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The mean field limits of systems of interacting diffusions (also called
stochastic interacting particle systems (SIPS)) have been intensively stud-
ied since McKean (Proc. Natl. Acad. Sci. USA 56 (1966) 1907–1911) as
they pave a way to probabilistic representations for many important nonlin-
ear/nonlocal PDEs. The fact that particles are not independent render classical
variance reduction techniques not directly applicable, and consequently make
simulations of interacting diffusions prohibitive.

In this article, we provide an alternative iterative particle representation,
inspired by the fixed-point argument by Sznitman (In École D’Été de Prob-
abilités de Saint-Flour XIX—1989 (1991) 165–251, Springer). The represen-
tation enjoys suitable conditional independence property that is leveraged in
our analysis. We establish weak convergence of iterative particle system to
the McKean–Vlasov SDEs (McKV–SDEs). One of the immediate advantages
of the iterative particle system is that it can be combined with the Multi-
level Monte Carlo (MLMC) approach for the simulation of McKV–SDEs.
We proved that the MLMC approach reduces the computational complexity
of calculating expectations by an order of magnitude. Another perspective on
this work is that we analyse the error of nested Multilevel Monte Carlo es-
timators, which is of independent interest. Furthermore, we work with state
dependent functionals, unlike scalar outputs which are common in literature
on MLMC. The error analysis is carried out in uniform, and what seems to
be new, weighted norms.

1. Introduction. The theory of mean field interacting particle systems was
pioneered by the work of H. McKean [25], where he gave a probabilistic inter-
pretation of a class of nonlinear (due to the dependence on the coefficients of
the solution itself) nonlocal PDEs. Probabilistic representation has an advantage,
as it paves a way to Monte-Carlo approximation methods which are efficient in
high dimensions. Fix T > 0. Let {Wt }t∈[0,T ] be a r-dimensional Brownian mo-
tion on a filtered probability space (�, {Ft }t ,F,P). Consider continuous functions
b : Rd × R

d → R
d , σ : Rd × R

d → R
d⊗r and their corresponding nonlinear (in

the sense of McKean) stochastic differential equation (McKV–SDE) given by

(1.1)

{
dXt = b

[
Xt,μ

X
t

]
dt + σ

[
Xt,μ

X
t

]
dWt,

μX
t = Law(Xt), t ∈ [0, T ],
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where X0 ∼ μ0 ∈ P2(R
d) and G[x,m] := ∫

Rd G(x, y)m(dy), for any x ∈ R
d and

m ∈ P2(R
d) (square-integrable laws on R

d ). Notice that {Xt }t∈[0,T ] is not neces-
sarily a Markov process, and hence it is not immediate what the corresponding
backward Kolmogorov equation looks like. Nonetheless, using Itô’s formula with
P ∈ C2

b(Rd), one can derive the corresponding nonlinear Kolmogorov–Fokker–
Planck equation

(1.2) ∂t 〈μt,P 〉 =
〈
μt,

1

2

d∑
i,j=1

∂2
xi ,xj

P (·)(σσT )
ij [·,μt ] +

d∑
i=1

∂xi
P (·)bi[·,μt ]

〉
,

where 〈m,F 〉 := ∫
Rd F (y)m(dy), [2, 11, 30]. The theory of propagation of chaos,

[30], states that (1.1) arises as a limiting equation of the system of interacting
diffusions {Y i,N

t }i=1,...,N on (Rd)N given by

(1.3)

⎧⎪⎪⎨⎪⎪⎩
dY

i,N
t = b

[
Y

i,N
t ,μ

Y,N
t

]
dt + σ

[
Y

i,N
t ,μ

Y,N
t

]
dWi

t ,

μ
Y,N
t := 1

N

N∑
i=1

δ
Y

i,N
t

, t ≥ 0,

where {Y i,N
0 }i=1,...,N are i.i.d samples with law μ0 and {Wi

t }i=1,...,N are indepen-
dent Brownian motions. It can be shown, under sufficient regularity conditions on
the coefficients, that μY,N ∈ P2(C([0, T ],Rd)) converges in law to μX; see [26].
This is a not trivial result as the particles are not independent. Moreover, (1.3) can
be interpreted as a first step towards numerical schemes for (1.1). To obtain a fully
implementable algorithm, one needs to study time discretisation of (1.1). As in
seminal papers by Bossy and Talay [6, 7], we work with an Euler scheme. Take
partition {tk}k of [0, T ], with tk − tk−1 = h and define η(t) := tk if t ∈ [tk, tk+1).
The continuous Euler scheme reads

Y
i,N

t = Y
i,N

tk
+ b

[
Y

i,N

η(t),μ
Y,N
η(t)

]
(t − tk) + σ

[
Y

i,N

η(t),μ
Y,N
η(t)

](
Wi

t − Wi
tk

)
.(1.4)

Note that due to interactions between discretised diffusions, implementation of
(1.4) requires N2 arithmetic operations at each step tk of the scheme. This makes
simulations of (1.4) very costly, but should not come as a surprise as the aim is to
approximate nonlinear/nonlocal PDEs (1.2) for which the deterministic schemes
based on space discretisation, typically, are also computationally very demand-
ing [4]. It has been proven that the empirical distribution function of N particles
(1.4) converges, in a weak sense, to the distribution of the corresponding McKean–
Vlasov limiting equation with the rate O((

√
N)−1 +h); see [2, 3, 5, 7]. Hence the

computational cost of achieving a mean-square-error (see Theorem 4.6 for the def-
inition) of order ε2 > 0 using this direct approach is O(ε−5).

The lack of independence among interacting diffusions and the fact that the
statistical error coming from approximating a measure creates a bias in the ap-
proximation, render applications of variance reduction techniques nontrivial. In
fact, we are not aware of any rigorous work on variance reduction techniques for
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McKV–SDEs. In this article, we develop an iterated particle system that allows
decomposing the statistical error and bias. We also provide an error analysis for
a general class of McKV–SDEs. Finally, we deploy the MLMC method of Giles–
Heinrich [16, 19] (see also 2-level MC of Kebaier [20]). In Section 2.2, we show
that a direct application of MLMC to (1.3) fails. It is worth pointing out that the
idea of combining an iterative method with MLMC to solve nonlinear PDEs has
very recently been proposed in [14]. However, their interest is on BSDEs and their
connections to semi-linear PDEs.

The key technical part of the paper is weak convergence analysis of the time
discretisation that allows for iteration of the error in a suitable norms. It is well
known at least since the work [31] that weak error analysis relies on the corre-
sponding PDE theory. However, as we already stated the solution to (1.1) is not
Markovian on R

d . To overcome, we work with the forward- backward system⎧⎪⎨⎪⎩X
0,X0
t = ξ +

∫ t

0
b
[
Xs,ξ

s ,μX0,ξ

s

]
ds +

∫ t

0
σ
[
X0,X0

s ,μX0,X0
s

]
dWs,

μX0,X0
t = Law

(
X

0,X0
t

)
,

and note that X
0,X0
t �= X

0,x
t |x=X0 in general (see [8]). This makes building of stan-

dard PDE theory on [0, T ] ×R
d problematic and lead to theory of PDEs on mea-

sure spaces proposed by P. Lions in his lectures in Collège de France ([24]) and
further developed in [8, 11]. Here, we work with

X 0,x
t = x +

∫ t

0
b
[
X 0,x

s ,μX0,ξ

s

]
ds +

∫ t

0
σ
[
X 0,x

s ,μX0,ξ

s

]
dWs.(1.5)

Notice that (1.5), unlike (1.1), is a Markov process. Furthermore, if (1.1) has a
unique (weak) solution, then X 0,x

t |x=X0 = X
0,X0
t . This means that∫

Rd
E
[
P
(
X 0,x

t

)]
μ0(dx) = E

[
E
[
P(Xt)|X0

]]
.

It can be shown that v(0, x) = E[P(X 0,x
t )] is a solution to backward Kolmogorov

equation on [0, T ] ×R
d which we will explore in this paper.

1.1. Iterated particle method. The main idea is to approximate (1.1) with a
sequence of classical SDEs defined as

(1.6) dXm
t = b

[
Xm

t ,μXm−1

t

]
dt + σ

[
Xm

t ,μXm−1

t

]
dWm

t , μXm

0 = μX
0 ,

where (Wm,Xm
0 ) are independent for all m ∈ N as well as (Wm,Xm

0 ) and
(Wn,Xn

0) m �= n ∈ N, are independent. The conditional independence across itera-
tions is the key difference of our approach from the proof of existence of solutions
by Sznitman [30], where the same Brownian motion and initial condition are used
at every iteration. The Euler scheme with μX

m

0 = μX
0 reads

(1.7) dX
m

t = b
[
X

m

η(t),μ
X

m−1

η(t)

]
dt + σ

[
X

m

η(t),μ
X

m−1

η(t)

]
dWm

t .
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To implement (1.7) at every step of the scheme, one needs to compute the integral
with respect to the measure from the previous iteration m − 1. This integral is

calculated by approximating measure μX
m−1

η(t) by the empirical measure with Nm−1

samples. Consequently, we take μY
i,m

0 = μX
0 and define, for m ∈ N and 1 ≤ i ≤

Nm,

(1.8) dY
i,m

t = b
[
Y

i,m

η(t),μ
Y

m−1
,Nm−1

η(t)

]
dt + σ

[
Y

i,m

η(t),μ
Y

m−1
,Nm−1

η(t)

]
dW

i,m
t ,

and call it an iterative particle system. As above, we require that Wi,m, 1 ≤ i ≤ Nm,

m ∈ N and Y
i,m

0 , 1 ≤ i ≤ Nm, m ∈ N, are independent. By this construction, the

particles (Y
i,m

t )i are independent upon conditioning on σ({Y i,m−1
t }1≤i≤Nm−1 : t ∈

[0, T ]). The error analysis of (1.8) is presented in Theorems (4.6) and (4.7). From
there, one can deduce that optimal computational cost is achieved when {Nm}m is
increasing and the computational complexity of computing expectations with (1.8)
is of the same order as the original particle system, that is, ε−5.

1.2. Main result of the iterative MLMC algorithm. To reduce the computa-
tional cost, we combine the MLMC method with Picard iteration (1.6). Fix m

and L. Let 	
 = {0 = t
0 , . . . , t
k , . . . , T = t
2
}, 
 = 0, . . . ,L, be a family of time

grids such that t
k − t
k−1 = h
 = T 2−
. To simulate (1.7) at Picard step m and for
all discretisation levels 
, we need to have an approximation of the relevant expec-
tations with respect to the law of the process at the previous Picard step m − 1 and
the time grid 	L, that is,(

E
[
b
(
x,X

m−1
0

)]
, . . . ,E

[
b
(
x,X

m−1
tLk

)]
, . . . ,E

[
b
(
x,X

m−1
T

)])
,(

E
[
σ
(
x,X

m−1
0

)]
, . . . ,E

[
σ
(
x,X

m−1
tLk

)]
, . . . ,E

[
σ
(
x,X

m−1
T

)])
.

By approximating these expectations with the MLMC (signed) measure M(m−1)

(see Section 2.3 for its exact definition), we arrive at the iterative MLMC particle
method defined as

(1.9) dY
i,m,

t = 〈

M(m−1)
η
(t)

, b
(
Y

i,m,

η
(t)

, ·)〉dt + 〈
M(m−1)

η
(t)
, σ
(
Y

i,m,

η
(t)

, ·)〉dW
i,m
t ,

where Y i,0,
 = X0. Under the assumptions listed in Section 2, the main result of
this paper gives precise error bounds for (1.9).

THEOREM 1.1. Assume (HReg) and (HInt). Fix M > 0 and let P ∈ C2
b(Rd).

Define MSE(M)
t (P ) := E[(〈M(M)

t ,P 〉−E[P(Xt)])2]. Then there exists a constant
c > 0 (independent of the choices of M , L and {Nm,
}m,
) such that for every
t ∈ [0, T ],

MSE(M)
ηL(t)(P ) ≤ c

{
h2

L +
M∑

m=1

cM−m

(M − m)! ·
L∑


=0

h


Nm,


+ cM−1

M!
}
.
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The proof can be found in Section 4.2. The first term in the above error comes
from the analysis of weak convergence for the Euler scheme. The second con-
tains the usual MLMC variance and shows that computational effort should be
increasing with with iteration m (rather than equally distributed across iterations).
Finally, the last term is an extra error due to iterations. Using this result, we prove
in Theorem 4.5 that the overall complexity of the algorithm is of order ε−4| log ε|3
(i.e., one order of magnitude better than the direct approach). We remark that the
MLMC measure acts on functionals that depend on spatial variables. We work with
uniform norms as in [17, 19], but also introduce suitable weighted norms, which
seems new in MLMC literature.

We remark that the analysis of stochastic particles systems is of independent
interest, as it is used as models in molecular dynamics; physical particles in fluid
dynamics [28]; behaviour of interacting agents in economics or social networks
[10] or interacting neurons in biology [13]. It is also used in modelling networks
of neurons (see [12]) and modelling altruism (see [14]).

1.3. Convention of notation. We use ‖A‖ to denote the Hilbert–Schmidt norm
while |v| is used to denote the Euclidean norm. For any stochastic process R =
{Rt }t∈I , the law of Rt at any time point t ∈ I is denoted by μR

t . P2(E) denotes the
set of square-integrable probability measures on any Polish space E. On the other
hand, Ps

2(E) denotes, on any Polish space E, the set of random signed measures
that are square-integrable almost surely.

Moreover, we denote by C
0,2
b,p(Rm×R

n,R) the set of functions P from R
m×R

n

to R that are continuously twice-differentiable in the second argument, for which
there exists a constant L such that for each x ∈ R

m, y ∈R
n, i, j ∈ {1, . . . , n},∣∣∂yi

P (x, y)
∣∣≤ L

(
1 + |y|p), ∣∣∂2

yi ,yj
P (x, y)

∣∣≤ L
(
1 + |y|p),

where ∂yi
and ∂2

yi ,yj
denote respectively the first- and second-order partial deriva-

tives w.r.t. the second argument. Finally, we denote by C
p,q
b,b (Rm × R

n,R) the set
of functions from R

m × R
n to R that are continuously p times differentiable in

the first argument and continuously q times differentiable in the second argument
such that the partial derivatives (up to the respective orders, excluding the “zeroth-”
order derivative) are bounded.

2. The iterative MLMC algorithm.

2.1. Main assumptions on the McKean–Vlasov SDE. Here, we state the as-
sumptions needed for the analysis of equation (1.1).

ASSUMPTION 2.1.

(HReg) The kernels b and σ belong to the sets C
2,1
b,b(R

d ×R
d,Rd)∩C

0,2
b,p(Rd ×

R
d,Rd) and C

2,1
b,b(R

d ×R
d,Rd⊗r ) ∩ C

0,2
b,p(Rd ×R

d,Rd⊗r ), respectively.
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(HInt) The initial law μ0 := μX
0 satisfies the following condition: for any p ≥

1, μ0 ∈ Lp(�;Rd), that is, ∫
Rd

|x|pμ0(dx) < ∞.

Note that if (HReg) holds, then

(HLip) the kernels b and σ are globally Lipschitz, that is, for all x1, x2, y1, y2 ∈
R

d , there exists a constant L such that∣∣b(x1, y1) − b(x2, y2)
∣∣+ ∥∥σ(x1, y1) − σ(x2, y2)

∥∥≤ L
(|x1 − x2| + |y1 − y2|).

If (HReg) and (HInt) hold, then a weak solution to (1.1) exists and pathwise
uniqueness holds (see [30]). In other words, {Xt }t≥0 induces a unique probabil-
ity measure on C([0, T ],Rd). Furthermore, it has a property that

sup
0≤t≤T

E|Xt |p < ∞.(2.1)

The additional smoothness stipulated in (HReg) is needed in the analysis of weak
approximation errors.

2.2. Direct application of MLMC to interacting diffusions. There are two is-
sues pertaining to the direct application of MLMC methodology to (1.4): (i) the
telescopic property needed for MLMC identity [16] does not hold in general; (ii)
a small number of simulations (particles) on fine time steps (a reason for the im-
proved computational cost in MLMC setting) would lead to a poor approximation
of the measure, leading to a high bias. To show that telescopic sum does not hold
in general, consider a collection of discretisations of [0, T ] with different resolu-
tions. To this end, we fix L ∈ N. Then Y

i,
,N


T , 
 = 1, . . . ,L, denotes for each i a
particle corresponding to (1.4) with time-step h
, where N
 is the total number of
particles. Let P : Rd → R be any Borel-measurable function. With a direct appli-
cation of MLMC in time for (1.4), we replace the standard Monte–Carlo estimator
on the left-hand side by a MLMC estimator on the right-hand side as follows:

1

NL

NL∑
i=1

P
(
Y

i,L,NL
t

)

≈ 1

N0

N0∑
i=1

P
(
Y

i,0,N0
t

)+ L∑

=0

1

N


N
∑
i=1

[
P
(
Y

i,
,N

t

)− P
(
Y

i,
−1,N

t

)]
.(2.2)

However, we observe that such a direct application is not possible, since in general,

E
[
P
(
Y

1,
,N

t

)] �= E
[
P
(
Y

1,
,N
+1
t

)]
,

which means that we do not have equality in expectation on both sides of (2.2). On
the contrary, if we required the number of particles for all the levels to be the same,
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then the telescopic sum would hold, but clearly, there would be no computational
gain from doing MLMC. We are aware of two articles that tackle the aforemen-
tioned issue. The case of linear coefficients is treated in [29], in which particles
from all levels are used to approximate the mean field at the final (most accurate)
approximation level. It is not clear how this approach could be extended to gen-
eral McKean–Vlasov equations. A numerical study of a “multi-cloud” approach
is presented in [18]. The algorithm resembles the MLMC approach to the nested
simulation problem in [1, 9, 17, 23]. Their approach is very natural, but because
particles within each cloud are not independent, one faces similar challenges as
with the classical particle system.

2.3. Construction of the iterative MLMC algorithm. We approximate each of
the expectations by the MLMC method, but only have access to samples at grid
points 	
 that correspond to (Y i,m−1,
)i,
. Consequently, for 
 < 
′, the empirical
measure 1

N

∑N
i=1 δ

Y
i,m−1,

t

is only defined at every timepoint in 	
, but not 	
′
and

one cannot build the MLMC telescopic sum across all discretisation levels. For
that reason (as in original development of MLMC by Heinrich [19]), we introduce

a linear-interpolated measure (in time) μ̃
Ym−1,
,N
t given by

μ̃
Ym−1,
,N
t

:=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

N

N∑
i=1

δ
Y

i,m−1,

t

, t ∈ 	
,

[
t − η
(t)

h


]
μ̃

Ym−1,
,N
η
(t)+h


+
[
1 − t − η
(t)

h


]
μ̃

Ym−1,
,N
η
(t)

, t /∈ 	
,

(2.3)

where η
(t) := t
k , if t ∈ [t
k , t
k+1). For any continuous function P :Rd ×R
d →R

and any x ∈R
d , we define the MLMC signed measure M(m−1)

t by

(2.4)
〈
Mm−1

t , P (x, ·)〉 := 〈
L∑


=0

(
μ̃

Ym−1,
,Nm−1,


t − μ̃
Ym−1,
−1,Nm−1,


t

)
,P (x, ·)

〉
,

where μ̃
Ym−1,−1,Nm,0
t := 0. We interpret the MLMC operator in a componentwise

sense. We then define the particle system {Y i,m,
} as in (1.9). As usual for MLMC
estimators, at each level 
, we use the same Brownian motion to simulate particle
systems (Y i,m,
, Y i,m,
−1)i to ensure that the variance of the overall estimator is
reduced. As for the iterative particle system, we require that Wi,m, 1 ≤ i ≤ Nm,
,
m ∈ N, and Y

i,m,

0 , 1 ≤ i ≤ Nm,
, 1 ≤ 
 ≤ L, m ∈ N, are independent.

3. Abstract framework for MLMC analysis. To streamline the analysis of
the iterated MLMC estimator, we introduce an abstract framework corresponding
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to one iteration. This simplifies the notation and also may be useful for future
developments of MLMC algorithms.

Let b :Rd ×Ps
2(Rd) →R

d and σ : Rd ×Ps
2(Rd) →R

d⊗r be measurable func-
tions. Also, V ∈Ps

2(C([0, T ],Rd)) is fixed (the precise conditions that we impose
on b, σ and V will be presented in Section 3.1). We consider SDEs with random
coefficients of the form

(3.1) dUt = b(Ut ,Vt ) dt + σ(Ut ,Vt ) dWt , μU
0 = μX

0 .

The solution of this SDE is well defined under the assumptions in Section 3.1, by
[22]. For 
 = 1, . . . ,L, the corresponding Euler approximation of (3.1) at level 


is given by

(3.2) dZ

t = b

(
Z


η
(t)
,Vη
(t)

)
dt + σ

(
Z


η
(t)
,Vη
(t)

)
dWt, μZ


0 = μX
0 .

We require that V does not depend on 
 and that (Wt)t∈[0,T ] is independent of V .
Subsequently, we define a particle system {Zi,
} as follows:

(3.3) dZ
i,

t = b

(
Z

i,

η
(t)

,Vη
(t)

)
dt + σ

(
Z

i,

η
(t)

,Vη
(t)

)
dWi

t , μZi,


0 = μX
0 .

3.1. Analysis of the abstract framework. Using the notation defined in the pre-
vious section, we formulate the conditions needed to study the convergence of the
iterated particle system. Recall that V ∈ Ps

2(C([0, T ],Rd)) is given and we con-
sider equations (3.2) and (3.3). We assume the following.

ASSUMPTION 3.1.

(HV Int) The random measure V is independent of Wi and Z
i,

0 . For each p ≥ 1,

sup
0≤s≤T

E

∣∣∣∣∫
Rd

|y|pVs(dy)

∣∣∣∣< ∞.

(HVReg) There exists a constant c such that

sup
x∈Rd

sup
0≤s≤t≤T

E
[∣∣b(x,Vt ) − b(x,Vs)

∣∣2 + ∥∥σ(x,Vt ) − σ(x,Vs)
∥∥2]≤ c(t − s).

(HVLip) There exists a constant c such that for each t ∈ [0, T ] and x, y ∈R
d ,∣∣b(x,Vt ) − b(y,Vt )

∣∣+ ∥∥σ(x,Vt ) − σ(y,Vt )
∥∥≤ c|x − y|,∣∣b(x,Vt )

∣∣+ ∥∥σ(x,Vt )
∥∥≤ c

(
1 + |x| +

∣∣∣∣∫
Rd

|y|Vt (dy)

∣∣∣∣).
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Analysis of conditional MLMC variance. For the rest of this section, we denote
by c a generic constant that depends on T , but not on 
 or N
. We first consider
the integrability of process (3.2).

LEMMA 3.2. Let Z
 be defined as in (3.2). Assume (HVLip) and (HInt). Then
for any p ≥ 2 and 
 ≥ 0, there exists a constant c such that

E

[
sup

t∈[0,T ]
∣∣Z


t

∣∣p]≤ c

(
1 +E

[∫ T

0

∣∣∣∣∫
Rd

|y|pVη
(s)(dy)

∣∣∣∣ds

])
.

The proof is elementary and can be found in Appendix A. The following two
lemmas focus on the regularity of Z


t in time and its strong convergence property.
The first lemma bounds the difference in Z


t over two time points, at a fixed level 
.
The second lemma bounds the difference in Z


t over adjacent levels, at a fixed
time t . Their proofs follow from standard estimates in the theory of SDE and are
therefore omitted.

LEMMA 3.3 (Regularity of Z

t ). Let Z
 be defined as in (3.2). Assume

(HVLip) and (HV Int). Then, for p ≥ 1, 0 ≤ u ≤ s ≤ T ,(
E
[∣∣Z


s − Z

u

∣∣p]) 1
p ≤ c(s − u)

1
2 .

LEMMA 3.4 (Strong convergence of Z

t ). Assume (HVLip), (HV Int) and

(HVReg). Then for any 
 ∈ {1,2, . . . ,L}, there exists a constant c > 0 such that

E

[
sup

0≤t≤T

∣∣Z

t − Z
−1

t

∣∣2]≤ ch
.

We define the interpolated empirical measures μ̃
Z
,N
t exactly as in (2.3) and the

corresponding MLMC operator Mt (corresponding to (2.4), but for one Picard
iteration) as

〈
Mt , P (x, ·)〉= 〈

L∑

=0

(
μ̃

Z
,N

t − μ̃

Z
−1,N

t

)
,P (x, ·)

〉
, μ̃

Z−1,N0
t := 0.

We also define σ -algebra FV
t = {σ(Vs)0≤s≤t }. Since samples {Zi,


ηL(t)}, i =
1, . . . ,N
, 
 = 0, . . . ,L, conditioned on FV

T are independent, we can bound the
conditional MLMC variance as follows.

LEMMA 3.5. Assume (HVLip), (HV Int) and (HVReg) hold. Let μ ∈ P2(C([0,

T ],Rd)). Then for any Lipschitz function P : Rd ×R
d →R, there exists a constant

c such that

sup
0≤t≤T

∫
Rd

E
[
Var

(〈
MηL(t),P (x, ·)〉|FV

T

)]
μt(dx) ≤ c

L∑

=0

h


N


.(3.4)



ITERATIVE MLMC FOR MCKEAN–VLASOV SDES 2239

PROOF. The independence condition in (HV Int) implies that

E
[
Var

(〈
MηL(t),P (x, ·)〉|FV

T

)]
=

N0∑
i=1

1

N2
0

E
[
Var

[
P

i,0
ηL(t)|FV

T

]]+ L∑

=1

N
∑
i=1

1

N2



E
[
Var

[
P

i,

ηL(t) − P

i,
−1
ηL(t) |FV

T

]]
,

where

(3.5) P
i,

ηL(t) := (

1 − λ

t

)
P
(
x,Z

i,

η
(ηL(t))

)+ λ

t P
(
x,Z

i,

η
(ηL(t))+h


)
,

λ

t = ηL(t)−η
(ηL(t))

h

∈ [0,1]. Using the fact that E[Var(X|G)] ≤ Var(X) ≤ E[X2],

we obtain the bound

E
[
Var

(〈
MηL(t),P (x, ·)〉|FV

T

)]
≤

N0∑
i=1

1

N2
0

E
∣∣P i,0

ηL(t)

∣∣2 +
L∑


=1

N
∑
i=1

1

N2



E
∣∣P i,


ηL(t) − P
i,
−1
ηL(t)

∣∣2.
Since P is Lipschitz, it has linear growth. By Lemma 3.2, it follows that

E
∣∣P i,0

ηL(t)

∣∣2 ≤ c sup
0≤t≤T

∫
Rd

(
x2 +E

∣∣Zi,0
η0(ηL(t))

∣∣2 +E
∣∣Zi,0

η0(ηL(t))+h0

∣∣2)μt(dx) < +∞.

Next, we consider levels 
 ∈ {1, . . . ,L}. Recall from (3.5) that

P
i,

ηL(t) = (

1 − λ

t

)
P
(
x,Z

i,

η
(ηL(t))

)+ λ

t P
(
x,Z

i,

η
(ηL(t))+h


)
,

P
i,
−1
ηL(t) = (

1 − λ
−1
t

)
P
(
x,Z

i,
−1
η
−1(ηL(t))

)+ λ
−1
t P

(
x,Z

i,
−1
η
−1(ηL(t))+h
−1

)
.

We decompose the error as follows:∣∣P i,

ηL(t) − P

i,
−1
ηL(t)

∣∣
≤ (

1 − λ
−1
t

) · ∣∣P (x,Z
i,

η
(ηL(t))

)± P
(
x,Z

i,
−1
η
(ηL(t))

)− P
(
x,Z

i,
−1
η
−1(ηL(t))

)∣∣
+ λ
−1

t · ∣∣P (x,Z
i,

η
(ηL(t))+h


)± P
(
x,Z

i,
−1
η
(ηL(t))+h


)
− P

(
x,Z

i,
−1
η
−1(ηL(t))+h
−1

)∣∣
+ ∣∣λ


t − λ
−1
t

∣∣ · ∣∣P (x,Z
i,

η
(ηL(t))+h


)− P
(
x,Z

i,

η
(ηL(t))

)∣∣.
By Lemma 3.4,

E
∣∣P (x,Z

i,

η
(ηL(t))

)− P
(
x,Z

i,
−1
η
(ηL(t))

)∣∣2 ≤ ch
,(3.6)

E
∣∣P (x,Z

i,

η
(ηL(t))+h


)− P
(
x,Z

i,
−1
η
(ηL(t))+h


)∣∣2 ≤ ch
.(3.7)
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Also, by Lemma 3.3,

E
∣∣P (x,Z

i,
−1
η
(ηL(t))

)− P
(
x,Z

i,
−1
η
−1(ηL(t))

)∣∣2
≤ c

(
η


(
ηL(t)

)− η
−1
(
ηL(t)

))≤ ch
,(3.8)

E
∣∣P (x,Z

i,
−1
η
(ηL(t))+h


)− P
(
x,Z

i,
−1
η
−1(ηL(t))+h
−1

)∣∣2 ≤ ch
,(3.9)

and

(3.10) E
∣∣P (x,Z

i,

η
(ηL(t))+h


)− P
(
x,Z

i,

η
(ηL(t))

)∣∣2 ≤ ch
.

We obtain (3.4) by combining (3.6), (3.7), (3.8), (3.9) and (3.10). Since t and x are
arbitrary, the proof is complete. �

3.2. Weak error analysis. We begin this subsection by defining X s,x as

X s,x
t = x +

∫ t

s
b
[
X s,x

u ,μX
u

]
du +

∫ t

s
σ
[
X s,x

u ,μX
u

]
dWu.

For P ∈ C
0,2
b,b(R

d ×R
d,R) and t ∈ [0, T ], we consider the function

vy(s, x) := E
[
P
(
y,X s,x

t

)]
, y ∈ R

d and (s, x) ∈ [0, t] ×R
d .(3.11)

We aim to show that vy(s, x) ∈ C1,2. The first step is the lemma below.

LEMMA 3.6. Assume (HInt) and (HReg). Then

b
[·,μX·

] ∈ C
2,1
b,b

(
R

d × [0, T ],Rd) and σ
[·,μX·

] ∈ C
2,1
b,b

(
R

d × [0, T ],Rd⊗r).
PROOF. For any x ∈ R

d , s ∈ [0, T ] and t ∈ [s, T ], we apply Itô’s formula to
each coordinate k ∈ {1, . . . , d} of b to get

(3.12)

bk(x,Xt) = bk(x,Xs) +
∫ t

s

d∑
j=1

r∑
i=1

∂yj
bk(x,Xu)σji

[
Xu,μ

X
u

]
dWi

u

+
∫ t

s

d∑
j=1

∂yj
bk(x,Xu)bj

[
Xu,μ

X
u

]
du

+ 1

2

∫ t

s

d∑
i,j=1

∂2
yi ,yj

bk(x,Xu)aij

[
Xu,μ

X
u

]
du,

where a[x,μ] = σ [x,μ]σ [x,μ]T and ∂yi
bk , ∂2

yi ,yj
bk indicate the derivatives w.r.t.

the the second argument. Assumptions (HReg), (HLip), (HInt) and (2.1) imply
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that the above stochastic integral is a martingale. By the fundamental theorem of
calculus,

∂tE
[
bk(x,Xt)

]= E

[
d∑

j=1

∂yj
bk(x,Xt)bj

[
x,μX

t

]

+ 1

2

d∑
i,j=1

∂2
yi ,yj

bk(x,Xt)aij

[
x,μX

t

]]
.(3.13)

By (HReg), ∂yj
bk and ∂2

yi ,yj
bk are bounded. Moreover, by (HLip), we know

that b and a are respectively of linear and quadratic growth in x. Therefore, by
(2.1), we conclude that ∂tbk[x,μX

t ] is bounded. To conclude, we can apply the
same argument to σ [·,μX· ]. �

LEMMA 3.7. Assume (HReg) and (HInt). Then for any (s, x) ∈ [0, t] × R
d ,

(i, j) ∈ {1, . . . , d}2 and P ∈ C
0,2
b,b(R

d ×R
d,R),

(Hvy) sup
y∈Rd

(
∥∥∂xi

vy(s, x)
∥∥∞ + ∥∥∂2

xi ,xj
vy(s, x)

∥∥∞ ≤ L.

PROOF. We only provide a sketch as the argument is standard. By the fact
that the first-order spatial derivatives of b[·,μX· ] and σ [·,μX· ] are bounded, it is
straightforward to deduce that

(3.14) sup
x∈Rd

sup
s∈[0,t]

E
[∣∣∂xi

(
X

s,x
t

)(j)∣∣2]< ∞.

Theorem 5.5.5 in [15] establishes that

(3.15) ∂xi
vy(s, x) =

d∑
j=1

E
[
∂yj

P
(
y,X

s,x
t

)
∂xi

(
X

s,x
t

)(j)]
.

By (3.14), it is clear that the assertion for the first-order derivatives in (Hvy) holds
if P ∈ C

0,2
b,b(R

d × R
d,R). Similarly, we can prove the assertion for the second-

order derivatives in the same way. �

By the Feynman–Kac theorem ([21]), it can be shown that vy(·, ·) satisfies the
following Cauchy problem:

(3.16)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂svy(s, x) + 1

2

d∑
i,j=1

(
σ
[
x,μX

s

]
σ
[
x,μX

s

]T )
ij ∂

2
xi ,xj

vy(s, x)

+
d∑

j=1

(
b
[
x,μX

s

])
j ∂xj

vy(s, x) = 0, (s, x) ∈ [0, t] ×R
d,

vy(t, x) = P(y, x).
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The following theorem reveals the order of weak convergence of (3.2) to (1.1).

We denote by μ
Z
|FV

T
t the regular conditional probability measure of Z


t given
FV

T . (See Theorem 7.1 in [27] for details.) The existence of regular conditional
probability measure follows from the fact that we work on a Polish space with the
Borel σ -algebra.

THEOREM 3.8. Let P ∈ C
0,2
b,b(R

d × R
d,R) be a Lipschitz continuous func-

tion.1 Assume that (HReg), (HInt), (HV Int) and (HVLip) hold. Then there exists
a constant c (independent of the choices of L and N1, . . . ,NL) such that for each
t ∈ [0, T ], 
 ∈ {0, . . . ,L} and x ∈R

d ,

sup
0≤s≤t

∣∣E[P (x,Z

s

)]−E
[
P(x,Xs)

]∣∣
≤ c

(
h
 +

∫ t

0
E

[∫
Rd

∣∣b(x,Vη
(s)) −E
[
b(x,Xη
(s))

]∣∣μZ
|FV
T

η
(s)
(dx)

]
ds

+
∫ t

0
E

[∫
Rd

∥∥σ(x,Vη
(s)) −E
[
σ(x,Xη
(s))

]∥∥μZ
|FV
T

η
(s)
(dx)

]
ds

)
.

PROOF. To lighten the notation in this proof, we use tk , η(s) and Z to denote
t
k , η
(s) and Z
, respectively. First, we observe that∣∣E[P(y,Zs)

]−E
[
P(y,Xs)

]∣∣≤ E
∣∣E[P(y,Zs)|FV

T

]−E
[
P(y,Xs)

]∣∣.
From definition of v(·, ·) in (3.11), we compute that

E
[
vy(0,X0)

]= ∫
Rd

vy(0, x)μ0(dx) =
∫
Rd

E
[
P
(
y,X 0,x

t

)]
μ0(dx)

= E
[
E
[
P(y,Xt)|X0

]]
.

The Feynman–Kac theorem, hypothesis (HV Int) and the fact that μX
0 = μZ

0 give

E
[
P(y,Zt)|FV

T

]−E
[
P(y,Xt)

]= E
[
vy(t,Zt )|FV

T

]−E
[
vy(0,Z0)

]
= E

[
vy(t,Zt )|FV

T

]−E
[
vy(0,Z0)|FV

T

]
=

n−1∑
k=0

E
[
vy(tk+1,Zk+1) − vy(tk,Zk)|FV

T

]
,

1Note that the regularity of P can be relaxed to C
0,2
b,p(Rd ×R

d ,R). We prove the result in a slightly
stronger assumption for the sake of simplicity.
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where n = t/h
.2 By Itô’s formula,

E
[
vy(t,Zt )|FV

T

]−E
[
vy(0,Z0)

]
=

n−1∑
k=0

E

[∫ tk+1

tk

(
∂tvy(s,Zs) +

d∑
j=1

∂xj
vy(s,Zs)bj (Zη(s),Vη(s))

+ 1

2

d∑
i,j=1

∂2
xi ,xj

vy(s,Zs)aij (Zη(s),Vη(s))

)
ds

+
∫ tk+1

tk

d∑
j=1

r∑
i=1

∂xj
vy(s,Zs)σ ji(Zη(s),Vη(s)) dW(i)

s

∣∣∣FV
T

]
,

where a(x,μ) = σ(x,μ)σ(x,μ)T . Condition (Hvy), as well as hypotheses
(HLip), (HInt) and (HV Int), along with Lemma 3.2 and part (a) of Lemma A.1
(with the filtration {Ft }t∈[0,T ] such that Ft = σ(FV

T , {Wu}0≤u≤t , {Zu}0≤u≤t )) im-
ply that

(3.17) E

[∫ tk+1

tk

d∑
j=1

r∑
i=1

∂xj
vy(s,Zs)σ ji(Zη(s),Vη(s)) dW(i)

s

∣∣∣FV
T

]
= 0.

Subsequently, using the fact that v(·, ·) satisfies PDE (3.16), we have

E
[
vy(t,Zt )|FV

T

]−E
[
vy(0,Z0)

]
=

n−1∑
k=0

∫ tk+1

tk

E

[
d∑

j=1

∂xj
vy(s,Zs)

(
bj (Zη(s),Vη(s)) − bj

[
Zs,μ

X
s

])

+ 1

2

d∑
i,j=1

∂2
xi ,xj

vy(s,Zs)
(
aij (Zη(s),Vη(s)) − aij

[
Zs,μ

X
s

])∣∣∣FV
T

]
ds.

Hence,

E
[
vy(t,Zt )|FV

T

]−E
[
vy(0,Z0)

]= n−1∑
k=0

∫ tk+1

tk

E

[ 4∑
i=1

Ri(s)
∣∣∣FV

T

]
ds,

where

R1(s) :=
d∑

j=1

∂xj
vy(s,Zs)

(
bj

[
Zη(s),μ

X
η(s)

]− bj

[
Zs,μ

X
s

])
,

R2(s) :=
d∑

j=1

∂xj
vy(s,Zs)

(
bj (Zη(s),Vη(s)) − bj

[
Zη(s),μ

X
η(s)

])
,

2For simplicity, we assume that n is an integer.
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R3(s) := 1

2

d∑
i,j=1

∂2
xi ,xj

vy(s,Zs)
(
aij

[
Zη(s),μ

X
η(s)

]− aij

[
Zs,μ

X
s

])
,

R4(s) := 1

2

d∑
i,j=1

∂2
xi ,xj

vy(s,Zs)
(
aij (Zη(s),Vη(s)) − aij

[
Zη(s),μ

X
η(s)

])
.

Error R1. Let FZ
T be the sigma-algebra generated by {Zt }t∈[0,T ]. From part

(a) of Lemma A.1 and Itô’s formula, we have

E
[
R1(s)|FV

T

]
=

d∑
k=1

E

[
∂xk

vy(s,Zs)E

[∫ s

η(s)

[
∂ubk

[
Zu,μ

X
u

]

+
d∑

i=1

∂xi
bk

[
Zu,μ

X
u

]
bi(Zη(u),Vη(u))

+ 1

2

d∑
i,j=1

∂2
xi ,xj

bk

[
Zu,μ

X
u

]
aij (Zη(u),Vη(u))

]
du
∣∣∣σ (FZ

T ,FV
T

)]∣∣∣FV
T

]
.

Condition (Hvy) and the conditional Jensen inequality imply that

E
∣∣E[R1(s)|FV

T

]∣∣
≤ c

d∑
k=1

(∫ s

η(s)
E

∣∣∣∣∣∂ubk

[
Zu,μ

X
u

]+ d∑
i=1

∂xi
bk

[
Zu,μ

X
u

]
bi(Zη(u),Vη(u))

+ 1

2

d∑
i,j=1

∂2
xi ,xj

bk

[
Zu,μ

X
u

]
aij (Zη(u),Vη(u))

∣∣∣∣∣du

)
.(3.18)

Using these two bounds along with Lemma 3.6 and assumption (HVLip), we can
see that

E
∣∣E[R1(s)|FV

T

]∣∣≤ c

(∫ s

η(s)
1 + sup

s′∈[0,t]
E|Zs′ |2 + sup

s′∈[0,t]
E

∣∣∣∣∫
Rd

|x|2Vs′(dx)

∣∣∣∣du

)
.

Assumptions (HLip), (HInt) and (HV Int) allow us to conclude that

sup
0≤s≤t

E
∣∣E[R1(s)|FV

T

]∣∣≤ ch
.

Error R2. Condition (Hvy) implies that∣∣E[R2(s)|FV
T

]∣∣≤ cE
[∣∣b[Zη(s),μ

X
η(s)

]− b(Zη(s),Vη(s))
∣∣|FV

T

]
.



ITERATIVE MLMC FOR MCKEAN–VLASOV SDES 2245

Using the notation of regular conditional probability measures,

E
∣∣E[R2(s)|FV

T

]∣∣≤ cE

[∫
Rd

∣∣E[b(x,Xη(s))
]− b(x,Vη(s))

∣∣μZ|FV
T

η(s) (dx)

]
.

Similarly, by the condition on the second-order derivatives from (Hvy), we can
establish that

(3.19) sup
0≤s≤T

E
∣∣E[R3(s)|FV

T

]∣∣≤ ch


and

(3.20)
∣∣E[R4(s)|FV

T

]∣∣≤ cE
[∥∥σ [Zη(s),μ

X
η(s)

]− σ(Zη(s),Vη(s))
∥∥|FV

T

]
. �

Next, we introduce an artificial process Z̄
 in order to remove the dependence of

Z
 on FV
T . Note that μ

Z
|FV
T

η
(s)
is a random measure, whereas μZ̄


η
(s)
is nonrandom.

This is crucial in the iteration that will be discussed in the next section.

LEMMA 3.9. Let P ∈ C
0,2
b,b(R

d × R
d,R) be a Lipschitz continuous function.

Assume that (HReg), (HInt), (HV Int) and (HVLip) hold. Then there exists a con-
stant c (independent of the choices of L and N1, . . . ,NL) such that for each
t ∈ [0, T ], 
 ∈ {0, . . . ,L} and x ∈ R

d ,

sup
0≤s≤t

E
[∣∣E[P (x,Z


s

)|FV
T

]−E
[
P(x,Xs)

]∣∣2]
≤ c

(
h2


 +
∫ t

0

[∫
Rd

E
∣∣b(x,Vη
(s)) −E

[
b(x,Xη
(s))

]∣∣2μZ̄


η
(s)
(dx)

]
ds

+
∫ t

0

[∫
Rd

E
∥∥σ(x,Vη
(s)) −E

[
σ(x,Xη
(s))

]∥∥2
μZ̄


η
(s)
(dx)

]
ds

)
,

where Z̄
 is a process defined by

dZ̄

t =

∫
Rd

b
(
Z̄


η
(t)
, y
)
μX

η
(t)
(dy) dt +

∫
Rd

σ
(
Z̄


η
(t)
, y
)
μX

η
(t)
(dy) dWt .

PROOF. As in the proof of Theorem 3.8, we use η(s), Z and Z̄ to denote η
(s),
Z
 and Z̄
, respectively. By (HLip) and (HVLip),

E
[∣∣(b[Zη(s),μ

X
η(s)

]− b(Zη(s),Vη(s))
)

− (
b
[
Z̄η(s),μ

X
η(s)

]− b(Z̄η(s),Vη(s))
)∣∣2|FV

T

]
≤ cE

[|Zη(s) − Z̄η(s)|2|FV
T

]
.(3.21)
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We further decompose the error as follows:

E
[|Zη(s) − Z̄η(s)|2|FV

T

]
≤ 2

(
E

[∣∣∣∣∫ s

0

(
b
[
Z̄η(u),μ

X
η(u)

]− b(Zη(u),Vη(u))
)
du

∣∣∣∣2∣∣∣FV
T

]

+E

[∣∣∣∣∫ s

0

(
σ
[
Z̄η(u),μ

X
η(u)

]− σ(Zη(u),Vη(u))
)
dWu

∣∣∣∣2∣∣∣FV
T

])
=: 2

(
R21(s) + R22(s)

)
.

By the conditional Fubini’s theorem and the Cauchy–Schwarz inequality, there
exists a constant K > 0 such that

R21(s)

≤ c

(∫ s

0
E
[∣∣b[Z̄η(u),μ

X
η(u)

]− b(Z̄η(u),Vη(u))
∣∣2|FV

T

]
+E

[∣∣b(Z̄η(u),Vη(u)) − b(Zη(u),Vη(u))
∣∣2|FV

T

]
du

)
≤ c

(∫ s

0
E
[∣∣b[Z̄η(u),μ

X
η(u)

]− b(Z̄η(u),Vη(u))
∣∣2|FV

T

]
+E

[|Zη(u) − Z̄η(u)|2|FV
T

]
du

)
,

where assumption (HVLip) is used in the final inequality. Since Z̄ is independent
of FV

T and that μX
η(u) is a nonrandom measure, we use the properties of regular

conditional distributions as outlined in Theorem 7.1 of [27] to prove that for each
ω ∈ �, (

E
[∣∣b[Z̄η(u),μ

X
η(u)

]− b(Z̄η(u),Vη(u))
∣∣2|FV

T

])
(ω)

=
∫
Rd

∣∣b[x,μX
η(u)

]− b
(
x,Vη(u)(ω)

)∣∣2μZ̄
η(u)(dx).

Therefore,

R21(s) ≤ c

(∫ s

0

[
E
[|Zη(u) − Z̄η(u)|2|FV

T

]
+
∫
Rd

∣∣b[x,μX
η(u)

]− b(x,Vη(u))
∣∣2μZ̄

η(u)(dx)

]
du

)
.

We proceed similarly as R22(s) and apply part (b) of Lemma A.1 (with the filtra-
tion {Ft }t∈[0,T ] such that Ft = σ(FV

T , {Wu}0≤u≤t ,Z0)) to get

R22(s) ≤ c

(∫ s

0

[
E
[|Zη(u) − Z̄η(u)|2|FV

T

]
+
∫
Rd

∥∥σ [x,μX
η(u)

]− σ(x,Vη(u))
∥∥2

μZ̄
η(u)(dx)

]
du

)
.
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Combining both bounds give

E
[|Zη(s) − Z̄η(s)|2|FV

T

]≤ c

(∫ s

0

[
E
[|Zη(u) − Z̄η(u)|2|FV

T

]
+
∫
Rd

∣∣b[x,μX
η(u)

]− b(x,Vη(u))
∣∣2μZ̄

η(u)(dx)

+
∫
Rd

∥∥σ [x,μX
η(u)

]− σ(x,Vη(u))
∥∥2

μZ̄
η(u)(dx)

]
du

)
,

for any s ∈ [0, t]. By Gronwall’s lemma and integration from 0 to t in time, we
obtain that ∫ t

0
E
[|Zη(s) − Z̄η(s)|2|FV

T

]
ds

≤ c

(∫ t

0

[∫
Rd

∣∣b[x,μX
η(s)

]− b(x,Vη(s))
∣∣2μZ̄

η(s)(dx)

+
∫
Rd

∥∥σ [x,μX
η(s)

]− σ(x,Vη(s))
∥∥2

μZ̄
η(s)(dx)

]
ds

)
.

By (3.2) and (3.21), it is clear that∫ t

0

∣∣E[R2(s)|FV
T

]∣∣2 ds ≤ c

(∫ t

0
E
[|Zη(s) − Z̄η(s)|2|FV

T

]
+E

[∣∣b[Z̄η(s),μ
X
η(s)

]− b(Z̄η(s),Vη(s))
∣∣2|FV

T

]
ds

)
.

This shows that∫ t

0

∣∣E[R2(s)|FV
T

]∣∣2 ds ≤ c

(∫ t

0

[∫
Rd

∣∣b[x,μX
η(s)

]− b(x,Vη(s))
∣∣2μZ̄

η(s)(dx)

+
∫
Rd

∥∥σ [x,μX
η(s)

]− σ(x,Vη(s))
∥∥2

μZ̄
η(s)(dx)

]
ds

)
.

We repeat the same argument for R4(s) and conclude that∫ t

0

∣∣E[R4(s)|FV
T

]∣∣2 ds ≤ c

(∫ t

0

[∫
Rd

∣∣b[x,μX
η(s)

]− b(x,Vη(s))
∣∣2μZ̄

η(s)(dx)

+
∫
Rd

∥∥σ [x,μX
η(s)

]− σ(x,Vη(s))
∥∥2

μZ̄
η(s)(dx)

]
ds

)
. �

4. Iteration of the MLMC algorithm.

4.1. Interacting kernels. Fix m ≥ 1 and correspond each particle Zi,
 in the
abstract framework with Y i,m,
 defined in (1.9) and FV

T with the sigma-algebra
Fm−1 generated by all the particles Y i,m−1,
 in the (m − 1)th Picard step, 0 ≤ 
 ≤
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L, 1 ≤ i ≤ Nm−1,
. We set Vt := M(m−1)
t (defined in (2.4)), b(x,μ) := b[x,μ]

and σ(x,μ) := σ [x,μ], so that

b
(
x,M(m−1)

t

)= 〈
M(m−1)

t , b(x, ·)〉 and σ
(
x,M(m−1)

t

)= 〈
M(m−1)

t , σ (x, ·)〉,
for each x ∈ R

d . The measure M(m−1) satisfies the independence criterion in
(HV Int), since {Ym−1} ⊥ (Wm,Zm

0 ). The criteria (HV Int), (HVReg) and (HVLip)
are verified below.

In the results of this section, c denotes a generic constant that depends on T , but
not on m, 
 or Nm,
.

LEMMA 4.1 (Verification of (HVLip)). Assume (HLip) and (HInt). Then, for
each t ∈ [0, T ], there exists a constant c such that for all x1, x2 ∈ R

d ,∣∣〈M(m−1)
t , b(x1, ·) − b(x2, ·)〉∣∣+ ∥∥〈M(m−1)

t , σ (x1, ·) − σ(x2, ·)〉∥∥≤ c|x1 − x2|,∣∣〈M(m−1)
t b(x1, ·)〉∣∣+ ∥∥〈M(m−1)

t σ (x1, ·)〉∥∥≤ c

(
1 + |x| +

∣∣∣∣∫
Rd

|y|M(m−1)
t (dy)

∣∣∣∣).

PROOF. For any t ∈ [0, T ] and x1, x2 ∈ R
d , by the definition of M(m−1)

t ,∣∣〈M(m−1)
t , b(x1, ·)〉− 〈

M(m−1)
t , b(x2, ·)〉∣∣

=
∣∣∣∣∣

L∑

=1

1

Nm−1,


Nm−1,
∑
i=1

[(
t − η
(t)

h


)
· (b(x1, Y

i,m−1,

η
(t)+h


)− b
(
x2, Y

i,m−1,

η
(t)+h


))
+
(

1 − t − η
(t)

h


)
· (b(x1, Y

i,m−1,

η
(t)

)− b
(
x2, Y

i,m−1,

η
(t)

))
−
(

t − η
−1(t)

h
−1

)
· (b(x1, Y

i,m−1,
−1
η
−1(t)+h
−1

)− b
(
x2, Y

i,m−1,
−1
η
−1(t)+h
−1

))
−
(

1 − t − η
−1(t)

h
−1

)
· (b(x1, Y

i,m−1,
−1
η
−1(t)

)− b
(
x2, Y

i,m−1,
−1
η
−1(t)

))]

+ 1

Nm−1,0

Nm−1,0∑
i=1

[(
t − η0(t)

h0

)
· (b(x1, Y

i,m−1,0
η0(t)+h0

)− b
(
x2, Y

i,m−1,0
η0(t)+h0

))

+
(

1 − t − η0(t)

h0

)
· (b(x1, Y

i,m−1,0
η0(t)

)− b
(
x2, Y

i,m−1,0
η0(t)

))]∣∣∣∣∣.
The required bounds follow from (HLip). The corresponding estimates for
‖σ(x1,Vη(t)) − σ(x2,Vη(t))‖ and ‖σ(x1,Vη(t))‖ can be obtained in a similar way
and are hence omitted. �
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LEMMA 4.2 (Verification of (HV Int)). Assume (HLip) and (HInt). Then for
any p ≥ 2, there exists a constant c such that

sup
n∈N∪{0}

sup
t∈[0,T ]

E

∣∣∣∣∫
Rd

|x|pM(n)
t (dx)

∣∣∣∣≤ c.

PROOF. For simplicity of notation, we rewrite∫
Rd

|x|pM(n)
t (dx) := 1

N0

N0∑
i=1

P
i,0
t +

L∑

=1

1

N


N
∑
i=1

(
P

i,

t − P

i,
−1
t

)
,

where

P
i,

t =

(
t − η
(t)

h


)∣∣Y i,n,

η
(t)+h


∣∣p +
(

1 − t − η
(t)

h


)∣∣Y i,n,

η
(t)

∣∣p.

We first fix 
 ∈ {1, . . . ,L} and define


i,

t := E

∣∣P i,

t − P

i,
−1
t

∣∣, i ∈ {1, . . . ,N
}.
By exchangeability, there exists a constant c (independent of the Picard step n)
such that

E
[∣∣i,


t

∣∣]≤ c


∑

′=
−1

(
E
∣∣Y 1,n,
′

η
′ (t)
∣∣p +E

∣∣Y 1,n,
′
η
′ (t)+h
′

∣∣p).
By the triangle inequality,

E

∣∣∣∣∣ 1

N


N
∑
i=1


i,

t

∣∣∣∣∣≤ N−1



N
∑
i=1

E
∣∣i,


t

∣∣≤ c


∑

′=
−1

(
E
∣∣Y 1,n,
′

η
′ (t)
∣∣p +E

∣∣Y 1,n,
′
η
′ (t)+h
′

∣∣p).
Similarly, we can show that

E

∣∣∣∣∣ 1

N0

N0∑
i=1

P
i,0
t

∣∣∣∣∣≤ c
(
E
∣∣Y 1,n,0

η0(t)

∣∣p +E
∣∣Y 1,n,0

η0(t)+h0

∣∣p).
Note that

E

∣∣∣∣∫
Rd

|x|pM(n)
t (dx)

∣∣∣∣≤ E

∣∣∣∣∣ 1

N0

N0∑
i=1

P
i,0
t +

L∑

=1

1

N


N
∑
i=1


i,

t

∣∣∣∣∣
≤ c

L∑

=0

(
E
∣∣Y 1,n,


η
(t)

∣∣p +E
∣∣Y 1,n,


η
(t)+h


∣∣p).
We can see from the proof of Lemma 4.1 that the constant c in Lemma 3.2 does
not depend on the particular Picard step. Therefore, by Lemma 3.2,

sup
0≤t≤T

E

∣∣∣∣∫
Rd

|x|pM(n)
t (dx)

∣∣∣∣≤ c

(
1 +

∫ T

0
sup

0≤u≤s

E

∣∣∣∣∫
Rd

|x|pM(n−1)
u (dx)

∣∣∣∣ds

)
.
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By iteration, we conclude that

sup
0≤t≤T

E

∣∣∣∣∫
Rd

|x|pM(n)
t (dx)

∣∣∣∣≤ n−1∑
r=0

(cT )r

r! + sup
0≤t≤T

E

∣∣∣∣∫
Rd

|x|pM(0)
t (dx)

∣∣∣∣(cT )n

n!

≤ ecT

(
1 + sup

0≤t≤T

E

∣∣∣∣∫
Rd

|x|pM(0)
t (dx)

∣∣∣∣)< +∞. �

LEMMA 4.3 (Verification of (HVReg)). Assume (HLip) and (HInt). Given
any Lipschitz continuous function C

0,2
b,b � P :Rd ×R

d →R and n ∈ N∪ {0}, there
exists a constant c such that

(4.1) E
∣∣〈M(n)

t , P (x, ·)〉− 〈
M(n)

s ,P (x, ·)〉∣∣2 ≤ c(t − s),

for any x ∈ R
d and 0 ≤ s ≤ t ≤ T .

PROOF. When analysing the regularity of the MLMC measure (4.1), one
needs to pay attention to the interpolation in time that we used. Pick any 
∗ ∈
{0,1,2, . . .L}. For simplicity of notation, we rewrite 〈M(n)

t , P (x, ·)〉 as

〈
M(n)

t , P (x, ·)〉 := 1

Nn,0

Nn,0∑
i=1

P
i,0
t +

L∑

=1

1

Nn,


Nn,
∑
i=1

(
P

i,

t − P

i,
−1
t

)
,(4.2)

where

P
i,

t =

(
t − η
(t)

h


)
P
(
x,Y

i,n,

η
(t)+h


)+ (
1 − t − η
(t)

h


)
P
(
x,Y

i,n,

η
(t)

)
.

Given any k ∈ {0,1, . . . ,2L − 1}, we compute〈
M(n)

t

∗

k+1
,P (x, ·)〉− 〈

M(n)

t

∗

k

, P (x, ·)〉
= 1

Nn,0

Nn,0∑
i=1

(
P

i,0
t


∗
k+1

− P
i,0
t


∗
k

)+ L∑

=1

1

Nn,


Nn,
∑
i=1

((
P

i,


t

∗

k+1
− P

i,


t

∗

k

)− (
P

i,
−1
t


∗
k+1

− P
i,
−1
t


∗
k

))
.

Thus, we only need to consider P
i,


t

∗

k+1
− P

i,


t

∗

k

, for each 
 ∈ {0,1, . . . ,L}. There are

two cases depending on the value of 
: 
 < 
∗ and 
 ≥ 
∗.
For levels 
 < 
∗, at least one of P

i,


t

∗

k+1
and P

i,


t

∗

k

is an interpolated value. Then

there exist a unique s ∈ {0,1, . . . ,2
 − 1} (chosen such that η
(t

∗
k ) = t
s ) and con-

stants λ ∈ (0,1 − h
∗
h


] and λ̃, given by

λ = t

∗

k − t
s

h


and λ̃ = t

∗

k+1 − t
s

h


,
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such that

P
i,


t

∗

k

= (1 − λ)P
(
x,Y

i,n,


t
s

)+ λP
(
x,Y

i,n,


t
s+1

)
and

P
i,


t

∗

k+1
= (1 − λ̃)P

(
x,Y

i,n,


t
s

)+ λ̃P
(
x,Y

i,n,


t
s+1

)
.

Note that λ̃ − λ = h
∗
h


. By taking the difference between P
i,


t

∗

k+1
and P

i,


t

∗

k

, we com-

pute that

P
i,


t

∗

k+1
− P

i,


t

∗

k

= h
∗

h


(
P
(
x,Y

i,n,


t
s+1

)− P
(
x,Y

i,n,


t
s

))
.(4.3)

For levels 
 ≥ 
∗, both of them are not interpolated. This gives

P
i,


t

∗

k+1
− P

i,


t

∗

k

= P
(
x,Y

i,n,


t

∗

k+1

)− P
(
x,Y

i,n,


t

∗

k

)
.(4.4)

By Lemmas 4.2 and 4.1, the hypotheses of Lemma 3.3 are satisfied. By applying
Lemma 3.3 to (4.3) and (4.4) along with the global Lipschitz property of P , we
have

E
∣∣P i,


t

∗

k+1
− P

i,


t

∗

k

∣∣2 ≤ ch
∗ ∀
 ∈ {0,1, . . . ,L}.

This shows that

E
∣∣〈M(n)

t

∗

k+1
,P (x, ·)〉− 〈

M(n)

t

∗

k

, P (x, ·)〉∣∣2
≤ 1

Nn,0

Nn,0∑
i=1

E
∣∣P i,0

t

∗

k+1
− P

i,0
t


∗
k

∣∣2

+
L∑


=1

2

Nn,


Nn,
∑
i=1

(
E
∣∣P i,


t

∗

k+1
− P

i,


t

∗

k

∣∣2 +E
∣∣P i,
−1

t

∗

k+1
− P

i,
−1
t


∗
k

∣∣2)
≤ ch
∗ .

The proof is complete by replacing s and t by ηL(s) and ηL(t), respectively, if any
of them (or both) does not belong to 	L. �

Lemma 4.4 below gives a decomposition of MSE (mean-square-error) for
MLMC along one iteration of the particle system (1.9).

LEMMA 4.4. Assume (HReg) and (HInt). Let P ∈ C
0,2
b,b(R

d × R
d,R) be a

Lipschitz continuous function. Let

MSE(m)
t

(
P(x, ·)) := E

[(
E
[
P(x,Xt)

]− 〈
M(m)

t ,P (x, ·)〉)2], t ∈ [0, T ].
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Then there exists a constant c > 0 (independent of the choices of m, L and
(Nm,
)0≤
≤L) such that for every t ∈ [0, T ],∫

Rd
MSE(m)

ηL(t)

(
P(x, ·))μZ̄L

ηL(t)(dx)

≤ c

(
h2

L +
∫ t

0

[∫
Rd

E
∣∣〈M(m−1)

ηL(s) , b(x, ·)〉−E
[
b(x,XηL(s))

]∣∣2μZ̄L

ηL(s)(dx)

]
ds

+
∫ t

0

[∫
Rd

E
∥∥〈M(m−1)

ηL(s) , σ (x, ·)〉−E
[
σ(x,XηL(s))

]∥∥2
μZ̄L

ηL(s)(dx)

]
ds

+
L∑


=0

h


Nm,


)
.

Furthermore, if we assume that the functions b and σ are both bounded, then there
exists a constant c > 0 (independent of the choices of m, L and (Nm,
)0≤
≤L) such
that for every t ∈ [0, T ],

sup
x∈Rd

MSE(m)
ηL(t)

(
P(x, ·))

≤ c

(
h2

L +
∫ t

0

[
sup
x∈Rd

E
∣∣〈M(m−1)

ηL(s) , b(x, ·)〉−E
[
b(x,XηL(s))

]∣∣2]ds

+
∫ t

0

[
sup
x∈Rd

E
∥∥〈M(m−1)

ηL(s) , σ (x, ·)〉−E
[
σ(x,XηL(s))

]∥∥2
]
ds +

L∑

=0

h


Nm,


)
.

PROOF. For x ∈ R
d and t ∈ [0, T ], we consider

E
[(
E
[
P(x,XηL(t))

]− 〈
M(m)

ηL(t),P (x, ·)〉)2]
= E

[(
E
[
P(x,XηL(t))

]−E
[〈
M(m)

ηL(t),P (x, ·)〉|Fm−1]
+E

[〈
M(m)

ηL(t),P (x, ·)〉|Fm−1]− 〈
M(m)

ηL(t),P (x, ·)〉)2].
Observe that

MSE(m)
ηL(t)

(
P(x, ·))

= E
[(
E
[
P(x,XηL(t))

]−E
[
P
(
x,Y

1,m,L
ηL(t)

)|Fm−1])2]
+E

[(
E
[〈
M(m)

ηL(t),P (x, ·)〉|Fm−1]− 〈
M(m)

ηL(t),P (x, ·)〉)2],(4.5)
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as E[〈M(m)
ηL(t),P (x, ·)〉|Fm−1] = E[P(x,Y

1,m,L
ηL(t) )|Fm−1] by exchangeability.

Next, from Lemma 3.9, there exists a constant c such that

(4.6)

E
[(
E
[
P(x,XηL(t))

]−E
[
P
(
x,Y

1,m,L
ηL(t)

)|Fm−1])2]
≤ c

(
h2

L +
∫ t

0

[∫
Rd

E
∣∣〈M(m−1)

ηL(s) , b(x, ·)〉−E
[
b(x,XηL(s))

]∣∣2μZ̄L

ηL(s)(dx)

]
ds

+
∫ t

0

[∫
Rd

E
∥∥〈M(m−1)

ηL(s) , σ (x, ·)〉−E
[
σ(x,XηL(s))

]∥∥2
μZ̄L

ηL(s)(dx)

]
ds

)
.

By Lemma 3.5, there exists a constant c such that

(4.7)

∫
Rd

E
[(
E
[〈
M(m)

ηL(t),P (x, ·)〉|Fm−1]− 〈
M(m)

ηL(t),P (x, ·)〉)2]μZ̄L

ηL(t)(dx)

=
∫
Rd

E
[
Var

(〈
M(m)

ηL(t),P (x, ·)〉|Fm−1)]μZ̄L

ηL(t)(dx) ≤ c

L∑

=0

h


Nm,


.

Combining (4.5), (4.6) and (4.7) yield the result. �

The complete algorithm consists of a sequence of nested MLMC estimators
{〈M(m),P (x, ·)〉}m=1,...,M and its error analysis is presented in Theorem 1.1. Note
that we iterate the algorithm by replacing P by the component real-valued func-
tions {bi}1≤i≤d and {σi,j }1≤i≤d,1≤j≤r .

4.2. Proof of Theorem 1.1.

PROOF. First, the assumption that Y i,0,
 = X0 gives

sup
0≤t≤T

∫
Rd

E
[∣∣E[b(x,XηL(t))

]− 〈
M(0)

ηL(t), b(x, ·)〉∣∣2
+ ∥∥E[σ(x,XηL(t))

]− 〈
M(0)

ηL(t), σ (x, ·)〉∥∥2]
μZ̄L

ηL(t)(dx) ≤ c.(4.8)

Fixing M > 0 and P ∈ C2
b(Rd), we set

(4.9) a
(m)
t :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E
[(〈
M(m)

ηL(t),P
〉−E

[
P(XηL(t))

])2]
, m = M,∫

Rd
E
[∣∣〈M(m−1)

ηL(t) , b(x, ·)〉−E
[
b(x,XηL(t))

]∣∣2
+ ∥∥〈M(m−1)

ηL(t) , σ (x, ·)〉−E
[
σ(x,XηL(t))

]∥∥2]
μZ̄L

ηL(t)(dx),

m ≤ M − 1.

From Lemma 4.4, we observe that

a
(m)
t ≤ c

(
b(m) +

∫ t

0
a(m−1)
s ds

)
∀m ∈ {1,2, . . . ,M},(4.10)
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where b(m) = h2
L +∑L


=0
h


Nm,

. Then one can easily show that

sup
0≤t≤T

aM
t ≤

M−1∑
m=0

b(M−m) (cT )m

m! +
(

sup
0≤s≤T

a(0)
s

)
· (cT )M

M! .(4.11)

Inequalities (4.8) and (4.11) conclude the proof. �

We are now in a position to present the complexity theorem for iterated MLMC
estimators of {E[P(XηL(t))]}t∈[0,T ].

THEOREM 4.5. Assume (HReg) and (HInt). Fix M > 0 and let P ∈ C2
b(Rd).

Then there exists some constant c > 0 (independent of the choices of M , L and
{Nm,
}m,
) such that for any ε < e−1, there exist M , L and {Nm,
}m,
 such that for
every t ∈ [0, T ],

MSE(M)
ηL(t)(P ) := E

[(〈
M(M)

ηL(t),P
〉−E

[
P(XηL(t))

])2]≤ cε2,

and computational complexity is of the order ε−4| log ε|3.

PROOF. The cost of obtaining 〈M(M)
ηL(t),P 〉 involves M iterations. In each it-

eration, one performs the standard MLMC algorithm, where the cost of approxi-
mating the law in the drift and diffusion coefficients is

∑L

′=0 Nm−1,
′ . Hence the

overall cost C := C(M,L, {Nm,
}m,
) of the algorithm is

(4.12) C =
L∑


=0

h−1

 N1,
 +

M∑
m=2

L∑

=0

(
h−1


 Nm,


L∑

′=0

Nm−1,
′

)
.

For convenience, we use the notation x � y to denote that there exists a constant c

such that x ≤ cy. We shall establish specific values M∗, L∗, {N∗
m,
}m,
 (depending

on ε) such that the mean-square error satisfies

(4.13)
M∗∑
m=1

cM∗−m

(M∗ − m)!
(
h2

L∗ +
L∗∑

=0

h


N∗
m,


)
+ cM∗−1

M∗! � ε2

and show that corresponding computational complexity is of order ε−4| log ε|3.
First, we define

(4.14) M∗ := ⌊
log

(
ε−1)⌋ =⇒ cM∗−1(M∗!)−1 � ε2

by Stirling’s approximation. For m ∈ {1, . . . ,M∗}, we define ε2
m := wmε2, for

some sequence {wm}M∗
m=1 (depending on M∗ and ε) which satisfies the following

conditions:
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(C1) Minimum condition: For each m, wm ≥ wM∗ = 1;

(C2) Weight condition:
∑M∗

m=1
cM∗−m

(M∗−m)!wm ≤ K ;

(C3) Cost condition:
∑M∗

m=1 w−1
m ≤ K ,

for some constant K > 0. (See Lemma A.2 for a concrete example.) Subsequently,
we define

L∗ := max
1≤m≤M∗ L∗

m, L∗
m :=

{∣∣⌊log
(
ε−1
m

)⌋∣∣, εm ≤ e,

1, εm > e.
(4.15)

We also define

N∗
m,
 := ⌈

ε−2
m

(
L∗ + 1

)
h


⌉
, 
 ∈ {0, . . . ,L∗},m ∈ {1, . . . ,M∗}.(4.16)

Note that hL∗ � εm, for any m ∈ {1, . . . ,M∗}. To see this, we show that hL∗
m
� εm

by considering the following three cases:

1. Case I: εm > e. In this case,

hL∗
m

= T 2−L∗
m = T 2−1 =

(
T 2−1

e

)
e <

(
T 2−1

e

)
εm.

2. Case II: 1 ≤ εm ≤ e. In this case,

hL∗
m

= T 2−L∗
m = T 2�log(ε−1

m )� = T 2− log(εm) ≤ T ≤ T εm.

3. Case III: 0 < εm < 1. Without loss of generality, we assume that T ≤ 1
2 . (We

can scale T by an appropriate factor if it is greater than 1
2 .) In this case,

log(εm) ≤
(

1

log 2

)
log(εm) − log(2T )

log 2
= log( εm

2T
)

log 2
= log2

(
εm

2T

)
,

which implies that

hL∗
m

= T 2−L∗
m = T 2−�log(ε−1

m )� ≤ T 2−(log(ε−1
m )−1) = 2T 2log(εm) ≤ εm.

We can therefore observe that
M∗∑
m=1

cM∗−m

(M∗ − m)!
(
h2

L∗ +
L∗∑

=0

h


N∗
m,


)

≤
M∗∑
m=1

cM∗−m

(M∗ − m)!
(
h2

L∗ +
L∗∑

=0

h


ε−2
m (L∗ + 1)h


)

�
M∗∑
m=1

cM∗−m

(M∗ − m)!ε
2
m � ε2,

by property (C2). Combining this estimate with (4.14), we conclude that the con-
straint (4.13) is satisfied.
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It remains to compute the complexity of the cost under the values M∗, L∗,
{N∗

m,
}m,
.

C =
L∗∑

=0

(
h−1




⌈
ε−2

1

(
L∗ + 1

)
h


⌉)

+
M∗∑
m=2

L∗∑

=0

(
h−1




⌈
ε−2
m

(
L∗ + 1

)
h


⌉ L∗∑

′=0

⌈
ε−2
m−1

(
L∗ + 1

)
h
′
⌉)

�
L∗∑

=0

(
h−1




(
ε−2

1

(
L∗ + 1

)
h
 + 1

))

+
M∗∑
m=2

L∗∑

=0

(
h−1




(
ε−2
m

(
L∗ + 1

)
h
 + 1

)(
ε−2
m−1

(
L∗ + 1

)+ (
L∗ + 1

)))

� ε−2(L∗ + 1
)2 +

M∗∑
m=2

(
ε−2
m ε−2

m−1

(
L∗ + 1

)3 + ε−2
m

(
L∗ + 1

)3
+ ε−1(L∗ + 1

)2
ε−2
m−1 + ε−1(L∗ + 1

)2)
� ε−2∣∣log

(
ε−1)∣∣2 + ∣∣log

(
ε−1)∣∣3 M∗∑

m=2

ε−2
m ε−2

m−1 + ∣∣log
(
ε−1)∣∣3 M∗∑

m=2

ε−2
m

+ ε−1∣∣log
(
ε−1)∣∣2 M∗∑

m=2

ε−2
m−1 + ε−1∣∣log

(
ε−1)∣∣2M∗,(4.17)

where we have used in the last two estimates the bounds L∗ ≤ log(ε−1) (by prop-
erty (C1)) and h−1


 = T −12
 ≤ T −12L∗ � 2log(ε−1) � ε−1. Finally, by properties
(C1) and (C3) of {wm}M∗

m=1, together with (4.17) and (4.14), we conclude that
C � ε−4| log(ε)|3. �

4.3. Noninteracting kernels. Here, we remark how the theory developed in
this work would simplify, if we only treated McKV–SDEs with noninteracting
kernels given by

(4.18) dXt = b

(
Xt,

∫
Rd

f (y)μX
t (dy)

)
dt + σ

(
Xt,

∫
Rd

g(y)μX
t (dy)

)
dWt,

for some continuous functions b : Rd × R
q → R

d and σ : Rd × R
q → R

d⊗r . We
assume (HReg) and (HInt). We also assume that each component function of f

and g belongs to the set C2
b(Rd,Rq). The corresponding MLMC particle system
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is

dY
i,m,

t = b

(
Y

i,m,

η
(t)

,
〈
M(m−1)

η
(t)
, f
〉)

dt + σ
(
Y

i,m,

η
(t)

,
〈
M(m−1)

η
(t)
, g
〉)

dW
i,m
t .

To study this case, we adopt the abstract framework with b(x,μ) := b(x, 〈μ,f 〉),
σ(x,μ) := σ(x, 〈μ,g〉) and V being defined as before. Clearly, this is a special
case of the equation studied so far, and hence all the results apply. The main differ-
ence stems from the complexity analysis as the term

∑L

=0 h−1


 Nm,


∑L

′=0 Nm−1,
′

in (4.12) is replaced by
∑L


=0 h−1

 Nm,
 +∑L


′=0 h−1

′ Nm−1,
′ . By performing the

same computation as in the proof of Theorem 4.5, we can show that the computa-
tional complexity is reduced to the order of ε−2| log ε|2.

4.4. Plain iterated particle system. The proof of the following theorem con-
stitutes a special case of Lemma 4.4 and Theorem 1.1.

THEOREM 4.6. Assume (HReg) and (HInt). Fix M > 0 and let P ∈ C2
b(Rd).

We define the mean-square error as

MSE(M)
t (P ) := E

[(
1

NM

NM∑
i=1

P
(
Y

i,M

t

)−E
[
P(Xt)

])2]
.

Then for every t ∈ [0, T ],

MSE(M)
η(t)(P ) ≤ c

{
h2 +

M∑
m=1

cM−m

(M − m)! · 1

Nm

+ cM−1

M!
}
,

for some constant c > 0 that does not depend on M or N1, . . . ,NM .

The following theorem concerns the computational complexity in the estimation
of {E[P(Xη(t))]}t∈[0,T ], whose proof follows similar procedures as the proof of
Theorem 4.5 and is omitted.

THEOREM 4.7. Assume (HReg) and (HInt). Fix M > 0 and let P ∈ C2
b(Rd).

Then there exists some constant c > 0 (independent of the choices of M and
{Nm}1≤m≤M ) such that for any ε < e−1, there exist M and {Nm}0≤m≤M such that
for every t ∈ [0, T ],

(4.19) MSE(M)
η(t)(P ) := E

[(
1

NM

NM∑
i=1

P
(
Y

i,M

η(t)

)−E
[
P(Xη(t))

])2]
≤ cε2,

and computational complexity C is of the order ε−5.
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5. Numerical results. In this section, we present numerical simulations that
confirms that iterative MLMC method achieves one order better computational
complexity comparing to classical particle system. Furthermore, numerical exper-
iments indicate that the iterative MLMC method works well even if the coefficients
of the McKV–SDEs do not satisfy previously stated regularity and growth assump-
tions. We compare the following methods:

• Classical particle system (1.4),
• MC Picard I—iterative particle system (1.8) with fixed number of particles N

for all Picard steps,
• MC Picard II—iterative particle system (1.8) with an increasing sequence

of particles {Nm}m=1,...,M where Nm = wmNM (see the choice of wm in
Lemma A.2),

• Iterated MLMC particle system outlined in Algorithm 1.

5.1. Kuramoto model. First, we provide a numerical example of a one-
dimensional stochastic differential equation derived from the Kuramoto model:

dXt =
∫
R

sin(Xt − y)μX
t (dy) dt + dWt, t ∈ [0,1],X0 = 0,

= sin(Xt)

∫
R

cos(y)μX
t (dy) − cos(Xt)

∫
R

sin(y)μX
t (dy) dt + dWt .

For the numerical tests, we work with the the bottom representation. We set
P(x) = √

1 + x2. For the initial condition of the iterative algorithm, we choose
Y

0,

t ∼ N(0, t).

Figure 1(a) shows that both MC Picard I and MC Picard II are less effi-
cient than the classical particle system. In Figure 1(b), the iterated MLMC par-
ticle system achieves computational complexity of order ε−2 (note that here the
cost of simulating particle system is N per Euler step and not N2; see Sec-
tion 4.3).

Figure 1(c) illustrates that the approximation error of iterated methods is within
2ε of that of the classical particle system and that it decreases as number of parti-
cles increases.

Figure 1(d) depicts Var[Y 1,m,

T |M(m−1)] and Var[Y 1,m,


T − Y
1,m,
−1
T |M(m−1)]

(in log scale) for each Picard step across levels 
. We see that that the conditional
MLMC decays with rate 2. This is higher than the rate given in Lemma 3.4, since
this example treats SDE with constant diffusion coefficient for which Euler scheme
achieves higher strong convergence rate.

5.2. Polynomial drift. We consider the following McKV–SDE:

(5.1) dXt = (
2Xt +E[Xt ] − XtE

[
X2

t

])
dt + Xt dWt, t ∈ [0,1],X0 = 1.
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FIG. 1. Result of Kuramoto model.

Assumption 2.1 is clearly violated. Note that

dE[Xt ] = (
3E[Xt ] −E[Xt ]E[X2

t

])
dt, E[X0] = 1,

dE
[
X2

t

]= (
5E
[
X2

t

]+ 2
(
E[Xt ])2 − (

E
[
X2

t

])2)
dt, E

[
X2

0
]= 1.

By solving the above system of ODEs with Euler scheme, we obtain particle-free
approximation to the solution of (5.1) that we use as a reference for the iterative
MLMC method. Figure 2(a), shows that the iterated MLMC achieves computa-
tional complexity of order ε−2. Figure 2(b) indicates that the approximation error
of iterated methods is within less than 2ε of that of the reference value and that it
decreases as number of particles increases.

5.3. Viscous Burgers equation. Last, we perform a numerical experiment for
the discontinuous case (not Lipschitz) corresponding to the Burgers equation ([4])
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FIG. 2. Result of Polynomial drift.

given by

(5.2) dXt = F̄t (Xt ) dt + 1

4
dWt, t ∈ [0,1],X0 = 0,

where F̄t (x) = P(Xt ≥ x). Linking to the Fokker–Planck equation of Xt , it is im-
portant to notice that F̄t (x) is the solution to the viscous Burgers equation:

∂tv(t, x) = 1

32
∂xxv(t, x) − v(t, x)∂xv(t, x),

where F̄0(x) = 1{x≤0} since the initial condition X0 = 0. The Cole–Hopf transfor-
mation results in, for any t ∈ (0,1],

F̄t (x) =
N (4t−4x√

t
)

exp(16x − 8t)N ( 4x√
t
) +N (4t−4x√

t
)
,

where N (x) = ∫ x
−∞ exp(

−y2

2 )
dy√
2π

. Then we take F̄1(0.5) = 0.5 as the reference
value. In Figure 3(a), the iterated MLMC achieves computational complexity of
order ε−4. Figure 3(b) demonstrates the similar desired behaviour of the approxi-
mation error as observed in the case of the polynomial drift.

APPENDIX A: PROOFS AND USEFUL LEMMAS

PROOF OF LEMMA 3.2 . Given any 
, let us define a sequence of stopping
times τM := inf{t ≥ 0 : |Z


t − Z

0| ≥ M}. For any t ∈ [0, T ], we consider the

stopped process Z

t∧τM

and compute by the Burkholder–Davis–Gundy and Hölder
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FIG. 3. Result of viscous Burgers equation.

inequalities and assumptions (HVLip) and (HInt) to obtain that

E

[
sup

0≤u≤t

∣∣Z

u∧τM

∣∣p]≤ c

(
E
[∣∣Z


0

∣∣p]+ tp−1
E

[∫ t

0

∣∣b(Z

η(s)∧τM

,Vη(s)

)∣∣p ds

]

+ t
p
2 −1

E

[∫ t

0

∥∥σ (Z

η(s)∧τM

,Vη(s)

)∥∥p
ds

])
.

≤
(

1 +E

[∫ t

0

∣∣∣∣∫
Rd

|y|pVη(s)(dy)

∣∣∣∣ds

]
+
∫ t

0
E

[
sup

0≤u≤s

∣∣Z

u∧τM

∣∣p]ds

)
.

Note that, by (HInt),

E

[
sup

0≤u≤s

∣∣Z

u∧τM

∣∣p]≤ c
(
E

[
sup

0≤u≤s

∣∣Z

u∧τM

− Z

0

∣∣p]+E
∣∣Z


0

∣∣p)< +∞.

By Gronwall’s lemma,

E

[
sup

0≤u≤t

∣∣Z

u∧τM

∣∣p]≤ c

(
1 +E

[∫ T

0

∣∣∣∣∫
Rd

|y|pVη(s)(dy)

∣∣∣∣ds

])
.

Furthermore, since sup0≤t≤T |Z

t∧τM

|p is a nondecreasing sequence (in M) con-
verging pointwise to sup0≤t≤T |Z


t |p , the lemma follows from the monotone con-
vergence theorem. �

LEMMA A.1. Let {Qt }t∈[0,T ] be a cadlag square-integrable process adapted
to the filtration {Ft }t∈[0,T ]. Suppose that {Wt }t∈[0,T ] is a {Ft }t∈[0,T ]-Brownian mo-
tion. Let G be a σ -algebra such that G ⊆ F0. Then the following equalities hold
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for any t ∈ [0, T ]:
(a) E

[∫ t

0
Qs dWs

∣∣∣G]= 0,

(b) E

[(∫ t

0
Qs dWs

)2∣∣∣G]= E

[∫ t

0
Q2

s ds
∣∣∣G].

The proof follows from standard results of stochastic calculus and is omitted.

LEMMA A.2. The sequence {wm}M∗
m=1 defined by

wm :=
⎧⎪⎨⎪⎩max

{
(M∗ − m − 2)!

cM∗−m−2 ,1
}
, 1 ≤ m ≤ M∗ − 2,

1, M∗ − 1 ≤ m ≤ M∗,

satisfies properties (C1) to (C3) stipulated in the proof of Theorem 4.5.

PROOF. First, property (C1) follows easily from the definition of wm. For
property (C2), we verify that

M∗∑
m=1

cM∗−m

(M∗ − m)!wm

≤
M∗−2∑
m=1

cM∗−m

(M∗ − m)!
(

(M∗ − m − 2)!
cM∗−m−2 + 1

)
+

M∗∑
m=M∗−1

cM∗−m

(M∗ − m)!

=
M∗∑
m=1

cM∗−m

(M∗ − m)! + c2
M∗−2∑
m=1

1

(M∗ − m)(M∗ − m − 1)

=
M∗∑
m=1

cM∗−m

(M∗ − m)! + c2
(

1 − 1

M∗ − 1

)
≤ ec + c2.

Lastly, we show this sequence satisfies property (C3). Indeed,

M∗∑
m=1

w−1
m =

M∗−2∑
m=1

cM∗−m−2

(M∗ − m − 2)! + 2 ≤ ec + 2.
�



ITERATIVE MLMC FOR MCKEAN–VLASOV SDES 2263

APPENDIX B: ALGORITHM FOR THE MLMC PARTICLE SYSTEM

Algorithm 1: Nested MLMC with Picard scheme

Input: Initial measure μ0 for Y i,0,
, global Lipschitz payoff function
C2

p � P : Rd →R and accuracy level ε

Output: 〈M(M)
T ,P 〉, the approximation for our goal E[P(XT )].

1 Fix parameters M (see (4.14)) and L (see (4.15)) that correspond to ε

2 Given μ0 = Law(Y i,0,0), sample {Y i,0,0
tLk

}k=0,...,2L

3 for m = 1 to M − 1 do
4 During mth Picard step, given samples {Y i,m−1,


t
k
}
=0,...,L

k=0,...,2
 , take (1.9) and

run MLMC to obtain {Y i,m,


t
k
}
=0,...,L

k=0,...,2
 . This requires calculating

(〈
M(m−1)

tL0
, b(x, ·)〉, . . . , 〈M(m−1)

tL
2L

, b(x, ·)〉),
(〈
M(m−1)

tL0
, σ (x, ·)〉, . . . , 〈M(m−1)

tL
2L

, σ (x, ·)〉),
where in place of x, we put particles {Y i,m,


t
k
}
=0,...,L

k=0,...,2
−1

5 Given samples {Y i,M−1,


t
k
}
=0,...,L

k=0,...,2
 , run standard MLMC (with interpolation)

to obtain the final vector of approximations (〈M(M)

tL0
,P 〉, . . . , 〈M(M)

tL
2L

,P 〉)
6 Return 〈M(M)

T ,P 〉.
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