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UPPER BOUNDS FOR THE FUNCTION SOLUTION OF THE
HOMOGENEOUS 2D BOLTZMANN EQUATION WITH HARD

POTENTIAL

BY VLAD BALLY

Université Paris-Est

We deal with ft (dv), the solution of the homogeneous 2D Boltzmann
equation without cutoff. The initial condition f0(dv) may be any probabil-
ity distribution (except a Dirac mass). However, for sufficiently hard poten-
tials, the semigroup has a regularization property (see Probab. Theory Related
Fields 151 (2011) 659–704): ft (dv) = ft (v) dv for every t > 0. The aim of
this paper is to give upper bounds for ft (v), the most significant one being of

type ft (v) ≤ Ct−ηe−|v|λ for some η,λ > 0.

1. Introduction and main results. We are concerned with the solution of the
two-dimensional homogenous Boltzmann equation:

(1.1) ∂tft (v) =
∫
R2

dv∗
∫ π/2

−π/2
dθ |v − v∗|γ b(θ)

(
ft

(
v′)ft

(
v′∗

) − ft (v)ft (v∗)
)
.

Here, ft (v) is a nonnegative measure on R2 which represents the density of parti-
cles having velocity v in a model for a gas in dimension two, and, with Rθ being
the rotation of angle θ ,

v′ = v + v∗
2

+ Rθ

(
v − v∗

2

)
, v′∗ = v + v∗

2
− Rθ

(
v − v∗

2

)
.

The function b : [−π
2 , π

2 ]�{0} → R will be assumed to satisfy the following hy-
pothesis:

(Hν) (i) ∃0 < c < C s.t. c|θ |−(1+ν) ≤ b(θ) ≤ C|θ |−(1+ν)

(ii) ∀k ∈ N,∃Ck s.t.
∣∣b(k)(θ)

∣∣ ≤ Ck|θ |−(k+1+ν).
(1.2)

In [15], it is proved that, for every ν ∈ (0, 1
2) and γ ∈ (0,1], the above equation

has a unique weak solution. More precisely: under the assumption (Hν) and the
integrability condition

∫
e|v|λf0(dv) < ∞ for some λ ∈ (γ,2), [15] shows that

there exists a unique weak solution ft of (1.1) which starts from f0. Furthermore,

Received May 2018; revised August 2018.
MSC2010 subject classifications. 60H07, 60J75, 82C40.
Key words and phrases. Boltzmann equation without cutoff, Hard potentials, interpolation crite-

rion, integration by parts.

1929

http://www.imstat.org/aap/
https://doi.org/10.1214/18-AAP1451
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1930 V. BALLY

the solution satisfies supt≤T

∫
e|v|λ′

ft (dv) < ∞ for every λ′ < λ. Throughout the
paper, these hypotheses are in force.

Below, f0(dv) will be a probability distribution which is not assumed to be
absolutely continuous with respect to the Lebesgue measure (we will just assume
that f0(dv) is not a Dirac mass δv0(dv)—in this trivial case the corresponding
solution is ft (dv) = f0(dv) = δv0(dv) for every t > 0).

Our first aim is to give sufficient conditions under which, for every t > 0, ft (dv)

is absolutely continuous and to study the regularity of its density ft (v); see Theo-
rem 1.1 below. This problem has already been addressed in [5] for the same equa-
tion and under the same assumptions, in [14] for the three-dimensional Boltzmann
equation and in [1] for the Boltzmann equation in arbitrary dimension (however,
in this last paper, f0(dv) is assumed to be absolutely continuous and to have finite
entropy). In the case of Maxwell molecules (where γ = 0), this problem is ad-
dressed in [18] and [13], and for Landau equation in [19]. These last three papers
are the pioneering papers concerning the probabilistic approach to the regularity
problem.

Our second aim is to give upper bounds for ft (v): see Corollary 1.2 and Theo-
rem 1.3 bellow. This is actually the main contribution of the paper. Two aspects of
our bounds are noteworthy:

• for any t > 0, v 
→ ft (v) decays exponentially fast (spatial exponential decay)
and

• t 
→ ft (v) blows up at most polynomially as t → 0 (blow-up in time).

Under a cutoff condition, and if the initial value is a function which is upper
bounded by a Maxwellian potential, bounds on the spatial decay of ft were proved
in [17]. Our result applies even when the initial condition is a measure (not nec-
essarily absolutely continuous) and we work with the equation without cutoff. In
[21], the author discusses upper bounds of polynomial type for an initial condition
which is a smooth function. This is rather different from our framework, as our
bounds are exponential and no regularity of the initial condition is required.

In order to precisely state our results, some notation is required. We denote by
‖ · ‖p respectively by ‖ · ‖q,p the norm in Lp , respectively, in the Sobolev space
Wq,p on R2. For p > 1, we denote by p∗ the conjugate of p. We fix ν ∈ (0, 1

2) and
γ ∈ (0,1], we suppose that f0(dv) is not a Dirac mass, and that for some λ ∈ (γ,2)

one has
∫

e|v|λf0(dv) < ∞.
We consider a nondecreasing function ρ : R+ → R+ such that ρ(u) = 1 for

u ∈ (0,1), ρ(u) = u for u ∈ (2,∞) and ρ ∈ C∞(R+) and, for 0 < λ′ < λ, we
define

(1.3) �λ′(v) = eρ(|v|λ′
).

The important point is that �λ′(v) = e|v|λ′
for |v| ≥ 2; the function ρ is used just

to avoid singularities of the derivatives of �λ′ around v = 0. The specific choice
of ρ impacts just the constants C (which anyway are not explicit).
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Moreover, we will use an auxiliary function ϕ : [0,∞) →R defined by

(1.4) ϕ(α) = (1 − ν)(1 + γ + α)

1 + ν(γ + α)
− 1

and we denote by α∗ the unique solution of the equation ϕ(α∗) = α∗ (see (3.11)
for the explicit value of α∗). Direct computation shows that

ϕ(0) > 0 ⇔ ν <
γ

2γ + 1
,(1.5)

ϕ(2) > 2 ⇔ ν <
γ

4γ + 9
.(1.6)

Throughout the paper, we restrict ourselves to the case where ϕ(0) > 0; when the
more restrictive condition ϕ(2) > 2 occurs, we define

(1.7) η = 2(ϕ(2) − 1)

ϕ(2) − 2

(
13(1 + α∗)(2 + ν)

ν
− 1

)
> 0.

THEOREM 1.1. A. Let us assume that ν <
γ

2γ+1 . Then the measure ft (dv) is

absolutely continuous with respect to the Lebesgue measure on R2. We denote by
ft (v) its density (that is ft (dv) = ft (v) dv).

Let λ′ < λ.
B.a. If ν <

γ
4γ+9 , then �λ′ft ∈ Lp(R2) for every p > 1 and (with η given

in (1.7))

(1.8) ‖�λ′ft‖p ≤ C

tη
.

b. If γ
4γ+9 ≤ ν <

γ
2γ+1 then α∗ < 2 and �λ′ft ∈ Lp(R2) for every 1 < p < 2

2−α∗ .

C.a. If ν <
γ

4γ+9 then �λ′ft ∈ Wq,p(R2) for q = 1,2 and 1 < p < pq , with

(1.9) p1 = 2(1 + ν(γ + 2))

1 − γ + 11ν + 5νγ
and p2 = 2(1 + ν(γ + 2))

2 − γ + 13ν + 6νγ
.

Moreover, for every p < pq one has

(1.10) ‖�λ′ft‖q,p ≤ C

tη
.

b. If γ
4γ+9 ≤ ν <

γ
3γ+4 , then �λ′ft ∈ W 1,p(R2) for every 1 < p < 2

3−α∗ .

We stress that the precise power η in t−η in (1.8) and (1.10) is due to the tech-
nical approach that we use. We do not expect it to be optimal (see the point D in
Lemma 3.1 for more precise estimates, which themselves are not optimal). How-
ever, this guarantees that the blow up of ft as t → 0 is at most polynomial.

In order to be able to compare this result with the ones in the papers which we
quoted before, take s > 1 and ν = 2

s−1 , γ = s−5
s−1 : these are the values which are
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significant in the case of the three- dimensional Boltzmann equation. Our condition
γ > 0 implies that s > 5; in the literature, this case is known as the “hard potential”
case. With this choice of ν and of γ , we have ν <

γ
2γ+1 iff s > 9 and ν <

γ
4γ+9 iff

s > 16 + √
193 ∼ 30. The regularity results of the above theorem are analogous

with the ones in [5], though not identical. In [14], one deals with the real three-
dimensional equation (without cutoff) and obtains absolute continuity for a larger
range for s then in the above theorem. However, the Lp estimates obtained in our
paper are stronger: we obtain �λ′ft ∈ Lp(R2) instead of ft ∈ L2(R2). Moreover,
we obtain bounds depending polynomially on t ↓ 0. The result of [1] is stronger
in the sense that it applies to equations in any dimension, but it requires that the
initial condition is already a function (so it is not really possible to compare them).

We give now some consequences of the previous result concerning the tails of
ft (dv).

COROLLARY 1.2. Suppose that ν <
γ

2γ+1 . For every λ′ < λ, there exists a
constant C ≥ 1 (depending on λ′) such that for every R > 1, t ∈ (0,1],

ft

({
v : |v| ≥ R

}) ≤ C

tκ
e−Rλ′

with(1.11)

κ = 13(2 + ν)(1 − ν)(1 + γ )

ν(1 + νγ )
− 1.(1.12)

We give now the upper bound for ft (v).

THEOREM 1.3. Suppose that ν <
γ

4γ+9 . Then p1 > 2 (given in (1.9)) and

ft ∈ C0,χ (Hölder continuous functions of order χ) with χ = 1 − 2
p1

for all t > 0.
Moreover, for every λ′ < λ there exists C ≥ 1 such that

(1.13)
∣∣ft (v)

∣∣ ≤ C

tη
e−|v|λ′

with η given in (1.7). Finally, there exists C ≥ 1 such that for every v,w ∈ R2 with
|w − v| ≤ 1

(1.14)
∣∣ft (w) − ft (v)

∣∣ ≤ C

tη
e−|v|λ′ |w − v|χ .

To our best knowledge, both the time-space estimate (1.13) and the Hölder con-
tinuity of ft and the estimate (1.14) are new. For the Landau equation, lower and
upper bounds for the solution have been obtained in [19] using integration by parts
techniques based on the classical Malliavin calculus. This approach is not directly
possible in our framework because of the singularities that appear in the problem.
We will use similar but ultimately different techniques below.
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Corollary 1.2 and Theorem 1.3 are the main contributions of our paper. The
drawback of our approach is that it applies only to “very hard potentials” (s > 9
for (1.11), resp., s > 30 for (1.13) and (1.14)). Moreover, the exponent η in the
polynomial blow-up t−η is not expected to be optimal.

The proofs are based on a “balance argument” which is interesting in itself, and
may be useful in other settings. We summarize it below.

Consider a family of random variables Fε ∼ fε(v) dv, ε > 0 and a random vari-
able F . Suppose that Fε − F → 0 and fε ↑ ∞ as ε → 0, in a certain sense. If the
convergence to zero is sufficiently faster then the blow-up of fε , then one is able to
prove that the law of F has a density and to obtain some regularity of the density.
This idea first appears in [16] and has been used ever since in several papers (see,
e.g., [10]). In these papers the “balance” between the speed of convergence to zero
and the blow-up is built by using Fourier analysis. Later on, in [12] the authors
introduced a new method based on a Besov space criterion, which turns out to be
significantly more powerful than the one based on Fourier analysis. This is the
method used in [14] in the case of the three-dimensional Boltzmann equation (see
also [11]). Finally, in [2], a third method which is close to interpolation theory was
introduced.

The criterion that we use in the present paper is an improvement of the latter
method: we give an abstract framework in which an integration by parts formula
can be applied and we quantify the blow-up of fε in terms of the weights appearing
in the corresponding integration by parts formula. Let us be more precise.

Consider a family of random variables Fε with values in Rd and Gε with values
in [0,1], ε > 0. Associate to them the measures με given by∫

ϕ dμε = E
(
ϕ(Fε)Gε

)
.

The random variables Gε play a technical role, and will be used in some localiza-
tion procedure.

We assume that for every ε > 0 and every multi-index α one may find a random
variable Hα,ε such that the following integration by parts formula holds:

(1.15) E
(
∂αϕ(Fε)Gε

) = E
(
ϕ(Fε)Hα,ε

) ∀ϕ ∈ C∞
b

(
Rd)

.

Here, α = (α1, . . . , αm) ∈ {1, . . . , d}m, is a multi-index of length |α| = m and ∂α

is the derivative associated to α.
Additionally, we assume that Hα,ε may be chosen such that, for every q ∈ N

and p > 1, there exist some constants Ĥq,p and a, b, ε∗ ≥ 0 such that for every
0 < ε < ε∗,

(1.16) sup
|α|≤q

‖Hα,ε‖p ≤ Ĥq,pε−b(q+a).

In particular, this implies that με(dv) = fε(v) dv with fε ∈ C∞(Rd).
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Moreover, we consider a random variable F ∈ Rd and we assume that there
exists β > 0 and C∗ ≥ 1 such that

(1.17) ‖Gε − 1‖2 + ‖Fε − F‖1 ≤ C∗εβ.

Finally, we consider a function � : Rd → R+ which belongs to C∞(Rd), is
convex and there exists C ≥ 1 such that �(x) ≥ 1

C
�(y) if |x| ≥ |y|. Moreover, we

assume that for each h ∈ N and for each multi-index α there exist some constants
c1, c2 (depending on h and α) such that

(1.18)
(
1 + |x|)h(

1 + ∣∣∂α�(x)
∣∣) ≤ c1�

c2(x).

The typical examples are �(x) = (1 + |x|2)r and �λ defined in (1.3). We denote
by C the class of these functions and for � ∈ C and θ ≥ 0 we denote

(1.19) Cθ(�) = E
(
�θ(F )

) + sup
ε>0

E
(
�θ(Fε)

)
.

Our criteria are the following.

THEOREM 1.4. A. Let F ∈ Rd be a random variable. Suppose that one is able
to find a family Fε ∈ Rd and Gε ∈ R, ε > 0 which verify (1.15), (1.16) and (1.17).
Fix q ∈ N and p > 1 and assume that (recall that p∗ is the conjugate of p)

(1.20) β > b

(
1 + q + d

p∗

)
.

Then P(F ∈ dx) = f (x) dx with f ∈ Wq,p(Rd).
B. Consider a function � ∈ C such that Cθ(�) < ∞ for every θ > 0. Let q ∈ N

and p > 1, δ > 0 be given. Assume that (1.20) holds. There exist some constants
C ≥ 1, θ ≥ 1 and h∗ ≥ 1 (depending on q, d,β, b,p and δ) such that for h ≥ h∗
one has

‖�f ‖q,p ≤ ��,θ (q,h,p) with(1.21)

��,θ (q,h,p)

:= C × (
C∗ + Cθ(�)

) × (
h2bĤ

1/2h
2h+q+d,p∗

)(1+δ)(1+q+d/p∗)(1.22)

with C∗ given in (1.17), Ĥ2h+q+d,p∗ given in (1.16) and Cθ(�) given in (1.19).
C. Suppose that (1.20) holds for q = 1 and p > d . Then f ∈ C0,χ (Rd) with

χ = 1 − d
p

and we have

(1.23)
∣∣f (x)

∣∣ ≤ 1

�(x)
× ‖�f ‖1,p ≤ 1

�(x)
× ��,θ (1, h,p).

Moreover, let

(1.24) ∇̂�(x) = sup
|x−y|≤1

∣∣∇�(y)
∣∣.
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For every x, y ∈ Rd with |x − y| ≤ 1,

∣∣f (y) − f (x)
∣∣ ≤ 1

�(x)

(
1 + ∇̂�(x)

�(x)

)
× ‖�f ‖1,p × |x − y|χ(1.25)

≤ 1

�(x)

(
1 + ∇̂�(x)

�(x)

)
× ��,θ (1, h,p) × |x − y|χ .(1.26)

REMARK 1.5. The constants in the previous theorem depend on � by means
of the constants c1 and c2 which appear in the property (1.18).

REMARK 1.6. The estimates in the point C in the above theorem are quite
precise and this is important in order to prove Theorem 1.3. But, roughly speaking,
(1.23) reads ∣∣f (x)

∣∣ ≤ C

�(x)
×

(
E

(
�θ(F )

) + sup
ε>0

E
(
�θ(Fε)

))
.

The constant C depends on h∗, Ĥ 1/2h
2h∗+1+d,p∗, β,C∗, d and p. This version is less

precise but focus on the following basic fact: if one is able to estimate the moments
E(�θ(F )) and E(�θ(Fε)), then one obtains the upper bound of f by �−1(x).
This means that one is able to translate moment estimates in terms of upper bounds
for the density function.

Let us try to give the heuristic which is behind the above criterion. Suppose for
simplicity that we are in dimension d = 1 and that F itself satisfies the integration
by parts formula (1.15) (with G = 1). We formally write

fF (x) = E
(
δ0(F − x)

) = E
(
1′[0,∞)(F − x)

) = E
(
1[0,∞)(F − x)H1

)
.

Using regularization by convolution, the above reasoning may be done rigorously
and it proves that P(F ∈ dx) = fF (x) dx. Let us now compute the upper bounds.
Take, for example, �(x) = e|x|. Then, using Schwarz’s inequality first and Chebi-
shev’s inequality, then

fF (x) ≤ P 1/2(F ≥ x)‖H1‖2 = P 1/2(
e|F | ≥ e|x|)‖H1‖2 ≤ e− 1

2 |x|E
(
e|F |)1/2‖H1‖2

so we obtain an estimate of type (1.23).
The classical probabilistic way to obtain integration by parts formulas of type

(1.15) is to use Malliavin calculus—our approach is strongly inspired from this
methodology, but however, at a certain point, takes a completely different direc-
tion. Malliavin calculus is an infinite differential calculus settled in the following
way. One considers a class of “simple functionals” which are “finite dimensional”
objects. For them, one defines a derivative operator D and a divergence operator
L using the classical differential operators in finite dimension. Then one defines
the extension of these operators in infinite dimension: a general functional F is
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in the domain of D (resp., of L) if one may find a sequence of simple func-
tionals Fε such that Fε → F in L2 and DFε → U in L2 (resp., LFε → V ).
Then one defines DF = limε→0 DFε respectively LF = limε→0 LFε . These op-
erators are used in order to built the weight H1 in the integration by parts formula
E(ϕ′(F )) = E(ϕ(F )H1). In our approach, we also settle a finite dimensional cal-
culus as above so we define DFε and LFε for a finite dimensional Fε and we use
them in order to obtain E(ϕ′(Fε)) = E(ϕ(Fε)H1,ε) (see Appendix B). But in our
framework LFε ↑ ∞ (see Remark B.1 for more details), so F is no more in the
domain of L. So the second step in Malliavin’s methodology breaks down: there is
no infinite dimensional calculus available here. And we have H1,ε ↑ ∞. But, if we
are able to obtain the estimates given in (1.16) and in (1.17) and if the equilibrium
condition (1.20) is verified, then we still obtain the regularity of the law of F and
the upper bound for its density. This is the object of Theorem 1.4. The ideas of this
criterion origin in [2] and the proof is given in Appendix A.

In the years 80′th starting with the papers [8, 23] and [7], a version of Malliavin
calculus for Poisson point measures has been developed and successfully used in
order to study the regularity of the solutions of SDE′s with jumps (see also [20]
and [9] and the references there for recent developments in this area). In the above
papers, the extension form the finite dimensional calculus to the infinite dimen-
sional one is successfully done and the limit limε→0 LFε = LF exists. Although
the finite dimensional calculus developed in our paper is similar, in our frame-
work LFε blows up as ε → 0. This is because the law of the jumps in Boltzmann
equation (and more generally in the framework of piecewise deterministic Markov
processes) depends on the position of the particle before the jump while for usual
SDE′s, the law of the jumps is independent of the position of the particle (see
Appendix B for details).

The proof of Theorem 1.1 is based on the criterion given in Theorem 1.4. In
order to do it, following Tanaka [24], we introduce a stochastic equation which
represents the probabilistic representation of the Boltzmann equation and we con-
struct some regularized version of this equation. The solutions of these equations
play the role of F and of Fε in Theorem 1.4. Then we recall two results from [5]:
the first one permits to estimate the error in (1.17) and the second one gives the
integration by parts formula (1.15) and the estimates in (1.16).

The paper is organized as follows: in Section 2, we recall the results from [5],
and in Section 3 we prove Theorem 1.1, Corollary 1.2 and Theorem 1.3 (starting
from the general criterion given in Theorem 1.4). In Appendix A, we prove Theo-
rem 1.4. In Appendix B, we give an overview of the results from [5] and we precise
the changes which are necessary in order to obtain an explicit expression for the
dependence with respect to t of the constants in the main estimates.

2. Preliminary results. In this section, we present some results from [5].
Throughout this section, we fix ν ∈ [0, 1

2), γ ∈ [0,1] and λ ∈ (γ,2) and the corre-
sponding solution ft (dv) of (1.1) (which exists and is unique). In [5] (following
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the ideas from [24]), one gives the probabilistic interpretation of equation (1.1).
We recall this now. Let E = [−π

2 , π
2 ] ×R2 and let N(dt, dθ, dv, du) be a Poisson

point measure on E × R+ with intensity measure dt × b(θ) dθ × ft (dv) × du.
Consider also the matrix

A(θ) = 1

2

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
= 1

2
(Rθ − I ).

We are interested in the equation

(2.1) Vt = V0 +
∫ t

0

∫
E×R+

A(θ)(Vs− − v)1{u≤|Vs−−v|γ }N(ds, dθ, dv, du)

with P(V0 ∈ dv) = f0(dv). Proposition 2.1 in [5] asserts that equation (2.1) has a
unique càdlàg solution (Vt )t≥0 and P(Vt ∈ dv) = ft (dv) (in this sense Vt repre-
sents the probabilistic representation for ft ).

In order to handle equation (2.1), we face several difficulties: the derivatives of
the function w → |w − v|γ blow up in the neighborhood of v; so we have to use
a regularization procedure. Moreover, this function is unbounded and so we use a
truncation argument. Finally, the measure θ−(1+ν) dθ has infinite mass, and it is
convenient to use a truncation argument also. We follow here the ideas and results
from [5]. We fix

(2.2) η0 ∈
(

1

λ
,

1

γ ∨ ν

)
and �ε =

(
ln

1

ε

)η0

.

Since γ η0 > 1 we have, for every C ≥ 1 and a > 0,

(2.3) lim
ε→0

εaeC�
γ
ε = 0.

So eC�
γ
ε ≤ ε−a for sufficiently small ε. Moreover, if κ > 0 is such that κη0 > 1,

then for every A ≥ 1,

(2.4) lim
ε→0

ε−Ae−�κ
ε = 0.

So e−�κ
ε ≤ εA for sufficiently small ε.

We construct the following approximation. We consider a C∞ even nonnegative
function χ supported by [−1,1] and such that

∫
R χ(x)dx = 1 and we define

(2.5) ϕε(x) =
∫
R

(
(y ∨ 2ε) ∧ �ε

)χ((x − y)/ε)

ε
dy.

Observe that we have 2ε ≤ ϕε(x) ≤ �ε for every x ∈ R, ϕε(x) = x for x ∈
(3ε,�ε − 1), ϕε(x) = 2ε for x ∈ (0, ε) and ϕε(x) = �ε for x ∈ (�ε,∞). To the
cut off function ϕε , one associates the equation

(2.6) V ε
t = V0 +

∫ t

0

∫
E×R+

A(θ)
(
V ε

s− − v
)
1{u≤ϕ

γ
ε (|V ε

s−−v|)}N(ds, dθ, dv, du).
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We construct a second approximation: for ζ > 0, we consider a smooth cut-off
function Iζ which is a smooth version of 1{|θ |>ζ } (the precise definition is given in
(B.2)) and we associate the equation

V
ε,ζ
t = V0 +

∫ t

0

∫
E×R+

A(θ)
(
V

ε,ζ
s− − v

)
× 1{u≤ϕ

γ
ε (|V ε,ζ

s− −v|)}Iζ (θ)N(ds, dθ, dv, du).(2.7)

We state now a property which will be used in the following: given α ∈ [0,2] and
κ ≥ 0 there exists K ≥ 1 such that for every w ∈ R2, t0 > 0 and every 0 < ε < 1,

(2.8) (Aα,κ) sup
t0≤t≤T

ft

(
Ball(w, ε)

) ≤ K

tκ0
εα.

Since ft (dv) is a probability measure, this property is always verified with K =
1, α = 0 and κ = 0.

In Proposition 2.1 from [5], one proves that equations (2.6) and (2.7) have a
unique solution and

(2.9) E
∣∣V ε,ζ

t − V ε
t

∣∣ ≤ CT eC�
γ
ε × ζ 1−ν × t ∀t ≤ T .

Moreover, if (Aα,κ) holds, then

(2.10) E
∣∣Vt − V ε

t

∣∣ ≤ CT eC�
γ
ε × ε1+γ+α × t1−κ ∀t ≤ T .

We stress that in [5] the explicit dependence on the time t does not appear in the
right-hand side of the above estimates but a quick glance to the proof shows that we
have the dependence on t as in (2.9) and in (2.10) (this is important if we look to
short time behavior). Moreover, in the same proposition one proves that for every
0 < λ′ < λ there exists some ε0 > 0 such that

(2.11) sup
ε≤ε0

sup
ζ≤1

E(sup
t≤T

(
e|Vt |λ′ + e|V ε

t |λ′ + e|V ζ,ε
t |λ′ ) =: C(

λ′) < ∞.

Finally, in Theorem 4.1 in [5] one proves an integration by parts formula that
we present now. One defines (see (4.1) and (4.2) in [5]) a random process G

ε,ζ
t

which verifies

(2.12) 1{sups≤t |V ζ,ε
s |≤�ε−1} ≤ G

ε,ζ
t ≤ 1{sups≤t |V ζ,ε

s |≤�ε}.

The precise form of G
ε,ζ
t is not important here; the only property which we need

is (2.12). Moreover, since the law of V
ε,ζ
t is not absolutely continuous we use

the following regularization procedure. One considers a two-dimensional standard
normal random variable Z and denotes

(2.13) F
ε,ζ
t =

√
uζ (t)Z + V

ε,ζ
t with uζ (t) = tζ 4+ν.
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Then one proves (see (4.3) and (4.4) in [5]) that for every multi-index β ∈ {1,2}q
there exists a random variable Kβ(F

ε,ζ
t ,G

ε,ζ
t ) such that for every function ψ ∈

Cq(R2)

(2.14) E
(
∂βψ

(
F

ε,ζ
t

)
G

ε,ζ
t

) = E
(
ψ

(
F

ε,ζ
t

)
Kβ

(
F

ε,ζ
t ,G

ε,ζ
t

))
.

One also proves that for every q ∈ N and every κ ∈ ( 1
η0

, λ) one may find a constant
C (depending on q and κ only) such that for every p ≥ 1,

(2.15)
∥∥Kβ

(
F

ε,ζ
t ,G

ε,ζ
t

)∥∥
p ≤ C

t
2+ν
ν

(12q−4)
eC�

γ
ε
(
ε−qζ−νq + e−�κ

ε ζ−2νq)
.

In particular, this gives for every function ψ ∈ Cq(R2) and every multi-index β ∈
{1,2}q , ∣∣E(

∂βψ
(
F

ε,ζ
t

)
G

ε,ζ
t

)∣∣
≤ C

t
2+ν
ν

(12q−4)
eC�

γ
ε
(
ε−qζ−νq + e−�κ

ε ζ−2νq) × ‖ψ‖∞.(2.16)

The proof of (2.14) and (2.15) is based on a Malliavin-type calculus for jump
processes and is quit technical. In Appendix B, we give an overview of the objects
which come on in this proof and on the main estimates which are needed. In par-
ticular, we mention that in Theorem 4.1 in [5] the dependence with respect to t in
the right-hand side of (2.15) is not explicit; at the end of Appendix B, we precisely
provide this dependence (see (B.15)).

3. Proof of Theorem 1.1. In the following, we adapt the results presented in
the previous section to our specific goals. Recall that the parameters ν ∈ [0, 1

2), γ ∈
[0,1] and λ ∈ (γ,2) are given and characterizes the unique solution ft (dv) of
(1.1). Suppose that (Aα,κ) (see (2.8)) holds for some α ≥ 0 and κ ≥ 0. In order to
equilibrate the errors in (2.9) and (2.10), we take

ζ = ζα(ε) = ε(1+γ+α)/(1−ν).

With this choice, for every c > 0, we may find C ≥ 1 (depending on c, see ((2.3))
such that

(3.1) E
(∣∣Vt − V

ε,ζα(ε)
t

∣∣) ≤ C

tκ−1 × eC�
γ
ε × ε1+γ+α ≤ C

tκ−1 ε1+γ+α−c.

Recall that η0 is given in (2.2) and λη0 > 1. So we may choose (and fix) some
λ′ ∈ ( 1

η0
, λ). We work with the function �λ′ given in (1.3) and we define

gt (dv) = �λ′(v)ft (dv).

Moreover, for ε > 0, we recall that F
ε,ζ
t and G

ε,ζ
t are given in (2.13) and (2.12),

and we define f
ε,α
t (dv) and g

ε,α
t (dv) by∫

ψ(v)f
ε,α
t (dv) = E

(
ψ

(
F

ε,ζα(ε)
t

)
G

ε,ζα(ε)
t

)
, g

ε,α
t (dv) = �λ′(v)f

ε,α
t (dv).
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In (1.4), we introduced the function ϕ. Notice that ϕ solves the equation

(3.2) 1 + γ + α − (
1 + ϕ(α)

)1 + ν(γ + α)

1 − ν
= 0.

We construct the sequences

(3.3) αk+1 = ϕ(αk), κk+1 = κk − 1 + 13(2 + ν)

ν
(1 + αk+1)

with α0 = 0 and κ0 = 0. Direct computation shows that ϕ′(α) > 0 for every α, so
ϕ is strictly increasing. We will assume in the following that α1 = ϕ(0) > 0 = α0

and this implies αk+1 > αk for every k. It follows that αk ↑ α∗ solution of ϕ(α∗) =
α∗ (see (3.11) for the explicit value of α∗). Notice also that α1 = ϕ(0) > 0 is
equivalent with ν <

γ
2γ+1 and ϕ(2) > 2 is equivalent with ν <

γ
4γ+9 .

We know that (A0,0) holds. Our aim now is to employ Theorem 1.4 in order to
obtain (Aα,κ) for α as large as possible.

LEMMA 3.1. A. Let q ∈ N, α ∈ [0,2] and κ ≥ 0 be given. Suppose that (Aα,κ)

holds with ϕ(α) > q , and take p > 1 such that

(3.4) q + 2

p∗
< ϕ(α).

Then ft (dv) = ft (v) dv with ft ∈ Wq,p . Moreover, for every λ′ < λ there exists
C ≥ 1 such that

(3.5) ‖�λ′ft‖q,p ≤ C

tκ−1+ 13(2+ν)
ν

(1+ϕ(α))
.

B. Suppose that (Aα,κ) holds and ϕ(α) > 0. Then (Aα′,κ ′) holds for every α′ <
ϕ(α) ∧ 2 with

(3.6) κ ′ = κ − 1 + 13(2 + ν)

ν

(
1 + ϕ(α)

)
.

C. Let αk, κk, k ∈ N be the sequences defined in (3.3). Suppose that ϕ(0) > 0.
Then, for each k ∈ N∗ the property (Aα,κk

) holds for every α < αk ∧ 2.
D. Suppose that ϕ(0) > 0. Let k, q ∈ N and p > 1 be such that

(3.7) q + 2

p∗
< ϕ(αk ∧ 2) = αk+1 ∧ ϕ(2).

Then

(3.8) ‖�λ′ft‖q,p ≤ C

tκk+1
.
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PROOF OF A. We will use Theorem 1.4 with d = 2, and Fε = F
ε,ζα(ε)
t ,Gε =

G
ε,ζα(ε)
t . So we verify the hypothesis there.
Step 1. By (2.14), we know that the integration by parts formula (1.15) holds

with Hβ,ε = Kβ(F
ε,ζα(ε)
t ,G

ε,ζα(ε)
t ). By (2.15), we obtain for every κ ∈ ( 1

η0
, λ)

(with ζ = ζα(ε)),

sup
|β|≤q

‖Hβ,ε‖p ≤ C

t
2+ν
ν

(12q−4)
eC�

γ
ε
(
ε−qζ−νq + e−�κ

ε ζ−2νq)
.

We use (2.3) and (2.4) in order to obtain

eC�
γ
ε
(
ε−qζ−νq + e−�κ

ε ζ−2νq) ≤ Cε−c((εζ ν)−q + εAε−2νq(1+γ+α)/(1−ν))
for every c > 0 and A ≥ 1. Notice that εζ ν

α (ε) = ε(1+ν(q+α))/(1−ν). Taking A ≥
2νq(1 + γ + α)/(1 − ν), we obtain

sup
|β|≤q

‖Hβ,ε‖p ≤ C

t
2+ν
ν

(12q−4)
× ε−q× 1+ν(γ+α)

1−ν
−c

and this means that (1.16) is verified with

Ĥq,p = C

t
2+ν
ν

(12q−4)
, b = 1 + ν(γ + α)

1 − ν
, a = c

b
.

Let δ > 0. Taking h sufficiently large, we have 1
2h

(12(2h+q +2)−4) ≤ 12(1+ δ)

so that

(3.9) Ĥ
1/2h
2h+q+2,p ≤ C

t
2+ν
ν

×12(1+δ)
.

Step 2. Let us verify (1.17). Using (2.12) and (2.11),∥∥1 − G
ε,ζα(ε)
t

∥∥
2 ≤ P 1/2

(
sup
s≤t

∣∣V ε,ζα(ε)
s

∣∣ ≥ �ε

)
≤ Ce− 1

2 �λ′
ε

(
E

(
sup
s≤t

e|V ε,ζα(ε)
s |λ′ ))1/2 ≤ Ce− 1

2 �λ′
ε ≤ CεA.

The last inequality is true for any A ≥ 1. It is a consequence of λ′η0 > 1 and
of (2.4).

Recall that F
ε,ζα(ε)
t is defined in (2.13). We have

E
(∣∣V ε,ζα(ε)

t − F
ε,ζα(ε)
t

∣∣) ≤ Cζ
4+ν

2
α (ε) = Cε

(1+γ+α) 4+ν
2(1−ν) ≤ Cε1+γ+α.

Then, as a consequence of (3.1), for every c > 0 we obtain

E
(∣∣Vt − F

ε,ζα(ε)
t

∣∣) ≤ C

tκ−1 ε1+γ+α−c.
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We conclude that (1.17) holds with

(3.10) C∗ = C

tκ−1 , β = 1 + γ + α − c.

Step 3. Now (3.4) ensures that, for sufficiently small c > 0,

β − b

(
1 + q + 2

p∗

)
= 1 + γ + α − c −

(
1 + q + 2

p∗

)
1 + ν(γ + α)

1 − ν

> 1 + γ + α − (
1 + ϕ(α)

)1 + ν(γ + α)

1 − ν
= 0

the last equality being a consequence of (3.2) (this is the motivation of choosing ϕ

to be the solution of this equation).
So (1.20) holds (with d = 2) and we are able to use Theorem 1.4. Notice that for

every θ ≥ 1 and every λ′ < λ′′ one may find C such that �θ
λ′ ≤ C�λ′′ . So (2.11)

gives Cθ(�) < ∞ (see (1.19) for the definition of Cθ(�)). By (1.21),

‖�λ′ft‖q,p ≤ C × (
C∗ + Cθ(�)

) × (
h2bĤ

1/2h
2h+q+d,p∗

)(1+δ)(1+q+2/p∗).

We denote C′ = Cθ(�) × h2b(1+δ)(1+q+2/p∗). Then, using (3.10) and (3.9)

‖�λ′ft‖q,p ≤ C

tκ−1+ 2+ν
ν

×12(1+q+2/p∗)(1+δ)2

≤ C

tκ−1+ 2+ν
ν

×12(1+ϕ(α))(1+δ)2
.

We take δ > 0 sufficiently small so that 12(1 + δ)2 ≤ 13 and A is proved. �

PROOF OF B. We use A with q = 0. Let 0 < α′ < ϕ(α) ∧ 2. Since α′ < 2
we may find p > 1 such that 2

p∗ = α′ < ϕ(α), so (3.4) holds for this p. By (3.5)

‖ft‖p ≤ ‖�λ′ft‖p ≤ Ct−κ ′
with κ ′ given in (3.6). Using Hölder’s inequality, we

get (Aα′,κ ′):

ft

(
Ball(w, ε)

) ≤ ‖ft‖p × ε2/p∗ ≤ Ct−κ ′ × εα′
. �

PROOF OF C. Take first k = 1. We know that (A0,0) holds, and by hypothesis,
ϕ(0) > 0. Then, according to B, (Aα′,κ ′) holds for every α′ < ϕ(0) ∧ 2 = α1 ∧ 2
with κ ′ = 0 − 1 + 13(2+ν)

ν
(1 + ϕ(0)) = κ1. So our assertion holds for k = 1.

Suppose now that the property is true for k and let us check it for k +1. Suppose
first that αk > 2. Then αk+1 > αk > 2. By the recurrence hypothesis, for α < 2 =
αk ∧ 2 = αk+1 ∧ 2 the hypothesis (Aα,κk

) holds. Since κk+1 > κk ,the hypothesis
(Aα,κk+1) holds as well.

Suppose now that αk ≤ 2 and take α′ < αk+1 ∧ 2 = ϕ(αk) ∧ 2. Since ϕ(α) ↑
ϕ(αk) as α ↑ αk , we may find α < αk = αk ∧ 2 such that α′ < ϕ(α) ∧ 2. By the
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recurrence hypothesis, we know that (Aα,κk
) holds and then, using B, we obtain

(Aα′,κk+1).
D. By (3.7), we may find α < αk ∧ 2 such that q + 2

p∗ < ϕ(α). By C, we know
that (Aα,κk

) holds. Then we may use A and (3.5) gives (3.8). �

PROOF OF THEOREM 1.1. We will work with the sequences αk and κk given
in (3.3). Recall that αk ↑ α∗ with α∗ = ϕ(α∗). Direct computation give

(3.11) α∗ =
−(γ + 2) +

√
(γ + 2)2 + 4(

γ
ν

− 2γ − 1)

2
and

α∗ > 0 ⇔ ν <
γ

2γ + 1
,

α∗ > 1 ⇔ ν <
γ

3γ + 4
,

α∗ > 2 ⇔ ν <
γ

4γ + 9
.

If ν <
γ

2γ+1 , then ϕ(0) > 0 so we may use the point A in Lemma 3.1 with q = 0.
We obtain ft (dv) = ft (v) dv so the point A in Theorem 1.1 is proved. �

PROOF OF B.B. If γ
4γ+9 < ν <

γ
2γ+1 , we have α∗ ≤ 2 so that αk < 2 for every

k ∈ N . If p < 2
2−α∗ , then 2

p∗ < α∗ so we may find k such that 2
p∗ < αk+1 < 2.

Using the point D in Lemma 3.1 (with q = 0), we obtain �λ′ft ∈ Lp(R2). �

PROOF OF C.B. If γ
4γ+9 < ν <

γ
3γ+4 , we have α∗ ∈ (1,2] so that 1 < 2

3−α∗ .

We take 1 < p < 2
3−α∗ and then 1 + 2

p∗ < α∗. We take k sufficiently large in order

to have 1 + 2
p∗ < αk+1 and then, as above, by D in Lemma 3.1, we obtain �λ′ft ∈

W 1,p(R2). �

PROOF OF B.A. If ν <
γ

4γ+9 , then α∗ > 2. Recall that αk ↑ α∗ and define
k∗ = min{k : αk ≥ 2}. By C in Lemma 3.1, for every α < 2 the property (Aα,κk∗ )
holds. We denote ψ(α) = ϕ(α) − α. Notice that ψ is decreasing on (0,2). For
k < k∗, we have αk < 2 = αk∗ ∧ 2 so that ψ(2) < ψ(αk) = αk+1 − αk . It follows
that

2 > αk∗−1 =
k∗−2∑
k=0

(αk+1 − αk) > (k∗ − 1)ψ(2),

which gives k∗ − 1 ≤ 2/ψ(2) and so k∗ + 1 ≤ 2(ϕ(2) − 1)/(ϕ(2) − 2). Since
αk ≤ α∗ = ϕ(α∗), we have for every k (see (3.3))

κk ≤ κk−1 + 13(2 + ν)

ν

(
1 + ϕ(α∗)

) − 1 ≤ · · · ≤ k

(
13(2 + ν)

ν
(1 + α∗) − 1

)
.
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This yields

κk∗+1 ≤ (k∗ + 1) ×
(

13(2 + ν)

ν
(1 + α∗) − 1

)
≤ 2(ϕ(2) − 1)

ϕ(2) − 2

(
13(1 + α∗)(2 + ν)

ν
− 1

)
= η

with η given in (1.7).
We use now the point D in Lemma 3.1 with q = 0. Recall that ϕ(2) > 2

(see (1.6)) Since ϕ(αk∗ ∧ 2) = ϕ(2) > 2 > 2
p∗ for every p > 1, we obtain gt ∈⋂

p>1 Lp(R2). Moreover, taking k = k∗ in (3.8) we get

‖gt‖p ≤ C

tκk∗+1
≤ C

tη
. �

PROOF OF C.A. If q ∈ {1,2}, we need 2
p∗ < ϕ(2) − q . This gives p < 2/(q +

2 − ϕ(2)) = pq with pq, q = 1,2 given in (1.9). And using (3.8), we obtain

‖gt‖q,p ≤ C

tκk∗+1
≤ C

tη
for p < pq. �

PROOF OF COROLLARY 1.2. Recall that ν <
γ

2γ+1 is equivalent with ϕ(0) >

0. So we may find p > 1 such that 2
p∗ < ϕ(0). Using D in Lemma 3.1 with q = 0

and k = 0, we obtain ‖�λ′ft‖p ≤ C
tκ1 with κ1 given in (3.3) (which coincides with

κ defined in (1.12)) Then

ft

(
Bc

R(0)
) =

∫
1Bc

R(0)(v)�−1
λ′ (v)�λ′(v)ft (v) dv

≤
(∫

1Bc
R(0)(v)e−p∗|v|λ′

dv

)1/p∗‖�λ′ft‖p

≤ e− 1
2 Rλ′ (∫

1Bc
R(0)(v)e−p∗

2 |v|λ′
dv

)1/p∗ C

tκ

≤ C

tκ
e− 1

2 Rλ′
. �

PROOF OF THEOREM 1.3. Since ν <
γ

4γ+9 we may use C.a in Theorem 1.1

with q = 1 and we obtain ‖�λ′f ‖1,p ≤ Ct−η for every p < p1 (with p1 given
in (1.9) and η given in (1.7)). Notice also that we have p1 > 2 so we may use
the point C in Theorem 1.4: (1.23) gives (1.13). Notice also that if λ′ < λ′′ then
∇̂�λ′(x) ≤ C�λ′′(x). So (1.25) gives (1.14). �
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APPENDIX A: A REGULARITY CRITERION BASED ON
INTERPOLATION

Let us first recall some results obtained in [2] concerning the regularity of a
measure μ on Rd . Fix k, q,h ∈ N, with h ≥ 1, and p > 1 (we denote by p∗ the
conjugate of p). For f ∈ C∞(Rd), we define

‖f ‖k,∞ = ∑
0≤|α|≤k

sup
x∈Rd

∣∣∂αf (x)
∣∣,(A.1)

‖f ‖k,h,p = ∑
0≤|α|≤k

(
E

(∫
Rd

(
1 + |x|)h∣∣∂αf (x)

∣∣p dx

))1/p

(A.2)

‖f ‖k,p = ‖f ‖k,0,p = ∑
0≤|α|≤k

∥∥∂αf
∥∥
p.(A.3)

Here, α = (α1, . . . , αm) ∈ {1, . . . , d}m, is a multi-index of length |α| = m and ∂α

is the derivative associated to α. Moreover for two measures μ,ν we consider the
distance

(A.4) dk(μ, ν) = sup
{∣∣∣∣∫ f dμ −

∫
f dν

∣∣∣∣ : ‖f ‖k,∞ ≤ 1
}
.

For k = 0, this is the total variation distance and for k = 1 this is the Fortèt Mourier
distance.

For a finite measure μ and for a sequence of absolutely continuous finite mea-
sures μn(dx) = fn(x) dx with fn ∈ C2h+q(Rd), we define

(A.5) πk,q,h,p

(
μ, (μn)n

) =
∞∑

n=0

2n(k+q+d/p∗)dk(μ,μn) +
∞∑

n=0

1

22nh
‖fn‖2h+q,2h,p

and

πk,q,h,p(μ) = inf
{
πk,q,h,p

(
μ, (μn)n

) : μn(dx)

= fn(x) dx,fn ∈ C2h+q(
Rd)}

.

REMARK A.1. Notice that πk,q,h,p is a particular case of πk,q,h,e treated
in [2]: just choose the Young function e(x) ≡ ep(x) = |x|p (see Example 1 in
[2]). Moreover, πk,q,h,p is strongly related to interpolation spaces. More precisely,
πk,q,h,p is equivalent with the interpolation norm of order ρ = k+q+d/p∗

2h
between

the spaces Wk,∞∗ (the dual of Wk,∞) and W 2h+q,2h,p = {f : ‖f ‖2h+q,2h,p < ∞}
(e.g., see [6]). This is proved in [2]; see Section 2.4 and Appendix B. So the in-
equality (A.6) below implies that the Sobolev space Wq,p is included in the above
interpolation space. However, we prefer to stick to an elementary framework and to
derive directly the consequences of (A.6); see Lemma A.3 and Lemma A.2 below.

The following result is the key point in our approach.
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LEMMA A.2. Let p > 1, k, q ∈ N and h ∈ N∗ = N′{0} be given. There exists
a constant C∗ (depending on k, q,h and p only) such that the following holds. Let
μ be a finite measure for which πk,q,h,p(μ) is finite. Then μ(dx) = f (x) dx with
f ∈ Wq,p and

(A.6) ‖f ‖q,p ≤ C∗ × πk,q,h,p(μ).

This is Proposition 2.5 in [2] in the particular case e(x) = ep(x) = |x|p . See
also Proposition 3.2.1 in [3]. So we will not give here the proof. We will use the
following consequence.

LEMMA A.3. Let p > 1, k, q ∈ N and h ∈ N∗ be given and set

(A.7) ρh(q) := k + q + d/p∗
2h

.

We consider an increasing sequence θ(n) ≥ 1, n ∈ N such that limn θ(n) = ∞ and
θ(n + 1) ≤ � × θ(n) for some constant � ≥ 1. Moreover, we consider a sequence
of measures μn(dx) = fn(x) dx with fn ∈ C2h+q(Rd), n ∈ N such that

(A.8) ‖fn‖2h+q,2h,p ≤ θ(n).

Let μ be a finite measure such that, for some η > 0,

(A.9) lim sup
n

dk(μ,μn) × θρh(q)+η(n) < ∞.

Then μ(dx) = f (x) dx with f ∈ Wq,p .
Moreover, fix n∗ ∈ N, δ > 0 and η > 0 such that (A.9) holds. We set

A(δ) = |μ|(Rd) × 2l(δ)(1+δ)(q+k+d/p∗) with(A.10)

l(δ) = min
{
l ≥ 1 : 2l′× δ

1+δ ≥ l′,∀l′ ≥ l
}
,(A.11)

B(η) =
∞∑
l=1

l2(q+k+d/p∗+η)

22hηl
,(A.12)

Ch,n∗(η) = sup
n≥n∗

dk(μ,μn) × θρh(q)+η(n).(A.13)

Then

(A.14) ‖f ‖q,p ≤ C∗
(
� + A(δ)θ(n∗)ρh(q)(1+δ) + B(η)Ch,n∗(η)

)
with C∗ the constant in (A.6) and ρh(q) given in (A.7).

PROOF OF LEMMA A.3. We will produce a sequence of measures νl(dx) =
gl(x) dx, l ∈ N such that

πk,q,h,p

(
μ, (νl)l

) ≤ � + A(δ)θ(n∗)ρh(q)(1+δ) + B(η)Ch,n∗(η) < ∞.
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Then by Lemma A.2, one gets μ(dx) = f (x) dx with f ∈ Wq,p , and (A.14) fol-
lows from (A.6)). Let us stress that the νl’s will be given by a suitable subsequence
μn(l), l ∈ N.

Step 1. We define

n(l) = min
{
n : θ(n) ≥ 22hl

l2

}
and we notice that

(A.15)
1

�
θ
(
n(l)

) ≤ θ
(
n(l) − 1

)
<

22hl

l2 ≤ θ
(
n(l)

)
.

Moreover, we recall that n∗ is given and we define

l∗ = min
{
l : 22hl

l2 ≥ θ(n∗)
}
.

Since

θ
(
n(l∗)

) ≥ 22hl∗

l2∗
≥ θ(n∗)

it follows that n(l∗) ≥ n∗.
We take now ε(δ) = hδ

1+δ
which gives 2h

2(h−ε(δ))
= 1 + δ. And we take l(δ) ≥ 1

such that 2lδ/(1+δ) ≥ l for l ≥ l(δ) (see (A.11)). Since h ≥ 1, it follows that ε(δ) ≥
δ

1+δ
so that, for l ≥ l(δ) we also have 2lε(δ) ≥ l. Now we check that

(A.16) 22(h−ε(δ))l∗ ≤ 22hl(δ)θ(n∗).

If l∗ ≤ l(δ), then the inequality is evident (recall that θ(n) ≥ 1 for every n). And if
l∗ > l(δ), then 2l∗ε(δ) ≥ l∗. By the very definition of l∗, we have

22h(l∗−1)

(l∗ − 1)2 < θ(n∗)

so that

22hl∗ ≤ 22h(l∗ − 1)2θ(n∗) ≤ 22h × 22l∗ε(δ)θ(n∗)

and, since l(δ) ≥ 1, this gives (A.16).
Step 2. We define

νl = 0 if l < l∗,
= μn(l) if l ≥ l∗,

and we estimate πk,q,h,p(μ, (νl)l). First, by (A.8) and (A.15)

∞∑
l=l∗

1

22hl
‖fn(l)‖q+2h,2h,p ≤

∞∑
l=l∗

1

22hl
θ
(
n(l)

) ≤ �

∞∑
l=l∗

1

l2 ≤ �.
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Then we write
∞∑
l=1

2(q+k+d/p∗)ldk(μ, νl) = S1 + S2

with

S1 =
l∗−1∑
l=1

2(q+k+d/p∗)ldk(μ,0), S2 =
∞∑

l=l∗
2(q+k+d/p∗)ldk(μ,μn(l)).

Since dk(μ,0) ≤ d0(μ,0) ≤ |μ|(Rd), we use (A.16) and we obtain

S1 ≤ |μ|(Rd) × 2(q+k+d/p∗)l∗ = |μ|(Rd) × (
22(h−ε(δ))l∗)(q+k+d/p∗)/2(h−ε(δ))

≤ |μ|(Rd) × (
22hl(δ)θ(n∗)

)ρh(q)(1+δ) = A(δ)θ(n∗)ρh(q)(1+δ).

If l ≥ l∗, then n(l) ≥ n(l∗) ≥ n∗ so that, using (A.13) first and (A.15) then, we
obtain

dk(μ,μn(l)) ≤ Ch,n∗(η)

θρh(q)+η(n(l))
≤ Ch,n∗(η)

(
l2

22hl

)ρh(q)+η

= Ch,n∗(η)

2(q+k+d/p∗)l × l2(ρh(q)+η)

22hηl
.

We conclude that

S2 ≤ Ch,n∗(η)

∞∑
l=l∗

l2(ρh(q)+η)

22ηhl
≤ Ch,n∗(η) × B(η).

�

We give now a consequence of the above result which is more readable.

PROPOSITION A.4. Let q, k, d ∈ N and p > 1 be fixed. We consider a family
of measures με(dx) = fε(x) dx, ε > 0 with fε ∈ C∞(Rd) and a finite measure μ

on Rd which verify the following hypothesis. There exists ε∗ > 0, β > 0, a ≥ 0, b ≥
0,C0 ≥ 1 and Qh(q,p) ≥ 1 such that for every h ∈ N∗ and every 0 < ε < ε∗:

(i) dk(με,μ) ≤ C0ε
β,(A.17)

(ii) ‖fε‖2h+q,2h,p ≤ Qh(q,p)ε−b(2h+q+a),(A.18)

(iii) r := β − b(k + q + d/p∗) > 0.(A.19)

We denote

(A.20) h∗ = 1

ε∗
∨ b(q + a)(k + q + d/p∗)

r
∨ q + a

2
.

Then μ(dx) = f (x) dx with f ∈ Wq,p(Rd). Moreover, for every δ > 0, there exists
a constant C ≥ 1, depending on q, k, d,p, δ,β, r and a, b only (but which does not
depend neither on h nor on C0), such that for every h ≥ h∗ one has

(A.21) ‖f ‖q,p ≤ C × C0 × (
h2bQ

1/2h
h (q,p)

)(1+δ)(k+q+d/p∗)
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PROOF. Throughout this proof, C designates a constant which depends on
q, k, d,p, δ,β, r and a, b only (we stress that in particular it may depend on C∗
from (A.6)). We will use Lemma A.3. We take

(A.22) η = r

2b(2h + q + a)
∧ (

δρh(q)
)

with ρh(q) given in (A.7). For h ≥ h∗, one has ρh(q)b(q + a) ≤ r
2 , and, by defini-

tion, r = β − 2hρh(q)b. Using also (A.22), we obtain

β − (
ρh(q) + η

)
b(2h + q + a)

= (
β − 2hρh(q)b

) − ρh(q)b(q + a) − ηb(2h + q + a)

≥ r − r

2
− r

2
= 0.

It follows that for every ε ≤ ε∗ we have

dk(με,μ)‖fε‖ρh(q)+η
2h+q,2h,p ≤ C0Q

ρh(q)+η
h (q,p)εβ−(ρh(q)+η)b(2h+q+a)

≤ C0Q
ρh(q)(1+δ)
h (q,p).(A.23)

We take now εn = 1
n

and n∗ = h and we define

gn = 0 if n < n∗,
= fεn if n ≥ n∗.

We will use Lemma A.3 for νn(dx) = gn(x) dx so we have to identify the quanti-
ties defined there. We define

θ(n) = Qh(q,p)nb(2h+q+a) if n ≥ n∗,
θ(n) = θ(n∗) if n ≤ n∗.

By (A.18), we have ‖gn‖2h+q,2h,p ≤ θ(n) and, moreover, for n ≥ n∗ = h, we have

θ(n + 1)

θ(n)
=

(
1 + 1

n

)n× b(2h+q+a)
n ≤ e2b+ b(q+a)

h ≤ e3b.

We conclude that � ≤ e3b. We estimate now B(η) defined in (A.12). Noticed first
that

1

ηh
= 2b(2h + q + a)

rh
∨ 2

δ(q + k + d/p∗)

≤ 6b

r
∨ 2

δ(q + k + d/p∗)
=: C1

so ηh ≥ 1/C1. Then

B(η) =
∞∑
l=1

l2(q+k+d/p∗+η)

22hηl
≤

∞∑
l=1

l2(q+k+d/p∗+η)

22l/C1
≤ C.
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Moreover, since h ≥ 1
2(q + a) it follows that

ρh(q)(1 + δ)b(2h + q + a) ≤ 2(1 + δ)b(k + q + d/p∗)

and consequently (recall that n∗ = h),

θ(n∗)ρh(q)(1+δ) = Q
ρh(q)(1+δ)
h (q,p)nρh(q)(1+δ)b(2h+q+a)∗

≤ Q
ρh(q)(1+δ)
h (q,p)h2(1+δ)b(k+q+d/p∗).

Finally, we notice that, by (A.23), the constant Ch,n∗(η) defined in (A.13) verifies

Ch,n∗(η) ≤ C0Q
ρh(q)(1+δ)
h (q,p).

As for A(δ) defined in (A.10), this is already a constant C (which does not depend
on h and on C0). Now we use (A.14) and we obtain

‖f ‖q,p ≤ C
(
1 + Q

ρh(q)(1+δ)
h (q,p)h2b(1+δ)(k+q+d/p∗) + C0Q

ρh(q)(1+δ)
h (q,p)

)
,

which gives (A.21). �

A.1. Proof of Theorem 1.4. The aim of this section is to prove Theorem 1.4
so we consider the framework given there: we have a family of random variables
Fε and Gε, ε > 0 such that the integration by parts formula (1.15) and the estimate
(1.16) hold; we also have a random variable F such that the estimate (1.17) holds.
We define the measures μ and με by

(A.24)
∫

φ dμ = E
(
φ(F )

)
and

∫
φ dμε = E

(
φ(Fε)Gε

)
.

As a consequence of (1.15) and of (1.16), we have με(dx) = fε(x) dx with fε ∈
C∞(Rd).

We also consider a function � ∈ C (so in particular � verifies (1.18)). All of
these hypotheses are in force in this section.

Moreover, for v ∈ Rd we construct the “exterior rectangle” Av in the following
way. For y ∈ R, we denote Iy = (y,∞) if y ≥ 0 and Iy = (−∞, y) if y < 0. And
for v = (v1, . . . , vd), we define

(A.25) Av =
d∏

i=1

Ivi
.

We will first prove the following two lemmas.

LEMMA A.5. For every q,h ∈ N and p > 1, there exists some constants C

and θ (depending on q,h, d and p only) and ε∗ > 0 such that, for every ε ∈ (0, ε∗),

(A.26) ‖�fε‖q,h,p ≤ C × Cθ(�) × Ĥq+d,p∗ × ε−b(q+d+a)

with Cθ(�) given in (1.19) and Ĥq+d,p∗ given in (1.16).
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PROOF. We denote

Iq,h,p(�)(x) = sup
|β|≤q

∫
Rd

(
1 + |v|)h∣∣∂β�(v)

∣∣p1Av(x) dv.

By (1.15) (we use a formal computation which may be done rigorous by regu-
larization by convolution),

∂α(�fε)(v) = ∑
(β,γ )=α

∂β�(v)∂γ fε(v) = ∑
(β,γ )=α

∂β�(v)E
(
∂γ δ0(Fε − v)Gε

)
= ∑

(β,γ )=α

∂β�(v)E
(
1Av(Fε)H(γ,1,...,d),ε

)
.

Using Hölder’s inequality first and then (1.16),∣∣∂α(�fε)(v)
∣∣ ≤ ∑

(β,γ )=α

∣∣∂β�(v)
∣∣P 1/p(Fε ∈ Av)‖H(γ,1,...,d),ε‖p∗

≤ ∑
|β|≤q

∣∣∂β�(v)
∣∣P 1/p(Fε ∈ Av) × Ĥq+d,p∗ε

−b(q+d+a).

This gives

‖�fε‖q,h,p

= ∑
|α|≤q

(∫ (
1 + |v|)h∣∣∂α(�fε)(v)

∣∣p dv

)1/p

≤ CĤq+d,p∗ε
−b(q+d+a)

∑
|β|≤q

[∫ (
1 + |v|)h∣∣∂β�(v)

∣∣pE(1Fε∈Av) dv

]1/p

= CĤq+d,p∗ε
−b(q+d+a)[E(

Iq,h,p(�)(Fε)
)]1/p

.

By using (1.18), we may find some constants c1 and c2 such that for every γ with
|γ | ≤ q , ∣∣∂γ �(v)

∣∣p ≤ c1

(1 + |v|)h+d+1

∣∣�(v)
∣∣c2p

so we get

E
(
Iq,h,p(�)(Fε)

) ≤ c1E

(∫
Rd

(
1 + |v|)−(d+1)∣∣�(v)

∣∣c2p1Av(Fε) dv

)
.

If x ∈ Av , then |v| ≤ |x| and since � ∈ C this implies �(v) ≤ C�(x). So the above
term is upper bounded by

CE

(∫
Rd

(
1 + |v|)−(d+1)∣∣�(Fε)

∣∣c2p1Av(Fε) dv

)
≤ CE

(∣∣�(Fε)
∣∣c2p

) ≤ C × Cθ(�)

with θ = c2p. �
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LEMMA A.6. We recall that by (1.17),

(A.27) ‖1 − Gε‖2 + ‖F − Fε‖1 ≤ C∗εβ.

Then, for every δ > 0 there exists θ(δ) ≥ 1 and C ≥ 1 such that

(A.28) d1(�με,�μ) ≤ C
(
C∗ + Cθ(δ)(�)

)
)εβ(1−δ)

with Cθ(�) defined in (1.19).

PROOF. Let φ with ‖φ‖1,∞ ≤ 1. We estimate first

(A.29)
∣∣E(

(φ�)(Fε)(1 − Gε)
)∣∣ ≤ ‖φ‖∞

∥∥�(Fε)
∥∥

2‖1 − Gε‖2 ≤ C2(�) × C∗εβ.

Then we write ∣∣E(
(φ�)(Fε) − (φ�)(F )

)∣∣
≤ E

∫ 1

0

∣∣∇(φ�)
(
λF + (1 − λ)Fε

)
(F − Fε)

∣∣dλ.(A.30)

Using (1.18) and the fact that � is a convex function,∣∣∇(φ�)
(
λF + (1 − λ)Fε

)∣∣ ≤ c1‖φ‖1,∞
∣∣�(

λF + (1 − λ)Fε

)∣∣c2

≤ C
(
λ
∣∣�(F)

∣∣c2 + (1 − λ)
∣∣�(Fε)

∣∣c2
)
.

It follows that the last term in (A.30) is upper bounded by

C
(
E

(∣∣�(F)
∣∣c1 |F − Fε|) + E

(∣∣�(Fε)
∣∣c1 |F − Fε|)).

We take K > 0 and we write

E
(∣∣�(Fε)

∣∣c1 |F − Fε|) = IK(Fε) + JK(Fε)

with

IK(Fε) = E
(∣∣�(Fε)

∣∣c1 |F − Fε|1{|�(Fε)|c1≤K}
) ≤ KC∗εβ

and

JK(Fε) = E
(∣∣�(Fε)

∣∣c1 |F − Fε|1{|�(Fε)|c1>K}
)

≤ (‖F‖2 + ‖Fε‖2
)(

E
(∣∣�(Fε)

∣∣2c11{|�(Fε)|c1>K}
))1/2

≤ (‖F‖2 + ‖Fε‖2)

Kθ
(E

(∣∣�(Fε)
∣∣2c1(1+θ))1/2

.

By (1.18), ‖F‖2 + ‖Fε‖2 ≤ C × C
1/2
c2 (�), so finally

JK(Fε) ≤ C

Kθ
Cc2∨2c1(1+θ)(�).
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These estimates hold for every θ ≥ 1 and K > 0. In order to optimize, we take
K = ε−β/(1+θ) and we obtain

IK(Fε) + JK(Fε) ≤ C × Cc2∨2c1(1+θ)(�) × εβ× θ
1+θ .

A similar inequality holds with F instead of Fε , so, using (A.29) as well we obtain∣∣E(
(φ�)(Fε) − (φ�)(F )

)∣∣ ≤ C
(
C∗ + Cc2∨2c1(1+θ)(�)

) × εβ× θ
1+θ .

Then, taking θ = (1 − δ)/δ we get (A.28). �

We are now ready to give the following.

PROOF OF THEOREM 1.4. We will use the Proposition A.4 with k = 1 for
the measures (�μ)(dx) and (�με)(dx) = �(x)fε(x) dx with μ and με given in
(A.24). By (1.20), we may find (and fix) δ > 0 such that

(A.31) b − δ > b

(
1 + q + d

p∗

)
.

By (A.28), we have

d1(�με,�μ) ≤ C
(
C0 + Cθ(δ)(�)

)
)εβ(1−δ)

so (A.17) holds with the constant C0 = C(C∗ + Cθ(δ)(�))). By (A.26),

‖�fε‖2h+q,2h,p ≤ C × Cθ(�) × Ĥ2h+q+d,p∗ε
−b(2h+q+d+a).

So (A.18) holds with Qh(q,p) = CCθ(�)Ĥ2h+q+d,p∗ . Notice that a from (A.18)
is replaced by a′ = a +d . This changes nothing except the value of h∗ (see (A.20))
which anyway, is not explicit in our statement. As a consequence of (A.31), hy-
pothesis (A.19) is verified so we are able to use Proposition A.4 in order to obtain
(�μ)(dx) = g(x) dx with g ∈ Wq,p(Rd). It follows that μ(dx) = f (x) dx with
f = g/� and by (A.21) (the value of θ changes from a line to another and we use
the inequality Cθ ′

θ (�) ≤ Cθ×θ ′(�))

‖�f ‖q,p ≤ C × (
C∗ + Cθ(�)

) × (
h2bQ

1/2h
h (q,p)

)(1+δ)(k+q+d/p∗)

≤ C × (
C∗ + Cθ(�)

) × (
h2bC

1/2h
θ (�)Ĥ

1/2h
2h+q+d,p∗

)(1+δ)(k+q+d/p∗)

≤ ��,θ (q,h,p).

So (1.21) is proved.
We prove now the point C. If the above inequality holds with q = 1 and p > d ,

then, by Morrey’s lemma �f is χ− Hölder continuous with χ = 1 − d
p

and

‖�f ‖∞ ≤ ‖�f ‖C0,χ ≤ C‖�f ‖1,p ≤ C��(1, h,p).
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So we obtain (1.23). Let us prove (1.25). Recall the definition of ∇̂�(x) defined
in (1.24). We write

(�f )(y) − (�f )(x) = �(x)
(
f (y) − f (x)

) + (
�(y) − �(x)

)
f (x)

so that, if |x − y| ≤ 1, then∣∣�(x)
(
f (y) − f (x)

)∣∣
≤ ‖�f ‖C0,χ |x − y|χ + ∇̂�(x)

∣∣f (x)
∣∣|x − y|

≤ C‖�f ‖1,p|x − y|χ + ∇̂�(x)

�(x)
‖�f ‖1,p|x − y|

≤ C��(1, h,p)|x − y|χ + ∇̂�(x) × ��(1, h,p)

�(x)
|x − y|,

where, in order to obtain the second inequality we have used (1.23). So (1.25) is
proved. �

APPENDIX B: THE INTEGRATION BY PARTS FORMULA

The aim of this section is to give a hint to the proof of (2.14) and of the estimates
(2.15) and (2.16). The integration by parts formula (2.14) has been established in
[5] by using a version of Malliavin calculus for jump processes introduced in [4].
All this machinery is quit heavy and we are not able to give here a detailed tech-
nical view (we refer to [5] for a complete presentation). We just try to give an
overlook which permits to the reader to understand which are the main objects and
arguments involved in the proof of these results. And also to precise the depen-
dence with respect to t of the constants in (2.15) and (2.16).

B.1. Real shock and fictitious shock representation. A first step is to give
some appropriate alternative representations for V

ε,ζ
t , solution of the equation (see

(2.7)):

V
ε,ζ
t = V0 +

∫ t

0

∫
E×R+

A(θ)
(
V

ε,ζ
s− − v

)
× 1{u≤ϕ

γ
ε (|V ε,ζ

s− −v|)}Iζ (θ)N(ds, dθ, dv, du).(B.1)

We recall E = [−π
2 , π

2 ]×R2 and N(dt, dθ, dv, du) is a Poisson point measure on
E ×R+ with intensity measure dt × b(θ) dθ × dft (dv) × du where ft (dv) is the
solution (which exists and is unique) of equation (1.1).

Step 1. In a first stage, we use some change of variable in order to write the
above equation in an alternative form which is appropriate for our calculus (see
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Section 3 in [5] for details; the motivation of this new representation is just techni-
cal). Using the Skorohod representation theorem, we may find a measurable func-
tion vt : [0,1] → R2 such that for every ψ :R2 →R+,∫ 1

0
ψ

(
vt (ρ)

)
dρ =

∫
R2

ψ(v)ft (dv).

This allows to replace the measure ft (dv) on R2 by dρ on [0,1].
Moreover, for x ∈ (0, π

2 ], let G(x) = ∫ π/2
x b(θ) dθ and let g : (0,∞) → (0, π

2 ]
be the inverse of G, that is G(g(z)) = z (since b(θ) � |θ |−(1+ν) by assumption,
it follows that G(x) � ν−1(x−ν − (π/2)−ν) and g(z) � (1 + z)−ν). For z < 0 we
define g(z) = −g(−z). With this construction we will have∫ π/2

−π/2
ψ(θ)b(θ) dθ =

∫ ∞
R∗

ψ
(
g(z)

)
dz

and this allows to replace the measure b(θ) dθ on (−π
2 , π

2 ) by dz on R∗ := R�{0}.
Finally, we consider a function Iζ : R → [0,1] which is smooth, with all

derivatives bounded and such that Iζ (z) = 1 for |z| ≤ G(ζ) and Iζ (z) = 0 for
|z| ≥ G(ζ) + 1. And we choose the function Iζ in equation (B.1) in such a way
that

(B.2) Iζ (z) = Iζ

(
g(z)

)
.

Then we may write equation (B.1) as

V
ε,ζ
t = V0 +

∫ t

0

∫ 1

0

∫ G(ζ)+1

−G(ζ)−1

∫ 2�
γ
ε

0
A

(
g(z)

)(
V

ε,ζ
s− − vs(ρ)

)
× 1{u≤ϕ

γ
ε (|V ε,ζ

s− −vs(ρ)|)}Iζ (z)M(ds, dρ, dz, du)(B.3)

with M a Poisson point measure on [0, T ] × [0,1] × R∗ × (0,∞) with inten-
sity measure m(ds, dρ, dz, du) = ds dρ dzdu. Notice that we may take u ≤ 2�

γ
ε

because we know that ϕε(v) ≤ �ε (we use 2�ε instead of �ε just for technical
reasons).

Step 2. Since m is a finite measure, we may represent the above equation
by using a compound Poisson process as follows. We consider a standard Pois-
son process J ε

t = ∑∞
k=1 1{Tk≤t} of parameter λ = 4(G(ζ ) + 1)�

γ
ε and a sequence

(Rk,Zk,Uk), k ∈ N of independent random variables, uniformly distributed on
[0,1] × [−G(ζ) − 1,G(ζ ) + 1] × [0,2�

γ
ε ], which are independent of J (all these

objects depend on ε and ζ , but as they are fixed, we do not mention it in the nota-
tion). Now equation (B.3) may be written as

V
ε,ζ
t = V0 + ∑

Tk≤t

A
(
g(Zk)

)(
V

ε,ζ
Tk−1

− vTk
(Rk)

)
× 1{Uk≤ϕ

γ
ε (|V ε,ζ

Tk−1
−vTk

(Rk)|)}Iζ (Zk).(B.4)
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This equation is known as “the fictive chock” representation (see, e.g., [22]).
Step 3. The idea of the approach by means of the Malliavin calculus is to

look to V
ε,ζ
t as a functional f (Z1, . . . ,ZJt ) of Zk, k = 1, . . . , J ε

t and to use
an elementary integration by parts formula based on the (uniform) law of Zk .
But this is not possible directly because of the indicator function of the set
{Uk ≤ ϕ

γ
ε (|V ε,ζ

Tk−1
− vTk

(Rk)|)} which appears in the equation: as a consequence

Zk → f (Z1, . . . ,ZJε
t
) = V

ε,ζ
Tk

is not differentiable. In order to avoid this diffi-
culty, we introduce the so-called “real chock representation” that we present now.
We consider the equation

(B.5) V
ε,ζ
t = V0 + ∑

Tk≤t

A
(
g(Zk)

)(
V

ε,ζ
Tk−1

− vTk
(Rk)

)
Iζ (Zk).

This is the same equation as (B.4) but the indicator function disappears. But now
the law of (Rk,Zk) is no more the uniform law (as above). We define this law as
follows: we assume that conditionally to Tk = t and V

ε,ζ
Tk

= w the law of (Rk,Zk)

is given by

Pt,w(Rk ∈ dρ,Zk ∈ dz) = qt,w(ρ, z) dz dρ

with

qt,w(ρ, z) = 1

λ
ϕγ

ε

(∣∣w − v(ρ)
∣∣)1{|z|≤G(ζ)+1} + gt,w(z).

Here, gt,w(z) is an auxiliary smooth function which is null on {|z| ≤ G(ζ)+1} and
which is chosen in such a way that

∫ ∫
qt,w(ρ, z) dρ dz = 1 (it plays the role of a

cemetery and does not come on in the computations). Notice that qt,w(ρ, z) dzdρ

gives the precise way in which the law of (Rk,Zk) (and so the law of the jump)
depends on the position V

ε,ζ
Tk− = w of the particle. One may check (see Section 3

in [5] for details) that the law of the solution of equation (B.5) coincides with the
law of V

ε,ζ
t , the solution of (B.4). So we may (and do) work with V

ε,ζ
t solution of

(B.5) now on. This is the “real chock representation”. Now the machinery which
produces V

ε,ζ
t as a function of Zk is a smooth function and we may use a differen-

tial calculus for it. Notice that we know nothing about the regularity of the function
ρ → vt (ρ), and consequently we are not able to use Rk ; we will just use Zk . We
also mention that V

ε,ζ
Tk

is a function of Ti,Ri,Zi, i = 1, . . . , k so we will use the
(slightly abusive notation)

(B.6) V
ε,ζ
Tk

=Hk(ω,Z1, . . . ,Zk),

where ω indicates the dependence on Ti,Ri, i = 1, . . . , k.
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B.2. Finite dimensional Malliavin calculus. In this section, we present the
results concerning the Malliavin calculus based on the random variables Zk, k ∈ N

from the previous section. We add two standard normal random variables Z−1,Z0
which are independent of Zk, k = 1,2, . . . as well (they correspond to the two-
dimensional standard normal random variable Z in introduced (2.13)). Given t >

0, we denote Zt = (Z−1,Z0,Z1, . . . ,ZJε
t
). The law of Zt is absolutely continuous

with respect to the Lebesgue measure on RJ ε
t +2 and has the density

(B.7) pt(ω, z) = cte
|z−1|2+|z0|2

2

J ε
t∏

k=1

qTk,Hk−1(ω,z1,...,zk−1)(Rk, zk).

The integration by parts formula which we derive in the sequel will be based on
the logarithmic derivative of this density. In order to avoid border terms in the
integration by parts formula, we introduce the weights

π−1 = π0 = 1 and πk = aζ (Zk),

where aζ is a smooth version of 1(1,G(ζ ))(z).
We follow the strategy established in Malliavin calculus. A simple functional

F is a random variable of the form F = h(ω,Zt) where ω designates the depen-
dence on Ti,Ri, i ∈ N and z → h(ω, z) is a smooth function on RJ ε

t +2 which has
bounded derivatives of any order. Then we define the derivatives

DkF = πk∂zk
h(ω,Zt)

and for a multi-index κ = (k1, . . . , km) ∈ {−1,0,1, . . . , J ε
t }m we denote |κ| = m

and we define

DκF = Dkm · · ·Dk1F.

For a d dimensional simple functional F = (F1, . . . ,Fd), the Malliavin covariance
matrix is given by

σ
i,j
F = 〈DFi,DFj 〉 =

J ε
t∑

k=−1

DkFi × DkFj

and, for a one-dimensional simple functional F , the divergence operator is defined
by

(B.8) LF = −
J ε
t∑

k=−1

[
1

πk

Dk(πkDkF ) + DkF × Dk logpt(ω,Zt)

]
.

Using elementary integration by parts on RJ ε
t +2, one obtains the following duality

formula:

E
(〈DF,DG〉) = E(FLG) = E(GLF).
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We will work with the norms

|F |m = |F | + ∑
1≤|κ|≤m

∣∣DκF
∣∣.

The standard arguments from Malliavin calculus give the following integration by
parts formula (see Theorems 1 and 3 in [4])): let G and F = (F1, . . . ,Fd) be simple
functionals. We suppose that 1/detσF ∈ ⋂

p>1 Lp . Then for every ψ ∈ C∞
b (Rd)

and every multi-index β = (β1, . . . , βq) ∈ {1, . . . , d}q one has

(B.9) E
(
∂βψ(F )G

)
) = E

(
ψ(F)Kβ(F,G)

)
,

where Kβ(F,G) is a random variable which verifies∣∣Kβ(F,G)
∣∣ ≤ C × Kβ(F,G) × |detσF |−(3q−1) with(B.10)

Kβ(F,G) = |G|q(
1 + |F |q+1

)q(6d+1)

×
(

1 +
q∑

j=1

∑
k1+···+kj=q−j

j∏
i=1

|LF |ki

)
.(B.11)

In our approach (see Section 3), we choose ζ(ε) = ε(1+γ+α)/(1−ν) and we use
above estimate for (see (2.13)):

F
ε,ζ(ε)
t =

√
uζ(ε)(t)Z + V

ε,ζ(ε)
t with uζ (t) = tζ 4+ν.

We also recall that in (2.12) we have introduced G
ε,ζ
t which is a smooth version

of the indicator function of the set {sups≤t |V ζ,ε
s | ≤ �ε}. In particular, for every q ,

we have |Gε,ζ
t |q = 0 on {sups≤t |V ζ,ε

s | > �ε}. It follows that

(B.12) Kβ

(
F

ε,ζ(ε)
t ,G

ε,ζ(ε)
t

) = Kβ

(
F

ε,ζ(ε)
t ,G

ε,ζ(ε)
t

)
1{sups≤t |V ζ,ε

s |≤�ε}.

REMARK B.1. The main difficulty in our approach comes from the estimate
of LF

ε,ζ(ε)
t which blows up as ε → 0. In order to understand this, we stress that

the definition of LF
ε,ζ(ε)
t involves

∂zk
logpε,t (ω, z) =

J ε
t∑

i=k

∂zr logqTi,Hi−1(ω,z1,...,zi−1)(Ri, zi).

If qt,w(ρ, z) does not depend on w (this means that the law of the jump does not
depend on the position of the particle), then only the first term corresponding to
i = k in the sum is nonnull. But if it does depend (and this is our case), then all
the terms are nonnull because of Hi−1(ω, z1, . . . , zi−1) depends on zk for every
i = k + 1, . . . , J ε

i (the perturbation of zk propagates in the future). So we have J ε
t

terms in the sum and, since E(J ε
t ) → ∞ as ε → 0, this generates a blow-up and

we have to give an accurate estimate of it. It represents the main difficulty in our
approach.
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Our aim now is to give an upper bound for the Lp norm of Kβ(F
ε,ζ
t ,G

ε,ζ
t ) more

precisely (see (2.15)),

(B.13)
∥∥Kβ

(
F

ε,ζ
t ,G

ε,ζ
t

)∥∥
p ≤ CeC�

γ
ε

t4(3q−1)× 2+ν
ν

(
ε−qζ−νq + e−�κ

ε ζ−2νq)
with q = |β|.

SKETCH OF THE PROOF. In Proposition 4.11 in [5], one proves that for each
p > 1, l ∈ N and T > 0,

E
(
1{sup[0,T ] |V ε,ζ

s |≤�ε} sup
[0,T ]

∣∣V ε,ζ
s

∣∣p
l

)
≤ CeC�

γ
ε and

E
(
1{sup[0,T ] |V ε,ζ

s |≤�ε} sup
[0,T ]

∣∣LV ε,ζ
s

∣∣p
l

)
≤ CeC�

γ
ε

εp(l+1)ζ νp
,

where C is a constant which depends on p, l and T . Using the above estimates
(recall (B.12)) and Hölder’s inequality, one obtains

(B.14) sup
t≤T

∥∥Kβ

(
F

ε,ζ
t ,G

ε,ζ
t

)∥∥
p ≤ CeC�

γ
ε
(
ε−qζ−νq + e−�κ

ε ζ−2νq)
.

See the proof of Theorem 4.1 in [5] for detailed computations.
Moreover, in Proposition 4.4 in [5] one denotes dt = detσ

F
ε,ζ
t

and proves that

E
(
d

−p
t

) ≤ Cp,t e
cp�

γ
ε .

Here, cp is a constant which depends on p and Cp,t depends on p but also on t .
The dependence in t is not specified there, so we will check here that

(B.15) Cp,t = ct−4p× 2+ν
ν .

We go in the proof of Proposition 4.4 in [5] and we find the inequality

E
(
d

−p
t

) ≤ CpeCp�
γ
ε

(∫
ξ∈R2

|ξ |8p−2 exp
(−ct |ξ |ν/(2+ν))dξ

)1/2
.

Using the change of variable ξ = t (2+ν)/νξ , one obtains (B.15) so that

∥∥d−1
t

∥∥
p ≤ 1

t
4(2+ν)

ν

CpeCp�
γ
ε .

This, together with (B.14) and Schwarz’s inequality gives (B.13). �
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