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This paper is dedicated to the presentation and the analysis of a numer-
ical scheme for forward–backward SDEs of the McKean–Vlasov type, or
equivalently for solutions to PDEs on the Wasserstein space. Because of the
mean field structure of the equation, earlier methods for classical forward–
backward systems fail. The scheme is based on a variation of the method of
continuation. The principle is to implement recursively local Picard iterations
on small time intervals.

We establish a bound for the rate of convergence under the assumption
that the decoupling field of the forward–backward SDE (or equivalently the
solution of the PDE) satisfies mild regularity conditions. We also provide
numerical illustrations.

1. Introduction. In this paper, we investigate a probabilistic numerical
method to approximate the solution of the following nonlocal PDE:
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for (μ,μ′) ∈ P2(R
d) ×P2(R

d), the infimum being taken over the probability dis-
tributions π on R

d ×R
d whose marginals on R

d are respectively μ and μ′.
While the first two lines in (1) form a classical nonlinear parabolic equations,

the last two terms are nonstandard. Not only are they nonlocal, in the sense that
the solution or its derivatives are computed at points υ different from x, but also
they involve derivatives in the argument μ, which lives in a space of probabil-
ity measures. In this regard, the notation ∂μU(t, x,μ)(υ) denotes the so-called
Wasserstein derivative of the function U in the direction of the measure, computed
at point (t, x,μ) and taken at the continuous coordinate υ . We provide below a
short reminder of the construction of this derivative, as introduced by Lions; see
[14] or [18], Chapter 5.

These PDEs arise in the study of large population stochastic control problems,
either of mean field game type (see, for instance, [14, 15, 21, 27] or [19], Chap-
ter 12, and the references therein) or of mean field control type; see, for instance,
[11, 12, 21, 29]. In both cases, U plays the role of a value function or, when the
above equation is replaced by a system of equations of the same form, the gradient
of the value function. Generally speaking, these types of equations are known as
“master equations.” We refer to the aforementioned papers and monographes for
a complete overview of the subject, in which existence and uniqueness of classi-
cal or viscosity solutions have been studied. In particular, in our previous paper
[21], we tackled classical solutions by connecting U with a system of fully cou-
pled forward–backward stochastic differential equations of the McKean–Vlasov
type (MKV FBSDE), for which U plays the role of a decoupling field. We also
refer to [19], Chapter 12, for a similar approach.

In the current paper, we build on this link to design our numerical method.

The connection between U and FBSDEs may be stated as follows; see [13] for
linear equations and [21] for nonlinear equations. Basically, U may be written as
U(t, x,μ) = Y

t,x,μ
t for all (t, x,μ) ∈ [0, T ]×R

d ×P2(R
d), where Y t,x,μ together

with (Xt,x,μ,Zt,x,μ) solves the following standard FBSDE:

Xt,x,μ
s = x +

∫ s

t
b
(
Xt,x,μ

r , Y t,x,μ
r ,

[
Xt,ξ

r , Y t,ξ
r

])
dr

+
∫ s

t
σ
(
Xt,x,μ

r ,
[
Xt,ξ

r

])
dWr,

(2)

Y t,x,μ
s = g

(
X

t,x,μ
T ,

[
X

t,ξ
T

])
+

∫ T

s
f
(
Xt,x,μ

r , Y t,x,μ
r ,Zt,x,μ

r ,
[
Xt,ξ

r , Y t,ξ
r

])
dr

−
∫ T

s
Zt,x,μ

r · dWr,

(3)



1642 J.-F. CHASSAGNEUX, D. CRISAN AND F. DELARUE

which is parametrized by the law of the following MKV FBSDE:
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where (Wt)0≤t≤T is a Brownian motion and ξ has μ as distribution. In the previous
equations and in the sequel, we use the notation [θ ] for the law of a random variable
θ . In particular, in the above, we have that [ξ ] = μ. So, to obtain an approximation
of U(t, x,μ) given by the initial value of (3), our strategy is to approximate the
system (4)–(5) as its solution appears in the coefficients of (2)–(3). In this regard,
our approach is probabilistic.

Actually, our paper is not the first one to address the numerical approximation
of equations of the type (1) by means of a probabilistic approach. In its PhD disser-
tation, Alanko [6] develops a numerical method for mean field games based upon
a Picard iteration: Given the proxy for the equilibrium distribution of the popu-
lation (which is represented by the mean field component in the above FBSDE),
one solves for the value function by approximating the solution of the (standard)
BSDE associated with the control problem; given the solution of the BSDE, we
then get a new proxy for the equilibrium distribution and so on. Up to a Girsanov
transformation, the BSDE associated with the control problem coincides with the
backward equation in the above FBSDEs. In [6], the Girsanov transformation is
indeed used to decouple the forward and backward equations and it is the key-
stone of the paper to address the numerical impact of the change of measure onto
the mean field component. In our setting, this method would more or less consist
in solving for the backward equation given a proxy for the forward equation and
then in iterating, which is what we call the Picard method for the FBSDE system.
Unfortunately, convergence of the Picard iterations is a difficult issue, as the con-
vergence is known in small time only; see the numerical examples in Section 4
below. It is indeed well known that the Picard theorem only applies in small time
for fully coupled problems. In this regard, it must be stressed that our system (4)–
(5) is somehow doubly coupled, once in the variable x and once in the variable μ,
which explains why a change of measure does not permit to decouple it entirely.
As a matter of fact, the convergence of the numerical method is not explicitly ad-
dressed in [6].

In fact, a similar limitation on the length of the time horizon has been pointed
out in other works on the numerical analysis of a mean field game. For instance, in
a slightly different setting from ours, which does not explicitly appeal to a forward–
backward system of the type (4)–(5), Bayraktar, Budhiraja and Cohen [7] provide
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a probabilistic numerical approach for a mean field game with state constraints set
over a queuing system. The scheme is constructed in two steps. The authors first
consider a discrete form of the original mean field game based upon a Markov
chain approximation method à la Kushner–Dupuis of the underlying continuous-
time control problem. The solution to the discrete-time mean field game is then
approximated by means of a Picard scheme: Given a proxy for the law of the
optimal trajectories, the discrete Markov decision problem is solved first; the law
of the solution then serves as a new proxy for the next step in the Picard sequence.
The authors are then successful in proving the convergence of their approximation
but again for a small time interval only; see Section 5.2 in [7] for details.

The goal of our paper is precisely to go further and to propose an algorithm
whose convergence with a rate is known on any interval of a given length. In the
classical case, this question has been addressed by several authors, among which
[22, 23] and [9], but all these methods rely on the Markov structure of the prob-
lem. Here, the Markov property is true but at the price of regarding the entire
R

d ×P2(R
d) as state space: The fact that the second component is infinite dimen-

sional makes intractable the complexity of these approaches. To avoid any similar
problem, we use a pathwise approach for the forward component; it consists in it-
erating successively the Picard method on small intervals, all the Picard iterations
being implemented with a tree approximation of the Brownian motion. This strat-
egy is inspired from the method of continuation, the parameter in the continuation
argument being the time length T itself. The advantage for working on a tree is
twofold: as we said, we completely bypass any Markov argument; also, we get not
only an approximation of the system (4)–(5) but also, for free, an approximation
of the system (2)–(3), which “lives” on a subtree obtained by conditioning on the
initial root. We prove that the method is convergent and provide a rate of conver-
gence for it. Numerical examples are given in Section 4. Of course, the complexity
remains quite high in comparison with the methods developed in the classical non-
McKean–Vlasov case. This should not come as a surprise since, as we already
emphasized, the problem is somehow infinite dimensional.

We refer the interested reader to the following papers for various numerical
methods, based upon finite differences or variational approaches, for mean field
games: [1, 2, 4, 5, 24] and [3, 8, 26]. In [1, 2, 5], the authors provide a discretiza-
tion scheme in the form of a coupled forward–backward system of two differ-
ence equations; convergence is proved. Still, in order to make such a discretization
scheme fully implementable, it is necessary to decouple the two difference equa-
tions therein—which is similar to the issue we face here with the probabilistic
approach: In [4], a numerical method of Newton type is proposed to decouple the
two discrete equations; numerical examples are given but the convergence is not
investigated from the theoretical point of view; Newton’s method is also used in
[24] to handle mean field games with quadratic Hamiltonians; In [30], Picard’s
iterations (of a very similar form to ours) are used to decouple the discretized
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forward–backward system, but again convergence is just addressed through nu-
merical examples. In [3, 8, 26], numerical schemes are investigated for so-called
potential mean field games, namely for mean field games whose equilibria coin-
cide with the minimizers of a control problem of mean field type; schemes are
obtained by discretizing the corresponding optimization problem and convergence
is checked on a series of examples. As none of the aforementioned references
explicitly address the rate of convergence of the implemented version of the un-
derlying scheme, it is pretty difficult to make a sharp comparison with our own
results. However, we are convinced that all these results offer relevant prospects
for further probabilistic investigations: Potential mean field games should deserve
a special care and Newton’s (instead of Picard’s) method should be also consid-
ered within our framework. Conversely, it could be worth testing the continuation
method we describe below to decouple the forward–backward difference equations
that arise from the PDE approach. In a similar spirit, we also draw the following
two works to the reader’s attention. In [16], a decoupling procedure for the mean
field game system (comprising two PDEs: a forward Fokker–Planck equation and
a backward Hamilton–Jacobi–Bellman equation) is proven to be convergent (with-
out any rate) in the potential case again; this procedure is based upon an iteration
rule that consists in taking as proxy for the mean field interaction the mean of
the distributions over all the previous iterations. This is in contrast with Picard’s
method that we use below: In Picard’s method, the sole return of the last iteration
serves as a proxy. We feel that it should be worth studying this updating rule in
our framework. This is all the more true that, in the recent preprint [25] that was
published on arXiv at the same period as our work, the author succeeded to extend
the result obtained in [16] to first order (i.e., without any diffusive term) mean field
games with monotone coefficients (but possibly nonpotential).

The paper is organized as follows. The method for the system (4)–(5) is exposed
in Section 2. The convergence is addressed in Section 3. In Section 4, we explain
how to compute in practice U(t, x,μ) (and thus approximate (2)–(3)) from the
approximation of the sole (4)–(5) and we present some numerical results validat-
ing empirically the convergence results obtained in Section 3. We collect in the
Appendix some key results for the convergence analysis.

2. A new algorithm for coupled forward backward systems. As an-
nounced right above, we will focus on the approximation of the following type
of McKean–Vlasov forward–backward stochastic differential equation:

(6)

dXt = b
(
Xt,Yt , [Xt,Yt ])dt + σ

(
Xt, [Xt ])dWt,

dYt = −f
(
Xt,Yt ,Zt , [Xt,Yt ])dt + Zt · dWt, t ∈ [0, T ],

YT = g
(
XT , [XT ]) and X0 = ξ,

for some time horizon T > 0. Throughout the analysis, the equation is regarded on
a complete filtered probability space (	,F,F,P), equipped with a d-dimensional
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F-Brownian motion (Wt)0≤t≤T . To simplify, we assume that the state process
(Xt)0≤t≤T is of the same dimension. The process (Yt )0≤t≤T is 1-dimensional. As
a result, (Zt )0≤t≤T is d-dimensional.

In (6), the three processes (Xt)0≤t≤T , (Yt )0≤t≤T and (Zt )0≤t≤T are required to
be F-progressively measurable. Both (Xt)0≤t≤T and (Yt )0≤t≤T have continuous
trajectories. Generally speaking, the initial condition X0 is assumed to be square-
integrable, but at some point, we will assume that X0 belongs to Lp(	,F,P;Rd),
for some p > 2. Accordingly, (Xt)0≤t≤T , (Yt )0≤t≤T and (Zt )0≤t≤T must satisfy

∣∣∣∣∣∣(X,Y,Z)
∣∣∣∣∣∣[0,T ] := E

[
sup

0≤t≤T

(|Xt |2 + |Yt |2) +
∫ T

0
|Zt |2 dt

]1/2
< ∞.

The domains and codomains of the coefficients are defined accordingly. The
assumption that σ is independent of the variable y is consistent with the global
solvability results that exist in the literature for equations like (6). For instance, it
covers cases coming from optimization theory for large mean field interacting par-
ticle systems. We refer to our previous paper [21] for a complete overview on the
subject, together with the references [10, 14, 18–20]. In light of the examples tack-
led in [21], the fact that b is independent of z may actually seem more restrictive,
as it excludes cases when the forward–backward system of the McKean–Vlasov
type is used to represent the value function of the underlying optimization prob-
lem. It is indeed a well-known fact that, with or without McKean–Vlasov interac-
tion, the value function of a standard optimization problem may be represented as
the backward component of a standard FBSDE with a drift term depending upon
the z variable. This says that, in order to tackle the aforementioned optimization
problems of the mean field type by means of the numerical method investigated in
this paper, one must apply the algorithm exposed below to the Pontryagin system.
The latter one is indeed of the form (6), provided that Y is allowed to be multi-
dimensional. (Below, we just focus on the one-dimensional case, but the adaptation
is straightforward.)

In fact, our choice for assuming b to be independent of z should not come
as a surprise. The same assumption appears in the papers [22, 23] dedicated to
the numerical analysis of standard FBSDEs, which will serve us as a benchmark
throughout the text; see, however, Remark 4.

Finally, the fact that the coefficients are time-homogeneous is for convenience
only.

As a key ingredient in our analysis, we use the following representation result
given in, for example, Proposition 2.2 in [21],

Y
ξ
t := U

(
t,X

ξ
t ,

[
X

ξ
t

])
,(7)

where U : [0, T ] × R
d × P2(R

d) → R is assumed to be the classical solution, in
the sense of [21], Definition 2.6, to (1). In this regard, the derivative with respect to
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the measure argument is defined according to Lions’ approach to the Wasserstein
derivative. In short, the lifting Û of U to L2(	,F0,P;Rd), which we define by

Û(t, x, ξ) = U
(
t, x, [ξ ]), t ∈ [0, T ], x ∈R

d, ξ ∈ L2(	,F0,P;Rd),
is assumed to be Fréchet differentiable. Of course, this makes sense as long as the
space (	,F0,P) is rich enough so that, for any μ ∈ P2(R

d), there exists a ran-
dom variable ξ ∈ L2(	,F0,P;Rd) such that ξ ∼ μ. So, in the sequel, (	,F0,P)

is assumed to be atomless, which makes it rich enough. A crucial point with Li-
ons’ approach to Wasserstein differential calculus is that the Fréchet derivative of
Û in the third variable, which can be identified with a square-integrable random
variable, may be represented at point (t, x, ξ) as ∂μU(t, x, [ξ ])(ξ) for a mapping
∂μU(t, x,μ)(·) : Rd � v �→ ∂μU(t, x,μ)(v) ∈ R

d . This latter function plays the
role of Wasserstein derivative of U in the measure argument. To define a classical
solution, it is then required that Rd � v �→ ∂μU(t, x,μ)(v) is differentiable, both
∂μU and ∂v∂μU being required to be continuous at any point (t, x,μ, v) such that
v is in the support of μ.

ASSUMPTIONS. Our analysis requires some minimal regularity assumptions
on the coefficients b, σ , f and the function U . As for the coefficients functions,
we assume that there exists a constant 
 ≥ 0 such that:

(H0): The functions b, σ , f and g are 
-Lipschitz continuous in all the vari-
ables, the space P2(R

d) being equipped with the Wasserstein distance W2. More-
over, the function σ is bounded by 
.

We now state the main assumptions on U ; see Remark 1 for comments.
(H1): for any t ∈ [0, T ] and ξ ∈ L2(	,Ft ,P;Rd), the McKean–Vlasov

forward–backward system (6) set on [t, T ] instead of [0, T ] with Xt = ξ as initial
condition at time t has a unique solution (X

t,ξ
s , Y

t,ξ
s ,Z

t,ξ
s )t≤s≤T ; in parallel, U is

the classical solution, in the sense of [21], Definition 2.6, to (1); and U and its
derivatives satisfy∣∣U(t, x,μ) − U

(
t, x,μ′)∣∣ + ∣∣∂xU(t, x,μ) − ∂xU

(
t, x,μ′)∣∣ ≤ 
W2

(
μ,μ′),(8) ∣∣∂xU(t, x,μ)

∣∣ + ∥∥∂μU
(
t, x, [ξ ])(ξ)

∥∥
2 ≤ 
,(9) ∣∣∂2

xxU(t, x,μ)
∣∣ + ∥∥∂υ∂μU

(
t, x, [ξ ])(ξ)

∥∥
2 ≤ 
(10)

and ∣∣∂2
xxU(t, x,μ) − ∂2

xxU
(
t, x′,μ

)∣∣ ≤ 

∣∣x − x′∣∣,(11)

for (t, x, x′, ξ) ∈ [0, T ]×R
d ×R

d ×L2(	,F0,P;Rd) and μ,μ′ ∈ P2(R
d). Also,

we require that

(12)

∣∣U(
t + h,x, [ξ ]) − U

(
t, x, [ξ ])∣∣ + ∣∣∂xU

(
t + h,x, [ξ ]) − ∂xU

(
t, x, [ξ ])∣∣

≤ 
h
1
2
(
1 + |x| + ‖ξ‖2

)
,
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and for all h ∈ [0, T ), (t, x) ∈ [0, T − h] × R
d , ξ ∈ L2(	,F0,P;Rd) and v, v′ ∈

R
d , ∣∣∂υ∂μU

(
t, x, [ξ ])(υ) − ∂υ∂μU

(
t, x, [ξ ])(υ ′)∣∣

≤ 

{
1 + |υ|2α + ∣∣υ ′∣∣2α + ‖ξ‖2α

2
} 1

2
∣∣υ − υ ′∣∣,(13)

for some α > 0.

REMARK 1. In [21], see also [15] for the periodic case and the forthcoming
[19], Chapter 12, for a new point of view on [21], it is shown that, under some
conditions on the coefficients b, f and σ , the PDE (1) has indeed a unique clas-
sical solution which satisfies assumption (H1). Generally speaking, those results
apply under the following two main assumptions: Coefficients are to be smooth
enough, which includes smoothness in the direction of the measure argument, and
either time is small enough or some form of monotonicity holds true in the di-
rection μ. Basically, monotonicity precludes the emergence of singularities over
a time interval of arbitrary length: When the time interval [0, T ] is small enough,
smoothness is indeed transmitted from the coefficients to the solution; however,
singularities may develop as time grows up, as it happens in inviscid conservation
laws (think for instance of Burgers equation), except if the coefficients are mono-
tone in a suitable sense. Here, the measure argument does not feel the noise (since
the dynamics of the law of the solution in (6) is purely deterministic): Similar to
inviscid conservation laws, an additional monotonicity condition is thus needed
to prevent any singularities. For simplicity, we feel better not to expand any of
the sets of assumptions introduced in [15, 19, 21], as it would require an additional
lengthy list of notation for the underlying set-up. Still, we make clear how to prove
each of the above assumptions from existing references:

(1) Estimate (13) is obtained by combining Definition 2.6 and Proposition 3.9 in
[21]. A major difficulty in the analysis provided below is the fact that α may be
larger than 1, in which case the Lipschitz bound for the second-order derivative
is super-linear. This problem is proper to the McKean–Vlasov structure of the
equation and does not manifest in the classical setting, compare for instance
with [22, 23]. Below, we tackle two cases: the case when α ≤ 1, which has
been investigated in [15] and [19], Chapter 12, under stronger conditions on
the coefficients, and the case when α > 1 but U is bounded.

(2) Estimates (8)–(12) are required to control the convergence error when the co-
efficients (b or f ) depend on Z.

(a) The estimate (8) can be retrieved from the computations made in [21].
See the comments at the bottom of page 60, near equation (4.58).

(b) The estimate (12) comes from the theory of FBSDEs (without McKean–
Vlasov interaction). Indeed, using the Lipschitz property of U and ∂xU in the
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variable μ, it suffices to prove∣∣U(
t + h,x,

[
X

t,ξ
t+h

]) − U
(
t, x,

[
X

t,ξ
t

])∣∣
+ ∣∣∂xU

(
t + h,x,

[
X

t,ξ
t+h

]) − ∂xU
(
t, x,

[
X

t,ξ
t

])∣∣
≤ 
h

1
2
(
1 + |x| + ‖ξ‖2

)
.

As stated in Proposition 2.2 in [21], for ξ ∼ μ, U(s, x, [Xt,ξ
s ]) = ut,μ(s, x)

where ut,μ is solution to a quasi-linear PDE. Then the estimate (12) follows
from standard results on nonlinear PDEs; see, for example, Theorem 2.1 in
[22].

In comparison with the assumption used in [22], the condition (H1) is more de-
manding. In [22], there is no need for assuming the second-order derivative to
be Lipschitz in space. This follows from the fact that, here, we approximate the
Brownian increments by random variables taking a small number of values, while
in [22], the Brownian increments are approximated by a quantization grid with
a larger number of points. In this regard, our approach is closer to the strategy
implemented in [23].

2.1. Description. The goal of the numerical method exposed in the paper is
to approximate U . The starting point is the formula (6) and, quite naturally, the
strategy is to approximate the process (Xξ ,Y ξ ,Zξ ) := (X0,ξ , Y 0,ξ ,Z0,ξ ).

Generally speaking, this approach raises a major difficulty, as it requires to han-
dle the strongly coupled forward–backward structure of (6). Indeed, theoretical so-
lutions to (6) may be constructed by means of basic Picard iterations but in small
time only, which comes in contrast with similar results for decoupled forward or
backward equations for which Picard iterations converge on any finite time hori-
zon. In the papers [22, 23], which deal with the non-McKean–Vlasov case, this
difficulty is bypassed by approximating the decoupling field U at the nodes of a
time-space grid. Obviously, this strategy is hopeless in the McKean–Vlasov setting
as the state variable is infinite dimensional; discretizing it on a grid would be of
a nontractable complexity. This observation is the main rationale for the approach
exposed below.

Our method is a variation of the so-called method of continuation. In full gen-
erality, it consists in increasing step by step the coupling parameter between the
forward and backward equations. Of course, the intuition is that, for a given time
length T , the Picard scheme should converge for very small values of the coupling
parameter. The goal is then to insert the approximation computed for a small cou-
pling parameter into the scheme used to compute a numerical solution for a higher
value of the coupling parameter. Below, we adapt this idea, but we directly regard
T itself as a coupling parameter. So we increase T step and by step and, on each
step, we make use of a Picard iteration based on the approximations obtained at
the previous steps.
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This naturally motivates the introduction of an equidistant grid � = {r0 =
0, . . . , rN = T } of the time interval [0, T ], with rk = kδ and δ = T

N
for N ≥ 2. In

the following, we shall consider that δ is “small enough” and state more precisely
what it means in the main results; see Theorem 5 and Theorem 7.

For 0 ≤ k ≤ N − 1, we consider intervals Ik = [rk, T ] and on each inter-
val, the following FBSDE, for ξ ∈ L2(Frk ) (which is a shorter notation for
L2(	,Frk ,P;Rd)):

Xt = ξ +
∫ t

rk

b
(
Xs,Ys, [Xs,Ys])ds +

∫ t

rk

σ
(
Xs, [Xs])dWs,(14)

Yt = g
(
XT , [XT ]) +

∫ T

t
f
(
Xs,Ys,Zs, [Xs,Ys])ds −

∫ T

t
Zs · dWs.(15)

Picard iterations. We need to compute backwards the value of U(rk, ξ, [ξ ]) for
some ξ ∈ L2(Frk ), 0 ≤ k ≤ N − 2. We are then going to solve the FBSDE (14)–
(15) on the interval Ik . As explained above, the difficulty is the arbitrariness of
T : When k is large, Ik is of a small length, but this becomes false as k decreases.
Fortunately, we can rewrite the forward–backward system on a smaller interval
at the price of changing the terminal boundary condition. Indeed, from (H1), we
know that (X

rk,ξ
s , Y

rk,ξ
s ,Z

rk,ξ
s )rk≤s≤rk+1 solves⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xt = ξ +
∫ t

rk

b
(
Xs,Ys, [Xs,Ys])ds +

∫ t

rk

σ
(
Xs, [Xs])dWs,

Yt = U
(
rk+1,Xrk+1, [Xrk+1]

)
+

∫ rk+1

t
f
(
Xs,Ys,Zs, [Xs,Ys])ds −

∫ rk+1

t
Zs · dWs,

for t ∈ [rk, rk+1], recall (7).
If δ is small enough, a natural approach is to introduce a Picard iteration scheme

to approximate the solution of the above equation. Indeed, we can regard the above
forward–backward system as a system of type (6), set on a small time interval of
length δ and driven by the terminal boundary condition U(rk+1, ·, ·). So, in the
ideal case when U(rk+1, ·, ·) is perfectly known, one can implement the following
Picard recursion (with respect to the index j ):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X
j
t = ξ +

∫ t

rk

b
(
Xj

s , Y j
s ,

[
Xj

s , Y j
s

])
ds +

∫ t

rk

σ
(
Xj

s ,
[
Xj

s

])
dWs,

Y
j
t = U

(
rk+1,X

j−1
rk+1

,
[
Xj−1

rk+1

])
+

∫ rk+1

t
f
(
Xj−1

s , Y j
s ,Zj

s ,
[
Xj−1

s , Y j
s

])
ds −

∫ rk+1

t
Zj

s · dWs,

(16)

with the initialization (X0
s = ξ + ∫ t

rk
b(X0

s ,0, [X0
s ,0])ds + ∫ t

rk
σ (X0

s ,

[X0
s ])dWs)rk≤s≤rk+1 and (Y 0

s = 0)rk≤s≤rk+1 . It is known that, for δ small enough,
(Xj ,Y j ,Zj ) →j→∞ (X,Y,Z), in the sense that |||(Xj − X,Y j − Y,Zj −
Z)|||[rk,rk+1] →j→∞ 0.
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As we just said, this works in an ideal case only and, in practice, we will en-
counter three main difficulties:

(1) The procedure has to be stopped after a given number of iterations J .
(2) The above Picard iteration assumes the perfect knowledge of the map U at

time rk , but U is exactly what we want to compute.
(3) The solution has to be discretized in time and space.

Ideal recursion. We first discuss how to overcome (1) and (2) above. The main
idea is to use a backward recursive algorithm (with a new recursion, but on the
time parameter) in order to compute at each index k of the time mesh the value of
the terminal boundary at the j th step of the Picard iteration (16).

For sure, to solve the j th step of (16), we need an approximation, which we call
below a solver and which we denote by solver[k + 1], for U(rk+1, ·, ·). The
point is thus to define backwards these solvers as k + 1 runs from N to 1. While
it is obvious that solver[N] should be given by the terminal condition of (6),
solver[N − 1], solver[N − 2], . . . , must be defined recursively. To make
it clear, we assume that, for k ≤ N − 1, we are given a solver which computes an
approximation of U(rk+1, ·, ·) in the form

solver[k + 1](ξ)= U
(
rk+1, ξ, [ξ ]) + εk+1(ξ),(17)

where ε is the error made by the solver. The above decomposition should hold
for any ξ ∈ L2(Frk+1). We shall sometimes refer to solver[k + 1]( · ) as “the
solver at level k + 1”.

Taking these observations into account, the next step is to define the solver at
level k, namely solver[k]( · ). To do so, we first define the solver at level k in
the form of an ideal (and thus not implementable) solver. Basically, this assumes
that each Picard iteration in the approximation (16) of the solution of the forward–
backward system can be perfectly computed. To distinguish this ideal solver at
level k from the implementable solver at level k that we need in the end, we de-
note the ideal one by picard[k](). Accordingly, we do (for the time being)
as if, to compute the terminal boundary condition in (16), we could directly use
picard[k + 1]() instead of the implementable version solver[k + 1]().
Given picard[k + 1](), picard[k]() is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃
k,j
t = ξ +

∫ t

rk

b
(
X̃k,j

s , Ỹ k,j
s ,

[
X̃k,j

s , Ỹ k,j
s

])
ds

+
∫ t

rk

σ
(
X̃k,j

s ,
[
X̃k,j

s

])
dWs,

Ỹ
k,j
t = picard[k + 1]

(
X̃k,j−1

rk+1

) −
∫ rk+1

t
Z̃k,j

s · dWs

+
∫ rk+1

t
f
(
X̃k,j−1

s , Ỹ k,j
s , Z̃k,j

s ,
[
X̃k,j−1

s , Ỹ k,j
s

])
ds,

(18)
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for j ≥ 1 and with(
X̃k,0

s = ξ +
∫ t

rk

b
(
Xk,0

s ,0, [Xk,0
s ,0])ds +

∫ t

rk

σ
(
Xk,0

s , [Xk,0
s ])dWs

)
rk≤s≤rk+1

,

and (Ỹ k,0
s = 0)rk≤s≤rk+1 . We then define

picard[k](ξ) := Y k,J
rk

and εk(ξ) := Y k,J
rk

− U
(
rk, ξ, [ξ ]),

where J ≥ 1 is the number of Picard iterations.
At level N − 1, which is the last level for our recursive algorithm, the Picard

iteration scheme is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃
N−1,j
t = ξ +

∫ t

rN−1

b
(
X̃N−1,j

s , Ỹ N−1,j
s ,

[
X̃N−1,j

s , Ỹ N−1,j
s

])
ds

+
∫ t

rN−1

σ
(
X̃N−1,j

s ,
[
X̃N−1,j

s

])
dWs,

Ỹ
N−1,j
t = g

(
X̃

N−1,j−1
T ,

[
X̃

N−1,j−1
T

]) −
∫ T

t
Z̃N−1,j

s · dWs

+
∫ T

t
f
(
X̃N−1,j−1

s , Ỹ N−1,j
s , Z̃N−1,j

s ,[
X̃N−1,j−1

s , Ỹ N−1,j
s

])
ds.

(19)

Here, the terminal condition g is known and the error comes from the fact that
the Picard iteration is stopped. As already mentioned, it is then natural to set, for
ξ ∈ L2(FT ),

picard[N](ξ)= g
(
ξ, [ξ ]) and εN(ξ) = 0.(20)

Practical implementation. As already noticed in item (3) of the list of dif-
ficulties spelled out right after (16), it is not possible to solve the backward
and forward equations in (18) perfectly, even though the system is decoupled.
Hence, we need to introduce an approximation that can be implemented in prac-
tice and that will give rise to the true solver[]() (instead of the fake one
picard[]()). Given a continuous adapted input process X = (Xs)rk≤s≤rk+1 such
that E[suprk≤s≤rk+1

|Xs |2] < ∞ and η ∈ L2(	,Frk+1,P;R), we thus would like to
solve ⎧⎪⎪⎨⎪⎪⎩

X̃t =Xrk +
∫ t

rk

b
(
X̃s, Ỹs, [X̃s, Ỹs])ds +

∫ t

rk

σ
(
X̃s, [X̃s])dWs,

Ỹt = η +
∫ rk+1

t
f
(
Xs, Ỹs, Z̃s, [Xs, Ỹs])ds −

∫ rk+1

t
Z̃s · dWs,

(21)

for t ∈ [rk, rk+1]. To make it clear, the reader may think of (21) as a variant of
(16), in which X is given by the forward component Xj−1 of the (j − 1)th Picard
iteration and η is obtained by calling solver[k + 1](X

j−1
rk+1). Observing that all

these data should be indeed available before running the j th Picard iteration, we
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call them inputs. Continuing the parallel with (16), the output (X̃, Ỹ , Z̃) should be
identified with the result (Xj ,Y j ,Zj ) of the j th Picard iteration in (16).

The numerical computation of the output (X̃, Ỹ , Z̃) in terms of the input should
go along the following general principle. First, it requires a refinement of the orig-
inal time mesh � in order to discretize (21) between rk and rk+1. This prompts us
to let π be a discrete time grid of [0, T ] such that � ⊂ π ,

π := {t0 := 0 < · · · < tn := T } and |π | := max
i<n

(ti+1 − ti).(22)

For 0 ≤ k ≤ N − 1, we note πk := {t ∈ π | rk ≤ t ≤ rk+1} and for later use, we
define the indices (jk)0≤k≤N as follows:

πk = {tjk
:= rk < · · · < ti < · · · < rk+1 =: tjk+1},

for all k < N . So, instead of a perfect solver for an iteration of the Pi-
card scheme (18), we assume that we are given a numerical solver, denoted
by solver[k](X̄,η,f), which computes an approximation of the process
(X̃s, Ỹs, Z̃s)rk≤s≤rk+1 on πk for a discretization (X̄t )t∈πk of the time continuous
process (Xs)rk≤s≤rk+1 . The output is denoted by (X̄t , Ȳ t , Z̄t )t∈πk . In parallel, we
call input the triplet formed by the random variable η, the discrete-time process
(X̄t )t∈πk and the driver f of the backward equation (in other words, we include
for later purpose the driver f in the list of inputs). In short, the output is what the
numerical solver returns after one iteration in the Picard scheme when the discrete
input is (η, X̄, f ). Pay attention that, in contrast with b and σ , we shall allow f to
vary; this is the rationale for regarding it as an input. However, when the value of
f is clear, we shall just regard the input as the pair (η, (X̄t )t∈πk ).

An example for solver[](,,) is given in Example 2 below.
Full algorithm for solver[](). Using solver[](,,) for each level,

we can now give a completely implementable algorithm for solver[](). In-
tuitively, it suffices to duplicate the construction of picard[k]() in terms of
picard[k + 1]() in order to define solver[k]() in terms of solver[k +
1](). To do so, we must go back to (18), replace therein picard[k + 1]()
by solver[k + 1]() and then regard the numerical solution of the forward–
backward system (18) as the result of solver[k](X̄,η,f), with X̄ given by
(a discrete version of) the forward component X̃k,j−1 and η obtained by calling
solver[k + 1](X

k,j−1
rk+1 ).

The precise description of the algorithm is as follows. The value
solver[k](ξ), that is, the value of the solver at level k with initial condition
ξ ∈ L2(Frk ), is obtained through:

(1) Initialize the backward component at Ȳ
k,0
t = 0 for t ∈ πk and regard (X̄

k,0
t )t∈πk

as the forward component of solver[k](ξ,0,0),
(2) for 1 ≤ j ≤ J ,

(a) compute Ȳ
k,j
rk+1 = solver[k + 1](X̄

k,j−1
rk+1 ),
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(b) compute (X̄k,j , Ȳ k,j , Z̄k,j ) = solver[k](X̄k,j−1,Ȳ
k,j
rk+1,f),

(3) return Ȳ k,J
rk

for solver[k](ξ).

Following (20), we let

solver[N](ξ)= g
(
ξ, [ξ ]).(23)

Obviously, (23) reads as the initialization of the backward induction used to
compute solver[k](), for k running from N to 0. We now explain the initial-
ization step (1) in the construction of solver[k](), for a given k. The basic idea
is to set the backward component to 0 and then to solve the forward component as
an approximation of the autonomous McKean–Vlasov diffusion process in which
the backward entry is null. Of course, this may be solved by means of any standard
method, but to make the notation shorten, we felt better to regard the underlying
solver as a specific case of a forward–backward solver with null coefficients in the
backward equation. We specify in the analysis below the conditions that this initial
solver solver[](,0,0) must satisfy.

It is also worth noting that each Picard iteration used to define the solver at
level k calls the solver at level k + 1. This is a typical feature of the way the
continuation method manifests from the algorithmic point of view. In particular,
the total complexity is of order O(JNK), where K is the complexity of the solver
solver[](,,) . In this regard, it must be stressed that, for a given length T , N

is fixed, regardless of the time step |π |. Also, J is intended to be rather small as
the Picard iterations are expected to converge geometrically fast; see the numerical
examples in Section 4 in which we choose J = 5. However, it must be noticed that
the complexity increases exponentially fast when T tends to ∞, which is obviously
the main drawback of this method. Again, we refer to Section 4 for numerical
illustrations.

The full convergence analysis, including the discretization error, will be dis-
cussed in Section 3 in the following two cases: first, for a generic (or abstract)
solver solver[](,,) and second for an explicit solver, as given in the exam-
ple below.

EXAMPLE 2. This example is the prototype of the solver solver[](,,)
used as an elementary block inside the construction of solver[](). It can be
used to decouple the system (21) or, equivalently, in Step (2b) of the full algorithm
for solver[]().

To start with, we consider an approximation of the Brownian motion obtained
by quantization of the Brownian increments. At every time t ∈ π , we denote by
W̄t the value at time t of the discretized Brownian motion. It may be expressed as

W̄ti :=
i−1∑
j=0

�W̄j ,
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where

�W̄j := h
1
2
j �j , �j := �d

(
h

− 1
2

j (Wtj+1 − Wtj )
)
,(24)

�d mapping R
d onto a finite grid of Rd . Importantly, �d is assumed to be bounded

by 
 and each �j is assumed to be centered and to have the identity matrix as
covariance matrix. Of course, this is true if �d is of the form

�d(w1, . . . ,wd) := (
�1(w1), . . . ,�1(wd)

)
, (w1, . . . ,wd) ∈ R

d,

where �1 is a bounded odd function from R onto a finite subset of R with a normal-
ized second-order moment under the standard Gaussian measure. In practice, �d

is intended to take a small number of values. The typical example is the so-called
binomial approximation, in which case �1 is the sign function.

On each interval [rk, rk+1], given a discrete-time input process X̄ and a terminal
condition η, we thus implement the following scheme (below, Eti is the conditional
expectation given Fti ):

(1) For the backward component:

(a) Set as terminal condition, (Ȳtjk+1
, Z̄tjk+1

) = (η,0).
(b) For jk ≤ i < jk+1, compute recursively

Ȳti = Eti

[
Ȳti+1 + (ti+1 − ti)f

(
X̄ti , Ȳti , Z̄ti , [X̄ti , Ȳti ]

)]
,

Z̄ti = Eti

[
�W̄i

ti+1 − ti
Ȳ ti+1

]
.

(2) For the forward component:

(a) Set as initial condition, X̄tjk
= X̄rk .

(b) For jk < i ≤ jk+1, compute recursively

X̄ti+1 = X̄ti + b
(
X̄ti , Ȳti , [X̄ti , Ȳti ]

)
(ti+1 − ti) + σ

(
X̄ti , [X̄ti ]

)
�W̄i.

Useful notation. Throughout the paper, ‖·‖p denotes the Lp norm on (	,F,P).
Also, (	̂, F̂, P̂) stands for a copy of (	,F,P). It is especially useful to represent
the Lions’ derivative of a function of a probability measure and to distinguish
the (somewhat artificial) space used for representing these derivatives from the
(physical) space carrying the Wiener process. For a random variable X defined on
(	,F,P), we shall denote by 〈X〉 its pointwise copy on (	̂, F̂, P̂). To make it
clear, (	̂, F̂, P̂) is equal to (	,F,P), the hat being just used for notational con-
venience, and for a random variable X defined on (	,F,P), 〈X〉 is defined as
	̂ � ω̂ �→ 〈X〉(ω̂) = X(ω̂). The latter makes sense since ω̂ ∈ 	̂ = 	.

We shall use the notation C
, c
 for constants only depending on 
 (and pos-
sibly on the dimension as well). They are allowed to increase from line to line.
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We shall use the notation C for constants not depending upon the discretization
parameters. Again, they are allowed to increase from line to line. In most of the
proofs, we shall just write C for C
, even if we use the more precise notation C


in the corresponding statement.

2.2. A first analysis with no discretization error. To conclude this section, we
want to understand how the error propagates through the solvers used at different
levels in the ideal case where the Picard iteration in (18) can be perfectly computed
or equivalently when the solver is given by solver[k]() = picard[k]().
For j ≥ 1, we then denote by (X̃k,j , Ỹ k,j , Z̃k,j ), the solution on [rk, rk+1] of (18).

The main result of the section (see Theorem 5) is an upper bound for the error
when we use picard[ · ]( · ) to approximate U . The proof of this theorem
requires the following proposition, which gives a local error estimate for each level.

PROPOSITION 3. Let us define, for j ∈ {1, . . . , J }, k ∈ {1, . . . ,N − 1},
�

j
k :=

∥∥∥ sup
t∈[rk,rk+1]

(
Ỹ

k,j
t − U

(
t, X̃

k,j
t ,

[
X̃

k,j
t

]))∥∥∥
2

then there exist constants C
, c
 such that, for δ̄ := C
δ < c
,

�
j
k ≤ δ̄j�0

k +
j∑

�=1

δ̄�−1eδ̄
∥∥εk+1(X̃k,j−�

rk+1

)∥∥
2.(25)

We recall that εk(ξ) stands for the error term:

εk(ξ) = picard[k](ξ)− U
(
rk, ξ, [ξ ]) with εN(ξ) = 0.

REMARK 4. A careful inspection of the proof shows that, whenever σ de-
pends on Y or b depends on Z, the same result holds true but with a constant C


depending on N . As N is fixed in practice, this might still suffice to complete the
analysis of the discretization scheme in that more general setting.

PROOF OF PROPOSITION 3. We suppose that the full algorithm is initialized
at some level k ∈ {0, . . . ,N − 1}, with an initial condition ξ ∈ L2(Frk ). As the
value of the index k is fixed throughout the proof, we will drop it in the notation
(X̃k,j , Ỹ k,j , Z̃k,j ) and �

j
k .

Applying Itô’s formula for functions of a measure argument (see [13, 21]), we
have

dU
(
t, X̃

j
t ,

[
X̃

j
t

])
=

(
b
(
X̃

j
t , Ỹ

j
t ,

[
X̃

j
t , Ỹ

j
t

]) · ∂xU
(
t, X̃

j
t ,

[
X̃

j
t

])
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+ 1

2
Tr

[
a
(
X̃

j
t ,

[
X̃

j
t

])
∂2
xxU

(
t, X̃

j
t ,

[
X̃

j
t

])]
+ Ê

[
b
(〈
X̃

j
t

〉
,
〈
Ỹ

j
t

〉
,
[
X̃

j
t , Ỹ

j
t

]) · ∂μU
(
t, X̃

j
t ,

[
X̃

j
t

])(〈
X̃

j
t

〉)]
+ Ê

[
1

2
Tr

[
a
(〈
X̃

j
t

〉
,
[
X̃

j
t

])
∂υ∂μU

(
t, X̃

j
t ,

[
X̃

j
t

])(〈
X̃

j
t

〉)]]
+ ∂tU

(
t, X̃

j
t ,

[
X̃

j
t

]))
dt + ∂xU

(
t, X̃

j
t ,

[
X̃

j
t

]) · (σ (
X̃

j
t ,

[
X̃

j
t

])
dWt

)
.

Expressing the integral in (1) as expectations on (	̂, F̂, P̂) and combining with (1)
and (18), we obtain

d
[
Y̌

j
t − Ỹ

j
t

]
= ({

b
(
X̃

j
t , Ỹ

j
t ,

[
X̃

j
t , Ỹ

j
t

]) − b
(
X̃

j
t , Y̌

j
t ,

[
X̃

j
t , Y̌

j
t

])} · ∂xU
(
t, X̃

j
t ,

[
X̃

j
t

])
+ Ê

[{
b
(〈
X̃

j
t

〉
,
〈
Ỹ

j
t

〉
,
[
X̃

j
t , Ỹ

j
t

]) − b
(〈
X̃

j
t

〉
,
〈
Y̌

j
t

〉
,
[
X̃

j
t , Y̌

j
t

])}
· ∂μU

(
t, X̃

j
t ,

[
X̃

j
t

])(〈
X̃

j
t

〉)]
+ f

(
X̃

j−1
t , Ỹ

j
t , Z̃

j
t ,

[
X̃

j−1
t , Ỹ

j
t

]) − f
(
X̃

j
t , Y̌

j
t , Ž

j
t ,

[
X̃

j
t , Y̌

j
t

]))
dt

+ [
Ž

j
t − Z̃

j
t

] · dWt,

where Y̌
j
t := U(t, X̃

j
t , [X̃j

t ]) and Ž
j
t := ∂xU(t, X̃

j
t , [X̃j

t ])σ (X̃
j
t , [X̃j

t ]). Observe
that this argument is reminiscent of the four-step scheme; see [28].

Using standard arguments from BSDE theory and (H0)–(H1), we then compute

�j ≤ eCδ
(∥∥U(

rk+1, X̃
j
rk+1

,
[
X̃j

rk+1

]) − Ỹ j
rk+1

∥∥
2

+ C
∥∥∥ sup
t∈[rk,rk+1]

∣∣X̃j
t − X̃

j−1
t

∣∣∥∥∥
2

)
≤ eCδ

(∥∥εk+1(X̃j−1
rk+1

)∥∥
2 + ∥∥U(

rk+1, X̃
j
rk+1

,
[
X̃j

rk+1

])
− U

(
rk+1, X̃

j−1
rk+1

,
[
X̃j−1

rk+1

])∥∥
2 + C

∥∥∥ sup
t∈[rk,rk+1]

∣∣X̃j
t − X̃

j−1
t

∣∣∥∥∥
2

)
,

recalling Ỹ
j
rk+1 = picard[k+1](X̃

j−1
rk+1) and (17). Since U is Lipschitz, we have

�j ≤ eCδ
(∥∥εk+1(X̃j−1

rk+1

)∥∥
2 + C

∥∥∥ sup
t∈[rk,rk+1]

∣∣X̃j
t − X̃

j−1
t

∣∣∥∥∥
2

)
.(26)

We also have that

X̃
j
t − X̃

j−1
t =

∫ t

rk

{
b
(
X̃j

s , Ỹ j
s ,

[
X̃

j
t , Ỹ

j
t

]) − b
(
X̃j−1

s , Ỹ j−1
s ,

[
X̃

j−1
t , Ỹ

j−1
t

])}
ds

+
∫ t

rk

{
σ
(
X̃j

s ,
[
X̃j

s

]) − σ
(
X̃j−1

s ,
[
X̃j−1

s

])}
dWs.
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Using usual arguments (squaring, taking the sup, using Bürkholder–Davis–Gundy
inequality), we get, since b and σ are Lipschitz continuous,∥∥∥ sup

t∈[rk,rk+1]
∣∣X̃j

t − X̃
j−1
t

∣∣∥∥∥
2

≤ C
(
δ
∥∥∥ sup
t∈[rk,rk+1]

∣∣Ỹ j
t − Ỹ

j−1
t

∣∣∥∥∥
2
+ δ

1
2

∥∥∥ sup
t∈[rk,rk+1]

∣∣X̃j
t − X̃

j−1
t

∣∣∥∥∥
2

)
.

Observing that∣∣Ỹ j
s − Ỹ j−1

s

∣∣ ≤ ∣∣Ỹ j
s − U

(
s, X̃j

s ,
[
X̃j

s

])∣∣ + ∣∣Ỹ j−1
s − U

(
s, X̃j−1

s ,
[
X̃j−1

s

])∣∣
+ 


(∣∣X̃j−1
s − X̃j

s

∣∣ + ∥∥X̃j−1
s − X̃j

s

∥∥
2

)
,

we obtain, for δ small enough,∥∥∥ sup
t∈[rk,rk+1]

∣∣X̃j
t − X̃

j−1
t

∣∣∥∥∥
2
≤ Cδ

(
�j + �j−1).(27)

Combining the previous inequality with (26), we obtain, for δ small enough,

�j ≤ eCδ
∥∥εk+1(X̃j−1

rk+1

)∥∥
2 + Cδ�j−1,

which by induction leads to

�j ≤ (Cδ)j�0 +
j∑

�=1

(Cδ)�−1eCδ
∥∥εk+1(X̃j−�

rk+1

)∥∥
2,

and concludes the proof. �

We now state the main result of this section, which explains how the local error
induced by the fact that the Picard iteration is stopped at rank J propagates through
the various levels k = N − 1, . . . ,0.

THEOREM 5. We can find two constants C
, c
 > 0 and a continuous nonde-
creasing function B :R+ →R+ matching 0 in 0, only depending on 
, such that,
for δ̄ := C
δ < min(c
,1) and β ≥B(δ̄) satisfying

(J − 1)
δ̄J eβC
T

eβδ̄ − 1
≤ 1,(28)

where J is the number of Picard iterations in a period, it holds, for any period
k ∈ {0, . . . ,N} and ξ ∈ L2(Frk ),∥∥ solver[k](ξ)− U

(
rk, ξ, [ξ ])∥∥2

≤ 

eβC
T

β
δ̄J−1(1 + ∥∥P �

rk,T
(ξ)

∥∥
2

)
,

(29)
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where Prk,t (ξ) is the solution at time t of the stochastic differential equation

dX0
s = b

(
X0

s ,0,
[
X0

s ,0
])

ds + σ
(
X0

s ,
[
X0

s

])
dWs,

with X0
rk

= ξ as initial condition, and P �
rk,t

(ξ) = sups∈[rk,t] |Prk,s(ξ)|.
Of course, it is absolutely straightforward to bound ‖P �

rk,T
(ξ)‖2 by C(1+‖ξ‖2)

in (29). Theorem 5 may be restated accordingly, but the form used in the statement
is more faithful to the spirit of the proof.

PROOF OF THEOREM 5. We prove the claim by an induction argument. We
show below that, for all k ∈ {0, . . . ,N},∥∥εk(ξ)

∥∥
2 = ∥∥solver[k](ξ)− U

(
rk, ξ, [ξ ])∥∥2

≤ θk

(
1 + ∥∥P �

rk,T
(ξ)

∥∥
2

)
,

(30)

where (θk)k=0,...,N−1 is defined by the following backward induction: θN := 0 (re-
call (20)), and for k ∈ {0, . . . ,N − 1},

θk := 
δ̄J + eβδ̄θk+1,(31)

where δ̄ := C
δ = C
T/N , for a constant C
 that is independent of N , and where
β is such that(

γ + γ δ̄eγ δ̄

(
γ + 


1 − δ̄

))
≤ eβδ̄, with γ := eδ̄

1 − δ̄
.(32)

With this definition we have, for all k ∈ {0, . . . ,N},

θk = 
δ̄J
N−k−1∑

j=0

ejβδ̄ ≤ 
δ̄J eβC
T

eβδ̄ − 1
,(33)

which gives the expected result, recalling that Nδ̄ = C
T .
We now prove (30). Observe that it is obviously true for the last step N . Assume

now that it holds true at step k + 1, for k < N , and that (33) holds true for θk+1.
Then, using (28), we have

θk+1j ≤ 1, for all j ≤ J − 1.(34)

From Proposition 3, we have

�
j
k ≤ δ̄j�0

k +
j∑

�=1

δ̄�−1eδ̄
∥∥εk+1(X̃k,j−�

rk+1

)∥∥
2.(35)

Using the induction hypothesis (30), we compute

�
j
k ≤ δ̄j�0

k + eδ̄

1 − δ̄
θk+1 + eδ̄θk+1

j−1∑
�=0

δ̄j−1−�
∥∥P �

rk+1,T

(
X̃k,�

rk+1

)∥∥
2.(36)
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We study the last sum. Observe that for � ∈ {1, . . . , j − 1},∥∥P �
rk+1,T

(
X̃k,�

rk+1

)∥∥
2

≤ ∥∥P �
rk+1,T

(
X̃k,0

rk+1

)∥∥
2 +

�∑
i=1

∥∥P �
rk+1,T

(
X̃k,i

rk+1

) − P �
rk+1,T

(
X̃k,i−1

rk+1

)∥∥
2.

We observe that Prk+1,t (X̃
k,0
rk+1

) = Prk,t (X̃
k,0
rk

) = Prk,t (ξ), for t ∈ [rk+1, T ]. Hence,

P �
rk+1,T

(X̃k,0
rk+1

) ≤ P �
rk,T

(ξ). Also, it is well checked that there exists a constant C


such that each P �
t,T is C
-Lipschitz continuous from L2(Ft ) into L2(FT ). Then

j−1∑
�=0

δ̄j−1−�
∥∥P �

rk,T

(
X̃k,�

rk+1

)∥∥
2

≤ C


j−1∑
�=1

δ̄j−1−�
�∑

i=1

∥∥X̃k,i
rk+1

− X̃k,i−1
rk+1

∥∥
2 +

j−1∑
�=0

δ̄�
∥∥P �

rk,T
(ξ)

∥∥
2.

Using (27) in the proof of Proposition 3 and changing the definition of δ̄, we obtain

(37)

j−1∑
�=0

δ̄j−1−�
∥∥P �

rk,T

(
X̃k,�

rk+1

)∥∥
2

≤ δ̄

j−1∑
i=1

(
�i

k + �i−1
k

) j−1∑
�=i

δ̄j−1−� +
j−1∑
�=0

δ̄�
∥∥P �

rk,T
(ξ)

∥∥
2.

Observing that, for all i ≤ j − 1,
∑j−1

�=i δ̄j−1−� ≤ 1
1−δ̄

, we get

j−1∑
�=0

δ̄j−�
∥∥P �

rk,T

(
X̃k,�

rk+1

)∥∥
2 ≤ 2δ̄

1 − δ̄
Sj−1

k + 1

1 − δ̄

∥∥P �
rk,T

(ξ)
∥∥

2,(38)

where Sn
k := ∑n

i=0 �i
k . Inserting the previous estimate into (36) and changing δ̄

into 2δ̄, we obtain

�
j
k ≤ δ̄j�0

k + eδ̄

1 − δ̄
θk+1

(
1 + ∥∥P �

rk,T
(ξ)

∥∥
2

) + θk+1
δ̄eδ̄

1 − δ̄
Sj−1

k .(39)

We note that �0
k ≤ 
(1 + ‖P �

rk,T
(ξ)‖2). Recalling γ in (32), equation (39) leads

to

�
j
k ≤ aj + γ θk+1δ̄Sj−1

k ,(40)

where we set aj := (
δ̄j + γ θk+1)(1 + ‖P �
rk,T

(ξ)‖2). We have

Sj
k − Sj−1

k = �
j
k ≤ aj + γ θk+1δ̄Sj−1

k ,
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and then

Sj
k ≤ eγ θk+1δ̄jS0

k +
j∑

�=1

eγ θk+1δ̄(j−�)a�.(41)

We compute

j∑
�=1

a� ≤
(
jγ θk+1 + 
δ̄

1 − δ̄

)(
1 + ∥∥P �

rk,T
(ξ)

∥∥
2

)
,

which combined with the properties (34) and (41) leads to, for all j ≤ J − 1,

Sj
k ≤ eγ δ̄

(
γ + 


1 − δ̄

)(
1 + ∥∥P �

rk,T
(ξ)

∥∥
2

)
,

where we recall that S0
k = �0

k ≤ 
(1 + ‖P �
rk,T

(ξ)‖2). We insert the previous in-
equality into (40) for j = J and get

�J
k ≤

(

δ̄J +

(
γ + γ δ̄eγ δ̄

(
γ + 


1 − δ̄

))
θk+1

)(
1 + ∥∥P �

rk,T
(ξ)

∥∥
2

)
.

Using (32), this rewrites

�J
k ≤ (


δ̄J + eβδ̄θk+1
)(

1 + ∥∥P �
rk,T

(ξ)
∥∥

2

)
,

and validates (31) and thus (33). We then obviously have that (30) holds true. �

3. Convergence analysis.

3.1. Error analysis in the generic case. We now study the convergence of
a generic implementable solver solver[](), based upon the local solver
solver[](,,) as described above, as long as the output of the local solver
solver[k](,,) satisfies some conditions, which are shown to be true for Ex-
ample 2.

In order to define the required assumption, we use the same letters 
 and α as
in (H0) and (H1), except that, without any loss of generality, we assume that α is
greater than 1. For the same coefficients as in the equation (6), and in particular for
the same driver f , we then ask solver[k](,,) to satisfy the following three
conditions:

(A1) supt∈πk ‖U(t, X̄t , [X̄t ]) − Ȳt‖2α ≤ e
δ‖U(rk+1, X̄rk+1, [X̄rk+1]) −
Ȳrk+1‖2α + 
maxjk≤i<jk+1 ‖X̄ti − X̄ti‖2α +D1(|π |) +D2(|π |)(1 + ‖ξ‖α

2α),
(A2) supt∈πk ‖X̄t − X̄′

t‖2α ≤ 
δ supt∈πk ‖Ȳt − Ȳ ′
t ‖2α ,

(A3) ‖U(rk+1, X̄rk+1, [X̄rk+1]) − Ȳrk+1‖α
2α ≤ 
‖U(rk+1, X̄rk+1, [X̄rk+1]) −

Ȳrk+1‖2α ,
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where (X̄, Ȳ , Z̄) := solver[k](X̄,η,f), for f as before, and (X̄′, Ȳ ′, Z̄′) :=
solver[k](X̄′,η′,f ′), for another f ′ either equal to f or 0, are two output
values of solver[](,,) associated to two input processes X̄, X̄′, with the
same initial condition X̄rk = X̄′

rk
= ξ , and to two different terminal conditions η

and η′. For i ∈ {1,2}, the function Di : [0,∞) → [0,∞) is a discretization error
associated to the use of the grid π , which satisfies limh↓0 Di(h) = 0. Importantly,
both D1 and D2 are independent of X̄, η̄, J and N .

In full analogy with the discussion right below Theorem 5, we shall also need
some conditions on the solver solver[k](,0,0) used to initialize the algo-
rithm at each step. Following the definition of (Prk,t )0≤t≤T introduced in the state-
ment of Theorem 5, we let by induction, for a given k ∈ {0, . . . ,N − 1}:

Prk,t (ξ) = (
solver[k](ξ,0,0)

)1
t , t ∈ πk, ξ ∈ L2(Frk ),

where we recall that (solver[k](ξ,0,0))1 is the forward component of the
algorithm’s output, and, for k ≤ N − 2,

Prk,t (ξ) = Pr�,t

(
Prk,r�(ξ)

)
, t ∈ π�, k < � ≤ N − 1,

and then P�
rk,T

(ξ) = maxs∈π,s∈[rk,T ] |Prk,s(ξ)|, for ξ ∈ L2(Frk ). It then makes
sense to assume:

(A4) ‖P�
rk,T

(ξ) − P�
rk,T

(ξ ′)‖2α ≤ 
‖ξ − ξ ′‖2α ,
(A5) ‖P�

rk,T
(ξ)‖2α ≤ 
(1 + ‖ξ‖2α),

where ξ, ξ ′ ∈ L2α(Frk ) and k ∈ {0, . . . ,N − 1}.

REMARK 6. Assumptions (A1)–(A5) are mostly related with the choice of
the numerical solver solver[](,,). We make it clear in Section 3.2: There,
we essentially prove that, provided that U satisfies (H0) and (H1), Example 2 sat-
isfies (A1)–(A5). In fact, the main challenging assumption (and maybe the most
surprising one) is (A3), as it explicitly depends on the value of α in assump-
tion (13) for U . Indeed, (A3) is obviously satisfied when α = 1 as long as 
 is
assumed to be greater than 1. Following Remark 1, we refer to [15] and [18],
Chapter 12, for sets of conditions under which the condition α = 1 is indeed true.
When α > 1, Assumption (A3) is checked provided we have an a priori bound on
‖U(rk+1, X̄rk+1, [X̄rk+1]) − Ȳrk+1‖2α . We provide in Lemma 10 below conditions
on the coefficients f and g under which the latter is verified. If true, this permits to
work with larger values of α in (13) and so to relax the conditions that are needed
on U : For instance, we can invoke the result proven in our previous paper [21],
which holds true in a weaker setting than the solvability results obtained in [15]
and [18], Chapter 12.

THEOREM 7. We can find two constants C
, c
 > 0 and a continuous nonde-
creasing function B :R+ →R+ matching 0 in 0, only depending on 
, such that,
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for δ̄ := C
δ < min(c
,1) and β ≥B(δ̄) satisfying

(J − 1)
(

δ̄J + eβδ̄D2(|π |)) eβC
T

eβδ̄ − 1
≤ 1,(42)

where J is the number of Picard iterations in a period, it holds, for any period
k ∈ {0, . . . ,N} and ξ ∈ L2(Frk ),∥∥solver[k](ξ)− U

(
rk, ξ, [ξ ])∥∥2α

≤ C
(
δ̄J−1 + (N − k)D2(|π |))(1 + ‖ξ‖α

2α

) + C(N − k)D1(|π |),
for a constant C independent of the discretization parameters.

PROOF. The proof will follow closely the proof of Theorem 5 but we now
have to take into account the discretization error. We will first show that, for all
k = {0, . . . ,N}, ∥∥εk(ξ)

∥∥
2α ≤ θk

(
1 + ∥∥P�

rk,T
(ξ)

∥∥α
2α

) + ϑkD1(|π |),(43)

where

εk(ξ) = solver[k ](ξ)− U
(
rk, ξ, [ξ ]),

and (θk,ϑk)k=0,...,N is defined by the following backward induction: (θN,ϑN) :=
(0,0), recall (23), and for k ∈ {0, . . . ,N − 1},

θk := 
δ̄J + eβδ̄{θk+1 +D2(|π |)} and ϑk := eβδ̄(ϑk+1 + 1),(44)

β being defined as in (51).
Assume for a while that this holds true. Then we have, for all k = {0, . . . ,N −1},

θk ≤ (

δ̄J + eβδ̄D2(|π |))eβδ̄(N−k) − 1

eβδ̄ − 1
and ϑk ≤ eβδ̄ eβ(N−k)δ̄ − 1

eβδ̄ − 1
.(45)

Recalling that δ̄N = C
T , we get the announced inequality.
We now prove (43). Obviously, it holds true for the last step N . Assume now

that it is true at step k + 1, for k < N and that (45) holds for θk+1 and ϑk+1.
In particular, using (42), we observe that

θk+1j ≤ 1, for all j ≤ J − 1.(46)

First step. For j ∈ {0, . . . , J }, let

�̄
j
k := sup

t∈πk

∥∥U(
t, X̄

k,j
t ,

[
X̄

k,j
t

]) − Ȳ
k,j
t

∥∥
2α.

Under (A1)–(A2), we will prove in this first step an upper bound for �̄
j
k , for j =

1, . . . , J , similar to the one obtained in Proposition 3.
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Using (A1) and (H1) and the fact that

Ȳ k,j
rk+1

= U
(
rk+1, X̄

k,j−1
rk+1

,
[
X̄k,j−1

rk+1

]) + εk+1(X̄k,j−1
rk+1

)
,

we observe that

�̄
j
k ≤ e
δ[∥∥U(

rk+1, X̄
k,j
rk+1

,
[
X̄k,j

rk+1

]) − U
(
rk+1, X̄

k,j−1
rk+1

,
[
X̄k,j−1

rk+1

])∥∥
2α

+ ∥∥εk+1(X̄k,j−1
rk+1

)∥∥
2α

]
+ 
 max

jk≤i<jk+1

∥∥X̄k,j
ti

− X̄
k,j−1
ti

∥∥
2α +D1(|π |) +D2(|π |)(1 + ‖ξ‖α

2α

)
≤ C
 max

t∈πk

∥∥X̄k,j
t − X̄

k,j−1
t

∥∥
2α+e
δ

∥∥εk+1(X̄k,j−1
rk+1

)∥∥
2α

+D1(|π |) +D2(|π |)(1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

)
.

(47)

Using (A2), we also have

sup
t∈πk

∥∥X̄k,j
t − X̄

k,j−1
t

∥∥
2α

≤ 
δ sup
t∈πk

[∥∥Ȳ k,j
t − U

(
t, X̄

k,j
t ,

[
X̄

k,j
t

])∥∥
2α + 


∥∥X̄k,j
t − X̄

k,j−1
t

∥∥
2α

+ ∥∥U(
t, X̄

k,j−1
t ,

[
X̄

k,j−1
t

]) − Ȳ
k,j−1
t

∥∥
2α

]
≤ C
δ

(
�̄

j
k + �̄

j−1
k

)
,

for δ small enough. Inserting the previous inequality in (47), we get

�̄
j
k ≤ C
δ�̄

j−1
k + eC
δ

∥∥εk+1(X̄k,j−1
rk+1

)∥∥
2α +D1(|π |)

+D2(|π |)(1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

)
≤ δ̄j �̄0

k + eδ̄
j−1∑
�=0

δ̄�
∥∥εk+1(X̄k,j−1−�

rk+1

)∥∥
2α

+ D1(|π |)
1 − δ̄

+ D2(|π |)
1 − δ̄

(
1 + ∥∥P�

rk,T
(ξ)

∥∥α
2α

)
,

with δ̄ := C
δ. We note that compared to (25), there is a new term, namely
(D1(|π |)+D2(|π |)(1 +‖P�

rk,T
(ξ)‖α

2α)/(1 − δ̄), which is due to the discretization.

Second Step. Using (43) at the previous step k + 1 and noting that �̄0
k ≤ 
(1 +

‖P�
rk,T

(ξ)‖2α) ≤ 2
(1 + ‖P�
rk,T

(ξ)‖α
2α), we claim that

�̄
j
k ≤ (

2
δ̄j + γD2(|π |))(1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

) + γ (ϑk+1 + 1)D1(|π |)
+ eδ̄θk+1

j−1∑
�=0

δ̄j−1−�(1 + ∥∥P�
rk+1,T

(
X̄k,�

rk+1

)∥∥α
2α

)
,

(48)

where γ := eδ̄/(1 − δ̄).
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This corresponds to equation (36) adapted to our context. By (A2) we have, for
� ≤ J − 1,∥∥P�

rk+1,T

(
X̄k,�

rk+1

) − P�
rk+1,T

(
X̄k,0

rk+1

)∥∥
2α ≤ C
 sup

t∈πk

∥∥X̄k,�
t − X̄

k,0
t

∥∥
2α.(49)

Using (A4), we then compute, recalling that Ȳ k,0 = 0,

sup
t∈πk

∥∥X̄k,�
t − X̄

k,0
t

∥∥
2α ≤ 
δ sup

t∈πk

∥∥Ȳ k,�
t

∥∥
2α

≤ 
δ
(
�̄�

k + 
 sup
t∈πk

∥∥X̄k,�
t − X̄

k,0
t

∥∥
2α + 


(
1 + ‖ξ‖2α

))
≤ C
δ�̄�

k + C
δ
(
1 + ‖ξ‖2α

)
,

where for the last inequality we used the fact that δ is small enough. Observing
that ‖ξ‖2α ≤ ‖P�

rk,T
(ξ)‖2α and combining the previous inequality with (49), we

obtain∥∥P�
rk+1,T

(
X̄k,�

rk+1

) − P�
rk+1,T

(
X̄k,0

rk+1

)∥∥
2α ≤ C
δ�̄�

k + C
δ
(
1 + ∥∥P�

rk,T
(ξ)

∥∥
2α

)
.

So that, by using the fact that P�
rk+1,T

(X̄k,0
rk+1

) ≤ P�
rk,T

(ξ) together with a convexity
argument,∥∥P�

rk+1,T

(
X̄k,�

rk+1

)∥∥α
2α

≤ (
C
δ�̄�

k + (1 + C
δ)
(
1 + ∥∥P�

rk,T
(ξ)

∥∥
2α

))α
≤ (1 + 2C
δ)α−1(C
δ

(
�̄�

k

)α + (1 + C
δ)
∥∥P�

rk,T
(ξ)

∥∥α
2α

)
.

Appealing to (A3) and redefining δ̄, we get∥∥P�
rk+1,T

(
X̄k,�

rk+1

)∥∥α
2α ≤ δ̄�̄�

k + eδ̄(1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

)
,

which may be rewritten as

j−1∑
�=0

δ̄j−1−�
∥∥P�

rk+1,T

(
X̄k,�

rk+1

)∥∥α
2α

≤ δ̄

j−1∑
�=1

δ̄j−1−��̄�
k + eδ̄

1 − δ̄

(
1 + ∥∥P�

rk,T
(ξ)

∥∥α
2α

)
.

Recalling the notation γ = eδ̄/(1 − δ̄) and letting S̄n
k := ∑n

i=0 δ̄n−i�̄i
k , we obtain

a new version of (40), namely

�̄
j
k ≤ 
δ̄j

(
1

2
+ ∥∥P�

rk,T
(ξ)

∥∥α
2α

)
+ ā + θk+1γ δ̄S̄j−1

k ,(50)
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where we changed the constant 2
 in (48) into 1
2
 as we changed the value of δ̄,

and where we put

ā = (
γ 2θk+1 + γD2(|π |))(1 + ∥∥P�

rk,T
(ξ)

∥∥α
2α

) + γ (ϑk+1 + 1)D1(|π |).
We straightforwardly deduce that

S̄j
k = �̄

j
k + δ̄S̄j−1

k

≤ 
δ̄j (1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

) + ā + (1 + γ θk+1)δ̄S̄j−1
k

≤ eγ θk+1j δ̄j S̄0
k +

j−1∑
�=0

eγ θk+1�δ̄�(
δ̄j−�(1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

) + ā
)
,

which yields

S̄j
k ≤ 
(j + 2)δ̄j eγ θk+1(j−1)(1 + ∥∥P�

rk,T
(ξ)

∥∥α
2α

) + ā

1 − eγ θk+1 δ̄
,

where we used S̄0
k ≤ 2
(1 + ‖P�

rk,T
(ξ)‖α

2α). Thanks to (50), we get

�̄J
k ≤ 
δ̄J

(
1

2
+ δ̄γ (J + 2)θk+1e

γ θk+1(J−1)

)(
1 + ∥∥P�

rk,T
(ξ)

∥∥α
2α

) + ā

1 − eγ θk+1 δ̄
.

Recalling that (J − 1)θk+1 ≤ 1, we deduce that, for δ̄ small enough,

�̄J
k ≤ (


δ̄J + eβδ̄{θk+1 +D2(|π |)})(1 + ∥∥P�
rk,T

(ξ)
∥∥α

2α

)
+ eβδ̄(ϑk+1 + 1)D1(|π |),

provided that β satisfies

(51)
γ 2

1 − eγ θk+1 δ̄
≤ eβδ̄.

This validates (44) and concludes the proof. �

3.2. Convergence error for the implemented scheme. We now analyze the
global error of our method when the numerical algorithm is given by our bench-
mark Example 2; see Section 4.1.

LEMMA 8 (Scheme stability). Condition (A2) holds true for the scheme given
in Example 2.

PROOF. For k ≤ N − 1, we consider (X̄, Ȳ , Z̄) := solver[k](X̄,η,f)
and (X̄′, Ȳ ′, Z̄′) := solver[k](X̄′,η′,f ′) with X̄rk = X̄′

rk
= ξ . Letting �Xi =

X̄ti − X̄′
ti

and �Yi = Ȳti − Ȳ ′
ti

, we observe

|�Xi+1| ≤
∣∣∣∣∣

i∑
�=jk

(t�+1 − t�)�b�

∣∣∣∣∣ +
∣∣∣∣∣

i∑
�=jk

�σ��W̄�

∣∣∣∣∣,
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for i ∈ {jk, . . . , jk+1}, where �b� := b(X̄t�, Ȳt�, [X̄t�, Ȳt�]) − b(X̄′
t�
, Ȳ ′

t�
, [X̄′

t�
, Ȳ ′

t�
])

and, similarly, �σ� := σ(X̄t�, [X̄t�]) − σ(X̄′
t�
, [X̄′

t�
]).

Invoking the Cauchy–Schwarz inequality for the first term and the Bürkholder–
Davis–Gundy inequality for discrete martingales for the second term and appealing
to the Lipschitz property of b and σ , we get

‖�Xi+1‖2α

≤ Cδ max
�=jk,...,i

(‖�Y�‖2α + ‖�X�‖2α

) + C

∥∥∥∥∥
i∑

�=jk

|�σ�|2 · |�Ŵ�|2
∥∥∥∥∥

1
2

α

≤ Cδ max
�=jk,...,i

(‖�Y�‖2α + ‖�X�‖2α

) + C

(
i∑

�=jk

(t�+1 − t�)‖�X�‖2
2α

) 1
2

≤ Cδ max
�=jk,...,i

(‖�Y�‖2α + ‖�X�‖2α

) + Cδ1/2 max
�=jk,...,i

(‖�X�‖2α

)
,

where we used the identity t�+1 − t� = δ/(jk+1 − jk). For δ small enough (taking
the sup in the sum), we then obtain

max
jk≤i≤jk+1

‖�Xi‖2α ≤ Cδ max
jk≤i≤jk+1

‖�Yi‖2α,(52)

which concludes the proof. �

We now turn to the study of the approximation error.

LEMMA 9. Assume that (H0)–(H1) are in force. Then condition (A1) holds
true for the scheme given in Example 2 with

D1(|π |) ≤ C
√|π | and D2(|π |) ≤ C

√|π |.

PROOF. First Step. Given the scheme defined in Example 2, we introduce its
piecewise continuous version, which we denote by (X̄s)0≤s≤T . For i < n, ti < s <

ti+1,

X̄s := X̄ti + bi(s − ti) + σi

√
s − ti�i,

where (bi, σi) := (b(X̄ti , Ȳti , [X̄ti , Ȳti ]), σ (X̄ti , [X̄ti ])) and � is defined in equa-
tion (24). In preparation for the proof, we also introduce a piecewise càdlàg
version, denoted by (X̄

(λ)
s )0≤s≤T , where λ is a parameter in [0,1). For i < n,

ti < s < ti+1,

X̄(λ)
s := X̄ti + bi(s − ti) + λσi

√
s − ti�i.



NUMERICAL METHOD FOR FBSDES OF MCKEAN–VLASOV TYPE 1667

For the reader’s convenience, we also set

Ūs := U
(
s, X̄s, [X̄s]),

V̄ x
s := ∂xU

(
s, X̄s, [X̄s]),

V̄ μ
s := ∂μU

(
s, X̄s, [X̄s])(〈X̄s〉),

V̄ x,0
s := ∂xU

(
s, X̄(0)

s , [X̄s]).
Applying the discrete Itô formula given in Proposition 14, and using the PDE
solved by U , recall (1), we compute

Ūti+1 = Ūti +
∫ ti+1

ti

V̄ x
s · {b(X̄ti , Ȳti , [X̄ti , Ȳti ]

) − b
(
X̄ti , Ūti , [X̄ti , Ūti ]

)}
ds

+
∫ ti+1

ti

Ê
[
V̄ μ

s · {〈b(X̄ti , Ȳti , [X̄ti , Ȳti ]
) − b

(
X̄ti , Ūti , [X̄ti , Ūti ]

)}〉]
ds

− (ti+1 − ti)f
(
X̄ti , Ūti , σ

†(X̄ti , [X̄ti ]
)
V̄ x

ti
, [X̄ti , Ūti ]

)
+ V̄ x

ti
· (√ti+1 − tiσ

(
X̄ti , [X̄ti ]

)
�i

)
+Rw

i +Rf
i +Rbx

i +Rbμ
i +Rσx

i +Rσμ
i + δM(ti, ti+1)

+ δT (ti, ti+1),

with

Rw
i :=

∫ ti+1

ti

(
V̄ x,0

s − V̄
x,0
ti

) · σ(X̄
(0)
ti

, [X̄ti ])�i

2
√

s − ti
ds,

Rf
i :=

∫ ti+1

ti

{
f
(
X̄s, Ūs, σ

†(X̄s, [X̄s])V̄ x
s , [X̄s, Ūs])

− f
(
X̄ti , Ūti , σ

†(X̄ti , [X̄ti ]
)
V̄ x

ti
, [X̄ti , Ūti ]

)}
ds,

Rbx
i :=

∫ ti+1

ti

V̄ x
s · {b(X̄ti , Ūti , [X̄ti , Ūti ]

) − b
(
X̄s, Ūs, [X̄s, Ūs])}ds,

Rbμ
i :=

∫ ti+1

ti

Ê
[
V̄ μ

s · {〈b(X̄ti , Ūti , [X̄ti , Ūti ]
) − b

(
X̄s, Ūs, [X̄s, Ūs])〉}]ds

and

Rσx
i = 1

2

∫ ti+1

ti

∫ 1

0
�x(s, λ)dλds,

Rσμ
i = 1

2

∫ ti+1

ti

∫ 1

0
�μ(s,λ)dλds,

(53)
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where

�x(s, λ) := Tr
{
∂2
xxU

(
s, X̄(λ)

s , [X̄s])a(X̄ti , [X̄ti ]
)

− ∂2
xxU

(
s, X̄s, [X̄s])a(X̄s, [X̄s])}

�μ(s,λ) := Ê
[

Tr
{
∂v∂μU

(
s, X̄s, [X̄s])(〈X̄(λ)

s

〉)〈
a
(
X̄ti , X̄ti ]

)〉
− ∂v∂μU

(
s, X̄s, [X̄s])(〈X̄s〉)〈a(X̄s, [X̄s])〉}].

Also, δM(ti , ti+1) is a martingale increment satisfying E[|δM(ti, ti+1)|2α |
Fti ]1/(2α) ≤ Chi and ‖δT (ti, ti+1)‖2α ≤ C
h

3
2
i , recall Proposition 14.

Second Step. Denoting �i := �i/
√

ti+1 − ti and

δbi := 1

hi

∫ ti+1

ti

V̄ x
s · {b(X̄ti , Ȳti , [X̄ti , Ȳti ]

) − b
(
X̄ti , Ūti , [X̄ti , Ūti ]

)}
ds

+ 1

hi

∫ ti+1

ti

Ê
[
V̄ μ

s · {〈b(X̄ti , Ȳti , [X̄ti , Ȳti ]
) − b

(
X̄ti , Ūti , [X̄ti , Ūti ]

)〉}]
ds,

the previous equation reads

(54)
Ūti+1 = Ūti + ζi + hi

[
δbi − f

(
X̄ti , Ūti , σ

†(X̄ti , [X̄ti ]
)
V̄ x

ti
, [X̄ti , Ūti ]

)
+ V̄ x

ti
· (σ (

X̄ti , [X̄ti ]
)
�i

)]
,

where

ζi := Rw
i +Rf

i +Rbx
i +Rbμ

i +Rσx
i +Rσμ

i + δM(ti, ti+1) + δT (ti, ti+1).

On the other hand, the scheme can be rewritten as

Ȳti = Ȳti+1 + hif
(
X̄ti , Ȳti , Z̄ti , [X̄ti , Ȳti ]

) − hiZ̄ti · �i − �Mi,(55)

where �Mi satisfies

Eti [�Mi] = 0, Eti [�i · �Mi] = 0 and E
[|�Mi |2] < ∞.(56)

Denoting �Ȳi = Ȳti − Ūti , �Z̄i = Z̄ti − σ †(X̄ti , [X̄ti ])V̄ x
ti

, and adding (54) and
(55), we get

�Ȳi = �Ȳi+1 + hi(δbi + δfi) + ζi − hi�Z̄i · �i − �Mi,(57)

where

δfi = f
(
X̄ti , Ȳti , Z̄ti , [X̄ti , Ȳti ]

) − f
(
X̄ti , Ūti , σ

†(X̄ti , [X̄ti ]
)
V̄ x

ti
, [X̄ti , Ūti ]

)
.

For later use, we observe that

|δbi | + |δfi | ≤ C


(|�Ȳi | + ‖�Ȳi‖2 + |�Z̄i |).(58)
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Summing the equation (57) from i to jk+1 − 1, we obtain

�Ȳi +
jk+1−1∑

�=i

{h��Z̄� · �� + �M�}

= �Ȳjk+1 +
jk+1−1∑

�=i

h�(δb� + δf�) −
jk+1−1∑

�=i

ζ�.

Squaring both sides and taking expectation, we compute, using (56) for the left-
hand side and Young’s and conditional Cauchy–Schwarz inequality for the right-
hand side,

Etq

[|�Ȳi |2] +
jk+1−1∑

�=i

h�Etq

[|�Z̄�|2]

≤ Etq

[
(1 + Cδ)|�Ȳjk+1 |2

+ C

jk+1−1∑
�=i

h�|δb� + δf�|2 + C

δ

(jk+1−1∑
�=i

ζ�

)2]
,

for i ≥ q ≥ jk . Combining (58) and Young’s inequality, this leads to

Etq

[|�Ȳi |2] + 1

2

jk+1−1∑
�=i

h�Etq

[|Z̄�|2]

≤ Etq

[
eCδ|�Ȳjk+1 |2 + C

jk+1−1∑
�=i

h�|�Ȳ�|2 + C

δ

(jk+1−1∑
�=i

ζ�

)2]
.

Using the discrete version of Gronwall’s lemma and recalling that
∑jk+1−1

�=jk
h� = δ,

we obtain, for i = q ,

|�Ȳi |2 ≤ Eti

[
eCδ|�Ȳjk+1 |2 + C

δ
max

jk≤i≤jk+1−1

(jk+1−1∑
�=i

ζ�

)2]
,

and then,

(59)

�2
Y := max

jk≤i≤jk+1
‖�Ȳi‖2

2α

≤ eCδ‖�Ȳjk+1‖2
2α + C

δ

∥∥∥∥ max
jk≤i≤jk+1−1

(jk+1−1∑
�=i

ζ�

)∥∥∥∥∥
2

2α

.

Third Step. To conclude, we need an upper bound for the error
‖maxjk≤i≤jk+1−1(

∑jk+1−1
�=i ζ�)‖2

2αwhere ζ� is defined in (55). To do so, we study
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each term in (55) separately. We also define �X := maxt∈πk ‖X̄t − X̄t‖2α and we
recall that X̄rk = ξ .

Third Step a. We first study the contribution of Rf
i to the global error term and

note that ∥∥∥∥∥ max
jk≤i≤jk+1

(jk+1−1∑
�=i

Rf
�

)∥∥∥∥∥
2

2α

≤ C
δ

|π |
jk+1−1∑
�=jk

∥∥Rf
�

∥∥2
2α.(60)

We will upper bound this last term.
Let us first observe, that, for ti ≤ s ≤ ti+1,∣∣V̄ x

s − V̄ x
ti

∣∣ ≤ ∣∣∂xU
(
s, X̄s, [X̄s]) − ∂xU

(
ti , X̄ti , [X̄ti ]

)∣∣
≤ C

(|X̄s − X̄ti | +W2
([X̄s], [X̄ti ]

) + h
1
2
i

(
1 + |X̄ti | + ‖X̄ti‖2

))
,

where we used the Lipschitz property of ∂xU given in (H1), together with (8) and
(12). Hence, ∥∥V̄ x

s − V̄ x
ti

∥∥2
2α ≤ C

(‖X̄s − X̄ti‖2
2α + hi

(
1 + ‖X̄ti‖2

2α

))
.(61)

From the boundedness of σ and the Lipschitz property of b and U , we compute

‖X̄s − X̄ti‖2
2α ≤ C


(
hi + h2

i ‖Ūti − Yti‖2
2α + h2

i ‖X̄ti‖2
2α

)
.(62)

Using Lemma 15 from the Appendix, we obtain∥∥V̄ x
s − V̄ x

ti

∥∥2
2α ≤ C

(
hi

(
1 + ‖ξ‖2

2α

) + h2
i �

2
Y

)
.

From the boundedness of ∂xU , σ and the Lipschitz property of σ , we obtain∥∥σ †(X̄s, [X̄s])V̄ x
s − σ †(X̄ti , [X̄ti ]

)
V̄ x

ti

∥∥2
2α ≤ C

(
hi

(
1 + ‖ξ‖2

2α

) + h2
i �

2
Y

)
,

where we used the same argument as above to handle the difference between the
two σ terms. Combining the previous inequality with the Lipschitz property of
f and replicating the analysis to handle the difference between the Ū terms, we
deduce ∥∥Rf

i

∥∥2
2α ≤ Ch2

i

(
�2

X + hi

(
1 + ‖ξ‖2

2α

) + h2
i �

2
Y

)
.(63)

Third Step b. Combining the Lipschitz property of b, the fact that |V̄ x
s |2 +

Ê[|V̄ μ
s |2] ≤ C and the Cauchy–Schwarz inequality, we get∥∥Rbx

i

∥∥2
2α + ∥∥Rbμ

i

∥∥2
2α ≤ Ch2

i ‖Ūs − Ūti‖2
2α + ‖X̄s − X̄ti‖2

2α.(64)

Arguing as in the previous step, we easily get∥∥Rb
i

∥∥2
2α ≤ Ch2

i

(
hi

(
1 + ‖ξ‖2

2α

) + h2
i �

2
Y

)
.(65)

Third Step c. We now study the contribution of the terms Rw
i to the global

error. From the independence property of (�i)i=0,...,n−1, we may regard each Rw
�
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as a martingale increment. By Burkholder–Davies–Gundy inequalities for discrete
martingales, we first compute, using the fact that each �i is uniformly bounded,∥∥∥∥∥ max

jk≤i≤jk−1

(jk+1−1∑
�=i

Rw
�

)∥∥∥∥∥
2

2α

≤ C

∥∥∥∥∥
jk+1−1∑
�=jk

∣∣∣∣∫ ti+1

ti

σ †(X̄(0)
ti

, [X̄ti ]
) V̄ 0,x

s − V̄
0,x
ti√

s − ti
ds

∣∣∣∣2
∥∥∥∥∥
α

≤ C

jk+1−1∑
�=jk

hi

(
hi

(
1 + ‖ξ‖2

2α

) +
∥∥∥ sup
s∈[ti ,ti+1]

∣∣X̄(0)
s − X̄ti

∣∣2∥∥∥
α

)
.

Since |X̄(0)
s − X̄ti | ≤ hi |b(X̄ti , Ȳti , [X̄ti , Ȳti ])|, for s ∈ [ti , ti+1], so that ‖X̄(0)

s −
X̄ti‖2α ≤ C
hi(1 + ‖X̄ti‖2α + ‖Ȳti‖2α) ≤ C
hi(1 + ‖X̄ti‖2α + �2

Y ), the previous
inequality, together with Lemma 15, leads to∥∥∥∥∥ max

jk≤i≤jk−1

(jk+1−1∑
�=i

Rw
�

)∥∥∥∥∥
2

2α

≤ Cδ|π |(1 + ‖ξ‖2
2α + |π |�2

Y

)
.

Similarly,∥∥∥∥∥ max
jk≤i≤jk−1

(jk+1−1∑
�=i

δM(t�, t�+1)

)∥∥∥∥∥
2

2α

≤ C

jk+1−1∑
�=jk

∥∥∣∣δM(t�, t�+1)
∣∣2∥∥

α

≤ Cδ|π |.
Hence,

(66)

∥∥∥∥∥ max
jk≤i≤jk−1

(jk+1−1∑
�=i

Rw
�

)∥∥∥∥∥
2

2α

+
∥∥∥∥∥ max
jk≤i≤jk−1

(jk+1−1∑
�=i

δM(t�, t�+1)

)∥∥∥∥∥
2

2α

≤ Cδ|π |(1 + ‖ξ‖2
2α

) + Cδ|π |2�2
Y .

Third Step d. (i) We study the contribution of Rσx
i . We observe that∣∣�x(s, λ)

∣∣ ≤ ∣∣∂2
xxU

(
s, X̄(λ)

s , [X̄s]) − ∂2
xxU

(
s, X̄s, [X̄s])∣∣ · ∣∣a(X̄ti , [X̄ti ]

)∣∣
+ ∣∣∂2

xxU
(
s, X̄s, [X̄s])∣∣ · ∣∣a(X̄ti , [X̄ti ]

) − a
(
X̄s, [X̄s])∣∣,

for s ∈ [ti , ti+1]. Using the boundedness and Lipschitz continuity of ∂2
xxU and σ ,

we get from the previous expression∥∥�x(s, λ)
∥∥2

2α ≤ C
(∥∥X̄(λ)

s − X̄s

∥∥2
2α + ‖X̄s − X̄ti‖2

2α

)
.(67)

Observing that ‖X̄(λ)
s − X̄s‖2α ≤ C

√
hi , we obtain using (62), for ti ≤ s ≤ ti+1∥∥�x(s, λ)

∥∥2
2α ≤ Chi

(
1 + hi‖Ūti − Yti‖2

2α + hi‖X̄ti‖2
2α

)
,
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which leads, using Lemma 15 again, to∥∥Rσx
i

∥∥2
2α ≤ Ch2

i

(
hi + h2

i

(
�2

Y + ‖ξ‖2
2α

))
.(68)

(ii) To study Rσμ
i , we first observe that∣∣�μ(s,λ)

∣∣ ≤ CÊ
[∣∣∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄(λ)

s

〉)
− ∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄s〉)∣∣]

+ Ê
[∣∣∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄s〉)∣∣

· ∣∣〈a(X̄ti , [X̄ti ]
) − a

(
X̄s, [X̄s])〉∣∣].

(69)

For the last term, we combine the Cauchy–Schwarz inequality (10) and bounded-
ness and Lipschitz continuity of σ to get

Ê
[∣∣∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄s〉)∣∣ · ∣∣〈a(X̄ti , [X̄ti ]

) − a
(
X̄s, [X̄s])〉∣∣]

≤ C‖X̄ti − X̄s‖2 ≤ C‖X̄ti − X̄s‖2α.

Recalling from (62) that ‖X̄s − X̄ti‖2
2α ≤ C
(hi + h2

i (�
2
Y + ‖X̄ti‖2

2α)), we obtain,
using Lemma 15, that

Ê
[∣∣∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄s〉)∣∣ · ∣∣〈a(X̄ti , [X̄ti ]

) − a
(
X̄s, [X̄s])〉∣∣]

≤ C
h
1
2
i

(
1 + h

1
2
i

{
�Y + ‖ξ‖2α

})
.

(70)

For the first term in (69), we use (H1) equation (13) to get∣∣∂υ∂μU
(
s, X̄s, [X̄s])(〈X̄(λ)

s

〉) − ∂υ∂μU
(
s, X̄s, [X̄s])(〈X̄s〉)∣∣

≤ C
{
1 + ∣∣〈X̄(λ)

s

〉∣∣2α + ∣∣〈X̄s〉
∣∣2α + ‖X̄s‖2α

2
} 1

2
∣∣〈X̄(λ)

s

〉 − 〈X̄s〉
∣∣.

By the Cauchy–Schwarz inequality, we obtain

Ê
[∣∣{∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄(λ)

s

〉) − ∂υ∂μU
(
s, X̄s, [X̄s])(〈X̄s〉)}∣∣]

≤ C
√

hi

(
1 + ∥∥X̄(λ)

s

∥∥α
2α + ‖X̄s‖α

2α

)
.

(71)

We then observe that∥∥X̄(λ)
s

∥∥
2α + ‖X̄s‖2α ≤ C

(‖X̄ti‖2α + hi‖Ūti − Ȳti‖2α + √
hi

)
≤ C

(
1 + ‖ξ‖2α + δ�Y

)
,

where we used Lemma 15 for the last inequality. Combining the last inequality
with (71) and using also (70), we compute∣∣Rσμ

i

∣∣ ≤ Ch
3
2
i

(
1 + ‖ξ‖2α + δ�Y

)
,
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and then ∥∥∥∥∥
jk+1−1∑
�=jk

∣∣Rσμ
�

∣∣∥∥∥∥∥
2

2α

≤ C|π |δ2(1 + δ2�2
Y + ‖ξ‖2

2α

)
.(72)

Fourth step. Collecting the estimates (63), (65) and (68), we compute(jk+1−1∑
�=jk

∥∥Rf
� +Rb

� +Rσx
�

∥∥
2α

)2

≤ Cδ2(�2
X + |π |{1 + ‖ξ‖2

2α

} + |π |2�2
Y

)
.

Observing that (jk+1−1∑
�=jk

∥∥δT (ti, ti+1)
∥∥

2α

)2

≤ Cδ2|π |,

and combining the previous inequality with (72), (66) and (59), we obtain

�2
Y ≤ eCδ‖Ūrk+1 − Ȳrk+1‖2

2α + C
(
δ�2

X + |π |(1 + ‖ξ‖2
2α

) + |π |δ�2
Y

)
,

which concludes the proof for δ small enough. �

LEMMA 10. Assume that g and f (·,0,0, [·,0]) are bounded. Then (A3) is
satisfied whatever the value of α.

PROOF. It suffices to prove that U is bounded on the whole space and that Ȳ

is bounded independently of the discretization parameters.
We refer to [21] for the proof of the boundedness of U .
The bound for Ȳ may obtained by squaring (55) and then by taking the con-

ditional expectation exactly as done in the second step of the proof of Lemma 9.
�

Assumptions (A4) and (A5) are easily checked. It suffices to observe that
(Prk,t (ξ))t∈π,t≥rk coincides with the solution of the discrete Euler scheme:

X̄0
ti+1

= X̄0
ti

+ (ti+1 − ti)b
(
X0

ti
,0,

[
X0

ti
,0

]) + √
ti+1 − tiσ

(
X0

ti
,
[
X0

ti

])
�i,

with X̄0
rk

= ξ as initial condition.
Combining Lemma 9, Lemma 8 and Lemma 10 with Theorem 7, we have the

following result.

COROLLARY 11. Under (H1)–(H0), assuming (42), the following holds:∥∥solver[k](ξ)− U
(
rk, ξ, [ξ ])∥∥2α

≤ C
(
(Cδ)J−1 + |π | 1

2 δ−1(1 + ‖ξ‖2α

))
,

for δ̄ small enough.
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The first term in the right-hand side is connected with the local Picard iterations
on a step of length δ. As expected, it decreases geometrically fast with the number
of iterations. The second term is due to the propagation of the error along the

mesh. The leading term |π | 1
2 is consistent with that observed for classical forward–

backward systems; see, for instance, [22, 23]. The normalization by δ is due to the
propagation of the error through the successive local solvers.

4. Numerical applications. In practice, we would like to approximate the
value of U(0, ·) at some point (x,μ) ∈ R

d ×P2(R
d). In the first section below, we

explain how to retrieve such approximation using the approximation of U(0, ξ, [ξ ])
given by the algorithm solver[0](), for some ξ ∼ μ. In a second part, we dis-
cuss the numerical results obtained by implementing solver[0]() with two
levels, that is, N = 2. In particular, we show that it is more efficient than an algo-
rithm based simply on Picard iterations.

4.1. Approximation of U(0, x,μ). The goal of this section is to show how to
obtain an approximation of U(0, x, [ξ ]) with ξ ∼ μ and x ∈ supp(μ). We will as-
sume that we thus have at hand a discrete valued random variable ξ |π | ∼ μ|π | =∑M

�=1 p�δx� such that μ|π | is a good approximation of μ for the Wasserstein dis-
tance. For instance, such an approximation can be constructed by using quantiza-
tion techniques. Then we can use solver[0](ξ |π |) to obtain an approximation
of U(0, ξ |π |, [ξ |π |]).

Note that solver[0](ξ |π |) is a discrete random variable as the algorithm
is initialized by a discrete random variable as well. In practice, this means that
each point x� will be the root of a tree and will be associated to an output value
y� = U(0, x�, [ξ |π |]) and that solver[0](ξ |π |) is a random variable with distri-
bution

∑M
�=1 p�δỹ� , where ỹ� stands for the approximation of y�. It is important to

remark that the computations on the trees are connected via the McKean–Vlasov
interaction.

Using the Lipschitz continuity of U , one easily obtains∣∣U(0, x,μ) − U
(
0, x�̄,μ|π |)∣∣ ≤ C

(
min

y∈supp([ξ |π |])
|y − x| +W2

(
μ|π |,μ

))
=: E1

(|π |, ξ ),(73)

where x�̄ is a point in the support of μ|π | realizing the minimum in the first line.

REMARK 12. In many cases, it will be easy to have x ∈ supp(μ|π |) and thus
reduce the above error to the term W2(μ

|π |,μ). This is obviously the case if ξ is
deterministic.

As mentioned above, the approximation ỹ�̄ of U(0, x�̄,μ|π |) is obtained by run-
ning solver[0](ξ |π |) and by taking its value on the tree initiated at x�̄. The
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corresponding pointwise error is given by

(74) E2
(|π |, δ, ξ ) := ∣∣y�̄ − U

(
0, x�̄,

[
ξ |π |])∣∣.

Of a course, this might be estimated by

E2
(|π |, δ, ξ ) ≤ 1

p�̄

∥∥U(
0, ξ |π |,

[
ξ |π |]) − solver[0]

(
ξ |π |)∥∥

2,

but this is very poor when the initial distribution μ is diffuse and accordingly when
μ|π | has a large support, in which case p�̄ is expected to be small.

To bypass this difficulty, we must regard E2(|π |, δ, ξ) as a conditional error.
Somehow, it is the error of the numerical scheme conditional on the initial root of
the tree. It requires a new analysis, but it should not be so challenging: Now that
we have investigated the error for the McKean–Vlasov component, we can easily
revisit the proof of Theorem 7 in order to derive a bound for this conditional error.

Instead of revisiting the whole proof, we can argue by doubling the variables.
For ξ and x as above, we can regard the four equations (2), (3), (4) and (5) as a
single forward–backward system of the McKean–Vlasov type. The forward com-
ponent of such a doubled system is X = (X0,x,μ,X0,ξ ) and the backward com-
ponents are Y = (Y 0,x,μ, Y 0,ξ ) and Z = (Z0,x,μ,Z0,ξ ). Except for the fact that
the dimension of X is no longer equal to the dimension of the noise, which we
assumed to be true for convenience only, and for the fact that Y takes values in
R

2, the setting is exactly the same as before, namely (X,Y,Z) can be regarded as
the solution of a McKean–Vlasov forward–backward SDE in which the mean field
component reduces to the marginal law of (X0,ξ , Y 0,ξ ). We observe in particular
that

Y
0,x,μ
t = U

(
t,X

0,x,μ
t ,

[
X

0,ξ
t

])
, Y

0,ξ
t = U

(
t,X

0,ξ
t ,

[
X

0,ξ
t

])
, t ∈ [0, T ],

with similar relationships for Z0,x,μ and Z0,ξ . Hence, Yt (and Zt ) can be repre-
sented as a function of X, which was the key assumption in our analysis. For sure,
the fact that Y takes values in dimension 2 is not a limitation for duplicating the
arguments used to prove Theorem 7.

Numerically speaking, the tree initiated at root x�̄ under the initial distribution

μ|π | provides an approximation of U(0, x�̄, [ξ |π |]), which is equal to Y 0,x�̄,[ξ |π |]. So
our numerical (implemented) scheme is in fact a numerical scheme for the whole
process (X,Y,Z).

This leads us to the following result.

THEOREM 13. Whenever ξ |π | has distribution
∑M

�=1 p�δx� ,
solver[0](ξ |π |) has distribution

∑M
�=1 p�δỹ� , where ỹ� is the realization of

the random variable solver[0](ξ |π |) on the event ξ |π | = x�. Then, if, for a
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given x ∈ R
d , we call �̄ an index such that |x�̄ − x| achieves the minimum in

miny∈supp([ξ |π |]) |y − x|, then the distance between ỹ�̄ and U(0, x,μ) is less than∣∣U(0, x,μ) − ỹ�̄
∣∣ ≤ E1

(|π |, ξ ) + E2
(|π |, δ, ξ ),

where E2(|π |, δ, ξ) can be estimated by Corollary 11, with (1 + ‖ξ‖2α) replaced
by (1 + |x�̄| + ‖ξ‖2α).

4.2. Numerical illustration. In this section, we will prove empirically the con-
vergence of the approximation obtained by the solver solver[](). In particular,
we will compare the output of our algorithm solver[](), when implemented
with two levels, that is, N = 2 (we simply call it two-level algorithm), with the
output of a basic algorithm based only on Picard iterations, which can be seen as
a solver solver[](), but with only one level, that is, N = 1 (we simply call it
one-level algorithm). In both cases, we use Example 2 as discretization scheme,
with a standard Bernoulli quantization of the normal distribution, d being equal to
1. In the numerical studies below, we show that the two-level algorithm converges
in case when the one-level algorithm fails.

4.2.1. The example of a linear model. In this part, we compare the output of
both algorithms for the following linear model where a closed-form solution is
available:

dXt = −ρE[Y ]t dt + σ dWt, X0 = x,

dYt = −aYt dt + Zt dWt and YT = XT ,

for ρ,a > 0, and the true solution for E[X0] = m0 is given by

Y0 = m0e
aT

1 + ρ
a
(eaT − 1)

.

The errors for various time steps and for both algorithms are shown on the log-
log error plot of Figure 1. The parameters are fixed as follows: ρ = 0.1, a = 0.25,
σ = 1, T = 1 and x = 2. Moreover, the two-level algorithm uses 5 Picard iterations
per level, and the one-level algorithm computes 25 Picard iterations.

4.2.2. Efficiency of the solver[]() algorithm. In this section, we compare
the two-level algorithm and the one-level algorithm on two models, for which ex-
istence and uniqueness to the master equation (or the FBSDE system) hold true for
any arbitrary terminal time T and Lipschitz constant L of the coefficients function.
Nevertheless, as stated in the theorems above, the convergence of the algorithms
is guaranteed only for a period of time which are controlled by L and T . Here, we
fix the terminal date T and allow L to vary with the use of a coupling parameter ρ;
see equations (75) (for a case without McKean–Vlasov interaction) and (76) (for
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FIG. 1. Convergence of the algorithms: log-log error plot for the same data as in the text. We can
observe that both algorithms return the same value which is close to the true value. This validates
the convergence of both methods in this simple linear setting.

a case with McKean–Vlasov interaction). We will see below that, as expected, the
two-level algorithm converges for a larger range of coupling parameter than the
one-level algorithm.

An example with no McKean–Vlasov interaction. Here, the model is the follow-
ing:

(75)
dXt = ρ cos(Yt )dt + σ dWt, X0 = x,

Yt = Et

[
sin(XT )

]
.

On Figure 2, we plot the output of the two-level and one-level algorithm along
with a proxy of the true solution computed by usual BSDE approximation method
(after a Girsanov transform) and with a very high-level of precision. On the graph,
the value Y0 stands for the approximation of U(0, x): There is no dependence upon
the initial measure as there is no McKean–Vlasov interaction in this example. The
parameters are fixed as follows: σ = 1, T = 1 and x = 0. Moreover, the two-level
algorithm uses 5 Picard iterations per level, and the one-level algorithm computes
25 Picard iterations.

An example from large population stochastic control. For this part, the model is
given by

(76)
dXt = −ρYt dt + dWt, X0 = x,

dYt = atan
(
E[Xt ])dt + Zt dWt and YT = G′(XT ) := atan(XT ).
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FIG. 2. Comparison of algorithms’ output for different value of the coupling parameter and for the
same data as in Example (75): two-level (black star), one-level (blue cross), true value (red line). The
two-level algorithm converges for larger coupling parameter than the one-level algorithm. It is close
to the true solution up to parameter ρ = 7, the discrepancy for large coupling parameter coming
most probably from the discrete-time error. Interestingly, the one-level algorithm shows bifurcations.

It comes from the Pontryagin principle applied to the Mean-Field Game

inf
α
E

[
G

(
Xα

t

) +
∫ T

0

(
1

2ρ
α2

t + Xα
t atan

(
E
[
Xα

t

]))
dt

]
with dXα

t = αt dt + dWt ; see, for example, [17].
We do not know the exact solution for this model and it is not possible to ob-

tain easily an approximation as in the previous example. We plot on Figure 3, the
output value of the one-level algorithm and two-level algorithm. On the graph, the
value Y0 stands for the approximation of U(0, x, δx). The parameters are fixed as
follows: σ = 1, T = 1 and x = 1. Moreover, the two-level algorithm uses 5 Picard
iterations per level, and the one-level algorithm computes 25 Picard iterations.

APPENDIX

A.1. A discrete Itô formula. We consider the following Euler scheme on the
discrete time grid π of the interval [0, T ] (recall (22)):

X̄ti+1 = X̄ti + bi(ti+1 − ti) + σi

√
ti+1 − ti�i,(77)

where (�i)i≤n are i.i.d. centered R
d -valued random variables such that the co-

variance matrix E[�i�
†
i ] is the identity matrix and ‖�i‖2

2α ≤ 
hi , and (bi, σi) ∈
L2(Fti ), for all i ≤ n.
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FIG. 3. Algorithms’ output for the same data as in Example (76): one-level algorithm (blue line),
two-level algorithm (black line). We observe the same phenomenon as in the previous model: The
two-level algorithm converges to a unique value for a larger range of coupling parameter than the
one-level algorithm, which exhibits a bifurcation. Observe that the two-level algorithm fails to con-
verge at some points: One should add a level of computation to shorten the time period δ.

We also introduce a piecewise continuous version of the previous scheme, for
i < n, ti ≤ s < ti+1 and λ ∈ [0,1], the process (X̄

(λ)
t )0≤t≤T ,

X̄(λ)
s = X̄ti + bi(s − ti) + σiλ

√
s − ti�i(78)

and X̄
(λ)
tn = X̄tn . Following the notation used in the proof of Lemma 9, we just

write (X̄s)0≤s≤T for (X̄
(1)
s )0≤s≤T , which defines a continuous version of the Euler

scheme given in (77).

PROPOSITION 14. For any i ∈ {0, . . . , n − 1}, the following holds true:

U
(
ti+1, X̄ti+1, [X̄ti+1]

)
= U

(
ti , X̄ti , [X̄ti ]

) +
∫ ti+1

ti

∂tU
(
s, X̄s, [X̄s])ds

+
∫ ti+1

ti

(
∂xU

(
s, X̄s, [X̄s]) · bi + 1

2

∫ 1

0
Tr

[
∂2
xxU

(
s, X̄(λ)

s , [X̄s])ai

]
dλ

)
ds

+
∫ ti+1

ti

Ê
[
∂μU

(
s, X̄s, [X̄s])(〈X̄s〉) · 〈bi〉]ds

+ 1

2

∫ 1

0
Ê
[
Tr

[
∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄(λ)

s

〉)〈ai〉]dλ
]
ds
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+
∫ ti+1

ti

∂xU
(
s, X̄(0)

s , [X̄s]) σi�i

2
√

s − ti
ds + δM(ti, ti+1) + δT (ti, ti+1),

where ai is here equal to σiσ
†
i , and δM(ti, ti+1) is a martingale increment satis-

fying ‖δM(ti , ti+1)‖2α ≤ C
h2
i and ‖δT (ti , ti+1)‖2α ≤ C
h

3
2
i .

PROOF. By writing

X̄ti+1 = X̄ti +
∫ ti+1

ti

(
bi + σi�i

2
√

s − ti

)
ds,

and by using the standard chain rule for continuously differentiable functions on a
Hilbert space, we get

U
(
ti+1, X̄ti+1, [X̄ti+1]

)
= U

(
ti , X̄ti , [X̄ti ]

) +
∫ ti+1

ti

∂tU
(
s, X̄s, [X̄s])ds

+
∫ ti+1

ti

(
∂xU

(
s, X̄s, [X̄s]) ·

(
bi + σi�i

2
√

s − ti

)
ds

+ Ê

[
∂μU

(
s, X̄s, [X̄s])(〈X̄s〉) ·

〈
bi + σi�i

2
√

s − ti

〉])
ds.

Now we observe that

∂xU
(
s, X̄s, [X̄s])
= ∂xU

(
s, X̄(0)

s , [X̄s]) + √
s − ti

∫ 1

0
∂2
xxU

(
s, X̄(λ)

s , [X̄s])σi�i dλ

= ∂xU
(
s, X̄(0)

s , [X̄s]) + √
s − ti∂

2
xxU

(
s, X̄(0)

s , [X̄s])σi�i

+ √
s − tiT1(s),

where T1(s) is a random variable defined on (	,F,P) such that ‖T1(s)‖2α ≤ Ch
1
2
i ,

and

∂μU
(
s, X̄s, [X̄s])(〈X̄s〉)
= ∂μU

(
s, X̄s, [X̄s])(〈X̄(0)

s

〉)
+ √

s − ti

∫ 1

0
∂υ∂μU

(
s, X̄s, [X̄s])(〈X̄(λ)

s

〉)〈σi�i〉dλ

= ∂μU
(
s, X̄s, [X̄s])(〈X̄(0)

s

〉)
+ √

s − ti∂v∂μU
(
s, X̄s, [X̄s])(〈X̄(0)

s

〉)〈σi�i〉 + √
s − tiT2(s),
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where T2(s) is a random variable on the enlarged space (	 × 	̂,F ⊗ F̂,P ⊗ P̂)

such that hatE[|T2(s)|2α]1/(2α) ≤ Ch
1
2
i .

We insert these expansions back into the identity we obtained for the term
U(ti+1, X̄ti+1, [X̄ti+1]). We let

δM(ti , ti+1) = 1

2

∫ ti+1

ti

[
∂2
xxU

(
s, X̄(0)

s , [X̄s])σi�i · (σi�i)

−Eti

[
∂2
xxU

(
s, X̄(0)

s , [X̄s])σi�i · (σi�i)
]]

ds,

δT (ti , ti+1) = 1

2

∫ ti+1

ti

(
T1(s) + T2(s)

) · σi�i ds.

It defines a martingale increment satisfying Eti [|δM(ti, ti+1)|2α]1/(2α) ≤ Chi . Ob-
serving that, for ti ≤ s ≤ ti+1,

Ê
[
∂μU

(
s, X̄s, [X̄s])(〈X̄(0)

s

〉) · 〈σi�i〉] = 0,

Eti

[
∂2
xxU

(
s, X̄(0)

s , [X̄s])σi�i · (σi�i)
] = Eti

[
Tr

(
∂2
xxU

(
s, X̄(0)

s , [X̄s])ai

)]
,

Eti

[
∂2
xxU

(
s, X̄(0)

s , [X̄s])σi�i · (σi�i)
] = Eti

[
Tr

(
∂2
xxU

(
s, X̄(0)

s , [X̄s])ai

)]
,

Ê
[
∂v∂μU

(
s, X̄s, [X̄s])(〈X̄(0)

s

〉)√
s − ti〈σi�i〉 · 〈σi�i〉]

= Ê
[
Tr

(
∂v∂μU

(
s, X̄s, [X̄s])(〈X̄(0)

s

〉)〈ai〉)],
we complete the proof. �

A.2. Estimates for the scheme given in Example 2.

LEMMA 15. Under (H0)–(H1), the following holds for the forward compo-
nent of the scheme given in Example 2 and its continuous version,

max
t∈πk

‖X̄t‖2α ≤ C


(
1 + ‖X̄rk‖2α + δ max

t∈πk

∥∥U(
t, X̄t , [X̄t ]) − Yt

∥∥
2α

)
.(79)

PROOF. We introduce di := |U(ti , X̄ti , [X̄ti ]) − Ȳti | and observe from the Lip-
schitz property of b and U that∣∣b(X̄ti , Ȳti , [X̄ti , Ȳti ]

)∣∣ ≤ C


(
1 + |X̄ti | + ‖X̄ti‖2α + di + ‖di‖2α

)
.(80)

Recall that the scheme for the forward component reads

X̄ti+1 = X̄rk +
i∑

�=jk

b
(
X̄t�, Ȳt� , [X̄t�, Ȳt�]

)
(t�+1 − t�)

+
i∑

�=jk

σ
(
X̄t�, [X̄t�]

)
�W̄�.
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Squaring the previous inequality, using the Cauchy–Schwarz inequality for the first
sum and the martingale property for the second sum, we obtain

‖X̄ti+1‖2
2α ≤ C‖X̄rk‖2

2α + C

i∑
�=jk

h�

(
δ
∥∥b(X̄t�, Ȳt�, [X̄t�, Ȳt�]

)∥∥2
2α

+ ∥∥σ (
X̄t�, [X̄t�]

)∥∥2
2α

)
,

where we used again Bürkholder–Davis–Gundy inequality for discrete martin-
gales.

Combining (80) with the boundedness of σ , we then have

‖X̄ti+1‖2
2α ≤ C

(
‖X̄rk‖2

2α + δ + δ2 max
jk≤i<jk+1

‖di‖2
2α + Cδ

i∑
�=jk

h�‖X̄t�‖2
2α

)
.

Using the discrete version of Gronwall’s lemma, the result easily follows. �
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