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MALLIAVIN CALCULUS APPROACH TO LONG EXIT TIMES
FROM AN UNSTABLE EQUILIBRIUM

BY YURI BAKHTIN1 AND ZSOLT PAJOR-GYULAI

New York University

For a one-dimensional smooth vector field in a neighborhood of an un-
stable equilibrium, we consider the associated dynamics perturbed by small
noise. Using Malliavin calculus tools, we obtain precise vanishing noise
asymptotics for the tail of the exit time and for the exit distribution condi-
tioned on atypically long exits.

1. Introduction. Exit problems for small random perturbations of random
dynamical systems have been studied for several decades. The most celebrated
asymptotic results in this direction are large deviation estimates of the Freidlin–
Wentzell theory and their extensions; see the classical book [9].

There are situations when large deviation results are not sufficient for detailed
analysis of the system’s behavior. In particular, the analysis of noisy heteroclinic
networks, that is, systems with multiple unstable equilibria connected to each other
by heteroclinic orbits, requires studying distributional scaling limit theorems for
exit points and exit times. This approach allows for an iteration scheme that leads
to a detailed description of typical diffusion paths on time scales logarithmic in
noise magnitude ε > 0; see [1, 3, 4]. In those papers, the results on the asymp-
totics of exits from neighborhoods of critical points extend the results of [11] and
[7] where the leading deterministic logarithmic term for the exit time τ ε and the
leading random correction to the logarithmic term were computed. Namely, for a
class of initial conditions near the critical point (or the associated stable manifold),
it was established that if λ > 0 is the leading eigenvalue of the linearization of the
dynamics near the critical point, then

τ ε = 1

λ
log

1

ε
+ θε,

where random variables θε converge in distribution as ε → 0. Moreover, the lim-
iting distribution is nontrivial and has explicit representations. The associated dis-
tributions of exit locations were also studied in [8] and [2].

To extend the results of [1, 3, 4] to longer time scales, one needs to study rare
events responsible for the unlikely transitions in the heteroclinic networks. One
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such rare event can be described as withstanding the repulsion near an unstable
critical point for an atypically long time. Thus, we need to study the asymptotics of
the tail of τε . The best results in this direction, to the best of our knowledge, were
established in [12], where a large deviation estimate in the form of logarithmic
equivalence was obtained:

lim
ε→0

log P(τ ε > α
λ

log 1
ε
)

log ε
= α − 1, α > 1.

In this paper, for the one-dimensional case, we provide more delicate estimates
proving that for all α > 1,

(1) P
(
τ ε >

α

λ
log

1

ε

)
= �εα−1(

1 + o(1)
)
, ε → 0,

and computing the precise value of the constant �; see our main result, Theo-
rem 1.1, below. We give an explicit expression for � in terms of the starting point
ranging through a neighborhood of the critical point that we describe. We also ex-
plicitly compute the limiting distribution of the exit location conditioned on the
rare event of withstanding the repulsion for an atypically long time, and it turns
out that it does not depend on the starting point within that neighborhood.

It is essential for our proof to study the asymptotic behavior of densities of
certain auxiliary random variables. Besides the traditional methods of stochastic
analysis, we use the Malliavin calculus tools. We believe that our approach can be
extended to higher dimensions, although the extension is not straightforward, and
it will be addressed in a separate paper.

Let us now introduce the setting more formally. We will consider the family of
stochastic differential equations

(2) dXε(t) = b
(
Xε(t)

)
dt + εσ

(
Xε(t)

)
dW(t),

on a bounded interval I = [q−, q+] ⊆ R, where the drift is given by a vector field
b ∈ C2(R) and the random perturbation is given via a standard Brownian motion
W with respect to a filtration (Ft )t≥0 defined on some probability space (	,F,P).
The noise magnitude is given by a small parameter ε > 0 in front of the diffusion
coefficient σ ∈ C2(R) which is assumed to satisfy σ(0) > 0. Although we are in-
terested only in the evolution within I , we can assume that b and σ are globally
Lipschitz without changing the setting.

Standard results on stochastic differential equations (see, e.g., [10]) imply that
for any starting location Xε(0) ∈ I , equation (2) has a unique strong solution up to

τ ε
I = inf

{
t ≥ 0 : Xε(t) ∈ ∂I

}
,

the exit time from I .
Let (St )t∈R be the flow generated by the vector field b, that is, x(t) = Stx0 is

the solution of the autonomous ordinary differential equation

(3) ẋ(t) = b
(
x(t)

)
, x(0) = x0 ∈R.
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We assume that there is a unique repelling zero of the vector field b. Without loss
of generality, we place it at the origin. In other words, we assume that b(0) = 0
and, for some λ > 0 and η ∈ C2(I),

(4) b(x) = λx + η(x)|x|2, x ∈ I.

Note that since the origin is the only zero of b in the closed interval I , this as-
sumption implies that for all x �= 0, there is a uniquely defined finite time T (x)

such that ST (x) ∈ ∂I .
Under the condition (4), the map f : I →R defined by

(5) f (x) = lim
t→∞ eλtS−t x = x −

∫ ∞
0

eλsη
(
S−sx

)∣∣S−sx
∣∣2 ds

is a C2-diffeomorphism; see [8]. It preserves the order on R, so

f (q−) < 0 < f (q+).

Our main result is the following.

THEOREM 1.1. Consider Xε defined by (2) with initial condition Xε(0) = εx

and let K(ε) be a function such that

(6) lim
ε↓0

εβK(ε) = 0 ∀β > 0.

Then, for all α > 1,

(7)

lim
ε↓0

sup
|x|≤K(ε)

∣∣∣∣ε−(α−1)P
(
τ ε
I >

α

λ
log ε−1

)

−
√

λ

π

e
−λ( x

σ(0)
)2

σ(0)

(∣∣f (q+)
∣∣ + ∣∣f (q−)

∣∣)∣∣∣∣ = 0

and

(8) lim
ε↓0

sup
|x|≤K(ε)

∣∣∣∣P
(
Xε

(
τ ε
I
) = q±

∣∣∣ τ ε
I >

α

λ
log ε−1

)
− |f (q±)|

|f (q+)| + |f (q−)|
∣∣∣∣ = 0.

REMARK 1.2. The second term in (7) plays the role of � in (1). Note that in
(7) the coefficient in front of |f (q+)| + |f (q−)| is the centered Gaussian density
with variance σ 2(0)/(2λ) evaluated at x.

One could approach Theorem 1.1 using that the distribution of Xε conditioned
to stay in the bounded domain for an atypically long time, approaches the quasi-
stationary distribution exponentially fast; see [6]. However, our situation is more
subtle since both, the time scale and the system, depend on ε. So, instead of at-
tempting to appeal to the general quasi-stationary distribution theory, we adopt the
following plan: we change the coordinates by conjugating the drift to a linear one;
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then we use Duhamel’s principle to represent the solution and express the event
of interest {τ ε

I > α
λ

log 1
ε
} in terms of a random factor in the resulting variation of

constants formula; the convergence of that factor in distribution is known and has
been employed in the literature cited above, but the desired result concerns un-
likely events, and we need much stronger regularity, namely, uniform convergence
of the associated probability densities. We use Malliavin calculus to study these
densities. In fact, the Malliavin calculus approach works only for small values of
α, and to extend it to the longer time scales we need to invoke an additional re-
cursive scheme that can be seen as studying the quasi-stationary distribution since
each step is performed under the no-exit conditioning.

In this program, the density estimates are based on a well-known formula for
the density in terms of the Malliavin derivative and the divergence operator; see
Proposition 4.1. This formula has been used to derive upper bounds on densities
(see [14], Section 2.1.1), but in general it is viewed as not very useful (see, e.g.,
[13]) where a replacement formula is suggested. However, in our context, Propo-
sition 4.1 turns out to be very efficient.

2. Proof of Theorem 1.1. We will study the system in a small neighborhood
of the origin and after the process has escaped this small neighborhood.

Let us start with the first part. The diffeomorphism f : I →R introduced in (5)
and its inverse g = f −1 provide a conjugation between the flow (St ) and a linear
flow:

(9) f
(
Stx

) = eλtf (x), or f ′(x)b(x) = λf (x).

Note that the integrand in (5) is quadratic when x is close to zero, and thus we have
f (0) = 0 and f ′(0) = 1. Outside of I , we define f so that f ′ and f ′′ are bounded.

Let Yε(t) = f (Xε(t)) for times prior to the escape from I . Itô’s formula and (9)
then imply that this process satisfies the stochastic differential equation

(10) dYε(t) = λYε(t) dt + εσ̃
(
Yε(t)

)
dW(t) + ε2

2
h
(
Yε(t)

)
dt

for t < τε
I , where σ̃ (y) = f ′(g(y))σ (g(y)) and h(y) = f ′′(g(y))σ 2(g(y)). Due to

boundedness of f ′ and f ′′, σ̃ and h are also bounded.
Let us choose R > 0 sufficiently small to ensure that V = g([−R,R]) ⊆ I and

σ̃ (x) > 0 for all x ∈ [−R,R]. The following result describes the behavior of τ ε
V ,

the exit time from V .

THEOREM 2.1. Let Yε(0) = εx, where |x| ≤ K(ε) with K(ε) satisfying (6).
There is a family of random variables (Mε) such that for all ε > 0, P(Mε = 0) = 0,

τ ε
V = 1

λ
log

R

ε
− 1

λ
log |Mε|,(11)

P
({

Yε

(
τ ε
V
) = ±R

}�{±Mε > 0}) = 0,(12)
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and, if a(ε) is a monotone function such that a(ε) ∼ cεθ , ε → 0, for some c, θ > 0,
then the following estimate holds:

(13) lim
ε↓0

sup
|x|≤K(ε)

∣∣∣∣P(
0 < ±Mε ≤ a(ε)

) −
√

λ

π

e
−λ( x

σ(0)
)2

σ(0)
a(ε)

∣∣∣∣ = o
(
a(ε)

)
.

REMARK 2.2. The coefficient in front of a(ε) in (13) is the centered Gaussian
density with variance σ 2(0)/(2λ) evaluated at x.

We give the proof of Theorem 2.1 in Section 3.
After exiting from V , the deterministic dynamics dominates the evolution,

which is captured by the following standard large deviation estimates.

PROPOSITION 2.3. Let Xε(0) = g(±R). There are constants c1, c2, ε0 > 0
such that

(14) P
(∣∣τ ε

I − T
(
g(±R)

)∣∣ > εN
) ≤ c1e

−c2N
2
, ε < ε0,N ≥ 1,

and

P
(
Xε(τI) = q±

) ≥ 1 − c1e
−c2/ε

2
, ε < ε0.

PROOF OF THEOREM 1.1. Combining τ ε
I = τ ε

V + (τ ε
I − τ ε

V) with (11), (14)
and the strong Markov property yields the representation

(15) τ ε
I = 1

λ
log ε−1 + C − 1

λ
log |Mε| + θε, C = 1

λ
logR + T

(
Xε

(
τ ε
V
))

,

where θε is a random variable such that

(16) P
(|θε| > εN

) ≤ c1e
−c2N

2
, N ≥ 1,

for some c1, c2 > 0. Although R appears in the definition of C, one can easily
show that C does not, in fact, depend on the choice of R. Identities (15) and (12)
imply

P
(
τ ε
I ≥ α

λ
log ε−1

)
= P

(|Mε| ≤ eλ(C+θε)εα−1) = I− + I+,(17)

where

(18) I± = P
(
0 < ±Mε ≤ eλ(C±+θε)εα−1)

, C± = 1

λ
logR + T

(
g(±R)

)
.

Let us simplify the definition of C±. Since T (g(±R)) equals the time it takes for
the linear flow to travel between R and f (q±), that is, 1

λ
log |f (q±)|

R
, we see that

(19) C± = 1

λ
log

∣∣f (q±)
∣∣.
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We can write

I± ≤ P
(
0 < ±Mε ≤ eλ(C±+εβ)εα−1) + P

(|θε| > εβ)
,

where we choose β ∈ (0,1). The second term decays exponentially fast a ε → 0
by (16) and we may apply (13) to the first term with a(ε) = eλ(C±+εβ)εα−1 to
conclude

(20) I± ≤
√

λ

π

eλC±
εα−1

σ(0)
e
−λ( x

σ(0)
)2(

1 +O
(
εβ)) + o

(
εα−1)

,

with the error term being uniform over |x| ≤ K(ε). Note that invoking (13) was
justified by

Yε(0) = f (εx) = εx + o(εx) = εx
(
1 + o(1)

)
.

The analogous lower bound follows similarly:

I± ≥ P
(
0 < ±Mε ≤ eλ(C±−εβ)εα−1; |θε| ≤ εβ)

≥ P
(
0 < ±Mε ≤ eλ(C±−εβ)εα−1) − P

(|θε| ≥ εβ)
(21)

=
√

λ

π

eλC±
εα−1

σ(0)
e
−λ( x

σ(0)
)2(

1 +O
(
εβ)) + o

(
εα−1)

.

Combining (20), (21) and (17), we obtain

ε−(α−1)P
(
τ ε
I ≥ α

λ
log ε−1

)
=

√
λ

π

eλC− + eλC+

σ(0)
e
−λ( x

σ(0)
)2 + o(1),

with the error term being uniform over |x| ≤ K(ε). Using (19), we complete the
proof of (7).

To prove (8), we write

P
(
Xε

(
τ ε
I
) = q±;λτε

I > (1 − α) log ε−1)
= P

(
Xε

(
τ ε
I
) = q±; |Mε| ≤ eλ(C+θε)εα−1)

= P
(
Xε

(
τ ε
V
) = g(±R); |Mε| ≤ eλ(C+θε)εα−1) +O

(
e−c2/ε

2)
= P

(
0 < ±Mε ≤ eλ(C±+θε)εα−1) +O

(
e−c2/ε

2)
= I± +O

(
e−c2/ε

2)
.

Here, the first equality is due to (15), the second one is due to Proposition 2.3,
while third one holds by (12). Therefore,

P
(
Xε

(
τ ε
I
) = q±

∣∣∣ τI >
α

λ
log ε−1

)
= I± +O(e−c2/ε

2
)

I− + I+
−→ eλC±

eλC− + eλC+ ,

as ε → 0 and the proof is completed by (19)–(21). �
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3. The linear equation. The goal of this section is to prove Theorem 2.1. To
this end, we apply Duhamel’s formula to the stochastic differential equation (10)
to obtain

(22) Yε(t) = εeλtMε(t), Mε(t) = x + Uε(t) + Vε(t),

where we used Yε(0) = εx and introduced

Uε(t) =
∫ t

0
e−λsσ̃

(
Yε(s)

)
dW(s), Vε(t) = ε

2

∫ t

0
e−λsh

(
Yε(s)

)
ds.

Note that there is C > 0 such that for all t ≥ 0 and x ∈ R,

(23) 〈Uε〉t < C,
∣∣Vε(t)

∣∣ ≤ Cε.

By the definition of τ ε
V , we have

(24) R = ∣∣Yε

(
τ ε
V
)∣∣ = εeλτε

V
∣∣Mε

(
τ ε
V
)∣∣,

which we can rearrange to obtain

τ ε
V = 1

λ
log

R

ε
− 1

λ
log

∣∣Mε

(
τ ε
V
)∣∣.

This establishes (11) once we set Mε = Mε(τ
ε
V). Note immediately that

P(Mε = 0) = P
(
τ ε
I = ∞) = 0

by the uniform ellipticity of σ̃ . Moreover, the sign of Yε(t) coincides with the sign
of Mε(t) for all t > 0, and thus (12) is verified as well. Therefore, it remains to
prove (13), and the rest of the section is dedicated to this goal.

The strategy of proof is the following. We first replace the stopping time τ ε
V with

the deterministic time

(25) Tε = 1

λ
log

R

ε
− 1

λ
loga(ε),

where we recall that a(ε) ∼ cεθ , which turns out to be a good substitute on the
rare events that we seek to study. Next, we use tools from Malliavin calculus to
establish that for an appropriately chosen shorter fixed time T ′

ε ≤ Tε , the random
variable Mε(T

′
ε) has a density around zero that converges to the density of a cen-

tered Gaussian random variable with variance (2λ)−1σ 2(0), which establishes the
desired estimate for Mε(T

′
ε). Finally, we use the Markov property to iteratively ex-

tend this conclusion to Mε(Tε). The following well-known exponential martingale
inequality (see, e.g., Problem 12.10 in [5]) will be useful many times.

LEMMA 3.1. Let M(t) be a martingale with quadratic variation process
〈M〉t . Then

P
(
sup
t≥0

∣∣M(t)
∣∣ ≥ a; 〈M〉∞ ≤ b

)
≤ 2e− a2

2b
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for any a, b > 0. In particular, due to (23),

P
(
sup
t≥0

∣∣Uε(t)
∣∣ ≥ a

)
≤ 2e−Ca2

, E
[
sup
t≥0

∣∣Uε(t)
∣∣p]

≤ Cp, p ≥ 1,

for some constants C,Cp < ∞.

We start by showing that Mε(Tε) is a good substitute for Mε = Mε(τ
ε
V) on the

set |Mε| ≤ a(ε). When working with deterministic times, we do not restrict the
dynamics to times before the exit from I , so we use our global Lipschitzness
assumption to ensure the existence of the strong solution. From now on, we use
the same letter C to denote various positive constants.

LEMMA 3.2. For every γ ∈ (0,1) and γ ′ > 0, there is ε0 > 0 such that

sup
|x|≤K(ε)

P
(∣∣Mε − Mε(Tε)

∣∣ ≥ a(ε)εγ ; |Mε| ≤ a(ε)
)
< εγ ′

, ε < ε0.

PROOF. Observe that {|Mε| ≤ a(ε)} = {τ ε
V ≥ Tε} by (24) and (25). This allows

us to write

P
(∣∣Uε

(
τ ε
V
) − Uε(Tε)

∣∣ ≥ a(ε)εγ

2
; |Mε| ≤ a(ε)

)

= P
(∣∣∣∣

∫ τ ε
V

Tε

e−λt σ̃
(
Yε(s)

)
dW(s)

∣∣∣∣ ≥ a(ε)εγ

2
; τ ε

V ≥ Tε

)

≤ P
(

sup
t≥Tε

∣∣∣∣
∫ t

Tε

e−λt σ̃
(
Yε(s)

))
dW(s)

∣∣∣∣ ≥ a(ε)εγ

2
)

≤ 2 exp
{
−C

a2(ε)ε2γ

e−2λTε

}
= 2 exp

{
−C

a2(ε)ε2γ

e−2(log R
ε
−loga(ε))

}

= 2 exp
{
−C

ε2γ

ε2

}
≤ εγ ′

2
,

for any γ ′ > 0, and sufficiently small ε, where we use the boundedness of σ̃ and
Lemma 3.1 in the last inequality. At the same time, on {τ ε

V ≥ Tε}, we have

∣∣Vε

(
τ ε
V
) − Vε(Tε)

∣∣ ≤ ε

2λ
sup
t≤τ ε

V

∣∣a(
Yε(t)

)∣∣e−λTε ≤ ε2a(ε)‖h‖∞
2λR

,

where we used that h is bounded. Therefore, the triangle inequality and a simple
union bound gives

P
(∣∣Mε − Mε(Tε)

∣∣ ≥ a(ε)εγ ; |Mε| ≤ a(ε)
)

≤ P
(∣∣Uε

(
τ ε
V
) − Uε(Tε)

∣∣ ≥ a(ε)εγ

2
; |Mε| ≤ a(ε)

)
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+ P
(∣∣Vε

(
τ ε
V
) − Vε(Tε)

∣∣ ≥ a(ε)εγ

2
; |Mε| ≤ a(ε)

)

≤ εγ ′

provided γ ∈ (0,1) and ε is sufficiently small. �

Our next goal is to show that Mε(Tε) satisfies the desired small ball asymptotics.
The next proposition is the key technical result of this paper and will be proved in
Section 4 with Malliavin calculus tools.

PROPOSITION 3.3. Assume Yε(0) = εx and let T ′
ε > 0 be a function of ε such

that

(26)
λT ′

ε

log ε−1 ∈
[
1 − c

log ε−1 ,2 − κ

]

for some c, κ > 0 and for all sufficiently small ε. The random variable M ′
ε =

Mε(T
′
ε) has a continuous, bounded density px

ε (z). Moreover, for every K(ε) satis-
fying (6),

lim
ε↓0

sup
|x|≤K(ε)

sup
z∈R

∣∣px
ε (z) − px(z)

∣∣ = 0,

where px is the density of a Gaussian random variable with mean x and variance
(2λ)−1σ 2(0):

px(z) =
√

λ

π

1

σ(0)
e
−λ( z−x

σ(0)
)2

.

In the proof of the theorem on the outcome of the linear evolution, we will use
the Markov property many times, so it is convenient to denote by Py the joint
distribution of the driving Wiener process W and the process Yε with initial point
Yε(0) = y.

PROOF OF THEOREM 2.1. As observed in the beginning of this section, it
only remains to show that Mε satisfies (13). Let us derive the theorem from the
following statement that we will prove later: if b(ε) = o(a(ε)) and K(ε) satisfies
(6), then P(ε, x) = Pεx(b(ε) ≤ Mε(Tε) ≤ a(ε)) satisfies

(27) lim
ε→0

sup
|x|≤K(ε)

∣∣∣∣P(ε, x)

a(ε)
− px(0)

∣∣∣∣ = 0.

Let us choose γ ′ large enough such that εγ ′ = o(a(ε)), ε → 0. Lemma 3.2 and
(27) imply that if γ ∈ (0,1), then

Pεx

(
0 < Mε ≤ a(ε)

) ≤ εγ ′ + Pεx

(
0 < Mε ≤ a(ε); ∣∣Mε − Mε(Tε)

∣∣ < a(ε)εγ )
(28)

≤ εγ ′ + Pεx

(−a(ε)εγ ≤ Mε(Tε) ≤ a(ε)
(
1 + εγ ))

= px(0)a(ε) + o
(
a(ε)

)
.(29)
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Similarly,

Pεx

(
0 < Mε ≤ a(ε)

)
≥ Pεx

(
0 < Mε ≤ a(ε); ∣∣Mε − Mε(Tε)

∣∣ < a(ε)εγ )
≥ Pεx

(
a(ε)εγ ≤ Mε(Tε) ≤ a(ε)

(
1 − εγ ); ∣∣Mε − Mε(Tε)

∣∣ < a(ε)εγ )
(30)

= Pεx

(
a(ε)εγ ≤ Mε(Tε) ≤ a(ε)

(
1 − εγ )) − �(ε, x),

= px(0)a(ε) + o
(
a(ε)

) − �(ε, x),

where

�(ε, x) = Pεx

(
a(ε)εγ ≤ Mε(Tε) ≤ a(ε)

(
1 − εγ ); ∣∣Mε − Mε(Tε)

∣∣ ≥ a(ε)εγ )
≤ �1(ε, x) + �2(ε, x),

with

�1(ε, x) = Pεx

(
τ ε
V ≥ Tε;

∣∣Mε − Mε(Tε)
∣∣ ≥ a(ε)εγ )

,

�2(ε, x) = Pεx

(
τ ε
V ≤ Tε;

∣∣Mε(Tε)
∣∣ ≤ a(ε)

(
1 − εγ ))

.

Due to (28) and (30), the desired relation (13) for the positive sign follows from

(31) �i(ε, x) = o
(
a(ε)

)
, i = 1,2,

uniformly in x. Since {τ ε
V ≥ Tε} = {|Mε| ≤ a(ε)}, Lemma 3.2 immediately implies

that �1(ε, x) < εγ ′
for any γ ′ > 0 and sufficiently small ε. To estimate �2(ε, x),

we note that |Mε(Tε)| ≤ a(ε)(1 − εγ ) implies∣∣Yε(Tε)
∣∣ = εeλTε

∣∣Mε(Tε)
∣∣ ≤ R

(
1 − εγ )

,

and applying the strong Markov property to the process Yε after τ ε
V , we obtain

�2(ε, x) ≤ max
z=±R

Pz

(
inf

t∈[0,Tε]
∣∣Yε(t)

∣∣ ≤ R
(
1 − εγ ))

.

Duhamel’s formula (22) and the reverse triangle inequality imply∣∣Yε(t)
∣∣ ≥ eλt

∣∣∣∣Yε(0)
∣∣ − ε

∣∣Uε(t)
∣∣−ε

∣∣Vε(t)
∣∣∣∣ ≥ ∣∣Yε(0)

∣∣ − ε
∣∣Uε(t)

∣∣ − ε
∣∣Vε(t)

∣∣,
and, combining the last two displays, (23), and Lemma 3.1, we obtain

�2(ε, x) ≤ P
(

sup
t∈[0,Tε]

∣∣Uε(t)
∣∣ ≥ Rε−(1−γ ) − C

)
≤ 3e

− C

ε2(1−γ ) < εγ ′
,

for any γ < 1 and sufficiently small ε. Thus, (31) is verified, completing the proof
of (13) for the positive sign. The result for −Mε is proved the same way.

It remains to prove (27). If θ ∈ (0,1), then Tε = T ′
ε satisfies (26), so (27) im-

mediately follows from Lemma 3.2 and Proposition 3.3. If θ ≥ 1, then we can-
not apply Proposition 3.3 directly, so our strategy will be to extend it to longer
times using an iterative procedure based on the Markov property. Namely, we let
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N = �θ� + 1 and consider the shorter time T ′
ε = Tε/N . There is κ > 0 such that

for sufficiently small ε,

αε := λT ′
ε

log ε−1 = 1 + θ − ζε

�θ� + 1
∈

(
1 − C

log ε−1 ,2 − κ

)
,

where ζε = O(1/ log ε−1). We recall that C > 0 stands for a constant that may
change on every appearance. In fact, observe also that the last display and N ∈ N

imply

(32) 2 ≤ N ≤ θ

αε

+ 1 + C

log ε−1

for sufficiently small ε. For simpler notation, let us use the abbreviations

Tε,k = kT ′
ε, Mε,k = Mε(Tε,k), Yε,k = Yε(Tε,k), Fε,k = FTε,k

for k = 1, . . . ,N . We will show by induction that for each ε > 0 there is a sequence
(Hε,k)

∞
k=0 of centered Gaussian random variables independent of Fε,k , with vari-

ance

(33) EH 2
ε,k = σ 2(0)

2λ

1 − ε2(N−k)αε

1 − ε2αε
,

and such that

(34) P(ε, x) = Pεx

(
b(ε) ≤ Mε,k + εkαεHε,k ≤ a(ε)

) + o
(
a(ε)

)
, ε ↓ 0,

for all k = 0, . . . ,N . Using (34) with k = 0 completes the proof of (27) as Mε,0 = x

and the random variable Hε,0 is centered Gaussian with variance converging to
(2λ)−1σ 2(0) as ε ↓ 0 by (33).

Now we proceed with the proof of (34) by first noting that the case k = N is
trivial as Hε,N = 0. Let us assume that (34) holds for some k = 1, . . . ,N and show
that it therefore holds for k − 1 as well. Due to the relation Yε(t) = εeλtMε(t), the
Markov property allows us to write

Pεx

(
b(ε) ≤ Mε,k + εkαεHε,k ≤ a(ε)

)
= Eεx

[
Pεx

(
b(ε) ≤ Mε,k + εkαεHε,k ≤ a(ε) | FTε,k−1

)]
=

∫ ∞
−∞

Pεx

(
b(ε) ≤ Mε,k + εkαεHε,k ≤ a(ε) | Mε,k−1 = z

)
r(k−1)
x (dz),

where we introduced the measure

r(k−1)
x (dz) = Pεx(Mε,k−1 ∈ dz).

Since Yε,k = εeλTε,kMε,k = ε1−kαεMε,k , for all k = 0, . . . ,N , the integrand equals

Pεx

(
ε1−kαεb(ε) ≤ Yε,k + εHε,k ≤ ε1−kαεa(ε) | Yε,k−1 = ε1−(k−1)αεz

)
= Pε1−(k−1)αε z

(
ε1−kαεb(ε) ≤ Yε,1 + εHε,k ≤ ε1−kαεa(ε)

)
,
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where we used the Markov property and the independence of Hε,k and Fε,k in the
last step. Note that Yε,1 is independent of Hε,k . Combining the last three displays
and the change of variables z → ε(k−1)αεz gives

Pεx

(
b(ε) ≤ Mε,k + εkαεHε,k ≤ a(ε)

)
=

∫ ∞
−∞

Pεz

(
ε1−kαεb(ε) ≤ Yε,1 + εHε,k ≤ ε1−kαεa(ε)

)
× r(k−1)

x

(
ε(k−1)αε dz

)
.

(35)

Let us now prove that there are c1, c2 > 0 such that for any L > 0, we have

sup
|z|≥L

Pεz

(
ε1−kαεb(ε) ≤ Yε,1 + εHε,k ≤ ε1−kαεa(ε)

) ≤ c1e
−c2L

2
.(36)

Note that (32) implies

(k − 1)αε ≤ (N − 1)αε ≤ θ + C

log ε−1 ,

so, using that εC/ log ε−1 = e−C = const > 0, we have

ε1−αε ≥ ε1−kαε+C/ log ε−1
a(ε) ≥ Cε1−kαεa(ε),

which implies

|Yε,1 + εHε,k| =
∣∣Yε

(
T ′

ε

) + εHε,k

∣∣ ≥ εeλT ′
ε
(|z| − ∣∣Uε

(
T ′

ε

)∣∣ − ∣∣Vε

(
T ′

ε

)∣∣) − ε|Hε,k|
≥ ε1−αε

(|z| − ∣∣Uε

(
T ′

ε

)∣∣ − ∣∣Vε

(
T ′

ε

)∣∣ − εαε |Hε,k|)
≥ C1ε

1−kαεa(ε)
(|z| − ∣∣Uε

(
T ′

ε

)∣∣ − εC2 − εαε |Hε,k|).
Since b(ε) = o(a(ε)), the left-hand side of (36) can be thus bounded above by

sup
|z|≥L

Pεz

(|Yε,1 + εHε,k| ≤ ε1−kαεa(ε)
)

≤ P
(|Hε,k| ≥ L

) + P
(∣∣Uε

(
T ′

ε

)∣∣ ≥ L
(
1 − εαε

) − 1

C1
− εC2

)
,

and (36) follows from the standard Gaussian tail bound, (33), and Lemma 3.1.
Conditioning on Hε,k , using the independence of Mε(T

′
ε) and Hε,k , and using

the existence of density of Mε(T
′
ε) guaranteed by Proposition 3.3, we obtain

Pεz

(
ε1−kαεb(ε) ≤ Yε,1 + εHε,k ≤ ε1−kαεa(ε)

)
= Pεz

(
ε−(k−1)αεb(ε) ≤ Mε

(
T ′

ε

) + εαεHε,k ≤ ε−(k−1)αεa(ε)
)

= E
∫ a(ε)ε−(k−1)αε−εαεHε,k

b(ε)ε−(k−1)αε−εαεHε,k

pz
ε(u) du.
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This, along with the induction hypothesis (34), relations (35)–(36) and Fubini’s
theorem, gives

P(ε, x) = E
∫ a(ε)ε−(k−1)αε−εαεHε,k

b(ε)ε−(k−1)αε−εαεHε,k

∫ L

−L
pz

ε(u)r(k−1)
x

(
ε(k−1)αε dz

)
du

+O
(
e−λL2) + o

(
a(ε)

)
.

(37)

To use the uniform convergence statement of Proposition 3.3, while simultane-
ously making the error term decay sufficiently fast, we choose

L = L(ε) = K(ε) =
√

2θ

λ
log ε−1.

This allows us to write (37) as

P(ε, x) = E
∫ a(ε)ε−(k−1)αε−εαεHε,k

b(ε)ε−(k−1)αε−εαεHε,k

∫ ∞
−∞

pz(u)Pεx

(
ε−(k−1)αεMε,k−1 ∈ dz

)
du

+ o
(
a(ε)

)
,

where we also used the decay rate of pz(u) at ∞ to restore the integration domain
to the entire line.

Recalling that pz(u) = p0(u − z), we change variables: u′ = ε(k−1)αεu, z′ =
ε(k−1)αεz, and express the integral on the right-hand side of the last display as

ε−(k−1)αεE
∫ a(ε)−εkαεHε,k

b(ε)−εkαεHε,k

∫ ∞
−∞

p0(
ε−(k−1)αε

(
u′ − ε(k−1)αεz

))
× Px

(
Mε,k−1 ∈ ε(k−1)αε dz

)
du′

= ε−(k−1)αεE
∫ a(ε)−εkαεHε,k

b(ε)−εkαεHε,k

∫ ∞
−∞

p0(
ε−(k−1)αε

(
u′ − z′))

× Px

(
Mε,k−1 ∈ dz′)du′

= Pεx

(
b(ε) ≤ Mε,k−1 + ε(k−1)αεξ + εkαεHε,k ≤ a(ε)

)
= Pεx

(
b(ε) ≤ Mε,k−1 + ε(k−1)αε

(
ξ + εαεHε,k

) ≤ a(ε)
)
,

where ξ is a centered Gaussian random variable independent of both Mε,k−1 and
Hε,k with variance (2λ)−1σ 2(0). This completes the proof of the induction step
once one verifies, by a straightforward computation, that Hε,k−1 := ξ + εαεHε,k

has the desired variance given by (33). �

REMARK 3.4. In the second part of the previous proof, the random variables
ε(k−1)αεξk with

ξk = Hε,k−1 − εαεHε,k
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essentially correspond to the distributional limit of the integral

Ik =
∫ kT ′

ε

(k−1)T ′
ε

e−λt σ̃
(
Yε(s)

)
dW(s)

conditioned on Yε not having exited a neighborhood of the origin of size O(ε).

4. Malliavin calculus tools and the proof of Proposition 3.3. In this sec-
tion, we turn to the proof of Proposition 3.3 by showing that M ′

ε := Mε(T
′
ε) has a

bounded continuous density with the desired asymptotics. We are going to employ
Malliavin calculus tools, using [14] as a basic reference.

Let us first recall some basic notions. Let H = L2(R+) be the separable Hilbert
space of square integrable functions on the line and let B : H �→ L2(	) be the
isonormal Gaussian process on H given by

h �→ B(h) =
∫ ∞

0
h(s) dW(s).

Let L2(	;H) be the set of square integrable H -valued random variables with

norm ‖u‖L2(	;H) =
√

E‖u‖2
H . The Malliavin derivative operator D : L2(	) �→

L2(	;H) is defined on random variables of the form

(38) F = f
(
B(h1), . . . ,B(hn)

)
, n ≥ 1,

by the formula

DF =
n∑

i=1

∂xi
f

(
B(h1), . . . ,B(hn)

)
hi.

It is extended to a closed operator under the graph norm

‖F‖1,2 =
√

‖F‖2
2 + ‖DF‖2

2;H ,

with domain D1,2, where we adopt the notation ‖F‖2 ≡ ‖F‖L2(	) = √
EF 2 and

‖u‖2;H = ‖u‖L2(	;H).
This construction can be extended to Hilbert space valued random variables

producing a closed operator D : L2(	;H) �→ L2(	;H ⊗ H) under the graph-
norm

‖u‖1,2;H =
√

‖u‖2
2;H + ‖Du‖2

2;H⊗H ,

with domain D1,2;H , where ‖Du‖2;H⊗H = ‖u‖L2(	;H⊗H). The second-order
Malliavin derivative is the composition of the operators described above, a closed
operator D2 : L2(	) → L2(	,H ⊗ H).

The divergence operator or Skorokhod integral δ : L2(	;H) �→ L2(	) is de-
fined as the L2(	;H) adjoint of D, that is,

E〈DF,u〉L2(	;H) = E
[
Fδ(u)

]
, u ∈ Dom δ,
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where Dom δ is defined as the set of those u ∈ L2(	;H) such that the left-hand
side of the indicated identity defines a bounded functional as a function of F .
In particular, H can be embedded naturally into Dom δ and δ(h) = B(h) for any
h ∈ H .

PROPOSITION 4.1 ([14], Proposition 2.2.1). Let F ∈ L2(	) ∈ D1,2 and as-
sume that

(39)
DF

‖DF‖2
H

∈ Dom δ.

Then F has a bounded continuous density given by

(40) p(z) = E
[
1{F>z}δ

( DF

‖DF‖2
H

)]
.

We are going to use this result with F = M ′
ε under the measure P = Pεx . We

will write px
ε (z) for its density given by (40). We are going to compare M ′

ε with
the limiting random variable

(41) I = x + σ(0)

∫ ∞
0

e−λt dW(t),

which is a centered Gaussian random variable with density px(z). In what follows,
C will denote a positive finite constant, independent of ε, x and t , which may
change on each appearance.

LEMMA 4.2. Let Yε(0) = εx with |x| ≤ K(ε), where K(ε) satisfies (6). Then
for any γ ∈ (0,2) and sufficiently small ε, we have

E
∣∣I − M ′

ε

∣∣2 ≤ Cεγ .

PROOF. We start by estimating

E
[
Yε(t)

]2 = ε2e2λtE
[
Mε(t)

]2 = ε2e2λtE
[
x + Uε(t) + Vε(t)

]2

≤ Cε2e2λt (|x|2 + E
[
Uε(t)

]2 + E
[
Vε(t)

]2)
≤ Cε2e2λt (1 + |x|2)

,

(42)

where the first inequality is due to the elementary (a + b + c)2 ≤ 3(a2 + b2 + c2),
while the second one follows from Lemma 3.1 and (23).

Next, we write

I − M ′
ε =

∫ T ′
ε

0
e−λt [σ(0) − σ̃

(
Yε(t)

)]
dW(t)

+ σ(0)

∫ ∞
T ′

ε

e−λt dW(t) − Vε

(
T ′

ε

)
= J1(ε) + J2(ε) + J3(ε).

(43)
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Using the boundedness of σ̃ ′(x) and the identity σ̃ (0) = σ(0) [which is due to
f ′(0) = 1], we can write

EJ 2
1 (ε) ≤ C

∫ T ′
ε

0
e−2λtE

[
Yε(t)

]2
dt ≤ Cε2(

1 + K2(ε)
)
T ′

ε ≤ Cεγ

for any γ ∈ (0,2) and small ε, where the first inequality is due to (42) and |x| ≤
K(ε). By (26),

EJ 2
2 (ε) ≤ σ 2(0)E

[∫ ∞
T ′

ε

e−λt dW(t)

]2
= σ 2(0)

2λ
e−2λT ′

ε ≤ Cε2

for sufficiently small ε. Also, EJ 2
3 (ε) ≤ Cε2 by (23). Combining (43) with the the

elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) and the above estimates, we
complete the proof. �

To use Proposition 4.1, we need to control the divergence and have certain es-
timates on the Malliavin derivatives of M ′

ε . This is the content of the next two
results.

PROPOSITION 4.3 ([14], Proposition 1.5.8). There is C > 0 such that∥∥δ(u)
∥∥

2 ≤ C
(‖Eu‖H + ‖Du‖2;H⊗H

)
,

where it is implicit that the finiteness of the right-hand side implies u ∈ Dom δ.

LEMMA 4.4. Let Yε(0) = εx and let K(ε) satisfy (6). Then

(44) lim
ε↓0

sup
|x|≤K(ε)

∥∥DM ′
ε −DI

∥∥
2;H = 0

and, for every m ≥ 1,

lim sup
ε→0

sup
|x|≤K(ε)

E
∥∥DM ′

ε

∥∥−m
H < ∞,(45)

lim
ε↓0

sup
|x|≤K(ε)

E
∥∥D2M ′

ε

∥∥m
2;H⊗H = 0.(46)

The proof of Lemma 4.4 will be given in Section 5. We proceed now with the
proof of Proposition 3.3.

PROOF OF PROPOSITION 3.3. Let us first assume that F = M ′
ε satisfies (39)

and, as before, write px
ε (z) for its density. We are going to compare M ′

ε with the
limiting random variable I [introduced in (41)], which is a centered Gaussian ran-
dom variable with density px(z).
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We start by writing

∣∣px
ε (z) − px(z)

∣∣ =
∣∣∣∣E

[
1{M ′

ε>z}δ
( DM ′

ε

‖DM ′
ε‖2

H

)
− 1{I>z}δ

( DI

‖DI‖2
H

)]∣∣∣∣
=

∣∣∣∣E
[
1{M ′

ε>z}δ
( DM ′

ε

‖DM ′
ε‖2

H

− DI

‖DI‖2
H

)]∣∣∣∣
+

∣∣∣∣E
[
(1{M ′

ε>z} − 1{I>z})δ
( DI

‖DI‖2
H

)]∣∣∣∣(47)

≤
∥∥∥∥δ

( DM ′
ε

‖DM ′
ε‖2

H

− DI

‖DI‖2
H

)∥∥∥∥
2

+ ‖1{M ′
ε>z} − 1{I>z}‖2

∥∥∥∥δ
( DI

‖DI‖2
H

)∥∥∥∥
2
,

where we used the Cauchy–Schwarz inequality in the last step.
Let us first deal with the second term on the right-hand side of (47). Observe

(48) Dt I = e−λtσ (0), ‖DI‖2
H = σ 2(0)

2λ
,

so DI is deterministic and

(49)
∥∥∥∥δ

( DI

‖DI‖2
H

)∥∥∥∥
2
= 2λ

σ 2(0)

∥∥∥∥
∫ ∞

0
e−λtσ (0) dW(t)

∥∥∥∥
2
= σ(0)√

2λ
< ∞.

The other factor can be estimated as follows: for any η > 0,

E[1{M ′
ε>z} − 1{I>z}]2 = P

{
M ′

ε ≤ z < I or I ≤ z < M ′
ε

}
≤ P

(|I − z| ≤ η
) + P

(∣∣I − M ′
ε

∣∣ > η
)

(50)

≤ Cη + E|I − M ′
ε|2

η2 ,(51)

where in the last step we used the Markov inequality and that I has a bounded
density. Choosing η = εγ ′

for any γ ′ ∈ (0,1/2) and invoking Lemma 4.2 with
γ = 2γ ′ shows that the right-hand side of (50) converges to zero as ε ↓ 0. This and
(49) imply that the second term on the right-hand side of (47) converges to zero as
well, uniformly in |x| ≤ K(ε) and z ∈ R.

Next, we have to estimate the first term on the right-hand side of (47). We wish
to apply Proposition 4.3 to the H -valued random variable uε given by

(52)

uε(t) = DtM
′
ε

‖DM ′
ε‖2

H

− Dt I

‖DI‖2
H

=DtM
′
ε

‖DI‖2
H − ‖DM ′

ε‖2
H

‖DM ′
ε‖2

H‖DI‖2
H

+ DtM
′
ε −Dt I

‖DI‖2
H

.



844 Y. BAKHTIN AND Z. PAJOR-GYULAI

The H -norm of uε can be estimated using the triangle inequality and (48):

‖uε‖H ≤ C

(‖DI‖2
H − ‖DM ′

ε‖2
H

‖DM ′
ε‖H

+ ∥∥DtM
′
ε −Dt I

∥∥
H

)

≤ C

(
(‖DI‖2

H − ‖DM ′
ε‖H )(‖DI‖2

H + ‖DM ′
ε‖H)

‖DM ′
ε‖H

+ ∥∥DtM
′
ε −Dt I

∥∥
H

)

≤ C
∥∥DM ′

ε −DI
∥∥
H

[
1 + 1

‖DM ′
ε‖H

]
.

(53)

Using Jensen’s inequality, (53) and the Cauchy–Schwarz inequality yields

‖Euε‖H ≤ E‖uε‖H ≤ C

[
E

∥∥DM ′
ε −DI

∥∥
H + E

‖DM ′
ε −DI‖H

‖DM ′
ε‖H

]

≤ C
∥∥DM ′

ε −DI
∥∥

2;H
[
1 +

√
E

∥∥DM ′
ε

∥∥−2
H

]
→ 0

(54)

as ε ↓ 0, where the convergence is due to Lemma 4.4.
To treat the second term given by Proposition 4.3, we observe that DI being

deterministic implies D2I = 0, and thus

Dsuε(t) =Ds

[ DtM
′
ε

‖DM ′
ε|2H

]
,

where the right-hand side is estimated by (2.5) in [14] implying

‖Duε‖H⊗H ≤ 3‖D2M ′
ε‖H⊗H

‖DM ′
ε‖2

H

,

so we can use the Cauchy–Schwarz inequality to obtain

(55) ‖Duε‖2;H⊗H ≤ C
(
E

[∥∥DM ′
ε

∥∥−8
H

]) 1
4
(
E

∥∥D2M ′
ε

∥∥4
H⊗H

) 1
4 → 0

as ε ↓ 0 by Lemma 4.4. Combining (54) and (55) with Proposition 4.3 gives

lim
ε↓0

∥∥∥∥δ
( DM ′

ε

‖DM ′
ε‖2

H

− DI

‖DI‖2
H

)∥∥∥∥
2
= 0

uniformly in |x| ≤ K(ε) completing the verification of

lim
ε↓0

sup
|x|≤K(ε)

z∈R

∣∣px
ε (z) − px(z)

∣∣ = 0.

To complete the proof, it remains to show that ũε = DM ′
ε/‖DM ′

ε‖2
H ∈ Dom δ.

Clearly, Jensen’s inequality and Lemma 4.4 imply

‖Eũε‖H ≤ E‖ũε‖H = E‖DMε‖−1
H < ∞,
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while DI = 0 and (55) give us

‖Dũε‖2;H⊗H = ‖Duε‖2;H⊗H < ∞.

The desired conclusion now follows from Proposition 4.3 and the last two displays.
�

5. Proof of Lemma 4.4. In this section, we complete the proof of Theo-
rem 1.1 by proving Lemma 4.4. As in the previous section, C will denote a positive
finite constant, independent of ε, x, and t , which may change on each appearance
and we will use the elementary inequality (

∑n
i=1 ai)

m ≤ nm−1 ∑n
i=1 am

i , Fubini’s
theorem, and the boundedness of σ̃ , h and all their derivatives without further
mention.

We start by recalling that the Malliavin derivative DtMε(u) satisfies a stochastic
integral equation ([14], Theorem 2.2.1)

DtMε(u) = e−λt σ̃
(
Yε(t)

) +
∫ u

t
e−λsσ̃ ′(Yε(s)

)
DtYε(s) dW(s)(56)

+ ε

2

∫ u

t
e−λsh′(Yε(s)

)
DtYε(s) ds

= e−λt σ̃
(
Yε(t)

) + ε

∫ u

t
σ̃ ′(Yε(s)

)
DtM

′
ε(s) dW(s)

+ ε2

2

∫ u

t
h′(Yε(s)

)
DtM

′
ε(s) ds(57)

for u ≥ t , while DtMε(u) = 0 otherwise. Here, we used (22) and Proposition 1.3.8
from [14] [see also formula (1.65) in this reference] in the first step, and (22) in the
second one. This integral equation is equivalent to a stochastic differential equation
in the variable u:

(58) d
[
DtMε(u)

] = DtMε(u) dZε(u), DtMε(t) = e−λt σ̃
(
Yε(t)

)
,

where we introduced the semimartingale

Zε(u) = ε

∫ u

t
σ̃ ′(Yε(s)

)
dW(s) + ε2

2

∫ u

t
h′(Yε(s)

)
ds.

It is well known (see, e.g., [10], Section 5.6) that the solution of the linear equation
(58) is given by the Doléans-Dade exponential

DtMε(u) = e−λt σ̃
(
Yε(t)

)
exp

(
Zε(u) − 〈Zε〉u

2

)
(59)

= e−λt σ̃
(
Yε(t)

)
exp

(
ε

∫ u

t
σ̃ ′(Yε(s)

)
dW(s)

+ ε2

2

∫ u

t

(
h′(Yε(s)

) − (
σ̃ ′(Yε(s)

))2)
ds

)
.(60)
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LEMMA 5.1. For any m ≥ 1, we have

sup
u∈[0,T ′

ε ]
E

∣∣DtMε(u)
∣∣m ≤ Ce−mλt .

PROOF. We can use the explicit formula (59) to estimate

E
∣∣DtMε(u)

∣∣m ≤ Ce−mλtE
[
exp(εm

∫ u

t
σ̃ ′(Yε(s)

)
dW(s)

+ ε2m

2

∫ u

t

(
h′(Yε(s)

) − (
σ̃ ′(Yε(s)

)2)
ds

)]

≤ Ce−mλtE
[
exp(εm

∫ u

t
σ̃ ′(Yε(s)

)
dW(s)

− ε2m2

2

∫ u

t

(
σ̃ ′(Yε(s)

)2
ds

)] = Ce−mλt ,

where we used ε2(u − t) ≤ ε2T ′
ε → 0, as ε ↓ 0, in the second inequality to ma-

nipulate the Lebesgue integrals in the exponent, while the last step is due to the
martingale property of the process under the expectation. �

Let us now prove the claims of Lemma 4.4 one by one.

PROOF OF (44). Let I (u) = σ(0)
∫ u

0 e−λs dW(s). Then

Dt I (u) = σ(0)e−λt1{t≤u}.

By the triangle inequality, we have∣∣DtM
′
ε −Dt I

∣∣ ≤ ∣∣DtMε

(
T ′

ε

) −Dt I
(
T ′

ε

)∣∣ + e−λtσ (0)1{t>T ′
ε},

so

‖DMε −DI‖2
2;H =

∫ ∞
0

E|DtMε −Dt I |2 dt

≤ C

∫ ∞
0

E
∣∣DtMε

(
T ′

ε

) −Dt I
(
T ′

ε

)∣∣2 dt + Cσ 2(0)e−2λT ′
ε .

(61)

The second term on the right-hand side converges to zero simply by T ′
ε → ∞. To

estimate the first term, we use (56) and the triangle inequality:

(62)
∣∣DtMε

(
T ′

ε

) −Dt I
(
T ′

ε

)∣∣ ≤ 1{t≤T ′
ε}Ce−λt

∣∣σ̃ (
Yε(t)

) − σ(0)
∣∣ + ∣∣Rε(t)

∣∣,
where

Rε(t) = ε

∫ T ′
ε

t
σ̃ ′(Yε(s)

)
DtM

′
ε(s) dW(s) + ε2

2

∫ T ′
ε

t
h′(Yε(s)

)
DtM

′
ε(s) ds.
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The second moment of this latter quantity can be bounded as

E
∣∣Rε(t)

∣∣2 ≤ Cε2(
1 + ε2T ′

ε

) ∫ Tε

t
E

∣∣DtM
′
ε(s)

∣∣2 ds ≤ Cε2e−2λt ,

where the first inequality is due to Jensen’s inequality, while we used Lemma 5.1
and limε↓0 ε2T ′

ε = 0 in the second one. Combining this with (62) and (42), we
obtain

E
∣∣DtMε

(
T ′

ε

) −Dt I
(
T ′

ε

)∣∣2 ≤ C
(
1{t≤T ′

ε}e
−2λtE

∣∣Yε(t)
∣∣2 + E

∣∣Rε(t)
∣∣2)

≤ C
(
ε2(

1 + K2(ε)
)
1{t≤T ′

ε} + ε2e−2λt ),
and integrating with respect to t gives us∫ ∞

0
E

∣∣DtMε,λ

(
T ′

ε

) −Dt I
(
T ′

ε

)∣∣2 dt ≤ Cε2T ′
ε

(
1 + K2(ε)

) → 0

as ε ↓ 0. Therefore the right-hand side of (61) converges to zero completing the
proof. �

PROOF OF (45). Applying Jensen’s inequality for the convex function x �→
|x|−m/2 and the measure on [0, Tε] with density

e−2λt∫ T ′
ε

0 e−2λs ds
= 2λe−2λt

1 − e−2λT ′
ε
,

we obtain

E
∥∥DM ′

ε

∥∥−m
H = E

(∫ T ′
ε

0
e−2λt e2λt

∣∣DtM
′
ε

∣∣2 dt

)−m/2

≤
(

2λ

1 − e−2λT ′
ε

)m
2 +1 ∫ T ′

ε

0
e−2λt e−mλtE

∣∣DtM
′
ε

∣∣−m
dt.

Using the explicit formula (59), we can estimate

e−mλtE
∣∣DtM

′
ε

∣∣−m ≤ CE exp(−εm

∫ T ′
ε

t
σ̃ ′(Yε(s)

)
dW(s)

− ε2m

2

∫ T ′
ε

t

(
h′(Yε(s)

) + (
σ̃ ′(Yε(s)

)2)
ds

)

≤ CE
[
exp(εm

∫ T ′
ε

t
σ̃ ′(Yε(s)

)
dW(s)

− ε2m2

2

∫ T ′
ε

t

(
σ̃ ′(Yε(s)

)2
ds

)] = C,

where we used limε↓0 ε2T ′
ε = 0 in the second inequality to manipulate the

Lebesgue integrals, while the last step is due to the martingale property of the
exponential. Combining the last two displays completes the proof. �
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PROOF OF (46). It is sufficient to prove the claim for m ≥ 2 since conver-
gence for m ∈ [1,2) will follow from Lyapunov’s inequality. Taking the Malliavin
derivative of both sides of (56) and using Proposition 1.3.8 in [14], we obtain that
the second derivative D2

r,tM
′
ε(u) satisfies the integral equation

D2
r,tM

′
ε(u) = εσ̃ ′(Yε(t)

)
DrM

′
ε(t) + εσ̃ ′(Yε(r)

)
DtM

′
ε(r)

+ ε2
∫ u

r∨t
eλs σ̃ ′′(Yε(s)

)
DrM

′
ε(s)DtM

′
εs(s) dW(s)

+ ε

∫ u

r∨t
σ̃ ′(Yε(s)

)
D2

r,tMε(s) dW(s)

+ ε3

2

∫ u

r∨t
eλsh′′(Yε(s)

)
DrM

′
ε(s)DtM

′
ε(s) ds

+ ε2

2

∫ u

r∨t
h′(Yε(s)

)
D2

r,tM
′
ε(s) ds,

for u ≥ r ∨ t , while D2
r,tM

′
ε(u) = 0 if u < r ∨ t .

Taking mth moments, we can apply the a priori bound in Lemma 5.1, the BDG
inequality, and Jensen’s inequality to estimate

E
∣∣D2

r,tM
′
ε(u)

∣∣m ≤ Cε2(
e−mλt + e−mλr)

+ Cε2m(
T ′

ε

)m
2 −1

∫ u

r∨t
emλsE

∣∣DrM
′
ε(s)DtM

′
ε(s)

∣∣m ds

+ Cεm(
T ′

ε

)m−1
∫ u

r∨t
E

∣∣D2
r,tM

′
ε(s)

∣∣m ds.

The Cauchy–Schwarz inequality and Lemma 5.1 again imply

E
∣∣DrM

′
ε(s)DtM

′
ε(s)

∣∣m ≤
√

E
∣∣DrM ′

ε(s)
∣∣2mE

∣∣DtM ′
ε(s)

∣∣2m

≤ C
√

e−2mλre−2mλt = Ce−mλ(r+t).

Combining the last two displays, we obtain

E
∣∣D2

r,tM
′
ε(u)

∣∣m ≤ Cεm(
e−mλr + e−mλt + εm(

T ′
ε

)m
2 −1

emλ(u−r−t))
+ Cεm(

T ′
ε

)m−1
∫ u

r∨t
E

∣∣Dm
r,tM

′
ε(s)

∣∣2 ds.

We recall Gronwall’s inequality: if nonnegative functions h, g, k satisfy

h(u) ≤ g(u) +
∫ u

a
k(s)h(s) ds, u ≥ a,

and g is nondecreasing, then

h(u) ≤ g(u)e
∫ u
a k(s) ds, u ≥ a.
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Using this with h(u) = E|D2
r,tM

′
ε(u)|m, a = r ∨ t ,

g(u) = Cεm(
e−mλr + e−mλt + εm(

T ′
ε

)m
2 −1

emλ(u−r−t)),
where k(u) = Cεm(T ′

ε)
m−1, and setting u = T ′

ε , we obtain

E
∣∣D2

r,tM
′
ε

∣∣m
≤ Cεm(

e−mλr + e−mλt + εm(
T ′

ε

)m
2 −1

emλ(T ′
ε−r−t))eCεm(T ′

ε)
m−1(T ′

ε−r∨t)

≤ Cεm(
e−mλr + e−mλt + εm(

T ′
ε

)m
2 −1

emλ(T ′
ε−r−t))eCεm(T ′

ε)
m

≤ C
(
εm(

e−mλr + e−mλt ) + ε2m(
T ′

ε

)m
2 −1

emλ(T ′
ε−r−t))

≤ C
(
εm(

e−mλr + e−mλt ) + ε2mε−ρemλ(T ′
ε−r−t))

for any ρ > 0 and sufficiently small ε, where we used limε↓0 εa(T ′
ε)

b = 0 for all
a, b > 0. Using this along with Jensen’s inequality, we obtain

E
∥∥D2M ′

ε

∥∥m
H⊗H = E

(∫ T ′
ε

0

∫ T ′
ε

0

∣∣D2
r,tM

′
ε

∣∣2 dr dt

)m
2

≤ (
T ′

ε

)m−2
∫ T ′

ε

0

∫ T ′
ε

0
E

∣∣D2
r,tM

′
ε

∣∣m dr dt

≤ C
(
εm(

T ′
ε

)m + ε2m−ρemλT ′
ε
) ≤ C

(
εm(

T ′
ε

)m + εmκ−ρ)
,

where we used (26) in the last step. Choosing ρ ∈ (0,mκ) to ensure that the right-
hand side of the previous display converges to zero, we complete the proof. �
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