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REDUCED-FORM FRAMEWORK UNDER MODEL UNCERTAINTY

BY FRANCESCA BIAGINI1 AND YINGLIN ZHANG

University of Munich

In this paper, we introduce a sublinear conditional expectation with re-
spect to a family of possibly nondominated probability measures on a pro-
gressively enlarged filtration. In this way, we extend the classic reduced-form
setting for credit and insurance markets to the case under model uncertainty,
when we consider a family of priors possibly mutually singular to each other.
Furthermore, we study the superhedging approach in continuous time for
payment streams under model uncertainty, and establish several equivalent
versions of dynamic robust superhedging duality. These results close the gap
between robust framework for financial market, which is recently studied in
an intensive way, and the one for credit and insurance markets, which is lim-
ited in the present literature only to some very specific cases.

1. Introduction. In this paper, we study the problem of defining a sublinear
conditional operator with respect to a progressively enlarged filtration and a family
of probability measures possibly mutually singular to each other. In this way, we
are able to derive a consistent reduced-form framework for credit and insurance
markets under model uncertainty. It is well known that the reduced-form frame-
work can be used for credit risk modeling, for life insurance modeling and for any
context where the intensity of occurrence related to a random event of particular
interest is deducible from the reference information, but the occurrence itself is
not. While robust framework for financial markets has been intensively studied, a
corresponding analysis for credit and insurance markets is still missing. The con-
tribution of the paper is hence manifold. As the main result, we extend the classic
reduced-form or intensity-based framework in [10] to the case under model un-
certainty and introduce a sublinear conditional expectation on a filtration enlarged
progressively by a random event, in a way consistent with the construction in [34]
on the canonical space endowed with the natural filtration. Second, we note that
credit and insurance contracts are typically payment streams, hence we study here
for the first time the problem of superhedging for payment streams in continuous
time under model uncertainty. Several equivalent dynamic robust superhedging
dualities for payment streams are provided. In view of these superhedging results,
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the constructed sublinear conditional expectation can be considered as a pricing
operator.

In the existing literature for credit risk and insurance modeling, there are sev-
eral papers which deal with model uncertainty, but only with dominated probability
family, for example, [12, 24] and [25]. When a generic family of possibly mutu-
ally singular probability measures is taken into account, the main problem of the
underlying stochastic analysis is the aggregation of stochastic notions defined tra-
ditionally only under one prior (e.g., conditional expectation, stochastic integral,
semimartingale decomposition) into one independent of the underlying measure;
see, for example, the discussion in [44]. There are many independent results us-
ing different approaches, such as capacity theory, stochastic control technique etc.,
which have been applied to financial market modeling; see, for example, [1, 9,
15–17, 20, 23, 26, 30, 36, 38, 45] and [49]. A pathwise solution is provided in, for
example, [29, 31] and [34]. However, the above results hold only on the canonical
space endowed with the natural filtration F and do not allow filtrations with depen-
dency structure. This problem is mentioned in [2] and solved for initial enlarge-
ment of filtration. However, the case of enlargement of filtration by introducing a
totally inaccessible jump with F-adapted intensity remains an open problem. This
case is particularly relevant to describe an event which occurs as a surprise but
admits observable occurrence intensity under the reference filtration F, as in the
case of the default of a financial institute or the decease of a person. The existing
construction of sublinear conditional expectation on F relies on the properties of
the natural filtration of the canonical space and cannot be directly extended to a fil-
tration G progressively enlarged by a random jump. In order to solve this problem,
we construct the filtration G according to the canonical way in Section 6.5 of [10].
Properties of this canonical construction allow the construction of a G-sublinear
conditional expectation, which is consistent with the one in [34] if restricted to F.
However, there are several additional technical difficulties in comparison to the
construction on the canonical space. In particular, in order to be well defined, the
G-sublinear conditional expectation requires integrability conditions, which are
not necessary for the pathwise construction in [34]. This also implies that this ex-
tended sublinear operator only satisfies a weak version of dynamic programming
principle or tower property in the general case, as in [35], as well as that it does not
preserve integrability. However, the classic tower property and integrability invari-
ance are shown to be satisfied in all cases of most common credit and insurance
contracts. In Appendix B, we discuss further sufficient conditions, which guaran-
tee the classic tower property. We refer to Section 2.3, Appendices A and B for a
thorough discussion on these issues.

Furthermore, we analyze for the first time the superhedging problem for a
generic payment stream under model uncertainty and in continuous time. Super-
hedging dualities within the context of nondominated probability family have been
intensively studied in recent years, for example, [4, 18, 21, 22, 27, 32, 33] and [41].
However, duality results achieved in these papers are mostly limited to the initial
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time and can be applied only to contingent claims. The superhedging problem
for a generic payment stream, which is typically the case of credit or insurance
cash flows, is studied only without model uncertainty and mostly in discrete time,
for example, [19, 39] and [40]. Here we investigate dynamic robust superhedging
duality for a generic payment stream in continuous time with respect to a nondom-
inated probability family. Still in a dynamic way, we define separately global and
local superhedging strategies and prices, which we are able to determine as a con-
sequence of our duality results. These results are first shown in standard setting and
then extended to the robust reduced-form framework. In view of the superhedging
results, the constructed G-sublinear conditional expectation can be considered as
a pricing operator for insurance and credit risk products. We would like to empha-
size that our definitions and results hold without changes also in the case without
model uncertainty, that is, when a specific prior is considered.

The paper is organized as follows. In Section 2, we construct a consistent robust
reduced-form framework based on the canonical construction in [10]. As the main
result, we define explicitly sublinear conditional expectation on the progressively
enlarged filtration and analyze its properties. The constructed operator is then ap-
plied to the valuation of credit and insurance contracts. In Section 3, we formulate
the robust superhedging problem for payment streams in continuous time. We de-
termine the robust superhedging price and prove the existence of optimal robust
superhedging strategies first in the standard setting on the canonical space with
the natural filtration and then in the reduced-form framework. In Appendix A, we
provide a counterexample showing that the classic tower property does not hold in
full generality, while in Appendix B, we state sufficient conditions beside the ones
in Section 2, which guarantee the validity of the tower property.

2. Reduced-form framework under model uncertainty. In this section, we
introduce the reduced-form setting under model uncertainty. We note that, the stan-
dard framework under model uncertainty considers only the canonical space en-
dowed with the natural filtration, and do not allow to treat more general filtrations;
see [2] for a discussion on this point. In [2], the case of initial enlargement is solved
while the case of progressive enlargement of filtration remains open. This issue
arises in credit and insurance market modeling, when we want to model an event
which occurs as a surprise and is itself not observable under the reference infor-
mation flow, represented by a filtration F, but has an F-adapted intensity process.
Here we propose a solution for this problem by using the canonical construction in
Section 6.5 of [10] to introduce a random time τ̃ , which is not an F-stopping time
but admits an F-adapted intensity, and extend the concept of sublinear conditional
expectation on the filtration progressively enlarged by this random time. We first
recall the setting in [34].
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2.1. (P,F)-conditional expectation. Let � = D0(R+,Rd) be the space of
càdlàg functions ω = (ωt )t≥0 in R

d which start from zero. Equipped with a met-
ric induced by the Skorokhod topology, � is a Polish space, that is, a complete
separable metrizable space. We denote by F := B(�) the Borel σ -algebra and by
P(�) the set of all probability measures on (�,F). On P(�), we consider the
topology of weak convergence. According to Prokhorov’s theorem (see, e.g., [11,
14] and [42]), P(�) inherits from � the property of being a Polish space with the
Lévy–Prokhorov metric.

We consider the canonical process B := (Bt )t≥0, where Bt(ω) := ωt , t ≥ 0, and
denote its raw filtration by F = (Ft )t≥0. It is easy to see that F0 = {∅,�} and
F∞ := ∨

t≥0 Ft = F . For every P ∈ P(�) and t ∈ R+, we denote by N P
t the

collection of sets which are (P,Ft )-null and define

F∗
t := Ft ∨N ∗

t , N ∗
t := ⋂

P∈P(�)

N P
t .

The corresponding universally completed filtration is denoted by F
∗ := (F∗

t )t≥0.
Furthermore, for every P ∈ P(�) the usual P -augmentation is denoted by F

P+,
that is, FP+ is the right continuous version of FP := (FP

t )t≥0, with

FP
t := Ft ∨N P∞, t ≥ 0.

Trivially, the above enlargements of the raw filtration are ordered in the following
way:

(2.1) Ft ⊆ F∗
t ⊆ FP

t ⊆FP
t+, t ≥ 0,P ∈ P .

Let P ⊆ P(�) be a generic nonempty set, we define the following σ -algebra:

FP := F ∨NP∞, NP∞ := ⋂
P∈P

N P∞.

We denote by L0(�) the space of all real-valued FP -measurable functions and
define the upper expectation E : L0(�) → R associated to P by

(2.2) E(X) := sup
P∈P

EP [X], X ∈ L0(�),

where for every P ∈ P , we set EP [X] := EP [X+] − EP [X−] if EP [X+] or
EP [X−] is finite, and we use the convention EP [X] := −∞ if EP [X+] =
EP [X−] = +∞, as in [44].

REMARK 2.1. Throughout the paper, all results also hold if the space
D0(R+,Rd) is replaced by C0(R+,Rd), that is, the space of continuous functions
ω = (ωt )t≥0 in R

d which start from zero, equipped with the topology of locally
uniform convergence. Since there is no ambiguity, we keep the notations B and F

for the canonical process on C0(R+,Rd) and its natural filtration, respectively.
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We now recall the pathwise construction in [34] of conditional expectation on �

with respect to the filtration F and a family P ⊆ P(�) of probability measures. For
notational simplicity, we consider only the case when the parametrized families in
Assumption 2.1 of [34] have no dependence on the parameters. As noted in, for
example, [9, 29] and [32], the results in [34] hold both on the space D0(R+,Rd)

and on the space C0(R+,Rd).
We introduce the following notation according to [34]. Let τ be a finite-valued

F-stopping time and ω ∈ �. For every ω′ ∈ �, the concatenation ω ⊗τ ω′ :=
((ω ⊗τ ω′)t )t≥0 of (ω,ω′) at τ is given by

(2.3)
(
ω ⊗τ ω′)

t := ωt1[0,τ (ω))(t) + (
ωτ(ω) + ω′

t−τ(ω)

)
1[τ(ω),+∞)(t), t ≥ 0.

For every function X on �, we define the following function:

(2.4) Xτ,ω(
ω′) := X

(
ω ⊗τ ω′), ω′ ∈ �.

Similarly, for every probability measure P we set

P τ,ω(A) := P ω
τ (ω ⊗τ A), A ∈ B(�),

which is still a probability measure, where ω ⊗τ A := {ω ⊗τ ω′ : ω′ ∈ A} and P ω
τ

is the Fτ -conditional probability measure chosen to be

P ω
τ

(
ω′ ∈ � : ω′ = ω on

[
0, τ (ω)

]) = 1.

Furthermore, we recall that a set of a Polish space is called analytic if it is the
image of a Borel set of an other Polish space under a Borel-measurable mapping.
A R-valued function f on a Polish space is called upper semianalytic if {f > c} is
analytic for every c ∈ R. In particular, we note that all Borel sets are analytic and
all Borel-measurable functions are upper semianalytic.

ASSUMPTION 2.2. For every finite-valued F-stopping time τ , the family P
satisfies the following conditions:

1. measurability: the set P ∈ P(�) is analytic;
2. invariance: P τ,ω ∈ P for P -a.e. ω ∈ �;
3. stability under pasting: for every Fτ -measurable kernel κ : � → P(�)

such that κ(ω) ∈ P for P -a.e. ω ∈ �, the following measure

P(A) :=
∫∫

(1A)τ,ω
(
ω′)κ(

dω′;ω)
P(dω), A ∈ B(�),

still belongs to P .

REMARK 2.3. As shown in [29], Assumption 2.2 is satisfied when the family
P is generated by all semimartingale laws with differential characteristics taking
values in a Borel-measurable set θ ⊆ R

d × S
d+ × L, where S

d+ is the set of sym-
metric nonnegative definite (d ×d)-matrices and L is the set of all Lévy measures.
In particular, this case includes the G-expectations introduced in [36].
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The following proposition is a special case of Theorem 2.3 of [34], when we
restrict our attention to one family P satisfying Assumption 2.2.

PROPOSITION 2.4. Under Assumption 2.2, for all finite-valued F-stopping
times σ , τ such that σ ≤ τ and for every upper semianalytic function X on �, the
function Eτ (X) defined by

(2.5) Eτ (X)(ω) := E
(
Xτ,ω) = sup

P∈P
EP [

Xτ,ω]
, ω ∈ �

is F∗
τ -measurable, upper semianalytic and satisfies the following consistency con-

dition:

(2.6) Eτ (X) = ess supP

P ′∈P(τ ;P)

EP ′ [X|Fτ ] P -a.s. for all P ∈ P,

where P(τ ;P) := {P ′ ∈ P : P ′ = P on Fτ }. Furthermore, the tower property
holds, that is,

(2.7) Eσ (X)(ω) = Eσ

(
Eτ (X)

)
(ω) for all ω ∈ �.

DEFINITION 2.5. We call the family of sublinear conditional expectations
(Et )t≥0 (P,F)-conditional expectation.

In the special case of G-setting introduced in [36], G-martingales are càdlàg;
see, for example, [48]. However, under generic assumptions, the process
(Et (X))t≥0 with X upper semianalytic is not always càdlàg. In the following
proposition, we show an independent result which gives sufficient conditions for
having (Et (X))t≥0 càdlàg. We recall that by Prokhorov’s theorem, a family of
probability measures is tight if and only if its weak closure is compact. In particu-
lar, the probability measure family which generates the G-expectation is tight; see,
for example, Proposition 49 in [15].

PROPOSITION 2.6. If P is a tight family satisfying Assumption 2.2 and X is
an upper semianalytic function on � which is bounded and continuous P -a.s. for
all P ∈ P , then the process (Et (X))t≥0 is càdlàg.

PROOF. Let A ∈ B(�) be a set such that X is bounded and continuous on A

and P(Ac) = 0 for every P ∈ P . We start with the right continuity. Let t ≥ 0 and
(tn)n∈N be a sequence in R such that tn ↓ t . We want to show that for all ω ∈ �,

Et (X)(ω) = lim
n→∞Etn(X)(ω).

Consider ω ∈ �. By definitions (2.5) and (2.4), we have

Et (X)(ω) = E
(
Xt,ω) = sup

P∈P
EP [

Xt,ω] = sup
P∈P

∫
X

(
ω ⊗t ω′)P (

dω′).
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For fixed t and ω, we define the concatenation function ct,ω : � → � by
ct,ω(ω′) := ω ⊗t ω′, ω′ ∈ �. This function is uniformly continuous in ω′ with
respect to Skorokhod topology on � = D0(R+,Rd).2 Namely, if we denote by d

the distance induced by Skorokhod topology on �, we have that for every ε > 0,
there is a δ > 0 such that for all ω′,ω′′ ∈ � with d(ω′,ω′′) < δ, it holds

d
(
ω ⊗t ω′,ω ⊗t ω′′) < ε.

Indeed, it is sufficient to take δ = ε. We note that δ = ε does not depend on the
choice of t , hence in particular the sequence of functions (ctn,ω)n∈N is equicontin-
uous. Furthermore, the sequence (ctn,ω)n∈N converges to ct,ω pointwisely,

d
(
ω ⊗tn ω′,ω ⊗t ω′) n→∞−−−→ 0 for all ω′ ∈ �,

since D0(R+,Rd) is the space of càdlàg paths. Hence, by the Ascoli–Arzelà the-
orem, the sequence (ctn,ω)n∈N converges to ct,ω uniformly on every compact set
K ⊆ �, that is, we have

sup
ω′∈K

d
(
ctn,ω(

ω′), ct,ω(
ω′)) = sup

ω′∈K

d
(
ω ⊗tn ω′,ω ⊗t ω′) n→∞−−−→ 0.

In particular, given a compact set K ∈ B(�), the composition Xt,ω = X ◦ ct,ω is
bounded and continuous on A ∩ K , and Xt,ω is the uniform limit of (Xtn,ω)n∈N,
that is, for every ε > 0, there is N ∈ N such that for all n ≥ N ,∣∣X(

ω ⊗tn ω′) − X
(
ω ⊗t ω′)∣∣ < ε for every ω′ ∈ A ∩ K.

As a consequence, on one hand, for every n ∈ N, the function f n defined
by f n(P ) := EP [Xtn,ω], P ∈ P(�), is continuous in P with respect to Lévy–
Prokhorov metric on P(�), since it coincides with the metric induced by weak
convergence of measures. Hence the restriction f n|P is still continuous. On the
other hand, the tightness of P yields that there is a compact set K ∈ B(�) such
that P(Kc) < ε

4C
for all P ∈ P , where C is such that |X(ω)| ≤ C for every ω ∈ A.

For n big enough, since Xt,ω is the P -a.s. uniform limit of (Xtn,ω)n∈N on A ∩ K ,
we have ∣∣EP [

Xtn,ω] − EP [
Xt,ω]∣∣

≤ EP [∣∣Xtn,ω − Xt,ω
∣∣]

= EP [
1A∩K

∣∣Xtn,ω − Xt,ω
∣∣] + EP [

1A\K
∣∣Xtn,ω − Xt,ω

∣∣]
<

ε

2
+ ε

4C
· 2C = ε for all P ∈ P .

2Or locally uniform convergence on � = C0(R+,Rd).
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Hence for all ω ∈ �,

E
(
Xt,ω) = sup

P∈P
EP

[
lim

n→∞Xtn,ω
]

= sup
P∈P

lim
n→∞EP [

Xtn,ω]
= lim

n→∞ sup
P∈P

EP [
Xtn,ω] = lim

n→∞E
(
Xtn,ω)

.

A similar argument also shows the existence and finiteness of the left limit, which
concludes the proof. �

REMARK 2.7. Proposition 4.5 of [33] introduces a family of sublinear opera-
tors depending on a filtration different from F

∗, that is,(
Ft+ ∪NP

T

)
t∈[0,T ],

where NP
T is the collection of sets which are (P,FT )-null for all P ∈ P . In this

way, the resulting sublinear operator is càdlàg in t . However, for the applications
which we consider in this paper, it is fundamental to work with the filtration F

∗,
since it represents the information available to the agents.

2.2. Space construction. We keep the same notation in Section 2.1. In this
section, we follow the canonical space construction in Section 6.5 of [10] to intro-
duce a random time τ̃ , which is not an F-stopping time but has an F-progressively
measurable intensity process μ, to represent a totally unexpected default or de-
cease time under model uncertainty. Let �̂ be an additional Polish space equipped
with its Borel σ -algebra B(�̂). We now consider the product measurable space
(�̃,G) := (� × �̂,B(�) ⊗ B(�̂)), and use the notation ω̃ = (ω, ω̂) for ω ∈ �

and ω̂ ∈ �̂. The following standard conventions are made on the product space
(�̃,G). For every function or process X on (�,B(�)), we consider its natural im-
mersion into the product space, that is, X(ω̃) := X(ω) for all ω ∈ �, similarly for
(�̂,B(�̂)). For every sub-σ -algebra A of B(�), we consider its natural extension
A ⊗ {∅, �̂} as a sub-σ -algebra of G on the product space, similarly for sub-σ -
algebras of B(�̂). To avoid cumbersome notation, when there is no ambiguity,
A⊗ {∅, �̂} is still denoted by A.

On (�̂,B(�̂)), we fix a probability measure P̂ such that (�̂,B(�̂)), P̂ ) is an
atomless probability space, that is, there exists a random variable with an abso-
lutely continuous distribution, and let ξ be a Borel-measurable surjective random
variable

ξ : (
�̂,B(�̂), P̂

) → ([0,1],B([0,1])),
with uniform distribution, that is,

ξ ∼ U
([0,1]).

Without loss of generality, we assume B(�̂) = σ(ξ).
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REMARK 2.8. We note that the space (�̂,B(�̂), P̂ ) can be set canonically as([0,1],B([0,1]),U ([0,1])),
with ξ the identity function on [0,1].

We denote by P(�̃) the set of all probability measures on (�̃,G) and consider
the following family of probability measures

(2.8) P̃ := {
P̃ ∈ P(�̃) : P̃ = P ⊗ P̂ ,P ∈ P

}
.

On (�,B(�)), let � := (�t )t≥0 be a real-valued, F-adapted, continuous and
increasing process such that �0 = 0 and �∞ = +∞. In particular, � can be repre-
sented by

�t :=
∫ t

0
μs ds, t ≥ 0,

where μ := (μt )t≥0 is a nonnegative F-progressively measurable process such that
for all t ≥ 0 and for all ω ∈ �, ∫ t

0
μs(ω)ds < ∞.

We define

τ̃ : = inf
{
t ≥ 0 : e−�t ≤ ξ

} = inf{t ≥ 0 : �t ≤ − ln ξ}
on �̃ = � × �̂, with the convention inf∅ = ∞.

REMARK 2.9. An immediate consequence of the above assumptions is that
τ̃ (ω, ·) is a surjective function on R+ for every fixed ω ∈ �.

LEMMA 2.10. For every t ≥ 0, we have {τ̃ ≤ t} = {e−�t ≤ ξ}.

PROOF. We note that {e−�t ≤ ξ} ⊆ {τ̃ ≤ t} always holds. The other inclusion
follows from

τ̃ = min
{
s ≥ 0 : e−�s ≤ ξ

}
,

since � is continuous and nondecreasing. �

Under every P̃ ∈ P̃ , we define the P̃ -hazard process �P̃ := (�P̃
t )t≥0 by

�P̃
t := − ln P̃ (τ̃ > t |Ft ), t ≥ 0.

The following proposition is a natural but important consequence of the above
construction.
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PROPOSITION 2.11. The process � is a P̃ -a.s. version of P̃ -hazard process
�P̃ for every P̃ ∈ P̃ .

PROOF. By Lemma 2.10,

{τ̃ > t} = {
e−�t > ξ

}
for all t ≥ 0.

Hence for every t ≥ 0 and for every P̃ ∈ P̃ with P̃ = P ⊗ P̂ , it holds

e−�P̃
t (ω) = P̃ (τ̃ > t |Ft )(ω) = P̃

(
e−�t > ξ |Ft

)
(ω)

(i)= P̃
(
e−x > ξ

)|x=�t (ω) = P̂
(
e−x > ξ

)|x=�t (ω)

(ii)= e−x |x=�t (ω)

= e−�t (ω) for P̃ -a.e. ω,

where equality (i) follows from the independence between ξ and Ft under each
P̃ ∈ P̃ , and equality (ii) follows from the fact that ξ has uniform distribution on
(�̂, F̂, P̂ ). The continuity of � yields

�P̃ = � P̃ -a.s. for all P̃ ∈ P̃,

which concludes the proof. �

On the product space �̃, we consider the filtration H := (Ht )t≥0 generated by
the process H := (Ht)t≥0 defined by

Ht := 1{τ̃≤t}, t ≥ 0,

and the enlarged filtration G := (Gt )t≥0 defined by Gt := Ft ∨Ht , t ≥ 0. In partic-
ular, we have G = F∞ ⊗ σ(ξ) = H∞ ∨ F∞ = σ(τ̃ ) ∨ F∞. By construction, τ̃ is
an H-stopping time as well as a G-stopping time, but not an F-stopping time. The
filtration F can be interpreted as the reference information flow, while the filtra-
tion G represents the minimal information flow of the extended market including
default information. As in Section 2.1, for every P̃ ∈ P(�̃) we denote by G

∗, GP̃

and G
P̃+ the corresponding enlargements of the raw filtration G. Similar to (2.1),

we have

Gt ⊆ G∗
t ⊆ GP̃

t ⊆ GP̃
t+, t ≥ 0, P̃ ∈ P̃.

2.3. (P̃,G)-conditional expectation. In this section, we give a construction of
sublinear conditional expectations with respect to the filtration G and the family
of probability P̃ introduced in (2.8). These will be denoted by (Ẽt )t≥0 and called
(P̃,G)-conditional expectation. Such construction is motivated by the results in
Section 2.1 and should reflect the underlying structure of the space construction in
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Section 2.2. According to, for example, [13, 34, 44, 46] and [47], the family (Ẽt )t≥0
should satisfy the following necessary consistency condition: for every t ≥ 0 and
G-measurable function X̃ on �̃,

(2.9) Ẽt (X̃) = ess supP̃

P̃ ′∈P̃(t;P̃ )

EP̃ ′ [X̃|Gt ] P̃ -a.s. for all P̃ ∈ P̃,

where P̃(t; P̃ ) := {P̃ ′ ∈ P̃ : P̃ ′ = P̃ on Gt }. We emphasize that this cannot be done
by using exactly the same method proposed in [34] and summarized in Section 2.1,
even if we choose �̂ = D0(R+,Rd) or �̂ = C0(R+,Rd). Indeed, the approach
in [34] is based on some special properties of the natural filtration generated by
the canonical process, for example, Galmarino’s test, which the filtration G does
not have. Nevertheless, we are able to extend the results of [34] to the setting of
Section 2.2, and construct a consistent (P̃,G)-conditional expectation. As in [35],
we show that the family (Ẽt (X̃))t≥0 satisfies a weak form of time-consistency,
called also dynamic programming principle or tower property, that is,

(2.10) Ẽs

(
Ẽt (X̃)

) ≥ Ẽs(X̃) for all 0 ≤ s ≤ t P̃ -a.s. for all P̃ ∈ P̃.

From an economical point of view, by using (Ẽt )t≥0 as pricing functional, the
weak tower property (2.10) can be interpreted as: making valuation of an evalu-
ated future price is more conservative than making direct valuation of the price.
We provide some sufficient conditions such that the classic tower property holds.
These include all cases of often used credit and insurance contracts, as explained
in Section 2.4.

As in Section 2.1, we use the corresponding notation and denote the upper ex-
pectation associated to P̃ by Ẽ , that is,

(2.11) Ẽ(X̃) := sup
P̃∈P̃

EP̃ [X̃], X̃ ∈ L0(�̃).

Let GP := G ∨N P∞, P ∈ P , and GP := G ∨NP∞. We introduce the following sets:

L1
P̃
(�̃) := {

X̃|X̃ : (
�̃,GP ) → (

R,B(R)
)

measurable function such that

EP̃ [|X̃|] < ∞}
,

for every P̃ ∈ P̃ , and

L1(�̃) := {
X̃|X̃ : (

�̃,GP) → (
R,B(R)

)
measurable function such that

Ẽ
(|X̃|) < ∞}

.

We emphasize that in the above definitions we only consider (�,GP )-measurable
(or (�,GP)-measurable, resp.) functions, and not (�,GP̃ )-measurable (or
(�,GP̃)-measurable, resp.) functions; see also Remark 2.14.
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Given t ≥ 0, every real-valued function X̃ on �̃ can be decomposed in

X̃ = 1{τ̃≤t}X̃ + 1{τ̃>t}X̃.

Corollary 5.1.2 of [10], which holds without the usual conditions on the filtrations,
together with Proposition 2.11 shows that if X̃ ∈ L1(�̃), then for every P̃ ∈ P̃ ,

EP̃ [X̃|Gt ] = 1{τ̃≤t}EP̃ [
X̃|σ(τ̃ ) ∨Ft

]
+ 1{τ̃>t}e�t EP̃ [1{τ̃>t}X̃|Ft ] P̃ -a.s.(2.12)

Our goal is to find a representation of (2.12) with the right-hand side reduced to
conditional expectations restricted to �. This will play a fundamental role in the
definition of conditional expectation on �̃. The following lemma solves the prob-
lem for the second term on the right-hand side of (2.12). For the sake of simplicity,
we use a slight abuse of notation and denote

(2.13) EP̂ [X̃](ω) :=
∫
�̂

X̃(ω, ω̂)P̂ (dω̂), ω ∈ �.

LEMMA 2.12. Let t ≥ 0 and P̃ = P ⊗ P̂ . If X̃ ∈ L1
P̃
(�̃), then

EP̃ [X̃|Ft ] = EP [
EP̂ [X̃]|Ft

]
P̃ -a.s.

PROOF. It is sufficient to see that for any A ∈ Ft , by the Fubini–Tonelli theo-
rem we have∫

A×�̂
X̃(ω, ω̂)P̃

(
d(ω, ω̂)

) =
∫
A

∫
�̂

X̃(ω, ω̂)P̂ (dω̂)P (dω)

=
∫
A

EP̂ [X̃](ω)P (dω)

=
∫
A×�̂

EP [
EP̂ [X̃]|Ft

]
(ω)P̃

(
d(ω, ω̂)

)
,

where we use the notation introduced in (2.13). �

Now we focus on the first term on the right-hand side of (2.12).

LEMMA 2.13. Let t ∈ R+. If X̃ is a real-valued σ(τ̃ ) ∨Ft -measurable func-
tion on �̃, then there exists a unique measurable function

ϕ : (
R+ × �,B(R+) ⊗Ft

) → (
R,B(R)

)
,

such that

(2.14) X̃(ω, ω̂) = ϕ
(
τ̃ (ω, ω̂),ω

)
, (ω, ω̂) ∈ �̃.



REDUCED-FORM FRAMEWORK UNDER MODEL UNCERTAINTY 2493

PROOF. The uniqueness of ϕ which satisfies (2.14) follows directly from the
surjectivity of τ̃ for every fixed ω ∈ �, see Remark 2.9. Indeed, if ϕ and ψ are two
functions such that

ϕ
(
τ̃ (ω, ω̂),ω

) = ψ
(
τ̃ (ω, ω̂),ω

)
for all (ω, ω̂) ∈ �̃,

then for every (x,ω) ∈ R+ × �, the surjectivity of τ̃ for every fixed ω ∈ � yields
that there is an ω̂ ∈ �̂ such that τ(ω, ω̂) = x. Consequently,

ϕ(x,ω) = ψ(x,ω) for all (x,ω) ∈R+ × �.

Now we consider the following set:

E ={
X̃|(�̃, σ (τ̃ ) ∨Ft

) → (
R,B(R)

)
, X̃ of the form (2.14)

}
,

and show that it contains a monotone class. The set E clearly contains all constants
and is closed under linear operations. Furthermore, all indicator functions of a π -
system which generates σ(τ̃ ) ∨ Ft belong to E. Now let (X̃n)n∈N be a sequence
in E such that X̃n(ω̃) ↑ X̃(ω̃) for all ω̃ ∈ �̃, where X̃ is a bounded function. For
every n ∈ N, we have X̃n(ω, ω̂) = ϕn(τ̃ (ω, ω̂),ω) for all (ω, ω̂) ∈ �̃, where ϕn is
a measurable function

ϕn : (
R+ × �,B(R+) ⊗Ft

) → (
R,B(R)

)
.

By Remark 2.9 and the boundedness of X̃, we note that the function

(2.15) ϕ(z,ω) := lim
n→∞ϕn(z,ω), z ∈R+,ω ∈ �,

is well defined and finite. In particular, ϕ is also (B(R+) ⊗ Ft )-measurable. By
applying again Remark 2.9, X̃ can be represented by

X̃(ω, ω̂) = ϕ
(
τ̃ (ω, ω̂),ω

)
, (ω, ω̂) ∈ �̃.

Hence X belongs to E as well. By the monotone class theorem (see, e.g., Theo-
rem 8 in Chapter I of [43]), the set E contains all bounded σ(τ̃ ) ∨Ft -measurable
functions.

Furthermore, every nonnegative σ(τ̃ ) ∨Ft -measurable function X̃ is the point-
wise limit of a nondecreasing sequence of simple functions, that is, there ex-
ists a sequence of simple functions (X̃n)n∈N such that X̃n(ω̃) ↑ X̃(ω̃) for all
ω̃ ∈ �̃. In particular, by the argument above, if X̃n(ω, ω̂) = ϕn(τ̃ (ω, ω̂),ω) for
all (ω, ω̂) ∈ �̃, by defining ϕ as the pointwise limit of (ϕn)n∈N as in (2.15), we
conclude that all nonnegative σ(τ̃ )∨Ft -measurable functions have representation
(2.14). The results can be extended to all σ(τ̃ ) ∨ Ft -measurable functions since
X̃ = X̃+ + X̃−. �

REMARK 2.14. Lemma 2.13 can be carried out without changes if X̃ is GP -
measurable or GP -measurable. In such case, ϕ is (B(R+) ⊗ FP∞)-measurable or
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(B(R+) ⊗ FP∞)-measurable, respectively. However, it does not hold if X̃ is GP̃ -

measurable with GP̃ := G ∨ N P̃∞ or GP̃ -measurable with GP̃ = G ∨ N P̃∞, respec-
tively. The reason is analogue to the case of the classic Doob–Dynkin lemma,
which states that if X, Y are two real-valued measurable functions and Y is σ(X)-
measurable, then there is a Borel-measurable function f such that Y = f (X). This
representation does not hold pathwisely if σ(X) is completed with null sets of
some measure Q, that is, if σ(X) is replaced by σ(X) ∨ NQ. Indeed, it is suffi-
cient to take Y = 1A with A ∈ NQ as a counterexample.

LEMMA 2.15. Let t ≥ 0 and P̃ = P ⊗ P̂ . If X̃ ∈ L1
P̃
(�̃), then

(2.16) 1{τ̃≤t}EP̃ [
X̃|σ(τ̃ ) ∨Ft

] = 1{τ̃≤t}EP [
ϕ(x, ·)|Ft

]|x=τ̃ P̃ -a.s.,

where ϕ is the measurable function

ϕ : (
R+ × �,B(R+) ⊗FP∞

) → (
R,B(R)

)
,

such that

(2.17) X̃(ω, ω̂) = ϕ
(
τ̃ (ω, ω̂),ω

)
, (ω, ω̂) ∈ �̃.

PROOF. By Lemma 2.13 and Remark 2.14, a unique representation (2.17)
exists and the right-hand side of (2.16) is σ(τ̃ ) ∨ Ft -measurable. We first show
that relation (2.16) holds for indicator functions of a π -system which generates
G = σ(τ̃ ) ∨F∞. Given s ≥ 0 and A ∈ F∞, we show

1{τ̃≤t}EP̃ [
1{τ̃≤s}∩{A×�̂}|σ(τ̃ ) ∨Ft

] = 1{τ̃≤t}1{τ̃≤s}EP [1A|Ft ] P̃ -a.s.

Indeed, let u ≥ 0 and B ∈ Ft ,∫
{τ̃≤u}∩{B×�̂}

1{τ̃≤t}1{τ̃≤s}1A×�̂
dP̃

=
∫
B×�̂

1{τ̃≤t∧s∧u}1A×�̂
dP̃

=
∫
B×�̂

EP̃ [1{τ̃≤t∧s∧u}1A×�̂
|Ft ]dP̃(2.18)

=
∫
B×�̂

EP̃ [1{τ̃≤t∧s∧u}|Ft ]EP̃ [1
A×�̂

|Ft ]dP̃

=
∫
B×�̂

EP̃ [1{τ̃≤t∧s∧u}|Ft ]EP [1A|Ft ]dP̃

=
∫
B×�̂

EP̃ [
1{τ̃≤t∧s∧u}EP [1A|Ft ]|Ft

]
dP̃

=
∫
B×�̂

1{τ̃≤t∧s∧u}EP [1A|Ft ]dP̃(2.19)

=
∫
{τ̃≤u}∩{B×�̂}

1{τ̃≤t}1{τ̃≤s}EP [1A|Ft ]dP̃ ,



REDUCED-FORM FRAMEWORK UNDER MODEL UNCERTAINTY 2495

where equalities (2.18) and (2.19) follow from the definition of conditional ex-
pectation,3 while in the third equality we use the Ft -conditional independence
between Ht and F∞; see page 166 of [10]. Lemma 2.13 together with the condi-
tional monotone convergence yields that the set of bounded measurable functions
X̃ ∈ L1

P̃
(�̃), which satisfy relation (2.16), contains a monotone class. Hence by

monotone class theorem, relation (2.16) holds for all bounded measurable func-
tions X̃ ∈ L1

P̃
(�̃). The result can be extended to every X̃ ∈ L1

P̃
(�̃) by conditional

monotone convergence theorem applied to X̃+ and X̃−, respectively, since every
nonnegative measurable function is the pointwise limit of a sequence of nonnega-
tive and nondecreasing simple functions. �

We note that the above results hold clearly also for X̃ which is GP -measurable
and nonnegative. A summary is given in the following proposition.

PROPOSITION 2.16. Let t ≥ 0 and P̃ = P ⊗ P̂ . If X̃ ∈ L1
P̃
(�̃) or X̃ is GP -

measurable and nonnegative, then

EP̃ [X̃|Gt ] = 1{τ̃≤t}EP [
ϕ(x, ·)|Ft

]|x=τ̃

+ 1{τ̃>t}e�t EP [
EP̂ [1{τ̃>t}X̃]|Ft

]
P̃ -a.s.,

where ϕ is the measurable function

ϕ : (
R+ × �,B(R+) ⊗FP∞

) → (
R,B(R)

)
,

such that

(2.20) X̃(ω, ω̂) = ϕ
(
τ̃ (ω, ω̂),ω

)
, (ω, ω̂) ∈ �̃.

PROOF. It is sufficient to apply Lemma 2.12 and Lemma 2.15 to decomposi-
tion (2.12). �

Before we state the main results, we list some properties of upper semianalytic
functions which we will use later.

LEMMA 2.17. Let X, Y be two Polish spaces:

1. If f : X → Y is a Borel-measurable function and a set A ⊆ X is analytic,
then f (A) is analytic. If a set B ⊆ Y is analytic, then f −1(B) is analytic.

2. If fn : X → R̄, n ∈ N, is a sequence of upper semianalytic functions and
fn → f , then f is upper semianalytic.

3Note that, as specified at the beginning of Section 2.2, we identify Ft with Ft ⊗ {∅, �̂}.
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3. If f : X → Y is a Borel-measurable function and g : Y → R̄ is upper semi-
analytic, then the composition g ◦ f is also upper semianalytic. If f : X → Y is a
surjective Borel-measurable function and there is a function g : Y → R̄ such that
g ◦ f is upper semianalytic, then g is upper semianalytic.

4. If f , g : X → R̄ are two upper semianalytic functions, then f + g is upper
semianalytic.

5. If f : X → R̄ is an upper semianalytic function, g : X → R̄ is a Borel-
measurable function and g ≥ 0, then the product f · g is upper semianalytic.

6. If f : X × Y → R̄ is upper semianalytic and κ(dy;x) is a Borel-
measurable stochastic kernel on Y given X, then the function g : X → R̄ defined
by

g(x) =
∫

f (x, y)κ(dy;x), x ∈ X,

is upper semianalytic.

PROOF. See Proposition 7.40, Lemma 7.30 and Proposition 7.48 of [5]4 for
points 1, 2, 4, 5 and 6. For the third point, the fact that g upper semianalytic im-
plies g ◦ f upper semianalytic is proved in Lemma 7.30 (3) of [5]. For the inverse
implication, we note that if g ◦ f is upper semianalytic, then for every c ∈ R, the
set

A := {
x ∈ X : g ◦ f (x) > c

}
is analytic. Moreover, if we define

B := {
y ∈ Y : g(y) > c

}
,

we have f (A) ⊆ B . Since f is surjective, it also holds that for all y ∈ B , there
exists x ∈ X such that y = f (x) and g(f (x)) > c. Hence f (A) ⊇ B . It fol-
lows from the first point that the set B is analytic. This implies that g is upper
semianalytic. �

THEOREM 2.18. Let Assumption 2.2 hold for P and consider an upper semi-
analytic function X̃ on �̃ such that X̃ ∈ L1(�̃) or X̃ is GP -measurable and non-
negative. If t ≥ 0, then the following function

(2.21) Ẽt (X̃) := 1{τ̃≤t}Et

(
ϕ(x, ·))|x=τ̃ + 1{τ̃>t}Et

(
e�t EP̂ [1{τ̃>t}X̃])

is well defined, where ϕ is the measurable function

ϕ : (
R+ × �,B(R+) ⊗FP∞

) → (
R,B(R)

)
,

4In [5], only lower semianalytic functions are considered. However, the results hold also for upper
semianalytic functions without changes.
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such that

X̃(ω, ω̂) = ϕ
(
τ̃ (ω, ω̂),ω

)
, (ω, ω̂) ∈ �̃.

Furthermore, Ẽt (X̃) satisfies the consistency condition (2.9).

PROOF. By points 5 and 6 of Lemma 2.17, e�t EP̂ [1{τ̃>t}X̃] is an upper semi-
analytic function on �. Hence the second component on the right-hand side of
(2.21) is well defined. For the first component, it is sufficient to prove that for every
fixed x ∈ R+, the function ϕx(ω) := ϕ(x,ω), ω ∈ �, is upper semianalytic. First,
ϕ as function of (x,ω) ∈ R+ ×� is upper semianalytic by Remark 2.9 and the sec-
ond implication of point 3 of Lemma 2.17, since X̃(ω, ω̂) = ϕ ◦ (τ, id|�)(ω, ω̂),
(ω, ω̂) ∈ � × �̂ is upper semianalytic. Second, for every fixed x ∈R+, by the first
implication of point 3 of Lemma 2.17 we have that ϕx as function of ω ∈ � is
also upper semianalytic, since ϕx = ϕ ◦ψx where ψx(ω) := (x,ω), ω ∈ �, and the
function ψx is Borel-measurable.

Now we show that consistency condition (2.9) holds. By Proposition 2.4, under
every P̃ ∈ P̃ we have

1{τ̃≤t}Et

(
ϕ(x, ·))|x=τ̃ = 1{τ̃≤t} ess supP

P ′∈P(t;P)

EP ′[
ϕ(x, ·)|Ft

]|x=τ̃ P̃ -a.s.,

1{τ̃>t}Et

(
e�t EP̂ [1{τ̃>t}X̃]) = 1{τ̃>t} ess supP

P ′∈P(t;P)

EP ′[
e�t EP̂ [1{τ̃>t}X̃]|Ft

]
P̃ -a.s.

Moreover, for every P̃ = P ⊗ P̂ ,

P̃(t; P̃ ) = {
P̃ ′ ∈ P̃ : P ′ ⊗ P̂ = P ⊗ P̂ on Gt

} = {
P̃ ′ ∈ P̃ : P ′ = P on Ft

}
.

Hence, P̃ -a.s. we have that

ess supP

P ′∈P(t;P)

EP ′[
ϕ(x, ·)|Ft

]|x=τ̃ = ess supP̃

P̃ ′∈P̃(t;P̃ )

EP ′[
ϕ(x, ·)|Ft

]|x=τ̃ ,

ess supP

P ′∈P(t;P)

EP ′[
e�t EP̂ [1{τ̃>t}X̃]|Ft

] = ess supP̃

P̃ ′∈P̃(t;P̃ )

EP ′[
e�t EP̂ [1{τ̃>t}X̃]|Ft

]
.

We note that {τ̃ ≤ t} and {τ̃ > t} are disjoint events, hence P̃ -a.s.

1{τ̃≤t} ess supP̃

P̃ ′∈P̃(t;P̃ )

EP ′[
ϕ(x, ·)|Ft

]|x=τ̃

+ 1{τ̃>t} ess supP̃

P̃ ′∈P̃(t;P̃ )

EP ′[
e�t EP̂ [1{τ̃>t}X̃]|Ft

]

= ess supP̃

P̃ ′∈P̃(t;P̃ )

(
1{τ̃≤t}EP ′[

ϕ(x, ·)|Ft

]|x=τ̃ + 1{τ̃>t}EP ′[
e�t EP̂ [1{τ̃>t}X̃]|Ft

])
.
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Finally, since the integrability conditions on X̃ guarantee that we can apply the
Fubini–Tonelli theorem, then Proposition 2.16 yields

Ẽt (X̃) = ess supP̃

P̃ ′∈P̃(t;P̃ )

EP̃ ′ [X̃|Gt ] P̃ -a.s. for all P̃ ∈ P̃.
�

REMARK 2.19. Set t ≥ 0 and let X̃ satisfy the conditions in Theorem 2.18.
The following holds:

1. If X̃(ω, ω̂) = X(ω) for all ω̂ ∈ �̂, then Ẽt (X) defined in (2.21) coincides
with Et (X) defined in (2.5).

2. The function Ẽt (X̃) defined in (2.21) is sublinear in X̃.
3. If Ỹ is an upper semianalytic function on �̃, such that Ỹ ∈ L1(�̃) and

ess supP̃

P̃ ′∈P̃(t;P̃ )

EP̃ ′ [X̃|Gt ] = ess supP̃

P̃ ′∈P̃(t;P̃ )

EP̃ ′ [Ỹ |Gt ] P̃ -a.s. for all P̃ ∈ P̃,

then Ẽt (X̃) = Ẽt (Ỹ ) P̃ -a.s. for all P̃ ∈ P̃ .
4. If A ∈ Gt , then Ẽt (1AX̃) = 1AẼt (X̃). This follows from Lemma 5.1.1 of

[10] and the above point.
5. The following pathwise equalities hold:

Ẽt (1{τ̃≤t}X̃) = 1{τ̃≤t}Ẽt (X̃),

Ẽt (1{τ̃>t}X̃) = 1{τ̃>t}Ẽt (X̃),

Ẽt (X̃) = Ẽt (1{τ̃≤t}X̃) + Ẽt (1{τ̃>t}X̃).

REMARK 2.20. We note that in Theorem 2.18, integrability conditions are re-
quired on the upper semianalytic function X̃ in order to define the sublinear opera-
tor Ẽt . These are necessary for applying Fubini–Tonelli theorem in the proof. This
creates a fundamental difference with respect to the construction in [34], where
measurability conditions alone are sufficient for defining the sublinear operator in
(2.5).

For the sake of simplicity, we use the following notation:

EP [X̃|Ft ](ω, ω̂) := EP [
X̃(·, ω̂)|Ft

]
(ω), (ω, ω̂) ∈ �̃, t ≥ 0,(2.22)

Et (X̃)(ω, ω̂) := Et

(
X̃(·, ω̂)

)
(ω), (ω, ω̂) ∈ �̃, t ≥ 0.(2.23)

We note that since the concatenation function is Borel-measurable, the right-hand
side of (2.23) is well defined by (2.5) and points 3 and 6 of Lemma 2.17.

PROPOSITION 2.21. Let Assumption 2.2 hold for P and let X̃ be an upper
semianalytic function on �̃ such that X̃ ∈ L1(�̃) or X̃ is GP -measurable and non-
negative. For every t ≥ 0, the function Ẽt (X̃) defined in (2.21) is upper semianalytic
and measurable with respect to G∗

t and GP .
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PROOF. Let t ≥ 0. By definition (2.21) and Proposition 2.4, we have that
Ẽt (X̃) is (F∗

t ∨ σ(τ))-measurable, hence also G∗
t - and GP -measurable. It is up-

per semianalytic by points 3, 4, 5 of Lemma 2.17 and Proposition 2.4. �

Remark 2.19 and Proposition 2.21 show that (Ẽt )t≥0 is a family of sublinear
conditional expectations which extends (Et )t≥0 defined for functions on �. We
now prove that the family (Ẽt )t≥0 satisfies a weak form of dynamic programming
principle or tower property, similar to the one of [35].

THEOREM 2.22. Let Assumption 2.2 hold and X̃ be an upper semianalytic
function on �̃ such that X̃ is GP -measurable and nonnegative. If 0 ≤ s ≤ t , then

(2.24) Ẽs

(
Ẽt (X̃)

) ≥ Ẽs(X̃) P̃ -a.s. for all P̃ ∈ P̃.

PROOF. We recall that we use notation (2.13), (2.22) and (2.23). Since X̃ is as-
sumed to be GP -measurable and nonnegative, by Proposition 2.21 and the sublin-
earity of the operator Ẽt , the left-hand side of (2.24) is well defined. By definition
(2.21), relation (2.24) equals the following:

1{τ̃≤s}Es

(
ϕ̄(x, ·))|x=τ̃ + 1{τ̃>s}Es

(
e�sEP̂ [

1{τ̃>s}Ẽt (X̃)
])

≥ 1{τ̃≤s}Es

(
ϕ(x, ·))|x=τ̃ + 1{τ̃>s}Es

(
e�sEP̂ [1{τ̃>s}X̃]),(2.25)

where ϕ is the measurable function

ϕ : (
R+ × �,B(R+) ⊗FP∞

) → (
R,B(R)

)
,

such that

X̃(ω, ω̂) = ϕ
(
τ̃ (ω, ω̂),ω

)
, (ω, ω̂) ∈ �̃,

and

ϕ̄(x,ω) = 1{x≤t}Et

(
ϕ(x, ·))(ω) + 1{x>t}Et

(
e�t EP̂ [1{τ̃>t}X̃])(ω),

for all (x,ω) ∈ R+ × �. We show first the equality between the first terms on
both hand sides of (2.25) by using (2.21) and the tower property (2.7) of (P,F)-
conditional expectation:

1{τ̃≤s}Es

(
ϕ̄(x, ·))|x=τ̃

= 1{τ̃≤s}Es

(
1{x≤t}Et

(
ϕ(x, ·)) + 1{x>t}Et

(
e�t EP̂ [1{τ̃>t}X̃]))|x=τ̃

= 1{τ̃≤s}
(
1{x≤t}Es

(
Et

(
ϕ(x, ·))) + 1{x>t}Es

(
Et

(
e�t EP̂ [1{τ̃>t}X̃])))|x=τ̃

= 1{τ̃≤s}Es

(
Et

(
ϕ(x, ·)))|x=τ̃

= 1{τ̃≤s}Es

(
ϕ(x, ·))|x=τ̃ .
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For the second terms, we note first that for every fixed ω̂ ∈ �̂, τ̃ (·, ω̂) is an F-
stopping time. Hence by Galmarino’s test, on the event {τ̃ ≤ t} we have

τ̃
(
ω ⊗t ω′, ω̂

) = τ̃ (ω, ω̂) for all ω′ ∈ �.

Hence on the event {τ̃ ≤ t}, for every fixed ω̂ ∈ �̂, by using definitions (2.4), (2.5)
and representation (2.14), we have

Et (X̃)(ω, ω̂) = sup
P∈P

∫
�

X̃
(
ω ⊗t ω′, ω̂

)
P

(
dω′)

= sup
P∈P

∫
�

ϕ
(
τ̃
(
ω ⊗t ω′, ω̂

)
,ω ⊗t ω′)P (

dω′)

= sup
P∈P

∫
�

ϕ
(
τ̃ (ω, ω̂),ω ⊗t ω′)P (

dω′)

= sup
P∈P

∫
�

ϕ
(
x,ω ⊗t ω′)P (

dω′)|x=τ̃ (ω,ω̂)

= Et

(
ϕ(x, ·))(ω)|x=τ̃ (ω,ω̂) for all ω ∈ �,

that is,

(2.26) 1{τ̃≤t}Et

(
ϕ(x, ·))|x=τ̃ = 1{τ̃≤t}Et (X̃) for every fixed ω̂ ∈ �̂.

Furthermore, we note that by (2.6), for every P ∈ P

(2.27) Et

(
e�t EP̂ [1{τ̃>t}X̃]) = e�tEt

(
EP̂ [1{τ̃>t}X̃]) P -a.s.

Now by (2.21), (2.26), (2.27) and Remark 2.4(iii) of [34], we have

Es

(
e�sEP̂ [

1{τ̃>s}Ẽt (X̃)
])

= e�sEs

(
EP̂ [

1{τ̃>s}
(
1{τ̃≤t}Et

(
ϕ(x, ·))|x=τ̃ + 1{τ̃>t}Et

(
e�t EP̂ [1{τ̃>t}X̃]))])

= e�sEs

(
EP̂ [

1{s<τ̃≤t}Et (X̃) + 1{τ̃>t}e�tEt

(
EP̂ [1{τ̃>t}X̃])])

= e�sEs

(
EP̂ [

1{s<τ̃≤t}Et (X̃)
]

+ EP̂ [
1{τ̃>t}e�tEt

(
EP̂ [1{τ̃>t}X̃])]) P -a.s. for all P ∈ P .

Since e�tEt (E
P̂ [1{τ̃>t}X̃]) depends only on the first component ω, using the defi-

nition of � and (2.13), it follows from Lemma 2.10 that

EP̂ [
1{τ̃>t}e�tEt

(
EP̂ [1{τ̃>t}X̃])] = EP̂ [1{τ̃>t}]e�tEt

(
EP̂ [1{τ̃>t}X̃])

= e−�t e�tEt

(
EP̂ [1{τ̃>t}X̃])

= Et

(
EP̂ [1{τ̃>t}X̃]).(2.28)
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It follows

Es

(
e�sEP̂ [

1{τ̃>s}Ẽt (X̃)
]) = e�sEs

(
EP̂ [

1{s<τ̃≤t}Et (X̃)
] + Et

(
EP̂ [1{τ̃>t}X̃]))

= e�sEs

(
EP̂ [

Et (1{s<τ̃≤t}X̃)
] + Et

(
EP̂ [1{τ̃>t}X̃]))

≥ e�sEs

(
Et

(
EP̂ [1{s<τ̃≤t}X̃]) + Et

(
EP̂ [1{τ̃>t}X̃]))(2.29)

≥ e�sEs

(
Et

(
EP̂ [1{s<τ̃≤t}X̃] + EP̂ [1{τ̃>t}X̃]))(2.30)

= e�sEs

(
Et

(
EP̂ [1{τ̃>s}X̃]))

= e�sEs

(
EP̂ [1{τ̃>s}X̃])

= Es

(
e�sEP̂ [1{τ̃>s}X̃]) P -a.s. for all P ∈ P .

In the second equality, we use the properties that for every fixed ω̂ ∈ �̂, {s <

τ̃ (·, ω̂) ≤ t} ∈ Ft and Et (1AX) = 1AEt (X), if A ∈Ft and X is upper semianalytic;
see Remark 2.4(iv) of [34]. Inequality (2.29) follows from (2.6) and the conditional
Fubini–Tonelli theorem. Indeed, with the notation (2.13) we have

EP̂ [
Et (1{s<τ̃≤t}X̃)

] = EP̂ [
ess supP

P ′∈P(t;P)

EP ′ [1{s<τ̃≤t}X̃|Ft ]]

≥ EP̂ [
EP [1{s<τ̃≤t}X̃|Ft ]]

= EP [
EP̂ [1{s<τ̃≤t}X̃]|Ft

]
P -a.s. for all P ∈ P .

Hence,

EP̂ [
Et (1{s<τ̃≤t}X̃)

] ≥ ess supP

P ′∈P(t;P)

EP ′[
EP̂ [1{s<τ̃≤t}X̃]|Ft

]

= Et

(
EP̂ [1{s<τ̃≤t}X̃]) P -a.s. for all P ∈P .

Inequality (2.30) follows from the sublinearity of (P,F)-conditional expectation.
In the second last equality, we use the tower property (2.7). This concludes the
proof. �

COROLLARY 2.23. Let Assumption 2.2 hold and X̃ be an upper semianalytic
function on �̃ such that X̃ ∈ L1(�̃). If for t ≥ 0, Ẽt (X̃) ∈ L1(�̃), then

Ẽs

(
Ẽt (X̃)

) ≥ Ẽs(X̃) P̃ -a.s. for all P̃ ∈ P̃,

for 0 ≤ s ≤ t .

In Appendix A, an explicit counterexample shows that the above weak tower
property of the family (Ẽt )t≥0 cannot be improved in full generality. However, in
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Section 2.4 we show that the classic tower property holds in all cases of practical
interest for credit or insurance products. In Appendix B, further sufficient condi-
tions for the tower property are provided.

REMARK 2.24. The classic dynamic programming property fails in the
reduced-form setting due to the nature of the progressively enlarged filtration G.
Indeed, while the canonical filtration F is consistent with the “path-pasting” con-
struction shown in [34], from which the dynamic programming property follows
as a natural consequence; this is not the case for the enlarged filtration G. Fur-
thermore, we note that Ẽt does not always map L1(�̃) into L1(�̃), the reason is
the same that causes the dynamic programming property to fail. For a detailed
discussion on these technical difficulties, we refer to [51].

In view of the above results, we give the following definition which extends the
one in Proposition 2.4 to the reduced-form setting under model uncertainty.

DEFINITION 2.25. We call the family of sublinear conditional expectations
(Ẽt )t≥0 (P̃,G)-conditional expectation.

2.4. Valuation of credit and insurance products under model uncertainty. We
now consider the valuation of credit and insurance products under model uncer-
tainty. We show in Proposition 2.31 that in these cases, the classic tower property
holds and the sublinear operator Ẽt maps L1(�̃) into L1(�̃). As we will see in
Section 3.4, the following valuation formulas can be hence interpreted as super-
hedging prices for the given cash flows.

Let T < ∞ be the maturity time. We define the filtration F
P := (FP

t )t∈[0,T ] by

FP
t := F∗

t ∨NP
T , t ∈ [0, T ],

where NP
T is the collection of sets which are (P,FT )-null for all P ∈ P . For

both credit and insurance markets, the main products associated to a particular
default event represented by τ̃ can be modeled by three kinds of contracts with the
following payoff:5

1. 1{τ̃>T }Y , where Y is an FP
T -measurable nonnegative upper semianalytic

function on � such that E(Y ) < ∞; that is, the payment is made at the maturity of
the contract only if the default event does not occur before the maturity date;

2. 1{0<τ̃≤T }Zτ̃ , where Z := (Zt )t∈[0,T ] is an F
P -predictable nonnegative pro-

cess on �, such that the function Z(t,ω) := Zt(ω), (t,ω) ∈ [0, T ] × �, is upper
semianalytic and supt∈[0,T ] Zt < M P -a.s. for all P ∈ P , where M ∈ R+; that is,
the payment is made at τ̃ only if the default event occurs before or at the maturity
of the contract;

5Note that here we extend the standard assumptions of the classical setting of [10] to the case under
model uncertainty.
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3.
∫ T

0 (1 − Hu)dCu
6 = 1{τ̃>T }CT + 1{0<τ̃≤T }Cτ̃−, where C := (Ct )t∈[0,T ] is

a nonnegative F
P -adapted nondecreasing process on �, with C(t,ω) := Ct(ω),

(t,ω) ∈ [0, T ] × �, upper semianalytic with supt∈[0,T ] Ct < M P -a.s. for all
P ∈ P and for M ∈ R+, which represents the cumulative payment; that is, a pay-
ment flow is made as long as the default event does not occur or the contract is
valid.

We give first valuation formulas for these three kinds of contracts under model
uncertainty.

LEMMA 2.26. Let Y = Y(ω), ω ∈ �, be an FP
T -measurable upper semiana-

lytic function such that E(|Y |) < ∞. Then for every t ∈ [0, T ],
1{τ̃>T }Y and Ye− ∫ T

t μu du

are upper semianalytic and belong to L1(�̃). Furthermore, if P satisfies Assump-
tion 2.2, the following holds pathwisely for every t ∈ [0, T ]:
(2.31) Ẽt (1{τ̃>T }Y) = 1{τ̃>t}Et

(
Ye− ∫ T

t μu du)
.

PROOF. We note that 1{τ̃>T } and e− ∫ T
t μu du are nonnegative Borel-measurable

functions. By point 5 of Lemma 2.17, we have that

1{τ̃>T }Y and Ye− ∫ T
t μu du

are upper semianalytic and clearly belong to L1(�̃). Equality (2.31) follows from
(2.21) and the fact that Y does not depend on ω̂ ∈ �̂,

Ẽt (1{τ̃>T }Y) = 1{τ̃>t}Et

(
e�t EP̂ [1{τ̃>T }Y ])

= 1{τ̃>t}Et

(
Ye�t−�T

)
= 1{τ̃>t}Et

(
Ye− ∫ T

t μu du)
. �

LEMMA 2.27. Let Z := (Zt )t∈[0,T ] be an F
P -predictable process on �. Then

under every P̃ ∈ P̃ with P̃ = P ⊗ P̂ , we have

(2.32) EP̃ [1{s<τ̃≤t}Zτ̃ |Gs] = 1{τ̃>s}EP

[∫ t

s
Zue

− ∫ u
s μv dvμu du|Fs

]
P̃ -a.s.,

for s, t ∈ [0, T ] with s ≤ t .

6This integral is a pathwisely defined Lebesgue–Stieltjes integral.
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PROOF. Let P̃ ∈ P̃ and 0 ≤ s ≤ t ≤ T . By Proposition 2.11, Proposition 5.1.1
and Corollary 5.1.3 of [10], which hold without the usual conditions on the filtra-
tions, we have

EP̃ [1{s<τ̃≤t}Zτ̃ |Gs]

= 1{τ̃>s}EP̃

[∫ t

s
Zue

− ∫ u
s μv dvμu du|Fs

]
P̃ -a.s.

Then P̃ -a.s. equality (2.32) follows from P ⊗ P̂ |(�,F) = P . �

COROLLARY 2.28. Let Z := (Zt )t∈[0,T ] be an F
P -predictable process on �

such that the function Z(t,ω) := Zt(ω), (t,ω) ∈ [0, T ]×�, is upper semianalytic
and there exists M ∈ R+ such that supt∈[0,T ] |Zt | < M P -a.s. for all P ∈ P . Then

1{s<τ̃≤t}Zτ̃ and
∫ t

s
Zue

− ∫ u
s μv dvμu du

are upper semianalytic and belong to L1(�̃), for all s, t ∈ [0, T ] with s ≤ t . Fur-
thermore, if Assumption 2.2 holds for P , we have

Ẽs(1{s<τ̃≤t}Zτ̃ )

= 1{τ̃>s}Es

(∫ t

s
Zue

− ∫ u
s μv dvμu du

)
P̃ -a.s. for all P̃ ∈ P̃,(2.33)

for all s, t ∈ [0, T ] with s ≤ t .
If in addition Z is a stepwise F-predictable process, that is,

Zt =
n∑

i=0

Zti 1{ti<t≤ti+1}, t ∈ [0, T ],

where t0 = s < · · · < tn+1 = t , Zti is Fti -measurable for all i = 0, . . . , n, then
equality (2.33) holds pathwisely, that is,

(2.34) Ẽs(1{s<τ̃≤t}Zτ̃ ) = 1{τ̃>s}Es

(∫ t

s
Zue

− ∫ u
s μv dvμu du

)
.

PROOF. We note that point 6 of Lemma 2.17 holds also for Y = [0, T ],
κ(dy;x) ≡ dy. This together with points 3 and 5 of Lemma 2.17 shows that

1{s<τ̃≤t}Zτ̃ and
∫ t

s
Zue

− ∫ u
s μv dvμu du

are upper semianalytic and belong to L1(�̃). Equality (2.33) follows from
Lemma 2.27 and point 3 of Remark 2.19.
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If Z is a stepwise F-predictable process, by (2.21) we have

Ẽs(1{s<τ̃≤t}Zτ̃ ) = 1{τ̃>s}Es

(
e�sEP̂

[
n∑

i=0

Zti 1{ti<τ̃≤ti+1}
])

= 1{τ̃>s}Es

(
e�s

n∑
i=0

ZtiE
P̂ [1{ti<τ̃≤ti+1}]

)

= 1{τ̃>s}Es

(
e�s

n∑
i=0

Zti

(
e−�ti − e

−�ti+1
))

= 1{τ̃>s}Es

(∫ t

s
Zue

�s−�u d�u

)

= 1{τ̃>s}Es

(∫ t

s
Zue

− ∫ u
s μv dvμu du

)
,

where the integrals above are pathwise Lebesgue–Stieltjes integrals. �

LEMMA 2.29. Let C := (Ct )t∈[0,T ] be a nonnegative F
P -adapted nonde-

creasing and continuous process on �. Then under every P̃ ∈ P̃ with P̃ = P ⊗ P̂ ,
we have

EP̃

[∫ t

s
(1 − Hu)dCu|Gs

]

= 1{τ̃>s}EP

[∫ t

s
Cue

− ∫ u
s μv dvμu du + Cte

− ∫ t
s μu du|Fs

]
P̃ -a.s.,(2.35)

for all s, t ∈ [0, T ] with s ≤ t .

PROOF. Let P̃ ∈ P̃ and 0 ≤ s ≤ t ≤ T . We use the same proof of the first
part of Proposition 5.1.2 of [10], which hold without the usual conditions on the
filtrations, together with Proposition 2.11 and get

EP̃

[∫ t

s
(1 − Hu)dCu|Gs

]

= 1{τ̃>s}EP̃

[∫ t

s
Cue

− ∫ u
s μv dvμu du + Cte

− ∫ t
s μu du|Fs

]
P̃ -a.s.

Then P̃ -a.s. equality (2.35) follows from P ⊗ P̂ |(�,F) = P . �

COROLLARY 2.30. Let C := (Ct )t∈[0,T ] be a nonnegative F
P -adapted non-

decreasing process on �, with C(t,ω) := Ct(ω), (t,ω) ∈ [0, T ] × �, upper semi-
analytic and such that supt∈[0,T ] Ct < M P -a.s. for all P ∈ P , where M ∈ R+.
Then ∫ t

s
(1 − Hu)dCu and

∫ t

s
Cue

− ∫ u
s μv dvμu du + Cte

− ∫ t
s μu du
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are upper semianalytic and belong to L1(�̃) for all s, t ∈ [0, T ] with s ≤ t . Fur-
thermore, if Assumption 2.2 holds for P , we have

Ẽs

(∫ t

s
(1 − Hu)dCu

)

= 1{τ̃>s}Es

(∫ t

s
Cue

− ∫ u
s μv dvμu du + Cte

− ∫ t
s μu du

)

P̃ -a.s. for all P̃ ∈ P̃,(2.36)

for all s, t ∈ [0, T ] with s ≤ t .

PROOF. Since ∫ t

s
(1 − Hu)dCu = 1{s<τ̃≤t}Cτ̃ + 1{τ̃>t}Ct,

points 2, 4, 5 and 6 of Lemma 2.17 show that∫ t

s
(1 − Hu)dCu and

∫ t

s
Cue

− ∫ u
s μv dvμu du + Cte

− ∫ t
s μu du

are upper semianalytic and belong to L1(�̃). Equality (2.36) follows from
Lemma 2.29 and point 3 of Remark 2.19. �

Now we show that in all these cases of practical interest, the classic tower prop-
erty holds and the sublinear operator Ẽt maps L1(�̃) into L1(�̃). The following
proposition is slightly more general.

PROPOSITION 2.31. Let Z := (Zt )t∈[0,T ] be an F
P -predictable process on

� such that supt∈[0,T ] |Zt | < M P -a.s. for all P ∈ P , where M ∈ R+, and the
function Z(t,ω) := Zt(ω), (t,ω) ∈ [0, T ] × �, is upper semianalytic, and Y an
FP

T -measurable upper semianalytic function on � such that E(|Y |) < ∞. Let As-
sumption 2.2 hold for P . If

X̃ = 1{0<τ̃≤T }Zτ̃ + 1{τ̃>T }Y,

then we have

Ẽt (X̃) ∈ L1(�̃),

for all t ∈ [0, T ] and the tower property holds, that is,

Ẽs

(
Ẽt (X̃)

) = Ẽs(X̃) P̃ -a.s. for all P̃ ∈ P̃,

for all s, t ∈ [0, T ] with s ≤ t .
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PROOF. Let t ∈ [0, T ]. Arguments similar to Lemma 2.26 and Corollary 2.28
show that Ẽt (X̃) is well defined and Ẽ(|X̃|) < ∞. We prove first that

Ẽ
(∣∣Ẽt (X̃)

∣∣) < ∞.

By calculations, similar to the ones in Theorem 2.22 and Corollary 2.28, we have

sup
P̃∈P̃

EP̃ [∣∣Ẽt (X̃)
∣∣]

≤ sup
P̃∈P̃

EP̃ [∣∣1{τ̃≤t}Et

(
ϕ(x, ·))|x=τ̃

∣∣ + ∣∣1{τ̃>t}Et

(
e�t EP̂ [1{τ̃>t}X̃])∣∣](2.37)

= sup
P∈P

EP [
EP̂ [|1{0<τ̃≤t}Zτ̃ |

] + EP̂ [∣∣1{τ̃>t}Et

(
e�t EP̂ [1{τ̃>t}X̃])∣∣]]

= sup
P∈P

EP [
EP̂ [|1{0<τ̃≤t}Zτ̃ |

] + ∣∣Et

(
EP̂ [1{τ̃>t}X̃])∣∣](2.38)

= sup
P∈P

EP [
EP̂ [|1{0<τ̃≤t}Zτ̃ |

] + ∣∣Et

(
EP̂ [1{t<τ̃≤T }Zτ̃ + 1{τ̃>T }Y ])∣∣]

≤ sup
P∈P

EP

[∫ t

0
|Zu|e−�u d�u

+
∣∣∣∣Et

(∫ T

t
Zue

−�u d�u + EP̂ [1{τ̃>T }Y ]
)∣∣∣∣

]

≤ sup
P∈P

EP

[∫ t

0
|Zu|e−�u d�u

]

+ sup
P∈P

EP

[∣∣∣∣Et

(∫ T

t
Zue

−�u d�u + EP̂ [1{τ̃>T }Y ]
)∣∣∣∣

]

≤ sup
P∈P

EP

[∫ t

0
|Zu|e−�u d�u

]

+ sup
P∈P

EP

[∣∣∣∣
∫ T

t
Zue

−�u d�u + EP̂ [1{τ̃>T }Y ]
∣∣∣∣
]

(2.39)

≤ sup
P∈P

EP

[∫ t

0
|Zu|e−�u d�u

]

+ sup
P∈P

EP

[∫ T

t
|Zu|e−�u d�u + |Y |

]

≤ sup
P∈P

EP

[∫ t

0
Me−�u d�u

]
+ sup

P∈P
EP

[∫ T

t
Me−�u d�u

]

+ sup
P∈P

EP [|Y |]
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≤ M sup
P∈P

P(0 < τ ≤ t) + M sup
P∈P

P(t < τ ≤ T ) + sup
P∈P

EP [|Y |]
< ∞,

where (2.37) is a consequence of the definition (2.21), equality (2.38) is derived
with the same computations as in (2.28) and inequality (2.39) follows from Step 1
of the proof of Theorem 2.3 in [27]. This shows that for every t > 0, Ẽt (X̃) still
belongs to L1(�̃). We now prove the tower property. Let P̃ ∈ P̃ , by the proof of
Theorem 2.22, the classic tower property holds if and only if (2.29) and (2.30) are
equalities. That is,

e�sEs

(
EP̂ [

Et (1{s<τ̃≤t}X̃)
] + Et

(
EP̂ [1{τ̃>t}X̃]))

= e�sEs

(
Et

(
EP̂ [1{τ̃>s}X̃])) P̃ -a.s.

We have indeed

EP̂ [
Et (1{s<τ̃≤t}X̃)

] + Et

(
EP̂ [1{τ̃>t}X̃])

= EP̂ [
Et (1{s<τ̃≤t}Zτ̃ )

] + Et

(
EP̂ [1{t<τ̃≤T }Zτ̃ + 1{τ̃>T }Y ])

= EP̂ [1{s<τ̃≤t}Zτ̃ ] + Et

(
EP̂ [1{t<τ̃≤T }Zτ̃ + 1{τ̃>T }Y ])

=
∫ t

s
Zue

−�u d�u + Et

(
EP̂ [1{t<τ̃≤T }Zτ̃ + 1{τ̃>T }Y ])

= Et

(∫ t

s
Zue

−�u d�u + EP̂ [1{t<τ̃≤T }Zτ̃ + 1{τ̃>T }Y ]
)

= Et

(
EP̂ [1{s<τ̃≤t}Zτ̃ ] + EP̂ [1{t<τ̃≤T }Zτ̃ + 1{τ̃>T }Y ])

= Et

(
EP̂ [1{τ̃>s}X̃]) P̃ -a.s.,

where we stress that for fixed ω̂, 1{s<τ̃≤t}Zτ̃ is FP
t -measurable, and

∫ t
s Zue

−�u d�u

is FP
t -measurable as well. �

3. Superhedging for payment streams. We now study the problem of su-
perheging payment streams under model uncertainty. We stress that the dynamic
superhedging problem in continuous time for payment streams has been not yet
defined in the literature. Even in the case with a single prior, the problem is ad-
dressed only in discrete time; see, for example, [19, 39] and [40]. Here we aim
to fill this gap, by formulating rigorously the meaning of dynamic superhedging
payment streams in continuous time and by analysing in detail its consequence.
A finite time horizon [0, T ] with T > 0 is fixed through out this section.

3.1. Optional decomposition. We recall first some preliminary results of Sec-
tion 2 in [32], which are useful for further discussion. Definitions and theorems
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in this section are all independent of the choice of the measurable space �, the
filtration F and the probability family P . In the sequel, “sigma martingale” can be
replaced by “local martingale”.

Let S := (St )t∈[0,T ] be an m-dimensional F-adapted process with càdlàg paths,
where m is a positive integer. If under a probability P the process S is a (P,F)-
semimartingale, we denote its characteristics by (BP ,CP , νP ). By Proposition 2.2
of [28], the process S is also a (P,FP+)-semimartingale with the same charac-
teristics. Moreover, if S is a (P,F)-semimartingale for all P ∈ P , we denote
by L(S,P) the set of all m-dimensional F-predictable processes which are S-

integrable for all P ∈ P , and by (P )∫
δ dS := (

(P )∫ t
0δ dS)t∈[0,T ] the usual Itô integral

under P for all δ ∈ L(S,P).

ASSUMPTION 3.1. The following conditions hold:

1. P is a set of sigma martingale measures for S: the process S is a (P,FP+)-
sigma martingale for all P ∈ P ;

2. P is saturated: all equivalent sigma martingale measures of its element still
belong to P ;

3. S has dominating diffusion under every P ∈ P : we have νP � (CP )ii P -
a.s. for all i = 1, . . . ,m and for all P ∈ P .

REMARK 3.2. If S has continuous paths, then it always has dominating diffu-
sion under a sigma martingale measure P , since its characteristics are reduced to
(0,CP ,0); in particular, it is a continuous local martingale under P .

REMARK 3.3. Under the choice of m = d and S = B , Lemma 4.2 and Propo-
sition 4.3 of [32] give a sufficient condition such that Assumption 2.2 and Assump-
tion 3.1 are both satisfied.

We recall Theorem 2.4 of [32].

THEOREM 3.4. Under Assumption 3.1, let Y := (Yt )t∈[0,T ] be a real-valued,
F-adapted process with càdlàg paths, which is a (P,FP+)-local supermartingale
for all P ∈ P . Then there exists an F-predictable process δ := (δt )t∈[0,T ] in
L(S,P) such that

Y − Y0 −
(P )∫

δ dS is nonincreasing P -a.s. for all P ∈ P .

3.2. Problem formulation. We give now the formulation of the superhedging
problem. Definitions in this section are independent of the choice of the measur-
able space �, the filtration F and the probability family P as well.

We define the filtration F
P := (FP

t )t∈[0,T ] by

FP
t := F∗

t ∨NP
T , t ∈ [0, T ],
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where NP
T is the collection of sets which are (P,FT )-null for all P ∈ P . Let

R := (Rt )t∈[0,T ] be a nonnegative F
P -adapted process with nondecreasing paths

such that Rt(ω), ω ∈ �, is upper semianalytic for all t ≥ 0. Without loss of gen-
erality, we assume R0 = 0. Let S := (St )t∈[0,T ] be a m-dimensional FP -adapted
process with càdlàg paths, which is a (P,FP )-semimartingale for all P ∈ P . The
processes R and S represent respectively an (eventually discounted) cumulative
payment stream and (eventually discounted) tradable assets on the market.

We denote by L(S,P) the set of all m-dimensional FP -predictable processes
which are S-integrable for all P ∈ P and define the following set of admissible
strategies:

� :=
{
δ ∈ L(S,P) :

(P )∫
δ dS is a

(
P,FP+

)
-supermartingale for all P ∈ P

}
.

DEFINITION 3.5. A process δ ∈ � is called robust global superhedging strat-
egy for a cumulative payment stream R if there exists v ∈ R such that

v +
(P )∫ τ

0
δu dSu ≥ Rτ P -a.s. for all P ∈ P,

for all [0, T ]-valued F-stopping time τ .

DEFINITION 3.6. Let σ , τ be two [0, T ]-valued F-stopping times such that
σ ≤ τ . A process δ ∈ � is called robust local superhedging strategy for a cumu-
lative payment stream R on the random interval [σ, τ ] if there exists a real-valued
FP

σ -measurable function v such that

v +
(P )∫ σ ′

σ
δu dSu ≥ Rσ ′ − Rσ P -a.s. for all P ∈ P,

for all [0, T ]-valued F-stopping time σ ′ with σ ≤ σ ′ ≤ τ .

We note that Definition 3.6 agrees with the definition of superhedging strate-
gies given in, for example, [19, 39] and [40] in discrete time and without model
uncertainty. Furthermore, clearly an admissible strategy δ is a robust global su-
perhedging strategy if and only if it is a robust local superhedging strategy on
all random intervals in [0, T ]. Similarly, we define global and local superhedging
prices as follows.

DEFINITION 3.7. We call robust global superhedging price for R the value
πT

0 ∈ R such that

πT
0 = inf

{
v ∈R : ∃δ ∈ � such that for every [0, T ]-valued F-stopping time τ,

v +
(P )∫ τ

0
δu dSu ≥ RτP -a.s. for all P ∈ P

}
.(3.1)
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DEFINITION 3.8. Let σ , τ be two [0, T ]-valued F-stopping times such that
σ ≤ τ . We call robust local superhedging price for R over the random interval
[σ, τ ] a real-valued FP

σ -measurable function πτ
σ such that

πτ
σ = ess infP

{
v is FP

σ -measurable :
∃δ ∈ � such that for every F-stopping time σ ′

with σ ≤ σ ′ ≤ τ, v +
(P )∫ σ ′

σ
δu dSu ≥ Rσ ′ − RσP -a.s. for all P ∈P

}

P -a.s. for all P ∈ P .(3.2)

Definition 3.8 agrees with the definition of superhedging price (or superhedging
premium) given in, for example, [19, 39] and [40] in discrete time and without
model uncertainty. We emphasize that the robust local superhedging price is unique
only up to a set N ∈NP .

We are mainly interested in the following two problems:

1. Show the existence of robust global and local superhedging prices as de-
fined in Definition 3.7 and Definition 3.8 and determine their value.

2. Show the existence of global and local superhedging strategies for a pay-
ment stream associated to robust global and local superhedging prices. In partic-
ular, we call optimal superhedging strategies for R a robust global superhedging
strategy δ for R such that, for all [0, T ]-valued F-stopping times σ , σ ′, τ with
σ ≤ σ ′ ≤ τ , we have

πτ
σ +

(P )∫ σ ′

σ
δu dSu ≥ Rσ ′ − Rσ P -a.s. for all P ∈ P .

The first issue is a pricing problem. The robust global (or resp., local) superhedging
price of R can be indifferently interpreted as the minimal amount of money the
company should keep in order to be able to pay out in the future, or as the minimal
price the product should be sold. The second problem is a hedging problem. We
emphasize the importance of distinguishing robust global and local superhedging
problems. Clearly, for products with single payoff such as European contingent
claims, only the global problem is relevant. However, in the case of a generic
payment stream, investors may be interested in the superhedging problem over a
particular time interval.

3.3. Robust superhedging for payment streams. We now study the dynamic
superhedging for payment streams in the standard setting, where we use notation
of Section 2.2.

The following theorem is an intermediate step.
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THEOREM 3.9. Let Assumptions 2.2 and 3.1 hold. Let σ , τ be two [0, T ]-
valued F-stopping times such that σ ≤ τ , and R := (Rt )t∈[0,T ] be a cumula-
tive payment stream with E(RT ) < ∞. If there exists an F

P -adapted process
Y = (Yt )t∈[0,T ] with càdlàg path, such that for all t ∈ [0, T ]

Yt = Et (Rτ ) P -a.s. for all P ∈ P,

then we have the following equivalent dualities for every P ∈ P :

Eσ (Rτ )

= ess infP
{
v is FP

σ -measurable : ∃δ ∈ � such that v +
(
P ′)∫ τ

σ
δu dSu ≥ Rτ

P ′-a.s. for all P ′ ∈ P
}

P -a.s.(3.3)

= ess infP
{
v is FP

σ -measurable : ∃δ ∈ � such that v +
(
P ′)∫ τ

σ
δu dSu ≥ Rτ

P ′-a.s. for all P ′ ∈ P(σ ;P)

}
P -a.s.,(3.4)

and

Eσ (Rτ − Rσ )

= ess infP
{
v is FP

σ -measurable : ∃δ ∈ � such that v

+
(
P ′)∫ τ

σ
δu dSu ≥ Rτ − Rσ

P ′-a.s. for all P ′ ∈ P
}

P -a.s.(3.5)

= ess infP
{
v is FP

σ -measurable : ∃δ ∈ � such that v

+
(
P ′)∫ τ

σ
δu dSu ≥ Rτ − Rσ

P ′-a.s. for all P ∈ P(σ ;P)

}
P -a.s.(3.6)

PROOF. The proof is based on Theorem 3.4 and is similar to Theorem 3.2
of [32] and Theorem 3.4 of [6] with minor changes. We refer to [51] for further
details. �

Theorem 3.9 extends Theorem 3.4 of [6] to the case of payment streams and
can be considered as a dynamic version of Theorem 3.2 of [32]. It includes also



REDUCED-FORM FRAMEWORK UNDER MODEL UNCERTAINTY 2513

the static robust superhedging dualities in, for example, [4, 18] and [41]. We note
that a priori the robust global superhedging price of R as defined in Definition 3.7
is higher than E(RT ) and the robust local superhedging price of R on the interval
[σ, τ ] as defined in Definition 3.8 is higher than Eσ (Rτ − Rσ ). However, in the
following we will see that equality holds.

For all [0, T ]-valued F-stopping times σ , τ such that σ ≤ τ , we define the fol-
lowing set:

Cτ
σ :=

{
δ ∈ � : Eσ1(Rτ ) +

(P )∫ σ2

σ1

δu dSu ≥ Rσ2P -a.s.for all [0, T ]-valued

F-stopping times σ1, σ2 such that σ ≤ σ1 ≤ σ2 ≤ τ, for all P ∈ P
}
.

If σ , σ ′, τ , τ ′ are [0, T ]-valued F-stopping times such that σ ≤ σ ′ ≤ τ ≤ τ ′, then
it clearly holds by definition

(3.7) CT
0 ⊆ Cτ ′

σ ⊆ Cτ
σ ⊆ Cτ

σ ′ .

The following theorem solves both the pricing and hedging problem for a payment
stream.

THEOREM 3.10. Under the same assumptions as in Theorem 3.9, we have:

1. the set CT
0 is not empty;

2. the robust global superhedging price of R is given by E(RT ) and the robust
local superhedging price of R on the interval [σ, τ ] is given by Eσ (Rτ − Rσ );

3. the infimum value in (3.1) and (3.2) is attained, that is, optimal superhedg-
ing strategies exist.

PROOF. Since it holds that

Eσ (Rτ ) − Rσ := ess supP

P ′∈P(σ ;P)

EP ′ [Rτ |Fσ ] − Rσ

= ess supP

P ′∈P(σ ;P)

EP ′ [Rτ − Rσ |Fσ ]

= Eσ (Rτ − Rσ ) P -a.s. for all P ∈ P,(3.8)

every set Cτ
σ can be equivalently represented as

Cτ
σ =

{
δ ∈ � : Eσ1(Rτ − Rσ1)

+
(P )∫ σ2

σ1

δu dSu ≥ Rσ2 − Rσ1P -a.s. for all [0, T ]-valued

F-stopping times σ1, σ2 such that σ ≤ σ1 ≤ σ2 ≤ τ, for all P ∈ P
}
.
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Hence, point 2 and point 3 follow from point 1 together with dualities (3.3), (3.5)
and inclusion (3.7).

Now we show the first point. Similar to the proof of Theorem 3.9 and Theo-
rem 2.3 of [33], by applying Theorem 3.4 it is possible to find a F

P -predictable
process δ ∈ L(S,P) such that for every [0, T ]-valued F-stopping time σ we have

Eσ (RT ) +
(P )∫ T

σ
δu dSu ≥ RT P -a.s. for all P ∈ P .

In particular, if σ ′ is another [0, T ]-valued F-stopping time such that σ ≤ σ ′, then

Eσ (RT ) +
(P )∫ σ ′

σ
δu dSu +

(P )∫ T

σ ′
δu dSu ≥ RT P -a.s. for all P ∈ P .

Since (P )∫
δ dS is a (P,FP+)-supermartingale, by applying conditional expectation

on both hand sides we get

Eσ (RT ) +
(P )∫ σ ′

σ
δu dSu ≥ EP [

RT |FP
σ ′+

]
P -a.s. for all P ∈P .

We note that since R is nondecreasing, we have

EP [
RT |FP

σ ′+
] − Rσ ′ = EP [

RT − Rσ ′ |FP
σ ′+

] ≥ 0 P -a.s. for all P ∈ P .

Hence

Eσ (RT ) +
(P )∫ σ ′

σ
δu dSu ≥ Rσ ′ P -a.s. for all P ∈ P .

This shows that the set CT
0 is not empty. �

We stress that Theorem 3.9 and Theorem 3.10 can be carried out without
changes also in the situation without model uncertainty, that is, when we have
a single prior P which is a sigma (or local) martingale measure for S.

3.4. Robust superhedging in the reduced-form framework. In view of the con-
struction in Section 2.2 and Section 2.3, we can now extend the superhedging
results to the reduced-form setting.

Similar to Section 3.3, we define the filtration G
P̃ := (GP̃

t )t∈[0,T ] by

GP̃
t := G∗

t ∨N P̃
T , t ∈ [0, T ],

where N P̃
T is the collection of sets which are (P̃ ,GT )-null for all P̃ ∈ P̃ . Let

R̃ := (R̃t )t∈[0,T ] be a nonnegative GP̃ -adapted process with nondecreasing paths,
such that R̃t is upper semianalytic for all t ∈ [0, T ] and R̃0 = 0. The process R̃

represents an (eventually discounted) cumulative payment stream on the extended
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market. We set S to be an m-dimensional GP̃ -adapted process with càdlàg paths,
which is a (P̃ ,GP̃ )-semimartingale for all P̃ ∈ P̃ and represents (eventually dis-
counted) tradable assets on the enlarged market. Let L̃(S, P̃) be the set of all m-
dimensional GP̃ -predictable processes which are S-integrable for all P̃ ∈ P̃ . We
define the following set of admissible strategies on the extended market:

�̃ :=
{
δ̃ ∈ L̃(S, P̃) :

(P̃ )∫
δ̃ dS is a

(
P̃ ,GP̃+

)
-supermartingale for all P̃ ∈ P̃

}
,

where (P̃ )∫
δ̃ dS := (

(P̃ )∫ t
0 δ̃ dS)t∈[0,T ] is the usual Itô integral under P̃ . Robust

global and local superhedging strategies, robust global and local superhedging
prices and the sets C̃t

s with 0 ≤ s ≤ t ≤ T are defined correspondingly as in Sec-
tion 3.3.

Theorem 3.11 and Theorem 3.12 are analogue to Theorem 3.9 and Theo-
rem 3.10 for the F-filtration.

THEOREM 3.11. Let Assumption 2.2 hold for the probability family P , As-
sumption 3.1 hold for P̃ , and R̃ := (R̃t )t∈[0,T ] be a cumulative payment stream
with Ẽt (R̃T ) ∈ L1(�̃) for all t ∈ [0, T ]. If t ∈ [0, T ] and there exists a G

P -adapted
process Ỹ = (Ỹs)s∈[0,T ] with càdlàg paths, such that for s ∈ [0, t],

Ỹs = Ẽs(R̃t ) P̃ -a.s. for all P̃ ∈ P̃,

and if the tower property holds for R̃t , that is, for all r, s ∈ [0, t] with r ≤ s,

Ẽr (R̃t ) = Ẽr

(
Ẽs(R̃t )

)
P̃ -a.s. for all P̃ ∈ P̃,

then we have the following equivalent dualities for all P̃ ∈ P̃ and 0 ≤ s ≤ t ≤ T :

Ẽs(R̃t )

= ess infP̃
{
ṽ is GP̃

s -measurable : ∃δ̃ ∈ �̃ such that ṽ

+
(
P̃ ′)∫ t

s
δ̃u dSu ≥ R̃t P̃ ′-a.s. for all P̃ ′ ∈ P̃

}
P̃ -a.s.

= ess infP̃
{
ṽ is GP̃

s -measurable : ∃δ̃ ∈ �̃ such that ṽ

+
(
P̃ ′)∫ t

s
δ̃u dSu ≥ R̃t P̃ ′-a.s. for all P̃ ′ ∈ P̃(s; P̃ )

}
P̃ -a.s.

and

Ẽs(R̃t − R̃s)

= ess infP̃
{
ṽ is GP̃

s -measurable : ∃δ̃ ∈ �̃ such that ṽ
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+
(
P̃ ′)∫ t

s
δ̃u dSu ≥ R̃t − R̃s P̃ ′-a.s. for all P̃ ′ ∈ P̃

}
P̃ -a.s.

= ess infP̃
{
ṽ is GP̃

s -measurable : ∃δ̃ ∈ �̃ such that ṽ

+
(
P̃ ′)∫ t

s
δ̃u dSu ≥ R̃t − R̃s P̃ ′-a.s. for all P̃ ′ ∈ P̃(s; P̃ )

}
P̃ -a.s.

PROOF. The proof of the theorem is the same as in Theorem 3.9. Indeed, we
can apply Theorem 3.4 to the measurable space �̃ with filtration G

P̃ and to the
process Ỹ . �

THEOREM 3.12. Under the same assumptions in Theorem 3.11, for 0 ≤ s ≤
t ≤ T , we have the following statements:

1. The set C̃T
0 is not empty.

2. The robust global superhedging price of R̃ is given by Ẽ(R̃T ) and the ro-
bust local superhedging price of R̃ on the interval [s, t] is given by Ẽs(R̃t − R̃s).

3. Optimal superhedging strategies exist.

PROOF. The theorem can be proved in the same way as in Theorem 3.10. �

By using the results in Section 2.4, we show that the superhedging problem can
be solved for all main credit and insurance cash flows. As already noticed in, for
example, [3, 7] and [8], we recall that the three kinds of main products are special
cases of payment streams by setting

R̃t = 1{τ̃>T }Y1{t=T }, t ∈ [0, T ],(3.9)

R̃0 = 0, R̃t = 1{0<τ̃≤t}Zτ̃ , t ∈ [0, T ],(3.10)

or

(3.11) R̃0 = 0, R̃t = 1{0<τ̃≤t}Cτ̃ + 1{τ̃>t}Ct, t ∈ [0, T ],
respectively.

PROPOSITION 3.13. Under the same assumptions of Lemma 2.26, Corol-
lary 2.28 and Corollary 2.30, if in addition the family P is tight and μ, Y , Z

and C are bounded and continuous in ω P -a.e. for all P ∈ P , then the processes(
Ẽt (1{τ̃>T }Y)

)
t∈[0,T ],

(
Ẽt (1{0<τ̃≤T }Zτ̃ )

)
t∈[0,T ],

and (
Ẽt

(∫ T

0
(1 − Hu)dCu

))
t∈[0,T ]
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are G
∗-adapted and respectively equal to a càdlàg process Y := (Yt )t∈[0,T ] P̃ -a.s.

for all P̃ ∈ P̃ .

PROOF. The three processes are clearly G
∗-adapted by definition. For every

t ∈ [0, T ], by Lemma 2.26, Corollary 2.28 and Corollary 2.30, we have

Ẽt (1{τ̃>T }Y) = 1{τ̃>t}Et

(
Ye− ∫ T

t μu du)
= 1{τ̃>t}e

∫ t
0 μu duEt

(
Ye− ∫ T

0 μu du)
P̃ -a.s. for all P̃ ∈ P̃,

Ẽt (1{0<τ̃≤T }Zτ̃ ) = Ẽt (1{t<τ̃≤T }Zτ̃ ) + 1{0<τ̃≤t}Zτ̃

= 1{τ̃>t}Et

(∫ T

t
Zue

− ∫ u
t μv dvμu du

)
+ 1{0<τ̃≤t}Zτ̃

= 1{τ̃>t}e
∫ t

0 μv dv

[
Et

(∫ T

0
Zue

− ∫ u
0 μv dvμu du

)

−
∫ t

0
Zue

− ∫ u
0 μv dvμu du

]

+ 1{0<τ̃≤t}Zτ̃ P̃ -a.s. for all P̃ ∈ P̃,

and

Ẽt

(∫ T

0
(1 − Hu)dCu

)

= Ẽt

(∫ T

t
(1 − Hu)dCu

)
−

∫ t

0
(1 − Hu)dCu

= 1{τ̃>t}Et

(∫ T

t
Cue

− ∫ u
t μv dvμu du + CT e− ∫ T

t μu du

)
− (1{0<τ̃≤t}Cτ̃ + 1{τ̃>t}Ct)

= 1{τ̃>t}e
∫ t

0 μv dv

[
Et

(∫ T

0
Cue

− ∫ u
0 μv dvμu du + CT e− ∫ T

0 μu du

)

−
∫ t

0
Cue

− ∫ u
0 μv dvμu du

]

− (1{0<τ̃≤t}Cτ̃ + 1{τ̃>t}Ct) P̃ -a.s. for all P̃ ∈ P̃ .

Under our assumptions, Proposition 2.6 shows that(
Et

(
Ye− ∫ T

0 μu du))
t∈[0,T ],

(
Et

(∫ T

0
Zue

− ∫ u
0 μv dvμu du

))
t∈[0,T ]

and (
Et

(∫ T

0
Cu−e− ∫ u

0 μv dvμu du + CT e− ∫ T
0 μu du

))
t∈[0,T ]

are càdlàg, hence the thesis follows. �
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As a consequence, we now show that the superhedging price and strategy can
be determined for the credit or insurance products of the form (3.9), (3.10) and
(3.11).

COROLLARY 3.14. Under the same assumptions of Proposition 3.13 and
Proposition 2.31, if in addition P satisfies Assumption 3.1, then Theorem 3.11
and Theorem 3.12 apply to credit or insurance products of the form (3.9), (3.10)
and (3.11).

PROOF. It follows directly from Proposition 2.31, Proposition 3.13, Theo-
rem 3.11 and Theorem 3.12. �

APPENDIX A: COUNTEREXAMPLE FOR THE TOWER PROPERTY

In this section we provide a counterexample to show that the classic tower prop-
erty does not hold in general for the (P̃,G)-conditional expectation constructed in
Section 2.3.

Let � = C0(R+,Rd) and consider the G-conditional defined in, for example,
[37] as (P,F)-conditional expectation. Since the G-conditional expectation is only
sublinear, there exist t ≥ 0 and sufficiently regular functions X, Y on � such that
on a measurable set A with P(A) > 0 for all P ∈ P , the following strict inequality
holds:

(A.1) Et (X)(ω) + Et (Y )(ω) > Et (X + Y )(ω) for all ω ∈ A.

Then there exists s with s < t such that

(A.2) Es

(
Et (X) + Et (Y )

)
> Es

(
Et (X + Y)

)
P -a.s. for all P ∈P on A.

Indeed, if there exists a measurable subset B ⊆ A with P(B) > 0 for all P ∈ P ,
such that for all s < t we have

Es

(
Et (X) + Et (Y )

) = Es

(
Et (X + Y)

)
P -a.s. for all P ∈ P on B,

then by taking the limit for s ↑ t , we get

Et

(
Et (X) + Et (Y )

) = Et

(
Et (X + Y)

)
P -a.s. for all P ∈ P on B,

since the operator Et is continuous in t in the case of the G-conditional expectation;
see, for example, [45] and [48]. By (2.6), the above equality is equivalent to

Et (X) + Et (Y ) = Et (X + Y) P -a.s. for all P ∈ P on B,

which contradicts (A.1).
Now we take r , l with s < r ≤ t ≤ l and define

X̄ := X

e−�s − e−�r
, Ȳ := Y

e−�l
.
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Inequality (A.2) thus equals the following:

Es

((
e−�s − e−�r

)
Et (X̄) + Et

(
e−�l Ȳ

))
> Es

(
Et

((
e−�s − e−�r

)
X̄ + e−�l Ȳ

))
P -a.s. for all P ∈ P on A.(A.3)

If we set

X̃ := 1{τ̃≤r}X̄ + 1{τ̃>l}Ȳ ,

then the classic tower property does not hold for X̃, since (2.30) in Theorem 2.22
becomes a strict inequality on A.

APPENDIX B: SUFFICIENT CONDITIONS FOR THE TOWER PROPERTY

In this section, we state some other sufficient conditions which guarantees the
tower property for (P̃, G̃)-conditional expectation. We note that these conditions
do not include the case in Proposition 2.31.

The following useful theory, called Yan’s commutability theorem, can be found
in [50] and in Theorem a3 of [35].

THEOREM B.1. Let (�,F,P ) be an arbitrary probability space and H be a
subset of L1(�,F,P ) such that supξ∈H EP [ξ ] < +∞. The following statements
are equivalent:

1. For all ε > 0 and ξ1, ξ2 ∈ H , there exists a ξ3 ∈ H such that

EP [
(ξ1 ∨ ξ2 − ξ3)

+] ≤ ε.

2. EP [ess supP
ξ∈H ξ ] = supξ∈H EP [ξ ].

3. For any sub-σ -algebra J of F , we have

EP [
ess supP

ξ∈H

ξ |J ] = ess supP

ξ∈H

EP [ξ |J ].

PROPOSITION B.2. Under the same assumptions of Theorem 2.22 or Corol-
lary 2.23, the tower property holds for (P̃, G̃)-conditional expectation, that is,

(B.1) Ẽs

(
Ẽt (X̃)

) = Ẽs(X̃) P̃ -a.s. for all P̃ ∈ P̃,

with 0 ≤ s ≤ t , if one of the following conditions is satisfied:

1. X̃ does not depend on ω̂ ∈ �̂;
2. Et (1{τ̃>s}X̃) is B(�̂)-measurable and Et (E

P̂ [1{τ̃>s}X̃]) = EP̂ [Et ×
(1{τ̃>s}X̃)] P -a.s. for all P ∈P and for all 0 ≤ s ≤ t ;

3. for all P ∈ P , P -a.e. ω, 0 ≤ s ≤ t , ε > 0 and P1,P2 ∈P , there is a P3 ∈ P
such that if Ỹ := 1{τ̃>s}X̃, the functions

ξi(ω̂) =
∫
�

Ỹ
(
ω ⊗t ω′, ω̂

)
dPi

(
ω′), i = 1,2,3,
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with ω ⊗t ω′ defined in (2.3) are B(�̂)-measurable and

EP̂ [
(ξ1 ∨ ξ2 − ξ3)

+] ≤ ε P -a.s.

PROOF. Condition 1 is trivial. Indeed, by point 1 of Remark 2.19, in such case
the (P̃, G̃)-conditional expectation is reduced to the (P, F̃)-conditional expecta-
tion which satisfies the tower property.

If condition 2 is satisfied, according to the proof of Theorem 2.22, it is sufficient
to check that (2.29) and (2.30) are equalities. We have indeed

e�sEs

(
EP̂ [

Et (1{s<τ̃≤t}X̃)
] + Et

(
EP̂ [1{τ̃>t}X̃]))

= e�sEs

(
EP̂ [

1{s<τ̃≤t}Et (X̃)
] + EP̂ [

1{τ̃>t}Et (X̃)
])

= e�sEs

(
EP̂ [

1{s<τ̃≤t}Et (X̃) + 1{τ̃>t}Et (X̃)
])

= e�sEs

(
EP̂ [

1{τ̃>s}Et (X̃)
])

= e�sEs

(
Et

(
EP̂ [1{τ̃>s}X̃]))

= e�sEs

(
EP̂ [1{τ̃>s}X̃]) P -a.s. for all P ∈ P .

Condition 3 is equivalent to condition 2 by using the equivalence between state-
ments 1 and 2 in Yan’s commutability theorem B.1. �
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