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SUPER-REPLICATION WITH FIXED TRANSACTION COSTS

BY PETER BANK∗,1 AND YAN DOLINSKY†,‡,1,2

Technische Universität Berlin∗, Hebrew University† and Monash University‡

We study super-replication of contingent claims in markets with fixed
transaction costs. This can be viewed as a stochastic impulse control prob-
lem with a terminal state constraint. The first result in this paper reveals that
in reasonable continuous time financial market models the super-replication
price is prohibitively costly and leads to trivial buy-and-hold strategies. Our
second result derives nontrivial scaling limits of super-replication prices for
binomial models with small fixed costs.

1. Introduction. This paper deals with super-replication of European options
in a market where trading incurs fixed transaction costs. Most papers dealing with
fixed transaction costs explore the problem of optimal portfolio choice (see, for
instance, [1, 9, 17, 23, 24] and [25]). Much fewer papers (see [15] and [21]) discuss
no arbitrage criteria for fixed transaction costs and, to the best of our knowledge,
the problem of super-replicating a contingent claim with fixed costs has not been
considered in the literature before.

By contrast, for the case of proportional transaction costs, the topic of super-
replication is widely studied. In [8], it was conjectured that, in the Black–Scholes
model with proportional transaction costs, the cheapest way to super-replicate a
call option is to buy one unit of stock right at the start and hold it until matu-
rity. This conjecture was proved by many authors (see, e.g., [5, 13, 14, 22, 28]
and for game options in [7]). A natural way to overcome this negative result was
proposed by Kusuoka in [18]. He considered scaling limits of the classical Cox–
Ross–Rubinstein model of a complete binomial market and showed that, when
transaction costs are also rescaled properly, super-replication prices converge to
what is now known as a G-expectation in the sense of Peng ([26]).

The present paper is a first step in the development of the above theory for the
fixed transaction costs case. The setup of fixed transaction costs corresponds to the
case where any (nonzero) transaction incurs a fixed cost of κ > 0, regardless of the
trading volume. Clearly, this leads to discontinuous, nonconvex wealth dynamics
which induce a stochastic impulse control problem with a novel terminal state
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constraint. In particular, convex duality methods, which played a key role in the
theory of proportional transaction costs (or their convex generalizations), are not
available here.

As a first result, we show in Theorem 3.1 that, in a continuous time financial
market with a risky asset exhibiting conditionally full support (see [13]), the cheap-
est way to super-replicate a convex option is again to apply a trivial buy-and-hold
strategy. Hence, Theorem 3.1 can be viewed as an analog for fixed costs of the
result in [13] which was obtained for the case of proportional transaction costs.
By contrast to the classical duality used in [13], our proof uses the impulse control
structure directly.

The second result in the present paper deals with the limiting behavior of super-
replication prices in the Cox–Ross–Rubinstein binomial models of [4]. Specif-
ically, we consider a sequence of binomial models with constant volatility and
study the asymptotic behavior of the super-replication prices for convex payoffs
when the time step goes to zero and the fixed transaction costs are scaled linearly
as a function of the time step. In Theorem 4.1, we characterize the scaling limit as
a stochastic volatility control problem defined on Wiener space.

Our proof relies heavily on the fact that the payoff of the European option is a
convex function of the risky asset. Under this assumption, we derive a nonstandard
dual representation for super-replication prices in the binomial models. This rep-
resentation allow us to obtain the limit behavior of the super-replication prices by
modifying ideas from [18]. We emphasize that without the convexity condition on
the payoff the analysis is more complicated and remains an open question.

Closely related is the topic of approximate hedging which deals with the con-
struction of portfolio strategies with terminal wealth close to the payoff of the
derivative security. Approximate hedging in the context of market frictions is go-
ing back to the pioneering work of Leland [19] who considers a Black–Scholes
model with vanishing proportional transaction costs. This approach is studied rig-
orously and extended (beyond Black–Scholes and beyond vanishing proportional
transaction costs) in [3, 10, 11, 16, 20, 27]. The triviality of super-replication prices
established in our Theorem 3.1 can also be viewed as a motivation for the study of
approximate hedging in the fixed transaction costs setup.

The paper is organized as follows. In Section 2, we formalize the super-
replication problem with fixed costs. Section 3 shows that, in models with condi-
tional full support, trivial buy-and-hold strategies yield optimal super-replications
of convex payoffs. In Section 4, we give the scaling limit of super-replication prices
with small fixed costs. The proof of this result is prepared by a dual representation
for our super-replication prices discussed in Section 4.1 and accomplished in Sec-
tions 4.2 and 4.3 by using tools from weak convergence of stochastic processes to
analyze the asymptotic behavior of the dual terms.

2. Super-replication with fixed transaction costs. Let (�,F , (Ft ),P) be
a filtered probability space with a progressively measurable process S > 0 which
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we take to describe the price evolution of some financial asset with initial price
S0 = s0 > 0. The asset is traded at strictly positive fixed costs κ > 0 per transaction
and so an investor with a bank account (that for simplicity bears no interest) can
change her position only finitely often. We take T = 1 to be the investor’s time
horizon and so the times of intervention are given by a family of stopping times
T = (τi)i=1,2,... such that

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ T = 1 with τi < τi+1 on {τi < 1}.
Let us denote by T the class of all such families T for which the number of
interventions by time T = 1 is finite almost surely:

N(T) := sup{i = 0,1, . . . : τi < 1} < ∞, P-a.s.

Notice that for simplicity we do not count a possible initial intervention at time
τ0 = 0.

Assume our investor seeks to hedge an option with F1-measurable payoff
F ≥ 0 at maturity T = 1 by an investment strategy (T,H) where H = (hi)i=0,1,...

describes the Fτi
-measurable number of assets hi to be held, respectively, over

each period (τi, τi+1], i = 0,1, . . . . Keeping in mind the fixed transaction costs
κ > 0 and the free trade at time 0, the investor’s gains from trading will by time
t ≤ 1 have accrued to

Gκ(T,H)t := ∑
i=0,1,...

hi(Sτi+1∧t − Sτi∧t ) − κ sup{i = 0,1, . . . : τi < t}.

To rule out the possibility of doubling strategies, the investor can only use admis-
sible strategies from the set

A := {
(T,H) : Gκ(T,H) bounded from below by a constant P-a.s.

}
.

The option’s super-replication price is then given by

Vκ(F ) := inf
{
x ∈ R : x + Gκ(T,H)1 ≥ F P-a.s. for some (T,H) ∈ A

}
.

Determining this super-replication price amounts to solving an impulse control
problem with terminal state constraint, a task which cannot be carried out explicitly
without further assumptions. We will show however that for convex payoffs it can
be computed in models with conditional full support (Section 3). At the other end
of the modeling spectrum, we consider binomial models converging to a Black–
Scholes dynamic, for which we compute the scaling limit for suitably scaled fixed
costs (Section 4).

REMARK 2.1. In the frictionless case κ = 0 with continuous stock prices,
the above super-replication price is the classical one even given the constraint to
an almost surely finite number of trades. This follows readily from the fact that
the wealth process of any continuous-time trading strategy can be approximated
uniformly (in time and almost all scenarios) by piecewise constant (admissible)
trading strategies (Lemma A.3 in [22]).
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3. Buy-and-hold with conditional full support. In this section, we consider
a continuous model S = (St )t∈[0,1] exhibiting conditional full support as discussed
by, for example, [13]:

(1) suppP[S|[t,1] ∈ ·|Ft ] = C+
St

[t,1], P-a.s. for any t ∈ [0,1],
where, for y ≥ 0, C+

y [t,1] denotes the space of all continuous paths [t,1] → R+
starting in y at time t .

THEOREM 3.1. For any financial model exhibiting conditional full support in
the sense of (1), the super-replication price with fixed transaction costs κ > 0 of
any convex payoff F = f (S1) with f : [0,∞) →R continuous and convex is

(2) Vκ(
f (S1)

) = f (0) + s0f
′(∞) where f ′(∞) := sup

s>0
f ′(s).

In case f ′(∞) < ∞, a super-hedge with initial capital Vκ(f (S1)) is to buy h0 :=
f ′(∞) units of the asset at time τ0 = 0 and hold these until T = 1.

PROOF. That the right-hand side of (2) is sufficient for super-replication is
trivial if f ′(∞) = ∞. If f ′(∞) < ∞, we can consider the described buy-and-hold
strategy which yields

Gκ(T,H)1 = f ′(∞)(S1 − S0) ≥ f ′−(S1)S1 − f ′(∞)S0

≥ f (S1) − f (0) − f ′(∞)S0,

where both estimates are due to the convexity of f . This shows that x0 := f (0) +
f ′(∞)S0 is enough to super-replicate F = f (S1).

Now consider x < x0 and take a strategy (T,H) with gains process G :=
Gκ(T,H) such that x + G1 ≥ F = f (S1). We will show that such a strategy can-
not be admissible. Specifically, with β < f ′(∞) such that x = f (0) + βS0, we
will argue that

An := {
τn < 1, Sτn < 2/δ, x + Gτn < f (0) + βSτn − nκ/2

}
has positive probability for all n = 1,2, . . . , where δ ∈ (0,1/s0) is chosen small
enough to ensure

f (0) + βs − κ < f (s) for all s < δ and all s > 1/δ.

Such a choice of δ is possible since f is continuous at zero and convex on [0,∞)

with f ′(∞) > β . Since κ > 0, it then follows that x + Gτn < f (0) + 2β/δ − nκ/2
on the set An with positive probability, n = 1,2, . . . , and so G = Gκ(T,H) is not
bounded from below by a constant and (T,H) cannot be admissible.

We will prove P[An] > 0, n = 0,1, . . . , by induction. By our choices of δ <

1/s0 and of β , we even have P[A0] = 1. Now assume, by way of contradiction,
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that P[An] > 0, but P[An+1] = 0 for some n. Observe that on An ∩ {τn+1 < 1} we
can estimate

x + Gτn+1

= x + Gτn + β(Sτn+1 − Sτn) + (hn − β)(Sτn+1 − Sτn) − κ(3)

< f (0) + βSτn+1 − (n + 1)κ/2 + (hn − β)(Sτn+1 − Sτn) − κ/2.

Hence, An+1 contains the set An ∩ {τn+1 < 1} ∩ Bn where

Bn :=
{

sup
τn≤t≤1

St < 2/δ, sup
τn≤t≤1

{
(hn − β)(St − Sτn)

} ≤ κ/2
}
.

Notice that τn+1 = 1 must hold almost surely on An ∩Bn since, with P[An+1] = 0,
we also have

0 = P
[
An ∩ {τn+1 < 1} ∩ Bn

] = P[An ∩ Bn] − P
[
An ∩ {τn+1 = 1} ∩ Bn

]
.

Now, An ∩ Bn contains An ∩ {hn ≥ β} ∩ Cn where

Cn := Bn ∩ {S1 ≥ Sτn ∨ 1/δ}.
On An ∩ {hn ≥ β} ∩ Cn, however, the super-replication property is violated since,
on this set, we have τn+1 = 1 almost surely and estimate (3) gives

x + G1 = x + Gτn+1 < f (0) + βS1 − (n + 1)κ/2 < f (S1)

by choice of δ and definition of Cn. Hence, we deduce

0 = P
[
An ∩ {hn ≥ β} ∩ Cn

] = E
[
1An∩{hn≥β}P[Cn|Fτn]

]
.

As the conditional full support property (1) holds also at stopping times when it
holds at deterministic times (see Lemma 2.9 in [13]), we have P[Cn|Fτn] > 0
almost surely on An ∩ {hn ≥ β}. So the above identity yields that in fact P[An ∩
{hn ≥ β}] = 0.

Similarly, we will argue next that P[An ∩ {hn < β}] = 0 so that in conjunction
with P[An ∩ {hn ≥ β}] = 0 we arrive at the contradiction P[An] = 0, completing
our proof. Thus, let us first observe that An ∩ Bn contains An ∩ {hn < β} ∩ C̃n

where

C̃n := Bn ∩ {S1 ≤ Sτn ∧ δ}.
Up to a P-null set, however, we still have An ∩ {hn < β} ∩ C̃n ⊂ {τn+1 = 1} and
the super-replication property is again violated since, on this set, estimate (3) gives

x + G1 = x + Gτn+1 < f (0) + βS1 − (n + 1)κ/2 < f (S1)

by choice of δ and definition of C̃n. Observing that also P[C̃n|Fτn] > 0 almost
surely on An ∩ {hn < β} ∈ Fτn allows us to deduce by the same reasoning as used
for Cn that indeed P[An ∩ {hn < β}] = 0. �
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REMARK 3.1. If we restrict ourselves to admissible strategies, the conditional
full support property (1) guarantees absence of arbitrage (as it also does for pro-
portional transaction costs; see [12, 13]). Indeed, assume that for a trading strategy
(T,H) we have Gκ(T,H)1 ≥ 0 P-a.s. and P(Gκ(T,H)1 > 0) > 0. Then, simi-
larly to the above proof, we can argue by induction that for any n = 1,2, . . . ,

P(τn < 1,Gκ(T,H)τn < −nκ/2) > 0, and thus, the gain process Gκ(T,H)t , t ≥ 0
is not uniformly bounded from below. So (T,H) is not admissible. For more re-
fined no arbitrage criteria, we refer to [15, 21].

4. Scaling limit of binomial superreplication prices. In this section, we
consider binomial Cox–Ross–Rubinstein models with fixed transaction costs and
describe the scaling limit of super-replication prices for convex claims. To wit, we
let � = {−1,+1}N0 , put ζi(ω) = ωi for ω = (ω0,ω1, . . .) ∈ � and let P be the
measure under which the ζi are i.i.d. with P[ζi = 1] = 1/2. The n-period binomial
price process can now be specified as

(4) S
(n)
t = s0 exp

(
σ√
n

[nt]∑
i=1

ζi

)
, t ∈ [0, T ],

and the underlying filtration (F (n)
t ) is the one generated by S(n).

Obviously, when considered under their respective equivalent martingale mea-
sures P(n) ≈ P, these Cox–Ross–Rubinstein models S(n), n = 1,2, . . . , converge
to a Black–Scholes model with constant volatility σ > 0. In light of Theorem 3.1, it
is clear that in order to get a nontrivial limit for the corresponding super-replication
prices with fixed transaction costs, one has to rescale the fixed costs suitably. Our
next result shows that the correct scaling is of the order 1/n and it identifies the re-
sulting scaling limit as a G-expectation with penalty involving stochastic volatility
models. These are specified as martingale exponentials

(5) S
(ν)
t = s0 exp

(∫ t

0
νu dWu − 1

2

∫ t

0
ν2
u du

)
, t ∈ [0,1],

where W is a standard Brownian motion on some complete probability space
(�W,FW,PW) and where ν is taken from the set A W of all bounded, real-valued
processes ν ≥ σ on this space which are progressively measurable with respect to
the augmented filtration (FW

t )t∈[0,1] generated by W .

THEOREM 4.1. For a convex payoff F = f (S1) with continuous, convex f :
[0,∞) → R with polynomial growth, the scaling limit of super-replication prices
in the binomial models (4) with fixed costs κ/n, n = 1,2, . . . , is

(6) lim
n→∞Vκ/n(

f
(
S

(n)
1

)) = inf
σ≤ν∈A W

EW

[
f

(
S

(ν)
1

) + κ

∫ 1

0
g
(
ν2
t /σ 2)

dt

]
,

where g : [1,∞) → (0,1] is the linear interpolation supported by g(n) = 1/n,
n = 1,2, . . . and where the infimum is taken over all the probability spaces and
volatility processes ν ≥ σ described above.
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The proof of Theorem 4.1 is prepared by a duality result for super-replication
with fixed costs presented in Section 4.1. Section 4.2 then establishes “≥” and
Section 4.3 proves “≤” in (6), completing the proof.

Let us explain the intuition behind the above result. As will also be re-
vealed by our proof below, the local volatility pattern ν can be viewed as a
continuous-time measure of trading activity. For this pattern to attain the infi-
mum in (6), it has to trade off the option price EW [f (S

(ν)
1 )] against the expected

costs EW [∫ 1
0 g(ν2

t /σ 2) dt]. Indeed, since f is convex, the option price is increas-
ing as a function of the volatility pattern ν ≥ σ , and thus would be minimized by
ν ≡ σ . This choice, however, incurs the maximum penalty as g is decreasing. This
increased reference volatility is reminiscent of Leland’s frictional trading recipe
which suggests to use a delta hedging strategy with increased local volatility for
approximate hedges with vanishing proportional transaction costs.

4.1. Duality for binomial models with fixed transaction costs. The starting
point for the proof of Theorem 4.1 is a form of dual characterization of super-
replication prices with fixed costs in binomial models which works for the special
case of convex payoff profiles.

To specify this duality, let us fix n ∈ {1,2, . . .} and consider the class T (n) of
systems T = {0 = τ0 ≤ · · · ≤ τn = 1} ∈ T of (F (n)

t )-stopping times with values in
{0/n,1/n, . . . ,1} such that if τk+1(ω) < 1 then

ξ(ω) ≡ +1 for all i ∈ {
nτk(ω) + 1, . . . , nτk+1(ω)

}
or

ξ(ω) ≡ −1 for all i ∈ {
nτk(ω) + 1, . . . , nτk+1(ω)

}
.

(7)

In other words, the stopping times τk ≤ τk+1 are such that τk+1(ω) = 1 in scenarios
ω where S(n)(ω) is not strictly increasing or strictly decreasing between τk(ω) and
τk+1(ω). Also, already at time τk it is known by how many downward steps and
how many upward steps the next stop τk+1 will be reached. In other words, for
suitable functions φ

↓
k , φ

↑
k : Rk+1+ → N, the number of these steps can be written

in the form φ
↓
k (S

(n)
0 , . . . , S

(n)
τk ) and φ

↑
k (S

(n)
0 , . . . , S

(n)
τk ), respectively, for each k =

0,1, . . . . Now let Q(T) � P be the unique martingale measure for (S
(n)
τk )k=0,1,...

with respect to (Fτk
)k=0,1,... such that (7) holds also for Q(T)-almost every ω with

τk+1(ω) = 1. Hence, Q(T) only gives probability to the set of scenarios ω in which
the terminal value S

(n)
1 (ω) is reached from the latest S

(n)
τk (ω) with τk(ω) < 1 in a

strictly monotone way.

LEMMA 4.1. In the n-step binomial model (4) with fixed transaction costs
κ > 0, the super-replication costs of a payoff F = f (S

(n)
1 ) with f convex on (0,∞)

are

(8) Vκ(
f

(
S

(n)
1

)) = inf
T∈T (n)

EQ(T)

[
f

(
S

(n)
1

) + κN(T)
]
.
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PROOF. Let us start by proving “≥” in (8). So take x ∈ R and an admis-
sible (T,H) such that x + G(T,H)1 ≥ f (S

(n)
1 ). By removing stopping points

from T = {τk}k=0,1,... if necessary we obtain a possibly coarser stopping system
T̃= {τ̃k}k=0,1,... from our special class T (n) such that, under the unique martingale
measure Q(T̃) for (S

(n)
τ̃k

)k=0,1,..., we have τk = τ̃k almost surely for k = 0,1, . . . .

Therefore, we still have the super-replication property x + G(T̃,H)1 ≥ f (S
(n)
1 )

Q(T̃)-a.s. This allows us to conclude

x = E
Q(T̃)

[
x + ∑

k

hk

(
S

(n)
τ̃k+1

− S
(n)
τ̃k

)] ≥ E
Q(T̃)

[
f

(
S

(n)
1

) + κN(T̃)
]

as we wanted to show.
We next establish “≤” in (8). To this end, fix T ∈ T (n), put Q := Q(T), and

denote x := EQ[f (S
(n)
1 ) + κN(T)]. Observe that, under Q, the (frictionless) fi-

nancial market with stock price process (S
(n)
τk )k=0,1,...,n is a binomial market, and

hence complete. The unique martingale measure is Q. Thus, there exist measurable
functions ψk :Rk+ →R, k = 0,1, . . . , n such that

(9) x +
n−1∑
k=0

ψk

(
S(n)

τ1
, . . . , S(n)

τk

)(
S(n)

τk+1
− S(n)

τk

) = f
(
S

(n)
1

) + κN(T), Q-a.s.

Let us now use these maps ψk , k = 0,1, . . . , n, in order to construct a super-
replicating strategy for our n-step binomial market with fixed transaction costs κ .
For this, it will be convenient to consider the obvious expansion of our binomial
model (4) from [0, T ] = [0,1] to all of [0,∞). Let P(n) still denote its locally
equivalent martingale measure. Use the mappings φ↓ and φ↑ associated with the
stopping system T to define another system of stopping times T̃ by τ̃0 := 0 and,
for k = 0,1, . . . ,

τ̃k+1 := min
{
t > τ̃k : ln

(
S

(n)
t

S
(n)
τ̃k

)
/

σ√
n

= φ
↑
k

(
S

(n)
τ̃1

, . . . , S
(n)
τ̃k

)}
(10)

∧ min
{
t > τ̃k : ln

(
S

(n)
t

S
(n)
τ̃k

)
/

σ√
n

= −φ
↓
k

(
S

(n)
τ̃1

, . . . , S
(n)
τ̃k

)}
.

Clearly, these successive two-sided level passage times τ̃1, . . . , τ̃n are finite P(n)-
almost surely, with τ̃n ≥ 1. To obtain a strategy on [0,1] we truncate and consider
the trading strategy (T̂,H) intervening at times τ̂k := τ̃k ∧ 1 according to H =
(hk)k=0,1,... where

hk := ψk

(
S

(n)
τ̃1

, . . . , S
(n)
τ̃k

)
, k = 0,1, . . . .
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In order to conclude our assertion, it is now sufficient to show that x +G(T̂,H)1 ≥
f (S

(n)
1 ) P(n)-a.s. In fact, we will argue that

(11) x + G(T̃,H)τ̃n
≥ f

(
S

(n)
τ̃n

)
and τ̃n ≥ 1, P(n)-a.s.,

which entails our assertion because

x + G(T̂,H)1 = x + G(T̃,H)1 ≥ EP(n)

[
x + G(T̃,H)τ̃n

|F (n)
1

]
≥ EP(n)

[
f

(
S

(n)
τ̃n

)|F (n)
1

] ≥ f
(
S

(n)
1

)
.

Here, the first estimate holds because G(T̃,H) is a super-martingale under P(n),
the second estimate is due to (11), and the final one is due to Jensen’s inequality for
the convex function f and the P(n)-martingale S(n) (which is uniformly bounded
up to time τ̃n).

It remains to prove (11). For this, observe that by construction both sides of this
inequality are functionals of (S

(n)
τ̃k

)k=0,1,.... Moreover, this process is a binomial

martingale under P(n) with exactly the same jump characteristics as (S
(n)
τk )k=0,1,...

under Q and, therefore,

Law
((

S
(n)
τ̃k

)
k=0,1,...|P(n)) = Law

((
S(n)

τk

)
k=0,1,...|Q

)
.

As a consequence, (11) is immediate from (9). �

For later use, let us also note the following lemma which illustrates the trade-off
to be struck in our dual description of the super-replication problem: For a convex
payoff, EQ(T)[f (S

(n)
1 )] may decrease when we add stops to T while of course any

added stop will let the number of interventions N(T) increase.

LEMMA 4.2. If T′ ∈ T (n) is a refinement of T ∈ T (n) in the sense that for
any τk from T, we have

τk = max
{
τ ′
k′ ∈ T′|τ ′

k′ ≤ τk

}
,

then for any convex payoff profile f : (0,∞) →R we have

EQ(T′)
[
f

(
S

(n)
1

)] ≤ EQ(T)

[
f

(
S

(n)
1

)]
.

PROOF. The measure Q(T) is a martingale measure for (S
(n)
τk )k=0,1,... that is

absolutely continuous with respect to P and which attains the frictionless super-
replication price of the convex payoff f (S

(n)
1 ) when trading is allowed only at

times contained in T. Obviously, refining T to T′ ∈ T (n) offers more flexility to
find super-replication strategies, and thus cannot lead to a higher super-replication
price. �



748 P. BANK AND Y. DOLINSKY

4.2. Proof of the upper bound for super-replication prices. In this section, we
will prove that “≥” holds in our formula (6) for the scaling limit. More precisely,
we will establish

(12) lim inf
n

Vκ/n(
f

(
S

(n)
1

)) ≥ inf
σ≤ν∈A W

EW

[
f

(
S

(ν)
1

) + κ

∫ 1

0
g
(
ν2
t /σ 2)

dt

]
.

Without loss of generality (by passing to a subsequence) we assume that the limit
limnV

κ/n(f (S
(n)
1 )) exists in [0,∞].

By Lemma 4.1, we can find, for n = 1.2, . . . , stopping systems T
(n)
0 ∈ T (n)

such that

Vκ/n(
f

(
S

(n)
1

)) ≥ E
Q(T

(n)
0 )

[
f

(
S

(n)
1

) + κ

n
N

(
T

(n)
0

)] − 1

n
.

Hence, the lim inf in (12) can be estimated if we get an understanding, as n ↑ ∞, of
the joint law of S

(n)
1 and N(T

(n)
0 ) under Q(T

(n)
0 ). While tightness of this sequence

of laws is not obvious, it can be established for a suitable refinement of T(n)
0 using

an argument which we adapt from Kusuoka [18]. To this end, fix m ∈ {1,2, . . .} and
refine T

(n)
0 if necessary in such a way that at most m steps are taken between any

two stopping times. This gives us a stopping system T(n) = {τ (n)
k }k=0,1,... ∈ T (n)

with N(T
(n)
0 ) ≥ N(T(n)) − [(n − 1)/m] and

(13) τ
(n)
k+1 − τ

(n)
k ≤ m

n
on

{
τ

(n)
k+1 < 1

}
.

In light of Lemma 4.2, we can now conclude that Q(n) := Q(T(n)) satisfies

(14) Vκ/n(
f

(
S

(n)
1

)) ≥ EQ(n)

[
f

(
S

(n)
1

) + κ

n
N

(
T(n))] − 1

n
− κ

n

[
(n − 1)/m

]
.

Hence (12) will be established upon letting m ↑ ∞ once we can show that the
lim infn↑∞ of the expectations in (14) is not smaller than the right-hand side of (12)
for each m = 1,2, . . . . This will be accomplished using Kusuoka’s tightness argu-
ment for which we consider the processes M(n), n = 1,2, . . . , given by

M
(n)
1 := S

(n)
1 ,

(15)
M

(n)
t := S

(n)

τ
(n)
k+1

for t ∈ [
τ

(n)
k + 1/n, τ

(n)
k+1 + 1/n

) ∩ [0,1), k = 0,1, . . . .

Observe that M(n) is a version of the Q(n)-martingale with terminal value Sn
1 :

M
(n)
t = EQ(n)

[
S

(n)
1 |F (n)

t

]
, t ∈ [0,1],Q(n)-a.s.

LEMMA 4.3. Suppose T(n) ∈ T (n), n = 1,2, . . . , are partitions of [0,1] such
that (13) holds Q(n)-almost surely where Q(n) = Q(T(n)). Then the sequence of
distributions (Law(S(n)|Q(n)))n=1,2,... is tight on the Skorohod space D[0,1]. Any
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weak accumulation point is the law of a strictly positive continuous martingale M

(in its own filtration) under some probability measure P̂ such that

(16) E
P̂

[
max

t∈[0,1](Mt)
p
]
≤ sup

n=1,2,...

EQ(n)

[
max

t∈[0,1]
(
M

(n)
t

)p]
< ∞ for any p ≥ 0.

Moreover, the stochastic logarithm L of M/s0, that is, the continuous local martin-
gale L such that M = s0E (L), has quadratic variation 〈L〉 absolutely continuous
with respect to Lebesgue measure with density ν2 := d〈L〉/dt ≥ σ 2.

In addition, along a suitable subsequence, we have the weak convergence

Law
(
S(n),

∫ ·
0

α(n)
s ds

∣∣∣∣Q(n)

)
→ Law

(
M,

∫ ·
0

1

2

(
ν2
t /σ 2 − 1

)
dt

∣∣∣∣P̂
)
, n ↑ ∞,

on D[0,1] ×D[0,1] where

(17) α
(n)
t :=

√
n

σ

∣∣M(n)
t − S

(n)
t

∣∣/S(n)
t , t ∈ [0,1]

with M(n) given by (15).

PROOF. From (13), it follows that α
(n)
t is Q(n) a.s. uniformly bounded (in n

and t), and so the tightness of (Law(S(n)|Q(n)))n=1,2,... and the estimate (16) fol-
low from Propositions 4.8 and 4.27 in [18]. The second part of the lemma follows
from Lemma 7.1 in [8]. �

By Skorohod’s representation theorem, we can find processes Ŝ(n), M̂(n), α̂(n),
n = 1,2, . . . , on a common probability space (�̂, F̂ , P̂) which have for each
n = 1,2, . . . the same joint law as their counterparts (S(n),M(n), α(n)) under Q(n)

and which are such that (Ŝ(n), M̂(n),
∫ ·

0 α̂
(n)
u du) converges P̂-almost surely uni-

formly in time to (M̂, M̂,
∫ ·

0
ν̂2
t −σ 2

2σ
dt) where M̂ = s0E (L̂) is a continuous P̂-

martingale with finite moments of arbitrary order and ν̂2 is the density of the
quadratic variation of its stochastic logarithm L̂ with respect to Lebesgue mea-
sure.

Moreover, for any n = 1,2, . . . , we can define a system T̂(n) of stopping times
τ̂

(n)
k , k = 0,1, . . . , for the filtration generated by Ŝ(n) such that also the joint P̂-law

of these with (Ŝ(n), M̂(n)) coincides with the joint law under Q(n) of the stopping
times τ

(n)
k , k = 0,1, . . . , with (S(n),M(n)). In particular, we conclude from (13)

that

τ̂
(n)
k+1 − τ̂

(n)
k ≤ m

n
, P̂-a.s.

From (4) and (15), we thus get the Taylor expansion

α̂
(n)
t = nτ̂

(n)
k+1 − [nt] + O

(
m2/

√
n
)

for t ∈ [
τ̂

(n)
k + 1/n, τ̂

(n)
k+1 + 1/n

) ∩ [0,1] P̂-a.s.,
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where the absolute values of the O(m2/
√

n)-terms are uniformly in time and in
P̂-a.e. scenario less than or equal to m2/

√
n.

The last observations allow us to apply Lemma 4.4 below [with b(t) := ν̂2
t /σ 2]

to get the estimate

(18) lim inf
n

N(T̂(n))

n
≥

∫ 1

0
g
(
ν̂2
t /σ 2)

dt, P̂-a.e.,

where g is the linearly interpolating function defined in Theorem 4.1.
Taking lim infn in (14) now gives

lim inf
n

Vκ/n(
f

(
S

(n)
1

)) ≥ lim inf
n

EQ(n)

[
f

(
S

(n)
1

) + κN
(
T(n))/n

] − κ

m

= lim inf
n

E
P̂

[
f

(
Ŝ

(n)
1

) + κN
(
T̂(n))/n

] − κ

m

≥ E
P̂

[
f (M̂1) + κ

∫ 1

0
g
(
ν̂2
t /σ 2)

dt

]
− κ

m
,

where the final step is due to Fatou’s lemma and (18). Applying a randomization
technique similar to Lemma 7.2 in [8] and letting m ↑ ∞ now proves our asser-
tion (12).

LEMMA 4.4. For n = 1,2, . . . , let T(n) = {0 = t
(n)
0 ≤ t

(n)
1 ≤ · · · ≤ t

(n)
n = 1} be

deterministic partitions of [0,1] such that nt
(n)
k ∈ {0,1, . . .} and t

(n)
k+1 − t

(n)
k ≤ m/n

for k = 0,1, . . . , n − 1. Suppose the functions

a(n)(t) := nt
(n)
k+1 − [nt], t

(n)
k < t ≤ t

(n)
k+1 for k = 0,1, . . . , n − 1,

satisfy

(19)
∫ ·

0
a(n)(t) dt →

∫ ·
0

1

2

(
b(t) − 1

)
dt uniformly on [0,1]

for some b ∈ L1([0,1], dt). Then we have

lim inf
n

N(T(n))

n
≥

∫ 1

0
g
(
b(t)

)
dt,

where g is the linearly interpolating function defined in Theorem 4.1.

PROOF. Without loss of generality (by passing to a sub-sequence) we assume
that limn→∞ N(T(n))/n exists. For any n introduce the function bn : [0,1] →
[1,∞) by bn(T ) = 0 and

bn(t) = n
(
t
(n)
k+1 − t

(n)
k

)
, t

(n)
k ≤ t < t

(n)
k+1, k = 0,1, . . . , n − 1,

for which we notice that

(20)
N(T(n))

n
=

∫ 1

0

1

bn(t)
dt.
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Simple calculations yield

∫ t
(n)
k+1

t
(n)
k

[
1

2

(
bn(t) − 1

) − an(t)

]
dt = 0.

This together with (19) and the fact that n(t
(n)
k+1 − t

(n)
k ) is bounded uniformly in k

and n gives

(21)
∫ t

0
bn(u)du →

∫ t

0
b(u)du uniformly in t ∈ [0,1].

The Komlos lemma (see Lemma A 1.1 in [6]) implies that there exists a se-
quence of functions b̃n ∈ conv(bn, bn+1, . . .), n = 1,2, . . . , such that b̃n converges
Lebesgue-almost everywhere to a function b̃. In fact, b̃ = b a.e. since by dominated
convergence and (21) we get∫ t

0
b̃(u) du = lim

n→∞

∫ t

0
b̃n(u) du

= lim
n→∞

∫ t

0
bn(u) =

∫ t

0
b(u)du for any t ∈ [0,1].

Finally, from (20), the fact that the function g is convex and continuous with
g(bn) = 1

bn
(as bn is integer valued) we obtain

lim
n

N(T(n))

n
= lim

n

∫ 1

0
g
(
bn(t)

)
dt ≥ lim

n

∫ 1

0
g
(
b̃n(t)

) =
∫ 1

0
g
(
b(t)

)
dt

and the result follows. �

4.3. Proof of the lower bound for super-replication prices. In this section, we
will establish “≤” for our formula (6) for the scaling limit of super-replication
prices. More precisely, we will prove

(22) lim sup
n

Vκ/n(
f

(
S

(n)
1

)) ≤ EW

[
f

(
S

(ν)
1

) + κ

∫ 1

0
g
(
ν2
t /σ 2)

dt

]

for any volatility process ν ≥ σ in A W on some filtered probability space
(�W,FW, (FW

t ),PW) supporting a Brownian motion W as considered in Theo-
rem 4.1. In fact, it suffices to show this for piecewise constant ν.

LEMMA 4.5. For any ν ∈ A W and any ε > 0, there is ν̃ ∈ A W of the simple
form

(23) ν̃t =
J∑

j=0

σ

√
ρj

(
S

(ν̃)
t0

, . . . , S
(ν̃)
tj

)
1(tj ,tj+1](t)
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for some times 0 = t0 < t1 < · · · < tJ = 1 and continuous bounded functions ρj :
Rj+1 → [1,∞) such that∣∣∣∣EW

[
f

(
S

(ν)
1

) + κ

∫ 1

0
g
(
ν2
t /σ 2)

dt

]
−EW

[
f

(
S

(ν̃)
1

) + κ

∫ 1

0
g
(
ν̃2
t /σ 2)

dt

]∣∣∣∣ < ε.

PROOF. Let ν ∈ A W and let C be a constant such that ν ≤ C a.s. Using similar
density arguments as in Lemma 3.4 in [2] (for d = 1) we get that there exists a
sequence ν(n), n = 1,2, . . . , such that ν(n) ≤ C is of the simple form given by (23)
and ν(n) → ν PW ⊗ dt-a.e. This together with the uniform integrability (due to

ν(n) ≤ C) of the sequence f (S
(ν(n))
1 )+κ

∫ 1
0 g((ν

(n)
t )2/σ 2) dt , n = 1,2, . . . , implies

the assertion. �

In the proof of (22), we can assume without loss of generality that
limnV

κ/n(f (S
(n)
1 )) exists. The duality result in Lemma 4.1 suggests to construct

a sequence of stopping systems T(n) ∈ T (n) with respect to (F (n)
t ), n = 1,2, . . . ,

such that under the associated measures Q(n) := Q(T(n)) the processes S(n) of (4)
converge in law to S(ν). This will be done next.

To fix ideas, let us first focus on the initial period [t0, t1) = [0, t1) where we
wish to obtain the constant ν2

0 = σ 2ρ0 ∈ [0,∞) as the limiting local variance.
Inspection of the argument in the previous section suggests that for ρ0 ∈ {1,2, . . .}
this can be accomplished by stopping any ρ0 consecutive upwards or downwards
steps (and not stop before the end in scenarios without this monotonicity property).
For ν2

0 between natural multiples of σ 2, though, we have to mix stopping after
[ρ0] steps and after [ρ0] + 1 steps in just the right proportions. For instance, if
we want to obtain asymptotically the local variance 1.5σ 2 (i.e., ρ0 = 1.5), we just
alternate between stopping after [ρ0] = 1 steps and after [ρ0] + 1 = 2 steps in the
same direction (and again do not stop before the end in all scenarios which are
incompatible with this).

In general, the following construction will work: For j = 0, . . . , J , we subdivide
the time interval [[ntj ]/n, [ntj+1]/n) into [ntj+1] − [ntj ] ≈ n(tj+1 − tj ) = O(n)

periods of length 1/n. These O(n) periods can be covered by
√

n(tj+1 − tj ) =
O(

√
n) blocks of the same number

√
n(tj+1 − tj ) = O(

√
n) of successive time

points. Denote by

ρ
(n)
j := ρj

(
S

(n)
[nt0]/n, . . . , S

(n)
[ntj ]/n

)
a proxy for the multiple of σ 2 we want to implement asymptotically as local vari-
ance over the interval [tj , tj+1). Take λ

(n)
j to be the unique solution λ ∈ (0,1] of

ρ
(n)
j = λ

[
ρ

(n)
j

] + (1 − λ)
([

ρ
(n)
j

] + 1
)
.
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In each of the above O(
√

n) blocks of length O(
√

n), we will first stop every
time after [ρ(n)

j ] steps have been made by the binomial model consecutively in
the same direction (i.e., all upwards or all downwards) and we will not stop at all
before reaching the time horizon T = 1 in scenarios where different directions are
taken in this period. This continues until we have covered a fraction of λ

(n)
j of the

present block’s O(
√

n) periods. For the remaining fraction 1 − λ
(n)
j of periods in

this block, we will proceed similarly but with a rhythm of stopping every [ρ(n)
j ]+1

steps instead of [ρ(n)
j ]. After that, we repeat this procedure for all of the O(

√
n)

blocks we separated the interval [[ntj ]/n, [ntj+1]/n) into in the beginning. Then
we proceed similarly with the next interval [[ntj+1]/n, [ntj+2]/n) until all of these
intervals are treated.

Let us next analyze the asymptotic transaction costs and variance which this
procedure entails. We can do this separately on each of the intervals [tj , tj+1),
j = 0, . . . , J . So fix such a j and let n1 and n2 denote the number of times where
we stop every [ρ(n)

j ] and [ρ(n)
j ] + 1 binomial steps, respectively. Then we have

n1
[
ρ

(n)
j

] + n2
([

ρ
(n)
j

] + 1
) =

√
n(tj+1 − tj ) + O(1)

and, in order to obtain the right asymptotic variance for M(n) constructed from the
thus obtained τ

(n)
j s as in (15), we want to have at the same time that

n1
[
ρ

(n)
j

]2 + n2
([

ρ
(n)
j

] + 1
)2 = ρ

(n)
j

√
n(tj+1 − tj ) + O(1).

We conclude

n1√
n(tj+1 − tj )

= 1 + [ρ(n)
j ] − ρ

(n)
j

[ρ(n)
j ] + O(1/

√
n),

n2√
n(tj+1 − tj )

= ρ
(n)
j − [ρ(n)

j ]
1 + [ρ(n)

j ] + O(1/
√

n),

and the fraction of periods covered in [ρ(n)
j ] steps, respectively, is the desired

λ
(n)
j = n1[ρ(n)

j ]√
n(tj+1 − tj )

+ O(1/
√

n) = 1 + [
ρ

(n)
j

] − ρ
(n)
j + O(1/

√
n).

The transaction costs on this block are equal to (n1 + n2)κ/n, and so we conclude
that the transaction costs on the whole interval [[ntj ]/n, [ntj+1]/n) amount to

(24)
√

n(tj+1 − tj )(n1 + n2)κ/n = κ(tj+1 − tj )g
(
ρ

(n)
j

) + O(1/
√

n).
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Furthermore, we get that for any t ∈ (tj , tj+1) the process α(n) as in (17) satisfies

∫ t

tj

α(n)
s ds = O(1/

√
n) + t − tj√

n(tj+1 − tj )

(
0 + 1 + 2 + · · · + [

ρ
(n)
j

] − 1
)
n1

+ t − tj√
n(tj+1 − tj )

(
0 + 1 + 2 + · · · + [

ρ
(n)
j

])
n2(25)

= O(1/
√

n) + ρ
(n)
j − 1

2
(t − tj ).

Having constructed for n = 1,2, . . . a system of stopping times T(n) = {τ (n)
k } ∈

T (n), we can let Q(n) := Q(T(n)) denote the associated martingale measure for
(S

(n)

τ
(n)
k

)k=0,1,.... Observe that along with the functions ρj also the ρ
(n)
j are bounded

uniformly, say by a constant m ∈ {1,2, . . .}. As a consequence, the increments
between any two successive intervention times are bounded by m/n Q(n)-almost
surely as in (13). We can thus invoke Lemma 4.3 to conclude that, possibly along
a subsequence again denoted by n, we have the weak convergence

Law
(
S(n),

∫ ·
0

α(n)
s ds

∣∣∣∣Q(n)

)
→ Law

(
M,

∫ ·
0

1

2

(
ν̂2
t /σ 2 − 1

)
dt

∣∣∣∣P̂
)
, n ↑ ∞,

on D[0,1] × D[0,1] for some ν̂ ≥ σ with ν̂2 = d〈L〉/dt for the stochastic log-
arithm L of M = s0E (L). In fact, M and ν̂ are just copies, respectively, of our
original S(ν) and ν; see Lemma 4.6 below.

Just as after Lemma 4.3 in the previous section, we now use Skorohod’s rep-
resentation theorem to see that without loss of generality we can assume to have
Ŝ(n), M̂(n) and α̂(n) on (�̂, F̂ , P̂) which have, for each n = 1,2, . . . , the same joint
law as their counterparts (S(n),M(n), α(n)) under Q(n) and which are such that, as
n ↑ ∞,

(26)
(
Ŝ(n), M̂(n),

∫ ·
0

α̂(n)
u du

)
→

(
M,M,

∫ ·
0

1

2

(
ν̂2
t /σ 2 − 1

)
dt

)

uniformly in time P̂-almost surely, where ν̂2 := d〈L〉/dt for the stochastic log-
arithm L of M . For n = 1,2, . . . , we can also reconstruct from Ŝ(n) a system
of stopping times T̂(n) for the filtration generated by Ŝ(n) which corresponds to
our T(n) constructed above. From (25)–(26) and the fact that the functions ρj ,
j = 1, . . . , J are continuous, it follows that

(27) ν̂t =
J∑

j=0

σ
√

ρj (Mt0, . . . ,Mtj )1(tj ,tj+1](t), P⊗ dt-a.e.
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The proof of (22) is now completed by arguing that

Vκ/n(f
(
S

(n)
1

) ≤ EQ(n)

[
f

(
S

(n)
1

) + κ

n
N

(
T(n))]

= E
P̂

[
f

(
Ŝ

(n)
1

)] +E
P̂

[
κN

(
T̂(n))/n

]
→ E

P̂

[
f (M1)

] +E
P̂

[
κ

∫ 1

0
g
(
ν̂2
t /σ 2)

dt

]

= EW

[
f

(
S

(ν)
1

) + κ

∫ 1

0
g
(
ν2
t /σ 2)

dt

]
.

Here, the estimate in the first line is immediate from Lemma 4.1 and the first
identity is due to our Skorohod representation. The convergence E

P̂
[f (Ŝ

(n)
1 )] →

E
P̂
[f (M1)] is due to dominated convergence since uniform integrability fol-

lows from the polynomial growth of f and (16); the convergence of the other
expectations also follows by dominated convergence since N(T̂(n))/n ∈ [0,1],
n = 1,2, . . . , and since (24) in conjunction with (27) yields P̂-a.s. convergence
of the costs κN(T̂(n))/n to κ

∫ 1
0 g(ν̂2

t /σ 2) dt . The final identity is immediate from
Lemma 4.6 below.

LEMMA 4.6. We have

(28) Law
(
S(ν)|PW ) = Law(M|P̂).

PROOF. Let us prove by induction that, for any j = 0,1, . . . , J , the distribu-
tion of M|[0,tj ] is equal to the distribution of S(ν)|[0,tj ]. For j = 0, the statement is
trivial. Assume that the statement is correct for j . Define the stochastic process

Bt = 1

σ
√

ρj (Mt0, . . . ,Mtj )

∫ t+tj

tj

dMu

Mu

, t ∈ [0, tj+1 − tj ].

From the Lévy theorem and (27), it follows that B is a Brownian motion on
[0, tj+1 − tj ] independent of M|[0,tj ]. Clearly, for t ∈ [tj , tj+1],
(29) Mt = Mtj exp

(
σ

√
ρj (Mt0, . . . ,Mtj )Bt−tj −σ 2ρj (Mt0, . . . ,Mtj )(t − tj )/2

)
.

On the other hand, for t ∈ [tj , tj+1],

S
(ν)
t = S

(ν)
tj

exp
(
σ

√
ρj

(
S

(ν)
t0

, . . . , S
(ν)
tj

)
B̂t−tj

(30)
− σ 2ρj

(
S

(ν)
t0

, . . . , S
(ν)
tj

)
(t − tj )/2

)
,

where B̂t = Wt+tj − Wtj , t ≥ 0 is a Brownian motion independent of S(ν)|[0,tj ].
From (29)–(30) and the induction assumption, we get that the distribution of
M|[0,tj+1] coincides with the distribution of S(ν)|[0,tj+1] as required. Hence, the
distribution of M is the same as that of S(ν). �
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[14] JAKUBĖNAS, P., LEVENTAL, S. and RYZNAR, M. (2003). The super-replication problem via
probabilistic methods. Ann. Appl. Probab. 13 742–773. MR1970285

[15] JOUINI, E., KALLAL, H. and NAPP, C. (2001). Arbitrage and viability in securities markets
with fixed trading costs: Arbitrage and control problems in finance. J. Math. Econom. 35
197–221. MR1822344

[16] KABANOV, Y. and SAFARIAN, M. (1997). On Lelands strategy of option pricing with transac-
tions costs. Finance Stoch. 1 239–250.

[17] KORN, R. (1998). Portfolio optimisation with strictly positive transaction costs and impulse
control. Finance Stoch. 2 85–114.

[18] KUSUOKA, S. (1995). Limit theorem on option replication cost with transaction costs. Ann.
Appl. Probab. 5 198–221. MR1325049

[19] LELAND, H. E. (1985). Option pricing and replication with transactions costs. The Journal of
Finance 40 1283–1301.

[20] LÉPINETTE, E. (2010). Approximate hedging of contingent claims under transaction costs.
Appl. Math. Finance 17 491–518.

[21] LÉPINETTE, E. and TRAN, T. (2017). Arbitrage theory for non convex financial market mod-
els. Stochastic Process. Appl. 127 3331–3353. MR3692317

[22] LEVENTAL, S. and SKOROHOD, A. V. (1997). On the possibility of hedging options in the
presence of transaction costs. Ann. Appl. Probab. 7 410–443. MR1442320

[23] LO, A. W., MAMAYSKY, H. and WANG, J. (2004). Asset prices and trading volume under
fixed transaction costs. J. Polit. Econ. 112 1054–1090.

http://www.ams.org/mathscinet-getitem?mr=3320325
http://www.ams.org/mathscinet-getitem?mr=3626623
http://www.ams.org/mathscinet-getitem?mr=3127933
http://www.ams.org/mathscinet-getitem?mr=3066984
http://www.ams.org/mathscinet-getitem?mr=2398764
http://www.ams.org/mathscinet-getitem?mr=1970285
http://www.ams.org/mathscinet-getitem?mr=1822344
http://www.ams.org/mathscinet-getitem?mr=1325049
http://www.ams.org/mathscinet-getitem?mr=3692317
http://www.ams.org/mathscinet-getitem?mr=1442320


SUPER-REPLICATION WITH FIXED TRANSACTION COSTS 757

[24] MORTON, A. J. and PLISKA, S. R. (1995). Optimal portfolio management with fixed transac-
tion costs. Math. Finance 5 337–356.

[25] OKSENDAL, B. and SULEM, A. (2002). Optimal consumption and portfolio with both fixed
and proportional transaction costs. SIAM J. Control Optim. 6 1765–1790.

[26] PENG, S. (2008). Multi-dimensional G-Brownian motion and related stochastic calculus under
G-expectation. Stochastic Process. Appl. 118 2223–2253. MR2474349

[27] PERGAMENSHCHIKOV, S. (2003). Limit theorem for Leland’s strategy. Ann. Appl. Probab. 13
1099–1118. MR1994046

[28] SONER, H. M., SHREVE, S. E. and CVITANIC, J. (1995). There is no nontrivial hedg-
ing portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5 327–355.
MR1336872

INSTITUT FÜR MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN

SEKR. MA7-1
STRASSE DES 17. JUNI 136
10623 BERLIN

GERMANY

E-MAIL: bank@math.tu-berlin.de

DEPARTMENT OF STATISTICS

HEBREW UNIVERSITY

MOUNT SCOPUS 91905
JERUSALEM

ISRAEL

AND

SCHOOL OF MATHEMATICAL SCIENCES

MONASH UNIVERSITY

CLAYTON, VIC 3800
AUSTRALIA

E-MAIL: yan.dolinsky@mail.huji.ac.il

http://www.ams.org/mathscinet-getitem?mr=2474349
http://www.ams.org/mathscinet-getitem?mr=1994046
http://www.ams.org/mathscinet-getitem?mr=1336872
mailto:bank@math.tu-berlin.de
mailto:yan.dolinsky@mail.huji.ac.il

	Introduction
	Super-replication with ﬁxed transaction costs
	Buy-and-hold with conditional full support
	Scaling limit of binomial superreplication prices
	Duality for binomial models with ﬁxed transaction costs
	Proof of the upper bound for super-replication prices
	Proof of the lower bound for super-replication prices

	References
	Author's Addresses

