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This paper gives foundational results for the application of quasi-
stationarity to Monte Carlo inference problems. We prove natural sufficient
conditions for the quasi-limiting distribution of a killed diffusion to coincide
with a target density of interest. We also quantify the rate of convergence to
quasi-stationarity by relating the killed diffusion to an appropriate Langevin
diffusion. As an example, we consider in detail a killed Ornstein–Uhlenbeck
process with Gaussian quasi-stationary distribution.

1. Introduction.

1.1. Background. Markov chain Monte Carlo (MCMC) is a staple tool for
statisticians wishing to perform Bayesian inference. Suppose we wish to sample
approximately from the distribution π . The celebrated Metropolis–Hastings algo-
rithm constructs an irreducible, aperiodic Markov chain (Yn)

∞
n=1 that is reversible

with respect to π , hence has π as its stationary distribution. General theory of
Markov chains tells us that the distribution of Yn converges to π as n → ∞. The
computations may, however, be intractable for large datasets and high-dimensional
models, such as modern ‘Big Data’ applications often demand: for a dataset of size
N , merely evaluating the posterior distribution, of the form

(1.1) π(x) ∝
N∏

i=1

fi(x),

is an expensive O(N) computation at each Markov chain iteration.
In [20], the authors proposed the Scalable Langevin Exact (ScaLE) algorithm

as part of a new Monte Carlo framework that is provably efficient for Big-Data
Bayesian inference. Starting with a diffusion (Xt)t≥0 (in their case, a Brownian
motion), a stopping time τ∂ , the ‘killing time’, is defined in such a way that the
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quasi-limiting distribution (sometimes termed the Yaglom limit) is π . That is, we
have convergence of the conditional laws

(1.2) Px(Xt ∈ · |τ∂ > t) → π(·) as t → ∞
in an appropriate sense from any starting point X0 = x ∈ Rd . Such a π is also
quasi-stationary, in the sense that

(1.3) Pπ(Xt ∈ · |τ∂ > t) = π(·)
for all t ≥ 0, where Pπ denotes the law of the process conditional on X0 ∼ π . Any
Monte Carlo procedure which aims to sample from a quasi-stationary distribution,
for instance, using (1.2), will be termed a quasi-stationary Monte Carlo method.

Quasi-stationarity has long been a subject of intensive study in the probabil-
ity literature, summarised recently in [7] and the bibliography of [19]. However,
the ScaLE algorithm is the first application of quasi-limiting convergence to Monte
Carlo sampling. Its attractiveness to the aforementioned ‘Big Data’ problems stems
from the fact that the ScaLE algorithm can be implemented in substantially less
than O(N) computing time (per unit stochastic process time). In fact, the algo-
rithm is sometimes O(1) and typically no worse than O(log(N)). This is because
the simulation of killed diffusions can be performed perfectly through subsam-
pling [usually using subsets of size O(1)] and, therefore, without any bias. Direct
approaches based around subsampling a random subset of the N terms in (1.1)
to obtain an estimate of the product have been proposed, although this results in
unacceptably large errors in the target distribution unless the subset itself is O(N);
see, for instance, the discussions in [1].

Pollock et al. [20] gives some theory for the convergence properties of ScaLE,
although this requires various regularity conditions which are difficult to check
in many realistic statistical contexts. Our paper will give a much more com-
plete picture under substantially weaker regularity conditions, and help to link
quasi-stationary Monte Carlo methods with the established literature on quasi-
stationarity.

Quasi-stationary convergence differs in important respects from the more famil-
iar theory of stationary convergence. For a start, the theory of MCMC algorithms
is most commonly formulated for discrete-time chains, whereas the ScaLE algo-
rithm is fundamentally a continuous-time algorithm. There may be many prob-
abilities π which satisfy (1.3), despite irreducibility, so we need to identify the
appropriate candidate for the limit (1.2). Perhaps most significant, the conditioned
laws in (1.2) are not consistent: they are not the marginal laws of a single Markov
process at time t . This prevents us from using much of the standard probabilistic
armamentarium based on conditioning and the Markov property. Instead, to prove
convergence we use R. Tweedie’s R-theory, [25], and to study rates of convergence
we follow the approach pioneered by [14], drawing on the theory of semi-groups
generated by linear differential operators.
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1.2. Summary of main results. We now summarise our main results, leaving
the exact mathematical setting to be explicated in Section 3. We will be assuming
throughout the following.

ASSUMPTION 0. π is a positive, smooth and integrable function on Rd .

Consider the d-dimensional diffusion X = (Xt)t≥0, defined as the (weak) solu-
tion of the stochastic differential equation (SDE)

(1.4) dXt = ∇A(Xt)dt + dWt, X0 = x ∈Rd,

where W is a standard d-dimensional Brownian motion and ∇ denotes the gradient
operator. We require the following.

ASSUMPTION 1. A : Rd → R is a smooth function such that the SDE (1.4)
has a unique nonexplosive weak solution.

Suppose we wish to sample from a distribution π on Rd with a Lebesgue den-
sity, which we will also denote by π—the target density—satisfying Assump-
tion 0. We are typically thinking of applications in which we have a statistical
model and observed data for which π is the Bayesian posterior distribution. We
would like to construct a killing rate κ : Rd → [0,∞) that makes π into the quasi-
limiting distribution of the diffusion X. That is, we define the killing time

(1.5) τ∂ := inf
{
t ≥ 0 :

∫ t

0
κ(Xs)ds > ξ

}
,

where ξ is an exponential random variable with parameter 1 independent of X.
This killing time τ∂ , when the cumulative hazard function t 
→ ∫ t

0 κ(Xs)ds exceeds
the (independent) threshold ξ , is equivalent to the first arrival time of a (doubly
stochastic) Poisson process with rate function t 
→ κ(Xt).

We show that

(1.6)
Px(Xt ∈ E|τ∂ > t) → π(E)

as t → ∞ for all x ∈ Rd and Borel-measurable E ⊂ Rd .

To have confidence that this convergence is practically meaningful for a sam-
pling algorithm, we need in addition to have some control over the rate of the
convergence.

Our first result gives natural conditions under which the convergence (1.6)
holds.

To begin with, we require the following compatibility condition between the
tails of π and the underlying diffusion.
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ASSUMPTION 2. ∫
Rd

π2(y)

exp(2A(y))
dy < ∞.

Assumption 2 is natural from a statistical point of view. Recall that with-
out killing, the diffusion X has invariant density proportional to exp(2A) if this
quantity is integrable (and certain regularity conditions hold; see [22], Theo-
rem 2.1). Assumption 2 can then be interpreted as requiring that the likelihood
ratio π(Y )/e2A(Y ) has finite variance when Y ∼ exp(2A). This is what we would
need to assume were we to target π by importance sampling from exp(2A).

In particular, Assumption 2 holds when the stronger ‘rejection sampling’ con-
dition holds: that there exists some M < ∞ such that

(1.7)
π(y)

exp(2A(y))
< M ∀y ∈ Rd .

If exp(2A) is integrable, then this is precisely the condition that would allow us
to sample from π using a rejection sampler with proposal density proportional to
exp(2A). Informally, this demands that the asymptotic tail behavior of the diffusion
be heavier than the tails of the target distribution. In particular, if the diffusion X

is a Brownian motion on Rd [A ≡ 0 in (1.4)], Assumption 2 holds whenever the
target density π is bounded.

We now define the appropriate killing rate κ , to be used to construct the killing
time τ∂ in (1.5). Define κ̃ :Rd →R by

(1.8) κ̃(y) := 1

2

(
�π

π
− 2∇A · ∇π

π
− 2�A

)
(y), y ∈ Rd

where � denotes the Laplacian operator. We require the following.

ASSUMPTION 3. κ̃ is bounded below, and not identically zero.

We will see that the correct killing rate is

(1.9) κ = κ̃ + K,

where K := − infy∈Rd κ̃(y), chosen so that κ is nonnegative everywhere. If κ̃ is
identically zero, then there is no killing and we are in the familiar realm of sta-
tionary convergence of (unkilled) Markov processes; in fact, X will be a Langevin
diffusion targeting π ; see [22]. To facilitate the development of intuition, some ex-
amples of κ in the case of A ≡ 0 are given in Section 1.5. Heuristically, this form
for the killing rate makes π an eigenfunction for the generator of the killed diffu-
sion, which corresponds to quasi-stationarity; see Section 3 for the mathematical
details and further explanation.

The form of the untranslated killing rate in (1.8) also has the natural following
interpretation. Writing U := logπ , which we can do since we are assuming π is
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positive, and as above thinking of exp(2A) as describing the asymptotic unkilled
dynamics, we can rewrite (1.8) as

(1.10) κ̃(y) = 1

2

(
�(U − 2A) + ∇U · ∇(U − 2A)

)
(y), y ∈ Rd .

Written this way, we see κ̃ is a measure of the discrepancy between the derivatives
of logπ and 2A, and Assumption 3 states that this discrepancy cannot be arbitrarily
negative.

1.3. Convergence to quasi-stationarity.

THEOREM 1. Suppose Assumptions 0, 1, 3 and 2 and hold. Then X has quasi-
limiting distribution π . That is, the convergence in (1.6) holds.

REMARKS. 1. This significantly improves on Theorem 1 of [20]: their result
only applied to killed Brownian motions, and their complicated condition on the
tails of the target density has been removed. While Brownian motion—A ≡ 0 in
(1.4)—is a natural choice of a ‘proposal’ diffusion, with developments in the exact
simulation of diffusions, such as [3], there is potential to consider other diffusions
as candidates. In Section 2, we consider an Ornstein–Uhlenbeck process targeting
a Gaussian distribution.

2. We are not able to use the recent convergence results of [6]. Their approach is
via minorisation-type conditions, which do not hold in our particular noncompact
state space setting, and so we cannot apply their theorem on uniform exponential
convergence.

3. Assumption 2 is in fact not a necessary condition. For example, in Sec-
tion 4.6 of [13] the authors consider cases of low killing on [0,∞), where λκ

0 , the
bottom of the spectrum (in our case K ; see Section 3.3), is not an eigenvalue in the
L2 sense, but convergence to quasi-stationarity still occurs. Instead, the require-
ment is that the unkilled process be recurrent. In the context of quasi-stationary
Monte Carlo methods, where we are free to choose the diffusion, Assumption 2
is a natural condition, since the excluded cases have zero spectral gap, hence in-
evitably poor convergence properties.

4. Theorem 1 also extends the results of [13]: there the authors considered only
(one-dimensional) cases where limy→∞ κ(y) �= λκ

0 . For example, our result gives
convergence of killed Brownian motions with polynomially-tailed quasi-stationary
distributions: in such cases

lim‖y‖→∞κ(y) = λκ
0 ,

but the conditions of Theorem 1 still hold, so we obtain convergence to quasi-
stationarity.

5. We also obtain convergence of the conditional measures Px(Xt ∈ · |τ∂ > t)

to π in total variation distance as t → ∞, as shown in the proof of Theorem 7 of
[24].
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1.4. Rate of convergence. Our second result helps us to understand the rate
of convergence to quasi-stationarity. Let Z = (Zt )t≥0 be the weak solution of the
related SDE

(1.11) dZt = 1

2
∇ log

(
π2

exp(2A)

)
(Zt )dt + dWt,

with Z0 = x. This is an example of a Langevin diffusion. Under suitable regularity
conditions (see Theorem 2.1 of [22]), the law of the diffusion Zt converges to the
distribution on Rd with Lebesgue density proportional to π2/ exp(2A) as t → ∞.
(Assumption 2 guarantees that this is integrable.) Let −LZ denote the infinitesimal
generator of this process and let −Lκ denote the infinitesimal generator of the
process (1.4) killed at rate κ . These operators will be constructed explicitly in
Section 3.3 as self-adjoint operators on the appropriate L2 Hilbert spaces.

Writing γ := exp(2A), 
(dx) := γ (x)dx for the corresponding Borel measure
on Rd , which is the reversing measure of the diffusion X, and ϕ := π/γ , we have
the following result.

THEOREM 2. Under the same conditions as Theorem 1, the L2 spectra of LZ

and Lκ agree, up to an additive constant. In particular, when LZ has a spectral
gap, the transition kernel of the killed process pκ(t, x, y) satisfies∣∣etKpκ(t, x, y) − ϕ(x)ϕ(y)

∣∣ ≤ Ce−t (λZ
1 −λZ

0 ),

where λZ
1 > λZ

0 = 0 are the bottom two eigenvalues of the Langevin diffusion, and
the constant C may depend on x and y. If the drift in (1.4) is bounded then C may
be chosen independent of x and y.

If the measure 
 is such that 
(Rd) < ∞, then for an initial 
-density ψ ∈
L1(
) ∩L2(
), ∣∣Pψ(Xt ∈ E|τ∂ > t) − π(E)

∣∣≤ C′e−t (λZ
1 −λZ

0 ),

for any measurable E ⊂ Rd , where

C′ = 2(
∫

ψ(x)2 d
(x))1/2
(Rd)1/2∫
ψ(x)π(x)dx · ∫

π(x)dx
.

The additive constant in Theorem 2 is K ; that is, the spectrum of LZ is the
translation of the spectrum of Lκ by +K .

Theorem 2 tells us that the stationary convergence of the Langevin diffusion
(1.11) and the quasi-stationary convergence of our killed diffusion occur at the
same exponential rate, given by the equal spectral gaps. Since Langevin dynamics
have been applied widely in computational statistics and the applied sciences, their
rates of convergence have been studied extensively; see, for instance, the recent
results of [8] and [12]. Thus for many cases of π we will be able to accurately
describe the rate of convergence in (1.6).
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Theorem 2 also suggests that quasi-stationary Monte Carlo methods relying on
(1.6) may converge relatively slowly for densities which are multimodal. In the
case of A ≡ 0 (killed Brownian motion), if π is multimodal, then π2 will typically
be even more irregular, and the Langevin diffusion targeting π2 will converge only
gradually. On the other hand, quasi-stationary Monte Carlo methods should have
good success targeting densities which are unimodal, such as logconcave densities.
If π is unimodal, π2 will be even more regular and have faster tail decay, leading to
faster convergence of the Langevin diffusion. Such densities appear naturally in the
context of Big-Data Bayesian inference. The Bernstein–von Mises theorem ([26],
Section 10.2) tells us, for instance, that for large datasets the posterior distributions
are approximately Gaussian.

REMARKS. 1. A sufficient condition for the existence of a spectral gap (λκ
1 >

λκ
0 ) is that

(1.12) lim inf‖x‖→∞ κ̃(x) > 0.

See, for instance, the proof of Lemma 3.3(v) of [13], which carries over into our
setting. Furthermore, if lim inf‖x‖→∞ κ̃(x) = +∞ then this implies that the spec-
trum is purely discrete (the essential spectrum is empty). In the case of killed
Brownian motion, this holds for all exponentially-tailed densities of the form
exp(−β‖x‖α) for some β > 0, α ≥ 1.

2. The Langevin diffusion in (1.11) is precisely the Q-process (the diffusion
conditioned never to be killed) defined by the diffusion X and the killing time τ∂ .
It is defined as the limit

Qx(A) := lim
T →∞Px(A|T < τ∂)

for A ∈ σ(Xs : s ≤ t) for some t ≥ 0.
3. Theorem 2 is a continuous state-space generalisation of Theorem 1 of [11]:

there the authors showed that in a finite state-space, rates of convergence to quasi-
stationarity in total variation distance can be bounded above and below by constant
multiples of the rates of convergence to stationarity in total variation of an appro-
priate unkilled process.

1.5. Examples of κ . In the simple and computationally important case of a
killed Brownian motion [A ≡ 0 in (1.4)], κ̃ as defined in (1.8) simplifies down to

κ̃(y) = �π

2π
, y ∈ Rd .

In the following examples it can be easily checked that the conditions of Theorem 1
are satisfied.
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• Gaussian on Rd . Let σ 2 > 0 and π(y) ∝ exp(−‖y‖2/(2σ 2)) for y ∈ Rd , where
throughout ‖ · ‖ denotes the Euclidean norm. Then straightforward calculation
gives us that κ̃(y) = 1

2(σ−4‖y‖2 − σ−2d) for y ∈ Rd and hence

κ(y) = 1

2σ 4 ‖y‖2, y ∈ Rd .

Since lim inf‖y‖→∞ κ̃(y) > 0 (in fact it’s infinite), we expect exponential rates
of convergence to quasi-stationarity, from condition (1.12). This example is con-
sidered in some detail in the case d = 1 in Section 2. This example also gives
the independently interesting result that a Brownian motion on Rd killed at a
quadratic rate will have a Gaussian quasi-limiting distribution.

• Univariate exponential decay. Consider a one-dimensional, positive, smooth
target density π with tail decay π ∝ exp(−β|y|) for all y outside of a compact
set E ⊂ R, for some β > 0. We find that for all y ∈ R\E, κ̃(y) = β2, that is, a
positive constant. The killing rate κ will then also be constant asymptotically.
By condition (1.12), we expect exponential convergence to quasi-stationarity.

• Heavy-tailed case. Consider a univariate Cauchy target, π(y) ∝ 1/(1 + y2) for

y ∈R. Then simple calculation gives κ̃(y) = 3y2−1
(1+y2)2 , for y ∈ R and then

κ(y) = 3y2 − 1

(1 + y2)2 + 1, y ∈Rd .

We see here an example where lim inf|y|→∞ κ̃(y) = 0; the sufficient condition
for a spectral gap (1.12) fails and we expect slower convergence.

2. Example: Ornstein–Uhlenbeck process targeting a Gaussian density.
Before turning to the mathematical technicalities, we offer a mathematically
tractable example that can be readily simulated: a killed Ornstein–Uhlenbeck pro-
cess targeting a Gaussian distribution. For simplicity of presentation, we discuss
the univariate case d = 1. Analogous results hold in the multivariate case, but the
notation is more cumbersome, and the calculations more involved.

Throughout this section, we write N (μ,σ 2) with μ ∈ R, σ 2 > 0 to denote the
univariate Gaussian distribution with mean μ and variance σ 2.

In (1.4), we let A(y) = −(ν − y)2/(4τ 2) for each y ∈ R, where ν ∈ R, τ 2 > 0
are fixed. This defines a diffusion X as the weak solution of

(2.1) dXt = 1

2τ 2 (ν − Xt)dt + dWt, X0 = x.

The Ornstein–Uhlenbeck process X has a N (ν, τ 2) stationary distribution; the
corresponding density function is proportional to exp(2A).

Fix μ ∈R and σ 2 > 0, and let the target density be

π(y) = exp
{
− 1

2σ 2 (y − μ)2
}
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for each y ∈ R, the (unnormalised) density of a N (μ,σ 2) random variable. We
note that the regularity conditions—Assumptions 0 and 1—hold.

The untranslated killing rate computed from (1.8) is for each y ∈ R given by

(2.2) κ̃(y) = 1

2

(
(y − μ)2

σ 4 − 1

σ 2 + (ν − y)(y − μ)

τ 2σ 2 + 1

τ 2

)
.

We now assume

(2.3) τ 2 > σ 2;
that is, the invariant distribution of the underlying diffusion has tails that are heav-
ier than those of the target distribution. This makes the leading coefficient in the
quadratic (2.2) positive, so that κ̃ is bounded below, meaning that Assumption 3
holds. In this case, we will have a spectral gap (since the limit of the killing at
infinity is +∞; see (1.12), so we expect quasi-stationary convergence to occur at
an exponential rate. Completing the square in (2.2) gives the minimum value

(2.4) K := − inf
y∈R κ̃(y) = (μ − ν)2

8τ 2(τ 2 − σ 2)
+ τ 2 − σ 2

2τ 2σ 2 .

In Section 3.3, we will identify K with λκ
0 , the bottom of the L2-spectrum of the

generator of the killed diffusion, and so K is also the asymptotic rate of killing (see
Lemma 4.2 of [13]). We see from (2.4) that K is strictly positive, as our calculation
in Section 3.2 predicts. Adding K to κ̃ and rearranging, we obtain the killing rate

(2.5) κ(y) = τ 2 − σ 2

2τ 2σ 4

(
y −

{
μ + ν

2
+ τ 2

τ 2 − σ 2

(
μ − μ + ν

2

)})2

for y ∈ R.
It remains to check Assumption 2. By direct calculation,

π2

exp(2A)
(y) ∝ exp

{
−1

2

2τ 2 − σ 2

σ 2τ 2

(
y − 2μτ 2 − νσ 2

2τ 2 − σ 2

)2}
.

Our assumption (2.3) guarantees this will be integrable, and in fact proportional to
the density of the Gaussian distribution

(2.6) N
(

2μτ 2 − νσ 2

2τ 2 − σ 2 ,
σ 2τ 2

2τ 2 − σ 2

)
.

So Theorem 1 allows us to conclude that π is the quasi-limiting distribution of our
Ornstein–Uhlenbeck process (2.1) killed at rate (2.5), as long as (2.3) holds.

Since π2/ exp(2A) is the density of a Gaussian distribution, it follows that the
corresponding Langevin diffusion (1.11) is another Ornstein–Uhlenbeck process,
albeit with stationary distribution given by (2.6). In [15], the authors explicitly
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computed the Lp spectra of Ornstein–Uhlenbeck operators, and by applying their
Theorem 3.1 we find that the L2 spectrum of LZ is given by

�
(
LZ) =

{
λZ

n = n(2τ 2 − σ 2)

2σ 2τ 2
: n = 0,1,2, . . .

}
.

By Theorem 2, this coincides (up to an additive constant) with the spectrum of our
killed process (2.1). In particular, the spectral gap of our killed process is

λZ
1 − λZ

0 = 2τ 2 − σ 2

2σ 2τ 2 = 1

σ 2 − 1

2τ 2 .

For this example, there are two mechanisms influencing the convergence to quasi-
stationarity: the drift of the underlying diffusion (2.1), along with the killing (2.5)
and subsequent conditioning on survival. It is interesting to note that the spectral
gap is maximised when τ 2 → ∞, in which case the drift is 0. When in addition
μ = ν, we see that the killing is also maximal, as measured by, say, the asymp-
totic killing rate (2.4). This limit case τ 2 → ∞ corresponds to the case of killed
Brownian motion [A ≡ 0 in (1.4)]. This suggests that the rate of convergence to
quasi-stationarity is determined more by the killing mechanism than by the under-
lying drift. However, depending on the method of implementation, a greater rate
of killing could lead to reduced computational efficiency.

This simple example is amenable to simulation, as shown in Figure 1. The figure
shows the conditional distributions Px(XT ∈ · |τ∂ > T ) for T = 1,5,10,20 for the
choices ν = 2, τ 2 = 4,μ = −1, σ 2 = 2, and initial value X0 = x = 3.

FIG. 1. Estimates of the conditioned laws Px(XT ∈ · |τ∂ > T ) for the process (2.1) with parameters
ν = 2, τ2 = 4 started at x = 3 for various T . The dashed black line shows the quasi-stationary
density, a Gaussian density with mean and variance μ = −1, σ 2 = 2, respectively.
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3. Mathematical preliminaries.

3.1. Definitions. Fix d ∈ N. Let ∇ denote the gradient operator; the d-
dimensional vector with components ∇i = ∂/∂xi , i = 1, . . . , d . We will denote
the Laplacian operator by � := ∑d

i=1
∂2

∂x2
i

. We are given functions A : Rd → R

and π :Rd → [0,∞) that satisfy Assumptions 0, 1 and 2. For brevity, we write

γ := exp(2A).

π is our target density, which need not be normalised. In a slight abuse of nota-
tion, we will also write π for the Borel probability measure on Rd with Lebesgue
density proportional to π .

Let C ≡ C([0,∞),Rd) denote the space of continuous functions mapping
[0,∞) → Rd , and let ω be a typical element. For each t ≥ 0, let Xt : C → Rd be
the coordinate mapping Xt(ω) = ω(t), and let C := σ({Xt : t ≥ 0}) be the cylinder
σ -algebra. For any x ∈ Rd , let P̃x be the measure on (C,C) such that under P̃x ,
X = (Xt)t≥0 is the weak solution to (1.4).

Define κ :Rd → [0,∞) by

κ(y) := κ̃(y) + K ∀y ∈ Rd,

where κ̃ , defined in (1.8), is required to satisfy Assumption 3, so that K :=
− infy∈Rd κ̃(y) is finite. We augment our probability space to include an indepen-
dent unit exponential random variable ξ , and define killing at rate κ as in (1.5),
denoting this augmented space by (�,F,Px).

We define L2(
) ≡ L2(Rd,
) to be the Hilbert space of (equivalence classes
of) Borel-measurable square-integrable functions f,g : Rd → R with respect to
the inner product

〈f,g〉L2(
) =
∫
Rd

f (y)g(y)d
(y),

where the measure 
 is given by d
(y) = γ (y)dy, with dy denoting Lebesgue
measure on Rd . We denote the corresponding norm by ‖ · ‖L2(
).

Define ϕ :Rd →R by

ϕ := π

exp(2A)
,

which is smooth and positive. By construction, we have that ϕ is integrable with
respect to 
: ∫

Rd
ϕ(y)d
(y) =

∫
Rd

π(y)dy < ∞.

We will generally be working in the function space L2(
), as this is the space on
which the generator of the killed diffusion can be realised as a self-adjoint operator,
which we will do explicitly in Section 3.3. As such, we will want consider densities
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with respect to 
—rather than Lebesgue measure—and hence we will work with
ϕ, rather than directly with π . Of course in the case of killed Brownian motion,
A ≡ 0, π and ϕ coincide.

Following this line of thought, Assumption 2 states that indeed ϕ ∈ L2(
):

‖ϕ‖2
L2(
)

=
∫
Rd

π2(y)

exp(2A(y))
dy < ∞.

Without loss of generality, we can rescale π so that this quantity is 1.

3.2. The killed Markov semi-group. Our results depend on the spectral theory
of self-adjoint linear operators on Hilbert spaces. The proof of Theorem 1 avoids
the heavy machinery of this theory by drawing on R. Tweedie’s R-theory, which
provides some of the results of operator theory most relevant to asymptotics of
stochastic processes in a somewhat probabilistic package. We review the essentials
of operator theory in Section 3.3, but it will be required only for the proof of
Theorem 2.

The diffusion X killed at rate κ has a formal infinitesimal generator −L̃κ de-
scribed by

(3.1) L̃κ = − 1

2 exp(2A)
∇ · exp(2A)∇ + κ = −1

2
� − ∇A · ∇ + κ.

Under Assumption 3, this formal differential operator can be realized as a positive
self-adjoint operator Lκ on an L2 Hilbert space. It is this theory that we defer to
Section 3.3.

Straightforward calculation shows that

(3.2) L̃κϕ = Kϕ.

So ϕ is an eigenfunction of the formal differential operator L̃κ with eigenvalue K .
Since we have assumed that ϕ is in L2(
),

K

∫
ϕ(y)2 d
(y) =

∫
ϕ(y)L̃κϕ(y)d
(y)

= −1

2

∫
ϕ(y)

(
�ϕ(y) + 2∇A · ∇ϕ(y)

)
d
(y)

+
∫

κ(y)ϕ(y)2 d
(y)

≥
∫

κ(y)ϕ(y)2 d
(y)

> 0.

The first inequality follows since ϕ is smooth, so an application of Green’s identity
shows that the integral term is nonnegative. The final strict inequality follows since
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ϕ and γ are strictly positive and κ is not identically 0, by Assumption 3. Thus we
conclude K > 0.

Recall from [24] that a finite nonnegative measurable function f with∫
f (x)dx > 0 is said to be λ-invariant for a continuous-time semi-group (Pt )t≥0

if for all t > 0,

f (x) = eλtPtf (x) for almost every x

and a σ -finite nontrivial measure ν is λ-invariant for continuous-time (Pt )t≥0 if
for all t > 0,

ν(A) = eλtνPt (A) for every measurable A.

Analogous notions of R-invariance of functions and measures are similarly defined
for discrete-time processes as well; the requirement t > 0 is replaced with t ∈ N,
and eλt is replaced is replaced by Rt .

All we need for present purposes is the following lemma.

LEMMA 3. The sub-Markovian semi-group (P κ
t )t≥0 of the killed process X

has a unique self-adjoint generator that is an extension of −L̃κ on smooth com-
pactly supported functions. π is a λ-invariant measure for this semi-group, and ϕ

a λ-invariant function, for λ = K .

Except for some technical complications, which we will describe in the context
of presenting the operator-theory framework in Section 3.3, this should be reason-
ably intuitive. We have already pointed out in (3.2) that ϕ is an eigenfunction of
the generator with eigenvalue −K . Direct calculation shows that L̃κ is symmetric
with respect to the measure 
; that is, for f,g ∈ L2(
) in the domain of L̃κ we
have that 〈

L̃κf, g
〉
L2(
) = 〈

f, L̃κg
〉
L2(
).

Heuristically, since our assumptions ensure that the generator of the killed diffu-
sion Lκ is symmetric, using (3.2) we obtain the following manipulations, for any
nonnegative test function f ∈ L2(
):

Eπ

[
Lκf (Y )

] =
∫

π(y)Lκf (y)dy =
∫

ϕ(y)Lκf (y)d
(y)

=
∫

Lκϕ(y)f (y)d
(y) = K

∫
ϕ(y)f (y)d
(y)

= KEπ

[
f (Y )

]
.

Bearing in mind that Lκ is minus the generator of the killed diffusion, this shows
that started in π the process will remain in π , except with a mass loss at rate K .
That is to say, π is quasi-stationary. For an unkilled diffusion, if π were stationary,



QUASI-STATIONARY MONTE CARLO 447

we would expect a similar expression to hold for any appropriate f , except with
the right-hand side being exactly zero, reflecting the fact that the mass is preserved.

If we think of the adjoint operator—acting on measures—as acting on densities
with respect to 
, we have (P κ

t )∗g = (P κ
t )g. On the other hand, if g is a density

with respect to Lebesgue measure the action is

(3.3) P κ
t g = γP κ

t (g/γ ).

3.3. Operator theory. This section gives the mathematical background neces-
sary for the proof of Theorem 2 in Section 5. Readers interested in the proof of
Theorem 1 can move straight to Section 4.

Our operator L̃κ on C∞
c (Rd), smooth compactly supported functions, is a sym-

metric semi-bounded operator and, therefore, has a self-adjoint extension, for in-
stance the Friedrichs extension; see [9], Section 4.4. As a matter of fact, our op-
erator is essentially self-adjoint—proven in Section 5.1— and thus has a unique
self-adjoint extension Lκ , so its completions are self-adjoint.

Recall that (3.1) describes the formal infinitesimal generator of our killed pro-
cess. This gives rise to a closable densely defined positive quadratic form q̃κ on
L2(
) given by

q̃κ (f ) = 1

2

∫
Rd

∇f · ∇f (y)γ (y)dy +
∫
Rd

κ(y)
∣∣f (y)

∣∣2γ (y)dy

for f ∈ Dκ , where

Dκ := {
f ∈ L2(
) : f continuously differentiable, q̃κ (f ) < ∞}

.

We note that Assumption 3 is essential here. From a probabilistic point of view,
we need κ̃ to be bounded below since a sensible killing rate must be nonnega-
tive (which amounts to putting a bound on the Radon–Nikodým derivative; see
[20], Appendix B). From a functional-analytic point of view, we also need κ̃ to
be bounded below since we require q̃κ to be closable. The semi-boundedness
assumption on κ̃ implies that for all compactly supported, twice differentiable
f ∈ C2

c (Rd), q̃κ (f ) is a nonnegative quadratic form associated to the symmet-
ric operator L̃κ . By Lemma 1.29, Assertion 2 of [16], we therefore conclude that
the quadratic form q̃κ is closable.

Now let us denote the closure of q̃κ by qκ . To this quadratic form, there is
associated a unique positive self-adjoint operator Lκ , with dense domain D(Lκ) ⊂
L2(
); see [16], Section 1.2.3. For smooth functions the action of Lκ is identical
to that of L̃κ .

Let �(Lκ) denote the L2(
)-spectrum of Lκ . Since Lκ is self-adjoint and pos-
itive, we have that �(Lκ) ⊂ [0,∞). We have seen in (3.2) that K ∈ �(Lκ); in
particular �(Lκ) is nonempty, so let us write λκ

0 for the bottom of the spectrum.
In fact, we have that K = λκ

0 . This follows from general operator theory since ϕ is
positive everywhere. We also have that λκ

0 is a simple eigenvalue, with ϕ being its
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unique eigenfunction up to constant multiples. A reference for these assertions is
[21], Section XIII.12.

We now make use of the spectral calculus for self-adjoint operators using
projection-valued measures, as discussed in [9], Section 2.5. This gives us the ex-
istence of a family of spectral projections (Eκ

λ)λ∈[λκ
0 ,∞) and allows us to define

φ(Lκ) for Borel-measurable φ :R→R, via

φ
(
Lκ)

f =
∫
�(Lκ)

φ(λ)dEκ
λf,

D
(
φ

(
Lκ)) =

{
f ∈ L2(
) :

∫
�(Lκ)

∣∣φ(λ)
∣∣2 d

〈
Eκ

λf,f
〉
L2(
) < ∞

}
,

∥∥φ(
Lκ)

f
∥∥2
L2(
) =

∫
�(Lκ)

∣∣φ(λ)
∣∣2 d

〈
Eκ

λf,f
〉
L2(
).

Now the Feynman–Kac representation states that for each t > 0(
e−tLκ

f
)
(x) = Ex

[
f (Xt)1{τ∂>t}

]
for f ∈ L2(
). Furthermore, for each t > 0 the operator e−tLκ

is a contraction on
L2(
) (cf. the derivation in [10]).

The spectral theorem allows us to write the diffusion semi-group as

P κ
t f (x) = Ex

[
f (Xt)1{τ∂>t}

] = e−tLκ

f (x) =
∫
�(Lκ)

e−tλ dEκ
λf (x)

for f ∈ L2(
). The (Eκ
λ)λ∈[λκ

0 ,∞) are orthogonal projections; in particular, Eκ
λκ

0
projects onto the span of ϕ. We can write

e−tLκ

f = e−tλκ
0 ϕ〈f,ϕ〉L2(
) +

∫
�(Lκ)\{λκ

0 }
e−tλ dEκ

λf.

Thus

(3.4) etλκ
0 e−tLκ

f = ϕ〈f,ϕ〉L2(
) +
∫
�(Lκ)\{λκ

0 }
e−t (λ−λκ

0 ) dEκ
λf.

For a given f ∈ L2, we are interested in the convergence to 0 of the integral term
in (3.4). We note here that the convergence in this discussion is convergence in
L2(
). Ultimately, we will be interested in convergence in L1(
); we will return
to this issue later.

4. Proof of Theorem 1. We wish to apply the results of [24]. In order to do
this, we first need to check that (P κ

t )t≥0 is ‘simultaneously φ-irreducible’, that is,
the resolvent kernel is strictly positive for discrete versions of the process discre-
tised with respect to arbitrary time-steps. Ordinary φ-irreducibility holds for dif-
fusions with smooth drift and locally bounded by the Stroock–Varadhan support
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theorem, [17], Section 2.6. Simultaneous φ-irreducibility follows then immedi-
ately from Theorem 1 of [24] since our process has a jointly continuous transition
density with respect to the reversing measure; see Remark 1 after this proof.

We now show that (P κ
t )t≥0 is λ-positive, with λ = K , and that the K-invariant

measure is precisely the target density π . This will then imply convergence to
quasi-stationarity by an application of Theorem 7 of [24], which states that λ-
positive processes, when λ > 0, exhibit quasi-limiting convergence as in (1.6),
where the quasi-limiting distribution is the (unique) λ-invariant measure.

By Theorem 4(ii) of [24], showing (P κ
t )t≥0 is λ-positive is equivalent to show-

ing that each (discrete-time) skeleton chain generated by P κ
h , for any h > 0, is

eλh-positive in the discrete-time sense, as defined in [25]. This involves showing
that each skeleton chain is R-recurrent with R = eλh and that the corresponding
integral of the eλh-invariant function against the eλh-invariant measure is finite. So
let us fix h > 0.

It follows from (3.2) and the Kolmogorov equations that

ehKP κ
h ϕ = ϕ.

This is exactly the definition of ϕ being ehK -invariant for the discrete-time semi-
group generated by P κ

h . By (3.3), the measure π with Lebesgue density γ ϕ is
similarly ehK -invariant for the discrete-time chain. (Definitions of λ-invariance
are included in Section 3.2 for convenience.)

By Assumption 2, ∫
Rd

ϕ(y)π(dy) =
∫
Rd

π2(y)

γ (y)
dy < ∞.

Thus by Proposition 3.1 and Proposition 4.3 of [25] the skeleton chain defined by
operator P κ

h , (Xnh)
∞
n=1, is R-recurrent, with R = ehK . Theorem 7 of [25] then tells

us that this skeleton chain is ehK -positive. Since h > 0 was arbitrary, we obtain that
(P κ

t )t≥0 is λ-positive, with λ = K . Theorem 4(iii) of [24] also tells us that ϕ and
π are the unique K-invariant function and measure for (P κ

t ), respectively.
We are now in a position to utilise Theorem 7 of [24]. Since K > 0, killing

happens almost surely, hence the key assumption (B) of Theorem 7 of [24] requires
simply that

∫
π(y)dy < ∞, which is certainly true. The conclusion of the theorem

implies convergence to quasi-stationarity (1.6); that is, for any measurable E ⊂ Rd

there is a set of starting points x of full Lebesgue measure such that

lim
t→∞Px(Xt ∈ E|τ∂ > t) =

∫
E π(y)dy∫
Rd π(y)dy

.

In fact, this convergence holds for every starting point x. Since we have a continu-
ous transition density pκ(t, x, y) (see Remark 1 after this proof), we have for any
measurable set E ⊂Rd

Px(Xt+1 ∈ E) =
∫
Rd

pκ(1, x, y)Py(Xt ∈ E)d
(y).
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Since we have convergence for y in some set of full measure, we obtain conver-
gence for all x ∈ Rd , which completes the desired result.

REMARKS. 1. Assumption 2 can be interpreted in terms of spectral theory. It
tells us that ϕ ∈ L2(Rd,
), so ϕ is also an eigenfunction of Lκ in the sense of L2

spectral theory. It is then possible to prove Theorem 1 analogously to Lemma 4.4 of
[13]. Following the derivation of [10], it follows that we have a continuous integral
kernel pκ(t, x, y) with Ex[f (Xt)1{τ∂>t}] = ∫

pκ(t, x, y)f (y)d
(y). We can then
apply [23] to see that etλκ

0 pκ(t, x, y) → cϕ(x)ϕ(y) as t → ∞, where c = ‖ϕ‖−2
L2(
)

and the proof of Theorem 1 can proceed analogously.
2. Our argument here relies fundamentally on self-adjointness of the operators

and subsequent properties such as (3.2), so there is no way we can circumvent the
assumption of a gradient-form drift in (1.4). In one dimension, this always holds,
since we can simply take the integral of the drift function.

5. Rates of convergence. Practitioners hoping to implement quasi-stationary
Monte Carlo methods, such as the ScaLE Algorithm of [20], having been reas-
sured that the procedure indeed converges to the correct distribution, will naturally
inquire about the rate of convergence. Our result in this section draws heavily on
the spectral theory for self-adjoint (unbounded) operators that we have outlined in
Section 3.3.

When there is a spectral gap, that is, when λκ
1 > λκ

0 , the integral term will vanish
at an exponential rate. Thus, it suffices to understand the spectrum �(Lκ). To
do this, we will adapt an idea of [18], to transform our operator into one whose
spectrum is already understood. Here, it will be the infinitesimal generator of a
certain Langevin diffusion.

5.1. Proof of Theorem 2. Consider the formal differential operator

L̃κ̃ = − 1

2γ
∇ · γ∇ + κ̃,

where κ̃ is defined in (1.8), acting on C∞
c (Rd), the set of smooth compactly-

supported functions. This is very similar to the formal differential operator we
began with in (3.1), differing only by an additive constant K , which will have the
effect of merely translating the spectrum accordingly. L̃κ̃ can be realised as a non-
negative, self-adjoint operator Lκ̃ on L2(
), by taking the Friedrichs extension of
the appropriate quadratic form as before.

Now let L2(π2/γ ) ≡ L2(Rd,π2/γ ) denote the Hilbert space of (equivalence
classes of) measurable functions u, v : Rd → R which are square-integrable with
respect to the inner product

〈u, v〉L2(π2/γ ) =
∫
Rd

u(y)v(y)
π2(y)

γ (y)
dy.
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The multiplication operator

Uf = γ

π
f

is a bounded unitary transformation U : L2(
) → L2(π2/γ ), with inverse given
by U−1u = π

γ
u.

We now define a second formal differential operator

L̃Z = −1

2
� − 1

2
∇ log

(
π2

γ

)
· ∇,

which is minus the generator of the Langevin diffusion given in (1.11), targeting
the density π2/γ . L̃Z can similarly be realized as a positive, self-adjoint operator
LZ on L2(π2/γ ). Our two formal operators are related through

L̃κ̃ = U−1L̃ZU.

We can also conjugate LZ to obtain U−1LZU , a self-adjoint operator on L2(
).
Theorem 2 will be an immediate consequence if we show that in fact

U−1LZU = Lκ̃ . This is the same as showing that the following diagram com-
mutes:

An operator is said to be essentially self-adjoint if it has a unique self-adjoint
extension, which is given by the closure. From the background in Section 3.3, we
see that the diagram commutes, and so Theorem 2 will follow, if we can show that
L̃κ̃ acting on C∞

c (Rd) is essentially self-adjoint. After all, the conjugate U−1L̃ZU

is a self-adjoint extension of L̃κ̃ ; if the extension is unique it must be the same
as Lκ̃ .

We apply Theorem 2.13 of [5]. The smooth boundaryless manifold we are
working in is simply Rd , with smooth positive measure measure 
. In their no-
tation, we take D to be 1√

2
∇ , which is elliptic. The formal adjoint D∗ is given by

− 1√
2
(∇ · +2∇A·). We set V = κ̃ , and the resulting operator HV is precisely L̃κ̃ .

The result follows immediately if V satisfies their Assumptions A and B, which
ask for a decomposition of V into well-behaved nonnegative parts and a mild tech-
nical condition. Assumption A is immediate by writing

V = κ̃ + K︸ ︷︷ ︸
V+

+ (−K)︸ ︷︷ ︸
V−

,
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where clearly V+ ≥ 0 and V− ≤ 0. V− trivially satisfies (ii) of Assumption A since
it is constant.

Assumption B follows from their Theorem 2.3(ii), since our operator acts on
scalar functions. The final condition of Theorem 2.13 is completeness of the met-
ric gT M , which is satisfied since it is equivalent to geodesic completeness of the
manifold, which is true for Rd .

Since unitary transformations leave spectra invariant it follows that the L2(
)

spectrum of Lκ̃ coincides with the L2(π2/γ ) spectrum of LZ , and hence the L2

spectra of Lκ̃ and LZ coincide after translation by K .
We now would like to extend our proof of L2 convergence to L1 convergence in

the case when there is a spectral gap. Let ψ ∈ L1(
)∩L2(
) be any initial density
(with respect to the measure 
). For the rest of this section, all norms and inner
products will be with respect to L2(
). Writing λκ

1 := inf{�(Lκ) \ {λκ
0}}, from our

earlier results we have that

∥∥etλκ
0 e−tLκ

ψ − 〈ψ,ϕ〉ϕ∥∥2 =
∥∥∥∥
∫ ∞
λκ

1

e−t (λ−λκ
0 ) dEκ

λψ

∥∥∥∥
2

=
∫ ∞
λκ

1

e−t ·2(λ−λκ
0 ) d

〈
Eκ

λψ,ψ
〉

≤ ‖ψ‖2 · e−t ·2(λκ
1−λκ

0 ).

(5.1)

We now link this to L1 convergence. Let H ⊂ Rd be a compact set. From the
Cauchy–Schwarz inequality, we know that∫

H

∣∣etλκ
0 e−tLκ

ψ(y) − 〈ψ,ϕ〉ϕ(y)
∣∣ d
(y)

≤ ∥∥etλκ
0 e−tLκ

ψ − 〈ψ,ϕ〉ϕ∥∥ · 
(H)1/2

≤ ‖ψ‖ · 
(H)1/2 · e−t (λκ
1−λκ

0 ).

So we have the appropriate convergence in L1(
) on compact sets. We could sim-
ilarly obtain convergence for test functions f ∈ L2(
), that is,

(5.2)
∣∣〈etλκ

0 e−tLκ

ψ,f
〉 − 〈ψ,ϕ〉〈ϕ,f 〉∣∣ ≤ ‖ψ‖ · ‖f ‖ · e−t (λκ

1−λκ
0 ).

We see that when 
 is a finite measure, we will obtain L1 convergence at this rate
on all measurable sets, not just compact ones. This is the case when the (unkilled)
diffusion has a strong inward drift.

Now assume that 
(Rd) < ∞ and fix some E ⊂ Rd . Writing Pψ for the law of
the killed process starting from ψ , we have [recalling that

∫
Rd π(x)dx = 〈ϕ,1〉],∣∣Pψ(X ∈ E|τ∂ > t) − π(E)

∣∣
=

∣∣∣∣
∫
E

(
etλκ

0 e−tLκ
ψ(y)

etλκ
0Pψ(τ∂ > t)

− ϕ(y)∫
Rd π(x)dx

)
d
(y)

∣∣∣∣
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= 1

〈ψ,ϕ〉 ∫
π(x)dx

∣∣∣∣
∫
E

(
etλκ

0 e−tLκ

ψ(y) − 〈ψ,ϕ〉ϕ(y)
)

d
(y)

−
(∫

E
etλκ

0 e−tLκ

ψ(y)d
(y)

)(
etλκ

0Pψ(τ∂ > t) − 〈ψ,ϕ〉 ∫
π(x)dx

etλκ
0Pψ(τ∂ > t)

)∣∣∣∣.
Note that ∫

E etλκ
0 e−tLκ

ψ(y)d
(y)

etλκ
0Pψ(τ∂ > t)

= 〈etλκ
0 e−tLκ

ψ,1E〉
〈etλκ

0 e−tLκ
ψ,1〉 ≤ 1,

so

(5.3)
∣∣Pψ(X ∈ E|τ∂ > t) − π(E)

∣∣ ≤ 2‖ψ‖
(Rd)1/2

〈ψ,ϕ〉 ∫
π(x)dx

e−t (λκ
1−λκ

0 ).

It remains to derive the rate of pointwise convergence for

etλκ
0 pκ(t, x, y) → ϕ(x)ϕ(y) as t → ∞.

This argument does not require us to assume 
(Rd) < ∞. Following the approach
of [23], for x, y ∈ Rd let us write gx(y) := eλκ

0 pκ(1, x, y). First, note that gx ∈
L2(
):

‖gx‖2
L2(
)

= e2λκ
0

∫
pκ(1, x, y)pκ(1, x, y)d
(y)

= e2λκ
0

∫
pκ(1, x, y)pκ(1, y, x)d
(y)

= e2λκ
0 pκ(2, x, x)

< ∞,

using symmetry and the semi-group property. By the invariance of ϕ,

〈gx,ϕ〉 = eλκ
0

∫
pκ(1, x, z)ϕ(z)d
(z) = ϕ(x).

Now for t > 2, x, y ∈ Rd ,

etλκ
0 pκ(t, x, y) =

∫ ∫
gx(z)e

λκ
0 (t−2)pκ(t − 2, z,w)gy(w)d
(z)d
(w)

= 〈
e−(t−2)Lκ

e(t−2)λκ
0 gx, gy

〉
.

By (5.2), this converges to

〈gx,ϕ〉〈gy,ϕ〉 = ϕ(x)ϕ(y),

with rate given by

(5.4)
∣∣etλκ

0 pκ(t, x, y) − ϕ(x)ϕ(y)
∣∣ ≤ e2λκ

0
(
pκ(2, x, x)pκ(2, y, y)

)1/2
e−t (λκ

1−λκ
0 ).

If the drift is bounded then the transition density is bounded as well, so this is
bounded by Ce−t (λκ

1−λκ
0 ) for a universal constant C.
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6. Discussion. In this paper, we have proven natural sufficient conditions for
the quasi-limiting distribution of a diffusion of the form (1.4) killed at an appropri-
ate state-dependent rate to coincide with a target density π . We have also quantified
the rate of convergence to quasi-stationarity by relating the rate of this convergence
to the rate of convergence to stationarity of a related unkilled process.

As mentioned in the Introduction, this framework is foundational for the
recently-developed class of quasi-stationary Monte Carlo algorithms to sam-
ple from Bayesian posterior distributions, introduced in [20]. This framework
promises improvement over more traditional MCMC approaches particularly for
Bayesian inference on large datasets, since the killed diffusion framework enables
the use of subsampling techniques. As detailed in [20], Section 4, these allow the
construction of estimators which scale exceptionally well as the size of the under-
lying dataset grows.

Quasi-stationary Monte Carlo methods are likely to be particularly effective
compared to established Monte Carlo methods for Bayesian inference for tall data;
that is, where parameter spaces have moderate dimension (allowing diffusion sim-
ulation to be feasible) but where data sizes are high. This includes the ‘Big-Data’
context where data size is so large it cannot even be stored locally on computers
implementing the algorithm. This is because subsampling can take place ‘offline’
with only the subsets being stored locally. This adds significantly to the potential
applicability of quasi-stationary Monte Carlo methods.

Our approach in this present work is also slightly more general than that of
[20] in that we allow for a nonzero drift term in our diffusion (1.4). This raises
the question of how to select among several possible drift functions the one that
results in the most practical computational outcomes. While a detailed answer to
this question is beyond the scope of this present work, we suggest the following
guidelines. There is a critical trade-off between overall killing and the essential
rate of convergence described in (1.6). As mentioned in the example of Section 2,
higher rates of killing will tend to increase the essential rate of convergence, while
increasing the computational burden imposed by simulating killing events. De-
pending on the details of the implementation, this trade-off could go either way in
terms of optimality. When scalable estimators for the killing events are available,
such as in [20], it would be sensible to choose a drift that makes the killing rate
high, for instance choosing a Brownian motion, so A ≡ 0. Of course, any Gaus-
sian process allows straightforward simulation of the unkilled dynamics, and the
choice of Brownian motion also simplifies Assumptions 2 and 3. Formally answer-
ing this question of the choice of drift would be an interesting avenue for future
exploration.

We comment briefly now on some of our assumptions. Assumption 2 is gen-
erally straightforward to verify, especially in light of the stronger ‘rejection sam-
pling’ formulation in (1.7). For instance, if A is uniformly bounded below then
Assumption 2 holds if π is a bounded density function.
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Assumption 3 is generally the most challenging. When A ≡ 0, this is mostly
straightforward to verify, especially since densities on Rd are often convex in the
tails. Verifying Assumption 3 in general can be done using the equivalent expres-
sion for κ̃ in (1.10), by comparing the decay of derivatives 2A with those of logπ .
Indeed, ensuring a practically useful form of κ̃—so that verification of Assump-
tion 3 is straightforward—could influence the choice of A in the first place.

In practice, Assumption 3 also involves computing a lower bound for κ̃ . It is
actually not necessary to compute the precise value of infy∈Rd κ̃(y); our results
still hold if K in (1.9) is replaced by any constant such that the resulting κ is
nonnegative everywhere. Intuitively, taking a larger constant K amounts to merely
adding additional killing events according to a homogeneous, independent Poisson
process.

Depending on the choices of π and A, κ̃ can be a convex function in the tails,
even in cases of nonzero A, as in our example of Section 2. A precise recipe for
computing K in general is currently unavailable; readers interested in these more
implementational details are encouraged to look at [20].

We conclude this discussion by indicating some potential future directions. As
mentioned above, there are important questions of how to choose the underlying
diffusion to optimize the computation for a given target density. One could also
consider extensions of this work to entirely different underlying processes, such
as jump diffusions or Lévy processes. Finally, another potential question is the
exploration of alternative approaches to that described in [20] for the simulation of
quasi-stationary distributions, such as the stochastic approximation approaches as
discussed in [4] and [2].
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