a first step in classifying the process.

The inherent assumption in LHBPs is the constraint that individuals of type i

cannot give birth to offspring whose type is larger than i + m for m = 1. The
approach of embedding a GWPVE in the original LHBP can be extended to the
case where m takes any finite integer value. The resulting embedded GWPVE then
becomes multitype with m types. Results of Section 3 then naturally generalise,
but those of Section 4 rely on the characterisation of the m-dimensional projec-
tion sets of S, which is more difficult in this case. The global extinction criterion
discussed in Section 5 would now build upon extinction criteria for multi-type
GWPVE, which are less developed in the literature. These questions are the topic
of a subsequent paper [11].

APPENDIX A: PARTIAL EXTINCTION PROBABILITY

In this Appendix, we point out an error in Lemma 3.2 of [18] and reprove its
assertion under additional assumptions (Theorem A.1). Our arguments hold not
only for LHBPs but for more general MGWBPs with countably many types. Recall
that a process is singular if and only if

∑
v:|v|=1 pi(v) = 1 for all i ∈ X .

THEOREM A.1. If {Zn} is irreducible and nonsingular then q̃(k) ↘ q̃ compo-
nentwise as k → ∞.
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Before proving Theorem A.1, we briefly review Lemma 3.2 of [18]. This lemma
states that q̃(k) ↘ q̃ without the additional assumptions that the process is irre-
ducible and nonsingular. The key step in the proof of [18], Lemma 3.2, is the
assertion that

(A.1)
{
ω ∈ � : lim

n→∞ Z̃
(k)

n (ω) = 0
}

↘ Ep as k → ∞,

where Ep denotes the partial extinction event. If true, then by the monotone con-
vergence theorem, we may conclude that q̃(k) ↘ q̃ . To understand why equa-
tion (A.1) is incorrect, consider an outcome ω where a single infinite line of de-
scent appears in the population3 (for instance, the total population size is 1 in
all generations) whose type jn in successive generations n ≥ 0 follows the se-
quence 0,0,1,0,1,2,0,1,2,3,0,1,2,3,4,0, . . . . For this outcome, the single in-
finite line of descent returns to type 0 infinitely often so ω /∈ Ep , and its largest

type is unbounded so ω ∈ {ω ∈ � : limn→∞ Z̃
(k)

n (ω) = 0} for all k ∈ N. Thus

lim
k→∞

{
ω ∈ � : lim

n→∞ Z̃
(k)

n (ω) = 0
}

�= Ep.

Instead, the left-hand side of equation (A.1) converges down to

A :=
{
ω ∈ � : �(ϕ0; i1, j1, y1; . . .) ∈ X(ω) such that lim sup

n
jn < ∞

}
,

which is the set of outcomes such that no infinite line of descent with a finite
maximum type appears in the population. If ω ∈ Ep , then ω ∈ A, however, due to
outcomes such as the one described above, the converse is not true, therefore,

q̃
(k)
i ↘ Pi (A) = q̃i + Pi (A \ Ep).

Thus q̃(k) converges to q̃ if and only if the measure of the (nonempty) set A \Ep is
zero for all Pi , i ∈ X . One subclass of infinite-type processes where this does not
hold is the class of singular branching processes that correspond to recurrent irre-
ducible Markov chains with state space X . Indeed, as these processes are recurrent,
P(Ep) = 0. As they are also irreducible, with probability one, every state i ∈ X is
visited infinitely often; this means that with probability one, the single infinite line
of descent which appears in the population does not have finite maximum type,
leading to P(A) = 1. We thus have P(A \ Ep) = 1.

Theorem A.1 implies that the only irreducible branching processes for which
P(A \ Ep) > 0 are those that correspond to Markov chains on X (singular branch-
ing processes). Below we do note make use of the set A defined above, and instead
prove Theorem A.1 via a different method.

3We say that the infinite line of descent x = (ϕ0; i1, j1, y1; i2, j2, y2; . . .) appears in the popu-
lation in outcome ω (i.e. x ∈ X(ω)) if and only if (ϕ0; i1, j1, y1; . . . ; in, jn, yn) ∈ X(ω) for every
n ∈N.
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PROOF. Fix some initial type i ∈ X . By construction, for every n ≥ 0 and
ω ∈ �, Z̃

(k)

n (ω) is increasing in k, which implies q̃
(k)
i is decreasing in k. Similarly,

if {Z̃(k)

n } survives globally, then at least one type j ∈ {1, . . . , k} must survive in
{Zn}, which implies q̃

(k)
i ≥ q̃i for all k. We may then assume q̃i < 1.

Because {Zn} is irreducible, [11], Corollary 1, implies that q̃i is equal to the
probability that type i eventually disappears from the population. We define a
function f (i) : J → J that takes lines of descent (ϕ0; i1, j1, y1; . . . ; in, jn, yn) and
deletes each triple whose type j(·) is not equal to i, and we define the processes

{V (i)
� }�≥0 and {Ṽ (i,k)

� }�≥0, whose family trees are given by f (i)(X) and f (i)(X̃(k)),
respectively. These are single-type Galton–Watson processes that become extinct

if and only if type i becomes extinct in {Zn} and {Z̃(k)

n }. Thus, given ϕ0 = i the
probability that {V (i)

� } becomes extinct is q̃i , and the probability that {Ṽ (i,k)
� } be-

comes extinct is greater than or equal to q̃
(k)
i (if {Z̃(k)

n } is reducible there may be

a positive chance type i dies out but {Z̃(k)

n } survives globally). Note that {V (i)
� }�≥0

and {Ṽ (i,k)
� }�≥0 are subject to explosion, however this makes no difference in the

sequel.
Because {Zn} is irreducible and nonsingular, {V (i)

� } is nonsingular, that is, there

is positive chance that individuals in {V (i)
� } have a total number of offspring differ-

ent from 1. Thus, with probability 1, {V (i)
� } experiences extinction or unbounded

growth ([17], Chapter I, Theorem 6.2). For any K > 0, we then have

(A.2) lim
�→∞ Pi

(
V

(i)
� ≥ K

)= 1 − q̃i .

Observe that, for any fixed h ∈ N and K > 0,{
ω ∈ � : Ṽ (i,1)

h (ω) ≥ K
}⊆ {

ω ∈ � : Ṽ (i,2)
h (ω) ≥ K

}
⊆ {

ω ∈ � : Ṽ (i,3)
h (ω) ≥ K

}⊆ · · ·
and

(A.3) lim
k→∞

{
ω ∈ � : Ṽ (i,k)

h (ω) ≥ K
}= {

ω ∈ � : V (i)
h (ω) ≥ K

}
.

To understand (A.3) observe that if ω ∈ {ω ∈ � : V
(i)
h (ω) ≥ K}, then there exists

at least K lines of descent (ϕ0; i1, j1, y1; . . . ; in, jn, yn) ∈ X(ω) such that the type
jn = i is the hth return to i (where n is not necessarily the same for each of these
K lines of descent). By construction, the maximum type on each of these lines of
descent is finite. Thus letting km denote the maximum of the maximum type on
K arbitrarily selected such lines of descent, we see that ω ∈ {ω ∈ � : Ṽ (i,km)

h (ω) ≥
K}. We may now apply the monotone convergence theorem to obtain, for any
h ∈ N,

(A.4) lim
k→∞ Pi

(
Ṽ

(i,k)
h ≥ K

)= Pi

(
V

(i)
h ≥ K

)
.
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The probability that {Ṽ (i,k)
� }�≥0 becomes extinct is equal to that of {Ṽ (i,k)

h� }�≥0,

which is less than or equal the probability of extinction q̃
(k,h,K)
i of the Galton–

Watson branching process with progeny generating function

G(s) = 1 − Pi

(
Ṽ

(i,k)
h ≥ K

)+ sKPi

(
Ṽ

(i,k)
h ≥ K

)
.

Therefore, q̃
(k)
i ≤ q̃

(k,h,K)
i . Observe that for any fixed p ∈ (0,1] the probability of

extinction in a Galton–Watson process with progeny generating function G(s) =
1 − p + psK converges monotonically to 1 − p as K → ∞ (to see why note
that for any 0 < η < p there exists K large enough to ensure G(1 − p + η) =
(1 − p) + p((1 − p) + η)K ≤ 1 − p + η).

We are now in a position to show that for any ε > 0 there exists ki such that
q̃

(ki )
i < q̃i + ε. Given a process with partial extinction probability q̃i < 1 and some

0 < ε < 1 − q̃i , we select K by setting it large enough to ensure that a Galton–
Watson branching process with progeny generating function G(s) = (q̃i + ε/2) +
(1 − (q̃i + ε/2))sK has extinction probability less than q̃i + ε. By (A.2), for this
value of K , we may select h large enough to ensure |Pi (V

(i)
h ≥ K) − (1 − q̃i)| <

ε/4. By (A.4), for these values of K and h we may select ki large enough to
ensure |Pi (V

(i)
h ≥ K) − Pi (Ṽ

(i,ki )
h ≥ K)| < ε/4. By the triangle inequality and

the preceding discussion, for these values of ki , h and K , we have q̃i ≤ q̃
(ki )
i ≤

q̃
(ki ,h,K)
i < q̃i + ε. The result then follows from the fact q̃

(k)
i is decreasing in k.

�

APPENDIX B: PROOFS RELATED TO THE EXAMPLES

PROOF OF LEMMA 9. Because (6.4) holds, Lemma 7 gives

(B.1) μ0 = c

1 − b
and μk = c

1 − b − aμk−1
for all k ≥ 0.

Because μ1 > μ0 and

μk − μk−1 = c

1 − b − aμk−1
− c

1 − b − aμk−2
,

by induction the sequence {μk}k≥0 is strictly positive and increasing. Therefore,
since a > 0, q̃ = 1 implies that {μk} converges to a finite limit μ, where μ satisfies
the equation ax2 − (1 − b)x + c = 0, which has real solutions

x± = 1 − b ±√
(1 − b)2 − 4ac

2a
,

since (6.4) holds. When (6.4) holds, we have μ0 ≤ x− which, combined with (B.1)
and the fact that x− = c/(1 − b − ax−), implies μk ≤ x− for all k ≥ 0, hence
μk ↗ μ = x−. �
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PROOF OF PROPOSITION 1. Let � = (1 − b)2 − 4ac > 0. First, suppose
u > μ. In this case, we have

1 − q
(k)
0 = E0(Yk)

E0(Yk|Yk > 0)
≤ μk

uk−1 ,

where E0(Yk) ≤ μk follows from Lemma 9 and E0(Yk|Yk > 0) ≥ uk−1 follows
from the fact that the minimum number of type-k offspring born to a type-(k − 1)

parent is �uk−1�. This then implies

1 − q0 = 1 − lim
k→∞q

(k)
0 ≤ lim

k→∞
μk

uk−1 = 0

and, therefore, q = 1 by irreducibility.
Now suppose 1 ≤ u < μ. Note that A

〈u〉
k,ij = Ak,ij for all i, j with the exception

of A
〈u〉
k,(k+1)(k+1) = �uk�Ak,(k+1)(k+1) + c(�uk� − 1). Then, by Lemma 7,

ak = aμ2
kak−1 + �uk�Ak,(k+1)(k+1) + O(1)

1 − b − aμk−1

≤ aμ2ak−1 + B�uk� + O(1)

1 − b − aμ

= ak−1μ
a 1−b−�1/2

2a

1 − b − a 1−b−�1/2

2a

+ B∗uk + O(1)

= ak−1μ
1 − b − �1/2

1 − b + �1/2 + B∗uk + O(1),

for all k ≥ 0 and some B∗ < ∞, which implies

ak = O
([

max
{
u,μ

(
1 − b − �1/2)/(1 − b + �1/2)}]k).

By assumption, � > 0 and u < μ, thus max{u,μ1−b−�1/2

1−b+�1/2 } < μ. Using the fact
that μk ↗ μ and the root test, we then obtain

∞∑
k=0

ak

μkm0→k

< ∞,

which, by the upper bound in Theorem 5.2, gives q0 < 1. �

PROOF OF COROLLARY 3. It remains to show q = 1 when μ = 1. Lemma 5
implies P0(Yk → 0) + P0(Yk → ∞) = 1 and Lemma 9 implies E0(Yk) =∏k−1

i=0 μi ≤ 1 for all k, leading to P0(Yk → ∞) = 0 and the result. �
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PROOF OF PROPOSITION 2. If γ = 0, then μ0 = M0,1 = 1, and for k ≥ 1,
μk = (k + 1)/k. This gives m0→k = k + 1 and, therefore,

∞∑
k=0

1

m0→k

=
∞∑

k=1

1

k
= ∞.

By assumption, when γ = 0 the conditions Theorem 5.1 are satisfied, which then
implies q = 1.

Now suppose γ > 0. By Lemma 7, for k ≥ 1,

(B.2) μk = fk(μk−1) :=
k+1
k

(1 − γ )

1 − k+1
k

γμk−1
.

If there exists k such that μk > 1/γ , then by Lemma 8 we have q ≤ q̃ < 1. Assume
from now on that q̃ = 1, which implies that 0 ≤ μk ≤ 1/γ < ∞ for all k, and
γ < 1/2. Since μ0 = M0,1 = 1, using equation (B.2) we can inductively show that
μk ≥ 1 for all k ≥ 0. We then have, for any k ≥ 1,

(B.3) μk ≥
k+1
k

(1 − γ )

1 − k+1
k

γ
≥ 1 + 1

k(1 − γ )
.

The Raabe–Duhamel test for convergence ensures that
∑∞

k=0(1/m0→k) < ∞,
since for k ≥ 1,

k

(
(1/m0→(k−1))

(1/m0→k)
− 1

)
= k(μk − 1) ≥ 1

1 − γ
> 1.

To complete the proof, it remains to show that the condition supk ak/μk < ∞ in
Theorem 5.1 holds. By Lemma 7, for all k ≥ 1,

ak = ak−1γ
k+1
k

μ2
k

1 − γ k+1
k

μk−1

+ Ak,(k−1)(k−1)μ
2
k−1μ

2
k + 2Ak,(k−1)(k+1)μk−1μk + Ak,(k+1)(k+1)

1 − γ k+1
k

μk−1
.

Since q̃ = 1, the denominator is uniformly bounded away from 0; in addition, by
assumption, Ak,ij ≤ B < ∞ for all i, j, k ≥ 0, therefore, there exists some constant
K < ∞ independent of k such that

ak ≤ ak−1γ
k+1
k

μ2
k

1 − k+1
k

γμk−1
+ K.

If μk → 1 (which we show below), then for large k,

ak ≤
(

γ

1 − γ
+ o(1)

)
ak−1 + K.
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Since γ < 1/2, we have γ /(1 − γ ) < 1, which means that {ak} is a uniformly
bounded sequence. Combining this with the fact that μk ≥ 1 for all k implies
supak/μk < ∞, and q < 1 by Theorem 5.1.

Finally, we prove that μk → 1. Observe that (B.2) implies that if μk < μk−1 for
some k, then μk+1 < μk , and thus μ = limk→∞ μk exists since 1≤μk ≤ 1/γ for
all k. Taking k → ∞ in (B.2), we obtain that μ satisfies

μ = 1 − γ

1 − γμ
:= f (μ),

which means μ is either 1 or (1 − γ )/γ > 1. The function f (x) is convex, thus
f (x) > x for all x > (1 − γ )/γ ; in addition, by (B.2), μk+1 > f (μk) for all k ≥ 0.
These imply that if μk > (1 − γ )/γ for some k, then μk+� becomes negative
for some � > 1, which is a contradiction. So the sequence {μk} lives in the open
interval (1, (1 − γ )/γ ). Let

v
(k)
± = 1

2γ

[
k

k + 1
±
√(

k

k + 1

)2
− 4γ (1 − γ )

]

be the solutions of the equation x = fk(x). By the convexity of fk(x) for all k, if
there exists K ≥ 1 such that v

(K+1)
− < μK < v

(K+1)
+ then {μk}k≥K is a decreas-

ing sequence which converges to 1. Suppose μ = (1 − γ )/γ . Then μK ≥ v
(K+1)
+

for some K . We can then construct a LHBP, {Z∗
n}, stochastically smaller than

{Zn} by selecting a sufficiently large type K and independently killing each type-
(K +1) child born to a type-K parent with a probability carefully chosen to ensure
v

∗(K+1)
− < μ∗

K < v
∗(K+1)
+ . For this modified process, we have μ∗ = 1, and repeat-

ing previous arguments, we obtain q < q∗ < 1. �

PROOF OF PROPOSITION 3. Given Proposition 2 and Lemmas 7 and 8, it
remains to show that q < q̃ for γ ∈ (γ ∗,1/2) and q = q̃ for γ ∈ (1/2,1]. Note
that, in either case, since q̃ < 1, ∃K1 such that sp(M̃(k)) > 1 ∀k ≥ K1. In addition,

∀x > 1,∃K(x) s.t. Mk,k+1 < x(1 − γ ) and Mk,k−1 < xγ ∀k ≥ K(x).

Since γ �= 1/2, we may choose x̄ > 1 small enough so that 1 − 4x̄2(1 − γ )γ > 0.
By Lemma 9, this implies that ν((k)M̃) < 1 for all k ≥ K̄ := K(x̄), and

(K̄)μk ≤ 1 −
√

1 − 4x̄2(1 − γ )γ

2x̄γ

for all k ≥ 0, where {(K̄)μk}k≥0 is computed using (K̄)M̃ .
Assume first that γ ∈ (1/2,1]. Then (1 − √

1 − 4(1 − γ )γ )/(2γ ) < 1, so
we may choose x∗ ≤ x̄ small enough, corresponding to K∗ := K(x∗) ≥ K̄ , so
that (K∗)μk < 1 − ε for all k ≥ 0 and some ε > 0. Hence there exists K =
max{K1,K

∗} < ∞ satisfying the conditions of Theorem 7.1 with (K)q = (K)q̃ = 1.
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Now suppose γ ∈ (c,1/2). If for any K > K̄ , there exists k1 ≥ 0 such that
(K)μk1 ≥ 1, then by the recursion (B.2) we have (K)μk ≥ 1 + 1/(k(1 − γ )), for all
k > k1, and the result is derived by repeating the steps that follow equation (B.3)
in the proof of Proposition 2. Suppose instead that there exists K > K̄ such that
(K)μk < 1 for all k ≥ 0. Then by equation (B.2), we have (K)μk−1 < 1− 1/(γ (k +
1)), which implies

(B.4)
∞∏
i=0

(K)μi = 0.

To show that this leads to a contradiction, we compare M to a matrix M∗ with
strictly smaller entries than M : M∗ is such that M∗

0,1 = 1 − γ , and for all k ≥ 1,
M∗

k,k−1 = γ and M∗
k,k+1 = 1 − γ , with all other entries 0. The value of

∏∞
i=0 μ∗

i ,
with {μ∗

i }i≥0 computed using M∗, then has a probabilistic interpretation: it is the
probability that a simple random walk on the integers, with transition probabilities
p+ = 1 − γ > p− = γ , whose initial value is 0, never hits −1. When 1 − γ > γ , it
is well known that this value is nonzero. By the fact that (K)M > M∗, we then have
(K)μi > μ∗

i for all i ≥ 0, which implies
∏∞

i=0
(K)μi >

∏∞
i=0 μ∗

i > 0, contradicting
(B.4). �
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