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DETERMINANT OF SAMPLE CORRELATION MATRIX
WITH APPLICATION

BY TIEFENG JIANG1

University of Minnesota

Let x1, . . . ,xn be independent random vectors of a common p-dimen-
sional normal distribution with population correlation matrix Rn. The sample
correlation matrix R̂n = (r̂ij )p×p is generated from x1, . . . ,xn such that r̂ij
is the Pearson correlation coefficient between the ith column and the j th
column of the data matrix (x1, . . . ,xn)′. The matrix R̂n is a popular object
in multivariate analysis and it has many connections to other problems. We
derive a central limit theorem (CLT) for the logarithm of the determinant of
R̂n for a big class of Rn. The expressions of mean and the variance in the CLT
are not obvious, and they are not known before. In particular, the CLT holds
if p/n has a nonzero limit and the smallest eigenvalue of Rn is larger than
1/2. Besides, a formula of the moments of |R̂n| and a new method of showing
weak convergence are introduced. We apply the CLT to a high-dimensional
statistical test.

1. Introduction. We first give a background of the sample correlation matrix,
then state our main result. Two new tools are introduced and the method of the
proof is elaborated by using them. At last an application is presented.

1.1. Main results. Let x1, . . . ,xn be a sequence of independent random vec-
tors from a common distribution Np(μ,�), that is, a p-dimensional normal dis-
tribution with mean vector μ and covariance matrix � = (σij )p×p . We always
assume σii > 0 for each i to avoid trivial cases. In order to take limit in n, the
dimension p is assumed to depend on n and is written by pn. Sometimes we write
p for pn and � for �n to ease notation. The corresponding correlation matrix
Rn = (rij )p×p is defined by

(1.1) rii = 1 and rij = σij√
σiiσjj

for all 1 ≤ i �= j ≤ p. Write X = (xij )n×p = (x1, . . . ,xn)
′. Let r̂ij denote the Pear-

son correlation coefficient between (x1i , . . . , xni)
′ and (x1j , . . . , xnj )

′, given by

(1.2) r̂ij =
∑n

k=1(xki − x̄i)(xkj − x̄j )√∑n
k=1(xki − x̄i )2 ·∑n

k=1(xkj − x̄j )2
,
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where x̄i = 1
n

∑n
k=1 xki and x̄j = 1

n

∑n
k=1 xkj . Then the sample correlation matrix

obtained from the random sample x1, . . . ,xn is defined by

(1.3) R̂n := (r̂ij )p×p.

A natural requirement for nonsingularity of R̂n is n > p. In this paper, we will
prove that log |R̂n|, the logarithm of the determinant of R̂n, satisfies the central
limit theorem (CLT) under suitable assumption on �. Our theorem holds for a big
class of Rn containing I, in particular, for Rn generated by x1 as in (1.1) such that
the p entries of x1 are far from independent.

In the next section, we will review the literature on R̂n and narrate our motiva-
tion to investigate log |R̂n|.

The sample correlation matrix R̂n is a popular target in multivariate analysis,
a subject in statistics; see, for example, the classical books by Anderson (1958),
Muirhead (1982) and Eaton (1983). Particularly, |R̂n| is the likelihood ratio test
statistic for testing that the p entries of X1 are independent, but not necessarily
identically distributed. If Rn = I, some are understood about R̂n. For example, the
density of |R̂n| is given by

Constant · |Rn|(n−p−2)/2dRn;
see, for example, Theorem 5.1.3 in Muirhead (1982). Unfortunately, the density
of the eigenvalues of R̂n is not known because R̂n does not have the orthogonal
invariance that standard random matrices (e.g., the Hermite ensemble, the Laguerre
ensemble and the Jacobi ensemble) usually have. As a consequence, unlike typical
random matrices, the research on R̂n cannot rely on the density of its eigenvalues.
This makes any efforts more involved.

On the other hand, the largest entries of R̂n is related to other statistical testing
problems, random packing on spheres in R

p and the seventh most challenging
problem in the twenty-first century by Smale [Jiang (2004a) and Cai, Fan and
Jiang (2013)]. For example, Smale (2000) asks a packing of n points on the unit
sphere such that the product of all pairwise distances among the n points almost
attains its largest value. There are also investigations on the least moment condition
to guarantee the limit law of the largest element of R̂n; see, for example, Li and
Rosalsky (2006), Zhou (2007) and Li, Liu and Rosalsky (2010).

Again, under Rn = I, some of the behaviors of the eigenvalues of R̂n are known.
The empirical distribution of the eigenvalues of R̂n satisfies the Marc̆enko–Pastur
law Jiang, 2004b; the largest eigenvalue of R̂n asymptotically satisfies the Tracy–
Widom law [Bao, Pan and Zhou (2012)]; the quantity log |R̂n| satisfies the CLT
[Jiang and Yang (2013) and Jiang and Qi (2015)].

To our knowledge, little is understood on R̂n as Rn �= I. In particular, there is
no CLT for log |R̂n| as Rn �= I.
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Our motivations in this paper to study the CLT of log |R̂n| for � �= I are as fol-
lows. First, we plan to understand its behavior in general. Second, there is some
recent interest to study the determinants of various random matrices. For instance,
Tao and Vu (2012) and Nguyen and Vu (2014) derive the CLT for the determi-
nants of Wigner matrices; Cai, Liang and Zhou (2015) derive the CLT for sample
covariance matrices. So it is natural to look into |R̂n|. Lastly, when we study the
power for the hypothesis test H0, the entries of X1 are completely independent; we
need to derive the asymptotic distribution of log |R̂n| under Rn �= I. This problem
occurs in the high-dimensional statistics, which together with machine learning
forms the most important tools to study big data. We will further elaborate the test
in Section 1.3.

Before introducing our main results, we need some notation. For matrix M =
(mij )p×p , set ‖M‖∞ = max1≤i,j≤p |mij | and ‖M‖2 = (

∑
i,j |mij |2)1/2. We de-

note by ‖M‖ the spectral norm of M, equivalently, the largest singular value of M.
The notation |M| stands for the determinant of M. If M is symmetric, its small-
est eigenvalue is denoted by λmin(M). In particular, if Rn is positive definite, then
λmin(Rn) ∈ (0,1] due to the fact rii = 1 (see also Lemma 2.3). Keep in mind that
Rn is nonrandom and R̂n is a random matrix constructed from data. We adopt the
convention 0

0 = 1.
In this paper, we derive the following CLT for the sample correlation matrix.

THEOREM 1. Assume p := pn satisfy that n > p + 4 and p → ∞.
Let x1, . . . ,xn be i.i.d. from Np(μ,�) and R̂n be as in (1.3). Suppose that
infn≥6 λmin(Rn) > 1

2 . Set

μn =
(
p − n + 3

2

)
log
(

1 − p

n − 1

)
− n − 2

n − 1
p + log |Rn|;

σ 2
n = −2

[
p

n − 1
+ log

(
1 − p

n − 1

)]
+ 2

n − 1
tr
[
(Rn − I)2].

Then (log |R̂n| − μn)/σn converges weakly to N(0,1) as n → ∞ provided one of
the following holds:

(i) infn≥6
pn

n
> 0;

(ii) infn≥6
1
n

tr[(Rn − I)2] > 0;

(iii) supn≥6
pn‖Rn−I‖∞

‖Rn−I‖2
< ∞.

It is not intuitive to see or guess why μn and σ 2
n have the expressions in Theo-

rem 1. They come purely from computation.
Condition (i) is particularly valid if pn

n
→ c ∈ (0,1]. Reading σ 2

n , conditions
(ii) says the entries of Rn and/or pn are large enough. Naturally, ‖Rn − I‖2 ≤
p‖Rn − I‖∞, so condition (iii) is equivalent to that ‖Rn − I‖2 ≤ p‖Rn − I‖∞ ≤
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K‖Rn−I‖2 for all n ≥ 6, where K is a constant not depending on n. This condition
says that almost all of the entries of Rn − I are at the same magnitude.

The condition infn≥6 λmin(Rn) > 1
2 in Theorem 1 is used in Lemma 2.16. The

number “ 1
2 ” comes essentially from the Gaussian density const · e− 1

2 x2
. Literally,

it is related to “ 1
2m” in (1.5). It will be interesting to see if the limiting distribution

is still the normal distribution when λmin(Rn) ≤ 1
2 .

Take Rn = I in Theorem 1, then pn‖Rn − I‖∞ = ‖Rn − I‖2 = 0. So (iii)
above holds and log |Rn| = tr[(Rn − I)2] = 0; the conclusion becomes Corol-
lary 3 from Jiang and Qi (2015). Now let us look at a case where Rn is of “com-
pound symmetry structure,” that is, all of the off-diagonal entries of Rn are equal
to a ∈ [0,1/2), then Rn has eigenvalues (1 − a) + ap,1 − a, . . . ,1 − a. Hence
λmin(Rn) = 1 − a > 1

2 . Obviously, ‖Rn − I‖∞ = a and ‖Rn − I‖2 = a
√

p(p − 1)

for all n ≥ 6. So condition (iii) from Theorem 1 holds. We then have the following
conclusion.

COROLLARY 1. Assume p := pn satisfy that n > p + 4 and p → ∞. Let
x1, . . . ,xn be i.i.d. from Np(μ,�) and R̂n be as in (1.3). Assume the off-diagonal
entries of Rn are all equal to an ≥ 0 for each n and satisfy supn≥4 an < 1/2. Then

(log |R̂n| − μn)/σn goes to N(0,1) weakly as n → ∞, where μn and σn are as in
Theorem 1 with

|Rn| = (
1 + an(p − 1)

)
(1 − an)

p−1 and tr
[
(Rn − I)2]= p(p − 1)a2

n.

Now we apply Theorem 1 to the correlation matrix from AR(1) and a banded
correlation matrix. The notation AR(1) stands for the autoregressive process of
order one [see, e.g., Brockwell and Davis (2002)]. Both are very popular models
in statistics.

COROLLARY 2. Assuming the set-up in Theorem 1 with infn≥6
pn

n
> 0, the

following is true:

(i) Let ρ be a constant with |ρ| < 1
5 . If Rn = (rij )p×p with rij = ρ|i−j | for all

1 ≤ i, j ≤ p, then the CLT in Theorem 1 holds.
(ii) Let k ≥ 1 be a constant integer. Suppose Rn = (rij )p×p satisfies rij = 0 for

|j − i| > k and supn≥6 maxi �=j |rij | < 1
4k

. Then the CLT in Theorem 1 holds.

Corollary 2 will be checked at the end of Section 2.6. Besides the three special
matrices of Rn studied in the above, there are a lot of other patterned matrices
including the Toeplitz matrices, the Hankel matrices and the symmetric circulant
matrices; see, for example, Brockwell and Davis (2002). One needs to check if the
smallest eigenvalue of Rn is larger than 1/2. If so, the CLT holds.

The proof of Theorem 1 is relatively lengthy. It needs some new tools. The tools
and the method of the proof are introduced Section 1.2. In addition, we obtain some
interesting matrix inequalities as byproducts. They are stated in Section 2.2.



1360 T. JIANG

1.2. New tools and strategy of proofs. Under � = Ip , Jiang and Yang
(2013) and Jiang and Qi (2015) prove that Ln := (log |R̂n| − μn)/σn converges
weakly to N(0,1); see Theorem 1 by taking � = Ip . The argument is show-

ing limn→∞ EetLn = et2/2 for t ∈ (−t0, t0). The proof may fail if the limit holds
only for t in an half interval [0, t0] or [−t0,0]. Of course, the exact expression of
E[|R̂n|t ] is crucial. So we prefer to get a closed form of E[|R̂n|s] as � �= Ip . To
see what we are able to obtain, define

(1.4) �p(z) := πp(p−1)/4
p∏

i=1

�

(
z − 1

2
(i − 1)

)

for complex number z with Re(z) > 1
2(p − 1); see, for example, page 62 from

Muirhead (1982). Throughout the paper, the notation Beta(a, b) stands for the beta
distribution with probability density �(a+b)

�(a)�(b)
xa−1(1 − x)b−1 for 0 ≤ x ≤ 1, where

a > 0 and b > 0 are two parameters.

PROPOSITION 1.1. Let x1, . . . ,xn be i.i.d. with distribution Np(μ,�) and
n = m + 1 > p. Recall Rn and R̂n are as in (1.1) and (1.3), respectively. Set �n =
Rn − I. Then

E
[|R̂n|t ]=

(
�(m

2 )

�(m
2 + t)

)p

· �p(m
2 + t)

�p(m
2 )

· |Rn|t · E[∣∣I + �n · diag(V1, . . . , Vp)
∣∣−(m/2)−t ](1.5)

for each t > 0, where V1, . . . , Vp are i.i.d. with Beta(t, m
2 )-distribution.

If �n = 0, or equivalently, Rn = I, Proposition 1.1 implies

(1.6) E
[|R̂n|t ]=

(
�(m

2 )

�(m
2 + t)

)p

· �p(m
2 + t)

�p(m
2 )

for all t > 0; see page 150 from Muirhead (1982) or page 492 from Wilks (1932).
Jiang and Yang (2013) and Jiang and Qi (2015) further generalize this identity.
Their results show that the formula is also true for a big range of negative value
of t by using the Carlson uniqueness theorem of complex functions. We feel that
Proposition 1.1 deserves a further understanding for the case t < 0.

In the special case that the off-diagonal entries of Rn are all equal to a as in
Corollary 1, it is seen from Lemma 2.4 later that

(1.7)
∣∣I + �n · diag(V1, . . . , Vp)

∣∣=
[ p∏

i=1

(1 − aVi)

]
·
(

1 +
p∑

i=1

aVi

1 − aVi

)

for all a ∈ [0,1). For a general form of �n, it seems there is not a better expres-
sion. Even worse, the right-hand side of (1.5) involves the probability distribution
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Beta(t, m
2 ), which forces t > 0. We may consider a complex continuation by rep-

resenting the expectation in terms of integrals in a similar way to the Riemann’s
zeta function or the Gamma function. However, we do see an advantage on the
right-hand side of (1.5): the expectation is taken over a function of i.i.d. random
variables. To make use of this fact while considering the restriction “t > 0,” we
develop a new tool.

We say the distribution of a random variable ξ is uniquely determined by its
moments {E(ξp); p = 1,2, . . .} if the following is true: for any random variable η

with E(ξp) = E(ηp) for all p = 1,2, . . . , the probability distributions of ξ and η

are identical.

PROPOSITION 1.2. Let {Xn; n = 0,1, . . .} be random variables and δ >

0 be a constant such that EetXn < ∞ for all n ≥ 0 and t ∈ [0, δ]. Assume
supn≥0 E(|Xn|p) < ∞ for each p ≥ 1. Assume limn→∞ EetXn = EetX0 for all
t ∈ [0, δ]. If the distribution of X0 can be determined uniquely by moments
{E(X

p
0 ); p = 1,2, . . .}, then Xn converges weakly to X0 as n → ∞.

A classical result says that the above lemma holds if “t ∈ [0, δ]” is replaced by a
stronger assumption “|t | ≤ δ”; see, for example, Billingsley (1986). It is interesting
to see that the weak convergence in Proposition 1.2 is still valid under a “one-
sided” condition on moment generating functions if some extra requirements are
fulfilled.

With the above two conclusions, we now are ready to state the method of the
proof of Theorem 1. By Proposition 1.2, it suffices to show, there exists s0 > 0
such that

(1.8) logE exp
(

log |R̂n| − μn

σn

s

)
= logE

[|R̂n|t ]− μnt → s2

2

for all s ∈ (0, s0), where t = s
σn

, and

(1.9) sup
n≥6

E

[(
log |R̂n| − μn

σn

)2k]
< ∞

for each integer k ≥ 1. To get (1.8), by Proposition 1.1, we need to work on

(1.10)

(
�(m

2 )

�(m
2 + t)

)p

· �p(m
2 + t)

�p(m
2 )

and

In := E
[∣∣I + �n · diag(V1, . . . , Vp)

∣∣−(m/2)−t ]
.

The first one is understood well enough by Jiang and Qi (2015), so it suffices to
derive an asymptotic formula for In. However, it seems hard to evaluate In directly.
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This can be convinced easily by the explicit case from (1.7). To compute In, by
setting Qn := |I + �n · diag(V1, . . . , Vp)|−m

2 −t , we will show

e−hnQn converges in probability to 1;(1.11) {
e−hnQn;n ≥ 6

}
is uniformly integrable,(1.12)

where hn is an explicit constant depending on t . The two assertions imply EQn ∼
ehn . Then (1.8) follows. The statements in (1.9), (1.11) and (1.12) are proved in
Sections 2.3, 2.4 and 2.5, respectively. A detailed account of the above, which
forms the proof of Theorem 1, is presented in Section 2.6.

1.3. An application to a high-dimensional likelihood ratio test. Recall x1, . . . ,

xn are i.i.d. random observations with a common p-variate normal distribution
Np(μ,�). The according correlation matrix is given in (1.1). In application, there
is only one correlation matrix associated with �. So we will drop the subscript to
write it as R instead of Rn in this subsection. We test that the p components of x1
are independent, which is equivalent to

(1.13) H0 : R = Ip vs Ha : R �= Ip.

When p is fixed, the chi-square approximation holds under H0:

(1.14) −
(
n − 1 − 2p + 5

6

)
log |R̂n| converges to χ2

p(p−1)/2

in distribution as n → ∞; see, for example, Bartlett (1954) or page 40 from
Morrison (1967). According to the latter literature, the rejection region of the like-
lihood ratio test for (1.13) is

|R̂n| ≤ cα,

where cα is determined so that the test has significance level of α. For many mod-
ern data, the population dimension p is very large relative to the sample size n. The
approximation (1.14) is far from accurate. To correct this, Jiang and Yang (2013)
and Jiang and Qi (2015) prove the CLT as in Theorem 1 for the case � = Ip . For
a hypothesis testing problem, we not only need to know the asymptotic distribu-
tion of the test statistic under H0 to make a decision, we also need to carry out
another procedure, that is, to minimize (type II) error, or equivalently, make the
so-called power as large as possible. So we have to develop the CLT for the case
Ha : R �= Ip . Theorem 1 provides us with the exact result. Define

μn,0 =
(
p − n + 3

2

)
log
(

1 − p

n − 1

)
− n − 2

n − 1
p ;

σ 2
n,0 = −2

[
p

n − 1
+ log

(
1 − p

n − 1

)]
.
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According to Theorem 1 at R = Ip , the asymptotic size-α test is given by
R = {log |R̂n| ≤ cα} with cα = μn,0 + σn,0

−1(α), where (x) = (2π)−1/2 ×∫ x
−∞ e−t2/2 dt . By Theorem 1 again, the power function for the test is

β(R) = P
(
log |R̂n| ≤ cα|R)∼ 

(
cα − μn

σn

)

for all correlation matrix R satisfying the conditions in Theorem 1.

2. Proofs. The proof of Theorem 1 will follow the scheme described in Sec-
tion 1.2. Since the proof is relatively lengthy, we now elaborate each step. In Sec-
tion 2.1, we will prove the major tools: Propositions 1.1 and 1.2. In Section 2.2,
auxiliary results on matrices and Gamma functions are given. In Section 2.3, we
will derive a formula for the moments of logarithms of the determinants of sample
correlation matrices; the inequality (1.9) will be proved. In Section 2.4, we study
the convergence of random determinants, and the assertion (1.11) will be verified.
In Section 2.5, the uniform integrability of random determinants is proved, and the
statement (1.12) will be justified. We will finally prove Theorem 1 and Corollary 2
in Section 2.6.

2.1. Proofs of major tools: Propositions 1.1 and 1.2. Suppose ξ1, . . . , ξm

are i.i.d. Rp-valued random vectors with distribution Np(0,�), where 0 ∈ R
p

and � is a p × p positive definite matrix. We then say the p × p matrix
W = (ξ1, . . . , ξm)(ξ1, . . . , ξm)′ follows the Wishart distribution and denote it by
W ∼ Wp(m,�). For two r × s random matrices M1 and M2, we use notation

M1
d= M2 to represent that the two sets of rs random variables in order have the

same joint distribution.

LEMMA 2.1. Let x1, . . . ,xn be i.i.d. with distribution Np(μ,�) and n = m+
1 > p. Let W = (Wij ) follow the Wishart distribution Wp(m,�). Review R̂n in
(1.3). Then

(2.1) R̂n
d=
(

Wij√
Wii ·√Wjj

)
p×p

.

In particular, R̂n is a positive definite matrix with 0 < |R̂n| ≤ 1.

PROOF. Write X = (x1, . . . ,xn)
′ = (xij )n×p = (y1, . . . ,yp). Define e =

(1, . . . ,1)′ ∈ R
n. Review the definition of the Pearson correlation coefficient

in (1.2); it is easily seen that the correlation between yi = (x1i , . . . , xni)
′ and

yj = (x1j , . . . , xnj )
′ is the same as that between yi + ae and yj + be for any

a ∈R and b ∈ R. Thus, without loss of generality, we can assume μ = 0.



1364 T. JIANG

Set M = In − 1
n

ee′. Recall R̂n = (r̂ij )p×p . From (1.2) and (1.3), it is trivial to
check that

(2.2) r̂ij = (Myi )
′(Myj )

‖Myi‖ · ‖Myj‖
for all 1 ≤ i, j ≤ p. Let x̃1, . . . , x̃n be i.i.d. random vectors with distribution
Np(0, Ip). Then

(My1, . . . ,Myp) = M(x1, . . . ,xn)
′

d= M
(
�1/2x̃1, . . . ,�

1/2x̃n

)′
= M(x̃1, . . . , x̃n)

′�1/2,

(2.3)

where �1/2 is a positive definite matrix satisfying �1/2 ·�1/2 = �. Since M2 = M
and tr(M) = n − 1 = m, there is an n × n orthogonal matrix � such that M =
� diag(Im,0)�′. Hence, by the invariance property of Np(0, Ip),

M(x̃1, . . . , x̃n)
′ d= � diag(Im,0)(x̃1, . . . , x̃n)

′

= �

(
U
0

)
= �1U,

where 0 = (0, . . . ,0)′ ∈ R
p , all of the entries of U = Um×p are i.i.d. standard

normals and �1 is the n×m matrix by deleting the last column of �. This together
with (2.3) implies that

(My1, . . . ,Myp)
d= �1U�1/2.

Use the fact �′
1�1 = Im to have

(Wij )p×p : = (My1, . . . ,Myp)′(My1, . . . ,Myp)

d= (
�1/2U′)(�1/2U′)′.

In particular, Wij = (Myi )
′(Myj ) and Wii = ‖Myi‖2 for all i, j . Evidently, the m

columns of the p × m matrix �1/2U′ are i.i.d. random variables with distribution
Np(0,�). The conclusion (2.1) then follows from (2.2) and the definition of a
Wishart matrix.

Finally, write R̂n = QWQ where Q := diag(W
−1/2
11 , . . . ,W

−1/2
pp ). For m ≥ p,

the Wishart matrix W is positive definite. Thus, R̂n is positive definite. Since all
of the diagonal entries of R̂n are equal to 1, we see |R̂n| ≤∏p

i=1(R̂n)ii = 1 by the
Hadamard inequality. �

We now use Lemma 2.1 to show Proposition 1.1.
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PROOF OF PROPOSITION 1.1. Let us continue to use the notation in the proof
of Lemma 2.1. By Theorem 3.2.1 from Muirhead (1982), the density function of
W is given by

(2.4) Cm,p · e− 1
2 tr(�−1W) · |W |(m−p−1)/2

for all positive definite matrix W , where �p(1
2m) is the multivariate Gamma func-

tion defined at (1.4) and

Cm,p = 1

2mp/2�p(1
2m)|�|m/2

.

By Lemma 2.1, |R̂n| has the same distribution as that of |W| · (∏p
i=1 Wii)

−1. Thus,

E
[|R̂n|t ]= Cm,p

∫
W>0

|W |t
(
∏p

i=1 Wii)t
e− 1

2 tr(�−1W) · |W |(m−p−1)/2 dW

= Cm,p

∫
W>0

|W |t+(m−p−1)/2

(
∏p

i=1 Wii)t
e− 1

2 tr(�−1W) dW.

Write

W−t
ii = 1

2t�(t)

∫ ∞
0

e− 1
2 Wiiyi yt−1

i dyi

for all i (this is the step we have to assume t > 0). It follows that

E
[|R̂n|t ]

= C′
m,p

∫
(R+)p

p∏
i=1

yt−1
i dy1 · · ·dyp

∫
W>0

|W |t+(m−p−1)/2e− 1
2 tr(�−1W)

· e− 1
2
∑p

i=1 Wiiyi dW,

where R+ = [0,∞) and

C′
m,p = Cm,p · 1

2pt�(t)p
.

Write Y = diag(y1, . . . , yp) and
∑p

i=1 Wiiyi = tr(YW). Then

E
[|R̂n|t ]= C′

m,p

∫
(R+)p

p∏
i=1

yt−1
i dy1 · · ·dyp

∫
W>0

|W |t+(m−p−1)/2

× e− 1
2 tr((�−1+Y )W) dW

= C′
m,p

[
�p

(
t + m

2

)
2pt+(mp/2)

]

×
∫
(R+)p

∣∣�−1 + Y
∣∣−((m/2)+t)

p∏
i=1

yt−1
i dy1 · · ·dyp

(2.5)
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by Theorem 2.1.11 from Muirhead (1982) (taking a = t + m
2 ) provided t >

−1
2(m + 1 − p). From (2.4), the constant in front of the integral from (2.5) be-

comes

1

2mp/2�p(1
2m)|�|m/2

· 1

2pt�(t)p
· �p

(
t + m

2

)
2pt+(mp/2)

= 1

|�|m/2�(t)p
· �p(m

2 + t)

�p(1
2m)

.

Write |�−1 + Y| = |�|−1|I + �Y|. Then

E
[|R̂n|t ]

= |�|t
�(t)p

· �p(m
2 + t)

�p(m
2 )

∫
[0,∞)p

|I + �Y |−(m/2)−t
p∏

i=1

yt−1
i dy1 · · ·dyp

(2.6)

for any t > 0.
We next will transfer (2.6) to the right-hand side of (1.5). Recall (1.1) and write

� = (σij ). Then � = LRnL where L := diag(σ
1/2
11 , . . . , σ

1/2
pp ). Noticing L and Y

are both diagonal matrices. Plugging this into (2.6), we see that

E
[|R̂n|t ]

= |Rn|t (∏p
i=1 σii)

t

�(t)p
· �p(m

2 + t)

�p(m
2 )

∫
[0,∞)p

∣∣I + RnL2Y
∣∣−(m/2)−t

·
p∏

i=1

yt−1
i dy1 · · ·dyp.

Obviously, L2Y = diag(σ11y1, . . . , σppyp). Set si = σiiyi for all i and S =
diag(s1, . . . , sp). We obtain

E
[|R̂n|t ]

= |Rn|t
�(t)p

· �p(m
2 + t)

�p(m
2 )

∫
[0,∞)p

|I + RnS|−(m/2)−t
p∏

i=1

st−1
i ds1 · · ·dsp

=
(

�(m
2 )

�(m
2 + t)

)p

· �p(m
2 + t)

�p(m
2 )

· |Rn|t ·
(

�(m
2 + t)

�(t)�(m
2 )

)p ∫
[0,∞)p

|I + RnS|−(m/2)−t
p∏

i=1

st−1
i ds1 · · ·dsp.
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Write �n = Rn − I. Then |I+RnS| = |I+S+�nS| = |I+S| · |I+�nS(I+S)−1|.
Thus, the last integral equals

∫
[0,∞)p

∣∣I + �nS(I + S)−1∣∣−(m/2)−t
p∏

i=1

(1 + si)
−(m/2)−t st−1

i ds1 · · ·dsp.

Set xi = si/(1 + si) for 1 ≤ i ≤ p. Then 1 + si = 1
1−xi

and si = xi

1−xi
. The integral

above is equal to

∫
[0,1]p

∣∣I + �n · diag(x1, . . . , xp)
∣∣−(m/2)−t

p∏
i=1

xt−1
i (1 − xi)

m
2 −1 dx1 · · ·dxp.

This says that

E
[|R̂n|t ]=

(
�(m

2 )

�(m
2 + t)

)p

· �p(m
2 + t)

�p(m
2 )

· |Rn|t · E∣∣I + �n · diag(V1, . . . , Vp)
∣∣−(m/2)−t

,

where V1, . . . , Vp are i.i.d. with Beta(t, m
2 )-distribution. �

PROOF OF PROPOSITION 1.2. We first claim that

(2.7) sup
n≥0

E
{|Xn|petXn

}
< ∞

for every integer p ≥ 1 and every t ∈ [0, δ), where δ is as in the statement of the
proposition. Obviously, |Xn|petXn ≤ |Xn|2petXn +etXn . So, by the given condition
supn≥0 E(|Xn|p) < ∞ for each p ≥ 1, we only need to prove (2.7) for even integer
p ≥ 1 and t ∈ (0, δ). In fact, for δ′ ∈ (0, δ), set δ′′ = (δ − δ′)/2. By the Taylor ex-
pansion, eδ′′Xn ≥ (δ′′)p

p! (Xn)
p for all even integers p ≥ 1 if Xn ≥ 0. Consequently,

for all t ∈ (0, δ′],
(Xn)

petXn = (Xn)
petXnI (Xn ≥ 0) + (Xn)

petXnI (Xn < 0)

≤ p!
δ′′p · e(t+δ′′)XnI (Xn ≥ 0) + 1

tp
· sup
x≤0

{
xpex}

≤ p!
δ′′p · eδXn + 1

tp
· sup
x≤0

{
xpex}

for all even integer p ≥ 1. We then get (2.7) by taking expectations.
The condition supn≥1 E(X2

n) < ∞ implies that {Xn; n ≥ 1} is tight. Thus, for
any subsequence {Xnk

; k ≥ 1} such that Xnk
converges weakly to Y as k → ∞, to

prove the lemma, it is enough to show that Y and X0 have the same distribution.
Now we assume that Xnk

converging weakly to Y as k → ∞. Since etXnk con-
verges weakly to etY ≥ 0, by assumption and the Fatou lemma, EetY ≤ EetX0 for
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all t ∈ [0, δ]. This implies that {etY , etXnk ; k ≥ 1} is uniformly integrable for each
t ∈ [0, δ) by Hölder’s inequality. Thus,

(2.8) EetY = lim
k→∞EetXnk = EetX0

for all t ∈ [0, δ). Furthermore, |Xnk
|petXnk → |Y |petY weakly for every t ∈ R. By

(2.7) and the Fatou lemma again, we know that E{|Y |petY } < ∞ for every p ≥ 1
and every t ∈ [0, δ). This and (2.7) imply

(2.9) E
{|Y |petY }< ∞ and E

{|X0|petX0
}
< ∞

for every p ≥ 1 and every t ∈ [0, δ). Fix δ1 ∈ (0, δ). Observe |Y |petY ≤ |Y |peδ1Y +
|Y |p for all t ∈ [0, δ1]. Then (2.9) can be strengthened to

(2.10) E
(

sup
t∈[0,δ1]

|Y |petY
)

< ∞ and E
(

sup
t∈[0,δ1]

|X0|petX0
)

< ∞

for each p ≥ 1. Now, by the mean-value theorem from calculus, for any t �=
t0 ∈ [0, δ1] and each integer j ≥ 0, there exists ξ between t and t0 such that
Y j etY −Y j et0Y

t−t0
= Y j+1eξY . Therefore,

lim
t→t0

Y jetY − Y jet0Y

t − t0
= Y j+1et0Y

and

sup
t �=t0∈[0,δ1]

∣∣∣∣Y
jetY − Y jet0Y

t − t0

∣∣∣∣≤ sup
t∈[0,δ1]

{|Y |j+1etY }
for every integer j ≥ 0. By (2.8), (2.10), the dominated convergence theorem and
induction,

E
(
YpetY )= dp(EetY )

dtp
= dp(EetX0)

dtp
= E

(
X

p
0 etX0

)
for each integer p ≥ 1 and all t ∈ [0, δ). At t = 0, the derivatives above are un-
derstood as right derivatives. Therefore, E(Yp) = E(X

p
0 ) for all integer p ≥ 1 by

taking t = 0. By assumption, the moments of X0 uniquely determine the distribu-
tion of X0, we conclude that Y and X0 have the same distribution. �

2.2. Auxiliary results on matrices and Gamma functions. In this section, we
prove some facts on matrices and Gamma functions. We will also verify (1.7) in
Lemma 2.4.

We say R = (rij )p×p is a correlation matrix if R is a nonnegative definite matrix
with rii = 1 for all 1 ≤ i ≤ p. The following auxiliary results on matrices seem
interesting in their own way.

LEMMA 2.2. Let R = (rij )p×p be a correlation matrix. Then we have
max1≤i≤p

∑
j �=i r

2
ij ≤ ‖R‖.
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PROOF OF LEMMA 2.2. For a square matrix M, let λmax(M) and λmin(M)

be the largest and smallest eigenvalues of M, respectively. By definition, ‖M‖ =
λmax(M) if M is nonnegative definite.

First, assume R is invertible. Let R1 be the (p − 1) × (p − 1) upper-left corner
of R and y = (rp1, . . . , rpp−1). Then

R =
(

R1 y′
y 1

)
.

By the formula for the determinant of a partitioned matrix [see, e.g., page 470 from
Bai and Silverstein (2010)], |R| = |R1| · (1− yR−1

1 y′). Since R is positive definite,
|R| > 0 and |R1| > 0. It follows that

1 ≥ yR−1
1 y′

≥ λmin
(
R−1

1
) · |y|2

= |y|2
λmax(R1)

≥ |y|2
λmax(R)

,

where in the last step we apply the interlacing theorem to the situation that R1 is
a submatrix of R; see, for example, page 185 from Horn and Johnson (1985). It
leads to

(2.11)
∑
j �=p

r2
pj ≤ ‖R‖.

For any 1 ≤ i ≤ p − 1, we simply exchange the ith row and pth row and then
exchange the ith column and pth column. Since the new and old matrices are
conjugate to each other, they have the same eigenvalues. We then apply (2.11) to
get the desired conclusion.

If R is not invertible, consider R(x) := 1
1+x

(R + xI) for x > 0. Then R(x) is a
correlation matrix and is positive definite for any x > 0. By the proved conclusion,

1

(1 + x)2 max
1≤i≤p

∑
j �=i

r2
ij ≤ 1

1 + x
· ‖R + xI‖.

Recall ‖M‖ is continuous in the entries of M. The proof is complete by letting
x ↓ 0. �

LEMMA 2.3. Let R = (rij )p×p be a correlation matrix. Then λmin(R) ∈ [0,1]
and λmin(R) = 1 if and only if R = I.

PROOF. Let λ1 ≥ · · · ≥ λp ≥ 0 be the eigenvalues of R. Take x0 = (1,0, . . . ,

0)′ ∈ R
p . By the Rayleigh–Ritz formula,

λmin(R) = min‖x‖=1
x′Rx ≤ x′

0Rx0 = 1.
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If λmin(R) = 1, then λ1 ≥ · · · ≥ λp ≥ 1. At the same time, the Hadamard inequality
says 0 ≤ λ1 · · ·λp = |R| ≤ r11 · · · rpp = 1. Hence, λ1 = · · · = λp = 1. This implies
R = I. �

We now verify (1.7). The notation here is slightly different from (1.7) for a
general purpose.

LEMMA 2.4. Let A = (aij )k×k with aij = 1 for all 1 ≤ i, j ≤ k. Let
b1, . . . , bk ∈ R and B = diag(b1, . . . , bk). Then

∣∣I + x(A − I)B
∣∣=

[
k∏

i=1

(1 − bix)

]
·
(

1 +
k∑

i=1

bix

1 − bix

)

for all x ∈ R satisfying bix �= 1 for any 1 ≤ i ≤ k.

Let f (x) =∏k
i=1(1 − bix). Then the right-hand side above is equal to f (x) −

xf ′(x).

PROOF OF LEMMA 2.4. Since A is of rank one, the only nonzero eigenvalue
is equal to tr(A) = k. It is easy to see that the corresponding eigenvector is h =
(1, . . . ,1)′/

√
k ∈ R

k . Then, by the spectral theorem of symmetric matrices, there
exists an orthogonal matrix O such that A = O diag(k,0, . . . ,0)O′, where the first
column of O is h. Observe∣∣I + x(A − I)B

∣∣
= ∣∣diag(1 − b1x, . . . ,1 − bkx) + xAB

∣∣
=
[

k∏
i=1

(1 − bix)

]

· ∣∣I + xA · diag
(
b1(1 − b1x)−1, . . . , bk(1 − bkx)−1)∣∣

(2.12)

for all x with bix �= 1, i = 1, . . . , k. Now, for any c1, . . . , ck ∈ R
k ,

(2.13)

∣∣I + xA · diag(c1, . . . , ck)
∣∣

= ∣∣I + xO diag(k,0, . . . ,0)O′ · diag(c1, . . . , ck)
∣∣

= ∣∣I + diag(kx,0, . . . ,0) · O′ · diag(c1, . . . , ck)O
∣∣.

Write C = O′ · diag(c1, . . . , ck)O = (cij ). Then, recall the first column of O is h.
Therefore,

c11 =
k∑

i=1

(
O′)

1 i ci Oi 1 = 1

k

k∑
i=1

ci.
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Notice

diag(kx,0, . . . ,0) · O′ · diag(c1, . . . , ck)O =

⎛
⎜⎜⎜⎝

kxc11 kxc12 · · · kxc1k

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠ .

From (2.13), we get |I + xA · diag(c1, . . . , ck)| = 1 + kxc11 = 1 + x
∑k

i=1 ci . This
together with (2.12) yields the conclusion. �

LEMMA 2.5. Let b = b(x) be a function defined on [0,∞) with b(x) = o(x)

as x → ∞. Then log �(x+b)

xb�(x)
= O(

(|b|+1)2

x
) as x → ∞.

PROOF. By Lemma 5.1 from Jiang and Qi (2015), as x → +∞,

log
�(x + b)

�(x)
= (x + b) log(x + b) − x logx − b − b

2x
+ O

(
b2 + 1

x2

)

holds uniformly on b ∈ [−δx, δx] for any given δ ∈ (0,1). By assumption, b(x) =
o(x), then

log
�(x + b)

�(x)

= (x + b) log(x + b) − x logx − b + O

(
b2 + bx + 1

x2

)

= x log
(

1 + b

x

)
+ b logx + b log

(
1 + b

x

)
− b + O

(
b2 + bx + 1

x2

)

= x

(
b

x
+ O

(
b2

x2

))
+ b logx + O

(
b2

x

)
− b + O

(
b2 + bx + 1

x2

)

= b logx + O

(
b2x + bx + b2 + 1

x2

)
,

where the formula log(1 + t) = t + O(t2) as t → 0 is used in the third identity.
Now ∣∣b2x + bx + b2 + 1

∣∣≤ 2b2x + |b|x + 1 ≤ 2
(|b| + 1

)2
x

as x ≥ 1. The conclusion then follows. �

We next provide upper and lower bounds for the standard deviation σn from
Theorem 1.
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LEMMA 2.6. Let p := pn satisfy that m := n− 1 > p + 3, Rn and σn be as in
Theorem 1. Then

(2.14)
(

p

m

)2
+ 2

m
tr
[
(Rn − I)2]≤ σ 2

n ≤ 2 logm + 2p2

m

for all n ≥ 6. Furthermore, limn→∞ p
σn

= ∞.

PROOF. By the Taylor expansion, log(1 − x) = −∑∞
i=1

xi

i
for all |x| < 1.

Hence, −[x + log(1 − x)] ≥ x2

2 for all x ∈ [0,1) and

σ 2
n ≥

(
p

m

)2
+ 2

m
tr
[
(Rn − I)2].

Second, log(1 − p
n−1) = log(

n−1−p
n−1 ) ≥ log 1

n−1 . Also, observe that tr[(Rn − I)2] =∑
1≤i �=j≤p r2

ij ≤ p2 since |rij | ≤ 1. By the definition of σ 2
n , the second inequality

follows.
Now we prove the remaining conclusion. It is enough to show 1

p2 σ 2
n → 0. First,

σ 2
n ≤ −2 log

(
1 − p

m

)
+ 2p2

m
.

Therefore,

1

p2 σ 2
n ≤ − 2

p2 log
(

1 − p

m

)
+ 2

m
.

If p ≤ m
2 , then 1 − p

m
≥ 1

2 , and hence − log(1 − p
m

) ≤ log 2. This implies 1
p2 σ 2

n ≤
1
p2 log 4 + 2

m
. Moreover, if p > m

2 , then

1

p2 σ 2
n ≤ − 8

m2 log
m − p

m
+ 2

m

≤ − 8

m2 log
4

m
+ 2

m
.

Overall, 1
p2 σ

2
n ≤ 1

p2 log 4 + 2
m

+ 8
m2 logm → 0. �

2.3. Moments on logarithms of determinants of sample correlation matrices.
In this section, we will prove (1.9) that is one of the crucial steps in proving The-
orem 1. In the following, we write � for �n for short notation. Review Wp(m,�)

as defined at the beginning of Section 2.1.

LEMMA 2.7. Let x1, . . . ,xn be i.i.d. from Np(μ,�) and R̂n be as in (1.3).
Assume n > p and �−1 exists. Let Rn be the correlation matrix generated by
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� = (σij ) as in (1.1). Suppose W̄ = (W̄ij ) follows Wp(m, Ip) with m = n − 1. Set
W = (Wij ) = �1/2W̄�1/2. Then

|R̂n| d= |R̂n,0| · |Rn| ·
( p∏

i=1

W̄ii

)
·

p∏
i=1

σii

Wii

,

where R̂n,0 is the R̂n corresponding to � = I.

PROOF. W follows the distribution of Wp(m,

�). By Lemma 2.1,

|R̂n| d= |W| ·
p∏

i=1

1

Wii

= |�| · |W̄| ·
p∏

i=1

1

Wii

.

Define

|R̂n,0| = |W̄| ·
p∏

i=1

1

W̄ii

,

which has the same distribution as that of R̂n as � = I. Then

(2.15) |R̂n| d= |R̂n,0| ·
( p∏

i=1

W̄ii

Wii

)
· |�|.

By the definition of Rn,

|Rn| = |�| ·
p∏

i=1

1

σii

.

Replacing |�| in (2.15) with the one from the above leads to the desired conclu-
sion. �

LEMMA 2.8. Assume the notation and conditions in Lemma 2.7 hold. Define
Tn = (

∏p
i=1 W̄ii) ·∏p

i=1
σii

Wii
. Then, for any integer k ≥ 1,

sup
n≥3

{[
p2

m2 + 2

m
tr
[
(Rn − I)2]]−k

· E[(logTn)
2k]}< ∞.

PROOF. The proof is divided into several steps.
Step 1: a workable form of Tn. Write

logTn =
p∑

i=1

log
W̄ii

m
−

p∑
i=1

log
Wii

mσii

.



1374 T. JIANG

Define εi and εi,0 through

log
Wii

mσii

= Wii

mσii

− 1 +
(

Wii

mσii

− 1
)2

εi;

log
W̄ii

m
= W̄ii

m
− 1 +

(
W̄ii

m
− 1

)2
εi,0.

(2.16)

The estimates of εi and εi,0 will be given after (2.21). It follows that

p∑
i=1

log
Wii

mσii

=
p∑

i=1

(
Wii

mσii

− 1
)

+
p∑

i=1

(
Wii

mσii

− 1
)2

εi

and

p∑
i=1

log
W̄ii

m
=

p∑
i=1

(
W̄ii

m
− 1

)
+

p∑
i=1

(
W̄ii

m
− 1

)2
εi,0.

Consequently,

p∑
i=1

log
W̄ii

m
−

p∑
i=1

log
Wii

mσii

= 1

m

[
tr(W̄) − tr(TW)

]− p∑
i=1

(
Wii

mσii

− 1
)2

εi +
p∑

i=1

(
W̄ii

m
− 1

)2
εi,0,

where T = diag(1/σii, 1 ≤ i ≤ p). From Lemma 2.7, it is readily seen that
tr(TW) = tr(�1/2T�1/2W̄). It gives us

tr(W̄) − tr(TW) = tr(MW̄)

with M = I − �1/2T�1/2. By the spectral theorem, there is an orthogonal matrix
O = Op×p such that M = O′ diag(λ1, . . . , λp)O, where {λi; 1 ≤ i ≤ p} are the
eigenvalues of M. Since the Wishart matrix W̄ = (W̄ij ) is orthogonally invariant,

tr(MW̄) = tr
[
diag(λ1, . . . , λp)OW̄O′]

d= tr
[
diag(λ1, . . . , λp)W̄

]
=

p∑
i=1

λiW̄ii,

where {W̄ii; 1 ≤ i ≤ p} are i.i.d. random variables with distribution χ2(m). Also,
observe

∑p
i=1 λi = tr(M) = p − tr(Rn) = 0 since tr(�1/2T�1/2) = tr(�T) =
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tr(T1/2�T1/2). We conclude

logTn
d= 1

m

p∑
i=1

λi(W̄ii − m) −
p∑

i=1

(
Wii

mσii

− 1
)2

εi

+
p∑

i=1

(
W̄ii

m
− 1

)2
εi,0

= Z1 − Z2 + Z3.

(2.17)

By the definition of correlation matrix from (1.1), we have T1/2�T1/2 = Rn. Since
M1M2 and M2M1 have the same eigenvalues for any p × p matrices M1 and M2,
it is easy to check that λ1, . . . , λp are also the eigenvalues of I − Rn.

Step 2: the moment of Z1. Review the definition of Wp(m, Ip) at the beginning
of Section 2.1. We are able to write W̄ii − m =∑m

j=1(ξ
2
ij − 1) for all 1 ≤ i ≤ p,

where {ξij ; 1 ≤ i ≤ p, 1 ≤ j ≤ m} are i.i.d. N(0,1)-distributed random variables.
By the Marcinkiewicz–Zygmund inequality [e.g., Theorem 2 on page 367 from
Chow and Teicher (1988)], for any integer k ≥ 1, there exists a constant Ck > 0
such that

E
(
Z2k

1
)≤ Ckm

−2kE

[( p∑
i=1

m∑
j=1

λ2
i

(
ξ2
ij − 1

)2)k]

= Ckm
−2k(λ2

1 + · · · + λ2
p

)k
E

[(
EN

m∑
j=1

(
ξ2
Nj − 1

)2)k]
,

(2.18)

where N is a random variable independent of ξij ’s and

P(N = i) = λ2
i

λ2
1 + · · · + λ2

p

, 1 ≤ i ≤ p.

In the sequel, the notation Ck , which denotes constants depending on k but not
on n, may be different from line to line. By Hölder’s inequality and the convex
inequality on g(x) := xk on [0,∞),(

EN
m∑

j=1

(
ξ2
Nj − 1

)2)k

≤ EN

[(
m∑

j=1

(
ξ2
Nj − 1

)2)k]
≤ mk−1EN

m∑
j=1

(
ξ2
Nj − 1

)2k
.

From Fubini’s theorem,

E

[(
EN

m∑
j=1

(
ξ2
Nj − 1

)2)k]
≤ mk−1EN

m∑
j=1

E
[(

ξ2
Nj − 1

)2k]

= mkE
[(

ξ2
11 − 1

)2k]
.



1376 T. JIANG

This and (2.18) imply

(2.19) E
(
Z2k

1
)≤ Ckm

−k(λ2
1 + · · · + λ2

p

)k = Ck ·
(

1

m
tr
[
(Rn − I)2])k

.

Step 3: the moments of Z2 and Z3. Recall Lemma 2.7. Let �1/2 = (τij ) =
(τij )p×p . Then (σij ) = � = (τij )(τij )

′. In particular, σii =∑p
j=1 τ 2

ij . By defini-

tion W̄ = Y′Y, where Y is a m × p matrix in which all entries are i.i.d. N(0,1)-
distributed random variables. Since (Wij ) = �1/2W̄�1/2 = �1/2(Y′Y)�1/2, we
see

Wii = (τi1, . . . , τip)Y′Y(τi1, . . . , τip)′

= ∥∥Y(τi1, . . . , τip)′
∥∥2

∼ σii · χ2(m)

by the invariance of i.i.d. normal random variables. We then get a simple formula

(2.20)
Wii

σii

∼ χ2(m)

for each 1 ≤ i ≤ p. Let us calculate the moment of Z2. Keep in mind that we will
only use the marginal distribution as in (2.20). Then, by Hölder’s inequality,

E
(
Z2k

2
)≤ p2k−1

p∑
i=1

E

[(
Wii

mσii

− 1
)4k

ε2k
i

]

≤ p2k−1
p∑

i=1

∥∥∥∥ Wii

mσii

− 1
∥∥∥∥4k

8k

· [E(ε4k
i

)]1/2
,

where ‖ξ‖r := [E(|X|r )]1/r for any random variable ξ . From (2.20) and Corol-
lary 2 on page 368 from Chow and Teicher (1988), which is an application of the
Marcinkiewicz–Zygmund inequality used in Step 2,

E

[(
Wii

mσii

− 1
)8k]

= 1

m8k
E

[(
m∑

i=1

(
η2

i − 1
))8k]

≤ Ck

m4k
,

where η1, . . . , ηm are i.i.d. N(0,1)-distributed random variables. Therefore,

(2.21) E
(
Z2k

2
)≤ Ck · p2k−1

m2k

p∑
i=1

[
E
(
ε4k
i

)]1/2
.

Define ψ(x) = logx−x+1
(x−1)2 for x > 0. It is easy to verify, there exists a constant

C > 0 such that |ψ(x)| ≤ C
x

for all x > 0. Take x = Wii

mσii
in (2.16) to see |εi | ≤

C( Wii

mσii
)−1. By (2.20),

E
(
ε4k
i

)≤ (Cm)4kE
[
χ2(m)−4k].
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The density of χ2(m) is f (x) := 1
�(m

2 )2m/2 x
(m/2)−1e−x/2 for x > 0. Consequently,

(2.22)

E
[
χ2(m)−4k]= 1

�(m
2 )2m/2

∫ ∞
0

x(m/2)−4k−1e−x/2 dx

= 2(m/2)−4k

�(m
2 )2m/2

∫ ∞
0

v(m/2)−4k−1e−v dv

= �(m
2 − 4k)

�(m
2 )24k

∼ m−4k

by the transform v = x/2 and then Lemma 2.4 from Dong, Jiang and Li (2012)
that limx→∞ �(x+a)

�(x)xa = 1 for any number a ∈ R, which can also be obtained from

(2.5). The assertion (2.22) is consistent with the law of large numbers χ2(m) ∼ m.
We then have E(ε4k

i ) ≤ Ck . By (2.21), we eventually arrive at

(2.23) E
(
Z2k

2
)≤ Ck

(
p

m

)2k

.

Inspecting the above proof, we get (2.23) from (2.20) without using any informa-
tion on σii’s. Applying (2.23) to the case � = I, we get E(Z2k

3 ) ≤ Ck(
p
m

)2k .
Finally, the two inequalities on E(Z2k

2 ) and E(Z2k
3 ) together with (2.17) and

(2.19) entail

E
[
(logTn)

2k]≤ Ck

[
E
(|Z1|2k)+ E

(∣∣Z2
∣∣2k)+ E

(∣∣Z3
∣∣2k)]

≤ Ck

[
p2

m2 + 2

m
tr
[
(Rn − I)2]]k.

The proof is complete. �

We will need the following notation later:

(2.24)
μn,0 =

(
p − n + 3

2

)
log
(

1 − p

n − 1

)
− n − 2

n − 1
p;

σ 2
n,0 = −2

[
p

n − 1
+ log

(
1 − p

n − 1

)]
.

LEMMA 2.9. Assume p := pn satisfy that n > p + 4 and p → ∞. Let
x1, . . . ,xn be i.i.d. from Np(μ, I) and R̂n,0 be as in Lemma 2.7. Then there ex-
ists s0 > 0 such that the following holds:

(i) For any subsequence {nj ; j ≥ 1} of positive integers with limj→∞
pnj

nj
=

y ∈ [0,1],

lim
j→∞E exp

( log |R̂nj ,0| − μnj ,0

σnj ,0
s

)
= es2/2, |s| ≤ s0.
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(ii) For all |s| ≤ s0,

sup
n≥6

E exp
(

log |R̂n,0| − μn,0

σn,0
s

)
< ∞.

PROOF. Recall R̂n,0 is the R̂n corresponding to � = I.

By (1.6), E exp(
log |R̂n,0|−μn,0

σn,0
s) < ∞ for all n ≥ 6 and |s| ≤ s0;

(i) The assertion (5.68) from Jiang and Yang (2013) confirms the case for y ∈
(0,1]; the limit right above (5.6) from Jiang and Qi (2015) confirms the case for
y = 0. So (ii) is true for any y ∈ [0,1].

(ii) If not, there exists s ′ �= 0 and a subsequence {nj ; j ≥ 1} of positive integers
such that |s′| ≤ s0 and

lim
j→∞E exp

( log |R̂nj ,0| − μnj ,0

σnj ,0
s′
)

= ∞.

Since 0 <
pn

n
≤ 1 for all n ≥ 6, there exists y ∈ [0,1] and a further subsequence

{njk
; k ≥ 1} such that limk→∞

pnjk

njk
= y and

lim
k→∞E exp

( log |R̂njk
,0| − μnjk

,0

σnjk
,0

s′
)

= ∞,

which contradicts (i). The proof is completed. �

We now are ready to prove the main conclusion in this section.

LEMMA 2.10. Assume p := pn satisfy that n > p + 4 and p → ∞. Let
x1, . . . ,xn be i.i.d. from Np(μ,�) and R̂n be as in (1.3). Let μn and σn be as
in Theorem 1. Let Rn be as in (1.1). Assume R−1

n exists. Then, for any k ≥ 1,

sup
n≥6

E

[(
log |R̂n| − μn

σn

)2k]
< ∞.

PROOF. Review (2.24) for μn,0 and σ 2
n,0. Define m = n − 1. Then

μn = μn,0 + log |Rn| and σ 2
n = σ 2

n,0 + 2

m
tr
[
(Rn − I)2].

By Lemma 2.7,

log |R̂n| − μn

σn

= log |R̂n,0| − μn,0

σn,0
· σn,0

σn

+ 1

σn

logTn,
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where Tn = [(∏p
i=1 W̄ii) ·∏p

i=1
σii

Wii
] is as in Lemma 2.8. Therefore,

(2.25)

21−2kE

[(
log |R̂n| − μn

σn

)2k]

≤ E

[(
log |R̂n,0| − μn,0

σn,0

)2k]
+ 1

σ 2k
n

· E[(logTn)
2k]

for any n ≥ 6. By (iii) of Lemma 2.9,

sup
n≥6

E exp
(

log |R̂n,0| − μn,0

σn,0
s

)
< ∞

for all |s| ≤ s0. Use the inequality x2k

(2k)! ≤ e|x| ≤ ex + e−x for any x ∈R to get

(2.26) sup
n≥6

E

[(
log |R̂n,0| − μn,0

σn,0

)2k]
< ∞

for any integer k ≥ 1.
On the other hand, by Lemma 2.6,

σ 2
n ≥

(
p

m

)2
+ 2

m
tr
[
(Rn − I)2].

Thus, from Lemma 2.8 we see

sup
n≥6

{
1

σ 2k
n

· E[(logTn)
2k]}< ∞

for any integer k ≥ 1. This, (2.25) and (2.26) entail the desired result. �

2.4. Convergence of random determinants. We now prove (1.11), the conver-
gence in probability, a key step to compute In in (1.10). The major conclusion is
Lemma 2.12.

Throughout the rest of the paper, we always assume the following:

(2.27)

Let σn be as in Theorem 1. Given s > 0, set t = tn = s

σn

and

m = n − 1. Let V1, . . . , Vp be i.i.d. random variables with

the distribution Beta
(
t,

m

2

)
.

Recall Rn and �n from Proposition 1.1. Let Dn = diag(
√

V1, . . . ,
√

Vp)

and λ1, . . . , λp be the eigenvalues of Dn�nDn. Observing (�n)ii = 0, then
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(Dn�nDn)ii = 0 and (Dn�nDn)ij = rij
√

ViVj for all i �= j . These say

(2.28)

p∑
i=1

λi = tr(Dn�nDn) = 0 and

p∑
i=1

λ2
i = tr

[
(Dn�nDn)

2]=∑
i �=j

r2
ijViVj .

LEMMA 2.11. Let p := pn satisfy that n > p and p → ∞ and σn be as in

Theorem 1. Given s > 0, set t = tn = s
σn

and m = n − 1. Then m
∑p

i=1 λ2
i = 4t2

m
·

tr[(Rn − I)2] + εn with εn → 0 in probability as n → ∞.

PROOF. First, if ξ ∼ Beta(α,β), then

Eξ = α

α + β
and Var(ξ) = αβ

(α + β)2(α + β + 1)
;

E
(
ξk)= k−1∏

i=0

α + i

α + β + i
, k = 1,2, . . . .

(2.29)

In our case, V1 ∼ Beta(t, m
2 ). From (2.14), t

m
→ 0, hence

EV1 = t
m
2 + t

∼ 2t

m
; E

(
V 2

1
)= t (t + 1)

(m
2 + t)(m

2 + t + 1)
∼ 4t (t + 1)

m2 ;(2.30)

Var(V1) = mt/2

(m
2 + t)2(m

2 + t + 1)
∼ 4t

m2(2.31)

as n → ∞. Let Un =∑
i �=j r2

ijViVj . Then

EUn = (EV1)
2
∑
i �=j

r2
ij

= (EV1)
2 · tr

[
(Rn − I)2]

= (
1 + o(1)

) · 4t2

m2 · tr
[
(Rn − I)2].

(2.32)

Write V̄i = Vi − EVi for i = 1, . . . , p. Then

Un − EUn =∑
i �=j

r2
ij V̄i V̄j + 2

∑
i �=j

r2
ij V̄i · EVj

=∑
i �=j

r2
ij V̄i V̄j + 2(EV1)

p∑
i=1

(∑
j �=i

r2
ij

)
V̄i .

(2.33)
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By independence, the two terms in (2.33) are uncorrelated and the summands from
each sum are also uncorrelated, respectively. Therefore,

Var (Un)

= E
[
(Un − EUn)

2]

= Var (V1)
2 ·∑

i �=j

r4
ij + 4(EV1)

2 · Var (V1) ·
p∑

i=1

(∑
j �=i

r2
ij

)2

≤ Var (V1)
2 · tr

[
(Rn − I)2]+ 4‖Rn‖ · (EV1)

2 · Var (V1) · tr
[
(Rn − I)2]

(2.34)

since
∑

i �=j r4
ij ≤∑i �=j r2

ij = tr[(Rn − I)2] and

p∑
i=1

(∑
j �=i

r2
ij

)2
≤ ‖Rn‖ ·∑

j �=i

r2
ij

by Lemma 2.2. Then, from (2.14), (2.31) and the notation t = tn = s
σn

,

(2.35)

m2 Var (V1)
2 · tr

[
(Rn − I)2]

∼ 16s2

m2σ 2
n

· tr
[
(Rn − I)2]

≤ (16s2) · tr[(Rn − I)2]
p2 + m tr[(Rn − I)2] ≤ 16s2

m
→ 0

as n → ∞. Now,

m2 · ‖Rn‖ · (EV1)
2 · Var (V1) · tr

[
(Rn − I)2]

≤ 2 · m2 · 4t2

m2 · 4t

m2 · ‖Rn‖ · tr
[
(Rn − I)2]

= 32 · ‖Rn‖t
m

·
(
t2 · 1

m
tr
[
(Rn − I)2])

as n is sufficiently large. By (2.14), t2 · 1
m

tr[(Rn − I)2] ≤ s2. Recall the notation
‖Rn‖ = λmax(Rn). Trivially, tr[(Rn −I)2] ≥ (‖Rn‖−1)2. Then, from (2.14) again,

‖Rn‖t
m

≤ s · |‖Rn‖ − 1| + 1

m
·
(

p2

m2 + 1

m

(‖Rn‖ − 1
)2)−1/2

= s · |‖Rn‖ − 1| + 1√
p2 + m · (‖Rn‖ − 1)2

.

Evidently, the fraction is controlled by 1√
m

+ 1
p

. Therefore,

m2 · ‖Rn‖ · (EV1)
2 · Var (V1) · tr

[
(Rn − I)2]→ 0
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as n → ∞. Connecting this to (2.34) and (2.35), we obtain Var(mUn) → 0. There-
fore, mUn − mEUn → 0 in probability. The inequality in (2.14) implies 4t2

m
·

tr[(Rn − I)2] is bounded. Hence, we see from (2.28) and (2.32) that m
∑p

i=1 λ2
i =

mUn = 4t2

m
· tr[(Rn − I)2] + εn with εn → 0 in probability as n → ∞. �

Recall the notation in (2.27). Here comes our main result for convergence in
probability.

LEMMA 2.12. Let p := pn satisfy that n > p and p → ∞ and σn be as in
Theorem 1. Review Rn defined in (1.1). Set �n = Rn − I. Then

−
(

m

2
+ t

)
log
∣∣I + �n · diag(V1, . . . , Vp)

∣∣− t2

m
· tr
(
�2

n

)→ 0

in probability as n → ∞.

PROOF. Let Dn = diag(
√

V1, . . . ,
√

Vp) and λ1, . . . , λp be the eigenvalues of
Dn�nDn. Then

log
∣∣I + �n · diag(V1, . . . , Vp)

∣∣= log |I + Dn�nDn

∣∣
=

p∑
i=1

log(1 + λi).
(2.36)

We first need a few of estimates. It is easy to check from (2.14) and notation t = s
σn

that

(2.37)
|t |3
m2 · tr

(
�2

n

)= |s|3
mσn

· 1

mσ 2
n

tr
(
�2

n

)≤ |s|3
p

→ 0

by using mσn ≥ p and σ 2
n ≥ 2

m
tr(�2

n). Similarly,

(2.38)
4t2

m3 · tr
(
�2

n

)= 4s2

m2 · 1

mσ 2
n

tr
(
�2

n

)≤ 4s2

m2 .

From Lemma 2.11 and (2.37), for any sequence {δn; n ≥ 4} with δn = o(1),

−
(

m

2
+ t

)
·
(
−1

2
+ δn

)
·

p∑
i=1

λ2
i

= (1 − 2δn) · 1

4
·
[

4t2

m
· tr
(
�2

n

)+ εn

]

+ 1 − 2δn

2
· t

m
·
[

4t2

m
· tr
(
�2

n

)+ εn

]

= t2

m
· tr
(
�2

n

)+ ε′
n,

(2.39)
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where εn → 0 and ε′
n → 0 in probability as n → ∞, and the assertion t

m
εn → 0 in

probability is due to the fact t
m

→ 0; the fact 4t2

m
· tr[(Rn − I)2] is bounded comes

from (2.14).
By Lemma 2.11 again, m

∑p
i=1 λ2

i = 4t2

m
· tr(�2

n)+ εn. Thus, we see from (2.38)

that P(
∑p

i=1 λ2
i ≤ 5s2

m
) → 1 as n → ∞. Over the set {∑p

i=1 λ2
i ≤ 5s2

m
}, we know

max1≤i≤p |λi | ≤ 3s√
m

. In particular, max1≤i≤p |λi | ≤ 1
2 as n is large enough.

Write log(1 + x) = x − 1
2x2 + x3 · ε(x) for |x| < 1. By Taylor’s expansion,

ε(x) =∑∞
i=0(−1)i 1

i+3xi . Thus, |ε(x)| ≤ 1
3
∑∞

i=0 |x|i = 1
3(1−|x|) for all |x| < 1. So

sup|x|≤1/2 |ε(x)| ≤ 1. Define �n = {∑p
i=1 λ2

i ≤ 5s2

m
}, which is a subset of the whole

sample space �. From now on, we assume n is sufficiently large. On �n, it is seen
from the first identity in (2.28) that

p∑
i=1

log(1 + λi) =
p∑

i=1

λi − 1

2

p∑
i=1

λ2
i +

p∑
i=1

λ3
i · εi(λi)

= −1

2

p∑
i=1

λ2
i +

p∑
i=1

λ3
i · εi(λi)

by (2.28) where εi(x), 1 ≤ i ≤ p, are functions satisfying sup1≤i≤p |ε(λi)| ≤ 1.
Trivially, ∣∣∣∣∣

p∑
i=1

λ3
i · εi(λi)

∣∣∣≤ max
1≤i≤p

∣∣∣λi

∣∣∣∣∣ ·
p∑

i=1

λ2
i ≤ 3s√

m
·

p∑
i=1

λ2
i

on �n. Hence,

−
(

m

2
+ t

) p∑
i=1

log(1 + λi) = −
(

m

2
+ t

)
·
[
−1

2
+ O

(
1√
m

)]
·

p∑
i=1

λ2
i

on �n. The lemma then follows from (2.36), (2.39) and the fact P(�n) → 1 as
n → ∞. �

2.5. Uniform integrability of random determinants. In this section, we will
show (1.12) en route to prove Theorem 1. Recall the notation in (2.27). First, we
need some concentration inequalities.

LEMMA 2.13. Let p := pn satisfy that m := n − 1 > p → ∞ and σn be as
in Theorem 1. Then, for any ρ ∈ (0, 1

2), there exist constants M = M(ρ) > 0 and
n0 = n0(ρ, s) ≥ 1 such that

sup
y≥M

pt
m

{
eρmy · P

( p∑
i=1

Vi > y

)}
≤ 1

as n ≥ n0.
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Lemma 2.13 is not a standard Chernoff bound since the mean of V1 goes to
zero. An extra effort has to be paid to get the subtle rate. In fact, the rate e−C1m

for some C1 > 0 in the lemma is different from e−C2p for some constants C2 > 0,
which is usually seen in a Chernoff bound.

PROOF OF LEMMA 2.13. Notice
∑p

i=1 Vi ≤ p. So without loss of general-
ity, we assume y ≤ p. Set r = m

2 . By the Chernoff bound [see, e.g., Dembo and
Zeitouni (1998)],

(2.40) P

(
1

p

p∑
i=1

Vi ≥ x

)
≤ e−pI (x)

for all x > EV1 ∼ 2t
m

from (2.30), where

I (x) = sup
θ>0

{
θx − logEeθV1

}
.

Step 1. Estimate of the moment generating function EeθV1 . Notice

EeθV1 = 1

B(t, r)

∫ 1

0
xt−1(1 − x)r−1eθx dx.

Define w = r − 1. Then (1 − x)r−1 ≤ e−wx since r − 1 = m
2 − 1 ≥ 0 as n ≥ 3.

Hence,

EeθV1 ≤ 1

B(t, r)

∫ 1

0
xt−1e−(w−θ)x dx

≤ (w − θ)−t

B(t, r)

∫ ∞
0

yt−1e−y dy

= �(r + t)

�(r)
(w − θ)−t

for θ < w, where the transform y = (w − θ)x is used in the second step and the
formula B(t, r) = �(r)�(t)

�(r+t)
is applied in the last identity. By using t = s

σn
= O(m

p
)

and Lemma 2.5, we see �(r+t)
�(r)

= rtu where u = un = exp[O((t2 + 1)m−1)] not
depending on θ . Then

(2.41) EeθV1 ≤ rtu · (w − θ)−t

uniformly for all θ < w as n is sufficiently large.
Step 2. Evaluation of the rate function I (x). From (2.41),

I (x) ≥ − log
(
rtu
)+ sup

0<θ<w

{
θx + t log(w − θ)

}
.
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Set ϕ(θ) = θx + t log(w − θ) for 0 < θ < w. Then ϕ′(θ) = x − t
w−θ

and ϕ′′(θ) =
−t (w−θ)−2 < 0. So the maximizer θ0 satisfies w−θ0 = t

x
or θ0 = w− t

x
∈ (0,w)

if x > t
w

. Thus, under the restriction

(2.42) x >
t

m
2 − 1

∼ 2t

m
,

we obtain I (x) ≥ − log(rtu) + wx − t + t log t
x

. By (2.40),

P

(
1

p

p∑
i=1

Vi ≥ x

)
≤ (rtu

)p
e−pJ (x)

for all x satisfying (2.42), where J (x) = wx − t + t log t
x

. Therefore,

P

( p∑
i=1

Vi > y

)
= P

(
1

p

p∑
i=1

Vi > x

)
≤ (rtu

)p
e−pJ (x)

with x = y
p

if (2.42) holds, which is ensured if y ≥ 3pt
m

. Now

J (x) = wy

p
− t + t log

pt

y
.

Consequently,

P

( p∑
i=1

Vi > y

)
≤ (rtu

)p · exp
{
−wy + pt − pt log

pt

y

}

= exp
{
−wy + pt − pt log

pt

y
+ pt log r + p logu

}

= exp
{
−wy + pt log

ery

pt
+ p logu

}
(2.43)

for all y ≥ 3pt
m

.
Step 3. In this part, we will show that the second and third terms in {·} from

(2.43) are small relative to the first term wy. Review u = exp[O((t2 + 1)m−1)]. It
is easy to see, as n is sufficiently large,

p logu

wy
= O

(
p(t2 + 1)

m2y

)
= O

(
t2 + 1

mt

)

uniformly for all y ≥ 3pt
m

. From Lemma 2.6,

t2 + 1

mt
= 1

m

(
t + 1

t

)
= s

mσn

+ σn

ms

≤ s

p
+ 1

s

(
2 logm

m2 + 2p2

m3

)1/2
→ 0

(2.44)
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as n → ∞ since p < m by assumption. This implies

(2.45) τn := sup
y≥3pt/m

p logu

wy
→ 0

as n → ∞. Moreover, noting r
r−1 = m

m−2 ≤ 2 for all m = n − 1 ≥ 4, we have(
pt log

ery

pt

)
· 1

wy
= pt

wy
log

ery

pt

= er

r − 1

logA

A
≤ 2e logA

A

for all n ≥ 5, where A := ery
pt

. Evidently, given M ≥ 3, we see A ≥ m
pt

y ≥ M if

y ≥ M
pt
m

. Realizing h(x) = logx
x

is decreasing on [e,∞), we see

sup
y>Mpt/m

{(
pt log

ery

pt

)
· 1

wy

}
≤ 6 logM

M

for all M ≥ 3 and n ≥ 5. This, (2.43) and (2.45) imply

(2.46) P

( p∑
i=1

Vi > y

)
≤ exp

{
−wy

(
1 − 6 logM

M
− τn

)}

uniformly for all y > M
pt
m

, M ≥ 3 and large n not depending on M . Trivially,

wy ∼ my
2 as n → ∞. From the fact limM→∞ logM

M
= 0 and limn→∞ τn = 0, we get

the desired conclusion by picking M = M(ρ) through (2.46) and n0 = n0(ρ, s) ≥
1 through (2.44) and (2.45). �

Lemma 2.13 is a type of large deviations. We also need to estimate a similar
probability when the “y” in the lemma is small. This belongs to the zone of mod-
erate deviations. We will apply the following inequality by Yurinskiı̆ (1976) to
achieve this purpose.

LEMMA 2.14. Let ξ1, . . . , ξp be independent random variables taking values
in a separable Banach space (B,‖ · ‖) satisfying

E
(‖ξj‖m)≤ m!

2
b2
jH

m−2, m = 2,3, . . . .

Let βp ≥ E‖ξ1 +· · ·+ξp‖ and B2
p = b2

1 +· · ·+b2
p . For any x >

βp

Bp
, set x̄ = x− βp

Bp
.

Then

P
(‖ξ1 + · · · + ξp‖ ≥ xBp

)≤ exp
(
− x̄2

8

1

1 + (x̄H)/(2Bp)

)
.

Specializing the above lemma to our set-up, we get the following result.
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LEMMA 2.15. Let p := pn satisfy that m := n − 1 > p + 3 and p → ∞ and
σn be as in Theorem 1. Assume either infn≥6

pn

n
> 0 or infn≥6

1
n

tr[(Rn − I)2] > 0.
Then, for some δ > 0,

P

(∑
i �=j

r2
ijViVj ≥ y

)
≤ exp

(
− 1

256
· m2y

pt + m
√

y

)

for all y > 1
m

, s ∈ (0, δ] and n ≥ 6.

The Hanson–Wright inequality [Hanson and Wright (1971)] can also provide
an upper bound for the probability in Lemma 2.15. A most recent exposition of the
inequality is given by Rudelson and Vershynin (2013). However, since all Vi ’s take
small values, the Hanson–Wright inequality seems not able to catch the precision
we want. The Yurinskii inequality supplies an ideal upper bound for us.

PROOF OF LEMMA 2.15. By Lemma 2.6, there exists a constant s0 > 0 such
that

σ 2
n ≥

(
p

m

)2
+ 2

m
tr
[
(Rn − I)2]≥ s2

0 > 0

for all n ≥ 6 provided infn≥6
pn

n
> 0 or infn≥6

1
n

tr[(Rn − I)2] > 0. This says

(2.47) t = tn = s

σn

≤ 1

for all n ≥ 6 and 0 < s ≤ s0.
In the application of Lemma 2.14, next we take B =R

p and ‖·‖ is the Euclidean
norm.

Now, for Rn = (rij ) is nonnegative definite, the Hadamard product Rn ◦ Rn =
(r2

ij ) is also nonnegative definite by the Schur product theorem; see, for example,

page 458 from Horn and Johnson (1985). So we can write (r2
ij ) = A2 = A′A, where

A = (a1, . . . ,ap) is a nonnegative definite matrix. In particular, r2
ij = a′

iaj for i �= j

and ‖ai‖ = 1. Set Wn =∑
i �=j r2

ijViVj . Then

(2.48) Wn ≤ ∑
1≤i,j≤p

r2
ijViVj = ∑

1≤i,j≤p

a′
iajViVj = ‖a1V1 + · · · + apVp‖2.

Define r = m
2 as before. Note E‖a1V1 + · · · + apVp‖ ≤ (E‖a1V1 + · · · +

apVp‖2)1/2 and

E
(‖a1V1 + · · · + apVp‖2)= E

∑
1≤i,j≤p

r2
ijViVj

= tr
[
(Rn − I)2] · t2

(r + t)2 + p
t(t + 1)

(r + t)(r + t + 1)

≤ 2s2

m
+ 8pt

m2 ,
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where (2.30) is used in the second identity and the fact 2
m

tr[(Rn − I)2] ≤ σ 2
n and

(2.47) are employed in the last step. From Lemma 2.6, σn ≥ p
m

, it follows

(2.49)

E‖a1V1 + · · · + apVp‖

≤
(

2s2

m
+ 8s

m

)1/2

≤ 1

2
√

m
:= βp

for all 0 < s ≤ 1/40. Now let us bound the probability P(‖a1V1 + · · · + apVp‖ ≥
x). First, by (2.29),

E
[‖a1V1‖m]= E

(
V m

1
)

= t (t + 1) · · · (t + m − 1)

(r + t)(r + t + 1) · · · (r + t + m − 1)

≤ t (t + 1)

r2 · (t + 2)(t + 3) · · · (t + m − 1)

rm−2

≤ 2t

r2 ·
1
2m!
rm−2 .

According to the notation from Lemma 2.14,

(2.50) b2
j = 2t

r2 , B2
p = 2pt

r2 , H = 1

r
.

If x ≥ 2 βp

Bp
, then x

2 ≤ x̄ := x − βp

Bp
≤ x. Therefore, we have from Lemma 2.14 and

(2.49) that

P
(‖a1V1 + · · · + apVp‖ ≥ xBp

)≤ exp
(
− x̄2

8

1

1 + (x̄H)/(2Bp)

)

≤ exp
(
−x2

32

1

1 + (xH)/(2Bp)

)

for all x ≥ 2 βp

Bp
and 0 < s ≤ min{s0,

1
40}. Now, from (2.48),

P(Wn ≥ y) ≤ P
(‖a1V1 + · · · + apVp‖ ≥ xBp

)
with x =

√
y

Bp
. Hence, if x =

√
y

Bp
≥ 2 βp

Bp
, that is, y ≥ 4β2

p = 1
m

, we have

P(Wn ≥ y) ≤ exp
(
− y

32B2
p

1

1 + (H
√

y)/(2B2
p)

)
.

Finally, from (2.50),

y

32B2
p

1

1 + (H
√

y)/(2B2
p)

= 1

32
· r2y

2pt + r
√

y/2
≥ 1

256
· m2y

pt + m
√

y
.
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In summary,

P(Wn ≥ y) ≤ exp
(
− 1

256
· m2y

pt + m
√

y

)

for all y ≥ 1
m

, 0 < s ≤ min{s0,
1

40} and n ≥ 6. �

Let {Xt ; t ∈ T } be a collection of random variables. We say they are uniformly
integrable if supt∈T E[|Xt |I (|Xt | ≥ β)] → 0 as β → ∞. Now we prove the key
result in this section. Review �n = Rn − I and (2.27).

LEMMA 2.16. Let p := pn satisfy that m := n − 1 > p and p → ∞. Set
Qn = |I + �n · diag(V1, . . . , Vp)|−m

2 −t . Assume infn≥6 λmin(Rn) > 1
2 . Then there

exists s0 > 0 such that {Qn; n ≥ 6} is uniformly integrable for any s ∈ (0, s0]
provided one of the following holds:

(i) infn≥6
pn

n
> 0;

(ii) infn≥6
1
n

tr(�2
n) > 0;

(iii) supn≥6
pn‖�n‖∞

‖�n‖2
< ∞.

PROOF. Write an = −λmin(�n) for short notation.
Lemma 2.3 and the condition infn≥6 λmin(Rn) > 1

2 imply that an > 0 for each
n ≥ 6 and

(2.51) sup
n≥6

an <
1

2
.

Let Dn = diag(
√

V1, . . . ,
√

Vp). Easily, Mn := Dn(�n+anIp)Dn is nonnegative
definite. This and the fact that 0 ≤ Vi ≤ 1 for each i imply that I+anD2

n is positive
definite. Hence, ∣∣I + �n · diag(V1, . . . , Vp)

∣∣= ∣∣(I − anD2
n

)+ Mn

∣∣
≥ ∣∣I − anD2

n

∣∣.
Set v = m

2 + t . Notice

(2.52) Qn ≤ Rn := ∣∣I − anD2
n

∣∣−v ≤ 1

(1 − an)vp
.

By the definition of uniform integrability, it suffices to show that there exists n0 ≥ 6
such that

sup
n≥n0

E
[
QnI (Qn ≥ β)

]→ 0

as β → ∞. Set Un =∑p
i=1 Vi . Then, for any number β ≥ 1 and b > 0,

E
[
QnI (Qn ≥ β)

] ≤ E
[
RnI (Un ≥ b)

]+ E
[
QnI (Qn ≥ β,Un ≤ b)

]
:= Fn + Gn.
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In the following two steps, we will show Fn → 0 and Gn → 0, respectively.
Step 1: the proof that Fn → 0. It is known log(1 − x) ≥ − x

1−x
for x ∈ [0,1).

Thus, log[∏p
i=1(1 − anVi)] ≥ − an

1−an

∑p
i=1 Vi . Hence, from (2.52),

(2.53) Rn ≤ exp
(

anv

1 − an

Un

)
.

Set h = an

1−an
v. Then 0 ≤ h ≤ v by (2.51). It is trivial to check

ehUnI (b ≤ Un ≤ c) ≤ ehbI (Un ≥ b) + h

∫ c

b
ehyI (Un ≥ y)dy

for any b < c and any realization of Un by considering if b ≤ Un ≤ c is true or not.
Take expectations on both sides to have

(2.54) E
[
ehUnI (b ≤ Un ≤ c)

]≤ ehbP (Un ≥ b) + h

∫ c

b
ehyP (Un ≥ y)dy.

Since supn≥6 an < 1
2 , it is apparent that τ := supn≥6

an

1−an
< 1 from (2.51). Take

ρ ∈ ( τ
2 , 1

2). By Lemma 2.13, there exist constants n1 = n1 ≥ 6 and M = M(ρ) > 0
such that

P(Un ≥ y) ≤ e−ρmy

for all y ≥ b := bn = M
pt
m

and n ≥ n1. In what follows, ni denotes constants not
depending on n. Thus, we have from (2.54) with c = ∞ that

E
[
ehUnI (Un ≥ b)

]
≤ exp

[
an

1 − an

vb − ρmb

]
+ h

∫ ∞
b

exp
[

an

1 − an

vy − ρmy

]
dy

= e−βnmb + h

∫ ∞
b

e−βnmy dy,

where

βn = ρ − an

1 − an

v

m
.

For v
m

→ 1
2 and 0 ≤ h ≤ m for large n, from the choice of ρ, it is readily seen

βn ≥ 1
2(ρ − 1

2τ) = 1
4(2ρ − τ) > 0 as n ≥ n2 ≥ n1. This gives

E
[
ehUnI (Un ≥ b)

]≤ (1 + 4h

(2ρ − τ)m

)
exp
(
−1

4
(2ρ − τ)mb

)

≤
(

1 + 4

2ρ − τ

)
· exp

{
−1

4
(2ρ − τ)Mpt

}

for all n ≥ n3 ≥ n2. Review (2.53) and the notation h = an

1−an
v, we get

E
[
RnI (Un ≥ b)

]≤ (1 + 4

2ρ − τ

)
· exp

{
−1

4
(2ρ − τ)Mpt

}
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for all s > 0 and n ≥ n3. From Lemma 2.6, pt → ∞. Therefore,

lim
n→∞E

[
RnI (Un ≥ b)

]= 0.

Step 2: the proof that Gn → 0. It suffices to show there exist n′
0 ≥ 6 and s1 > 0

such that

(2.55) lim
β→∞ sup

n≥n′
0

E
[
QnI (Qn ≥ β,Un ≤ b)

]= 0

for any s ∈ (0, s1), where b = M
pt
m

is defined as before.
Let λ1, . . . , λp be the eigenvalues of Dn�nDn. From (2.28),

(2.56)
p∑

i=1

λ2
i =∑

i �=j

r2
ijViVj ≤∑

i �=j

ViVj ≤ U2
n .

Then, under condition Un ≤ b = M
pt
m

, we see
∑p

i=1 λ2
i ≤ M2p2t2

m2 . Recall M does

not depend on s. Set s0 = 1
2M

. Thus, from Lemma 2.6, we see t2 = s2

σ 2
n

≤ m2s2

p2 , and

hence
p∑

i=1

λ2
i ≤ M2p2t2

m2 ≤ 1

4

for any s ∈ (0, s0). In particular, max1≤i≤p |λi | < 1
2 . From now on, we assume

s ∈ (0, s0).
Write log(1 + x) = x − x2 · ε(x) for |x| < 1. Then, by Taylor’s expansion,

ε(x) =∑∞
i=0(−1)i 1

i+2xi . Thus, |ε(x)| ≤ 1
2
∑∞

i=0 |x|i = 1
2(1−|x|) for all |x| < 1. So

sup|x|≤1/2 |ε(x)| ≤ 1. This indicates that, under Un ≤ b,

logQn = −
(

m

2
+ t

)
· |I + Dn�nDn|

= −
(

m

2
+ t

) p∑
i=1

log(1 + λi)

= v

p∑
i=1

λ2
i ε(λi)

by the first identity from (2.28), where max1≤i≤p |ε(λi)| ≤ 1. This and (2.28) say
that

(2.57) QnI (Un ≤ b) ≤ ev�n ≤ em�n

for all n ≥ n4 ≥ n3, where �n :=∑
i �=j r2

ijViVj . Now we show (2.55) by distin-
guishing three cases.
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Cases (i) and (ii). Review Case (i) says infn≥6
pn

n
> 0 and Case (ii) is that

infn≥6
1
n

tr(�2
n) > 0. The inequalities from (2.56) and (2.57) imply that

(2.58) QnI (Qn ≥ β,Un ≤ b) ≤ em�nI

(
logβ

m
≤ �n ≤ M2p2t2

m2

)

for all β > 0. By Lemma 2.15, there exists some 0 < δ < s0 for which

P

(∑
i �=j

r2
ijViVj ≥ y

)
≤ exp

(
− my

256
· m

pt + m
√

y

)

for all y > 1
m

, s ∈ (0, δ] and n ≥ n4 + 6. Since pt = ps
σn

≤ ms by Lemma 2.6, we
have

m

pt + m
√

y
≥ m

pt + Mpt
≥ 1

(M + 1)s
≥ 512

for all 1
m

< y ≤ M2p2t2

m2 and s ∈ (0, s1] where s1 := min{δ, (512(M +1))−1}. Thus,

P(�n ≥ y) ≤ e−2my

for all 1
m

< y ≤ M2p2t2

m2 , s ∈ (0, s1] and n ≥ n4 +6. In (2.54), taking b = b1 := logβ
m

with β ≥ e2 and c = M2p2t2

m2 , then replacing Un by �n, we obtain

E
[
em�nI (b1 ≤ �n ≤ c)

] ≤ emb1P(�n ≥ b1) + m

∫ c

b1

emyP (�n ≥ y)dy

≤ e−mb1 + m

∫ ∞
b1

e−my dy

= 2e−mb1 = 2

β
.

This and (2.58) indicate

sup
n≥n4

E
[
QnI (Qn ≥ β,Un ≤ b)

]≤ 2

β

for every s ∈ (0, s1], every β ≥ e2 and n ≥ n4 + 6. This concludes (2.55).
Case (iii): supn≥6

pn‖�n‖∞
‖�n‖2

< ∞. Let us continue from (2.57). Under Un ≤ b,

�n ≤ ‖�n‖2∞
∑
i �=j

ViVj

≤ ‖�n‖2∞ · U2
n

≤ M2‖�n‖2∞ · p2t2

m2 .
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Set K = supn≥6
pn‖�n‖∞

‖�n‖2
. Then ‖�n‖∞ ≤ K 1

pn
‖�n‖2, and thus

�n ≤ (MKs)2

m
·
(

2

m
tr
[
(Rn − I)2]) · 1

σ 2
n

≤ (MKs)2

m
,

where the last assertion comes from Lemma 2.6. Therefore, by (2.57), we finally
see

QnI (Un ≤ b) ≤ e(MKs)2

for all n ≥ n4. Therefore,

QnI (Qn ≥ β,Un ≤ b) = 0

as long as β > e(MKs)2
. This proves (2.55). �

2.6. Proofs of Theorem 1 and Corollary 2. With the understanding from Sec-
tions 2.1–2.5, we are now fully prepared to prove Theorem 1.

PROOF OF THEOREM 1. Since N(0,1) is uniquely determined by its mo-
ments E[N(0,1)k] for k = 1,2, . . . , to prove the theorem by Proposition 1.2 and
Lemma 2.10, it is enough to show

(2.59) lim
n→∞E exp

(
log |R̂n| − μn

σn

s

)
= es2/2

for all s ∈ (0, s0), where s0 is a constant not depending on n. From the second
conclusion in Lemma 2.1, we have log |R̂n| ≤ 0, and hence the expectation above
is finite for any s ≥ 0 and n ≥ 6. Define

μn,0 =
(
p − n + 3

2

)
log
(

1 − p

n − 1

)
− n − 2

n − 1
p;

σ 2
n,0 = −2

[
p

n − 1
+ log

(
1 − p

n − 1

)]
and σ 2

n,1 = 2

n − 1
tr
[
(Rn − I)2].

We then have

(2.60) μn = μn,0 + log |Rn| and σ 2
n = σ 2

n,0 + σ 2
n,1.

Set t = s
σn

for s > 0 fixed. By Proposition 1.1,

E
[|R̂n|t ]=

(
�(n−1

2 )

�(n−1
2 + t)

)p

· �p(n−1
2 + t)

�p(n−1
2 )

· |Rn|t · E[∣∣I + �n · diag(V1, . . . , Vp)
∣∣− n−1

2 −t ]
= E

[|R̂n,0|t ] · |Rn|t · E[∣∣I + �n · diag(V1, . . . , Vp)
∣∣− n−1

2 −t ]
,
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where V1, . . . , Vp are i.i.d. with Beta(t, n−1
2 )-distribution and

E
[|R̂n,0|t ]= E

[|R̂n|t ]|�n=0 =
(

�(n−1
2 )

�(n−1
2 + t)

)p

· �p(n−1
2 + t)

�p(n−1
2 )

.

Rewrite E exp(
log |R̂n|−μn

σn
s) = e−μnt ·E[|R̂n|t ]. Then, to show (2.59), it suffices to

check{
logE

[|R̂n,0|t ]− μn,0t
}+ logE

[∣∣I + �n · diag(V1, . . . , Vp)
∣∣− n−1

2 −t ]
:= An + Bn → s2

2

(2.61)

for each s ∈ (0, s0). The number “s0” will be specified later. We will analyze An

and Bn separately next.
Step 1: Analysis of An. By Lemma 2.9, there exists s0 > 0 such that, for any

subsequence {nj ; j ≥ 1} of positive integers with limj→∞
pnj

nj
= y ∈ [0,1],

(2.62) lim
j→∞E exp

( log |R̂nj ,0| − μnj ,0

σnj ,0
s

)
= es2/2, |s| ≤ s0.

Based on the fact pn

n
∈ [0,1] for all n ≥ 6, by a subsequence argument, it is easy

to see that

lim
n→∞E exp

(
log |R̂n,0| − μn,0

σn,0
s

)
= es2/2

for all |s| ≤ 2s1 := s0. This immediately implies

(2.63)
log |R̂n,0| − μn,0

σn,0
→ N(0,1)

weakly as n → ∞.

From (2.60),
σ 2

n,i

σ 2
n

∈ [0,1] for i = 0,1 and all n ≥ 6. Then, for any subsequence

{lk}, there exists a further subsequence lkj
such that

(2.64) lim
j→∞

σ 2
n,i

σ 2
n

= αi ∈ [0,1] and α0 + α1 = 1

with n = lkj
for i = 0,1. Define Zn = exp(

log |R̂n,0|−μn,0
σn

s) for n ≥ 6 and s ≥ 0.
Then Zn → exp(s

√
α0 N(0,1)) weakly along the subsequence {lkj

} by (2.63).

Furthermore, since 0 < |R̂n,0| ≤ 1, then Zn is a bounded random variable for all
n ≥ 6. Thus, supn≥6 E(Z2

n) < ∞ for all |s| ≤ s1 by (2.62) and the fact σ 2
n ≥ σ 2

n,0.
It follows that {Zn; n ≥ 6} are uniformly integrable. So

lim
j→∞E exp

(
log |R̂n,0| − μn,0

σn

s

)
= E exp

(
s
√

α0 N(0,1)
)= eα0s

2/2
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for all |s| ≤ s1 if “n” is replaced by “lkj
.” So

(2.65) An → α0s
2

2

along the subsequence {lkj
} for all |s| ≤ s1.

Step 2: Analysis of Bn. Recall σ 2
n,1 = 2

n−1 tr[(Rn − I)2]. Then

t2

n − 1
tr
(
�2

n

)= s2

2
· σ 2

n,1

σ 2
n

→ α1s
2

2

along the subsequence {lkj
} by (2.64). We then have from Lemma 2.12 that

∣∣I + �n · diag(V1, . . . , Vp)
∣∣− n−1

2 −t → eα1s
2/2

in probability along the subsequence {lkj
} for any s ≥ 0. Lemma 2.16 confirms

that the left-hand side above is uniformly integrable for each s ∈ [0, s2] where s2

is a constant. We thus conclude

(2.66) Bn = logE
[∣∣I + �n · diag(V1, . . . , Vp)

∣∣− n−1
2 −t ]→ α1s

2

2

along the subsequence {lkj
} for each s ∈ [0, s2].

We now make a summary. It is shown that, for any subsequence {lk; k ≥ 1} of
{n; n ≥ 1}, we find a further subsequence {lkj

; j ≥ 1} such that (2.65) and (2.66)
hold along the subsequence {lkj

; j ≥ 1} for all s ∈ [0, s3] where s3 := s1 ∧ s2.
This ensures (2.61) by the second equality in (2.64) and the subsequence argument
again. �

PROOF OF COROLLARY 2. By Lemma 2.3, λmin(Rn) ∈ [0,1]. Let λ1, . . . , λp

be the eigenvalues of Rn. Then, from the Gers̆gorin disc theorem [see, e.g.,
page 344 from Horn and Johnson (1985)], we have

|1 − λk| ≤ max
1≤i≤p

∑
j �=i

|rij |

for any 1 ≤ k ≤ p. In particular, this entails 1 − λmin(Rn) ≤ max1≤i≤p

∑
j �=i |rij |.

Now we use this fact to prove the corollary:
(i) Notice max1≤i≤p

∑
j �=i |rij | ≤ 2(|ρ| + · · · + |ρ|p−1) ≤ 2|ρ|

1−|ρ| . Hence,

λmin(Rn) ≥ 1 − 2|ρ|
1 − |ρ| >

1

2

if |ρ| < 1
5 . Then the CLT in Theorem 1 holds assuming that infn≥6

pn

n
> 0.
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(ii) First, fix n ≥ 6. Then

1 − λmin(Rn) ≤ max
1≤i≤p

∑
j �=i

|rij |

≤ max
1≤i≤p

{
j �= i; |i − j | ≤ k

} · max
i �=j

|rij |
≤ (2k) · sup

n≥6
max
i �=j

|rij |.

If supn≥6 maxi �=j |rij | < 1
4k

, then infn≥6 λmin(Rn) > 1
2 . Hence, the CLT in Theo-

rem 1 is valid provided infn≥6
pn

n
> 0. �
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