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ENTROPY-CONTROLLED LAST-PASSAGE PERCOLATION1

BY QUENTIN BERGER2 AND NICCOLÒ TORRI3

Sorbonne Université

We introduce a natural generalization of Hammersley’s Last-Passage
Percolation (LPP) called Entropy-controlled Last-Passage Percolation (E-
LPP), where points can be collected by paths with a global (path-entropy)
constraint which takes into account the whole structure of the path, instead of
a local (1-Lipschitz) constraint as in Hammersley’s LPP. Our main result is
to prove quantitative tail estimates on the maximal number of points that can
be collected by a path with entropy bounded by a prescribed constant. The
E-LPP turns out to be a key ingredient in the context of the directed polymer
model when the environment is heavy-tailed, which we consider in (Berger
and Torri (2018)). We give applications in this context, which are essentials
tools in (Berger and Torri (2018)): we show that the limiting variational prob-
lem conjectured in (Ann. Probab. 44 (2016) 4006–4048), Conjecture 1.7, is
finite, and we prove that the discrete variational problem converges to the
continuous one, generalizing techniques used in (Comm. Pure Appl. Math.
64 (2011) 183–204; Probab. Theory Related Fields 137 (2007) 227–275).

1. Introduction: Hammersley’s LPP and beyond. Let us recall the original
Hammersley’s Last-Passage Percolation (LPP) problem of the maximal number of
points that can be collected by up/right paths, also known as Ulam’s problem [16]
of the maximal increasing subsequence of a random permutation. Let m ∈ N, and
(Zi)1≤i≤m be m points independently drawn uniformly on the square [0,1]2. We
denote the coordinates of these points Zi := (xi, yi) for 1 ≤ i ≤ m. A sequence
(zi�)1≤�≤k is said to be increasing if xi� > xi�−1 and yi� > yi�−1 for any 1 ≤ � ≤ k

(by convention i0 = 0 and z0 = (0,0)). The question is to find the length of the
longest increasing sequence among the m points, which is equivalent to finding the
length of the longest increasing subsequence of a random (uniform) permutation
of length m: we let

(1.1) Lm = max
{
k : ∃(i1, . . . , ik) s.t. (Zi�)1≤�≤k is increasing

}
.

Hammersley [12] first proved that m−1/2Lm converges a.s. and in L1 to some
constant, that was believed to be 2. Later, the constant has been proven to be indeed
2 (see [13, 17]), and estimates related to Lm were improved by a series of papers,

Received May 2018; revised October 2018.
1The authors acknowledge the support of PEPS grant from CNRS.
2Supported by ANR-17-CE40-0032-02.
3Supported by ANR-11-LABX-0020-01 and ANR-10-LABX-0098.
MSC2010 subject classifications. Primary 60K35; secondary 60K37, 60F05.
Key words and phrases. Last-passage percolation, heavy-tail distributions, path entropy.

1878

http://www.imstat.org/aap/
https://doi.org/10.1214/18-AAP1448
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


ENTROPY-CONTROLLED LPP 1879

culminating in a seminal paper by Baik, Deift and Johansson [3], showing that
m−1/6(Lm − 2

√
m) converges in distribution to the Tracy–Widom distribution.

The main goal of the present article is to define the Entropy-controlled Last
Passage Percolation (E-LPP), a natural extension of Hammersley’s LPP. We in-
troduce the concept of entropy constraint, which depends on the structure of the
whole path, and is related to the moderate deviation rate function of the simple
symmetric random walk.

The E-LPP turns out to be crucial in the analysis of the directed polymer model
in a heavy-tailed environment in (1 + 1)-dimension. We refer to [7–9] for the def-
inition and a general overview of the directed polymer model. This model has
attracted much attention in recent years, in particular because it is in the KPZ
universality class: in particular, it is conjectured that at any fixed inverse temper-
ature β , the transversal fluctuation exponent ξ is equal to 2/3. Alberts, Khanin
and Quastel [1] recently introduced the concept of intermediate disorder regime
in which β scales with n, the size of the system. In the setting of a heavy-tailed
environment, this was considered first by Auffinger–Louidor [2], who showed that
rescaling suitably β , the model has transversal fluctuations exponent ξ = 1. Dey
and Zygouras [10] then proved that with a different (stronger) rescaling of β , the
model has Brownian fluctuations, that is ξ = 1/2. Additionally, Dey and Zygouras
proposed a phase-diagram that connects the exponent of the transversal fluctuation
of the polymer ξ and the decay rate of β with the tail exponent α of the heavy-
tailed distribution of the environment. In [4], we start to complete this picture by
giving a complete description in the case of α ∈ (0,2): one of the main results
is a proof of Conjecture 1.7 of [10], describing explicitly the scaling-limit of the
model. One crucial tool needed in [4] is the E-LPP defined in the present article,
which allows to go beyond the Lipschitz setting of [2, 11], and treat intermediate
transversal fluctuations 1/2 < ξ < 1.

1.1. Organization of the article. All our results are stated in Section 2: in Sec-
tion 2.1 we give the definition and results for the E-LPP in continuous and in
discrete settings; in Section 2.3, we consider the problem of E-LPP with heavy-tail
weights that appears in [4], and we show that the continuous limit in [4], The-
orem 2.4, is well defined, completing the proof of [10], Conjecture 1.7; in Sec-
tion 2.4 we state the convergence of the discrete energy-entropy variational prob-
lem to its continuous counterpart. This result is crucial to prove the convergence in
Theorems 2.2–2.7 of [4]. The proofs of the all results are presented in Sections 3
to 5.

2. Main results. Operating a rotation by 45◦ clockwise, we may map Ham-
mersley’s LPP problem (cf. Section 1) to that of the maximal number of points
that can be collected by 1-Lipschitz paths s : [0,1] →R. We now introduce a new
(natural) model where the Lipschitz constraint is replaced by a path entropy con-
straint.
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2.1. Entropy-controlled LPP. For t > 0, and a finite set � = {(ti , xi);1 ≤ i ≤
j} ⊂ [0, t]×R with |�| = j ∈N and with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tj ≤ t , we can define
the entropy of � as

(2.1) Ent(�) := 1

2

j∑
i=1

(xi − xi−1)
2

ti − ti−1
,

where we used the convention that (t0, x0) = (0,0). If there exists some 1 ≤ i ≤ j

such that ti = ti−1, then we set Ent(�) = +∞. This corresponds to the definition
(2.7) of the entropy of a continuous path s : [0, t] → R, applied to the linear inter-
polation of the points of �: to any set � we can therefore canonically associate a
(continuous) path with the same entropy. The set � is seen as a set of points a path
has to go through. For S = (Si)i≥0, a simple symmetric random walk on Z, and
if � ⊂ N× Z, we have that P(� ⊂ S) ≤ e−Ent(�) (� ⊂ S means that Sti = xi for

all i ≤ |�|)—we used that for the simple random walk P(Si = x) ≤ e−x2/2i by a
standard Chernoff bound argument.

Then, for any fixed B > 0, we will consider the maximal number of points that
can be collected by paths with entropy smaller than B , among a random set ϒm

of m points, whose law is denoted P. We now consider two types of problems,
depending on how this set ϒm is constructed:

(i) continuous setting: for t, x > 0, we consider a domain �t,x := [0, t] ×
[−x, x], and ϒm = ϒm(t, x) = {Y1, . . . , Ym} where (Yi)1≤i≤m is a collection of
independent r.v. chosen uniformly in �t,x ;

(ii) discrete setting: for n,h ∈ N, we consider a domain �n,h := �0, n� ×
�−h,h�, and ϒm = ϒm(n,h) = {Y1, . . . , Ym} is a set of m distinct points taken
uniformly in �n,h.

We are then able to define the entropy-controlled LPP by

(2.2) L(B)
m (t, x) = max

�⊂ϒm(t,x)

Ent(�)≤B

|�|, L(B)
m (n,h) = max

�⊂ϒm(n,h)

Ent(�)≤B

|�|,

the maximal number of points than can be included in a set � that has entropy
smaller than B . In other words, it is the maximal number of points in ϒm or ϒm

that can be collected by a path of entropy smaller than B . Note that we use the
different font to be able to differentiate the setting: L, �, ϒ for the continuous
case and L, �, ϒ for the discrete one. We refer to Figure 1 for a picture of an
optimizing path for the continuous E-LPP with entropy constraint B = 1, which is
compared to an optimizing path for Hammersley’s (1-Lipschitz) LPP.

We show the following result—the lower bound is not needed for our applica-
tions, but can be found in [5].

THEOREM 2.1. There are constants C0, c0, c
′
0 > 0 such that: for any

t, x,B > 0, n,h ≥ 1
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FIG. 1. We sample m = 5000 points uniformly and independently in the box [0,1] × [−0.5,0.5]
(note that

√
m ≈ 70.71). On the left: a (near-)optimal path for the continuous E-LPP (with constraint

Ent(s) ≤ B = 1), which collects 151 points (we used a simulated annealing procedure, hence the
near-optimality of the path). On the right: an optimal path for Hammersley’s (1-Lipschitz) LPP,
which collects 101 points.

(i) continuous setting: for all m ≥ 1 and all k ≤ m

P
(
L(B)

m (t, x) ≥ k
) ≤

(
C0(Bt/x2)1/2m

k2

)k

.(2.3)

(ii) discrete setting: for all 1 ≤ m ≤ nh and all k ≤ m

P
(
L(B)

m (n,h) ≥ k
) ≤

(
C0(Bn/h2)1/2m

k2

)k

.(2.4)

The proof of Theorem 2.1 is not difficult but a bit technical, and we give it in
Section 3.

This result shows in particular that L(B)
m (t, x) is of order ((Bt/x2)1/4√m) ∧ m,

resp. L
(B)
m (n,h) is of order ((Bn/h2)1/4√m) ∧ m, as stressed by the following

corollary. We stress that keeping track of the dependence on B is essential for the
applications we have in mind.

COROLLARY 2.2. For any b > 0, there is a constant cb > 0 such that, for any
m ≥ 1, and any positive B , and any t , x, respectively, n, h,

E

[( L(B)
m (t, x)

((Bt/x2)1/4
√

m) ∧ m

)b]
≤ cb; E

[(
L

(B)
m (n,h)

((Bn/h2)1/4
√

m) ∧ m

)b]
≤ cb.

REMARK 2.3. On may view Theorem 2.1 as a generalization of [11], Propo-
sition 3.3. More precisely, we recover [11], Proposition 3.3, by considering �n,n =
�n,n�2 and replacing the entropy condition Ent(�) ≤ B by a Lipschitz condition,
that is considering only the sets � whose points can be interpolated using a Lips-
chitz path. Let us denote L

(Lip)
m (n) the LPP obtained. Now observe that if � satis-

fies the Lipschitz condition we have that Ent(�) ≤ n/2 (recall the definition (2.1)):
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as a consequence it holds that L
(n/2)
m (n,n) ≥ L

(Lip)
m (n). We also stress that our def-

inition of E-LPP opens the way to many extensions: in particular as soon as one is
able to properly define the entropy of a path (i.e., of a set �), one could extend the
results to the case of paths with unbounded jumps or even nondirected paths: this
is the object of [5], where a general notion of path-constrained LPP is developed
and studied.

Let us stress here that one might want to reverse the point of view, and estimate
the minimal entropy needed for a path to visit at least k points. This turns out to be
essential in Section 4 of [4]. One realizes that

inf
�⊂ϒm

|�|≥k

Ent(�) ≤ B ⇐⇒ sup
�⊂ϒm

Ent(�)≤B

|�| ≥ k.

Hence, an easy consequence of Theorem 2.1 is that for any k ≤ n (we state it only
in the discrete setting)

(2.5) P

(
inf

�⊂ϒm,|�|≥k
Ent(�) ≤ B

)
≤

(
C0(Bn/h2)1/2m

k2

)k

.

It therefore says that, with high probability, a path that collects k points in ϒm ⊂
�n,h has an entropy larger than a constant times k4/m2 × h2/n.

2.2. Open questions and directions. Our main goal has been to introduce a
generalized last-passage percolation, and Theorem 2.1 give the first estimates on
the model. Below, we explain how these estimates are already extremely useful
in the context of the directed polymer model; see Sections 2.3 and 2.4. However,
many questions are raised, and we provide here a few important open problems
and future questions of investigation.

(a) As a consequence of Theorem 2.1 (and Theorem 3.1 in [5] for the lower
bound), we have that L(B)

m (t, x) is of order ((Bt/x2)1/4√m) ∧ m. The next step
would then be to show that for fixed B , t , x, L(B)

m (t, x)/((Bt/x2)1/4√m) con-
verges a.s. to a constant C as m → ∞, and identify the constant C. In this direction,
we consider in [5] the E-LPP in a Poissonian setting: the convergence then follows
from a subadditivity argument, and we expect that a “de-Poissonization” argument
would allow to transfer the convergence to the setting presented here.

(b) Once the constant C has been determined, the next natural step is to iden-
tify the fluctuations of L(B)

m (t, x) − C(Bt/x2)1/4√m, and also to determine the
transversal fluctuations of optimal paths. In [5], Appendix A, numerical simula-
tions are presented, and they suggest that m−1/6(L(B)

m (t, x) − C(Bt/x2)1/4√m)

converges in distribution, in the spirit of the result of Baik, Deift and Johansson
[3] (see Section 1).
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2.3. Application I: Continuous E-LPP with heavy-tail weights. In [4], we con-
sider the directed polymer model in heavy-tail environment, in weak-coupling
regimes (i.e., when the temperature diverges as the size of the system goes to
+∞). We prove the convergence of the log-partition function (suitably centered
and rescaled) to a continuous energy-entropy variational problem Tβ , defined be-
low in (2.9) (or in [4], Section 2.2).

Our E-LPP appears crucial to achieve this. In particular, it enables us to show
that the variational problem Tβ is well defined when the tail decay exponent α is
in (1/2,2): this is Theorem 2.4, which proves the first part of [10], Conjecture 1.7.
The second part of this conjecture, that is, that Tβ is indeed the scaling limit of the
log-partition function of the directed polymer in heavy-tail environment, is proved
in [4], Theorem 2.4.

Let us recall some notation from Section 2.2 in [4]. The set of allowed paths
(scaling limits of random walk trajectories) is

(2.6) D := {
s : [0,1] →R; s continuous and a.e. differentiable

}
,

and the (continuum) entropy of a path s ∈ D is defined by

(2.7) Ent(s) = 1

2

∫ 1

0

(
s′(t)

)2
dt.

This last definition derives from the rate function of the moderate deviation of the
simple random walk (see [15] or [4], equation (2.14)).

We let P := {(wi, ti, xi)}i≥1 be a Poisson point process on [0,∞) × [0,1] ×
R of intensity μ(dw dt dx) = α

2 w−α−11{w>0} dw dt dx, where α ∈ (0,2). For a
quenched realization of P , (minus) the energy of a continuous path s ∈ D is then
defined by

(2.8) π(s) = πP(s) := ∑
(w,t,x)∈P

w1{(t,x)∈s},

where (t, x) ∈ s means that (t, x) is visited by the path s, that is, st = x.
Using (2.7) and (2.8), we define the energy–entropy competition variational

problem: for any β ≥ 0, we let

(2.9) Tβ := sup
s∈D,Ent(s)<+∞

{
βπ(s) − Ent(s)

}
.

The next result shows that it is well defined, and gives some of its properties.

THEOREM 2.4. For α ∈ (1/2,2), we have the scaling relation

(2.10) Tβ
(d)= β

2α
2α−1T1,

and Tβ ∈ (0,+∞) for all β > 0 a.s. Moreover, E[(Tβ)υ] < ∞ for any υ < α−1/2.
We also have that a.s. the map β �→ Tβ is continuous, and that the supremum in
(2.9) is attained by some unique continuous path s∗

β with Ent(s∗
β) < ∞.

On the other hand, for α ∈ (0,1/2] we have Tβ = +∞ for all β > 0 a.s.
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REMARK 2.5. As we discuss in Section 2.5 of [4], the fact that the maximizer
of Tβ is unique could be used to show the concentration of the paths around s∗

β

under the polymer measure Pω
n,βn

, in analogy with the result obtained by Auffinger
and Louidor in Theorem 2.1 of [2].

2.4. Application II: Discrete E-LPP with heavy-tail weights. In this section,
we discuss the convergence of a discrete energy-entropy variational problem T

βn,h

n,h

defined below in (2.15), to its continuous counterpart Tβ (2.9). This is a crucial
result that we need in [4] to prove Theorems 2.4–2.7.

We introduce the discrete field {ωi,x; (i, x) ∈ N×Z}, which are i.i.d. nonneg-
ative random variables of law P: there is some slowly varying function L(·) and
some α > 0 such that

(2.11) P(ω > x) = L(x)x−α.

This random field is the discrete counterpart of the Poisson point process P intro-
duced in Section 2.3. We refer to Section 5.1 for further details.

Let us consider F(x) = P(ω ≤ x) be the disorder distribution (cf. (2.11)), and
define the function m(x) by

(2.12) m(x) := F−1
(

1 − 1

x

)
so P

(
ω > m(x)

) = 1

x
.

The second identity characterizes m(x) up to asymptotic equivalence: we have that
m(·) is a regularly varying function with exponent 1/α.

For any given box �n,h = �1, n� × �−h,h�, we can rewrite the discrete field in
this region (ωi,x)(i,x)∈�n,h

using the order statistics: we let M
(n,h)
r be the r th largest

value of (ωi,x)(i,x)∈�n,h
and Y

(n,h)
r ∈ �n,h its position—note that (Y

(n,h)
r )

|�n,h|
r=1 is

simply a random permutation of the points of �n,h. In such a way,

(2.13) (ωi,j )(i,j)∈�n = (
M(n,h)

r , Y (n,h)
r

)|�n,h|
r=1 .

In the following, we refer to (M
(n,h)
r )

|�n,h|
r=1 as the weight sequence. We now define

(minus) the energy collected by a set � ⊂ �n,h and its contribution by the first �

weights (with 1 ≤ � ≤ |�n,h|) as follows:

�n,h(�) :=
|�n,h|∑
r=1

M(n,h)
r 1{Y (n,h)

r ∈�};

�
(�)
n,h(�) :=

�∑
r=1

M(n,h)
r 1{Y (n,h)

r ∈�}.

(2.14)

We also set �
(>�)
n,h (�) := �n,h(�) − �

(�)
n,h(�).
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In such a way, we can define the (discrete) variational problem

(2.15) T
βn,h

n,h := max
�⊂�n,h

{
βn,h�n,h(�) − Ent(�)

}
,

with βn,h some function of n, h (soon to be specified), and Ent(�) as defined in
(2.1). We also define analogues of (2.15) with a restriction to the � largest weights,
or beyond the �th weight

T
βn,h,(�)

n,h := max
�⊂�n,h

{
βn,h�

(�)
n,h(�) − Ent(�)

}
,

T
βn,h,(>�)

n,h := max
�⊂�n,h

{
βn,h�

(>�)
n,h (�) − Ent(�)

}
.

(2.16)

The following proposition is crucial for the proof of Theorem 2.7 below, and is
also a central tool in [4], Section 4.

PROPOSITION 2.6. The following hold true:

• For any a < α, there is a constant ca > 0 such that for any 1 ≤ � ≤ nh, for any
b > 1,

(2.17) P

(
T

βn,h,(�)

n,h ≥ b × (
βn,hm(nh)

)4/3
(

n

h2

)1/3)
≤ cab

−3a/4.

• We also have that there is a constant c > 0 such that for any b > 1,

(2.18) P

(
T

βn,h,(>�)

n,h ≥ b × (
βn,hm(nh/�)

)4/3
(

�2n

h2

)1/3)
≤ cb−α�/4 + e−cb1/4

.

The proof is postponed to Section 5.2. Observe that we need here to keep track
of the dependence on n, h: to that end, estimates obtained in Section 2.1 will be
crucial. Note already that if n

h2 βn,hm(nh) → β ∈ (0,∞), as n,h → ∞, it gives

that T
βn,h,(�)

n,h is of order β4h2/n.
In the next result, we prove the convergence in distribution for (2.15), which

generalizes the convergence of related variational problems considered in [2, 11].

THEOREM 2.7. Suppose that n
h2 βn,hm(nh) → ν ∈ [0,∞) as n,h → ∞. For

every α ∈ (1/2,2) and for any q > 0, we have the following convergence in distri-
bution:

(2.19)
n

h2 T
βn,h

n,qh

(d)−−−→
n→∞ Tν,q := sup

s∈Mq

{
νπ(s) − Ent(s)

}
,

with Mq := {s ∈ D,Ent(s) < ∞,maxt∈[0,1] |s(t)| ≤ q}. We also have

(2.20)
n

h2 T
βn,h,(�)

n,qh

(d)−−−→
n→∞ T (�)

ν,q := sup
s∈Mq

{
νπ(�)(s) − Ent(s)

}
,
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where π(�) := ∑�
r=1 Mr1{Yr∈s} with {(Mr,Yr)}r≥1 the order statistics of P re-

stricted to [0,1] × [−q, q]; see Section 5.1. Finally, we have

(2.21) T (�)
ν,q

a.s.−−−→
�→∞ Tν,q, and Tν,q

a.s.−−−→
q→∞ Tν.

3. Proof of Theorem 2.1 and Corollary 2.2.

3.1. Proof of Theorem 2.1. We start with the proof in the continuous setting.
The discrete setting follows the same lines and details will be skipped.

Continuous setting. Let us consider E (t,B)
k the set of k-tuples in [0, t]×R (i.e.,

up to time t) that have entropy smaller than B:

E (t,B)
k =

{(
(t�, x�)

)
1≤�≤k ⊂ [0, t] ×R; 0 < t1 < · · · < tk < t;

Ent
(
(t�, x�)1≤�≤k

) ≤ B

}
.

We can compute exactly the volume of E (t,B)
k .

LEMMA 3.1. We have, for any t > 0 and B > 0

Vol
(
E (t,B)

k

) = Ck × Bk/2t3k/2, with Ck = πk/
√

2

�(k/2 + 1)�(3k/2 + 1)
.

In particular, it gives that there exists some constant C such that

Vol
(
E (t,B)

k

) ≤
(

CB1/2t3/2

k2

)k

.

PROOF. The key to the computation is the induction formula below, based on
the decomposition over the left-most point in E (t,B)

k at position (u, y) (by symme-
try we can assume y ≥ 0): it leaves k − 1 points with remaining time t − u and

entropy smaller than B − y2

2u
,

(3.1) Vol
(
E (t,B)

k

) = 2
∫ t

u=0

∫ √
2Bu

y=0
Vol

(
E (t−u,B−y2/2u)

k−1

)
dy du.

The induction is only calculations. For k = 1, we have

Vol
(
E (t,B)

1

) = 2
∫ t

u=0

∫ √
2Bu

y=0
dudy = 2

√
2B

∫ t

0
u1/2 du = 4

√
2

3
B1/2t3/2,

so that we indeed have that C1 = π(
√

2�(3/2)�(5/2))−1.
For k ≥ 2, by induction, we have

Vol
(
E (t,B)

k

) = 2Ck−1

∫ t

u=0

∫ √
2Bu

y=0
(t − u)3(k−1)/2

(
B − y2

2u

)(k−1)/2
dy du.
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Then, by a change of variable w = y2/(2Bu), we get that∫ √
2Bu

y=0

(
B − y2

2u

)(k−1)/2
dy = B(k−1)/2

∫ 1

0
(1 − w)(k−1)/2

√
Bu

2
w−1/2 dw

= 1√
2
Bk/2u1/2 �((k − 1)/2 + 1)�(1/2)

�(k/2 + 1)
.

Moreover, we also have∫ t

u=0
u1/2(t − u)3(k−1)/2 du = t3(k−1)/2+1/2+1

∫ 1

0
v1/2(1 − v)3(k−1)/2 dv

= t3k/2 �(3/2)�(3(k − 1)/2 + 1)

�(3k/2 + 1)
.

Hence, the constant Ck verifies

Ck = 2Ck−1 × √
π

�((k − 1)/2 + 1)

�(k/2 + 1)
×

√
π

2

�(3(k − 1)/2 + 1)

�(3k/2 + 1)
,

which completes the induction, in view of the formula for Ck−1.
For the inequality in the second part of the lemma, we simply use Stirling’s

formula to get that there is a constant c > 0 such that

�(k/2 + 1) ≥ (ck)k/2 and �(3k/2 + 1) ≥ (ck)3k/2. �

Let us denote Nk the number of sets � ⊂ ϒm(t, x) with |�| = k, that have
entropy at most B . We write

P
(
L(B)

m (t, x) ≥ k
) = P(Nk ≥ 1) ≤ E[Nk].

Since all the points are exchangeable, we get

E[Nk] =
(
m

k

)
P

(∃σ ∈ Sk s.t. (Zσ(1), . . . ,Zσ(k)) ∈ E (t,B)
k

)
,

where Z1 = (t1, x1), . . . ,Zk = (tk, xk) are independent uniform r.v. on the domain
�t,x (with volume 2tx). We then have that

P
(∃σ ∈ Sk s.t. (Zσ(1), . . . ,Zσ(k)) ∈ E (t,B)

k

) = k!Vol(E (t,B)
k )

(2tx)k
.

We therefore obtain, using that
(m
k

) ≤ mk/k!, together with Lemma 3.1

(3.2) P
(
L(B)

m (t, x) ≥ k
) ≤

(
CB1/2t1/2m

2xk2

)k

.

This gives the upper bound of Theorem 2.1(i).
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Discrete setting: Upper bound. The proof follows the same idea as above: we
skip most of the details. Define E

(n,B)
k the set of k-tuples in �1, n� × Z that have

entropy smaller than B:

E
(n,B)
k :=

{(
(t�, x�)

)
1≤�≤k ⊂ �1, n� ×Z; 0 < t1 < · · · < tk ≤ n;

Ent
(
(t�, x�)1≤�≤k

) ≤ B

}
.

We can estimate the cardinality of E
(n,B)
k ; however, not in an exact manner as

in the continuous case.

LEMMA 3.2. For any n ∈ N, it holds true that

Vol
(
E

(n,B)
k

) ≤ 2kCk × Bk/2n3k/2, with Ck = πk/
√

2

�(k/2 + 1)�(3k/2 + 1)
.

PROOF. The analogous of (3.1) is here

(3.3) Vol
(
E

(n,B)
k

) = 2
n∑

i=1

√
2Bi∑

y=0

Vol
(
E

(n−i,B−x2/2i)
k−1

)
.

The induction is again straightforward calculations: we can use the computations
made in the continuous setting, together with the comparison between finite sums
and Riemann integrals, that is,

n∑
i=0

g(i) ≤
∫ n+1

0
g(z)dz if g is increasing,

n∑
i=0

g(i) ≤ g(0) +
∫ n

0
g(z)dz if g is decreasing.

(3.4)

Details are left to the reader. �

Again, we have P(L
(B)
m (n,h) ≥ k) ≤ E[Nk], where Nk is the number of sets

� ⊂ ϒm ⊂ �n,h with |�| = k, that have entropy at most B . Then

E[Nk] =
(
m

k

)
P

(∃σ ∈ Sk s.t.
(
Z

(n,h)
σ (1) , . . . ,Z

(n,h)
σ (k)

) ∈ E (n,B)
k

)
,

where (Z
(n,h)
1 , . . . ,Z

(n,h)
k ) are a uniform random choice of k distinct points from

�n,h (which contains n(2h + 1) points)—the main difference with the continuous
setting comes from the fact that the Zi’s are not independent. We therefore have
that, using Lemma 3.2,

E[nk] =
(
m

k

)
Vol(E(n,B)

k )(2nh+n
k

) ≤ mk

(2nh)k

(
CB1/2

k2

)k

.

We also used that
(m
k

) ≤ mk/k! and that
(2nh+n

k

) ≥ (2nh + n − k)k/k! with k ≤ n.
This concludes the proof of the upper bound in Theorem 2.1(ii).
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3.2. Proof of Corollary 2.2. We prove it in the continuous setting, the discrete
one being similar. From Theorem 2.1, we deduce that for any u ≥ (eC0)

1/2, we
have

(3.5) P
(
L(B)

m (t, x) ≥ u
(
Bt/x2)1/4√

m
) ≤ exp

(−u
(
Bt/x2)1/4√

m
)
.

Applying this inequality with u = (eC0)
1/2, and using also the a priori bound

L(B)
m (n,h) ≤ m, we get that for any b > 0

E

[( L(B)
m (t, x)

((Bt/x2)1/4m1/2) ∧ m

)b]

≤ (eC0)
b/2 +

∫ +∞
(eC0)

b/2
P

( L(B)
m (t, x)

((Bt/x2)1/4m1/2) ∧ m
> u1/b

)
du

≤ (eC0)
b/2 + cst.

4. Proof of Theorem 2.4. Let us recall that P := {(wi, ti, xi) : i ≥ 1} is
a Poisson point process on [0,∞) × [0,1] × R of intensity μ(dw dt dx) =
α
2 w−α−11{w>0} dw dt dx, as introduced in Section 2.3.

4.1. Ideas of the proof. First, we prove that Tβ = +∞ when α ≤ 1/2. Then
we prove the scaling relation (2.10), and finally we show the finiteness of the υth
moment (υ < α − 1/2). We stress that the core of the proof is based on an appli-
cation of the continuous E-LPP: roughly, the idea of the proof is to decompose the
variational problem (2.9) according to the value of the entropy:

(4.1) Tβ = sup
B≥0

{
β sup

s∈D,Ent(s)=B

π(s) − B
}
.

Then a simple scaling argument gives that

sup
s:Ent(s)≤B

π(s)
(d)= B

1
2α sup

s:Ent(s)≤1
π(s).

The E-LPP appears essential to show that the last supremum is finite; see, in par-
ticular, Lemma 4.1 below. Then, at a heuristic level, we get that Tβ is finite because

in (4.1) we have B
1

2α � B as B → ∞ (remember that α > 1/2). In the last part of
the proof, we prove the continuity of β �→ Tβ and of the existence and uniqueness
of the maximizer in (2.9).

4.2. Case α ≤ 1/2. Let us prove here that Tβ = +∞ when α ∈ (0,1/2]. For
any k in Z, we define the event

Gk :=
{
P ∩ [β−122k+1,+∞) ×

[
1

2
,1

]
× [

2k−1,2k] �= ∅

}
.
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On the event Gk , we denote (wk, tk, xk) a point of P such that wk ≥ β−122k+1 and
(tk, xk) ∈ [1

2 ,1] × [2k−1,2k]: considering the path going straight to (tk, xk) we get
that

Tβ ≥ βwk − x2
k

2tk
≥ 22k on the event Gk.

Then it is just a matter of estimating P(Gk). We stress that considering Mk the
maximal weight in [1

2 ,1] × [2k−1,2k], we find that Mk is of order (2k)1/α (as
a maximum of a field of independent heavy-tail random variables, or using the
scaling relations below), so that we get that: if α < 1/2, P(Gk) → 1 as k → +∞;
if α = 1/2, there is a constant c > 0 such that P(Gk) ≥ c for all k ∈ Z; if α > 1/2,
P(Gk) → 1 as k → −∞. Note that the events Gk are independent, so an application
of Borel–Cantelli lemma gives that for α ≤ 1/2, a.s. Gk occurs for infinitely many
k ∈ N: since Tβ ≥ 22k on Gk , it implies that Tβ = +∞ a.s. for α ≤ 1/2.

On the other hand, let us remark that this argument also proves that when α >

1/2, a.s. there exists some k0 ≤ −1 such that Gk0 occurs, and thus Tβ ≥ 22k0 > 0.

4.3. Scaling relations. For any α ∈ (0,2) and a > 0, we consider two func-
tions ϕ(w, t, x) := (w, t, ax) and ψ(w, t, x) := (a−1/αw, t, x) which scale space
by a (hence the entropy by a2) and weights by a−1/α , respectively. The random
sets ϕ(P) and ψ(P) are still two Poisson point processes with the same law, that

is, ϕ(P)
(d)= ψ(P). This implies that (recall the definition (2.8))

π(as)
(d)= a1/απ(s).

Therefore,

(4.2) sup
s∈D,Ent(s)<∞

{
βπ(s) − a2 Ent(s)

} (d)= sup
s∈D,Ent(s)<∞

{
βa−1/απ(s) − Ent(s)

}
.

Consequently, for any α ∈ (0,2), a2Tβ/a2
(d)= Tβa−1/α . In particular, for any β > 0

it holds true that for α > 1/2

Tβ
(d)= β

2α
2α−1T1.(4.3)

Let us note that T1 > 0 a.s., as we already observed in Section 4.2.

4.4. Finite moments of Tβ . We show that for α ∈ (1/2,2) E[(Tβ)υ] < ∞ for
any υ < α − 1/2, which readily implies that Tβ < ∞ a.s. For any interval [c, d)

with 0 ≤ c < d , we let

(4.4) Tβ

([c, d)
) := sup

s∈D,Ent(s)∈[c,d)

{
βπ(s) − Ent(s)

}
,
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and we observe that Tβ = Tβ([0,1))∨ supk≥0 Tβ([2k,2k+1)). Moreover, as in (4.2)
we have

Tβ

([2k,2k+1)) (d)= sup
s:Ent(s)∈[1,2)

{
2

k
2α βπ(s) − 2k Ent(s)

}
≤ 2

k
2α β sup

s:Ent(s)≤2
π(s) − 2k.(4.5)

We show the following lemma.

LEMMA 4.1. For any a < α, we have that there is a constant ca > 0 such that
for any t > 1 we get

P

(
sup

s∈D,Ent(s)≤2
π(s) > t

)
≤ cat

−a.

Note that this bound is sharp: let M be the largest weight in [1/2,1] × [−1,1],
then we have that for t > 1, the probability in Lemma 4.1 is bounded below by
P(M > t) ≥ cαt−α . (The last inequality comes from the form of the intensity of
the Poisson point process.)

From this lemma and (4.5), we get that for any t ≥ −1 and any k large enough

so that β−12− k
2α 2−k > 2, we get

P
(
Tβ

([2k,2k+1))
> t) ≤ P

(
sup

s∈D,Ent(s)≤2
π(s) > β−12− k

2α
(
t + 2k))

≤ caβ
a2k a

2α
(
t + 2k)−a

.(4.6)

Then, for any t ≥ 1 and a < α, we get by a union bound that

P(Tβ > t) ≤
∞∑

k=0

P
(
Tβ

([2k,2k+1)) > t)

≤ c′
a2aβat−a

log2 t∑
k=0

2k a
2α + c′

a2aβa
∑

k>log2 t

2−ak(1− 1
2α

)

≤ c′′
aβ

at−at
a

2α + c′′
at

−a(1− 1
2α

) ≤ 2c′′
aβ

at−a(1− 1
2α

),

where we used that t + 2k ≥ t/2 if k ≤ log2 t , and t + 2k ≥ 2k/2 if k > log2 t . For
the second sum, we also used that 1 − 1

2α
> 0 when α > 1/2. In particular, this

shows that for any δ > 0, there is some constant cδ,β > 0 such that for any t ≥ 1

(4.7) P(Tβ > t) ≤ cδ,β t−(α− 1
2 )+δ,

which proves that E[(Tβ)υ] < ∞ for any υ < α − 1/2.
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PROOF OF LEMMA 4.1. Recall that Ent(s) ≤ 2 implies that max |s| ≤ 2.
Therefore we can restrict our Poisson point process to R+ × [0,1] × [−2,2]. In
this case (cf. Section 5.1 below), we rewrite a realization of the Poisson point
process by using its order statistics. We introduce (Yi)i∈N an i.i.d. sequence of
uniform random variables on [0,1] × [−2,2] and (Mi)i∈N be a random sequence
independent of (Yi)i∈N defined by Mi = 41/α(E1 + · · · + Ei)

−1/α with (Ej )j≥1 an

i.i.d. sequence of Exp(1) random variables. In such a way, P (d)= (Mi,Yi)i∈N and
π(s) = ∑∞

i=1 Mi1{Yi∈s}.
The proof is then a consequence of Theorem 2.1 (with B = 1), which al-

lows to use the same ideas as in [11], Proposition 3.3. We develop the argu-
ment used in [11] in a more robust way, which makes it easier to adapt to
the discrete setting. Using the notation introduced in Section 1, for any i ≥ 0,
we denote ϒi = {Y1, . . . , Yi} (ϒ0 = ∅), and let �i = �i(s) = s ∩ ϒ i be the
set of the i largest weights collected by s. The E-LPP can be written here as
L(2)

i := maxs:Ent(s)≤2 |�i(s)|—we drop here the dependence on t , x.
Using that Mi is a nonincreasing sequence, we write

(4.8) π(s) =
∞∑

j=0

2j+1−1∑
i=2j

Mi1{Yi∈s} ≤
∞∑

j=0

M2jL(2)

2j+1 .

Then we fix some δ > 0 such that 1/α − 1/2 > 2δ, and we let C =∑∞
j=0 2j (1/2−1/α+2δ): we obtain via a union bound that

P

(
sup

Ent(s)≤2
π(s) > t

)
≤

∞∑
j=0

P

(
M2jL(2)

2j+1 >
1

C
t2j (1/2−1/α+2δ)

)

≤
∞∑

j=0

[
P

(
L(2)

2j+1 > C′ log t
(
2j+1)1/2+δ))

+ P

(
M2j > C′′ t

log t

(
2j )−1/α+δ

)]
.(4.9)

Here, C′ is a constant that we choose large in a moment, and C′′ is a constant
depending on C, C′; we also work with t ≥ 2 for simplicity.

For the first probability in the sum, we obtain from Theorem 2.1(i) (with m =
2j+1 and k = C′ log t (2j+1)

1
2 +δ) that provided C′(log t)2jδ ≥ 2C

1/2
0 ,

P
(
L(2)

2j+1 > C′ log t
(
2j+1)1/2+δ)) ≤

(
1

2

)C′(log t)2jδ

≤ t− log 2C′2jδ

.

Hence, for t sufficiently large we get that

(4.10)
∞∑

j=0

P
(
L(2)

2j+1 > C′ log t
(
2j+1)1/2+δ)) ≤ ct−C′ log 2 ≤ ct−a

provided that we fixed C′ large.
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For the second probability in the sum, recall that Mi
(d)= 41/αGamma(i)−1/α ,

so that for any a < α, E[(i1/αMi)
a] is bounded by a constant independent of i.

Therefore, Markov’s inequality gives that

P

(
M2j > C′′ t

log t

(
2j )−1/α+δ

)
≤ c(log t)at−a(

2j )−aδ
,

so that

(4.11)
∞∑

j=0

P

(
M2j > C′′ t

log t

(
2j )−1/α+δ

)
≤ c(log t)at−a.

Plugging (4.10) and (4.11) into (4.9), we obtain that for any a′ < a < α there are
constants c > 0 such that for any t ≥ 2

P

(
sup

Ent(s)≤2
π(s) > t

)
≤ 2c(log t)at−a ≤ c′t−a′

,

which completes the proof. �

4.5. Continuity of β �→ Tβ . An obvious and crucial fact that we use along the
way is that for any realization of P , β �→ Tβ is nondecreasing.

4.5.1. Left continuity. Let us first show that β �→ Tβ is left continuous, since

it is less technical. Fix ε > 0. For any β , there exists a path s
(ε)
β with π(s

(ε)
β ) < ∞

such that Tβ ≤ βπ(s
(ε)
β )− Ent(s(ε)

β )+ ε. Using this path s
(ε)
β , we then simply write

that for any δ > 0

Tβ ≥ Tβ−δ ≥ (β − δ)π
(
s
(ε)
β

) − Ent
(
s
(ε)
β

)
.

Letting δ ↓ 0, we get that the right-hand side converges to βπ(s
(ε)
β ) − Ent(s(ε)

β ) ≥
Tβ − ε. Since ε is arbitrary, one concludes that limδ↑0 Tβ−δ = Tβ , that is β �→ Tβ

is left continuous.

4.5.2. Right continuity. It remains to prove that a.s. β �→ Tβ is right continu-
ous. We prove a preliminary result.

LEMMA 4.2. For any K > 0, P-a.s. there exists B0 > 0 such that for any
0 ≤ β ≤ K ,

(4.12) Tβ = Tβ

([0,B0]),
where Tβ([0,B0]) is defined in (4.4).
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PROOF. Let us recall that Tβ = Tβ([0,1)) ∨ supk≥0 Tβ([2k,2k+1)). Using
(4.6) with t = −1, for any a < α we have that

P
(
Tβ

([2k,2k+1)) > −1) ≤ caβ
a2k a

2α
(
2k − 1

)−a ≤ ca,K2ka( 1
2α

−1).

Since 1
2α

−1 < 0, by Borel–Cantelli lemma we obtain that P-a.s. there exists k0 > 0
such that Tβ([2k,2k+1)) ≤ −1 for all k ≥ k0. This concludes the proof. �

Then, since we now consider paths with entropy bounded by B0, we can restrict
the Poisson point process P to R+ × [0,1] × [−√

2B0,
√

2B0]. In this case, we
write a realization of the Poisson point process by using its order statistics. More
precisely we introduce Mi := (8B0)

1/2α(E1 + · · · + Ei )
−1/α , where (Ei )i∈N is an

i.i.d. sequence of exponential of mean 1 and (Yi)i∈N is an i.i.d. sequence of uniform

random variables on [0,1]× [−√
2B0,

√
2B0], independent of (Ei )i∈N. Then P (d)=

(Mi,Yi)i∈N and π(s) = ∑∞
i=1 Mi1{Yi∈s}.

For any � ∈ N, we let π(�) := ∑�
i=1 Mi1Yi∈s be the “truncated” energy of a path:

we can write for any β < K , and any δ > 0 such that β + δ ≤ K

Tβ+δ = Tβ+δ

([0,B0])
≤ sup

s∈D,Ent(s)≤B0

{
(β + δ)π(�)(s) − Ent(s)

}
+ (β + δ) sup

s∈D,Ent(s)≤B0

∣∣π(s) − π(�)(s)
∣∣.

We control the last term with the following lemma.

LEMMA 4.3. It holds that

max
s∈D,Ent(s)≤B0

∣∣π(s) − π(�)(s)
∣∣ a.s.−−−→

�→∞ 0.

Hence, for any fixed ε, we can a.s. choose some �ε such that for any β < K and
any δ > 0 with β + δ ≤ K ,

Tβ ≤ Tβ+δ ≤ sup
s∈D,Ent(s)≤B0

{
(β + δ)π(�)(s) − Ent(s)

} + Kε.

Then, letting δ ↓ 0, and since the supremum can now be reduced to a finite set (we
consider only � points), we get that for any β < K ,

Tβ ≤ lim
δ↓0

Tβ+δ ≤ sup
s∈D,Ent(s)≤B0

{
βπ(�)(s) − Ent(s)

} + ε ≤ Tβ + ε.

Since ε is arbitrary, this shows that limδ↓0 Tβ+δ = Tβ a.s., that is, β �→ Tβ is right
continuous.

PROOF OF LEMMA 4.3. For any i ∈ N, we consider ϒi = {Y1, . . . , Yi} and for
any given path s we define �i = �i(s) = s ∩ ϒi the set of the i largest weights
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collected by s. Then let L(B0)
i = sups∈DB0

|�i(s)|, as introduced in (2.2). Realizing
that 1{Yi∈s} = |�i(s)| − |�i−1(s)|, and integrating by parts (as done in [11]), we
obtain for any s ∈ DB0 ,

π(s) − π(�)(s) = ∑
i>�

Mi1{Yi∈s}

= lim
n→∞

n∑
i=�+1

Mi

(|�i | − |�i−1|)

= lim
n→∞

(
n−1∑

i=�+1

|�i |(Mi − Mi+1) + Mn|�n| − M�|��|
)

≤
∞∑

i=�+1

L(B0)
i (Mi − Mi+1) + lim sup

n→∞
MnL(B0)

n .(4.13)

At this stage, the law of large numbers gives that limn→∞ n1/αMn = (8B0)
1/2α

a.s., and Corollary 2.2 gives that lim supn→∞ n−1/2L(B0)
n < +∞ a.s. Since α < 2,

we therefore conclude that lim supn→∞ MnL(B0)
n = 0 a.s.

We let U� := ∑
i>�L

(B0)
i (Mi − Mi−1). We are going to show that there exists

some �0 such that
∑

i>�0
L(B)

i (Mi − Mi−1) < ∞ a.s., and thus lim�→∞ U� = 0
a.s. We show that E[U2

�0
] is finite for �0 large enough. For any ε > 0, by Cauchy–

Schwarz inequality we have that

U�0 ≤
( ∑

i>�0

(
i−

1
2 −ε)2

)1/2(∑
i>�0

(
i−

1
2 +εL(B0)

i (Mi − Mi+1)
)2

)1/2
.

Then we get that for �0 large enough

E
[
U2

�0

] ≤ C
∑
i>�0

i1+2ε
E

[(
L(B)

i

)2]
E

[
(Mi − Mi−1)

2]
≤ C′

B0

∑
i>�0

i1+2ε × i × i−2−2/α < +∞.

Here, we used Corollary 2.2 and a straightforward calculation that gives E[(Mi −
Mi−1)

2] ≤ ci−2−2/α for i large enough (see, for instance, equation (7.2) in
[11]). Provided ε is small enough so that 2ε − 2/α < −1, we obtain that
E[U2

�0
] < ∞. �

4.6. Existence and uniqueness of the maximizer. As a consequence of Lem-
ma 4.2, to show that the supremum is attained and is unique in (2.9), it is enough
to prove the following result.
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LEMMA 4.4. For a.e. realization of P and for any B > 0, we have that

s∗
β(B) = arg max

s∈DB

{
βπ(s) − Ent(s)

}
exists, and it is unique. Here, we defined DB := {s ∈ D : Ent(s) ≤ B}.

PROOF. Our first step is to show that DB is compact for the uniform norm
‖ · ‖∞. Let us observe that for any s : [0,1] → R, the condition Ent(s) ≤ B implies
that ∣∣s(x) − s(y)

∣∣ ≤
∫ x

y

∣∣s′(t)
∣∣dt ≤ (2B)1/2|x − y|1/2, ∀x, y ∈ [0,1],

so that s belongs to the Hölder Space C1/2([0,1]). Hence, DB is included in
C1/2([0,1]) which is compact for the uniform norm ‖ · ‖∞ by the Ascoli–Arzelà
theorem. We therefore only need to show that DB is closed for the uniform norm
‖ · ‖∞.

For this purpose, we consider a convergent sequence sn and we denote by s
its limit. Since Ent(sn) = 1

2‖s′
n‖2

L2 for all n, we have that (s′
n)n∈N belongs to the

(closed) ball of radius (2B)1/2 of L2([0,1]). By Banach–Alaoglu theorem, the se-
quence (s′

n)n∈N contains a weakly convergent subsequence. This means that there
exist nk and s� such that∫ 1

0
ϕ(x)s′

nk
(x)dx −−−→

k→∞

∫ 1

0
ϕ(s)s�(x) dx ∀ϕ ∈ L2([0,1]).

By uniqueness of the limit (and taking ϕ(x) = 1{[0,y]}(x)), this relation implies
that s(y) = ∫ y

0 s�(x) dx, that is s′ = s� almost everywhere. Since the L2 norm
is weakly lower semicontinuous by the Hahn–Banach theorem that is, ‖s�‖L2 ≤
lim infk→∞ ‖s′

nk
‖L2 , we obtain that s ∈ DB , so DB is closed. As a by-product of

this argument, we also have that the entropy function s �→ Ent(s) is lower semi-
continuous on (DB,‖ · ‖∞).

Existence of the maximizer. Since DB is compact, the existence of the maxi-
mizer comes from the fact that the function

(4.14) tβ(s) := βπ(s) − Ent(s)

is upper semicontinuous, thanks to the extreme value theorem tells. Since we have
already shown that s �→ Ent(s) is lower semicontinuous, we only need to prove the
following.

LEMMA 4.5. For a.e. realization of P and for any B > 0, the function s �→
π(s) is upper semicontinuous on (DB,‖ · ‖∞).
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PROOF. We recall that if s ∈ DB then maxt∈[0,1] |s(t)| ≤
√

2B . Therefore, us-
ing the same notation as above, we can write a realization of the Poisson point
process P by using its order statistics: P = (Mi,Yi)i∈N, π(s) = ∑∞

i=1 Mi1{Yi∈s},
and recall that for any � ∈ N we let π(�) := ∑�

i=1 Mi1{Yi∈s}. Thanks to (4.3), we
only need to prove that for any fixed � ∈ N the function s �→ π(�)(s) is upper semi-
continuous: then π(s), as the uniform limit of π(�), is still upper semicontinuous.

For any s ∈ DB , we let ιs := ϒ� \ {s ∩ ϒ�} be the set of all points of ϒ� =
{Y1, . . . , Y�} that are not in s. Since there are finitely many points, we realize that
there exists η = η(s, �) > 0 such that dH (ιs,graph(s)) > η, with dH is the Haus-
dorff distance.

Given s ∈ DB , we consider a sequence (sn)n, sn ∈ DB that converges to s,
limn→∞ ‖sn − s‖∞ = 0. We observe that whenever ‖sn − s‖∞ ≤ η/2, we have
that dH (ιs,graph(sn)) > η/2. This means that for n large enough

{sn ∩ ϒ�} ⊂ {s ∩ ϒ�},
which implies that π(�)(s) ≥ lim supn→∞ π(�)(sn). �

Uniquenes of the maximizer. The strategy is very similar to the one used in [2],
Lemma 4.1 or [11], Lemma 4.2. For any s ∈ DB , we let I (s) := {s ∩ ϒ∞}, where
we ϒ∞ = {Yi, i ∈ N}.

Let us assume that we have two maximizers s1 �= s2. Since ϒ∞ is dense in
[0,1] × [−√

2B,
√

2B], we have that I (s1) �= I (s2). In particular, there exists i0
such that Yi0 ∈ I (s1) and Yi0 /∈ I (s2), and since s1 and s2 are two maximizers of
(4.14) it means

max
s : Yi0∈I (s)

tβ(s) = max
s : Yi0 /∈I (s)

tβ(s).

This implies that

(4.15) βMi0 = max
s : Yi0 /∈I (s)

tβ(s) − max
s : Yi0∈I (s)

{
β

∑
j,j �=i0

Mj 1{Yj∈s} − Ent(s)
}
.

Conditioning on (Yj )j∈N and (Mj )j∈N,j �=i0 we have that the left-hand side has
a continuous distribution—the distribution of M−α

i0
conditional on (Yj )j∈N and

(Mj )j∈N,j �=i0 is uniform on the interval [M−α
i0−1,M

−α
i0+1] –, while the right-hand

side is a constant—it is independent of Mi0 . Therefore, the event (4.15) has zero
probability, and by sigma subadditivity we get that P(I (s1) �= I (s2)) = 0, which
contradicts the existence of two distinct maximizers. �

5. Proof of Proposition 2.6 and Theorem 2.7. Let us state right away a
lemma that will prove to be useful in the rest of the paper.
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LEMMA 5.1. For any η > 0, there exists a constant c such that, for any t > 1
and any � ≤ nh, we have

P

(
M

(n,h)
� > tm

(
nh

�

))
≤ (ct)−(1−η)α�.

PROOF. We simply write that by a union bound

P

(
M

(n,h)
� > tm

(
nh

�

))
≤

(
nh

�

)
P

(
ω1 > tm

(
nh

�

))�

≤
(
c
nh

�
P

(
ω1 > tm

(
nh

�

)))�

.

Then, since P(ω1 > x) is regularly varying with exponent −α, Potter’s bound (cf.
[6]) gives that there is a constant cη such that for any t ≥ 1

P

(
ω1 > tm

(
nh

�

))
≤ cηt

−(1−η)α
P

(
ω1 > m

(
nh

�

))
= cηt

−(1−η)α nh

�
,

where we used the definition of m(·) in the last identity. This completes the
proof. �

5.1. Continuum limit of the order statistics. For any q > 0, let �n,qh =
�1, n� × �−qh, qh� and let (M

(n,qh)
r , Y

(n,qh)
r )

|�n,qh|
r=1 be the order statistics in that

box; cf. (2.13). If we rescale �n,qh by n × h, and we let (Ỹ
(n,qh)
r )

|�n,h|
r=1 be

the rescaled permutation, that is, a random permutation of the points of the set
([0,1] × [−q, q]) ∩ (N

n
× Z

h
). Then for any fixed � ∈N,

(5.1)
(
Ỹ

(n,qh)
1 , . . . , Ỹ

(n,qh)
�

) (d)→ (Y1, . . . , Y�), as n,h → ∞,

where (Yi)i∈N is an i.i.d. sequence of uniform random variables on [0,1]×[−q, q].
For the continuum limit for the weight sequence (M

(n,qh)
r )

|�n,qh|
r=1 , we use some

basic facts of the classical extreme value theory (see, e.g., [14]), that is for all
� ∈ N,

(5.2)
(
M̃

(n,qh)
i := M

(n,qh)
i

m(nh)
, i = 1, . . . , �

)
(d)→ (Mi, i = 1, . . . , �),

where (Mi)i∈N is the continuum weight sequence. The sequence (Mi)i≥1 can be

defined as Mi := (2q)1/α(E1 + · · · + Ei )
− 1

α , where (Ei )i∈N is an i.i.d. sequence of
exponential random variables of mean 1, independent of the Yi ’s.

In such a way (Mi,Yi)i∈N is the order statistics associated with a realization of
a Poisson point process on [0,∞) × [0,1] × [−q, q] of intensity μ(dw,dt,dx) =
α
2 w−α−11{w>0} dw dt dx.

PROOF OF (2.21). This is a simple consequence of the monotonicity of � �→
T (�)

ν,q and of q �→ Tν,q (together with the fact that Tν is well defined). �
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5.2. Proof of Proposition 2.6. Let us first focus on T
βn,h,(�)

n,h . As in (4.4) in the
continuous setting, we introduce, for any interval [c, d),

(5.3) T
βn,h,(�)

n,h

([c, d)
) := max

�⊂�n,h,Ent(�)∈[c,d)

{
βn,h�

(�)
n,h(�) − Ent(�)

}
.

Then we realize that for any d > 0,

T
βn,h,(�)

n,h = T
βn,h,(�)

n,h

([0, d)
) ∨ sup

k≥1
T

βn,h,(�)

n,h

([
2k−1d,2kd

))
.

Using that

T
βn,h,(�)

n,h

([2k−1d,2kd)
) ≤ βn,h sup

�:Ent(�)≤2kd

�
(�)
n,h(�) − 2k−1d, for k ≥ 1,

T
βn,h,(�)

n,h

([0, d)
) ≤ βn,h sup

�:Ent(�)≤d

�
(�)
n,h(�),

with the choice d = bβ̂ and β̂ := (βn,hm(nh))4/3(n/h2)1/3, a union bound gives
that

P
(
T

βn,h,(�)

n,h ≥ bβ̂
) ≤ ∑

k≥0

P

(
βn,h sup

�:Ent(�)≤2kbβ̂

�
(�)
n,h(�) ≥ 2k−1bβ̂

)
≤ ∑

k≥0

P

(
sup

�:Ent(�)≤2kbβ̂

�
(�)
n,h(�) ≥ 2k−1bm(nh)

(
β̂n/h2)1/4

)
,(5.4)

where we use that β̂ satisfies the equation β̂ = βn,hm(nh)(β̂n/h2)1/4.
We then need the following lemma, analogous to Lemma 4.1.

LEMMA 5.2. For any a < α, there exists a constant c such that for any B ≥ 1,
n,h ≥ 1 and any t > 1,

P

(
sup

�:Ent(�)≤B

�
(�)
n,h(�) ≥ t × m(nh)

(
Bn/h2)1/4

)
≤ ct−a.

Applying this lemma in (5.4) (with B = 2kbβ̂ , t = 23k/4−1b3/4), we get that for
any k ≥ 0,

P

(
sup

�:Ent(�)≤2kbβ̂

�
(�)
n,h(�) ≥ 2k−1bm(nh)

(
β̂n/h2)1/4

)
≤ c

(
2kb

)−3a/4
,

so that summing over k in (5.4), we get Proposition 2.6.

PROOF OF LEMMA 5.2. We mimic here the proof of Lemma 4.1, but we need
to keep the dependence on the parameters n, h, B . For i ≥ 0, we denote ϒi :=
{Y (n,h)

1 , . . . , Y
(n,h)
i } with the Y

(n,h)
j introduced in Section 2.4 (ϒ0 = ∅), and for
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any � we let �i := � ∩ ϒi be the restriction of � to the i largest weights. As in
(4.8), we can write

(5.5)
1

m(nh)(Bn/h2)1/4 × sup
�:Ent(�)≤B

�
(�)
n,h(�) ≤

log2 �∑
j=0

M̃2j L̃2j+1,

where M̃i = M
(n,h)
i /m(nh) and L̃i = L

(B)
i (n,h)/(Bn/h2)1/4 are the rescaled

weights and E-LPP (we drop the dependence on n, h, B for notational conve-
nience).

As in the proof of Lemma 4.1, we fix some δ > 0 such that 1/α −1/2 > 2δ, and
as for (4.9), the probability in Lemma 5.2 is bounded by

(5.6)
log2 �∑
j=0

[
P

(
L̃2j+1 > C′ log t

(
2j+1)1/2+δ) + P

(
M̃2j > C′′ t

log t

(
2j )−1/α+δ

)]
.

For the first probability in the sum, we obtain from Theorem 2.1(ii) that pro-
vided that C′(log t)2jδ ≥ 2C

1/2
0 ,

(5.7) P
(
L̃2j+1 > C′ log t

(
2j+1)1/2+δ)) ≤

(
1

2

)C′(log t)2jδ

≤ t−(log 2)C′2jδ

.

Then the first sum in (5.6) is bounded by t−a provided that C′ had been fixed large
enough.

For the second probability in (5.6), we use Lemma 5.1 above to get that for any
a < α,

P

(
M̃2j > C′′ t

log t

(
2j )−1/α+δ

)
≤ P

(
M

(n,h)

2j > C′′′ t

log t

(
2j )δ/2

m
(
nh2−j ))

≤ c(log t)at−a(
2j )−aδ

.(5.8)

For the first inequality, we used Potter’s bound to get that m(nh2−j ) ≤
cm(nh)(2j )−1/α+δ/2. We conclude that the second sum in (5.6) is bounded by
a constant times (log t)at−a .

All together, and possibly decreasing the value a a (by an arbitrarily small
anount), this yields Lemma 5.2. �

Let us now turn to the case of T
βn,h,(>�)

n,h . We first need an analogue of
Lemma 5.2.

LEMMA 5.3. There exists a constant c such that for any B ≥ 1, n,h ∈ N and
0 ≤ � ≤ nh, for any t > 1,

P

(
sup

�:Ent(�)≤B

�
(>�)
n,h (�) ≥ t × m(nh/�)�1/2(

Bn/h2)1/4
)

≤ ct−α�/3 + e−c
√

t .
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PROOF. Analogously to (5.5), we get that

1

m(nh/�)�1/2(Bn/h2)1/4 × sup
�:Ent(�)≤B

�
(>�)
n,h (�)

≤
log2(nh/�)∑

j=0

M
(n,h)

2j �

m(nh/�)

L
(n,h)

2j+1�

�1/2(Bn/h2)1/4 .(5.9)

Then we get similar to (5.7)–(5.8) that for any δ > 0: (a) thanks to Theorem 2.1(ii),
we have

(5.10) P

(
L

(n,h)

2j+1�

�1/2(Bn/h2)1/4 ≥ C′√t
(
2j+1)1/2+δ

)
≤

(
1

2

)C′√t2jδ

≤ e−c
√

t2δj ;
(b) thanks to Lemma 5.1, we have

(5.11) P

(
M

(n,h)

2j �

m(nh/�)
≥ C′′√t

(
2j )−1/α+δ

)
≤ ct−α�/3(

2j )−αδ�/2
.

Lemma 5.3 follows from a bound analogous to (5.6). �

Then, setting β̂� = (βnhm(nh/�))4/3(�2n/h2))
1
3 so that we have β̂� =

βn,hm(nh/�)�1/2(β̂�n/h2)1/4, we obtain similar to (5.4) that

P
(
T

βn,h,(>�)

n,h ≥ b × β̂�

)
≤ ∑

k≥0

P

(
βn,h sup

�:Ent(�)≤2kbβ̂�

�
(>�)
n,h (�) ≥ 2k−1bβ̂�

)
≤ ∑

k≥0

P

(
sup

�:Ent(�)≤2kbβ̂�

�
(>�)
n,h (�) ≥ 2k−1bm(nh/�)

(
�2β̂�n/h2)1/4

)
≤ ∑

k≥0

(
c
(
2kb

)−α�/4 + e−c23k/8b3/8) ≤ c′b−α�/4 + e−c′b1/4
.

This concludes the proof of Proposition 2.6.

5.3. Proof of Theorem 2.7. For any q > 0, we consider the Poisson point pro-
cess restricted to [0,1] × [−q, q], and we label its elements according to its or-
der statistics (Mi,Yi)i∈N. For any � ⊂ [0,1] × [−q, q], we define π(�)(�) =∑�

i=1 Mi1{Yi∈�} and π(>�)(�) := π(�) − π(�)(�). In analogy with the discrete
setting (cf. (2.16)), we define

T (>�)
ν,q = sup

s∈Mq

{
νπ(>�)(s) − Ent(s)

}
,

T (�)
ν,q = sup

s∈Mq

{
νπ(�)(s) − Ent(s)

}
.

(5.12)
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We first show the convergence (2.20) of the large-weights variational problem,
before we prove (2.19).

Convergence of the large weights. Note that the maximum of T
βn,h,(�)

n,qh and T (�)
ν,q

are achieved on ϒ� = ϒ�(q) and ϒ� = ϒ�(q), respectively, that is,

T
βn,h,(�)

n,qh = max
�⊂ϒ�

{
βn,h�

(�)
n,h(�) − Ent(�)

}
,

T (�)
ν,q = sup

�⊂ϒ�

{
νπ(�)(�) − Ent(�)

}
,

(5.13)

where ϒ�(q) (resp., ϒ�(q)) is the set of the locations of the � largest weights inside
�n,qh (resp., �1,q ). Since we have only a finite number of points, the convergence
(2.20) is a consequence of (5.1) and (5.2) and the Skorokhod representation theo-
rem.

Restriction to the large weights. To show the convergence (2.19), it is there-
fore enough to control the contribution of the large weights. Let δ > 0 such that
1
α

− 1
2 > δ. Using Potter’s bound (cf. [6]), we have that

(
βn,hm(nh/�)

) 4
3

(
�2n

h2

) 1
3 ≤ c

h2

n
�− 4

3 ( 1
α
− 1

2 −δ).

Plugging it into (2.18) and taking b = b�,ε := ε�
4
3 ( 1

α
− 1

2 +δ), we obtain that

(5.14) P

(
n

h2 T
βn,h,(>�)

n,qh ≥ ε

)
≤ c′b−α�/4

�,ε + e
−c′b1/4

�,ε
�→∞−→ 0,

uniformly on n, h. Combined with (2.20) and the first part of (2.21), this gives the
convergence (2.19).
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