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SUPERMARKET MODEL ON GRAPHS
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We consider a variation of the supermarket model in which the servers
can communicate with their neighbors and where the neighborhood relation-
ships are described in terms of a suitable graph. Tasks with unit-exponential
service time distributions arrive at each vertex as independent Poisson pro-
cesses with rate λ, and each task is irrevocably assigned to the shortest queue
among the one it first appears and its d −1 randomly selected neighbors. This
model has been extensively studied when the underlying graph is a clique in
which case it reduces to the well-known power-of-d scheme. In particular,
results of Mitzenmacher (1996) and Vvedenskaya et al. (1996) show that as
the size of the clique gets large, the occupancy process associated with the
queue-lengths at the various servers converges to a deterministic limit de-
scribed by an infinite system of ordinary differential equations (ODE). In this
work, we consider settings where the underlying graph need not be a clique
and is allowed to be suitably sparse. We show that if the minimum degree
approaches infinity (however slowly) as the number of servers N approaches
infinity, and the ratio between the maximum degree and the minimum de-
gree in each connected component approaches 1 uniformly, the occupancy
process converges to the same system of ODE as the classical supermarket
model. In particular, the asymptotic behavior of the occupancy process is in-
sensitive to the precise network topology. We also study the case where the
graph sequence is random, with the N th graph given as an Erdős–Rényi ran-
dom graph on N vertices with average degree c(N). Annealed convergence of
the occupancy process to the same deterministic limit is established under the
condition c(N) → ∞, and under a stronger condition c(N)/ lnN → ∞, con-
vergence (in probability) is shown for almost every realization of the random
graph.

1. Introduction. Background and motivation. In this paper, we analyze a vari-
ation of the supermarket model in which the servers can communicate with their
neighbors and where the neighborhood relationships are described in terms of a
suitable graph. Specifically, consider a graph GN on N vertices, where the vertices
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represent single-server queues. Tasks with unit-exponential service time distribu-
tions arrive at each server as independent Poisson processes of rate λ, and each
task is irrevocably assigned to the shortest queue among the one it first appears
and its d − 1 randomly selected neighbors.

The above model has been extensively investigated in the case where GN is a
clique. In that case, each task is assigned to the shortest queue among d ≥ 2 queues
selected randomly from the entire system, which is commonly referred to as the
“power-of-d” or JSQ(d) scheme. Since the servers are exchangeable when the un-
derlying graph is a clique, the system is quite tractable via classical mean-field
techniques. Results in Mitzenmacher [18, 20] and Vvedenskaya et al. [29] show
that for any fixed value of d , as the size of the clique gets large, the occupancy
process associated with the queue-lengths at the various servers converges to a
deterministic limit described by an infinite system of ordinary differential equa-
tions (ODE). Moreover, even sampling as few as d = 2 servers yields significant
performance enhancements over purely random assignment (d = 1) as N → ∞.
Specifically, when λ < 1, the probability that there are i or more tasks at a given

queue in steady state is proportional to λ
di−1
d−1 as N → ∞, and thus exhibits super-

exponential decay in λ as opposed to exponential decay for the random assignment
policy.

However, in many service systems the “d choices” might be geographically
constrained [10, 11], and when a task arrives at any specific server, it becomes dif-
ficult, if not impossible, to fetch instantaneous state information from an arbitrarily
selected d − 1 servers. This might give rise to a constrained network architecture
that can be captured in terms of a graph. Moreover, executing a task commonly
involves the use of some data, and storing such data for all possible tasks on all
servers will typically require an excessive amount of storage capacity [30, 32]. The
above issues motivate consideration of sparser graph topologies where tasks that
arrive at a specific server i can only be forwarded to a subset of the servers Ni that
possess the data required to process the tasks. For the tasks that arrive at server i,
the d − 1 random choices must come from Ni . The subset Ni containing the peers
of server i can be thought of as neighbors in some graph GN . Although the above
scenario corresponds to a setting with directed graphs and in our paper we consider
the case of undirected graphs, our results extend in a straightforward manner to
the setting of directed graphs; see Remarks 4 and 7 for detailed discussions. While
considering load balancing schemes with sparse topologies is desirable from ap-
plications perspectives, the corresponding mathematical formulation, that results
in systems that in general will not be exchangeable or have simple Markovian state
descriptors, puts us outside the range of classical mean-field techniques, leading to
a fairly uncharted territory from methodological standpoint, as further discussed
below.

Related work. The study of the JSQ(d) scheme in the context of large-scale
queueing networks was initiated by Mitzenmacher [18, 20] and Vvedenskaya et
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al. [29]. Since then, this scheme along with its many variations have been studied
extensively in [1, 4–6, 9, 12, 16, 17, 19, 22, 33] and many more. In the context of
load balancing problems on graphs, [11, 27] examines the performance on certain
fixed-degree graphs and in particular ring topologies. Their results demonstrate
that the flexibility to forward tasks to a few neighbors, or even just one, with possi-
bly shorter queues significantly improves the performance in terms of the waiting
time and tail distribution of the queue length. This is similar to the power-of-two
effect in the setting of cliques, but the results in [11, 27] also establish that the
performance is sensitive to the underlying graph topology, and that selecting from
a fixed set of d − 1 neighbors typically does not match the performance of resam-
pling d − 1 alternate servers for each incoming task from the entire population.
Recently, Mukherjee et al. [21] study the join-the-shortest queue (JSQ) policy on
graphs, where each task joins the shortest queue among the one it first appears and
all its neighbors, and establishes that asymptotically, the performance of the JSQ
policy on a clique can be achieved by much sparser topologies, provided the graph
is suitably random in Erdős–Rényi sense. We will contrast the results of the current
paper with those obtained in [21] in greater detail in Section 2; see Remark 3. Rel-
evant from a high level, queueing system topologies with limited flexibility were
examined using quite different techniques by Tsitsiklis and Xu [25, 26] in a dy-
namic scheduling framework (as opposed to the load balancing context). We refer
to [28] for a recent survey on scalable load balancing algorithms.

If tasks do not get served and never depart but simply accumulate, then our
model as described above amounts to a so-called balls-and-bins problem on a
graph. Viewed from that angle, a close counterpart of our problem is studied in
Kenthapadi and Panigrahy [13], where in our terminology, each arriving task is
routed to the shortest of d ≥ 2 randomly selected neighboring queues. In this
setup, they show that if each vertex in the underlying graph has degree �(Nε),
where ε is not too small, the maximum number of balls in a bin scales as
log(log(N))/ log(d) + O(1). This scaling is the same as in the case when the un-
derlying graph is a clique [2]. In a more recent paper by Peres, Talwar and Wei-
der [23] the balls-and-bins problem has been analyzed in the context of a (1 + β)-
choice process, where each ball goes to a random bin with probability 1 − β and
to the lesser loaded of the two bins corresponding to the nodes of a random edge
of the graph with probability β . In particular, for this process they show that the
difference between the maximum number of balls in a bin and the typical number
of balls in the bins is O(log(N)/σ), where σ is the edge expansion property of
the underlying graph. We refer to [31] for a recent survey on the balls-and-bins
literature.

Main contributions. In most of the load balancing literature on systems of
single-server queues mentioned above, the primary tool has been a convenient oc-
cupancy measure representation for the collection of queue-length processes asso-
ciated with the various servers. Specifically, under the assumption of exponential
service time distributions, the number of queues with queue length at least i at
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time t denoted by Qi(t), for i = 1,2, . . . forms a Markov process. This occupancy
process Q(·) = (Q1(·),Q2(·), . . .) is then analyzed using classical mean-field tech-
niques as the number of servers becomes large. The fundamental challenge in the
analysis of load balancing on arbitrary graph topologies is that one cannot reduce
the study to that for the state occupancy process since it is no longer a Markov
process. In general, one needs to keep track of the evolution of the number of tasks
at each vertex along with the information on neighborhood relationships. This is a
significant obstacle in using tools from classical mean-field analysis for such sys-
tems. Consequently, results for load balancing queuing systems on general graphs
have to date remained scarce. To the best of our knowledge, this is the first work to
study rigorously the limits of the JSQ(d) occupancy process for nontrivial graph
topologies (i.e., other than a clique).

In [21], where the tasks are assigned to the shortest queue among all the neigh-
bors, the authors used a stochastic coupling to compare the occupancy process
for an arbitrary graph topology with that for the clique, and establish that under
suitable assumptions on the well-connectedness of the graph topology, the occu-
pancy processes and their diffusion scaled versions have to the same weak limits as
for the clique. Loosely speaking, for the first convergence, the well-connectedness
requires that for any ε > 0, the neighborhood of any collection of εN vertices con-
tains N − o(N) vertices. This ensures that on any finite time interval, the fraction
of tasks not assigned to servers with the “fluid-scaled minimum queue length” is
arbitrarily small. Thus for large N the occupancy process becomes nearly indis-
tinguishable from that in a clique. The coupling in [21] is particularly tailored for
schemes where on any finite time interval, most of the arrivals are assigned to one
of the fluid-scaled shortest queues. For the setting considered in the current work
where a fixed number of servers are probed at each arrival, developing analogous
coupling methods appears to be challenging. To see this, observe that when all
neighbors are probed at arrivals, it is clear that the queue lengths will be better
balanced (in the sense of stochastic majorization) for a clique than any other graph
topology. In contrast, for the JSQ(d) scheme with fixed d , even this basic prop-
erty, namely that the performance of the system will be “optimal” if the topology
is a clique, is not clear. In this paper, we take a very different approach, and ana-
lyze the evolution of the queue-length process at an arbitrary tagged server as the
system size becomes large. The main ingredient is a careful analysis of local oc-
cupancy measures associated with neighborhood of each server and to argue that
under suitable conditions their asymptotic behavior is the same for all servers.

Our first result establishes that under fairly mild conditions on the graph topol-
ogy GN (diverging minimum degree and a degree regularity condition, see Con-
dition 1 and also Remark 1), for suitable initial occupancy measure, for any fixed
d ≥ 2, the global occupancy state process for the JSQ(d) scheme on GN has the
same weak limit as that on a clique, as the number of vertices N becomes large
(see Theorem 2.1). Also, we show that the propagation of chaos property holds for
this system, in the sense that the queue lengths at any finite collection of tagged
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servers are statistically asymptotically independent, and the queue-length process
for each server converges in distribution (in the path space) to the correspond-
ing McKean–Vlasov process (see Theorem 2.2). We note that the class of graphs
for which the above results hold includes arbitrary d(N)-regular graphs, where
d(N) → ∞ as N → ∞. As an immediate consequence of these results, we ob-
tain that the same asymptotic performance of a JSQ(d) scheme on cliques can be
achieved by a much sparser graph in which the number of connections is reduced
by almost a factor N . Such a result provides a significant improvement on network
connectivity requirements and gives important insights for sparse network design.

When the graph sequence {GN }N≥1 is random with GN given as an Erdős–
Rényi random graph (ERRG) with average degree c(N), we establish that for any
c(N) that diverges to infinity with N , the annealed law of the occupancy process
converges weakly to the same limit as in the case of a clique. For convergence
of the quenched law, we require a somewhat more stringent growth condition on
the average degree. Specifically, we show that if c(N)/ log(N) → ∞ as N → ∞,
then for almost every realization of the random graph the quenched law of the state
occupancy process converges to the same limit as for the case of a clique. Thus the
above results show that the asymptotic performance for cliques can be achieved by
much sparser topologies, even when the connections are random.

In the classical setting of weakly interacting particle systems, one considers a
collection of N stochastic processes on a clique, given as the solution of N coupled
stochastic differential equations, where the evolution of any particle at a given
time instant depends on its own state and the empirical measure of all particles
at that moment (see [14, 15, 24] and references therein). The asymptotic behavior
of the associated state occupancy measures have been well studied, including the
law of large numbers, propagation of chaos properties, central limit theorems and
large and moderate deviation principles. However, there is much less work for
systems on general graphs except for some recent results for weakly interacting
diffusions on Erdős–Rényi random graphs. Annealed law of large numbers and
central limit theorems for such systems have been established in [3] and quenched
law of large numbers has been shown in [8]. However, these works do not study
queuing systems of the form considered here.

Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2, we present the main results of this paper along with some remarks and dis-
cussion. Sections 2.1 and 2.2 contain the results for sequence of deterministic and
random graphs, respectively. The proofs of the results in Section 2 are presented
in Section 3. Finally, we conclude with a discussion of future research directions
in Section 4.

Notation. Let [N ] .= {1, . . . ,N} for N ∈ N. For any graph GN = (VN,EN),
where VN is a finite set of vertices and EN ⊂ VN × VN is the set of edges, and
i, j ∈ VN , let ξN

ij = 1 if (i, j) ∈ EN and 0 otherwise. In this work, throughout
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VN = [N], GN is undirected, namely ξN
ij = ξN

ji , and EN will be allowed to be ran-

dom, in which case ξN
ij will be random variables. Let N0

.=N∪{0}. For a set A, de-
note by |A| the cardinality. For a Polish space S, denote by D([0,∞),S) the space
of right continuous functions with left limits from [0,∞) to S, endowed with the
Skorokhod topology. For functions f : [0,∞) → R, let ‖f ‖∗,t

.= sup0≤s≤t |f (s)|.
We will use κ, κ1, κ2, . . . for various nonnegative finite constants. The distribution
of S-valued random variable X will be denoted as L(X). For x ∈ S, denote by δx

the Dirac measure at the point x. When the underlying graph is nonrandom, expec-
tations will be denoted by “E,” and when the graphs are random, the notation “E”
will be used to denote the expectation (which integrates also over the randomness
of the graph topology).

2. Model description and main results. Let {GN = (VN,EN)}N≥1 be a se-
quence of simple graphs where recall that VN = [N]. The graph GN corresponds
to a system with N servers, where each vertex in the graph represents a server and
edges in the graph define the neighborhood relationships. Tasks arrive at the var-
ious servers as independent Poisson processes of rate λ. Each server has its own
queue with an infinite buffer. Fix d ∈ N, d ≥ 2. When a task appears at a server
i, it is immediately assigned to the server with the shortest queue among server i

and d − 1 servers selected uniformly at random from its neighborhood in GN . If
there are multiple such servers, one of them is chosen uniformly at random. Ar-
rivals to any server having less than d − 1 neighbors in GN can be assigned in an
arbitrary fashion among that server and its neighbors, for example, to itself (i.e.,
without probing the queue length at any other server). The tasks have independent
unit-mean exponentially distributed service times. The service order at each of the
queues is taken to be oblivious to the actual service time requirements.

Let XN
i (t) be the number of tasks at the ith server at time instant t , starting from

some a.s. finite XN
i (0), and qN

j (t) be the fraction of servers with queue length at
least j in the N th system at time t , i ∈ [N], j = 1,2, . . . , namely

(2.1) qN
j (t)

.= 1

N

N∑
i=1

∞∑
k=j

1{XN
i (t)=k}, t ≥ 0, j ∈N0.

Let qN(t)
.= (qN

i (t))i∈N0 . Then qN .= {qN(t)}0≤t<∞ is a process with sam-
ple paths in D([0,∞), S) where S = {q ∈ [0,1]N : q0 = 1, qi ≥ qi+1 ∀i ∈
N0, and

∑
i qi < ∞} is equipped with the 
1 topology.

We will now introduce a convenient representation for the evolution of the queue
length processes in the N th system. We begin by introducing some notation. For
x = (x1, . . . , xd) ∈ N

d
0 , let b(x) represent the probability that given d servers cho-

sen with queue lengths x, the job is sent to the first server in the selection. Recalling
that the job is sent to the shortest queue with ties resolved by selecting at random,
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the precise definition is as follows:

(2.2) b(x)
.=

d∑
k=1

1

k
1{x1=mini∈[d]{xi},| argmin{xi}|=k}.

Note that (i) b(x) is symmetric in (x2, . . . , xd), (ii) b(x) ∈ [0,1] and (iii) b(x) is
1-Lipschitz in x ∈ N

d
0 . Denote by DN

i the number of neighbors of a vertex i in GN .
Let Ni be i.i.d. Poisson processes of rate 1, corresponding to service completions,
and N̄i be i.i.d. Poisson random measures on [0,∞) ×R+ with intensity λds dy.
Assume that {Ni , N̄i} are mutually independent. Thanks to the Poisson splitting
property, the evolution of XN

i (t) can be written as follows:

XN
i (t) = XN

i (0) −
∫ t

0
1{XN

i (s−)>0}Ni (ds)

(2.3)
+

∫
[0,t]×R+

1{0≤y≤CN
i (s−)}N̄i (ds dy),

where

CN
i (t) = 1{DN

i <d−1}b̄
N
i

((
XN

k (t)
)
k∈[N],

(
ξN
kl

)
k,l∈[N]

)
+ 1{DN

i ≥d−1}
∑

(j2,...,jd )∈SN
i

αN(i; j2, j3, . . . , jd)

× b
(
XN

i (t),XN
j2

(t), . . . ,XN
jd

(t)
)

+ (d − 1)
∑

(j2,...,jd )∈SN
i

1{DN
j2

≥d−1}α
N(j2; i, j3, . . . , jd)

× b
(
XN

i (t),XN
j2

(t), . . . ,XN
jd

(t)
)

+ ∑
j2∈[N],j2 �=i

1{DN
j2

<d−1}ξ
N
ij2

b̄N
ij2

((
XN

k (t)
)
k∈[N],

(
ξN
kl

)
k,l∈[N]

)
,

αN(i; j2, j3, . . . , jd)
.= ξN

ij2
ξN
ij3

· · · ξN
ijd

DN
i (DN

i − 1) · · · (DN
i − d + 2)

SN
i

.= {
(j2, . . . , jd) ∈ [N]d−1 : (i, j2, . . . , jd) are distinct

}
.

(2.4)

Here, b̄N
i and b̄N

ij are measurable functions with

b̄N
i

((
XN

k (t)
)
k∈[N],

(
ξN
kl

)
k,l∈[N]

)
,

b̄N
ij

((
XN

k (t)
)
k∈[N],

(
ξN
kl

)
k,l∈[N]

) ∈ [
0,DN

i + 1
]
,

(2.5)

which define the rules of assigning tasks when DN
i < d − 1 or DN

j < d − 1, re-
spectively. Precise form of these functions will not be important in our analysis.
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The second term in the expression for CN
i (t) gives the probability that a job ar-

riving at server i (with DN
i ≥ d − 1) is in fact assigned to server i itself, which

will happen if server i is one of the queues with minimal queue length among the
d −1 randomly selected neighbors and itself, and it is the winner of the tie between
queues with minimal queue-lengths in the selection. The third term corresponds to
the probability that a job arriving at some other server (say j2, with DN

j2
≥ d − 1)

is assigned to server i, which will happen if i is a neighbor of j2, server i is among
the random selection of d − 1 neighbors of j2, it is also among the queues with
minimal queue-length in the selection, and it wins the tie-breaker among queues
with minimal queue-length in the selection. We note that although CN

i (t) takes a
complicated form, it essentially depends on the local empirical queue-length and
degree distributions of the neighbors, which allows the implementation of a mean-
field type argument. This is one of the key advantages of the Poisson random mea-
sure representation in equation (2.3).

2.1. Scaling limits for deterministic graph sequences. In this section, we will
consider arbitrary deterministic graph sequences, and establish a scaling limit
when the graphs satisfy a certain “regularity” condition as formulated in Condi-
tion 1 below. For any graph G, let dmin(G) and dmax(G) denote the minimum and
maximum degree, respectively.

CONDITION 1 (Regularity of degrees). The sequence {GN }N≥1 satisfies the
following:

(i) dmin(GN) → ∞ as N → ∞.

(ii) maxi∈[N] |∑j∈[N],j �=i

ξN
ji

DN
j

− 1| → 0 as N → ∞.

REMARK 1. Condition 1(ii) holds if, for example, dmax(GN)/dmin(GN) → 1
as N → ∞, since

dmin(GN)

dmax(GN)
≤ DN

i

dmax(GN)
≤ ∑

j∈[N],j �=i

ξN
ji

DN
j

≤ DN
i

dmin(GN)
≤ dmax(GN)

dmin(GN)

for each i ∈ [N ]. But Condition 1(ii) also allows GN to have degrees of very dif-
ferent orders in different components of the graph. For example, if {CN

k }k≥1 denote
the connected components of GN , then Condition 1(ii) is satisfied if

sup
k≥1

∣∣∣∣ dmin(CN
k )

dmax(CN
k )

− 1
∣∣∣∣ → 0 as N → ∞.

Our first result establishes under Condition 1, the convergence of the occupancy
state process qN to the same deterministic limit as for the classical JSQ(d) policy
(i.e., the case when GN is a clique), as N → ∞.
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THEOREM 2.1 (Convergence of global occupancy states). Assume that the
sequence of graphs {GN }N≥1 satisfies Condition 1, and {XN

i (0) : i ∈ [N ]} is i.i.d.
with P(XN

i (0) ≥ j) = q∞
j , j = 1,2, . . . , for some q∞ ∈ S. Then on any finite

time interval, the occupancy state process qN(·) converges weakly with respect to
Skorohod J1 topology to the deterministic limit q(·) given by the unique solution
to the set of ODE:

(2.6)
dqi(t)

dt
= λ

[(
qi−1(t)

)d − (
qi(t)

)d] − (
qi(t) − qi+1(t)

)
, i = 1,2, . . . ,

and q(0) = q∞.

REMARK 2. We make the following observations:

(i) Unique solvability of the system of equations (2.6) is a consequence of
Lipschitz continuity of the right side. Specifically, define the function F(·) =
(F1(·),F2(·), . . .) on S as

Fi(q) = λ
(
qd
i−1 − qd

i

) − (qi − qi+1), i = 1,2, . . . ,

with q ∈ S and Fi(q) being the ith component of F(q). It is easily seen that F is
Lipschitz on S (equipped with the 
1 distance). Standard results then imply that
the system of ODE defined by dq(t)/dt = F(q) admits a unique solution.

(ii) The above result shows in particular that the evolution of the asymptotic
global occupancy process as described by (2.6) coincides with that when the un-
derlying graph is a clique, that is, when each arriving task can probe any set of
d servers. Thus under Condition 1, the system exhibits the same asymptotic tran-
sient performance even when the underlying graph is much sparser. As an immedi-
ate corollary we see that (2.6) describes the asymptotic system occupancy process
associated with arbitrary d(N)-regular graphs as long as d(N) → ∞ as N → ∞.

REMARK 3. Now we contrast Condition 1 with the condition introduced in
[21] for the JSQ policy on a graph to behave as that on a clique. We note that
Condition 1 relies only on local properties of the graph, and in particular may hold
even when, for example, the graph contains several connected components of sizes
that grow to infinity with N . In contrast, the condition in [21] requires that any two
�(N)-sized component must share �(N) cross-edges, which does not hold in
many networks with connectivity governed by spatial attributes, such as geometric
graphs. In this sense, Condition 1 includes much broader class of graphs including
arbitrary d(N)-regular graphs with d(N) → ∞, as mentioned above. On the other
hand, our condition requires the minimum degree in the graph to diverge to infinity,
whereas [21] allows any o(N) vertices to have bounded degree (or degree zero).
As noted in the Introduction, it is easy to see that the queue length process of the
JSQ policy on a clique is better balanced (in stochastic majorization sense) than
on any other graph. This is also reflected by the fact that the sufficient criterion for
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fluid optimality as developed in [21] is monotone with respect to edge addition.
Specifically, let {GN = (VN,EN)}N≥1 be a graph sequence which satisfies the
sufficient criterion in [21] for the limit of the occupancy process coincides with that
for cliques. Then [21] shows that for any graph sequence {ḠN = (VN, ĒN)}N≥1
with EN ⊆ ĒN , the limit of the occupancy process also coincides with that for
cliques. The above property is not immediate for systems considered in the current
work since adding edges arbitrarily may result in violating Condition 1(ii).

REMARK 4. Although in this paper we consider the case of undirected graphs,
that is, we assume ξN

ij = ξN
ji for all i, j ∈ [N ], we note that the results naturally

extends to the directed graph scenario. Indeed, most of the proofs go through
unchanged without the symmetry assumption for ξ and remaining require minor
modification. In this remark, we discuss how Condition 1 and the simplified con-
dition in Remark 1 need to be modified in the case of directed graphs in order for
the conclusion of Theorem 2.1 to hold.

For i ∈ [N ], denote DN
i,in

.= ∑
j∈[N] ξN

ji and DN
i,out

.= ∑
j∈[N] ξN

ij . Also, for a

graph GN , denote d in
min(GN)

.= mini D
N
i,in and d in

max(GN)
.= maxi D

N
i,in, and de-

fine dout
min(GN) and dout

max(GN) similarly. Assume that whenever a task arrives at
a server i ∈ [N ], it is immediately assigned to the server with the shortest queue
among server i and d − 1 servers selected uniformly at random from the set of
vertices {j : ξN

ij = 1} (ties are broken arbitrarily). As before, arrivals to any server

with DN
i,out < d−1 can be assigned arbitrarily. Now, the conclusion of Theorem 2.1

holds when the graph sequence {GN }N≥1 of directed graphs satisfies the following
condition:

Condition 1′ (Criteria for directed graphs). The graph sequence {GN }N≥1 satisfies the
following:

(i) min{d in
min(GN), dout

min(GN)} → ∞ as N → ∞.

(ii) maxi∈[N ] |∑j∈[N ],j �=i

ξN
ji

DN
j,out

− 1| → 0 as N → ∞.

Similar to the condition discussed in Remark 1, a weaker but simpler sufficient
condition implying Condition 1′(ii) is the following:

min{d in
min(GN), dout

min(GN)}
max{d in

max(GN), dout
max(GN)} → 1 as N → ∞.

Our second result gives the joint asymptotic behavior of queue length processes
for any finite collection of servers. In particular, it shows that the propagation of
chaos holds, that is, the queue length processes for any finite collection of servers
are asymptotically statistically independent. Recall the sequence of Poisson pro-
cesses {Ni}, Poisson random measures {N̄i}, and the function b.

THEOREM 2.2 (Evolution of tagged servers). Assume that the sequence of
graphs {GN }N≥1 satisfies Condition 1, and {XN

i (0) : i ∈ [N ]} is i.i.d. with
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P(XN
i (0) ≥ j) = q∞

j , j = 1,2, . . . , for some q∞ ∈ S. Then the following con-
vergence results hold:

(i) On any finite time interval, the queue length process XN
i (·) at server i

converges weakly with respect to Skorohod J1 topology to the following McKean–
Vlasov process:

Xi(t) = Xi(0) −
∫ t

0
1{Xi(s−)>0}Ni (ds)

+
∫
[0,t]×R+

1{0≤y≤Ci(s−)}N̄i (ds dy),

Ci(t) = d

∫
Nd−1

b
(
Xi(t), x2, . . . , xd

)
μt(dx2) · · ·μt(dxd),

(2.7)

where μt = L(Xi(t)) and μ0[j,∞) = q∞
j for t ≥ 0 and j ∈N0.

(ii) For any m-tuple (i1, . . . , im) ∈ N
m with ij �= ik whenever j �= k,

L
(
XN

i1
(·), . . . ,XN

im
(·)) → μ⊗m,

as probability measures on D([0,∞) :Nm
0 ) where μ is the probability law of X1(·)

in part (i).
(iii) For any i ∈ N, the process μi,N denoting the occupancy measure process

for the neighborhood of the ith server, defined as

(2.8) μ
i,N
t

.= 1

DN
i + 1

∑
j∈[N],j �=i

ξN
ij δXN

j (t) + 1

DN
i + 1

δXN
i (t), t ≥ 0,

converges weakly with respect to Skorohod J1 topology to the deterministic limit
μ·, where for t ≥ 0, μt is as in part (i).

REMARK 5. We note the following.

(i) The existence and uniqueness of solutions to (2.7) can be proved by stan-
dard arguments using the boundedness and Lipschitz property of the functions b

and x �→ 1{x>0} on N0.
(ii) Using the propagation of chaos property and the fact that {Xi(t) : i ∈ [N ]}

are i.i.d., it follows that the limit of the global occupancy measure at any time
instant t is in fact the law of Xi(t) for any fixed i. Therefore,

μt [j,∞) = P
(
Xi(t) ≥ j

) = qj (t), j ∈ N0, i ∈ N and t ≥ 0.

2.2. Scaling limits for random graph sequences. Next, we will consider the
scenario when the underlying graph topology is random. We consider asymptotics
of both annealed and quenched laws of the occupancy process and the queue length
process at any tagged server. The following is our main condition in the study of
the annealed law.
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CONDITION 2 (Diverging mean degree). {GN }N≥1 is a sequence of Erdős–
Rényi random graphs (ERRG) where any two vertices share an edge with
probability pN , and NpN → ∞ as N → ∞. {GN }N≥1 is independent of
{XN

j (0),Ni , N̄i , j ∈ [N ],N ∈ N, i ∈ N}.

THEOREM 2.3 (Asymptotics of annealed law). Assume that the sequence
of graphs {GN }N≥1 satisfies Condition 2, and {XN

i (0) : i ∈ [N ]} is i.i.d. with
P(XN

i (0) ≥ j) = q∞
j , j = 0,1,2, . . . , for some q∞ ∈ S. Then the following hold:

(i) For any T ∈ (0,∞),

(2.9) sup
N≥1

max
i∈[N]

√
NpNE

∥∥XN
i − Xi

∥∥2
∗,T < ∞,

where Xi is as defined in (2.7).
(ii) For any m-tuple (i1, . . . , im) ∈N

m with ij �= ik whenever j �= k,

L
(
XN

i1
(·), . . . ,XN

im
(·)) → μ⊗m,

as probability measures on D([0,∞) :Nm
0 ) where μ is as in Theorem 2.2.

(iii) For any i ∈ N, the law of the neighborhood occupancy measure process
defined as in (2.8) converges weakly in Skorohod J1 topology to the deterministic
limit μ·.

REMARK 6. We make the following observations.

1. In contrast to standard convergence results for weakly interacting diffusions
(see, e.g., [24] or [3]), the estimate in (2.9) gives a rate of convergence of

√
NpN

instead of NpN . The reason for this can be seen from the proof which shows that
the bound for the quantity E‖XN

i − Xi‖2∗,T is controlled by E|CN
i (s) − Ci(s)|

rather than E|CN
i (s) − Ci(s)|2, due to the form of indicator function in the evolu-

tion of XN
i (cf. (2.3)).

2. Condition needed for Theorem 2.3 should be contrasted with that for The-
orems 2.1 and 2.2. In particular, for the study of the annealed law asymptotics
we only need information on the average degree rather than on the maximal and
minimal degree of the graph.

3. All the limit theorems established in the current work have the feature that
as long as there is interaction between “enough” particles the asymptotic behavior
is same as that of a fully connected system. In settings where the interaction graph
is very sparse, one expects different types of asymptotic behavior. Consider, for
example, one extreme case when the graph is a collection of disjoint cliques of
size d . In this case, the system decomposes into i.i.d. copies of a JSQ system with
d servers and the limit behavior is very different. For example, a propagation of
chaos result of the form in Theorem 2.2(ii) is clearly false.



1752 A. BUDHIRAJA, D. MUKHERJEE AND R. WU

We will now consider the asymptotic behavior of the quenched law of the occu-
pancy process. For this we formulate a condition that is stronger than the one used
in the study of the annealed asymptotics.

CONDITION 3 (Condition for quenched limit). {GN }N≥1 is a sequence of
Erdős–Rényi random graphs, such that in GN any two vertices share an edge with
probability pN , and NpN/ ln(N) → ∞ as N → ∞. {GN }N≥1 is independent of
{XN

j (0),Ni , N̄i , j ∈ [N ],N ∈N, i ∈ N}.

The following theorem provides, under the above condition, the asymptotic be-
havior of the quenched law.

THEOREM 2.4 (Asymptotics of quenched law). Assume that the sequence
of graphs {GN }N≥1 satisfies Condition 3, and {XN

i (0) : i ∈ [N ]} is i.i.d. with
P(XN

i (0) ≥ j) = q∞
j , j = 0,1,2, . . . , for some q∞ ∈ S for all N . Then the conver-

gence results as stated in Theorems 2.1 and 2.2 hold for almost every realization
of the random graph sequence.

REMARK 7. Consider the directed ERRG where any two distinct vertices i, j

have a directed edge from i to j , independently of all other distinct pairs of ver-
tices, with probability pN . Suppose conditions analogous to Conditions 2 and 3
hold for this directed ERRG. Then, by a minor modification of the proofs, the con-
clusions of Theorems 2.3 and 2.4 continue to hold. In fact, some arguments get
simpler since instead of the identity ξN

ij = ξN
ji we have the independence of ξN

ij

and ξN
ji .

3. Proofs.

3.1. Proofs for deterministic graph sequences. An overview of the proof idea
is as follows. First, note that the queue length process at any two vertices can be
exactly coupled to evolve identically if the occupancy measure of the correspond-
ing neighborhoods are indistinguishable. The main step is to show that if the graph
sequence satisfies Condition 1, then the local occupancy measure associated with
the neighborhood of every server over any finite time interval converges to the
same limit as for the global occupancy measure, which in turn is the same as that
when the whole system uses the ordinary JSQ(d) policy and the graph is a clique.
This ensures that the rate of arrival (exogenous + forwarded from the neighboring
vertices) to a typical server is (asymptotically) the same as that in the clique case.
Thus, the law of the number of tasks at each server, and consequently the global
occupancy measure, converge to the same limit. For technical convenience, we will
provide the proof of Theorem 2.2 first, and then use that to establish Theorem 2.1.
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We will define the limiting processes (Xi(·))i≥1 and the pre-limit processes
(XN

i (·))i≥1 on the same probability space by taking the same sequence of Pois-
son processes {Ni} and Poisson random measures {N̄i} in both cases. Also, take
XN

i (0) = Xi(0) for all i ∈ [N ], N ≥ 1. Using Condition 1, we can find a N0 ∈ N

such that for all N ≥ N0,

dmin(GN) ≥ d, sup
i∈[N]

∣∣∣∣ ∑
j∈[N],j �=i

ξN
ji

Dj

− 1
∣∣∣∣ ≤ 1

2
,

sup
i∈[N]

sup
t∈[0,T ]

∣∣CN
i (t)

∣∣ ≤ 2d.

(3.1)

For the rest of this section, we will assume that N ≥ N0 and, therefore, in particu-
lar, the first and fourth terms in the definition of CN

i (s) are zero and the indicators
in the second and third terms can be replaced by 1. We will frequently suppress N

in the notation DN
i and ξN

ij and write them as Di and ξij , respectively. We begin
with the following lemma. The proof is given at the end of the subsection.

LEMMA 3.1. Let, for i ∈ [N ] and s ∈ [0, T ],

Us
.= E

([ ∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)

− Ci(s)

d

)]2)

and

Vs
.= E

([ ∑
(j2,...,jd )∈SN

i

αN(j2; i, j3, . . . , jd)

(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)

− Ci(s)

d

)]2)
.

Under the conditions of Theorem 2.1, there exists K ∈ (0,∞) such that for every
s ∈ [0, T ] and i ∈ [N ],

Us ≤ K

dmin(GN)
,

Vs ≤ K

dmin(GN)

(
N∑

j=1,j �=i

ξji

Dj

)2

.

(3.2)

PROOF OF THEOREM 2.2. Fix any i ∈ N and T > 0. From (2.3) and (2.7),
using Cauchy–Schwarz and Doob’s inequalities, we have for any fixed t ∈ [0, T ]
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and N ≥ i,

E
∥∥XN

i − Xi

∥∥2
∗,t

≤ κ1E

∫ t

0
|1{XN

i (s)>0} − 1{Xi(s)>0}|2 ds

+ κ1E

(∫ t

0
|1{XN

i (s)>0} − 1{Xi(s)>0}|ds

)2

+ κ1E

∫
[0,t]×R+

|1{0≤y≤CN
i (s)} − 1{0≤y≤Ci(s)}|2 ds dy

(3.3)

+ κ1E

(∫
[0,t]×R+

|1{0≤y≤CN
i (s)} − 1{0≤y≤Ci(s)}|ds dy

)2

≤ κ1

∫ t

0
E

∣∣XN
i (s) − Xi(s)

∣∣2 ds + κ1E

(∫ t

0

∣∣XN
i (s) − Xi(s)

∣∣ds

)2

+ κ1

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣ds + κ1E

(∫ t

0

∣∣CN
i (s) − Ci(s)

∣∣ds

)2

≤ κ2

∫ t

0
E

∣∣XN
i (s) − Xi(s)

∣∣2 ds + κ2

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣ds

for some κ1, κ2 ∈ (0,∞), where the last line uses (3.1) and the fact that
0 ≤ Ci(s)

d
≤ 1.

Now we analyze the difference |CN
i (s) − Ci(s)| in (3.3). Note that by adding

and subtracting terms we have∣∣CN
i (s) − Ci(s)

∣∣
(3.4)

≤ ∣∣CN
i (s) − C

N,1
i (s)

∣∣ + ∣∣CN,1
i (s) − C

N,2
i (s)

∣∣ + ∣∣CN,2
i (s) − Ci(s)

∣∣,
where

C
N,1
i (s)

= ∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)

+ (d − 1)
∑

(j2,...,jd )∈SN
i

αN(j2; i, j3, . . . , jd)b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)

and

C
N,2
i (s) = ∑

(j2,...,jd )∈SN
i

αN(i; j2, j3, . . . , jd)
Ci(s)

d

+ (d − 1)
∑

(j2,...,jd )∈SN
i

αN(j2; i, j3, . . . , jd)
Ci(s)

d
.
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We now analyze each term in (3.4). In particular, we will use the Lipschitz property
of b to handle the term |CN

i − C
N,1
i |, and then use the i.i.d. property of Xi’s to

handle the term |CN,1
i − CN.2

i |.
First, consider |CN

i (s) − C
N,1
i (s)|. From the Lipschitz property of b and the

definition of αN , we have

E
∣∣CN

i (s) − C
N,1
i (s)

∣∣
≤ E

[ ∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣ + ∣∣XN
j2

(s) − Xj2(s)
∣∣ + · · · + ∣∣XN

jd
(s) − Xjd

(s)
∣∣)

+ (d − 1)
∑

(j2,...,jd )∈SN
i

αN(j2; i, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣ + ∣∣XN
j2

(s) − Xj2(s)
∣∣ + · · · + ∣∣XN

jd
(s) − Xjd

(s)
∣∣)]

≤ max
j∈[N]E

∣∣XN
j (s) − Xj(s)

∣∣(d + (d − 1) d
∑

j2∈[N],j2 �=i

ξj2i

Dj2

)
.

From (3.1), we have

(3.5) E
∣∣CN

i (s) − C
N,1
i (s)

∣∣ ≤ κ3 max
j∈[N]E

∣∣XN
j (s) − Xj(s)

∣∣
for some κ3 ∈ (0,∞). Next, we consider |CN,1

i (s) − C
N,2
i (s)|. It follows from

Cauchy–Schwarz inequality that

E
∣∣CN,1

i (s) − C
N,2
i (s)

∣∣2
≤ 2E

[ ∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

×
(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)]2

+ 2(d − 1)2
E

[ ∑
(j2,...,jd )∈SN

i

αN(j2; i, j3, . . . , jd)

×
(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)]2

≤ κ4(Us + Vs),

where Us,Vs are as in Lemma 3.1. From Lemma 3.1 and (3.1), we obtain(
E

∣∣CN,1
i (s) − C

N,2
i (s)

∣∣)2
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≤ E
∣∣CN,1

i (s) − C
N,2
i (s)

∣∣2(3.6)

≤ κ5

dmin(GN)
+ κ5

dmin(GN)

(
N∑

j=1,j �=i

ξji

Dj

)2

≤ κ6

dmin(GN)
.(3.7)

Finally, we consider |CN,2
i (s) − Ci(s)|. Using the fact that 0 ≤ Ci(s)

d
≤ 1, we have

E
∣∣CN,2

i (s) − Ci(s)
∣∣ ≤ E

[
(d − 1)Ci(s)

d

∣∣∣∣ ∑
j∈[N],j �=i

ξji

Dj

− 1
∣∣∣∣
]

≤ (d − 1)

∣∣∣∣ ∑
j∈[N],j �=i

ξji

Dj

− 1
∣∣∣∣.

(3.8)

Since |XN
i (s) − Xi(s)| is nonnegative integer-valued, we have |XN

i (s) − Xi(s)| ≤
|XN

i (s) − Xi(s)|2. Combining this and (3.3)–(3.8) yields

max
i∈[N]E

∥∥XN
i − Xi

∥∥2
∗,t

≤ κ7

∫ t

0
max
i∈[N]E

∥∥XN
i − Xi

∥∥2
∗,s ds

+ κ7

(
1

(dmin(GN))1/2 + max
i∈[N]

∣∣∣∣ ∑
j∈[N],j �=i

ξji

Dj

− 1
∣∣∣∣
)
.

From Gronwall’s lemma and Condition 1, we have

(3.9) lim
N→∞ max

i∈[N]E
∥∥XN

i − Xi

∥∥2
∗,T = 0,

which gives Theorem 2.2(i).
Given part (i), the proof of propagation of chaos property as stated in Theo-

rem 2.2(ii) follows from standard arguments (cf. [24]), and hence is omitted. Also,
having established the asymptotic result in Theorem 2.2(i), the proof of conver-
gence of local occupancy measures as stated in Theorem 2.2(iii) can be established
using similar arguments as in [3], Corollary 3.3. �

We now complete the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. From the asymptotic result in (3.9) it follows (cf.
[24] and [3], Corollary 3.3(b)) that qN(·) converges weakly with respect to Sko-
rohod J1 topology to the deterministic limit q̃(·) given by q̃j (t) = μt [j,∞) =
P(Xi(t) ≥ j) for all j ∈ N0 and t ≥ 0. However, we provide a proof here for com-
pleteness. Fix T < ∞ and consider random measures μN .= 1

N

∑N
i=1 δXN

i (·) and
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μ̄N .= 1
N

∑N
i=1 δXi(·), on S

.= D([0, T ] : N0), where Xi is introduced in (2.7). De-
note by dBL(·, ·) the bounded Lipschitz metric:

dBL(ν1, ν2)
.= sup

‖f ‖BL≤1

∣∣∣∣
∫
S

f dν1 −
∫
S

f dν2

∣∣∣∣,
‖f ‖BL

.= max
{
‖f ‖∞, sup

x �=y

|f (x) − f (y)|
d(x, y)

}
.

From (3.9), we have

EdBL
(
μN, μ̄N ) ≤ E sup

‖f ‖BL≤1

1

N

N∑
i=1

∣∣f (
XN

i

) − f (Xi)
∣∣

≤ 1

N

N∑
i=1

E
∥∥XN

i − Xi

∥∥∗,T → 0

as N → ∞, which implies dBL(μN, μ̄N) → 0 in probability. Also note that
μ̄N → μ in probability by independence of {Xi}. Therefore μN → μ in proba-
bility as N → ∞. One can easily check that supN≥1 E sup0≤t≤T ‖qN(t)‖2


1
< ∞,

from which we have qN → q̃ in probability as N → ∞.
Next, in order to prove the theorem it suffices to show that q̃ satisfies the system

of ODE in (2.6). Define fj (x) = 1{x≥j}, j = 1,2, . . . . Then equation (2.7) yields

Efj

(
Xi(t)

) = Efj

(
Xi(0)

) +
∫ t

0
E1{Xi(s)>0}

(
fj

(
Xi(s) − 1

) − fj

(
Xi(s)

))
ds

+ λd

∫ t

0

∫
Nd−1

E
[
b
(
Xi(s), x2, . . . , xd

)(
fj

(
Xi(s) + 1

)
− fj

(
Xi(s)

))]
μs(dx2) · · ·μs(dxd) ds

= Efj

(
Xi(0)

) −
∫ t

0
Efj

(
Xi(s)

) − fj+1
(
Xi(s)

)
ds

+ λd

∫ t

0

∫
Nd−1

E
[
b(j − 1, x2, . . . , xd)

(
fj−1

(
Xi(s)

)
− fj

(
Xi(s)

))]
μs(dx2) · · ·μs(dxd) ds.

Since E[fj (Xi(t))] = q̃j (t) for j = 1,2, . . . , we obtain

q̃j (t) = q̃j (0) −
∫ t

0

(
q̃j (s) − q̃j+1(s)

)
ds + λd

∫ t

0

(
q̃j−1(s) − q̃j (s)

)

×
∫
Nd−1

b(j − 1, x2, . . . , xd)μs(dx2) · · ·μs(dxd) ds.

(3.10)
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Using (2.2) and the fact that q̃j (t) = μt [j,∞) = P(Xi(t) ≥ j), j = 1,2, . . ., we
have

d
(
q̃j−1(s) − q̃j (s)

) ∫
Nd−1

b(j − 1, x2, . . . , xd)μs(dx2) · · ·μs(dxd)

= d
(
q̃j−1(s) − q̃j (s)

) d∑
k=1

1

k

(
d − 1

k − 1

)(
q̃j−1(s) − q̃j (s)

)k−1(
q̃j (s)

)d−k

=
d∑

k=0

(
d

k

)(
q̃j−1(s) − q̃j (s)

)k(
q̃j (s)

)d−k − (
q̃j (s)

)d

= (
q̃j−1(s)

)d − (
q̃j (s)

)d
.

Therefore (3.10) can be written as

q̃j (t) = q̃j (0) −
∫ t

0

(
q̃j (s) − q̃j+1(s)

)
ds + λ

∫ t

0

[(
q̃j−1(s)

)d − (
q̃j (s)

)d]
ds.

This shows that q̃ satisfies the system of ODE in (2.6) and completes the proof of
Theorem 2.1. �

PROOF OF LEMMA 3.1. We first show the first inequality in (3.2). Observe
that

Us = ∑
(j2,...,jd )∈SN

i

∑
(k2,...,kd )∈SN

i

[
αN(i; j2, j3, . . . , jd)αN(i;k2, k3, . . . , kd)

]

×E

[(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)

×
(
b
(
Xi(s),Xk2(s), . . . ,Xkd

(s)
) − Ci(s)

d

)]
.

Now observe that since {Xi(0) : i ∈ [N ]} are i.i.d., we have {Xi(s) : i ∈ [N ]} are
also i.i.d. for any fixed s > 0. Thus,

E

[(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)

×
(
b
(
Xi(s),Xk2(s), . . . ,Xkd

(s)
) − Ci(s)

d

)]
= 0

(3.11)

when (i, j2, k2, . . . , jd, kd) are distinct. Therefore, we have

Us ≤ ∑
αN(i; j2, j3, . . . , jd)αN(i;k2, k3, . . . , kd),(3.12)

where the summation is taken over

ŜN
i

.= {
(j2, . . . , jd) ∈ SN

i , (k2, . . . , kd) ∈ SN
i ,

(j2, k2, . . . , jd, kd) are not distinct
}(3.13)
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and the inequality follows since 0 ≤ b ≤ 1 and 0 ≤ Ci(s)
d

≤ 1. Since the total num-
ber of combinations in (3.13) such that (ξij2ξij3 · · · ξijd

)(ξik2ξik3 · · · ξikd
) = 1 is no

more than

(3.14)

[
(d − 1)!

(
Di

d − 1

)]2

− (2d − 2)!
(

Di

2d − 2

)
≤ κ1D

2d−3
i ,

we can bound (3.12) by

κ1D
2d−3
i

D2
i (Di − 1)2 · · · (Di − d + 2)2

≤ κ2
1

Di

≤ κ2

dmin(GN)
.

This gives the first bound in (3.2).
Next, we show the second bound in (3.2). From (3.11), it follows from the same

argument used for (3.12) that

(3.15) Vs ≤ ∑
αN(j2; i, j3, . . . , jd)αN(k2; i, k3, . . . , kd),

where the summation is taken over (3.13). Since for fixed (j2, k2) ∈ S̄i , where

(3.16) S̄i
.= {

(j, k) ∈ [N ]2 : j �= i, k �= i
}
,

the total number of combinations in (3.13) such that (ξj2iξj2j3 · · · ξj2jd
)(ξk2iξk2k3 · · ·

ξk2kd
) = 1 is no more than[

(d − 2)!
(
Dj2 − 1

d − 2

)][
(d − 2)!

(
Dk2 − 1

d − 2

)]

−
[
(d − 2)!

(
Dj2 − 2

d − 2

)][
(d − 2)!

(
Dk2 − d

d − 2

)]

≤ κ3
(
Dd−3

j2
Dd−2

k2
+ Dd−2

j2
Dd−3

k2

)
,

(3.17)

where the second term in the first line corresponds to choosing distinct j3, . . . , jd

from Dj2 −2 neighbors (excluding i, k2) of j2 and then choosing distinct k3, . . . , kd

from Dk2 − d neighbors (excluding i, j2, . . . , jd ) of k2. Now, we can bound (3.15)
by

∑
(j2,k2)∈S̄i

κ3(D
d−3
j2

Dd−2
k2

+ Dd−2
j2

Dd−3
k2

)ξj2iξk2i

Dj2(Dj2 − 1) · · · (Dj2 − d + 2)Dk2(Dk2 − 1) · · · (Dk2 − d + 2)

≤ κ4
∑

(j2,k2)∈S̄i

(
ξj2iξk2i

D2
j2

Dk2

+ ξj2iξk2i

Dj2D
2
k2

)

≤ κ4
2

dmin(GN)

(
N∑

j=1,j �=i

ξji

Dj

)2

.

This completes the proof. �
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3.2. Proofs for random graph sequences. In this section, we give the proofs of
Theorems 2.3 and 2.4. As in the proof of Theorem 2.2, we will define the limiting
processes (Xi(·))i≥1 and the pre-limit processes (XN

i (·))i≥1 on the same proba-
bility space by taking identical sequence of Poisson processes {Ni} and Poisson
random measures {N̄i} in both cases. The random graph sequence {GN } will also
be given on this common probability space and is taken to be independent of the
Poisson processes and Poisson random measures. Finally, we take XN

i (0) = Xi(0)

for all i ∈ [N ], N ≥ 1. Once again, we will frequently suppress N in the notation
DN

i and write it as Di . We begin with three lemmas that will be used in the proof.
Let, for s ≥ 0,

UA
s

.= E
([

1{DN
i ≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

×
(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)]2)(3.18)

and

V A
s

.= E
([ ∑

(j2,...,jd )∈SN
i

1{DN
j2

≥d−1}α
N(j2; i, j3, . . . , jd)

×
(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)]2)
.

(3.19)

Note that the dependence of UA
s and V A

s on i is suppressed in the notation. The
next lemma provides uniform bounds on UA

s and V A
s .

LEMMA 3.2. Fix T ≥ 0. Under the conditions of Theorem 2.3, there exists
κ ∈ (0,∞) such that for every s ∈ [0, T ] and i ∈ [N ],

UA
s ≤ κ

NpN

and V A
s ≤ κ

NpN

+ κ

(NpN)2 .

The proof of Lemma 3.2 follows along similar lines as the proof of Lemma 3.1;
however, note that the expectations in (3.18) and (3.19) are taken also over the
randomness of the graph topology, and thus we need additional arguments. Proof
of Lemma 3.2 is provided at the end of this subsection.

The next lemma is taken from [3].

LEMMA 3.3 ([3], Lemma 5.2). Let GN be an ERRG with connection proba-
bility pN . Then

E
( ∑

j∈[N],j �=i

ξN
ij

DN
j

1{DN
j >0} − 1

)2
≤ 4

NpN

+ 2e−NpN , i ∈ [N ].
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The following lemma provides useful moment bounds on |XN
i − Xi | and its

proof is given at the end of this subsection.

LEMMA 3.4. Fix T ≥ 0. Under the conditions of Theorem 2.3,

sup
N≥1

max
i∈[N] E

∥∥XN
i − Xi

∥∥4
∗,T < ∞.

We now present the proof of Theorem 2.3.

PROOF OF THEOREM 2.3. Fix any i ∈ N and T > 0. From (2.3) and (2.7),
by adding and subtracting the compensator, using Cauchy–Schwarz and Doob’s
inequalities we have for any fixed t ∈ [0, T ]

E
∥∥XN

i − Xi

∥∥2
∗,t

≤ κ1E
∫ t

0
|1{XN

i (s)>0} − 1{Xi(s)>0}|2 ds

+ κ1E
(∫ t

0
|1{XN

i (s)>0} − 1{Xi(s)>0}|ds

)2

+ κ1E
∫
[0,t]×R+

|1{0≤y≤CN
i (s)} − 1{0≤y≤Ci(s)}|2 ds dy

+ κ1E
(∫

[0,t]×R+
|1{0≤y≤CN

i (s)} − 1{0≤y≤Ci(s)}|ds dy

)2

(3.20)

≤ κ1

∫ t

0
E

∣∣XN
i (s) − Xi(s)

∣∣2 ds + κ1E
(∫ t

0

∣∣XN
i (s) − Xi(s)

∣∣ds

)2

+ κ1

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣ds + κ1E
(∫ t

0

∣∣CN
i (s) − Ci(s)

∣∣ds

)2

≤ κ1(1 + T )

∫ t

0
E

∣∣XN
i (s) − Xi(s)

∣∣2 ds

+ κ1

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣ds

+ κ1T

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣2 ds

for some κ1 ∈ (0,∞). Define C
N,1
i (s) and C

N,2
i (s) by

C
N,1
i (s) = 1{Di<d−1}b̄i

((
XN

k (s)
)
k∈[N], (ξkl)k,l∈[N]

)
+ 1{Di≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)
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× b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)

+ (d − 1)
∑

(j2,...,jd )∈SN
i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)

+ ∑
j2∈[N],j2 �=i

1{Dj2<d−1}ξij2 b̄ij2

((
XN

k (s)
)
k∈[N], (ξkl)k,l∈[N]

)

and

C
N,2
i (s) = 1{Di<d−1}b̄i

((
XN

k (s)
)
k∈[N], (ξkl)k,l∈[N]

)
+ 1{Di≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)
Ci(s)

d

+ (d − 1)
∑

(j2,...,jd )∈SN
i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)
Ci(s)

d

+ ∑
j2∈[N],j2 �=i

1{Dj2<d−1}ξij2 b̄ij2

((
XN

k (s)
)
k∈[N], (ξkl)k,l∈[N]

)
.

By adding and subtracting terms, we have (3.4) and

∣∣CN
i (s) − Ci(s)

∣∣2
≤ 3

∣∣CN
i (s) − C

N,1
i (s)

∣∣2
+ 3

∣∣CN,1
i (s) − C

N,2
i (s)

∣∣2 + 3
∣∣CN,2

i (s) − Ci(s)
∣∣2.

(3.21)

Here, although one has E|CN
i (s) − Ci(s)| ≤ (E|CN

i (s) − Ci(s)|2)1/2, in order to
get the desired rate

√
NpN in (2.9), we have to estimate E|CN

i (s) − Ci(s)| more
carefully through (3.4).

Let us consider |CN
i (s) −C

N,1
i (s)| and |CN

i (s)− C
N,1
i (s)|2 first. We claim that

for m = 1,2, there exists some κ2 ∈ (0,∞) such that

E
∣∣CN

i (s) − C
N,1
i (s)

∣∣m
≤ κ2E

∣∣XN
i (s) − Xi(s)

∣∣m
+ κ2E

[
1{Di≥d−1}

∑
j∈[N],j �=i

ξij

Di

∣∣XN
j (s) − Xj(s)

∣∣m]

+ κ2

(
1

NpN

+ e−NpN

)1/2
.

(3.22)
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To see this, note that from the Lipschitz property of b and the definition of SN
i we

have

E
∣∣CN

i (s) − C
N,1
i (s)

∣∣
≤ E

[
1{Di≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣ + ∣∣XN
j2

(s) − Xj2(s)
∣∣ + · · · + ∣∣XN

jd
(s) − Xjd

(s)
∣∣)

+ (d − 1)
∑

(j2,...,jd )∈SN
i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣ + ∣∣XN
j2

(s) − Xj2(s)
∣∣ + · · · + ∣∣XN

jd
(s) − Xjd

(s)
∣∣)]

= dE
[
1{Di≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣ + ∣∣XN
j2

(s) − Xj2(s)
∣∣ + · · · + ∣∣XN

jd
(s) − Xjd

(s)
∣∣)]

≤ dE
∣∣XN

i (s) − Xi(s)
∣∣ + d(d − 1)

× E
[
1{Di≥d−1}

∑
j∈[N],j �=i

ξij

Di

∣∣XN
j (s) − Xj(s)

∣∣],
where in obtaining the equality we have used the exchangeability property:

L
(
ξij2, ξij3, . . . , ξijd

,Di,X
N
i (s),Xi(s),X

N
j2

(s),Xj2(s),

XN
j3

(s),Xj3(s), . . . ,X
N
jd

(s),Xjd
(s)

)
= L

(
ξj2i , ξj2j3, . . . , ξj2jd

,Dj2,X
N
j2

(s),Xj2(s),

XN
i (s),Xi(s),X

N
j3

(s),Xj3(s), . . . ,X
N
jd

(s),Xjd
(s)

)
(3.23)

for (j2, . . . , jd) ∈ SN
i . Therefore, the claim (3.22) holds for m = 1. Next, we verify

(3.22) when m = 2. Note that

E
∣∣CN

i (s) − C
N,1
i (s)

∣∣2 ≤ 2R
N,1
i (s) + 2(d − 1)2R

N,2
i (s),

where

R
N,1
i (s)

.= E
[
1{Di≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

× [
b
(
XN

i (s),XN
j2

(s), . . . ,XN
jd

(s)
) − b

(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)]]2

,
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R
N,2
i (s)

.= E
[ ∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× [
b
(
XN

i (s),XN
j2

(s), . . . ,XN
jd

(s)
) − b

(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)]]2

.

From the Lipschitz property of b, the definition of SN
i and Cauchy–Schwarz in-

equality we have

R
N,1
i (s)

≤ E
[
1{Di≥d−1}

∑
(j2,...,jd )∈SN

i

αN(i; j2, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣ + ∣∣XN
j2

(s) − Xj2(s)
∣∣ + · · · + ∣∣XN

jd
(s) − Xjd

(s)
∣∣)]2

= E
[
1{Di≥d−1}

(∣∣XN
i (s) − Xi(s)

∣∣
+ (d − 1)

∑
j∈[N],j �=i

ξij

Di

∣∣XN
j (s) − Xj(s)

∣∣)]2

≤ 2E
∣∣XN

i (s) − Xi(s)
∣∣2 + 2(d − 1)2

× E
[
1{Di≥d−1}

∑
j∈[N],j �=i

ξij

Di

∣∣XN
j (s) − Xj(s)

∣∣2]
.

From the Cauchy–Schwarz inequality (
∑

aibi)
2 ≤ (

∑
ai)(

∑
aib

2
i ) for nonnega-

tive ai ’s, we have

R
N,2
i (s) ≤ E

{[ ∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

]

×
[ ∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× [
b
(
XN

i (s),XN
j2

(s), . . . ,XN
jd

(s)
) − b

(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)]2

]}

= E
[ ∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× [
b
(
XN

i (s),XN
j2

(s), . . . ,XN
jd

(s)
) − b

(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)]2

]
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+ E
{[ ∑

j∈[N],j �=i

1{Dj≥d−1}
ξji

Dj

− 1
]

×
[ ∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× [
b
(
XN

i (s),XN
j2

(s), . . . ,XN
jd

(s)
) − b

(
Xi(s),Xj2(s), . . . ,Xjd

(s)
)]2

]}
.= R

N,3
i (s) + R

N,4
i (s),

where the equality follows by adding and subtracting one in the first term. From
the Lipschitz property of b, the definition of SN

i and the exchangeability property
(3.23) we have

R
N,3
i (s) ≤ dE

[ ∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣2 + ∣∣XN
j2

(s) − Xj2(s)
∣∣2 + · · ·

+ ∣∣XN
jd

(s) − Xjd
(s)

∣∣2)]

= dE
[ ∑
(j2,...,jd )∈SN

i

1{Di≥d−1}αN(i; j2, j3, . . . , jd)

× (∣∣XN
i (s) − Xi(s)

∣∣2 + ∣∣XN
j2

(s) − Xj2(s)
∣∣2 + · · ·

+ ∣∣XN
jd

(s) − Xjd
(s)

∣∣2)]

≤ dE
∣∣XN

i (s) − Xi(s)
∣∣2 + d(d − 1)

× E
[
1{Di≥d−1}

∑
j∈[N],j �=i

ξij

Di

∣∣XN
j (s) − Xj(s)

∣∣2]
.

From the fact that ‖b‖∞ ≤ 1, we have

R
N,4
i (s) ≤ E

{∣∣∣∣ ∑
j∈[N],j �=i

1{Dj>0}
ξji

Dj

− 1
∣∣∣∣

×
[
4

∑
(j2,...,jd )∈SN

i

1{Dj2≥d−1}αN(j2; i, j3, . . . , jd)

]}

≤ 4E
{∣∣∣∣ ∑

j∈[N],j �=i

1{Dj>0}
ξji

Dj

− 1
∣∣∣∣ ∑
j∈[N],j �=i

1{Dj>0}
ξji

Dj

}
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≤ κ3

(
1

NpN

+ e−NpN

)1/2
,

where the last inequality follows from Lemma 3.3 and Condition 2. Combining the
above estimates on R

N,k
i (s) for k = 1,2,3,4 gives the claim (3.22) when m = 2.

Now using the exchangeability property:

L
(
ξij ,Di,X

N
j (s),Xj (s)

) = L
(
ξji,Dj ,X

N
i (s),Xi(s)

)
, i �= j,

we have for m = 1,2,

E
[
1{Di≥d−1}

∑
j∈[N],j �=i

ξij

Di

∣∣XN
j (s) − Xj(s)

∣∣m]

= E
[ ∑
j∈[N],j �=i

1{Dj≥d−1}
ξji

Dj

∣∣XN
i (s) − Xi(s)

∣∣m]

≤ E
[( ∑

j∈[N],j �=i

1{Dj>0}
ξji

Dj

− 1
)∣∣XN

i (s) − Xi(s)
∣∣m]

+ E
∣∣XN

i (s) − Xi(s)
∣∣m

≤
[
E

( ∑
j∈[N],j �=i

1{Dj>0}
ξji

Dj

− 1
)2

E
∣∣XN

i (s) − Xi(s)
∣∣2m

]1/2

+ E
∣∣XN

i (s) − Xi(s)
∣∣m

≤ κ4

(
1

NpN

+ e−NpN

)1/2
+ E

∣∣XN
i (s) − Xi(s)

∣∣m,

where the second inequality follows from Cauchy–Schwarz inequality and the last
line follows from Lemmas 3.3 and 3.4. Combining this, (3.22) with the fact that
|XN

i (s) − Xi(s)| ≤ |XN
i (s) − Xi(s)|2 gives

E
∣∣CN

i (s) − C
N,1
i (s)

∣∣ + E
∣∣CN

i (s) − C
N,1
i (s)

∣∣2
≤ κ5E

∣∣XN
i (s) − Xi(s)

∣∣2 + κ5

(
1

NpN

+ e−NpN

)1/2
.

(3.24)

Next, we consider |CN,1
i (s) − C

N,2
i (s)|2. From the inequality (a + b)2 ≤ 2a2 +

2b2, it follows that(
E

∣∣CN,1
i (s) − C

N,2
i (s)

∣∣)2

≤ E
∣∣CN,1

i (s) − C
N,2
i (s)

∣∣2
≤ 2UA

s + 2(d − 1)2V A
s ≤ κ6

NpN

+ κ6

(NpN)2 ,

(3.25)
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where UA
s and V A

s were introduced in (3.18) and (3.19) and the last inequality is

from Lemma 3.2.

Finally, we consider |CN,2
i (s) − Ci(s)|2. Note that C

N,2
i (s) can be rewritten as

C
N,2
i (s) = 1{Di<d−1}b̄i

((
XN

k (t)
)
k∈[N], (ξkl)k,l∈[N]

)
+ 1{Di≥d−1}

Ci(s)

d
+ (d − 1)

× ∑
j∈[N],j �=i

1{Dj≥d−1}
ξji

Dj

Ci(s)

d

+ ∑
j∈[N],j �=i

1{Dj<d−1}ξij b̄ij

((
XN

k (t)
)
k∈[N], (ξkl)k,l∈[N]

)
.

Using the Cauchy–Schwarz inequality and the fact that 0 ≤ Ci(s)
d

≤ 1, we have

E
∣∣CN,2

i (s) − Ci(s)
∣∣2

≤ 5E
[
1{Di<d−1}(Di + 1)

]2 + 5E
[
1{Di<d−1}

Ci(s)

d

]2

+ 5E
[
(d − 1)

∑
j∈[N],j �=i

1{0<Dj<d−1}
ξji

Dj

Ci(s)

d

]2

+ 5E
[
(d − 1)Ci(s)

d

∣∣∣∣ ∑
j∈[N],j �=i

1{Dj>0}
ξji

Dj

− 1
∣∣∣∣
]2

+ 5E
[ ∑
j∈[N],j �=i

1{Dj<d−1}ξij (Di + 1)

]2

≤ 5
(
d2 + 1

)
P(Di < d − 1)

+ 5(d − 1)2E
[ ∑
j∈[N],j �=i

1{0<Dj<d−1}
ξji

Dj

]2

+ 5(d − 1)2E
[ ∑
j∈[N],j �=i

1{Dj>0}
ξji

Dj

− 1
]2

+ 5E
[ ∑
j∈[N],j �=i

1{Dj<d−1}ξij (Di + 1)

]2
.

(3.26)
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Note that on the right-hand side of (3.26), the second term can be bounded by the
last term as follows:

E
[ ∑
j∈[N],j �=i

1{0<Dj<d−1}
ξji

Dj

]2
≤ E

[ ∑
j∈[N],j �=i

1{Dj<d−1}ξji

]2

≤ E
[ ∑
j∈[N],j �=i

1{Dj<d−1}ξij (Di + 1)

]2
.

For the last term in (3.26), we have

E
[ ∑
j∈[N],j �=i

1{Dj<d−1}ξij (Di + 1)

]2

≤ E
{[ ∑

j∈[N],j �=i

1{Dj<d−1}ξij (Di + 1)2
][ ∑

j∈[N],j �=i

ξij

]}

= ∑
j∈[N],j �=i

E
[
1{Dj<d−1}ξij (Di + 1)2Di

]

= ∑
j∈[N],j �=i

E
[
1{Dj−ξij+1<d−1}(Di − ξij + 2)2(Di − ξij + 1)

]
pN

≤ κ7(N − 1)P(Di < d)(NpN + 1)3pN,

where the first inequality follows from Cauchy–Schwarz inequality, the second
equality follows by conditioning on ξij = 1, and the last inequality follows from
independence, Condition 2 and moment estimates of binomial random variables.
Furthermore, note that

P(Di < d) =
d−1∑
k=0

(
N − 1

k

)
pk

N(1 − pN)N−1−k

≤ κ8(1 − pN)N−d[
1 + NpN + · · · + (NpN)d−1]

(3.27)

≤ κ9
[
1 + (NpN)d−1]

e−(N−d)pN .

Combining the above four estimates with Lemma 3.3 gives(
E

∣∣CN,2
i (s) − Ci(s)

∣∣)2

≤ E
∣∣CN,2

i (s) − Ci(s)
∣∣2 ≤ κ0

[
1 + (NpN)d+3]

e−NpN

+ κ0

(
1

NpN

+ e−NpN

)
.

(3.28)

Combining (3.4), (3.20), (3.21), (3.24), (3.25), (3.28) and Condition 2 gives us

max
i∈[N]

√
NpNE

∥∥XN
i − Xi

∥∥2
∗,t ≤ κ

∫ t

0
max
i∈[N]

√
NpNE

∥∥XN
i − Xi

∥∥2
∗,s ds + κ.

Part (i) of the theorem now follows from Gronwall’s lemma.
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The proof of propagation of chaos property as stated in Theorem 2.3(ii) fol-
lows now from standard arguments (cf. [24]), and hence is omitted. Also, having
proved Theorem 2.3(i), the proof of convergence of local occupancy measures as
stated in Theorem 2.3(iii) can be established using similar arguments as in [3],
Corollary 3.3. �

We now complete the proof of Theorem 2.4.

PROOF OF THEOREM 2.4. In order to prove the theorem it suffices, in view of
Theorems 2.1 and 2.2, to show that if {GN } satisfies Condition 3, then it satisfies
Condition 1 a.s.

Using the Chernoff inequality (cf. [7], Theorem 2.4), it follows that for every
x ≥ 0 and N ∈N,

P
(∣∣DN

i − EDN
i

∣∣ ≥ x
) ≤ 2 exp

{
− x2

2EDN
i + 2x/3

}
.

Let k(N)
.= NpN/ ln(N). Note that by Condition 3, k(N) → ∞ as N → ∞. Since

EDN
i = (N − 1)pN taking x = x(N) = ln(N)(k(N))3/4 in the above expression

yields, for some κ1 ∈ (0,∞),

P
(∣∣DN

i − NpN

∣∣ ≥ x(N)
) ≤ P

(∣∣DN
i − EDN

i

∣∣ ≥ x(N) − pN

)
≤ 2 exp

{
− (x(N) − pN)2

2(N − 1)pN + 2(x(N) − pN)/3

}

≤ κ1 exp
{
−κ1

(x(N))2

NpN

}
,

(3.29)

for sufficiently large N . Thus

(3.30) P
( ⋃

i∈[N]

{∣∣DN
i − NpN

∣∣ ≥ x(N)
}) ≤ κ1N exp

{
−κ1

(x(N))2

NpN

}
.

From the choice of x(N), we have (x(N))2/[NpN ln(N)] → ∞, as N → ∞.
Therefore, the right-hand side of (3.30) is summable over N . From the Borel–
Cantelli lemma, we conclude a.s., for all sufficiently large N ,∣∣DN

i − NpN

∣∣ ≤ x(N), i ∈ [N ]
and, therefore, for all such N ,

(3.31) NpN − x(N) ≤ dmin(GN) ≤ dmax(GN) ≤ NpN + x(N).

Finally, observe that

x(N)

NpN

= ln(N)(k(N))3/4

k(N) ln(N)
= 1

(k(N))1/4 → 0 as N → ∞.
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Combining the two displays, dmin(GN) → ∞ and

dmax(GN) − dmin(GN)

dmin(GN)
= 2x(N)

NpN − x(N)
→ 0,

as N → ∞. This together with Remark 1 shows that Condition 1 holds for {GN }
a.s., completing the proof of Theorem 2.4. �

We now complete the proof of Lemma 3.2. We begin with the following lemma
from [3].

LEMMA 3.5 ([3], Lemma 5.1). Let X be a Binomial random variable with
number of trials N and probability of success p. Let q

.= 1 − p. Then for each
m ∈ N,

E

[
1{X>0}

1

(2X)m

]
≤ E

1

(X + 1)m
≤ mm

(N + 1)mpm
.

PROOF OF LEMMA 3.2. As before, we will omit the superscript in ξij ’s and
Di’s for notational convenience. We first show (3.18). From the independence be-
tween {Xi} and {ξij }, it follows that

UA
s = ∑

(j2,...,jd )∈SN
i

∑
(k2,...,kd )∈SN

i

E
[
1{Di≥d−1}αN(i; j2, j3, . . . , jd)

× αN(i;k2, k3, . . . , kd)
]

× E
[(

b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)

×
(
b
(
Xi(s),Xk2(s), . . . ,Xkd

(s)
) − Ci(s)

d

)]
.

Noting that

E
[(

b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)

×
(
b
(
Xi(s),Xk2(s), . . . ,Xkd

(s)
) − Ci(s)

d

)]
= 0

(3.32)

when (i, j2, k2, . . . , jd, kd) are distinct, we have

UA
s = ∑

E
[
1{Di≥d−1}αN(i; j2, j3, . . . , jd)αN(i;k2, k3, . . . , kd)

]
× E

[(
b
(
Xi(s),Xj2(s), . . . ,Xjd

(s)
) − Ci(s)

d

)
(3.33)

×
(
b
(
Xi(s),Xk2(s), . . . ,Xkd

(s)
) − Ci(s)

d

)]

≤ E
[∑

1{Di≥d−1}αN(i; j2, j3, . . . , jd)αN(i;k2, k3, . . . , kd)
]
,
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where the summation is taken over the collection ŜN
i defined in (3.13) and the

inequality follows since 0 ≤ b ≤ 1 and 0 ≤ Ci(s)
d

≤ 1. As noted in (3.14), the total
number of combinations in (3.13) such that (ξij2ξij3 · · · ξijd

)(ξik2ξik3 · · · ξikd
) = 1 is

no more than κ1D
2d−3
i , and thus we can bound (3.33) by

E
[
1{Di≥d−1}

κ1D
2d−3
i

D2
i (Di − 1)2 · · · (Di − d + 2)2

]
≤ κ2E

[
1{Di>0}

1

Di

]
≤ 2κ2

NpN

,

where the last inequality uses Lemma 3.5. This gives the first inequality in
Lemma 3.2.

Next, we show the second inequality in Lemma 3.2. From the independence
between {Xi} and {ξij } and (3.32), it follows from the same argument used for
(3.33) that

V A
s ≤ E

[∑
1{Dj2≥d−1}1{Dk2≥d−1}αN(j2; i, j3, . . . , jd)

× αN(k2; i, k3, . . . , kd)
]
,

(3.34)

where the summation is taken over ŜN
i defined in (3.13). As noted in (3.17), for

fixed (j2, k2) ∈ S̄i with S̄i as in (3.16), the total number of combinations in ŜN
i

such that

(ξj2iξj2j3 · · · ξj2jd
)(ξk2iξk2k3 · · · ξk2kd

) = 1

is no more than κ3(D
d−3
j2

Dd−2
k2

+ Dd−2
j2

Dd−3
k2

) we can bound (3.34) by

E
[ ∑
(j2,k2)∈S̄i

1{Dj2≥d−1}1{Dk2≥d−1}

× κ3(D
d−3
j2

Dd−2
k2

+ Dd−2
j2

Dd−3
k2

)ξj2iξk2i

Dj2(Dj2 − 1) · · · (Dj2 − d + 2)Dk2(Dk2 − 1) · · · (Dk2 − d + 2)

]
(3.35)

≤ κ4
∑

(j2,k2)∈S̄i

E
[
1{Dj2≥d−1}1{Dk2≥d−1}

(
ξj2iξk2i

D2
j2

Dk2

+ ξj2iξk2i

Dj2D
2
k2

)]

= 2κ4
∑

(j,k)∈S̄i

E
[
1{Dj≥d−1}1{Dk≥d−1}

ξjiξki

D2
jDk

]
.

Now for (j, k) ∈ S̄i with j �= k, we have

E
[
1{Dj≥d−1}1{Dk≥d−1}

ξjiξki

D2
jDk

]

= E
[
1{ξjk=1}1{Dj≥d−1}1{Dk≥d−1}

ξjiξki

D2
jDk

]
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+ E
[
1{ξjk=0}1{Dj≥d−1}1{Dk≥d−1}

ξjiξki

D2
jDk

]

≤ E
[

ξjiξki

(Dj − ξjk + 1)2(Dk − ξjk + 1)

]

+ E
[
1{Dj−ξjk>0}1{Dk−ξjk>0}

ξjiξki

(Dj − ξjk)2(Dk − ξjk)

]

= E
[

ξji

(Dj − ξjk + 1)2

]
E

[
ξki

Dk − ξjk + 1

]

+ E
[
1{Dj−ξjk>0}

ξji

(Dj − ξjk)2

]
E

[
1{Dk−ξjk>0}

ξki

Dk − ξjk

]
,

where the last equality follows from independence between (ξji,Dj − ξjk) and
(ξki,Dk − ξjk). Using exchangeability and Lemma 3.5, we have

E
[

ξji

(Dj − ξjk + 1)2

]
= 1

N − 2

∑
l∈[N],l �=j,k

E
[

ξjl

(Dj − ξjk + 1)2

]

= 1

N − 2
E

[
Dj − ξjk

(Dj − ξjk + 1)2

]

≤ 1

N − 2
E

[
1

Dj − ξjk + 1

]
≤ 1

(N − 2)(N − 1)pN

.

Similarly, one can verify that

E
[

ξki

Dk − ξjk + 1

]
≤ 1

N − 2
,

E
[
1{Dj−ξjk>0}

ξji

(Dj − ξjk)2

]
≤ 4

(N − 2)(N − 1)pN

,

E
[
1{Dk−ξjk>0}

ξki

Dk − ξjk

]
≤ 1

N − 2
.

Combining these gives us

E
[
1{Dj≥d−1}1{Dk≥d−1}

ξjiξki

D2
jDk

]
≤ 5

(N − 2)2(N − 1)pN

when j �= k.

Also note that the summation in (3.35) when j = k is
N∑

j=1,j �=i

E
[
1{Dj≥d−1}

ξji

D3
j

]
=

N∑
j=1,j �=i

E
[
1{Di≥d−1}

ξij

D3
i

]

= E
[
1{Di≥d−1}

1

D2
i

]
≤ 4

(NpN)2 ,
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where the first equality uses exchangeability and the inequality uses Lemma 3.5.
Combining these two estimates with (3.35) gives

V A
s ≤ κ5

N2

(N − 2)2(N − 1)pN

+ κ5
1

(NpN)2 ≤ κ6

NpN

+ κ6

(NpN)2

for some κ5, κ6 ∈ (0,∞). This completes the proof of Lemma 3.2. �

Finally, we complete the proof of Lemma 3.4.

PROOF OF LEMMA 3.4. As before, we will omit the superscript in ξij ’s and
Di ’s for notational convenience. Fix i ∈ N. From (2.3) and (2.7), using Cauchy–
Schwarz and Doob’s inequalities, we have for any fixed t ∈ [0, T ],

E
∥∥XN

i − Xi

∥∥4
∗,t ≤ κ1

∫ t

0
E

∣∣XN
i (s) − Xi(s)

∣∣4 ds

+ κ1

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣2 ds(3.36)

+ κ1

∫ t

0
E

∣∣CN
i (s) − Ci(s)

∣∣4 ds.

Recall the definition of CN
i (s) and Ci(s) from (2.4) and (2.7). From the bound

‖b‖∞ ≤ 1 and (2.5), for s ∈ [0, T ] we have |Ci(s)| ≤ d and

E
∣∣CN

i (s)
∣∣4 ≤ E

∣∣∣∣1{Di<d−1}(Di + 1) + 1

+ (d − 1)
∑

j2∈[N],j2 �=i

1{Dj2≥d−1}
ξj2i

Dj2

+ ∑
j2∈[N],j2 �=i

1{Dj2<d−1}ξij2(Di + 1)

∣∣∣∣4(3.37)

≤ κ2 + κ2E
[ ∑
j2∈[N],j2 �=i

1{Dj2≥d−1}
ξj2i

Dj2

]4

+ κ2E
[ ∑
j2∈[N],j2 �=i

1{Dj2<d−1}ξij2(Di + 1)

]4
.

Here, the second term on the right-hand side can be written as

κ2E
[ ∑
j2∈[N],j2 �=i

1{Dj2≥d−1,Di>0}
Di

Dj2

ξj2i

Di

]4

≤ κ2E
{[ ∑

j2∈[N],j2 �=i

1{Dj2≥d−1,Di>0}
(

Di

Dj2

)4 ξj2i

Di

]
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×
[ ∑
j2∈[N],j2 �=i

1{Dj2≥d−1,Di>0}
ξj2i

Di

]3}

≤ κ2E
∑

j2∈[N],j2 �=i

1{Dj2≥d−1}
D3

i ξj2i

D4
j2

= κ2
∑

j2∈[N],j2 �=i

E
[
1{Dj2−ξj2i+1≥d−1}

(Di − ξj2i + 1)3

(Dj2 − ξj2i + 1)4

]
pN

= κ2
∑

j2∈[N],j2 �=i

E
[
1{Dj2−ξj2i+1≥d−1}

1

(Dj2 − ξj2i + 1)4

]
E[Di − ξj2i + 1]3pN

≤ κ3(N − 1)
1

(N − 1)4p4
N

(NpN + 1)3pN ≤ κ4,

where the second line uses Holder’s inequality, the fourth line follows by condi-
tioning on ξj2i = 1, the fifth line follows from independence, and the last line uses
Lemma 3.5 and moment estimates of binomial random variables. Following the
similar argument, we can write the last term in (3.37) as

κ2E
[ ∑
j2∈[N],j2 �=i

1{Dj2<d−1,Di>0}Di(Di + 1)
ξij2

Di

]4

≤ κ2E
{[ ∑

j2∈[N],j2 �=i

1{Dj2<d−1,Di>0}D4
i (Di + 1)4 ξij2

Di

]

×
[ ∑
j2∈[N],j2 �=i

1{Dj2<d−1,Di>0}
ξij2

Di

]3}

≤ κ2E
∑

j2∈[N],j2 �=i

1{Dj2<d−1}D3
i (Di + 1)4ξij2

= κ2
∑

j2∈[N],j2 �=i

E
[
1{Dj2−ξij2+1<d−1}(Di − ξij2 + 1)3(Di − ξij2 + 2)4]

pN

= κ2
∑

j2∈[N],j2 �=i

E[1{Dj2−ξij2+1<d−1}]E[
(Di − ξij2 + 1)3(Di − ξij2 + 2)4]

pN

≤ κ5(N − 1)P(Di < d)(NpN + 1)7pN.

Combining the above three estimates with (3.27) and using Condition 2, we have
E|CN

i (s)|4 ≤ κ6. It then follows from (3.36) that

E
∥∥XN

i − Xi

∥∥4
∗,t ≤ κ7

∫ t

0
E

∥∥XN
i − Xi

∥∥4
∗,s ds + κ7.

The result then follows from Gronwall’s inequality. �
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4. Conclusion. We have considered the JSQ(d) policy in large-scale systems
where the servers communicate with their neighbors and the neighborhood rela-
tionships are described in terms of a suitable graph. We have developed sufficient
criteria for arbitrary graph sequences so that asymptotically the evolution of the
occupancy process on any finite time interval is indistinguishable from that for the
case when the graph is a clique. We have also considered sequence of Erdős–Rényi
random graphs and established sufficient criteria in terms of the growth rates of the
average degree that ensure the annealed and quenched limit of the occupancy pro-
cess on any finite time interval to coincide with that in the clique.

The long time behavior of the occupancy measure process associated with the
above graph sequences is an important and challenging open question. Long time
properties of the JSQ(d) scheme have been well studied in the case of a clique. For
example, in [18, 20], it is shown that πN , the stationary measure of the occupancy
process of the N th system, converges in distribution to δq∗ , where q∗ is the unique
fixed point of the limiting deterministic dynamical system q(·). Roughly speaking,
such a result says that the limits t → ∞ and N → ∞ can be interchanged. Based
on Theorems 2.1–2.4, it is natural to conjecture that a similar interchangeability
also holds for more general graphs considered in this work. However, the setting
here is significantly harder, in particular, the occupancy process is not any more a
Markov process. One may conjecture that with πN replaced by the time asymp-
totic limit of the law of occupancy process, the convergence πN → δq∗ still holds.
However, currently even the existence of such a time asymptotic limit is not clear.
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