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LOWER ERROR BOUNDS FOR STRONG APPROXIMATION OF
SCALAR SDES WITH NON-LIPSCHITZIAN COEFFICIENTS
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Technische Universität Kaiserslautern and University of Passau

We study pathwise approximation of scalar stochastic differential equa-
tions at a single time point or globally in time by means of methods that
are based on finitely many observations of the driving Brownian motion. We
prove lower error bounds in terms of the average number of evaluations of the
driving Brownian motion that hold for every such method under rather mild
assumptions on the coefficients of the equation. The underlying simple idea
of our analysis is as follows: the lower error bounds known for equations with
coefficients that have sufficient regularity globally in space should still apply
in the case of coefficients that have this regularity in space only locally, in a
small neighborhood of the initial value. Our results apply to a huge variety
of equations with coefficients that are not globally Lipschitz continuous in
space including Cox–Ingersoll–Ross processes, equations with superlinearly
growing coefficients, and equations with discontinuous coefficients. In many
of these cases, the resulting lower error bounds even turn out to be sharp.

1. Introduction. Let T > 0 and consider a scalar stochastic differential equa-
tion (SDE)

(1) dX(t) = a
(
t,X(t)

)
dt + b

(
t,X(t)

)
dW(t), t ∈ [0, T ],

with drift coefficient a : [0, T ]×R→R, diffusion coefficient b : [0, T ]×R →R,
one-dimensional driving Brownian motion W , and initial value X(0) such that (1)
has a solution X = (X(t))t∈[0,T ]. The computational problem we study is strong
approximation of the solution X, either globally on the whole time interval [0, T ]
or at the final time T , by means of methods that may use the initial value X(0)

and a finite number of sequentially taken evaluations W(τ1), . . . ,W(τν) of the
driving Brownian motion W at times τ1, . . . , τν ∈ [0, T ]. Except for measurability
conditions, we do not impose any further restrictions. The kth site τk may depend
on the previous evaluations X(0),W(τ1), . . . ,W(τk−1), for example, by using a
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path-dependent step size control, and the total number ν of observations of W

may be determined by a stopping rule. Finally, the resulting discrete data may be
used in any way to generate an approximation to X or to X(T ). See Section 4 for
a formal description of such approximations. Our goal is to establish lower error
bounds that hold for any such method, in terms of the average number E[ν] of
evaluations of W that are used.

Lower error bounds for strong approximation of (systems of) SDEs based on
evaluations of the driving Brownian motion at finitely many times were first es-
tablished in 1980 by Clark and Cameron [9] in the particular case of strong ap-
proximation of Lévy areas. Meanwhile, lower error bounds have extensively been
studied in the case of coefficients that are globally Lipschitz continuous in the
state variable and sufficiently smooth; see Rümelin [45], Cambanis and Hu [8],
Hofmann, Müller-Gronbach and Ritter [21–23], Müller-Gronbach [34–36]. More-
over, under the assumption of global Lipschitz continuity in the state variable,
lower error bound results are also available for equations with coefficients that are
discontinuous in time, see Przybyłowicz [42–44], for stochastic delay differential
equations, see Hofmann and Müller-Gronbach [20] and for equations driven by
a fractional Brownian motion, see Neuenkirch [38, 39], Neuenkirch and Shalaiko
[40].

For SDEs with coefficients that are not globally Lipschitz continuous in the state
variable investigations on lower error bounds have started only recently. There
seem to be two directions of research, up to now. One of them consists in establish-
ing sub-polynomial lower error bounds for particular equations with smooth coef-
ficients in order to come closer to a characterization of polynomial convergence
in that case; see Hairer, Hutzenthaler and Jentzen [15], Jentzen, Müller-Gronbach
and Yaroslavtseva [27], Yaroslavtseva [49], Gerencsér, Jentzen and Salimova [12],
Müller-Gronbach and Yaroslavtseva [37]. The other one aims at a thorough anal-
ysis of strong approximation of Cox–Ingersoll–Ross processes as a prototype of
SDEs with a diffusion coefficient that is Hölder continuous in the state variable
with a Hölder exponent strictly between zero and one; see Hefter and Herzwurm
[16, 17], Hefter and Jentzen [18].

In the present paper, we aim at scalar equations (1) with coefficients a and b that
are not globally Lipschitz continuous in the state variable and we establish lower
error bounds under rather mild assumptions on a and b by exploiting, essentially,
the following simple idea: it is likely that the lower error bounds known for equa-
tions with coefficients that have sufficient regularity globally in space still apply
in the case of coefficients that have this regularity in space only locally, in a small
neighborhood of the initial value.

To give a flavour of our results, we consider for simplicity the particular case of
an autonomous equation (1), that is, we assume that:

(A) (�,F,P) is a complete probability space endowed with a normal filtration
(Ft )t∈[0,T ], W : [0, T ] × � →R is a standard Brownian motion on (�,F,P) with
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respect to (Ft )t∈[0,T ], a : R → R and b : R → R are Borel-measurable functions,
and X : [0, T ] × � → R is an (Ft )t∈[0,T ]-adapted stochastic process with contin-
uous sample paths such that P-a.s.

∫ T
0 (|a(X(t))| + |b(X(t))|2)dt < ∞ and for all

t ∈ [0, T ] P-a.s.

X(t) = X(0) +
∫ t

0
a
(
X(s)

)
ds +

∫ t

0
b
(
X(s)

)
dW(s)

hold.

We restrict ourselves to approximations of the solution X that are based on finitely
many evaluations of the driving Brownian motion at fixed times in [0, T ]. Note,
however, that all of the following lower error bounds also hold for approxima-
tions that use on average n sequentially taken evaluations of the driving Brownian
motion W ; see Sections 5 and 6.

We first consider strong approximation of the solution globally on [0, T ] with
respect to the supremum-norm. The following result is an immediate consequence
of Theorem 9 in Section 6.1.

THEOREM 1 (L∞-approximation). Assume (A). Let t0 ∈ [0, T ) and let ∅ �=
I ⊆ R be an open interval such that:

(i) a, b are once continuously differentiable on I ,
(ii) ∀x ∈ I : b(x) �= 0,

(iii) P(X(t0) ∈ I ) > 0.

Then there exist constants c, γ ∈ (0,∞) such that for all n ∈ N, for all s1, . . . , sn ∈
[0, T ] and for all measurable mappings u : Rn+1 → C([0, T ]) we have

P
(∥∥X − u

(
X(0),W(s1), . . . ,W(sn)

)∥∥∞ ≥ c ·
√

ln(n + 1)/n
)≥ γ.

In particular, we have for all n ∈ N that

inf
s1,...,sn∈[0,T ]

u : Rn+1→C([0,T ]) measurable

E
[∥∥X − u

(
X(0),W(s1), . . . ,W(sn)

)∥∥∞
]

≥ cγ ·
√

ln(n + 1)/n.

Under slightly stronger smoothness assumptions on the coefficients a and b, we
obtain lower bounds for the error with respect to the L1([0, T ])-norm (denoted by
‖ · ‖1), which in turn implies a lower bound for the maximum pointwise approxi-
mation error. The following result is an immediate consequence of Theorem 12 in
Section 6.2 and Theorem 13 in Section 6.3.

THEOREM 2 (L1-approximation & maximum pointwise error). Assume (A).
Let t0 ∈ [0, T ) and let ∅ �= I ⊆R be an open interval such that:
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(i) a, b are twice continuously differentiable on I ,
(ii) ∀x ∈ I : b(x) �= 0,

(iii) P(X(t0) ∈ I ) > 0.

Then there exist constants c, γ ∈ (0,∞) such that for all n ∈ N, for all s1, . . . sn ∈
[0, T ] and for all measurable mappings u : Rn+1 → L1([0, T ]) we have

P
(∥∥X − u

(
X(0),W(s1), . . . ,W(sn)

)∥∥
1 ≥ c/

√
n
)≥ γ.

In particular, we have for all n ∈N that

inf
s1,...,sn∈[0,T ]

u : Rn+1→L1([0,T ]) measurable

E
[∥∥X − u

(
X(0),W(s1), . . . ,W(sn)

)∥∥
1

]≥ cγ · n−1/2

and

inf
s1,...,sn∈[0,T ]

u : Rn+1→C([0,T ]) measurable

sup
t∈[0,T ]

E
[∣∣X(t) − (

u
(
X(0),W(s1), . . . ,W(sn)

))
(t)
∣∣]

≥ cγ /T · n−1/2.

Finally, we consider strong approximation of the solution at the final time. The
following result is an immediate consequence of Theorem 6 in Section 5.2.

THEOREM 3 (Pointwise approximation). Assume (A). Let t0 ∈ [0, T ) and let
∅ �= I ⊆R be an open interval such that:

(i) a, b are three times continuously differentiable on I ,
(ii) ∀x ∈ I : b(x) �= 0 and (a′b − ab′ − 1

2b2b′′)(x) �= 0,
(iii) P(X(t0) ∈ I ) > 0.

Then there exist constants c, γ ∈ (0,∞) such that for all n ∈ N, for all s1, . . . sn ∈
[0, T ] and for all measurable mappings u : Rn+1 →R we have

P
(∣∣X(T ) − u

(
X(0),W(s1), . . . ,W(sn)

)∣∣≥ c/n
)≥ γ.

In particular, we have for all n ∈N that

inf
s1,...,sn∈[0,T ]

u : Rn+1→R measurable

E
[∣∣X(T ) − u

(
X(0),W(s1), . . . ,W(sn)

)∣∣]≥ cγ · n−1.

We stress that up to now the lower bounds on the mean errors in Theorems 1–3
were known to hold only under assumptions on the coefficients a and b and the
initial value X(0) that are much stronger than the conditions (i)–(iii) used in the
above theorems. For instance, all derivatives of a and b, which appear in Theorems
1–3, are typically assumed to exist on the whole real line and to be bounded and
the initial value X(0) is required to satisfy a moment condition; see, for example,
Müller-Gronbach [34–36] for further details and references. Moreover, Theorems
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1–3 provide error bounds that hold with positive probability, uniformly in n. To
the best of our knowledge, such error estimates have not been established in this
generality in the literature so far.

The second condition in Assumption (ii) in Theorem 3 requires some moti-
vation, which we take from a related discussion in Müller-Gronbach [36]. First,
note that the function a′b − ab′ − b2b′′/2 is the Lie bracket [ã, b], where ã =
a − bb′/2 is the drift coefficient of the Stratonovich equation corresponding to
the Itô coefficients a and b. By a general result of Yamato [48], Theorem 2.1,
which links the representability of the solution X in terms of multiple Itô in-
tegrals to the nilpotent property of the Lie algebras associated with ã and b, it
follows that X(T ) = u(X(0),W(T )) for some measurable function u : R2 → R

if ã, b ∈ C∞(R) and [ã, b] = 0. A special example is provided by a geomet-
ric Brownian motion, where a(x) = αx, b(x) = βx with α,β ∈ R, and X(T ) =
X(0) exp((α − β2/2)T + βW(T )). In particular, X(T ) can then be approximated
with error zero based only on X(0) and W(T ) and the lower error bound in The-
orem 3 cannot hold. Thus, roughly speaking, the second condition in (ii) in Theo-
rem 3 (and its generalized version for nonautonomous equations in Proposition 4)
excludes trivial approximation problems for SDEs such as a geometric Brownian
motion or a one-dimensional squared Bessel process; see Section 7.1.

Theorems 1–3 yield lower error bounds for a huge variety of SDEs includ-
ing Cox–Ingersoll–Ross processes (see Section 7.1), equations with superlinearly
growing coefficients (see Section 7.2), and equations with discontinuous coeffi-
cients (see Section 7.3). In many of these cases, these lower error bounds turn out
to be sharp. Here, we illustrate our results by considering an SDE with a superlin-
early growing drift coefficient, namely

dX(t) = −(X(t)
)5 dt + X(t)dW(t), t ∈ [0, T ],

X(0) = x0 ∈R \ {0}.
(2)

Note that (2) has a unique strong solution since both coefficients are locally Lips-
chitz continuous and jointly satisfy a suitable monotone condition; see, for exam-
ple, Mao [31]. Clearly, (a′b − ab′ − b2b′′/2)(x) = −4x5 for all x ∈ R, so that all
of the assumptions in Theorems 1–3 are satisfied and, therefore, all of the respec-
tive lower error bounds hold true. On the other hand, a tamed version X̂tM

n of the
Milstein scheme achieves the upper bound 1/n, up to a constant, for the error at
the final time in the pth mean, that is, for all p ∈ [1,∞) there exists a constant
C ∈ (0,∞) such that for all n ∈ N we have(

E
[∣∣X(T ) − X̂tM

n (T )
∣∣p])1/p ≤ C · n−1,

see Kumar and Sabanis [28]. Moreover, the piecewise linear interpolation X̂tE
n of

a tamed version of the Euler scheme achieves the upper bound n−1/2, up to a
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constant, for the maximum pointwise error in the pth mean, that is, for all p ∈
[1,∞) there exists a constant C ∈ (0,∞) such that for all n ∈N we have

sup
t∈[0,T ]

(
E
[∣∣X(t) − X̂tE

n (t)
∣∣p])1/p ≤ C · n−1/2,

see Hutzenthaler, Jentzen and Kloeden [25]. The latter estimate yields in particular
that the scheme X̂tE

n achieves the upper bound n−1/2, up to a constant, for the
pathwise Lp-error in the pth mean, that is, for all p ∈ [1,∞) there exists a constant
C ∈ (0,∞) such that for all n ∈ N we have(

E
[∥∥X − X̂tE

n

∥∥p
p

])1/p ≤ C · n−1/2,

where ‖ · ‖p denotes the Lp([0, T ])-norm. Finally, the scheme X̂tE
n achieves the

upper bound
√

ln(n + 1)/n, up to a constant, for the uniform error in the pth mean,
that is, for all p ∈ [1,∞) there exists a constant C ∈ (0,∞) such that for all n ∈ N

we have (
E
[∥∥X − X̂tE

n

∥∥p
∞
])1/p ≤ C ·

√
ln(n + 1)/n,

see Hutzenthaler, Jentzen and Kloeden [26]. Hence all of the lower error bounds
from Theorems 1–3 are sharp and both methods just mentioned perform asymp-
totically optimally for equation (2).

The present paper only addresses scalar SDEs and strong approximations based
on evaluations of the driving Brownian motion at single times in [0, T ]. However,
our proof techniques can also be applied to the case of systems of SDEs and ap-
proximations based on bounded linear functionals of the driving Brownian motion
or iterated Itô integrals, and we therefore expect an analogue transfer of the lower
error bounds known for such methods in the case of systems of SDEs with co-
efficients that are globally Lipschitz with respect to the state variable (see, e.g.,
Müller-Gronbach [34], Hofmann, Müller-Gronbach and Ritter [24], Hofmann and
Müller-Gronbach [19]) to the case of systems of SDEs with coefficients that be-
have sufficiently well with respect to the state variable only in a neighborhood of
the initial value.

Our paper is organized as follows. In Section 2 and Section 3, we introduce
some notation and fix the setting with respect to equation (1), respectively. In Sec-
tion 4, we thoroughly explain what kind of approximation methods are covered by
the lower error bounds. In Section 5, we establish lower error bounds for point-
wise approximation whereas Section 6 provides lower error bounds with respect
to global approximation. In Section 7, we then use the results from the latter two
sections to obtain lower error bounds for strong approximation of Cox–Ingersoll–
Ross processes, equations with superlinearly growing coefficients, and equations
with discontinuous coefficients. The proofs of our lower error bounds rely on a
localization technique, which provides a link between equations with coefficients
that are globally Lipschitz in space and equations with coefficients that behave
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well only in a small neighbourhood of the initial value. This tool as well as a num-
ber of needed properties of Gaussian distributions are provided in Appendix B and
Appendix A, respectively.

2. Notation. For T ∈ (0,∞) and p ∈ [1,∞), we use Lp([0, T ]) to de-
note the Banach space of all Borel-measurable functions f : [0, T ] → R with
‖f ‖p = (

∫ T
0 |f (t)|p dt)1/p < ∞, where two functions are identified if they co-

incide Lebesgue-almost everywhere on [0, T ]. By C([0, T ]) we denote the Ba-
nach space of all continuous functions f : [0, T ] → R equipped with the norm
‖f ‖∞ = supt∈[0,T ] |f (t)|. For a sufficiently smooth function f : [0, T ] × R → R

and indexes i, j ∈ N0, we use

f (i,j) = ∂i+j

∂t i ∂xj
f

to denote mixed partial derivatives of f of order i + j . Furthermore, for d ∈ N,
x ∈ R

d , and p ∈ [1,∞), we use |x|p = (
∑d

i=1 |xi |p)1/p to denote the p-norm of x

and we use |x|∞ = maxi=1,...,d |xi | to denote the maximum norm of x.

3. Setting. Throughout this article, we fix the following scenario of a scalar
SDE. Let (�,F,P) be a complete probability space with a normal filtration
(Ft )t∈[0,∞) and let W : [0,∞) × � → R be a standard Brownian motion on
(�,F,P) with respect to (Ft )t∈[0,∞). Let T ∈ (0,∞), let a : [0, T ] ×R → R and
b : [0, T ]×R→R be Borel-measurable functions, and let X : [0, T ]×� →R be
an (Ft )t∈[0,T ]-adapted stochastic process with continuous sample paths such that
P-a.s.

∫ T
0 (|a(t,X(t))| + |b(t,X(t))|2)dt < ∞ and for all t ∈ [0, T ] P-a.s.

X(t) = X(0) +
∫ t

0
a
(
s,X(s)

)
ds +

∫ t

0
b
(
s,X(s)

)
dW(s).(3)

4. The class of methods. Consider the setting in Section 3 and fix n ∈ N. We
formally explain what we mean by an approximation of X(T ) or of X that uses the
initial value X(0) and on average n sequential evaluations of the Brownian motion
W at points in [0,∞).

To this end, we consider, more generally, a measurable space (S,S) and we
introduce the class An(S,X(0),W) of all F-S-measurable mappings V : � → S

that can be constructed using X(0) and at most n sequential evaluations of the
Brownian motion W in [0,∞) on average. In Section 5, we take S = R to study
approximation of X(T ). In Section 6, we take S = Lp([0, T ]) or S = C([0, T ]) to
study approximation of the whole process X. In either of these cases S is taken to
be the Borel σ -field generated by the respective canonical norm.

Every random variable V ∈ An(S,X(0),W) is determined by three sequences

ψ = (ψk)k∈N, χ = (χk)k∈N, ϕ = (ϕk)k∈N
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of measurable mappings

ψk : Rk → [0,∞),

χk : Rk+1 → {STOP,GO},
ϕk : Rk+1 → S.

The sequence ψ is used to determine the sequential evaluation sites for the Brow-
nian motion W in [0,∞). The sequence χ determines when to stop the evaluation
of W . The sequence ϕ is used to obtain the outcome of V in S once the evaluation
of W has stopped.

To be more precise, let x ∈ R be a possible realization of X(0) and let w ∈
C([0,∞)) be a possible realization of W . We put D0(x,w) = x, and for k ∈ N we
recursively define

τk(x,w) = ψk

(
Dk−1(x,w)

)
,

Yk(x,w) = w
(
τk(x,w)

)
,

Dk(x,w) = (
Dk−1(x,w),Yk(x,w)

)
.

Thus τk(x,w) ∈ [0,∞) is the kth evaluation node for the actual path w of W and
Yk(x,w) ∈ R is the corresponding evaluation of w. Let us stress that except for
measurability we do not make any assumption about ψ = (ψk)k∈N. In particular,
the resulting evaluation nodes τ1(x,w), τ2(x,w), . . . need not to be ordered. The
vector Dk(x,w) ∈ R

k+1 contains the available data given x and w after k steps
and we decide whether to stop or to go on with the sequential evaluation of w

according to the value of χk(Dk(x,w)). The total number of evaluations of w is
thus given by

ν(x,w) = min
{
k ∈N : χk

(
Dk(x,w)

)= STOP
} ∈ N∪ {∞}.

We require that the triple of sequences (ψ,χ,ϕ) satisfies P(ν(X(0),W) < ∞) = 1
and we define V : � → S to be a random variable that satisfies P-a.s.

V = ϕν(X(0),W)

(
Dν(X(0),W)

(
X(0),W

))
.(4)

Now we put

An

(
S,X(0),W

)
= {

V : � → S : V is of the form (4) with E
[
ν
(
X(0),W

)]≤ n
}
.

The class An(S,X(0),W) is called the class of adaptive methods (with vary-
ing cardinality). For V ∈ An(S,X(0),W), the corresponding average number
E[ν(X(0),W)] of evaluation nodes of the Brownian motion W can be seen as
a rough measure for the computational cost of the method V . Prominent exam-
ples of such adaptive methods are Euler- or Milstein-type methods with a step size
control where the average number of evaluation nodes is bounded by n; see, for
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example, Burrage, Herdiana and Burrage [6], Mauthner [32], Moon et al. [33],
Gaines and Lyons [11], Hofmann, Müller-Gronbach and Ritter [21–23], Müller-
Gronbach [34–36].

An important subclass of An(S,X(0),W) is the class Aeq
n (S,X(0),W) of all

methods that are based on n evaluations of W at the equidistant times kT /n, k =
1, . . . , n. Formally, we have χk = GO for k < n, χn = STOP, and ψk = kT /n for
k = 1, . . . , n. In particular, the evaluation sites are ordered in this case. Thus

Aeq
n

(
S,X(0),W

)
= {

u
(
X(0),W(T /n),W(2T/n), . . . ,W(T )

) : u : Rn+1 → S is measurable
}

and we have Aeq
n (S,X(0),W) ⊆ An(S,X(0),W). The lower error bounds that are

established in Sections 5 and 6 hold for any method from the class An(S,X(0),W)

for the respective choice of S. In Section 7, we will see that matching upper
error bounds are often (but not always) achieved by methods from the class
Aeq

n (S,X(0),W).
For technical reasons (see the beginning of the proof of Proposition 5) we use

a further class of algorithms. By An(S,W), we denote the set of all random vari-
ables V : � → S that are measurable with respect to the σ -algebra generated by
F0,W(τ1), . . . ,W(τn), where τ1, . . . , τn : � → [0,∞) are any random variables
such that for all k = 1, . . . , n the random variable τk is measurable with respect to
the σ -algebra generated by F0,W(τ1), . . . ,W(τk−1).

5. Lower error bounds for strong approximation at a single point. In this
section, we consider strong approximation of X(T ). In view of Section 4, we
study lower error bounds for approximation methods X̂n(T ) belonging to the class
An(R,X(0),W). In Section 5.1, we extend results from Müller-Gronbach [36]
and prove probability bounds on the error of X̂n(T ) ∈ An(R,W) under rather re-
strictive global smoothness assumptions on the coefficients a and b of the SDE (3).
In Section 5.2, we switch to rather mild local smoothness assumptions on a and b

and prove our main result on lower error bounds for pointwise approximation; see
Theorem 6.

5.1. Global assumptions. The following proposition shows that for suffi-
ciently smooth coefficients a and b, the probability for an adaptive method
X̂n(T ) ∈ An(R,W) of having an error at least of order one is arbitrarily close
to one.

PROPOSITION 4 (Probability bounds on the pointwise error of adaptive meth-
ods I). Assume the setting in Section 3 with E[|X(0)|16] < ∞. Assume further
that there exists a Borel set I ⊆R such that:

(A1) ∀ i ∈ {0,1,2}, j ∈ {0,1,2,3} : the partial derivatives a(i,j), b(i,j) exist on
[0, T ] ×R and are continuous and bounded,
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(A2) ∀x ∈ I : (a(0,1)b − b(1,0) − ab(0,1) − 1
2b2b(0,2))(0, x) �= 0,

(A3) P(X(0) ∈ I ) = 1.

Then for every ε ∈ (0,1) there exists c ∈ (0,∞) such that for all n ∈ N and for all
X̂n(T ) ∈ An(R,W) we have

P
(∣∣X(T ) − X̂n(T )

∣∣≥ c/n
)≥ 1 − ε.

PROOF. This proof is based on the techniques and the notation developed in
Müller-Gronbach [36] for the pth mean error analysis of pointwise approximation
of scalar SDEs. We provide the corresponding tools and results from the latter
work that are needed in the present context. The assumption E[|X(0)|16] < ∞
corresponds to the case p = 1 in Müller-Gronbach [36], Condition (B), page 1609.

Without loss of generality, we may assume T = 1. For every t ∈ [0,1], we put

Y(t) =M(t) · G(t,X(t)
)

where

G = a(0,1)b − b(1,0) − ab(0,1) − 1

2
b2b(0,2)

and

M(t) = exp
(∫ 1

t

(
a(0,1) − 1

2

(
b(0,1))2)(u,X(u)

)
du

+
∫ 1

t
b(0,1)(u,X(u)

)
dW(u)

)
.

The analysis in Müller-Gronbach [36] shows that the problem of pathwise approxi-
mation of X(1) based on finitely many evaluations of the driving Brownian motion
W is strongly connected to an integration problem for W with a random weight
given by the process Y .

For k ∈ N, we put t0 = 0 and t� = �/k as well as

�� = t� − t�−1, ��W = W(t�) − W(t�−1)

for � = 1, . . . , k, and we define a truncated Wagner–Platen scheme X̂WPt
k =

(X̂WPt
k (t�))�=0,...,k by X̂WPt

k (0) = X(0) and for � = 0, . . . , k − 1,

X̂WPt
k (t�+1)

= X̂WPt
k (t�) + a

(
t�, X̂

WPt
k (t�)

) · ��+1 + b
(
t�, X̂

WPt
k (t�)

) · ��+1W

+ 1/2 · (bb(0,1))(t�, X̂WPt
k (t�)

) · ((��+1W)2 − ��+1
)
)

+ (
b(1,0) + ab(0,1) − 1/2 · b(b(0,1))2)(t�, X̂WPt

k (t�)
) · ��+1W · ��+1

+ 1/6 · (b(b(0,1))2 + b2b(0,2))(t�, X̂WPt
k (t�)

) · (��+1W)3

+ 1/2 · (a(1,0) + aa(0,1) + 1/2 · b2a(0,2))(t�, X̂WPt
k (t�)

) · �2
�+1.
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The scheme X̂WPt
k is used for two purposes. First, we obtain a discrete-time ap-

proximation Ŷk = (Ŷk(t�))�=0,...,k−1 to the random weight Y in the following way.
Put

m̂� = 1 + a(0,1)(t�, X̂WPt
k (t�)

) · ��+1 + b(0,1)(t�, X̂WPt
k (t�)

) · ��+1W

for � = 0, . . . , k − 1, define a discrete-time Euler-type approximation M̂k =
(M̂k(t�))�=0,...,k of the process M by

M̂k(t�) =
{
m̂� · · · m̂k−1, if � ≤ k − 1,

1, if � = k,

and define for � = 0, . . . , k − 1,

Ŷk(t�) = M̂k(t�+1) · G(t�, X̂WPt
k (t�)

)
.

Second, we define an auxiliary scheme X
aux
k = (X

aux
k (t�))�=0,...,k by

X
aux
k (t�) = X̂WPt

k (t�) + Qk(t�),

where Qk = (Qk(t�))�=0,...,k is defined by Qk(0) = 0 and

Qk(t�+1) = m̂� · Qk(t�) + G
(
t�, X̂

WPt
k (t�)

) · ∫ t�+1

t�

(
W(t) − W(t�)

)
dt

for � = 0, . . . , k − 1. Observe that for � = 0, . . . , k it holds that

Qk(t�) =
�−1∑
r=0

[(
G
(
tr , X̂

WPt
k (tr )

) · ∫ tr+1

tr

(
W(t) − W(tr)

)
dt

)
·

�−1∏
j=r+1

m̂j

]
.

In particular, we have

Qk(1) =
k−1∑
r=0

[(
G
(
tr , X̂

WPt
k (tr )

) · ∫ tr+1

tr

(
W(t) − W(tr)

)
dt

)
·

k−1∏
j=r+1

m̂j

]

=
k−1∑
r=0

[(
G
(
tr , X̂

WPt
k (tr )

) · ∫ tr+1

tr

(
W(t) − W(tr)

)
dt

)
· M̂k(tr+1)

]

=
k−1∑
r=0

[
Ŷk(tr ) ·

∫ tr+1

tr

(
W(t) − W(tr)

)
dt

]
.

Hence we get

X
aux
k (1) = X̂WPt

k (1) +
k−1∑
r=0

[
Ŷk(tr ) ·

∫ tr+1

tr

(
W(t) − W(tr)

)
dt

]
.(5)

We have

(6) ∃ c1 ∈ (0,∞) ∀ k ∈ N : max
�=0,...,k−1

E
[∣∣Y(t�) − Ŷk(t�)

∣∣]≤ c1 · k−1/2,
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see Müller-Gronbach [36], Lemma 2, page 1626, and

(7) ∃ c2 ∈ (0,∞) ∀ k ∈N : E
[∣∣X(1) − X

aux
k (1)

∣∣]≤ c2 · k−3/2,

see Müller-Gronbach [36], Lemma 12, page 1639.
For k ∈ N, we put

Rk = 1

k
·
k−1∑
�=0

∣∣Y(t�)
∣∣2/3

, R̂k = 1

k
·
k−1∑
�=0

∣∣Ŷk(t�)
∣∣2/3

.

Note that the process Y has continuous paths. Hence, P-a.s.,

lim
k→∞Rk =

∫ 1

0

∣∣Y(t)
∣∣2/3 dt.(8)

Moreover, since

E
[|Rk − R̂k|]

= 1

k
·E
[∣∣∣∣∣

k−1∑
�=0

∣∣Y(t�)
∣∣2/3 − ∣∣Ŷk(t�)

∣∣2/3

∣∣∣∣∣
]

≤ 1

k
·
k−1∑
�=0

E
[∣∣∣∣Y(t�)

∣∣2/3 − ∣∣Ŷk(t�)
∣∣2/3∣∣]

≤ 1

k
·
k−1∑
�=0

E
[∣∣Y(t�) − Ŷk(t�)

∣∣2/3]≤ max
�=0,...,k−1

(
E
[∣∣Y(t�) − Ŷk(t�)

∣∣])2/3
,

we have

lim
k→∞E

[|Rk − R̂k|]= 0(9)

due to (6). Combining (8) with (9) we conclude that

lim
k→∞ R̂k =

∫ 1

0

∣∣Y(t)
∣∣2/3 dt in probability.(10)

By definition of Y , (A2) and (A3), we have

P
(
Y(0) �= 0

)= P
(
G
(
0,X(0)

) �= 0
)≥ P

(
X(0) ∈ I

)= 1.

Observing the continuity of the process Y , we thus obtain

P

(∫ 1

0

∣∣Y(t)
∣∣2/3 dt > 0

)
= 1.(11)

Combining (10) with (11) yields

∀ ε ∈ (0,1) ∃ k0 ∈ N, β ∈ (0,1) ∀ k ≥ k0 : P(R̂k ≥ β) ≥ 1 − ε.(12)

Let k ∈ N and consider an approximation X̂k(1) ∈ Ak(R,W). Observe that there
exist random variables τ0, . . . , τ2k : � → [0,∞) with:
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(i) τ� is measurable with respect to σ(F0,W(τ0), . . . ,W(τ�−1)) for all � =
0, . . . ,2k,

(ii) τ� = t� for all � = 0, . . . , k,
(iii) X̂k(1) is measurable with respect to the σ -algebra

A = σ
(
F0,W(τ0), . . . ,W(τ2k)

)
.

Let B = (B(t))t∈[0,1] denote the piecewise linear interpolation of (W(t))t∈[0,1] at
the nodes τ0, . . . , τ2k . We define the process Z = (Z(t))t∈[0,1] by Z(t) = W(t) −
B(t) and put

U = X̂k(1) − X̂WPt
k (1) −

k−1∑
�=0

Ŷk(t�) ·
∫ t�+1

t�

(
B(t) − W(t�)

)
dt.

From (5), we get

X
aux
k (1) − X̂k(1) =

k−1∑
�=0

Ŷk(t�) ·
∫ t�+1

t�

Z(t)dt − U.

Conditioned on A, the values of Ŷk , U , and the evaluation sites τ0, . . . , τ2k are
fixed and the process Z consists of independent Brownian bridges (from 0 to 0) on
the subintervals corresponding to τ0, . . . , τ2k . More precisely, for a finite set A ⊆
[0,∞) with 0,1 ∈ A let PA denote the centered Gaussian measure on C([0,1])
with covariance function R : [0,1]2 →R given by

R(s, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(s� − max(s, t)) · (min(s, t) − s�−1)

s� − s�−1
,

if ∃� ∈ {1, . . . ,N} : s, t ∈ [s�−1, s�],
0, otherwise,

where N = #(A∩ (0,1]) and 0 = s0 < · · · < sN = 1 with {s0, . . . , sN } = A∩[0,1].
Then it holds P-a.s. that

PZ|A = P{τ0,...,τ2k},(13)

where PZ|A is a version of the regular conditional distribution of Z considered as
a random variable taking values in the Polish space C([0,1]) conditioned on the
σ -algebra A; cf. Yaroslavtseva [49], Lemmas 1–2. Note that

E

[∫ t�+1

t�

Z(t)dt
∣∣∣A]= 0

for � = 0, . . . , k − 1. We conclude that conditioned on A the random variable
X

aux
k (1) − X̂k(1) is normally distributed with variance

Var
[
X

aux
k (1) − X̂k(1)

∣∣A]= E

[∣∣∣∣∣
k−1∑
�=0

Ŷk(t�) ·
∫ t�+1

t�

Z(t)dt

∣∣∣∣∣
2 ∣∣∣A].(14)
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For � ∈ {0, . . . , k − 1} we define d� = #{i ∈ {0, . . . ,2k} : τi ∈ (t�, t�+1)}. By using
Müller-Gronbach [36], equation (17), page 1624, we obtain

E

[∣∣∣∣∣
k−1∑
�=0

Ŷk(t�) ·
∫ t�+1

t�

Z(t)dt

∣∣∣∣∣
2 ∣∣∣A]

=
k−1∑
�=0

(
Ŷk(t�)

)2 ·E
[∣∣∣∣∫ t�+1

t�

Z(t)dt

∣∣∣∣2 ∣∣∣A]

≥
k−1∑
�=0

(
Ŷk(t�)

)2 · 1

12k3 · 1

(d� + 1)2 .

(15)

Clearly,
∑k−1

�=0 d� ≤ k and, therefore, by the Hölder inequality,

(k · R̂k)
3 =

(
k−1∑
�=0

(d� + 1)2/3 · |Ŷk(t�)|2/3

(d� + 1)2/3

)3

≤ 4k2 ·
k−1∑
�=0

(
Ŷk(t�)/(d� + 1)

)2
,

which jointly with (14) and (15) implies

Var
[
k · ∣∣Xaux

k (1) − X̂k(1)
∣∣ ∣∣A]≥ 1

48
R̂3

k .

Employing Lemma 17, we conclude that

∀ ε ∈ (0,1) : P
(
k · ∣∣Xaux

k (1) − X̂k(1)
∣∣≥ ε

(
R̂3

k/48
)1/2 ∣∣A)≥ 1 − ε

and hence

∀ ε ∈ (0,1) : P
(
k · ∣∣Xaux

k (1) − X̂k(1)
∣∣≥ εR̂

3/2
k /7

)≥ 1 − ε.(16)

Fix ε ∈ (0,1) and choose k0 ∈ N and β ∈ (0,1) according to (12). By (12) and
(16) we obtain for all k ≥ k0 and X̂k(1) ∈ Ak(R,W) that

P

(∣∣Xaux
k (1) − X̂k(1)

∣∣≥ εβ3/2

7k

)
≥ P

({
k · ∣∣Xaux

k (1) − X̂k(1)
∣∣≥ εR̂

3/2
k /7

}∩ {R̂k ≥ β})
≥ P

(
k · ∣∣Xaux

k (1) − X̂k(1)
∣∣≥ εR̂

3/2
k /7

)− P(R̂k < β)

≥ 1 − 2ε.

(17)

Put c3 = εβ3/2/14 ∈ (0,∞). Using the Markov inequality, we derive from (7) that
for all k ∈ N we have

P
(∣∣X(1) − X

aux
k (1)

∣∣≥ c3/k
)≤ k/c3 · c2 · k−3/2 = c2/c3 · k−1/2.(18)
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We conclude from (17) and (18) that for all k ≥ max(k0, (c2/(c3ε))
2) and X̂k(1) ∈

Ak(R,W) we have

P
(∣∣X(1) − X̂k(1)

∣∣≥ c3/k
)

≥ P
({∣∣Xaux

k (1) − X̂k(1)
∣∣≥ 2c3/k

}∩ {∣∣X(1) − X
aux
k (1)

∣∣< c3/k
})

≥ P
(∣∣Xaux

k (1) − X̂k(1)
∣∣≥ 2c3/k

)− P
(∣∣X(1) − X

aux
k (1)

∣∣≥ c3/k
)

≥ 1 − 2ε − c2/c3 · k−1/2 ≥ 1 − 3ε,

which completes the proof. �

5.2. Local assumptions. The next proposition shows that even under very mild
local regularity conditions on the coefficients a and b, the probability for an adap-
tive method X̂n(T ) ∈ An(R,W) of having an error at least of order one is still uni-
formly bounded away from zero. Its proof exploits a comparison result for SDEs
(see Proposition 21 in Appendix B) to reduce the general case to the case treated
in Proposition 4.

PROPOSITION 5 (Probability bounds on the pointwise error of adaptive meth-
ods II). Assume the setting in Section 3. Let t0 ∈ [0, T ) and let ∅ �= I ⊆ R be an
open interval such that:

(A1*) ∀ i ∈ {0,1,2}, j ∈ {0,1,2,3} : the partial derivatives a(i,j), b(i,j) exist
on [t0, T ] × I and are continuous,

(A2*) ∀x ∈ I : (a(0,1)b − b(1,0) − ab(0,1) − 1
2b2b(0,2))(t0, x) �= 0, and

∀ (t, x) ∈ [t0, T ] × I : b(t, x) �= 0,
(A3*) P(X(t0) ∈ I ) > 0.

Then there exist constants c, γ ∈ (0,∞) such that for all n ∈ N and for all X̂n(T ) ∈
An(R,W) we have

P
(∣∣X(T ) − X̂n(T )

∣∣≥ c/n
)≥ γ.

PROOF. By considering the SDE (3) starting from time t0, we may assume
t0 = 0. More precisely, by considering the normal filtration (F̃t )t∈[0,∞) given
by F̃t = Ft+t0 , the Brownian motion W̃ : [0,∞) × � → R given by W̃ (t) =
W(t + t0) − W(t0), the real number T̃ ∈ (0,∞) given by T̃ = T − t0, the
Borel-measurable functions ã : [0, T̃ ] ×R → R and b̃ : [0, T̃ ] ×R → R given by
ã(t, x) = a(t + t0, x) and b̃(t, x) = b(t + t0, x), respectively, the stochastic process
X̃ : [0, T̃ ] × � → R given by X̃(t) = X(t + t0), which satisfies for all t ∈ [0, T̃ ]
P-a.s.

X̃(t) = X̃(0) +
∫ t

0
ã
(
s, X̃(s)

)
ds +

∫ t

0
b̃
(
s, X̃(s)

)
dW̃ (s),
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and using

∀n ∈ N : An(R,W) ⊆ An(R, W̃ ),(19)

we may assume t0 = 0. The claim (19) can be proven as follows. Let n ∈ N

and τ1, . . . , τn : � → [0,∞) be random variables such that for all k = 1, . . . , n

the random variable τk is measurable with respect to the σ -algebra generated by
F0,W(τ1), . . . ,W(τk−1). For k = 1, . . . , n define the random variable τ̃k : � →
[0,∞) by τ̃k = max(τk − t0,0). Induction and the identity

W(τk) = W(τk) · 1{τk≤t0} + (
W̃ (τ̃k) + W(t0)

) · 1{τk>t0}
yield that for k = 0, . . . , n the σ -algebra generated by F0,W(τ1), . . . ,W(τk) is
contained in the σ -algebra generated by F̃0, W̃ (τ̃1), . . . , W̃ (τ̃k), which yields (19).
Note that this approach does not work for the class of methods considered in The-
orem 6, that is, An(R,X(0),W) ⊆ An(R, X̃(0), W̃ ) does not hold in general.

According to the openness of I and (A3*), there exist bounded open intervals
I1, I2, I3 ⊆ R such that

∅ �= I3 ⊆ Ī3 ⊆ I2 ⊆ Ī2 ⊆ I1 ⊆ Ī1 ⊆ I

and P(X(0) ∈ I3) > 0. Here, Ī1, Ī2, Ī3 denote the closures of the intervals I1, I2, I3,
respectively. Due to the continuity of b on [0, T ] × Ī1 and the second condition in
(A2*) we may without loss of generality assume that

inf
(t,x)∈[0,T ]×Ī1

b(t, x) > 0.(20)

Let η1, η2 : R → R be infinitely differentiable functions such that 0 ≤ η1, η2 ≤ 1
and

η1(x) =
{

1, if x ∈ I2,

0, if x ∈ I c
1 ,

η2(x) =
{

0, if x ∈ I3,

1, if x ∈ I c
2 .

Furthermore, define ã : [0, T ] ×R→R and b̃ : [0, T ] ×R→R by

ã(t, x) = η1(x) · a(t, x), b̃(t, x) = η1(x) · b(t, x) + η2(x).

Due to (A1*) and (20) it holds that:

(i) ∀ i ∈ {0,1,2}, j ∈ {0,1,2,3} : the partial derivatives ã(i,j), b̃(i,j) exist on
[0, T ] ×R are continuous and bounded,

(ii) inf(t,x)∈[0,T ]×R |b̃(t, x)| > 0,
(iii) ∀ t ∈ [0, T ], x ∈ I3 : a(t, x) = ã(t, x) and b(t, x) = b̃(t, x).

Let x0 ∈ I3 and define the bounded random variable X̄(0) : � →R by

X̄(0)(ω) =
{
X(0)(ω), if X(0)(ω) ∈ I3,

x0, otherwise.
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Furthermore, let X̄ : [0, T ] × � → R be an (Ft )t∈[0,T ]-adapted stochastic process
with continuous sample paths such that for all t ∈ [0, T ] it holds P-a.s. that

X̄(t) = X̄(0) +
∫ t

0
ã
(
s, X̄(s)

)
ds +

∫ t

0
b̃
(
s, X̄(s)

)
dW(s).

Applying Proposition 21 with I = I3 shows

P
(∀ t ∈ [0, T ] : X̄(t) = X(t)

)
> 0

and hence

P
(
X̄(T ) = X(T )

)
> 0.(21)

Moreover, Proposition 4 with X = X̄, a = ã, b = b̃, I = I3, ε = P(X̄(T ) =
X(T ))/2 yields the existence of a constant c ∈ (0,∞) such that for all n ∈ N and
for all X̂n(T ) ∈ An(R,W) we have

P
(∣∣X̄(T ) − X̂n(T )

∣∣≥ c/n
)≥ 1 − P

(
X̄(T ) = X(T )

)
/2.(22)

Combining (21) with (22) shows that for all n ∈ N and for all X̂n(T ) ∈ An(R,W)

it holds that

P
(∣∣X(T ) − X̂n(T )

∣∣≥ c/n
)

≥ P
({∣∣X(T ) − X̂n(T )

∣∣≥ c/n
}∩ {X(T ) = X̄(T )

})
= P

({∣∣X̄(T ) − X̂n(T )
∣∣≥ c/n

}∩ {X(T ) = X̄(T )
})

≥ P
(∣∣X̄(T ) − X̂n(T )

∣∣≥ c/n
)+ P

(
X(T ) = X̄(T )

)− 1

≥ P
(
X̄(T ) = X(T )

)
/2 > 0,

which completes the proof. �

Proposition 5 provides a lower error bound for methods from the class
An(R,W), that is, for adaptive methods that are based on n evaluations of W .
We now extend this result to the class An(R,X(0),W) of adaptive methods that
may use n evaluations of W , on average, which is our main result for pointwise
approximation.

THEOREM 6 (Lower error bound for pointwise approximation). Assume the
setting in Section 3. Let t0 ∈ [0, T ) and let ∅ �= I ⊆ R be an open interval such
that the conditions (A1*), (A2*) and (A3*) from Proposition 5 are satisfied. Then
there exist constants c̄, γ̄ ∈ (0,∞) such that for all n ∈ N and for all X̂n(T ) ∈
An(R,X(0),W) we have

P
(∣∣X(T ) − X̂n(T )

∣∣≥ c̄/n
)≥ γ̄ .

In particular, for ĉ = c̄ · γ̄ ∈ (0,∞) we have for all n ∈ N that

inf
X̂n(T )∈An(R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≥ ĉ · n−1.
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PROOF. Choose c, γ ∈ (0,∞) according to Proposition 5 and choose k ∈
N such that 1/k ≤ γ /2. Let n ∈ N and X̂n(T ) ∈ An(R,X(0),W), and let
ν(X(0),W) denote the number of evaluation nodes used by X̂n(T ); see Section 4.
By assumption, we have E[ν(X(0),W)] ≤ n. Hence the Markov inequality shows

P
(
ν
(
X(0),W

)≥ kn
)≤ E[ν(X(0),W)]

kn
≤ 1/k ≤ γ /2.(23)

Define X̂∗
kn(T ) ∈ Akn(R,W) by

X̂∗
kn(T )(ω) =

{
X̂n(T )(ω), if ν

(
X(0),W

)
(ω) < kn,

0, otherwise.

Then

P
(
X̂n(T ) = X̂∗

kn(T )
)≥ P

(
ν
(
X(0),W

)
< kn

)≥ 1 − γ /2

due to (23). Combining the latter fact with Proposition 5 yields

P
(∣∣X(T ) − X̂n(T )

∣∣≥ (c/k)/n
)

≥ P
({∣∣X(T ) − X̂n(T )

∣∣≥ c/(kn)
}∩ {X̂n(T ) = X̂∗

kn(T )
})

= P
({∣∣X(T ) − X̂∗

kn(T )
∣∣≥ c/(kn)

}∩ {X̂n(T ) = X̂∗
kn(T )

})
≥ P

(∣∣X(T ) − X̂∗
kn(T )

∣∣≥ c/(kn)
)+ P

(
X̂n(T ) = X̂∗

kn(T )
)− 1

≥ γ /2 > 0,

which completes the proof. �

6. Lower error bounds for strong approximation globally in time. In
this section, we consider strong approximation of X. In view of Section 4, we
study lower error bounds of approximation methods X̂n belonging to the class
An(C([0, T ]),X(0),W) or An(Lp([0, T ]),X(0),W). In both cases, we proceed
similar to our analysis of one-point approximation in Section 5. We first prove
probability bounds on the error of X̂n under restrictive global smoothness assump-
tions on the coefficients a and b of the SDE (3) and then switch to the setting of
mild local smoothness conditions by employing the localization technique from
Appendix B.

6.1. L∞-approximation. In this section, we consider approximation with re-
spect to the maximum distance on the time interval [0, T ]. The following proposi-
tion extends mean error bounds from Müller-Gronbach [35] to probability bounds
for the error of X̂n from An(C([0, T ]),W).

PROPOSITION 7 (Probability bounds on the L∞-error of adaptive methods I).
Assume the setting in Section 3 with E[|X(0)|2] < ∞. Assume further that:
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(B1) ∀ i ∈ {0,1}, j ∈ {0,1} : the partial derivatives a(i,j), b(i,j) exist on
[0, T ] ×R and are continuous and bounded,

(B2) inf(t,x)∈[0,T ]×R |b(t, x)| > 0.

Then for every ε ∈ (0,1) there exists c ∈ (0,∞) such that for all n ∈ N and for all
X̂n ∈ An(C([0, T ]),W) we have

P
(‖X − X̂n‖∞ ≥ c

√
ln(n + 1)/n

)≥ 1 − ε.

PROOF. By rescaling the equation in time, we may assume T = 1. For k ∈ N,
we put t� = �/k for � = 0, . . . , k and we define a continuous-time Euler scheme
X̂E

k = (X̂E
k (t))t∈[0,1] by X̂E

k (0) = X(0) and for � = 0, . . . , k − 1 and t ∈ (t�, t�+1]
by

X̂E
k (t) = X̂E

k (t�) + a
(
t�, X̂

E
k (t�)

) · (t − t�) + b
(
t�, X̂

E
k (t�)

) · (W(t) − W(t�)
)
.

Moreover, for � = 0, . . . , k we put

b̂k,� = b
(
t�, X̂

E
k (t�)

)
.

By (B1) and E[|X(0)|2] < ∞, we have

∃ c1 ∈ (0,∞) ∀ k ∈ N : E
[∥∥X − X̂E

k

∥∥∞
]≤ c1/

√
k;(24)

see, for example, Hofmann, Müller-Gronbach and Ritter [22], Theorem 3,
page 631.

Let ε ∈ (0,1) and

δ = inf
(t,x)∈[0,1]×R

∣∣b(t, x)
∣∣ ∈ (0,∞),

see (B2), and choose c2 ∈ (0,∞) according to Lemma 18.
Let k ∈ 2N and consider an approximation X̂k ∈ Ak/2(C([0,1]),W). Observe

that there exist random variables τ0, . . . , τ3k/2 : � → [0,∞) with:

(i) τ� is measurable with respect to σ(F0,W(τ0), . . . ,W(τ�−1)) for all � =
0, . . . ,3k/2,

(ii) τ� = t� for all � = 0, . . . , k,
(iii) X̂k is measurable with respect to the σ -algebra

A = σ
(
F0,W(τ0), . . . ,W(τ3k/2)

)
.

Let B = (B(t))t∈[0,1] denote the piecewise linear interpolation of (W(t))t∈[0,1] at
the nodes τ0, . . . , τ3k/2. We define the process Z = (Z(t))t∈[0,1] by Z(t) = W(t)−
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B(t). Moreover, we define the process U = (U(t))t∈[0,1] by

U(t) = X̂k(t) −
[

1{0}(t) · X(0)

+
k−1∑
�=0

1(t�,t�+1](t) ·
(
X̂E

k (t�) + a
(
t�, X̂

E
k (t�)

) · (t − t�)

+ b̂k,� · (B(t) − W(t�)
))]

.

By definition of X̂E
k it holds for all t ∈ [0,1] that

X̂E
k (t) − X̂k(t) =

k−1∑
�=0

[
1(t�,t�+1](t) · b̂k,� · Z(t)

]− U(t).

Let

Lk = {
� ∈ {0, . . . , k − 1} : (t�, t�+1) ∩ {τ0, . . . , τ3k/2} =∅

}
and observe that

#Lk ≥ k/2.(25)

Conditioned on A, the values of (X̂E
k (t�))�∈{0,...,k}, U , (b̂k,�)�∈{0,...,k}, and the eval-

uation sites τ0, . . . , τ3k/2 used by X̂k are fixed and the process Z consists of in-
dependent Brownian bridges (from 0 to 0) on the subintervals corresponding to
τ0, . . . τ3k/2; cf. (13). We conclude that conditioned on A the set Lk is fixed and
the random variables

V� = (
X̂E

k − X̂k

)(
(t� + t�+1)/2

)
,

where � ∈ {0, . . . , k − 1}, are independent and normally distributed with variances
satisfying

Var(V�|A) ≥ 1Lk
(�) · δ2

4k
.(26)

Since ‖X̂E
k − X̂k‖∞ ≥ max�∈Lk

|V�|, we get

(27)
P
(
2
√

k · ∥∥X̂E
k − X̂k

∥∥∞ ≥ c2

√
ln(k/2)

∣∣A)
≥ P

(
2
√

k · max
�∈Lk

|V�| ≥ c2

√
ln(k/2)

∣∣∣A).
Lemma 18 and (25) imply

P

(
2
√

k · max
�∈Lk

|V�| ≥ c2

√
ln(k/2)

∣∣∣A)≥ 1 − ε.(28)
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Combing (27) and (28) yields

P
(
2
√

k · ∥∥X̂E
k − X̂k

∥∥∞ ≥ c2

√
ln(k/2)

∣∣A)≥ 1 − ε

and hence

P
(
2
√

k · ∥∥X̂E
k − X̂k

∥∥∞ ≥ c2

√
ln(k/2)

)≥ 1 − ε.(29)

By (29), there exists a constant c3 ∈ (0,∞) such that for all k ∈ N and X̂k ∈
Ak(C([0,1]),W) it holds that

P
(∥∥X̂E

k − X̂k

∥∥∞ ≥ c3

√
ln(k + 1)/k

)≥ 1 − ε.

The latter fact and the Markov inequality combined with (24) imply that for all
k ∈ N and X̂k ∈ Ak(C([0,1]),W) it holds that

P
(‖X − X̂k‖∞ ≥ c3/2 ·

√
ln(k + 1)/k

)
≥ P

(∥∥X̂E
k − X̂k

∥∥∞ ≥ c3

√
ln(k + 1)/k

)
− P

(∥∥X − X̂E
k

∥∥∞ ≥ c3/2 ·
√

ln(k + 1)/k
)

≥ 1 − ε − 2/c3 ·
√

k/ ln(k + 1) · c1/
√

k

= 1 − ε − 2c1/
(
c3
√

ln(k + 1)
)
,

which completes the proof. �

Combining the localization technique from Appendix B with Proposition 7
leads to the following result.

PROPOSITION 8 (Probability bounds on the L∞-error of adaptive methods II).
Assume the setting in Section 3. Let t0 ∈ [0, T ), T0 ∈ (t0, T ] and let ∅ �= I ⊆ R be
an open interval such that:

(B1*) ∀ i ∈ {0,1}, j ∈ {0,1} : the partial derivatives a(i,j), b(i,j) exist on
[t0, T0] × I and are continuous,

(B2*) ∀ (t, x) ∈ [t0, T0] × I : b(t, x) �= 0,
(B3*) P(X(t0) ∈ I ) > 0.

Then there exist constants c, γ ∈ (0,∞) such that for all n ∈ N and for all X̂n ∈
An(C([0, T ]),W) we have

P
(‖X − X̂n‖∞ ≥ c

√
ln(n + 1)/n

)≥ γ.
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PROOF. Since the error is measured globally in time, we may assume T0 = T .
Now, the reasoning is almost identical to the reasoning in the proof of Proposi-
tion 5. Instead of Proposition 4, we rely on Proposition 7. �

Proposition 8 provides a lower error bound for methods from the class
An(C([0, T ]),W), that is, for adaptive methods that are based on n evaluations
of W . We now extend this result to the class An(C([0, T ]),X(0),W) of adaptive
methods that may us n evaluations of W , on average. The following theorem is
our main result for L∞-Approximation.

THEOREM 9 (Lower error bound for L∞-approximation). Assume the setting
in Section 3. Let t0 ∈ [0, T ), T0 ∈ (t0, T ] and let ∅ �= I ⊆ R be an open interval
such that the conditions (B1*), (B2*) and (B3*) from Proposition 8 are satisfied.
Then there exist constants c̄, γ̄ ∈ (0,∞) such that for all n ∈ N and for all X̂n ∈
An(C([0, T ]),X(0),W) we have

P
(‖X − X̂n‖∞ ≥ c̄

√
ln(n + 1)/n

)≥ γ̄ .

In particular, for ĉ = c̄ · γ̄ ∈ (0,∞) we have for all n ∈ N that

inf
X̂n∈An(C([0,T ]),X(0),W)

{
E
[‖X − X̂n‖∞

]}≥ ĉ ·
√

ln(n + 1)/n.

PROOF. The proof of Theorem 9 is almost identical to the proof of Theorem 6.
Instead of Proposition 5, we rely on Proposition 8. �

6.2. Lp-approximation. In this section, we consider approximation with re-
spect to the Lp-distance on the time interval [0, T ] for p ∈ [1,∞). The following
proposition extends mean error bounds from Hofmann, Müller-Gronbach and Rit-
ter [21], Müller-Gronbach [34] to probability bounds for the error of X̂n from
An(Lp([0, T ]),W).

PROPOSITION 10 (Probability bounds on the Lp-error of adaptive methods I).
Assume the setting in Section 3 with E[|X(0)|4] < ∞. Assume further that:

(C1) ∀ i ∈ {0,1}, j ∈ {0,1,2} : the partial derivatives a(i,j), b(i,j) exist on
[0, T ] ×R and are continuous and bounded,

(C2) inf(t,x)∈[0,T ]×R |b(t, x)| > 0.

Then for every ε ∈ (0,1) there exists c ∈ (0,∞) such that for all p ∈ [1,∞), for
all n ∈ N, and for all X̂n ∈ An(Lp([0, T ]),W) we have

P
(‖X − X̂n‖p ≥ c/

√
n
)≥ 1 − ε.
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PROOF. By monotonicity in p, we may assume p = 1. Moreover, by rescaling
the equation in time, we may assume T = 1.

For k ∈ N, we put t� = �/k for � = 0, . . . , k and we define a continuous-time
Milstein scheme X̂M

k = (X̂M
k (t))t∈[0,1] by X̂M

k (0) = X(0) and for � = 0, . . . , k − 1
and t ∈ (t�, t�+1] by

X̂M
k (t) = X̂M

k (t�) + a
(
t�, X̂

M
k (t�)

) · (t − t�) + b
(
t�, X̂

M
k (t�)

) · (W(t) − W(t�)
)

+ 1/2 · (bb(0,1))(t�, X̂M
k (t�)

) · ((W(t) − W(t�)
)2 − (t − t�)

)
.

By (C1) and E[|X(0)|4] < ∞, we have

∃ c1 ∈ (0,∞) ∀ k ∈ N : sup
t∈[0,1]

E
[∣∣X(t) − X̂M

k (t)
∣∣]≤ c1 · k−1;(30)

see, for example, Hofmann, Müller-Gronbach and Ritter [21], Theorem 4. For k ∈
N and � = 0, . . . , k − 1, we define the process U

(�)
k = (U

(�)
k (t))t∈[t�,t�+1] by

U
(�)
k (t) = X̂M

k (t) − 1/2 · (bb(0,1))(t�, X̂M
k (t�)

) · ((W(t) − W(t�)
)2 − (t − t�)

)
.

Furthermore, for k ∈ N we define an auxiliary scheme X
M
k = (X

M
k (t))t∈[0,1] by

X
M
k (0) = X(0) and for � = 0, . . . , k − 1 and t ∈ (t�, t�+1] by

X
M
k (t) = U

(�)
k (t).

By (C1), we have

c2 = sup
(t,x)∈[0,1]×R

∣∣bb(0,1)(t, x)
∣∣ ∈ [0,∞).

Hence we get from (30) for c3 = c1 + c2 ∈ (0,∞) and all k ∈N that

(31)

E
[∥∥X − X

M
k

∥∥
1

]
≤ sup

t∈[0,1]
E
[∣∣X(t) − X

M
k (t)

∣∣]= sup
�∈{0,...,k−1}
t∈(t�,t�+1]

E
[∣∣X(t) − U

(�)
k (t)

∣∣]

≤ sup
�∈{0,...,k−1}
t∈(t�,t�+1]

E
[∣∣X(t) − X̂M

k (t)
∣∣]

+ sup
�∈{0,...,k−1}
t∈(t�,t�+1]

E

[
c2

2
· ∣∣(W(t) − W(t�)

)2 − (t − t�)
∣∣]

≤ c1 · k−1 + c2

2
· 2 · k−1 = c3 · k−1.

Let ε ∈ (0,1) and

δ = inf
(t,x)∈[0,1]×R

∣∣b(t, x)
∣∣ ∈ (0,∞),
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see (C2), and choose c4 ∈ (0,∞) according to Lemma 19.
Let k ∈ 2N and consider an approximation X̂k ∈ Ak/2(L1([0,1]),W). Observe

that there exist random variables τ0, . . . , τ3k/2 : � → [0,∞) with:

(i) τ� is measurable with respect to σ(F0,W(τ0), . . . ,W(τ�−1)) for all � =
0, . . . ,3k/2,

(ii) τ� = t� for all � = 0, . . . , k,
(iii) X̂k is measurable with respect to the σ -algebra

A= σ
(
F0,W(τ0), . . . ,W(τ3k/2)

)
.

For � ∈ {0, . . . , k − 1}, define d� = #{i ∈ {0, . . . ,3k/2} : τi ∈ (t�, t�+1)}. Let
�1, . . . , �k/2 ∈ {0, . . . , k − 1} such that �1 < · · · < �k/2, d�i

= 0 for all i =
1, . . . , k/2, and d� > 0 for all � ∈ {0, . . . , �k/2} \ {�1, . . . , �k/2}. We then have

∥∥X̂k − X
M
k

∥∥
1 ≥

k/2∑
i=1

∫ t�i+1

t�i

∣∣X̂k(t) − X
M
k (t)

∣∣dt

=
k/2∑
i=1

∫ t�i+1

t�i

∣∣X̂k(t) − U
(�i)
k (t)

∣∣dt

=
k/2∑
i=1

∫ 1/k

0

∣∣X̂k(t + t�i
) − U

(�i)
k (t + t�i

)
∣∣dt

and thus

P
(∥∥X̂k − X

M
k

∥∥
1 ≥ c4/

√
k/2

∣∣A)
≥ P

(k/2∑
i=1

∫ 1/k

0

∣∣X̂k(t + t�i
) − U

(�i)
k (t + t�i

)
∣∣dt ≥ c4/

√
k/2

∣∣∣A).

(32)

Conditioned on A, the values of(
X̂M

k (t�)
)
�∈{0,...,k},W(t0), . . . ,W(tk), �1, . . . , �k/2, X̂k

are fixed and the processes (B1(t))t∈[0,1/k], . . . , (Bk/2(t))t∈[0,1/k], given by

Bi(t) = W(t + t�i
) − (

(1 − k · t) · W(t�i
) + k · t · W(t�i+1)

)
,

are independent Brownian bridges (from 0 to 0); cf. (13). Furthermore, for i ∈
{1, . . . , k/2} and t ∈ [0,1/k] it holds that

U
(�i)
k (t + t�i

) − X̂k(t + t�i
)

= b
(
t�i

, X̂M
k (t�i

)
) · Bi(t) + [

X̂M
k (t�i

) + a
(
t�i

, X̂M
k (t�i

)
) · t

+ b
(
t�i

, X̂M
k (t�i

)
) · ((−k · t) · W(t�i

) + k · t · W(t�i+1)
)− X̂k(t + t�i

)
]
.
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Hence we get from Lemma 19 that

P

(k/2∑
i=1

∫ 1/k

0

∣∣X̂k(t + t�i
) − U

(�i)
k (t + t�i

)
∣∣dt ≥ c4/

√
k/2

∣∣∣A)≥ 1 − ε.

Combining this with (32) yields

P
(∥∥X̂k − X

M
k

∥∥
1 ≥ c4/

√
k/2

)≥ 1 − ε.(33)

Put c5 = c4/
√

2 ∈ (0,∞). Using the Markov inequality we derive from (31)
that for all k ∈ N we have

P
(∥∥X − X

M
k

∥∥
1 ≥ c5/

√
k
)≤ √

k/c5 · c3 · k−1 = c3/c5 · k−1/2.(34)

From (33) and (34), we get that for all k ∈ 2N ∩ [(c3/(c5ε))
2,∞) and X̂k ∈

Ak/2(L1([0,1]),W) it holds that

P
(‖X − X̂k‖1 ≥ c5/

√
k
)

≥ P
({∥∥XM

k − X̂k

∥∥
1 ≥ 2c5/

√
k
}∩ {∥∥X − X

M
k

∥∥
1 < c5/

√
k
})

≥ P
(∥∥XM

k − X̂k

∥∥
1 ≥ 2c5/

√
k
)− P

(∥∥X − X
M
k

∥∥
1 ≥ c5/

√
k
)

≥ 1 − ε − c3/c5 · k−1/2 ≥ 1 − 2ε,

which completes the proof. �

Combining the localization technique from Appendix B with Proposition 10
leads to the following result.

PROPOSITION 11 (Probability bounds on the Lp-error of adaptive methods II).
Assume the setting in Section 3. Let t0 ∈ [0, T ), T0 ∈ (t0, T ] and let ∅ �= I ⊆ R be
an open interval such that:

(C1*) ∀ i ∈ {0,1}, j ∈ {0,1,2} : the partial derivatives a(i,j), b(i,j) exist on
[t0, T0] × I and are continuous,

(C2*) ∀ (t, x) ∈ [t0, T0] × I : b(t, x) �= 0,
(C3*) P(X(t0) ∈ I ) > 0.

Then there exist constants c, γ ∈ (0,∞) such that for all p ∈ [1,∞), for all n ∈ N,
and for all X̂n ∈ An(Lp([0, T ]),W) we have

P
(‖X − X̂n‖p ≥ c/

√
n
)≥ γ.

PROOF. Since the error is measured globally in time, we may assume T0 = T .
Now, the reasoning is almost identical to the reasoning in the proof of Proposi-
tion 5. Instead of Proposition 4, we rely on Proposition 10. �



LOWER ERROR BOUNDS FOR STRONG APPROXIMATION OF SDES 203

Proposition 11 provides a lower error bound for methods from the class
An(Lp([0, T ]),W), that is, for adaptive methods that are based on n evaluations
of W . We now extend this result to the class An(Lp([0, T ]),X(0),W) of adaptive
methods that may use n evaluations of W , on average. The following theorem is
our main result for Lp-Approximation with p ∈ [1,∞).

THEOREM 12 (Lower error bound for Lp-approximation). Assume the setting
in Section 3. Let t0 ∈ [0, T ), T0 ∈ (t0, T ] and let ∅ �= I ⊆ R be an open interval
such that the conditions (C1*), (C2*) and (C3*) from Proposition 11 are satisfied.
Then there exist constants c̄, γ̄ ∈ (0,∞) such that for all p ∈ [1,∞), for all n ∈ N,
and for all X̂n ∈ An(Lp([0, T ]),X(0),W) we have

P
(‖X − X̂n‖p ≥ c̄/

√
n
)≥ γ̄ .

In particular, for ĉ = c̄ · γ̄ ∈ (0,∞) we have for all p ∈ [1,∞) and for all n ∈ N

that

inf
X̂n∈An(Lp([0,T ]),X(0),W)

{
E
[‖X − X̂n‖p

]}≥ ĉ · n−1/2.

PROOF. The proof of Theorem 12 is almost identical to the proof of Theo-
rem 6. Instead of Proposition 5, we rely on Proposition 11. �

6.3. Maximum pointwise error. The following theorem is a consequence of
Theorem 12 and Fubini’s theorem.

THEOREM 13 (Lower bound for the maximum pointwise error). Assume the
setting in Section 3. Let t0 ∈ [0, T ), T0 ∈ (t0, T ] and let ∅ �= I ⊆ R be an open
interval such that the conditions (C1*), (C2*) and (C3*) from Proposition 11 are
satisfied. Then there exists a constant ĉ ∈ (0,∞) such that for all n ∈ N we have

inf
X̂n∈An(C([0,T ]),X(0),W)

{
sup

t∈[0,T ]
E
[∣∣X(t) − X̂n(t)

∣∣]}≥ ĉ · n−1/2.

PROOF. Let n ∈ N and let X̂n ∈ An(C([0, T ]),X(0),W). Fubini’s theorem
shows

E
[‖X − X̂n‖1

]= ∫ T

0
E
[∣∣X(t) − X̂n(t)

∣∣]dt ≤ T · sup
t∈[0,T ]

E
[∣∣X(t) − X̂n(t)

∣∣].
Applying Theorem 12 for p = 1 completes the proof. �

7. Examples. We study Cox–Ingersoll–Ross processes in Section 7.1, equa-
tions with superlinearly growing coefficients in Section 7.2, and equations with
discontinuous coefficients in Section 7.3. Throughout this section, we assume the
setting in Section 3.
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7.1. Cox–Ingersoll–Ross processes. Cox–Ingersoll–Ross processes are exten-
sively used in mathematical finance, for example, in the Cox–Ingersoll–Ross
model for short term interest rates or as the instantaneous variance in the Heston
model. Such processes are described by the SDE

dX(t) = (
δ − βX(t)

)
dt + σ

√∣∣X(t)
∣∣dW(t), X(0) = x0,(35)

with initial value x0 ∈ (0,∞) and parameters δ, σ ∈ (0,∞), β ∈ [0,∞). In this
case, the coefficients a, b are given by

a(t, x) = a(x) = δ − β · x and b(t, x) = b(x) = σ ·√|x|
for every (t, x) ∈ [0, T ] × R. It is well known that strong existence and pathwise
uniqueness hold for the SDE (35). Furthermore, one has

P
(∀ t ∈ [0,∞) : X(t) ≥ 0

)= 1.

Due to a simple scaling, we may restrict ourselves to the case

σ = 2,

which we assume in the following.
In the context of strong approximation, it turns out that δ is the crucial parameter

with respect to the rate of convergence; see, for example, Corollary 15(iv) below.

7.1.1. Strong approximation at a single point. Note that the coefficients a, b

of the SDE (35) are infinitely differentiable on (0,∞). For x ∈ (0,∞), we obtain(
a′b − ab′ − 1

2
b2b′′

)
(x) = −β

√
x + 1 − δ√

x
.

In particular, it holds that

∃∅ �= I ⊆ (0,∞) open interval ∀x ∈ I :
(
a′b − ab′ − 1

2
b2b′′

)
(x) �= 0

⇔(36)

δ �= 1 or β �= 0.

The marginal distributions of the SDE (35) are known explicitly in terms of
Lebesgue-densities; see, for example, Göing-Jaeschke and Yor [13], equation (4)
and Section A.2. The latter results immediately yield

∀∅ �= I ⊆ (0,∞) open interval ∀ t ∈ (0,∞) : P
(
X(t) ∈ I

)
> 0.(37)

In case of δ �= 1 or β �= 0, we get from (36) and (37) that the assumptions of
Theorem 6 are fulfilled for every t0 ∈ (0, T ), which yields the lower bound stated
in part (i) of the following corollary. Combining this lower bound with the upper
bound of Alfonsi [1], Theorem 2, yields a sharp result for δ > 4; see part (ii).
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COROLLARY 14 (CIR processes, pointwise approximation).

(i) If δ �= 1 or β �= 0, then there exists a constant c ∈ (0,∞) such that for all
n ∈N we have

inf
X̂n(T )∈An(R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≥ c · n−1.

(ii) If δ > 4, then there exist constants c,C ∈ (0,∞) such that for all n ∈ N we
have

c · n−1 ≤ inf
X̂n(T )∈An(R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}
≤ inf

X̂n(T )∈Aeq
n (R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≤ C · n−1.

Let us stress that Corollary 14(ii) shows that, in case of δ > 4, adaptive al-
gorithms are not superior (up to multiplicative constants) to algorithms that are
based on fixed equidistant grids, similar to the case of SDEs with coefficients that
satisfy global Lipschitz assumptions. Moreover, we recover the usual optimal con-
vergence rate of 1.

If δ < 1, then combining the upper bound of Hefter and Herzwurm [17], The-
orem 2, with the lower bound of Hefter and Jentzen [18], Theorem 1, shows that
there exist constants c,C ∈ (0,∞) such that for all n ∈ N it holds that

c · n−δ/2 ≤ inf
X̂n(T )∈Aeq

n (R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≤ C · n−δ/2.(38)

Hence, for this range of values of δ the lower bound in Corollary 14(i) cannot
be attained by algorithms that are based on equidistant grids and it is unclear, up
to now, whether the bound in Corollary 14(i) is sharp, that is, whether adaptive
algorithms can achieve the convergence rate c/n in terms of the average number
n of evaluations of the driving Brownian motion that are used. Note, however,
that the result (39) on the power of adaptive methods in the case δ = 1 and β = 0
provides a positive indication in that sense.

Combining Corollary 14(ii) with (38) shows that the optimal convergence rate
for algorithms that are based on equidistant grids is exactly min(δ/2,1) if δ ∈
(0,1) ∪ (4,∞). For δ ∈ (1,4), no matching upper and lower bounds are known;
see Hefter and Herzwurm [16], Figure 1.1. Nevertheless, we expect min(δ/2,1) to
be the best possible convergence rate for algorithms that are based on equidistant
grids for all δ ∈ (0,∞).

Finally, we consider the case of

δ = 1 and β = 0,

that is, the solution of the SDE (35) is a one-dimensional squared Bessel process.
In this case none of the results of Section 5 is applicable; see (36). Indeed, in
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Hefter and Herzwurm ([16], Theorem 4.1) it is shown that adaptive methods are
able to achieve any polynomial convergence order, and hence are not restricted
to rate 1. See also Calvin, Hefter and Herzwurm [7]. More precisely, Hefter and
Herzwurm ([16], Theorem 4.1) shows that for all r ∈ [1,∞) there exists a constant
Cr ∈ (0,∞) such that for all n ∈ N it holds that

inf
X̂n(T )∈An(R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≤ Cr · n−r .(39)

On the other hand, Hefter and Herzwurm ([16], Corollary 3.1) shows that the best
algorithm based on equidistant nodes converges at rate 1/2, that is, there exist
constants c,C ∈ (0,∞) such that for all n ∈ N we have

c · n−1/2 ≤ inf
X̂n(T )∈Aeq

n (R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≤ C · n−1/2.

7.1.2. Strong approximation globally in time. We now turn to lower error
bounds that are based on Theorem 9 and Theorem 12. Moreover, these lower
bounds are complemented by upper error bounds from the literature.

COROLLARY 15 (CIR processes, global approximation).

(i) For all δ ∈ (0,∞) and β ∈ [0,∞), there exists a constant c ∈ (0,∞) such
that for all n ∈ N we have

inf
X̂n∈An(C([0,T ]),X(0),W)

{
E
[‖X − X̂n‖∞

]}≥ c ·
√

ln(n + 1)/n

and

inf
X̂n∈An(L1([0,T ]),X(0),W)

{
E
[‖X − X̂n‖1

]}≥ c · n−1/2.

(ii) If δ > 2 and β > 0 or if δ = 1, then there exist constants c,C ∈ (0,∞)

such that for all n ∈ N we have

c ·
√

ln(n + 1)/n ≤ inf
X̂n∈An(C([0,T ]),X(0),W)

{
E
[‖X − X̂n‖∞

]}
≤ inf

X̂n∈Aeq
n (C([0,T ]),X(0),W)

{
E
[‖X − X̂n‖∞

]}
≤ C ·

√
ln(n + 1)/n.

(iii) If δ > 1, then there exist constants c,C ∈ (0,∞) such that for all n ∈ N we
have

c · n−1/2 ≤ inf
X̂n∈An(L1([0,T ]),X(0),W)

{
E
[‖X − X̂n‖1

]}
≤ inf

X̂n∈Aeq
n (L1([0,T ]),X(0),W)

{
E
[‖X − X̂n‖1

]}≤ C · n−1/2.
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(iv) For all δ ∈ (0,∞) and β ∈ [0,∞) there exist constants c,C ∈ (0,∞) such
that for all n ∈N we have

c · n−min(1/2,δ/2) ≤ inf
X̂n∈Aeq

n (C([0,T ]),X(0),W)

{
sup

t∈[0,T ]
E
[∣∣X(t) − X̂n(t)

∣∣]}
≤ C · (1 + 1{1}(δ) · 1R\{0}(β) ·√ln(n)

) · n−min(1/2,δ/2).

PROOF. Similar to the reasoning in the previous section, we conclude that the
assumptions of Theorem 9 and Theorem 12 are fulfilled without any restriction on
the parameters δ and β . This shows part (i).

The lower bound in (ii) clearly follows from the first statement in (i). The upper
bound in (ii) is due to Dereich, Neuenkirch and Szpruch ([10], Theorem 1.1) if
δ > 2 and β > 0 and due to Hefter and Herzwurm [16], Proposition 3.1 (with a
linearly interpolated version of the corresponding numerical scheme), if δ = 1.

The lower bound in (iii) clearly follows from the second statement in (i). The
upper bound in (iii) is a consequence of the upper bound in (iv).

The lower bound in (iv) follows from the second statement in (i) and (38). The
upper bound in (iv) follows from Hefter and Herzwurm ([17], Theorem 2, with
a linearly interpolated version of the corresponding numerical scheme), if δ �= 1,
from the upper bound in (ii) if δ = 1 and β �= 0, and from Hefter and Herzwurm
([16], Corollary 3.1, with a linearly interpolated version of the corresponding nu-
merical scheme), if δ = 1 and β = 0. �

Concerning Corollary 15(ii), we add that no matching upper and lower bounds
are known for δ ∈ (0,2)\ {1}; cf. Hefter and Herzwurm [17], Figure 1. Concerning
Corollary 15(iii) we add that no matching upper and lower bounds are known for
δ ∈ (0,1).

We stress that Corollary 15(iv) is the first result in the literature that provides
matching upper and lower bounds (up to logarithmic terms) for a particular error
criterion without any restriction on the parameters.

7.2. SDEs with superlinearly growing coefficients. For simplicity, we assume
throughout this section that

a(t, x) = a(x) and b(t, x) = b(x) are polynomials.

Furthermore, for a polynomial h : R →R we put

zeros(h) = {
x ∈R : h(x) = 0

}
.

The following result is an immediate consequence of Theorem 6 as well as Theo-
rem 9 and Theorem 12.

COROLLARY 16 (Superlinearly growing coefficients).
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(i) Assume that

P

(
X(0) /∈

(
zeros(b) ∪ zeros

(
a′b − ab′ − 1

2
b2b′′

)))
> 0.

Then there exists a constant c ∈ (0,∞) such that for all n ∈N we have

inf
X̂n(T )∈An(R,X(0),W)

{
E
[∣∣X(T ) − X̂n(T )

∣∣]}≥ c · n−1.

(ii) Assume that

P
(
X(0) /∈ zeros(b)

)
> 0.

Then there exists a constant c ∈ (0,∞) such that for all n ∈N we have

inf
X̂n∈An(C([0,T ]),X(0),W)

{
E
[‖X − X̂n‖∞

]}≥ c ·
√

ln(n + 1)/n

and

inf
X̂n∈An(L1([0,T ]),X(0),W)

{
E
[‖X − X̂n‖1

]}≥ c · n−1/2.

There are matching upper error bounds under certain monotone conditions on
the coefficients. These bounds are achieved by tamed or projected or implicit ver-
sions of the Euler scheme in case of the mean Lp-error and the mean L∞-error, see
Hutzenthaler, Jentzen and Kloeden [25, 26], Sabanis [46], Beyn, Isaak and Kruse
[3], and of the Milstein scheme in case of the error at a single time, see Wang and
Gan [47], Kumar and Sabanis [28], Beyn, Isaak and Kruse [4]. In all of these cases,
the corresponding methods are nonadaptive and based on a fixed equidistant grid
and, therefore, adaptive algorithms are not superior to nonadaptive ones. For an
example, see equation (2) and the discussion in the Introduction.

7.3. SDEs with discontinuous coefficients. As an illustrating example, we con-
sider the SDE

dX(t) = sgn
(
X(t)

) · (1 + X(t)
)

dt + dW(t), X(0) = x0,(40)

with initial value x0 ∈ R, where sgn(x) = 1 for x ∈ [0,∞) and sgn(x) = −1 for
x ∈ (−∞,0). Here, the coefficients a, b are given by

a(t, x) = a(x) = sgn(x) · (1 + x) and b(t, x) = b(x) = 1

for every (t, x) ∈ [0, T ] × R. Strong existence and pathwise uniqueness for the
SDE (40) follow from, for example, Zvonkin [50], Theorem 4. Clearly, the coeffi-
cients a, b of the SDE (40) are infinitely often differentiable on R \ {0}. Moreover,
for every x ∈ R \ {0} it holds that(

a′b − ab′ − 1

2
b2b′′

)
(x) = sgn(x)
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and it is easy to see that

P
(∀ t ∈ [0, T /2] : X(t) = 0

) �= 1.

Hence the assumptions of Theorems 6, 9, 12 are satisfied. Combining this with an
upper bound of Leobacher and Szölgyenyi ([29], Theorem 3.1, with a linearly in-
terpolated version of the corresponding numerical scheme), shows that there exist
constants c,C ∈ (0,∞) such that for all n ∈N we have

inf
X̂n∈An(R,X(0),W)

E
[∣∣X(T ) − X̂n(T )

∣∣]≥ c · n−1,

inf
X̂n∈An(C([0,T ]),X(0),W)

E
[‖X − X̂n‖∞

]≥ c ·
√

ln(n + 1)/n

as well as

c · n−1/2 ≤ inf
X̂n∈An(L1([0,T ]),X(0),W)

E
[‖X − X̂n‖1

]
≤ inf

X̂n∈Aeq
n (L1([0,T ]),X(0),W)

E
[‖X − X̂n‖1

]≤ C · n−1/2.

In particular, adaptive algorithms are not superior (up to multiplicative constants)
to algorithms that are based on fixed equidistant grids for global approximation
with respect to the L1-norm.

A further example of an SDE with discontinuous coefficients that is often con-
sidered in the literature is given by

dX(t) = sgn
(
X(t)

)
dt + dW(t), X(0) = x0,

with initial value x0 ∈ R; see, for example, Göttlich, Lux and Neuenkirch [14],
Table 1. Observe that in this case the assumptions of Theorem 6 for pointwise
approximation are not fulfilled since a′b − ab′ − 1

2b2b′′ = 0 on R \ {0}. As a
consequence, it could be possible that adaptive algorithms are able to achieve a
convergence rate greater than 1 for this SDE.

APPENDIX A: PROPERTIES OF THE NORMAL DISTRIBUTION

We collect a number of properties of Gaussian distributions, which are em-
ployed in the proofs of Proposition 4, Proposition 7 and Proposition 10. We sup-
pose that these properties are well known but for the convenience of the reader we
provide proofs of these facts.

LEMMA 17. Let Z be a real-valued random variable that is normally dis-
tributed. Then for all σ ∈ [0,∞) with σ 2 ≤ Var[Z] and ε ∈ [0,∞) we have

P
(|Z| ≥ εσ

)≥ 1 − ε.
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PROOF. We may assume Var[Z] > 0 and σ 2 = Var[Z]. Let ε ∈ [0,∞) and
μ = E[Z]. By the Anderson inequality, we have P(|Z| < εσ) ≤ P(|Z − μ| < εσ);
see Anderson [2] or Lifshits [30], Corollary 7.1, page 47. Hence

P
(|Z| ≥ εσ

)≥ 1 − 2
∫ ε

0

1√
2π

exp
(−x2/2

)
dx ≥ 1 − 2√

2π
ε ≥ 1 − ε. �

LEMMA 18. Let ε, δ ∈ (0,∞). Then there exists a constant c ∈ (0,∞) with
the following property. If N ∈ N and Z1, . . . ,ZN are independent real-valued ran-
dom variables each being normally distributed with variance at least δ2, then:

(i) P(
∑N

i=1 |Zi | ≥ cN) ≥ 1 − ε,
(ii) P(maxi=1,...,N |Zi | ≥ c

√
ln(N)) ≥ 1 − ε.

PROOF. Let ε, δ ∈ (0,∞) and let (Yi)i∈N be a sequence of independent, real-
valued, standard normal random variables.

Put MN = N−1 ·∑N
i=1 |Yi | for N ∈ N. By the strong law of large numbers, we

have limN→∞ MN = E[|Y1|] = √
2/π with probability one. Since

√
2/π > 1/2,

we conclude that limN→∞ P(MN ≤ 1/2) = 0. Hence

∃N1 ∈ N ∀N ≥ N1 : P

(
N∑

i=1

|Yi | ≤ N/2

)
≤ ε.(41)

Furthermore, since P(minN=1,...,N1−1 MN > 0) = 1, there exists c1 ∈ (0,∞) such
that

∀N < N1 : P

(
N∑

i=1

|Yi | ≤ c1N

)
≤ ε.(42)

Next, define ϕ : (1,∞) → (0,∞) by

ϕ(t) = 1√
2π

·
(

1

t
− 1

t3

)
· exp

(−t2/2
)
.

Using a well-known bound for the tails of the standard normal distribution (see,
e.g., Bogachev [5], Lemma 1.1.3), we have

∀N ∈N, t ∈ (1,∞) : P

(
max

i=1,...,N
|Yi | ≤ t

)
= P

(|Y1| ≤ t
)N

≤ (
1 − 2ϕ(t)

)N ≤ exp
(−2ϕ(t)N

)
.

Note that limN→∞ ϕ(c
√

ln(N)) · N = ∞ for every c ∈ (0,
√

2). Hence

∃N2 ≥ 2 ∀N ≥ N2 : P

(
max

i=1,...,N
|Yi | ≤

√
ln(N)

)
≤ ε.(43)

Put c2 = ε/
√

ln(N2) ∈ (0,∞). Employing Lemma 17, we obtain

(44) ∀N < N2 : P

(
max

i=1,...,N
|Yi | ≤ c2

√
ln(N)

)
≤ P

(|Y1| ≤ c2
√

ln(N2)
)≤ ε.
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Finally, let (μi)i∈N ⊂ R, (σi)i∈N ⊂ [δ,∞) and let (Zi)i∈N be a sequence of in-
dependent, real-valued random variables with Zi ∼ N(μi, σ

2
i ) for every n ∈ N. By

the Anderson inequality (see Anderson [2] or Lifshits [30], Corollary 7.1, page 47),
and the assumption on the variances (σi)i∈N we have for every p ∈ [1,∞] that

∀N ∈ N, z ∈ [0,∞) : P
(∣∣(Zi)i=1,...,N

∣∣
p ≤ z

)
≤ P

(∣∣(Zi − μi)i=1,...,N

∣∣
p ≤ z

)
≤ P

(∣∣((Zi − μi)/σi

)
i=1,...,N

∣∣
p ≤ z/δ

)
.

(45)

Let c = min(1/2, c1, c2) · δ ∈ (0,∞). Combining (41), (42) and (45) for p = 1, we
obtain

∀N ∈N : P

(
N∑

i=1

|Zi | ≤ cN

)
≤ P

(
N∑

i=1

|Yi | ≤ min(1/2, c1) · N
)

≤ ε,

which yields the statement in (i). Combining (43), (44) and (45) for p = ∞, we
obtain

∀N ∈ N : P

(
max

i=1,...,N
|Zi | ≤ c

√
ln(N)

)
≤ P

(
max

i=1,...,N
|Yi | ≤ min(1, c2)

√
ln(N)

)
≤ ε,

which yields the statement in (ii) and completes the proof. �

LEMMA 19. Let ε, δ ∈ (0,∞). Then there exists a constant c ∈ (0,∞)

with the following property. If k ∈ 2N, B1, . . . ,Bk/2 are independent Brownian
bridges (from 0 to 0) on [0,1/k], a1, . . . , ak/2 ∈ R with |a1|, . . . , |ak/2| ≥ δ, and
f1, . . . , fk/2 ∈ L1([0,1/k]), then

P

(k/2∑
i=1

‖ai · Bi − fi‖1 ≥ c/
√

k/2

)
≥ 1 − ε.

PROOF. Let ε, δ ∈ (0,∞) and choose c ∈ (0,∞) according to Lemma 18. For
i = 1, . . . , k/2, define

Zi = √
12k3/2 ·

∫ 1/k

0

(
ai · Bi(t) − fi(t)

)
dt.

Then Z1, . . . ,Zk/2 are independent normal random variables with

Var(Zi) = 12k3a2
i ·E

[(∫ 1/k

0
Bi(t)dt

)2]
= a2

i ≥ δ2
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for i = 1, . . . , k/2; see, for example, Müller-Gronbach [36], equation (16). Thus,
by Lemma 18(i),

P

(k/2∑
i=1

‖ai · Bi − fi‖1 ≥ c/
√

48k

)
≥ P

(k/2∑
i=1

|Zi | ≥ c · k/2

)
≥ 1 − ε,

which completes the proof. �

APPENDIX B: LOCALIZATION TECHNIQUE: COMPARISON RESULTS

The following result follows by standard arguments.

LEMMA 20. Assume the setting in Section 3. Let ã : [0, T ] × R → R and
b̃ : [0, T ] × R → R be Borel-measurable functions, let ∅ �= I ⊆ R be an open
interval and let C ∈ [0,∞) be a constant such that for all t ∈ [0, T ] and x ∈ R it
holds that |ã(t, x)| + |b̃(t, x)| ≤ C(1 + |x|), for all t ∈ [0, T ] and x, y ∈ I it holds
that |ã(t, x) − ã(t, y)| + |b̃(t, x) − b̃(t, y)| ≤ C|x − y|, and for all t ∈ [0, T ] and
x ∈ I it holds that

a(t, x) = ã(t, x), b(t, x) = b̃(t, x).

Assume further that X̃ : [0, T ] × � → R is an (Ft )t∈[0,T ]-adapted stochastic pro-
cess with continuous paths such that for all t ∈ [0, T ] it holds P-a.s. that

X̃(t) = X(0) +
∫ t

0
ã
(
s, X̃(s)

)
ds +

∫ t

0
b̃
(
s, X̃(s)

)
dW(s).

Define the stopping time

τ = inf
{
t ∈ [0, T ] : X(t) /∈ I

}∧ inf
{
t ∈ [0, T ] : X̃(t) /∈ I

}∧ T .

Then P-a.s. for every t ∈ [0, T ]
X(t ∧ τ) = X̃(t ∧ τ).

Moreover,

P
(∀ t ∈ [0, T ] : X̃(t) = X(t) and X̃(t) ∈ I

)= P
(∀ t ∈ [0, T ] : X̃(t) ∈ I

)
.

PROPOSITION 21 (Comparison result). Assume the setting in Section 3. Let
ã : [0, T ] × R → R and b̃ : [0, T ] × R → R be bounded and Borel-measurable
functions such that inf(t,x)∈[0,T ]×R |b̃(t, x)| > 0 and let C ∈ [0,∞) be a constant
such that for all t ∈ [0, T ] and x, y ∈ R it holds that |ã(t, x)− ã(t, y)|+ |b̃(t, x)−
b̃(t, y)| ≤ C|x − y|. Moreover, let I ⊆R be an open interval such that

P
(
X(0) ∈ I

)
> 0
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and for all t ∈ [0, T ] and x ∈ I it holds that

a(t, x) = ã(t, x), b(t, x) = b̃(t, x).

Assume further that X̄ : [0, T ] × � → R is an (Ft )t∈[0,T ]-adapted stochastic pro-
cess with continuous sample paths such that

P
({

X(0) = X̄(0)
}∩ {X(0) ∈ I

})= P
(
X(0) ∈ I

)
(46)

and for all t ∈ [0, T ] it holds P-a.s. that

X̄(t) = X̄(0) +
∫ t

0
ã
(
s, X̄(s)

)
ds +

∫ t

0
b̃
(
s, X̄(s)

)
dW(s).

Then we have

P
(∀ t ∈ [0, T ] : X̄(t) = X(t)

)
> 0.

PROOF. Let X̃ : [0, T ] × � →R be an (Ft )t∈[0,T ]-adapted stochastic process
with continuous sample paths such that for all t ∈ [0, T ] it holds P-a.s.

X̃(t) = X(0) +
∫ t

0
ã
(
s, X̃(s)

)
ds +

∫ t

0
b̃
(
s, X̃(s)

)
dW(s).

By a support theorem of Pakkanen ([41], Theorem 3.2) we get that

P
(∀ t ∈ [0, T ] : X̃(t) ∈ I

)
> 0.(47)

Combining (46) with the fact that P(X̃(0) = X(0)) = 1 and the fact that P(∀ t ∈
[0, T ] : X̃(t) = X̄(t)) = P(X̃(0) = X̄(0)) yields

P
(∀ t ∈ [0, T ] : X̃(t) = X̄(t) and X̃(t) ∈ I

)= P
(∀ t ∈ [0, T ] : X̃(t) ∈ I

)
.

Lemma 20 shows that

P
(∀ t ∈ [0, T ] : X̃(t) = X(t) and X̃(t) ∈ I

)= P
(∀ t ∈ [0, T ] : X̃(t) ∈ I

)
.

Combining the latter two equations yields

P
(∀ t ∈ [0, T ] : X̄(t) = X(t) and X̃(t) ∈ I

)= P
(∀ t ∈ [0, T ] : X̃(t) ∈ I

)
.

Combining this with (47) yields the claim. �
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