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CUBATURE ON WIENER SPACE FOR MCKEAN–VLASOV SDES
WITH SMOOTH SCALAR INTERACTION1

BY DAN CRISAN AND EAMON MCMURRAY

Imperial College London

We present two cubature on Wiener space algorithms for the numerical
solution of McKean–Vlasov SDEs with smooth scalar interaction. First, we
consider a method introduced in [Stochastic Process. Appl. 125 (2015) 2206–
2255] under a uniformly elliptic assumption and extend the analysis to a uni-
form strong Hörmander assumption. Then we introduce a new method based
on Lagrange polynomial interpolation. The analysis hinges on sharp gradient
to time-inhomogeneous parabolic PDEs bounds. These bounds may be of in-
dependent interest. They extend the classical results of Kusuoka and Stroock
[J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 32 (1985) 1–76] and Kusuoka [J.
Math. Sci. Univ. Tokyo 10 (2003) 261–277] further developed in [J. Funct.
Anal. 263 (2012) 3024–3101; J. Funct. Anal. 268 (2015) 1928–1971; Cuba-
ture Methods and Applications (2013), Springer, Cham] and, more recently,
in [Probab. Theory Related Fields 171 (2016) 97–148]. Both algorithms are
tested through two numerical examples.

1. Introduction. In this paper, we analyse the error in two different algo-
rithms that use cubature on Wiener space to weakly approximate the solution of
a McKean–Vlasov SDE with smooth scalar interaction. By scalar interaction, we
mean that the dependence on the measure is through the integral against a scalar
function, so the McKean–Vlasov SDE takes the form

(1) Xx
t = x +

∫ t

0
V0

(
Xx

s ,E
[
ϕ0

(
Xx

s

)])
ds +

d∑
i=1

∫ t

0
Vi

(
Xx

s ,E
[
ϕi

(
Xx

s

)]) ◦ dBi
s,

where ϕi ∈ C∞
b (RN ;R), Vi ∈ C∞

b (RN+1;RN) and B = (B1, . . . ,Bd) is a Brow-
nian motion. We wish to approximate E[f (Xx

T )] for f Lipschitz continuous and
T > 0 a fixed time.

One common way of approaching this problem is to consider a discretisation
of the equation, such as the Euler–Maruyama scheme, along with a Monte Carlo
approximation. At each time step, an approximation of the law of Xx

t is then given
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by the empirical distribution of the entire Monte Carlo population. However, es-
timating the error due to approximating the expectation inside the coefficients by
the Monte Carlo estimator is exactly the problem one wishes to solve in the first
place. This leads to a more difficult analysis than for classical SDEs. Nonetheless,
this analysis has been carried out under a number of different assumptions when
the coefficients have the form

Vi

(
Xx

t ,

∫
hi

(
Xx

t − y
)
PXx

t
(dy)

)
[different from (1)]. This type of scheme was studied in papers by Bossy, alone
[4] and along with Talay [5]; Kohatsu-Higa and Ogawa [23], and Antonelli and
Kohatsu-Higa [2]. In all of these papers, the total error is composed of a discretisa-
tion error of order

√
h or h, where h is size of the largest time step, and statistical

error of order N
−1/2
MC where NMC is the number of Monte Carlo samples. A Mil-

stein discretisation is also analysed in Ogawa [39]. In [41], Tachet des Combes
proposes a deterministic numerical scheme based on discretising the PDE satisfied
by the density function of the solution to (1). More recently, in [40], a multi-level
Monte Carlo scheme has been analysed for equations of the type (1).

Systems of the time (1) have been studied in [26]. The particle representa-
tion of the solution of equation (1) appears explicitly in [28]. A generalization
of the model can be found in [20]. Section 1.8 in [25] presents the origins of this
model which can be traced back to the Vlasov equation for plasma which was then
augmented by McKean with a stochastic term. In the same section, the Landau–
Fokker–Planck equation is discussed. However, the nonlinearity is different here
as, in the case of Landau–Fokker–Planck, the coefficients depend on the convolu-
tions (shifted expectations), rather then just the expectations. The introduction of
diffusive noise can be considered as arising from natural scaling of various finite
state space models; see Section 5 in [24]. Equation (1) appears in many applica-
tions: for example, see [37] for an applications to Mathematics Biology, [6, 34] and
the more recent [8] for applications to mean field games and [11] for an application
to asset pricing through competing traders valuations.2

Cubature on Wiener space is a high-order alternative to Monte Carlo methods.
It is part of a class of methods called Kusuoka–Lyons–Victoir methods that have
been shown to be highly effective in practice; see, for example, [19], [38]. Applica-
tions include the nonlinear filtering problem [10, 17, 33, 35], backward stochastic
differential equations [13, 14] and calculating Greeks [42] in finance. Convergence
of the cubature approximation for some path dependent functionals has also been
shown in [3]. The starting point of the cubature on Wiener space method is to view
Xx

T as a functional of the Brownian path (Bs)s∈[0,T ], say

Xx
T = αx,T

(
(Bs)s∈[0,T ]

)
, αx,T : C0

([0, T ];Rd) →RN,

2The authors would like to thank Vassili Kolokoltsov and Tom Kurtz for pointing out relevant
references to the model considered here.
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and to view the expectation E[f (Xx
T )] as an integral over the Wiener space

(2) E
[
f

(
Xx

T

)] =
∫
�
(f ◦ αx,T )(ω)P(dω),

where � = C0([0, T ];Rd) and P is the Wiener measure. The key idea of the cu-
bature on Wiener space method is that one can approximate such integrals by re-
placing the Wiener measure, P, by a discrete measure supported on finitely many
bounded variation paths, called a cubature measure. If the cubature measure is
chosen so that iterated Stratonovich integrals of Brownian motion up to some or-
der have the same expectation under the cubature and Wiener measures and the
time interval [0, T ] is small, then by considering the Stratonovich–Taylor expan-
sion of the solution of the SDE, one can show that the target expectations under
the cubature and Wiener measures agree up to some high order error. When the
time interval is not small, [0, T ] can be partitioned into sub-intervals and the ap-
proximation performed over each sub-interval. In the original paper [36], dealing
with ordinary SDEs, evaluating the functional αx,T at a bounded variation path ω

amounts to solving an ordinary differential equation (ODE) and evaluating inte-
grals such as (2) under a cubature measure amounts to computing weighted sums
of solutions of ODEs. The complication for McKean–Vlasov equations like (1)
is that the functional αx,T depends on the paths {(Eϕi(X

x
s ))s∈[0,T ] : i = 0, . . . , d}

which are unknown. Instead, one must include an approximation of the functional
αx,T in the design of the algorithm.

To our knowledge, the first algorithm involving cubature on Wiener Space in re-
lation to McKean–Vlasov SDE was introduced by Chaudru de Raynal and Garcia-
Trillos [18]. Their idea is to partition [0, T ] into {0 = t0 < t1 < · · · < tn = T } and
over the interval [tj , tj+1] to replace Eϕi(X

x
t ) appearing in the coefficients with the

cubature approximation of the Taylor expansion of the path t �→ Eϕi(X
x
t ) around

tj up to some order, q . The global error can, as in the original case, be decomposed
as a sum of local errors, and these local errors naturally split into an error due to
the approximation of Eϕi(X

x
t ) in the coefficients, and an error due to replacing the

Wiener measure by a cubature measure. In [18], the authors consider the case of
smooth and bounded uniformly elliptic coefficients and prove that the error is of
order n−[(q+1)∧(l−1)/2] where n is the number of time steps and l is the degree of
the cubature formula. In this paper, we show how to extend the error analysis to the
case when the coefficients satisfy a uniform strong Hörmander condition. One of
the reasons the authors of [18] choose to impose a uniformly elliptic condition on
the coefficients of equation (1) is the lack of available sharp derivative estimates
for time-inhomogeneous parabolic PDEs (which are necessary for the error anal-
ysis) under any more general conditions. For this reason, a secondary goal of this
work is to develop derivative estimates for time-inhomogeneous parabolic PDEs
under more general conditions and to analyse the error for the cubature on Wiener
space algorithm in this case. These estimates may be of independent interest. They
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extend the classical results of Kusuoka and Stroock [31] and Kusuoka [30], further
developed in [9, 12, 15] and, more recently, in [16].

In the second algorithm, which we call the Lagrange interpolation method, over
the interval [tj , tj+1], one simply replaces Eϕi(X

x
t ) with the Lagrange polyno-

mial which interpolates the cubature approximation of the quantity Eϕi(X
x
t ) at the

previous r points in the time partition.
For both algorithms, we deduce upper bounds for their corresponding rates of

convergence when approximating E[f (Xx
T )]. The bounds are presented as explicit

functions of the type of partition used, the number of points in the partition, the
smoothness of the the function f , the cubature order, the order of the Taylor ex-
pansion (for the first algorithm) and, respectively, the order of the Lagrange ap-
proximation (for the Lagrange interpolation algorithm). See Theorem 1.4 below
for details.

The paper is organized as follows: In the following, we present a brief introduc-
tion of cubature on the Wiener space followed by a detailed description of the paper
framework, the assumptions, the algorithms and the main results. In Section 2, we
collect a number of preliminary results required to prove the main result. The proof
of the main result, Theorem 1.4 is done in Section 3. In Section 4, we test both al-
gorithms on two numerical benchmarks. We complete the paper with an Appendix
containing derivative bounds for time-inhomogeneous parabolic PDEs under the
so-called UFG condition which may be of independent interest. These bounds are
the cornerstone of the convergence analysis of the numerical algorithms. Several
other generic results used in the earlier proofs are also incorporated in the Ap-
pendix.

1.1. Cubature on Wiener space. First, we detail what we mean by a cuba-
ture method on Wiener space. We need to introduce notation for iterated integrals
with respect to components of the (d + 1)-dimensional process (B0,B1, . . . ,Bd)

consisting of time and the d-dimensional Brownian motion. We use the following
notation for multi-indices on {0, . . . , d}:

A := {∅} ∪ ⋃
k≥1

{0,1, . . . , d}k and A1 := A \ {
∅, (0)

}
.

We endow A with the concatenation operation

α ∗ β := (α1, . . . , αk, β1, . . . , βl), α = (α1, . . . , αk), β = (β1, . . . , βl) ∈A

and we define α′ = (α1) and −α := (α2, . . . , αk), so that α = α′ ∗ −α. We define
the following n-tuples lengths:

|α| :=
{
k, if α = (α1, . . . , αk),

0, if α = ∅,

‖α‖ := |α| + card{i : αi = 0, i = 1, . . . , d}
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and define the set A(l) := {α ∈ A : ‖α‖ ≤ l} and define A1(l) similarly. For α ∈A,
we denote by Iα

t,s(Y ) the iterated Stratonovich integral of the process Y over the
interval [t, s]:

Iα
t,s(Y ) :=

∫ s

t

∫ sn

t
· · ·

∫ s2

t
Ys1 ◦ dBα1

s1
◦ · · · ◦ dB

αn−1
sn−1 ◦ dBαn

sn
.

Similarly, for a bounded variation path ω = (ω1, . . . ,ωd) ∈ Cbv([t, s];Rd), we set
ω0(s) = s and denote the iterated integral of the stochastic process Y by Iα

t,s[ω](Y ):

Iα
t,s[ω](Y ) :=

∫ s

t

∫ sn

t
· · ·

∫ s2

t
Ys1 dωα1

s1
· · · dω

αn−1
sn−1 dωαn

sn
.

With this notation in hand, we can define a cubature formula (we follow here [36]).

DEFINITION 1.1 (Cubature formula). A set of NCub bounded variation paths,
ω1, . . . ,ωNCub ∈ Cbv([0,1];Rd), for some NCub ∈ N, together with some weights
λ1, . . . , λNCub ∈ R+ such that

∑NCub
j=1 λj = 1 define a cubature formula on Wiener

Space of degree l if, for any α ∈ A(l),

E
[
Iα

0,1(1)
] =

NCub∑
j=1

λj I
α
0,1[ωj ](1).

We note that for a given l ∈ N, Lyons and Victoir [36] proved that there exists a
cubature formula on Wiener Space of degree l, with concrete examples given, for
certain pairs (l, d), in [36] and [19]. From the scaling properties of the Brownian
motion, we can deduce, for 0 ≤ t < s,

E
[
Iα
t,s(1)

] =
l∑

j=1

λj I
α
t,s

[
ωj (t, s)

]
(1),

where ωj(t, s) is the rescaled path defined by ωj(t, s)(u) = √
s − tωj (

u
s−t

), u ∈
[t, s]. In other words, the expectation of the iterated Stratonovich integrals Iα

t,s(1)

with α ∈ A(l) is the same under the Wiener measure as it is under the cubature
measure,

Qt,s :=
NCub∑
j=1

λjδωj (t,s).

Once we have a cubature measure Q and a partition 	n, we can extend this to
a measure Q	n on [0, T ], supported on (Ncub)

n paths along a tree. We use the no-
tation Mk to denote multi-indices over {1, . . . ,NCub} of length exactly k. We use
this set to index the nodes in the cubature tree after k time-steps or, equivalently,
the unique path leading to that node. To create the tree, one first creates the paths
by concatenating the rescaled paths: for p = (p1, . . . , pn) ∈ Mn, define the path

ωp(t) = ωp(ti−1) + ωpi
(ti−1, ti)(t) when t ∈ [ti−1, ti).
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Then one can attach a new weight to each path by


p := ∏
pi∈p

λpi
.

Finally, we can define a measure on all paths along the tree by

Q	n := ∑
p∈Mn


pδωp .

1.2. Outline and main results. In this section, let us make more precise our
contribution. We introduce the following processes:

X
s,x
t = x +

d∑
i=0

∫ t

s
Vi

(
Xs,x

u ,Eϕi

(
Xs,x

u

)) ◦ dBi
u(3)

and

X
s,x,y
t = x +

d∑
i=0

∫ t

s
Vi

(
Xs,x,y

u ,Eϕi

(
X0,y

u

)) ◦ dBi
u.(4)

The first is just the McKean–Vlasov SDE started from x at time s. The second pro-
cess starts from x at time s as well, but with the path u �→ E[ϕi(X

0,y
u )] appearing

in the coefficients instead of the McKean–Vlasov term. This process is therefore
not a true McKean–Vlasov process but an SDE with coefficients depending on
time and a parameter, y. We introduce the operators

Ps,tf (x) := E
[
f

(
X

s,x
t

)]
and P

y
s,tf (x) := E

[
f

(
X

s,x,y
t

)]
.

We note that X
0,x
T = X

0,x,y
T |y=x , so the quantity we wish to compute is

P0,T f (x) = P
y
0,T f (x)|y=x.

Now, let us denote by E
y
t (ϕi) a generic approximation of E[ϕi(X

0,y
t )]. Later, we

will introduce specific approximations E
T,y
t (ϕi) and E

L,y
t (ϕi), corresponding to

the Taylor and Lagrange interpolation methods, respectively. We then introduce
the approximating process

EX
s,x,y
t = x +

d∑
i=0

∫ t

s
Vi

(E
Xs,x,y

u ,Ey
u(ϕi)

) ◦ dBi
u,

and the operators

P
E,y
s,t g(x) := E

[
g
(E

X
s,x,y
t

)]
and Q

E,y
s,t g(x) := EQs,t

[
g
(E

X
s,x,y
t

)]
.

In a similar way, we will denote the local approximation operator by Q
E,x
s,t and,

once a partition 	n of [0, T ] is fixed, we define

Q
E,x,	n

0,t := Q
E,x
0,t1

· · ·QE,x
tj ,t for t ∈ [tj , tj+1).
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Then Q
E,x,	n

0,T f (x) will be the final approximation of P0,T f (x), with the global
error

(5) E(T , x, l,	n) := (
P0,T − Q

E,x,	n

0,T

)
f (x).

We note that

sup
x∈RN

∣∣E(T , x, l,	n)
∣∣ ≤ sup

x,y∈RN

∣∣(P y
0,T − Q

E,y,	n

0,T

)
f (x)

∣∣.
Now, for fixed y, {P y

s,t : 0 ≤ s ≤ t ≤ T } forms a two-parameter semigroup of oper-
ators. This allows us to decompose the global error of the scheme as follows:[

P
y
0,T − Q

E,y
0,t1

Q
E,y
t1,t2

· · ·QE,y
tn−1,tn

]
f (x)

=
N−1∑
j=0

Q
E,y
0,tj

[
P

y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
P

y
tj+1,T

f (x).

Then, since ‖QE,y
0,tj

φ‖∞ ≤ ‖φ‖∞, we are left to estimate the local error[
P

y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy(tj+1, x)

uniformly in x and y, where

(6) uy(t, x) := P
y
t,T f (x)

solves a parabolic PDE with coefficients depending on the parameter y ∈ RN . The
resulting error analysis relies on regularity estimates for the solution of this PDE.

Now, let us specify what the approximation Ex
t (ϕi) is for each scheme. First,

the Taylor method: we wish to perform a Taylor expansion of the path t �→
Eϕi(X

0,x
t ), but since the coefficients in the SDE satisfied by X0,x are of the form

Vi(X
0,x
t ,Eϕi(X

0,x
t )), we instead consider the Taylor expansion of this more gen-

eral form. For a pair of functions g ∈ C∞
b (RN × R;R) and ϕ ∈ C∞

b (RN ;R), Itô’s
formula yields

E
[
g
(
X

0,x
t ,Eϕ

(
X

0,x
t

))]
= g

(
x,ϕ(x)

) +
∫ t

0
E

[(
Lx

ug
)(

X0,x
u ,Eϕ

(
X0,x

u

))]
(7)

+E
[
(∂yg)

(
X0,x

u ,Eϕ
(
X0,x

u

))]
E

[(
Lx

uϕ
)(

X0,x
u

)]
du,

where ∂y is the derivative in the second argument of g and Lx
s is the differential

operator

Lx
s := V0

(·,Eϕ0
(
X0,x

s

)) + 1

2

d∑
i=1

Vi

(·,Eϕi

(
X0,x

s

))2
.
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Note that each term under the integral in the right-hand side of (7) is again a prod-
uct of terms of the form E[g(X0,x

u ,Eϕ(X0,x
u ))] for different functions g and ϕ. Let

us denote by S the set of all paths (St )t∈[0,T ] of the form

St = E
[
g
(
X

0,x
t ,Eϕ

(
X

0,x
t

))]
for some g ∈ C∞

b (RN ×R;R), and ϕ ∈ C∞
b (RN ;R) and denote by S̄ the set of all

paths (S̄t )t∈[0,T ] of the form

S̄t =
n1∑
i=1

n2∏
j=1

S
i,j
t ,

where n1 and n2 are positive integers and Si,j ∈ S for i = 1, . . . , n1 and j =
1, . . . , n2. For t ∈ [0, T ], we introduce the notation T : S → S̄ for the map

Eg
(
X0,x,Eϕ

(
X0,x)) �→ E

[(
Lxg

)(
X0,x,Eϕ

(
X0,x))]

+E
[
(∂yg)

(
X0,x,Eϕ

(
X0,x))]

E
[(
Lxϕ

)(
X0,x)]

,

so that the expansion of G = (Gt)t≥0 defined as

Gt := E
[
g
(
X

0,x
t ,Eϕ

(
X

0,x
t

))]
in (7) can alternatively be written as

(8) Gt = G0 +
∫ t

0
Ts(G)ds.

For the Taylor expansion, we would like to apply T to the term T (G). To do so,
we extend T to an operator from S̄ to itself by linearity

T
(

n1∑
i=1

Si

)
=

n1∑
i=1

T
(
Si),

and a product rule

T
(

n2∏
j=1

Sj

)
=

n2∑
k=1

n2∏
j=1,j �=k

SjT
(
Sk).

Since now we have T defined as an operator on S̄ , we can iterate the expansion in
(8) to get the Taylor expansion of order q ≥ 1,

(9) Gt =
q∑

k=0

tk

k! (T0)
k(G) + 1

(q + 1)!
∫ t

0
(Ts)

q+1(G)ds.

Now, for all s ∈ [0, T ], k ≥ 1 and G ∈ S̄ we define (T Q
s )k(G) to be the same

expression as (Ts)
k(G) with all expectations under P replaced by expectations
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under Q	n . Then the approximation of Eϕi(X
0,y
s ) for the Taylor method, which

we henceforth denote by E
T,y
s (ϕi), is

ET,y
s (ϕi) :=

q∑
k=0

1

k!
(
T Q

tj

)k(
Eϕi

(
X0,y))

(s − tj )
k for s ∈ [tj , tj+1).

To define the approximation for the Lagrange interpolation method, we denote
by L[{(ti, xi)}ki=1] the Lagrange interpolating polynomial of degree at most k − 1
with L[{(ti , xi)}ki=1](tj ) = xj for all j = 1, . . . , k (see p. 149 for further details).
We define the approximation of order r by

E
y
t (ϕi) := L

[{(
tj−k,E

Q	n
ϕi

(
X

0,y
tj−k

))}j∧(r−1)
k=0

]
(t) t ∈ [tj , tj+1].

In other words, E
y
t (ϕi) for t ∈ [tj , tj+1] is the unique polynomial of degree mini-

mal degree which passes through the points(
tj+1−((j+1)∧r),E

Q	n
ϕi

(
X

0,y
tj+1−((j+1)∧r)

))
, . . . ,

(
tj ,E

Q	n
ϕi

(
X

0,y
tj

))
.

That is, if the time index j is greater than r − 1, we interpolate through the last
r cubature approximations of Eϕi(X

0,y
t ) along the partition. If j < r − 1, we in-

terpolate through all of the available previous points. We now detail Algorithms 1
and 2.

REMARK 1.2. The Taylor method requires finding an expression for the quan-
tity (Tt )

k(Eϕi(X
0,y)) for k = 1, . . . , q and i = 0, . . . , d either by hand or using

some symbolic computation. The Lagrange interpolation method does not require
this; the interpolating polynomial is defined at each time step as part of the algo-
rithm.

We state next the main assumptions of the paper. To do this, we introduce the
notation V[α] for iterated Lie brackets of the vector fields. In this setting, each
V0, . . . , Vd :RN ×R →RN and we think of these as vector fields Vi(·, x′) on RN

parametrised by the second variable, x′ ∈ R, with the Lie bracket between any two
given by

[Vi,Vj ](x, x′) = ∂xVj

(
x, x′)Vi

(
x, x′) − ∂xVi

(
x, x′)Vj

(
x, x′),

where ∂Vi(x, x′) := (∂xl
V k

i (x, x′))1≤k,l≤N is the Jacobian matrix of Vi and simi-
larly for ∂xVj . Then, for α ∈ ⋃

k≥1{1, . . . ,N}k and i ∈ {1, . . . ,N}, we define in-
ductively

V[i] := Vi, V[α∗i] := [Vi,V[α]].
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Algorithm 1 Taylor method

1: Set (X∅,
0) = (x,1)

2: for 0 ≤ j ≤ n − 1 do
3: Let T Q be as in the main text.
4: for p ∈ Mj do
5: for 0 ≤ i ≤ d do
6: Set ET

i (t) = ∑q
k=0

1
k!(t − tj )

k(T Q
tj

)k(Eϕi(X
0,x))

7: end for
8: for 1 ≤ l ≤ Ncub do
9: Define X

p∗l
tj+1

as the solution of the ODE:

dX
p∗l
t =

d∑
i=0

Vi

(
X

p∗l
t ,ET

i (t)
)
dωi

l (tj , tj+1)(t),

X
p∗l
tj

= X
p
tj
.

10: Set the associated weight: 
p∗l = 
pλl

11: end for
12: for 0 ≤ i ≤ d do
13: Store

∑
p∈Mj+1


pϕi(X
p
tj+1

).
14: end for
15: end for
16: end for
17: Final approximation of E[f (Xx

T )] is∑
p∈Mn


pf
(
X

p
tn

)

ASSUMPTION 1.3. (A1) Uniform strong Hörmander condition: There exist
δ > 0 and m ∈ N such that, for all ξ ∈ RN ,

inf
(x,x′)∈RN×R

∑
α∈⋃m

k=1{1,...,N}k

〈
V[α]

(
x, x′), ξ 〉2 ≥ δ|ξ |2.

(A2) Smoothness of coefficients:

ϕi ∈ C∞
b

(
RN ;R)

, Vi ∈ C∞
b

(
RN ×R;RN )

i = 0, . . . , d.

(A3) We assume the paths in any cubature formula we use are absolutely con-
tinuous.

As is common with cubature on Wiener space methods, when the terminal func-
tion f is not smooth, we will use an uneven partition of the time interval [0, T ].
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Algorithm 2 Lagrange interpolation method

1: Set (X∅,
0) = (x,1)

2: for 0 ≤ j ≤ n − 1 do
3: for p ∈ Mj do
4: for 0 ≤ i ≤ d do
5: Set EL

i (t) := L[{(tj−k,
∑

p∈Mj−k

pϕi(X

p
tj−k

))}j∧(r−1)
k=0 ](t)

6: end for
7: for 1 ≤ l ≤ Ncub do
8: Define X

p∗l
tj+1

as the solution of the ODE:

dX
p∗l
t =

d∑
i=0

Vi

(
X

p∗l
t ,EL

i (t)
)
dωi

l (tj , tj+1)(t),

X
p∗l
tj

= X
p
tj
.

9: Set the associated weight: 
p∗l = 
pλl

10: end for
11: for 0 ≤ i ≤ d do
12: for 0 ≤ k ≤ ((j + 1) ∧ r) do
13: Store

∑
p∈Mj+1−k


pϕi(X
p
tj+1−k

).
14: end for
15: end for
16: end for
17: end for
18: Final approximation of E[f (Xx

T )] is∑
p∈Mn


pf
(
X

p
tn

)

Here, we introduce the Kusuoka partition and a modified version. We denote by
	

γ
n the Kusuoka [29] partition of the interval [0, T ] with (n + 1) points and pa-

rameter γ ≥ 1, defined by

tj = T

(
1 −

(
1 − j

n

)γ )
for j = 0, . . . , n − 1,

tn = T .

We denote by 	
γ,r
n the modified Kusuoka partition, with r smaller steps at the

start whose size is determined by the overall order of the method we require. It
is defined as follows: for a fixed integer r and real parameter γ , we fix the first
(r + 1) points as t0 = 0, tk+1 − tk = T n−r/(k+1) for k = 0, . . . , r − 1. Thereafter,



CUBATURE ON WIENER SPACE FOR MCKEAN–VLASOV SDES 141

and we split the rest of the interval [tr , T ] using the Kusuoka partition, that is,

tj = (T − tr )

(
1 −

(
1 − j − r

n − r

)γ )
+ tr , j ∈ {r + 1, . . . , n − 1},

tn = T .

Recall that E(T , x, l,	n), as defined in (5), is the global error of the respective
algorithm approximation. Then we have the following result, which is the main
result of this work.

THEOREM 1.4. Let f ∈ C∞
b (RN ;R). Then, assuming (A2), the error for the

Taylor method satisfies the following:

sup
x∈RN

∣∣E(T , x, l,	n)
∣∣ ≤ C

n−1∑
j=0

(tj+1 − tj )
A(q,l),

where A(q, l) := (q + 2) ∧ (l + 1)/2. Under the same assumptions, the error in
the Lagrange interpolation method is

sup
x∈RN

∣∣E(T , x, l,	n)
∣∣

≤ C

n−1∑
j=0

{
(tj+1 − tj )

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k) + (tj+1 − tj )
(l+1)/2

}
.

Now, suppose f is only Lipschitz continuous. Assuming (A1)–(A3) and that we
use the Kusuoka partition 	

γ
n with γ > l − 1, we can bound the error in the Taylor

method according to the size of m

m = 1 : sup
x∈RN

∣∣E(
T ,x, l,	γ

n

)∣∣ ≤ Cn−B(q,l)−1/2,(10)

m ≥ 2 : sup
x∈RN

∣∣E(
T ,x, l,	γ

n

)∣∣ ≤ Cn−B(q,l),(11)

where B(q, l) = (q + 1
2) ∧ l−2

2 . Assuming (A1)–(A3) and that we use the modified
Kusuoka partition 	

γ,r
n with γ ∈ (l −1, l), we can bound the error in the Lagrange

interpolation method according to the size of m:

m = 1 : sup
x∈RN

∣∣E(
T ,x, l,	γ,r

n

)∣∣ ≤ Cn−D(r,l)−1/2(1 − r/n)−l/2,(12)

m ≥ 2 : sup
x∈RN

∣∣E(
T ,x, l,	γ,r

n

)∣∣ ≤ Cn−D(r,l)(1 − r/n)−l/2,(13)

where D(r, l) = (r − 3
2) ∧ l−2

2 .
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REMARK 1.5. 1. Let us comment on the term (1 − r/n)−l/2 appearing in the
error for the Lagrange interpolation method. This term comes from the need to
take small steps at the start (for an accurate polynomial approximation) and end of
the partition [due to blow up of the derivatives of uy(t, ·)]. We need to take r small
steps at the start, leaving n − r steps split in the style of the Kusuoka partition.
This term reflects the need to balance the size of r and n. Since it goes to zero
as n → ∞, it can be bounded by a constant for sufficiently large n. For example,
in the case m = 1 for a second-order method, one must use a cubature formula of
degree l = 5 and choose r = 4. Then, for n ≥ 10, we have that (1− r/n)−l/2 < 3.6.

2. The uniformly elliptic case covered by [18] is the case m = 1. Choosing the
parameter r appropriately, we also recover the same rate for the Lagrange interpo-
lation method up to the multiplication of the term (1 − r/n)−l/2.

3. In the case where m ≥ 2, we lose 1/2 an order of convergence. This is due to
the difference in the way we split the error, which we explain in Section 3.

REMARK 1.6. The cubature method will still converge even if the test func-
tion is not chosen to be Lipschitz, but only bounded and measurable. However,
in this case, a control on the rate of convergence of the cubature method will not
be possible, regardless of the choice of partition (Kusuoka, uniform) or the choice
of the method (Taylor, Lagrange). A similar result was obtained by the first au-
thor for the cubature method applied to classical SDEs (not McKean–Vlasov); see
Theorem 3.7 in [10]).

2. Preliminary results. First, we have a lemma on the existence, uniqueness
and moment bounds for the solution of equation (4).

LEMMA 2.1. Under assumption (A2), there exist unique strong solutions to
equations (3) and (4). Moreover, for all s ∈ [t, T ], the mapping x �→ X

t,x,y
s is

P-a.s. smooth, and for all multi-indices η on {1, . . . ,N},
(14) sup

x,y∈RN

∥∥∂η
x Xt,x,y

s

∥∥
p < ∞ ∀p ≥ 1.

PROOF. Under assumption (A2), existence and uniqueness of strong solutions
to equations (3) and (4) is easy to prove and can be found in, for example, [21].
Now, we note that we can view (X

t,x,y
s )s∈[t,T ] as the solution of an SDE with

coefficients

W
y
i (s, z) := Vi

(
z,Eϕi

(
X0,y

s

))
,

depending on time and a parameter. Due to Assumption 1.3 (A2), the map s �→
h(s) := Eϕi(X

0;x
s ) is continuous in view of the path continuity of the process

X0;x
s and Lebesgue’s dominated convergence theorem. Therefore, Itô’s formula

applied to ϕi(X
0;x
s ) shows that the map h(s) is continuously differentiable with
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a bounded first derivative. This allows one to apply Itô’s formula to Ly
s ϕi(X

0;x
s )

and get that the map s �→ ELy
s ϕi(X

0;x
s ) enjoys the same properties as h(s). Iter-

ating the procedure, one obtains that the map (s, z) �→ W
y
i (s, z) is smooth, with

bounded derivatives of all orders, with all bounds uniform in y. The differentia-
bility in z is assumed, and the differentiability in s comes from the smoothness of
each ϕi , which allows us to apply Itô’s formula to ϕi(X

0,y
s ), giving

∂s

[
Eϕi

(
X0,y

s

)] = E
[(
Ly

s ϕi

)(
X0,y

s

)]
.

Then Kunita [27], Theorem 4.6.5, guarantees that the moment bound (14) holds.
�

In the next lemma, we collect some results on the regularity of uy(t, x) [de-
fined in (6)] and the pure cubature part of the error. We use the notation, for
ψ ∈ C2

b(RN ;R),

‖ψ‖2,∞ := sup
x∈RN

{∣∣ψ(x)
∣∣ + ∣∣∇ψ(x)

∣∣ + ∣∣∇2ψ(x)
∣∣}.

LEMMA 2.2. Let j ∈ {0, . . . , n − 2} and t ∈ [0, T ).

1. If f ∈ C∞
b (RN ;R), then for both schemes corresponding to E = ET and

E = EL

sup
x,y∈RN

∣∣[P E,y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy(tj+1, x)

∣∣ ≤ C(tj+1 − tj )
(l+1)/2.(15)

Moreover, the first two derivatives of uy are bounded:

(16) sup
(t,y)∈[0,T ]×RN

∥∥uy(t, ·)∥∥2,∞ ≤ C.

2. If f is Lipschitz, then

sup
x,y∈RN

∣∣[P y
tj ,tj+1

− Q
y
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ C

l+1∑
k=l

(T − tj+1)
−k/2(tj+1 − tj )

(k+1)/2.

(17)

In addition, the first derivative of uy is bounded

(18) sup
(t,x,y)∈[0,T ]×RN×RN

∣∣∇uy(t, x)
∣∣ ≤ C

and we have the estimate on the first two derivatives:

(19) sup
y∈RN

∥∥uy(t, ·)∥∥2,∞ ≤ C(T − t)−m/2.

Finally, for both schemes corresponding to E = EL and E = ET ,

(20) sup
x,y∈RN

∣∣[P y
s,t − Q

E,y
s,t

]
f (x)

∣∣ ≤ C‖f ‖Lip|t − s|1/2.
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PROOF. We think of (X
t,x,y
s )s∈[t,T ] and (EX

t,x,y
s )s∈[t,T ] as the solutions of the

SDEs with coefficients

W
y
i (s, z) := Vi

(
z,Eϕi

(
X0,y

s

))
,

EW
y
i (s, z) := Vi

(
z,Ey

s (ϕi)
)
, i = 0, . . . , d,

respectively. We think of {Wy
i (t, ·),E W

y
i (t, ·) : i = 0, . . . , d} as vector fields on

RN depending on time t ∈ [0, T ] and the parameter y ∈ RN . In the proof of
Lemma 2.1, we explained that W

y
0 , . . . ,W

y
d ∈ C∞

b ([0, T ] × RN ;RN) with all
bounds uniform in y. The same is true of the functions EW

y
0 . . . ,E W

y
d . To see

this, we note that for the both schemes, the map s �→ E
y
s (ϕi) is a polynomial,

therefore, smooth with bounded derivatives on [0, T ].
We use the notation W

y
[α] and EW

y
[α] for iterated Lie brackets of the vector fields

introduced just before Assumption 1.3. Then we note that for all (s, z, y) ∈ [0, T ]×
RN ×RN and α ∈ ⋃

k≥1{1, . . . ,N}k ,〈
W

y
[α](s, z), ξ

〉2 ≥ inf
x′∈R

〈
V[α]

(
z, x′), ξ 〉2

,

so that

inf
(s,z,y)∈[0,T ]×RN×RN

〈
W

y
[α](s, z), ξ

〉2 ≥ inf
(z,x′)∈RN×R

〈
V[α]

(
z, x′), ξ 〉2

.

Hence, under the uniform strong Hörmander condition (A1),

inf
(s,z,y)∈[0,T ]×RN×RN

∑
α∈⋃m

k=1{1,...,N}k

〈
W

y
[α](s, z, y), ξ

〉2 ≥ δ|ξ |2,

so the vector fields {Wy
i : i = 1, . . . , d} satisfy a uniform strong Hörmander con-

dition. Exactly the same holds true for the vector fields {EW
y
i : i = 1, . . . , d}. This

uniform strong Hörmander condition is stronger than the ŨFG condition, hence,
we have the results of Section A.3 available to us, subject to slight modification
since the coefficients in the current setting also depend on a parameter.

Now, for f ∈ C∞
b (RN ;R), by differentiating under the expectation and using

the moment bounds on ∂
η
x X

t,x,y
s contained in (14) we see that for all multi-indices

η on {1, . . . ,N} with length at least one,

sup
x,y∈RN

∣∣∂η
x uy(t, x)

∣∣ < ∞,

so (16) holds [recall that uy(t, x) was defined in (6)]. The one step cubature error
contained in (15) follows from a stochastic Taylor expansion, noting that for all
β ∈ A1,

sup
x,y∈RN

∣∣W̃ y
β uy(t, x)

∣∣ < ∞.
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This again follows from the boundedness of derivatives of uy(t, ·) and W
y
i (t, ·)

uniformly in y.
For f Lipschitz, the bound in (17) is the same as (77), adapted to the case where

coefficients also depend on a parameter. Both estimates (18) and (19) come from
Corollary A.10 adapted to the case where coefficients also depend on a parameter.

Finally, when f is Lipschitz,∣∣[P y
s,t − Q

E,y
s,t

]
f (x)

∣∣ = ∣∣E[
f

(
X

s,x,y
t

)] −EQ

[
f

(E
X

s,x,y
t

)]∣∣
≤ ∣∣E[

f
(
X

s,x,y
t

)] − f (x)
∣∣ + ∣∣EQ

[
f

(E
X

s,x,y
t

)] − f (x)
∣∣

≤ ‖f ‖Lip
(
E

∣∣Xs,x,y
t − x

∣∣ +EQ|EX
s,x,y
t − x|).

That E|Xs,x,y
t − x| ≤ C|t − s|1/2 is a standard result for SDEs with bounded coef-

ficients. For the other term,

EQ

∣∣EX
s,x,y
t − x

∣∣ =
NCub∑
i=1

λi

∣∣EX
s,x,y,i
t − x

∣∣,
where EX

s,x,y,i
t is the solution of the ODE along the ith cubature path. Then we

have

EQ

∣∣EX
s,x,y
t − x

∣∣ ≤ C|t − s|,
due to a standard estimate on the solution of an ODE with bounded coefficients.

�

Before we discuss how accurate the polynomial approximations are, we need
a lemma concerning the time partitions we use and a type of sum involving its
increments which will appear in the error analysis.

LEMMA 2.3. 1. Let a > b ≥ 0, let γ > a−1
a−b

and let tj be times in points in the
Kusuoka partition, then there is a constant C = C(γ ) > 0 such that

(21)
n−2∑
j=0

(tj+1 − tj )
a(T − tj+1)

−b ≤ Cn−(a−1).

2. For the partition 	
γ,r
n ,

(22)
1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k) ≤ Cn−r

and for a > b ≥ 0 and γ > a−1
a−b

(23)
n−2∑
j=0

(tj+1 − tj )
a(T − tj+1)

−b ≤ Cn−(a−1)(1 − r/n)−(a+b−1).
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PROOF. 1. This is proved in a slightly different format in Crisan and Ghazali
[10]. First, note that

tj+1 − tj = T

[(
1 − j

n

)γ

−
(

1 − j + 1

n

)γ ]

= T γ

∫ (1− j
n
)

(1− j+1
n

)
uγ−1 du

≤ T γ
1

n

(
1 − j

n

)γ−1
.

Then we use that (1 − j
n
) ≤ 2(1 − j+1

n
) for j ∈ {0, . . . , n − 2} to get

(24) tj+1 − tj ≤ C
1

n

(
1 − j + 1

n

)γ−1
.

By definition,

T − tj+1 = T

(
1 − j + 1

n

)γ

,

so that

n−2∑
j=0

(tj+1 − tj )
a(T − tj+1)

−b

≤ C

n−2∑
j=0

n−a

(
1 − j + 1

n

)a(γ−1)(
1 − j + 1

n

)−bγ

.

Reordering the terms, we get

n−2∑
j=0

(tj+1 − tj )
a(T − tj+1)

−b ≤ n−(a−1)
n−1∑
j=1

n−1
(

j

n

)a(γ−1)−bγ

.(25)

We note that

n−1∑
j=1

n−1
(

j

n

)a(γ−1)−bγ

≤
∫ 1

0
xa(γ−1)−bγ dx

and the condition γ > a−1
a−b

guarantees that the exponent a(γ − 1) − bγ > −1, so
that the integral is finite.

2. First, note tj+1 − tj−k = (tj+1 − tj ) + (tj − tj−1) + · · · + (tj−k+1 − tj−k).
There are (k + 1) terms in this sum, and, in the case j < r − 1, from the definition
of the first r steps of the partition, the biggest of these is T n−r/(j+1). Hence, tj+1 −
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tj−k ≤ (k + 1)T n−r/(j+1). So, in this case,

1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k) = 1

(j + 1)!
j∏

k=0

(tj+1 − tj−k)

≤ 1

(j + 1)!
j∏

k=0

(k + 1)T n−r/(j+1)

= T jn−r .

In the case j ≥ r − 1, there is a constant K such that for each interval tj+1 − tj ≤
K/n, so that tj+1 − tj−k ≤ K(k + 1)/n and

1

(r ∧ j)!
(r∧j)−1∏

k=0

(tj+1 − tj−k) = 1

r!
r−1∏
k=0

(tj+1 − tj−k)

≤ 1

r!
r−1∏
k=0

K(k + 1)/n

= Krn−r .

Now considering the sum
∑n−2

j=0(tj+1 − tj )
a(T − tj+1)

−b, we split it into two parts:

when 0 ≤ j ≤ r −1, tj+1 − tj = T n−r/(j+1) ≤ Cn−1 and T − tj+1 ≥ T (1− rn−1),
using that r ≤ n/2. So,

r−1∑
j=0

(tj+1 − tj )
a(T − tj+1)

−b ≤ Crn−a(
1 − rn−1)−b

≤ Cn−a(
1 − rn−1)−b

.

(26)

For r ≤ j ≤ n − 2, the same analysis as in Lemma 2.3 gives

tj+1 − tj ≤ C
1

n

(
1 − j + 1 − r

n − r

)γ−1
.

By definition,

T − tj+1 = (T − tr )

(
1 − j + 1 − r

n − r

)γ

≥ T (1 − r/n)

(
1 − j + 1 − r

n − r

)γ

.

The proof then follows as in the first part of this lemma to give for γ > a−1
a−b

n−2∑
j=r

(tj+1 − tj )
a(T − tj+1)

−b ≤ C(1 − r/n)−b(n − r)−(a−1).

We then note that 1
n−r

= 1
n
. 1

1−r/n
. Combining this with (26) gives the result. �
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LEMMA 2.4 (Polynomial approximations). For the Taylor approximation,
there exists a finite collection of functions H ⊂ C∞

b (RN ;R) such that

sup
s∈[tj ,tj+1]

∣∣Eϕi

(
X0,y

s

) − ET,y
s (ϕi)

∣∣
≤ C

{
(tj+1 − tj )

q+1 + ∑
ψ∈H

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣}.

(27)

For the Lagrange interpolation method,

sup
s∈[tj ,tj+1]

∣∣Eϕi

(
X0,y

s

) − Ey
s (ϕi)

∣∣
≤ C

{
1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
j∧(r−1)∑

k=0

∣∣(QE,y,	n
tj−k

− P
y
0,tj−k

)
ϕi

∣∣}.

(28)

PROOF. Taylor method
Now we recall, for the Taylor method with s ∈ [tj , tj+1],

ET,y
s (ϕi) :=

q∑
k=0

1

k!
(
T Q

tj

)k(
Eϕi

(
X0,y))

(s − tj )
k.

We will estimate the error |Eϕi(X
0,y
s ) − E

T,y
s (ϕi)| by splitting it into∣∣Eϕi

(
X0,y

s

) − ET,y
s (ϕi)

∣∣
≤ ∣∣Eϕi

(
X0,y

s

) − Êy
s (ϕi)

∣∣ + ∣∣Êy
s (ϕi) − ET,y

s (ϕi)
∣∣,(29)

where

Êy
s (ϕi) :=

q∑
k=0

1

k!(Ttj )
k(Eϕi

(
X0,y))

(s − tj )
k, s ∈ [tj , tj+1)

is the truncated Taylor expansion of s �→ Eϕi(X
0,y
s ) of order q around tj . It is

straightforward that ∣∣Eϕi

(
X0,y

s

) − Êy
s (ϕi)

∣∣ ≤ C(s − tj )
q+1

and ∣∣Êy
s (ϕi) − ET,y

s (ϕi)
∣∣

≤
q∑

k=0

1

k!(s − tj )
k
∣∣[(Ttj )

k − (
T Q

tj

)k](
Eϕi

(
X0,y))∣∣.(30)
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Now, recall that T k
tj

(Eϕi(X
0,x)) ∈ S̄ , so it can be written as a sum of products of

terms of the form

Eg
(
X

0,x
tj

,Eϕ
(
X

0,x
tj

))
,

for some g ∈ C∞
b (RN ×R;R), and ϕ ∈ C∞

b (RN ;R). For this type of term, the error
in replacing expectations under P with expectations under Q	n can be bounded by∣∣Eg

(
X

0,x
tj

,Eϕ
(
X

0,x
tj

)) −EQ	n g
(
X

0,x
tj

,EQ	n ϕ
(
X

0,x
tj

))∣∣
≤ ∣∣Eϕ

(
X

0,x
tj

) −EQ	n ϕ
(
X

0,x
tj

)∣∣
+ ∣∣Eg

(
X

0,x
tj

,EQ	n ϕ
(
X

0,x
tj

)) −EQ	n g
(
X

0,x
tj

,EQ	n ϕ
(
X

0,x
tj

))∣∣.
Due to the form of T k(Eϕi(X

0,x)) ∈ S̄ , the error[
(Ttj )

k − (
T Q

tj

)k](
Eϕi

(
X0,y))

can be decomposed as a sum of products of such errors for different functions
g and ϕ. We define Hi,k to be the collection of these functions appearing in the
expression for T k(Eϕi(X

0,y)). Then the error∣∣[(Ttj )
k − (

T Q
tj

)k](
Eϕi

(
X0,y))∣∣

can be bounded by a constant multiple of∑
ψ∈Hi,k

∣∣(EQ	n −E)ψ
(
X

0,y
tj

)∣∣ = ∑
ψ∈Hi,k

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣.
So,

sup
s∈[tj ,tj+1]

∣∣Êy
s (ϕi) − ET,y

s (ϕi)
∣∣

≤ C

q∑
k=0

1

k!(tj+1 − tj )
k

d∑
i=0

∑
ψ∈Hi,k

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣,
and the largest term in the outer sum on the right-hand side occurs when k = 0, so
using this and defining H := ⋃d

i=1 Hi,0, the estimate (29) becomes

sup
s∈[tj ,tj+1]

∣∣Eϕi

(
X0,y

s

) − ET,y
s (ϕi)

∣∣
≤ C

{
(tj+1 − tj )

q+1 + q
∑
ψ∈H

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣}.

Lagrange method
Let z ∈ Ck+1([0, T ];R). Recall that we denote by

L
[
(t1, x1), . . . , (tk, xk)

]
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the Lagrange interpolating polynomial passing through the points

(t1, x1), . . . , (tk, xk).

It is a standard result (see, e.g., Chapter 25 in Abramovitz and Stegun [1]) that the
error in approximating z(t) with the polynomial L[(t1, z(t1)), . . . , (tk, z(tk))] for
any t ∈ [0, T ] is

(31) z(t) − L
[(

t1, z(t1)
)
, . . . ,

(
tk, z(tk)

)]
(t) = 1

k!z
(k)(ξ)

k∏
j=1

(t − tj ),

where ξ is some point in [0, T ]. Note also that we can write L[(t1, x1), . . . , (tk, xk)]
terms of the Lagrange basis polynomials Lj : [0, T ] →R as

L
[
(t1, x1), . . . , (tk, xk)

]
(t) =

k∑
j=1

xjLj (t),

where

Lj(t) =
k∏

i=1,i �=j

t − ti

tj − ti
.

So, the difference between polynomials interpolating different points on the same
time grid is given by

L
[
(t1, x1), . . . , (tk, xk)

]
(t) − L

[
(t1, y1), . . . , (tk, yk)

]
(t) =

k∑
j=0

(xj − yj )Lj (t)

and, in particular,

(32) sup
t∈[0,T ]

∣∣Lk[x1, . . . , xk](t) − Lk[y1, . . . , yk](t)
∣∣ ≤ C(T )

k∑
j=1

|xj − yj |.

Now, recall the definition of the Lagrange interpolation approximation is

E
L,y
t (ϕi) := L

[{(
tj−k,E

Q	n
ϕi

(
X

0,y
tj−k

))}j∧(r−1)
k=0

]
(t), t ∈ [tj , tj+1],

and consider the same object but with all expectations under the Wiener mea-
sure, P:

E
Ly,P
t (ϕi) := L

[{(
tj−k,Eϕi

(
X

0,y
tj−k

))}j∧(r−1)
k=0

]
(t), t ∈ [tj , tj+1].

Then we can split the error error Eϕi(X
0,y
t ) − E

y
t (ϕi) into[

Eϕi

(
X

0,y
t

) − E
L,y,P
t (ϕi)

] + [
E

Ly,P
t (ϕi) − E

L,y
t (ϕi)

]
.

We are able to control using the first term suing (31) and the second term using
(32). The result follows immediately. �
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3. Proof of Theorem 1.4. For the Taylor method, our proof is essentially the
same as that in [18], when f ∈ C∞

b (RN ;R). When f is Lipschitz, however, we
split the local errors differently. In [18], the error is split into3[

P
y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy

= [
P

y
tj ,tj+1

− P
E,y
tj ,tj+1

]
uy + [

P
E,y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy.

(33)

The term [P y
tj ,tj+1

− P
E,y
tj ,tj+1

]uy is then estimated in terms of the difference of the

generators of the processes X and EX applied to uy , which in turn depends on
an estimate on ∇2uy . In the uniformly elliptic case with f Lipschitz, in [18],
|∇2uy(t, x)| ≤ C(T − t)−1/2. However, in the Hörmander case, |∇2uy(t, x)| ≤
C(T − t)−m/2, where m is the order of the Hörmander condition, which could be
very large. Instead, here, we split the error into[

P
y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy

= [
Q

y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy + [

P
y
tj ,tj+1

− Q
y
tj ,tj+1

]
uy.

(34)

We control the term [Qy
tj ,tj+1

−Q
E,y
tj ,tj+1

]uy using only the Lipschitz constant of uy

which is uniformly bounded in time.

3.1. Smooth bounded terminal condition. We introduce the generator associ-
ated to the process X0,y

Ly
s := V0

(·,Eϕ0
(
X0,y

s

)) + 1

2

d∑
i=1

Vi

(·,Eϕi

(
X0,y

s

))2
,

and note that, as defined in (6), uy(t, x) = P
y
t,T f (x) solves the PDE(

∂t +Ly
t

)
uy(t, x) = 0,

uy(T , x) = f (x).
(35)

In the analysis of each scheme, we split the local error into[
P

y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy(tj+1, x) = [

P
y
tj ,tj+1

− P
E,y
tj ,tj+1

]
uy(tj+1, x)(36)

+ [
P

E,y
tj ,tj+1

− Q
E,y
tj ,tj+1

]
uy(tj+1, x).(37)

Equation (36) is the error due to approximating the Eϕi(X
0,y
t ) by E

y
t (ϕi), and (37)

is a one-step cubature error. Now,[
P

y
tj ,tj+1

− P
E,y
tj ,tj+1

]
uy(tj+1, x) = E

[
uy(

tj+1,X
tj ,x,y
tj+1

) − uy(
tj+1,

E X
tj ,x,y
tj+1

)]
= E

∫ tj+1

tj

(
Ly

s −LE,y
s

)
uy(

s,E X
tj ,x,y
s

)
ds.

3Recall that uy was defined in (6).
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Using the Lipschitz property of the coefficients, we get

∣∣(Ly
s −LE,y

s

)
uy(

s,E X
tj ,x,y
s

)∣∣ ≤ C
∥∥uy(s, ·)∥∥2,∞

d∑
i=0

∣∣Eϕi

(
X0,y

s

) − Ey
s (ϕi)

∣∣.
Now we recall from Lemma 2.2 that ‖uy(s, ·)‖2,∞ ≤ C when f ∈ C∞

b (RN ;R), so

(38)
[
P

y
tj ,tj+1

− P
E,y
tj ,tj+1

]
uy(tj+1, x) ≤ C

∫ tj+1

tj

d∑
i=0

∣∣Eϕi

(
X0,y

s

) − Ey
s (ϕi)

∣∣ds

Now, to control the right-hand side above, we use Lemma 2.4 and we split the
proof depending on the individual scheme.

3.1.1. Taylor method. Using Lemma 2.4, for the Taylor method, (38) becomes

[
P

y
tj ,tj+1

− P
ET ,y
tj ,tj+1

]
uy(tj+1, x)

≤ C(tj+1 − tj )

{
(tj+1 − tj )

q+1 + ∑
ψ∈H

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣}.
(39)

Summing up the local errors, the global error is then given by

[
P

y
0,tn

− Q
ET ,y,	n
tn

]
f (x)

≤ C

n−1∑
j=0

{
(tj+1 − tj )

q+2 + q(tj+1 − tj )
∑
ψ∈H

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣(40)

+ (tj+1 − tj )
(l+1)/2

}
.

The above holds for any f ∈ C∞
b (RN ;R). In particular, we can take f = ψ for any

ψ ∈ H. Doing this and repeatedly applying the discrete version of the Gronwall
inequality,

[
P

y
0,tn

− Q
E,y
0,tn

]
f (x) ≤ C exp

(
q

n−1∑
j=0

(tj+1 − tj )

)

×
n−1∑
j=0

{
(tj+1 − tj )

q+2 + (tj+1 − tj )
(l+1)/2}

.

(41)
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3.1.2. Lagrange interpolation method. Using Lemma 2.4, for the Lagrange
interpolation method, (38) becomes

[
P

y
tj ,tj+1

− P
EL,y
tj ,tj+1

]
uy(tj+1, x)

≤ C(tj+1 − tj )

{
1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
j∧(r−1)∑

k=0

∣∣(QET ,y,	n
tj−k

− P
y
0,tj−k

)
ϕi

∣∣}.

(42)

The global error is then given by

[
P

y
0,tn

− Q
EL,y
0,tn

]
f (x)

≤ C

n−1∑
j=0

[
(tj+1 − tj )

{
1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
j∧(r−1)∑

k=0

∣∣(QET ,y,	n
tj−k

− P
y
0,tj−k

)
ϕi

∣∣} + (tj+1 − tj )
(l+1)/2

]
.

(43)

Taking f = ϕi for any i = 0, . . . , d and using discrete Gronwall inequality, we
obtain[

P
y
0,tn

− Q
EL,y
0,tn

]
f (x)

≤ C exp

(
r

n−1∑
j=0

(tj+1 − tj )

)
(44)

×
n−1∑
j=0

{
(tj+1 − tj )

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k) + (tj+1 − tj )
(l+1)/2

}
.

3.2. Lipschitz terminal condition, m = 1. In this case, the estimate we have on
the first two derivatives of uy is ‖uy(t, ·)‖2,∞ ≤ C(T − t)−1/2. Using this estimate
we get, similar to (38),[

P
y
tj ,tj+1

− P
E,y
tj ,tj+1

]
uy(tj+1, x)

≤ C(T − tj+1)
−1/2

∫ tj+1

tj

d∑
i=0

∣∣Eϕi

(
X0,y

s

) − Ey
s (ϕi)

∣∣ds.
(45)
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3.2.1. Taylor method. The same arguments as the previous section give the
global error is

[
P

y
0,tn

− Q
ET ,y,	n
tn

]
f (x)

≤ C

n−2∑
j=0

(T − tj+1)
−1/2

{
(tj+1 − tj )

q+2 + (tj+1 − tj )

× ∑
ψ∈H

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣ + (tj+1 − tj )
(l+1)/2

}

+ [
P

y
tn−1,tn

− Q
ET ,y
tn−1,tn

]
f (x).

(46)

Since ψ ∈ C∞
b (RN ;R), in particular it is Lipschitz. The above estimate holds for

all Lipschitz f , so taking f = ψ ∈ H and using the discrete Gronwall inequality,
we get

[
P

y
0,tn

− Q
ET ,y,	n
tn

]
f (x)

≤ C exp

(
n−2∑
j=0

(T − tj+1)
−1/2(tj+1 − tj )

)

×
n−2∑
j=0

(T − tj+1)
−1/2[

(tj+1 − tj )
q+2 + (tj+1 − tj )

(l+3)/2]
+ [

P
y
tn−1,tn

− Q
ET ,y
tn−1,tn

]
f (x).

(47)

Now, we recall that in this setting we use the Kusuoka partition 	
γ
n with γ > l −1.

Using Lemma 2.3, we can see that
∑n−1

j=0(T − tj+1)
−1/2(tj+1 − tj ) is bounded

independently of n. For the other two sums, we also use Lemma 2.3 and for the
final term we use (20) to get

[
P

y
0,tn

− Q
ET ,y,	n
tn

]
f (x) ≤ C

(
n−(l−1)/2 + n−(q+1) + n−γ /2)

.

Noting γ > l − 1 gives the result (10).
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3.2.2. Lagrange interpolation method. The same arguments as the previous
section give the global error is[

P
y
0,tn

− Q
EL,y
0,tn

]
f (x)

≤ C

n−2∑
j=0

(T − tj+1)
−1/2

×
[
(tj+1 − tj )

{
1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k)

+
(r∧j)−1∑

k=0

∣∣(QEL,y,	n
tj−k

− P
y
0,tj−k

)
ϕi

∣∣} + (tj+1 − tj )
(l+1)/2

]

+ [
P

y
tn−1,tn

− Q
EL,y
tn−1,tn

]
f (x).

(48)

Since ϕi ∈ C∞
b (RN ;R), in particular it is Lipschitz. The above estimate holds for

all Lipschitz f , so taking f = ϕi , i = 0, . . . , d and using the discrete Gronwall
inequality, we get[

P
y
0,tn

− Q
EL,y,	n
tn

]
f (x)

≤ C exp

(
r

n−2∑
j=0

(T − tj+1)
−1/2(tj+1 − tj )

)

×
n−2∑
j=0

[
(T − tj+1)

−1/2

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k) + (tj+1 − tj )
(l+1)/2

]

+ [
P

y
tn−1,tn

− Q
EL,y
tn−1,tn

]
f (x).

(49)

By part 1 Lemma 2.3,

n−2∑
j=0

(T − tj+1)
−1/2(tj+1 − tj )

(l+1)/2 ≤ Cn−(l−1)/2(1 − r/n)−l/2.

Now, we recall that in this setting we use the modified Kusuoka partition 	
γ,r
n with

γ > l − 1. We note

n−2∑
j=0

(T − tj+1)
−1/2 1

((j + 1) ∧ r)!
j∧(r−1)∏

k=0

(tj+1 − tj−k)

=
n−2∑
j=0

(T − tj+1)
−1/2(tj+1 − tj ) ×

[
1

((j + 1) ∧ r)!
j∧(r−1)∏

k=1

(tj+1 − tj−k)

]
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with the left-hand term in the product above being bounded uniformly in n by part
1, Lemma 2.3 and the second term being less than n−(r−1) by part 2 of the same
lemma. For the final term in (49), we use (20) to get[

P
y
tn−1,tn

− Q
EL,y
tn−1,tn

]
f (x) ≤ C(n − r)−γ /2,

then noting that

(n − r)−γ /2 = n−γ /2(1 − r/n)−γ /2 ≤ n−(l−1)/2(1 − r/n)−l/2

when γ ∈ (l − 1, l), we finally obtain[
P

y
0,tn

− Q
EL,y,	

γ,r
n

tn

]
f (x) ≤ C

(
n−(l−1)/2(1 − r/n)−l/2 + n−(r−1)).

This proves the result (12).

3.3. Lipschitz terminal condition, m ≥ 2. When f is Lipschitz and m ≥ 2, we
split the local error into[

P
y
tj ,tj+1

− Q
E,y,	n
tj ,tj+1

]
u(tj+1, x) = [

Q
y,	n
tj ,tj+1

− Q
E,y,	n
tj ,tj+1

]
u(tj+1, x)(50)

+ [
P

y
tj ,tj+1

− Q
y,	n
tj ,tj+1

]
u(tj+1, x).(51)

Equation (50) is the error due to approximating the Eϕi(X
0,y
t ) by E

y
t (ϕi), and (51)

is a one-step cubature error. For the term in (50), we note that∣∣[Qy,	n
tj ,tj+1

− Q
E,y,	n
tj ,tj+1

]
uy(tj+1, x)

∣∣
= EQ	n

∣∣uy(
tj+1,X

tj ,x,y
tj+1

) − uy(
tj+1,

E X
tj ,x,y
tj+1

)∣∣
≤ ∥∥∇uy(tj+1, ·)

∥∥∞EQ	n

∣∣Xtj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣∣.
(52)

Now, using the Lipschitz property of the coefficients, we note that

EQ	n

∣∣Xtj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣∣
≤

NCub∑
k=1

λk

d∑
i=0

∫ tj+1

tj

|Vi(X
tj ,x,y
s (ωk),Eϕi

(
X0,y

s

)
− Vi

(E
X

tj ,x,y
s (ωk),Es(ϕi)

)|dωi
k(tj , tj+1)(s).

We recall the rescaled path ωi
k(tj , tj+1)(s) = √

tj+1 − tjω
i
k(

s−tj
tj+1−tj

), so that, under
the assumption that ωk is absolutely continuous,

sup
s∈[tj ,tj+1]

∣∣∣∣ d

ds
ωk(tj , tj+1)(s)

∣∣∣∣ ≤ 1√
tj+1 − tj

sup
s∈[0,1]

∣∣∣∣ d

ds
ωk(s)

∣∣∣∣.
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So, there exists a constant C which depends on

max
k=1,...,NCub

sup
s∈[0,1]

∣∣∣∣ d

ds
ωk(s)

∣∣∣∣
such that

EQ	n

∣∣Xtj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣∣
≤ C

1√
tj+1 − tj

×
d∑

i=0

∫ tj+1

tj

EQ	n

∣∣Xtj ,x,y
s −E X

tj ,x,y
s

∣∣ + ∣∣Eϕi

(
X0,y

s

) − Es(ϕi)
∣∣ds.

Then, using Gronwall’s inequality, we have

EQ	n

∣∣Xtj ,x,y
tj+1

−E X
tj ,x,y
tj+1

∣∣ ≤ C
√

tj+1 − tj sup
s∈[tj ,tj+1]

∣∣Eϕi

(
X0,y

s

) − Es(ϕi)
∣∣.

Now, going back to (52), we have∣∣[Qy,	n
tj ,tj+1

− Q
E,y,	n
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ C

√
tj+1 − tj sup

s∈[tj ,tj+1]
∣∣Eϕi

(
X0,y

s

) − Es(ϕi)
∣∣.(53)

From this point on, the arguments depend on the individual scheme.

3.3.1. Taylor method. Using Lemma 2.4, (53) becomes∣∣[Qy,	n
tj ,tj+1

− Q
ET ,y,	n
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ C(tj+1 − tj )

1/2
{
(tj+1 − tj )

q+1

+ ∑
ψ∈H

∣∣(QET ,y,	n
tj

− P
y
0,tj

)
ψ(y)

∣∣}.

(54)

Since ψ ∈ C∞
b (RN ;R), we can use the global error from the last section for smooth

terminal conditions contained in (41) to obtain∣∣[Qy,	n
tj ,tj+1

− Q
ET ,y,	n
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ C(tj+1 − tj )

1/2

×
{
(tj+1 − tj )

q+1 +
j∑

i=0

[
(ti+1 − ti)

q+2 + (ti+1 − ti)
(l+1)/2]}

.

(55)
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Now, we simply use that tj+1 − tj ≤ C/n to get∣∣[Qy,	n
tj ,tj+1

− Q
ET ,y,	n
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ Cn−1/2{

n−(q+1) + n
{
n−(q+2) + n−(l+1)/2}}

≤ C
(
n−(q+3/2) + n−l/2)

.

(56)

Combining with the local cubature errors and summing up, we get the global error[
P

y
0,tn

− Q
ET ,y,	n
tn

]
f (x) ≤ C

(
n−(q+1/2) + n−(l−2)/2)

.

3.3.2. Lagrange interpolation method. Here, we only consider the modified
Kusuoka partition 	

γ,r
n . Using Lemma 2.3, part 2 and Lemma 2.4, inequality (53)

becomes∣∣[Qy
tj ,tj+1

− Q
EL,y
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ C(tj+1 − tj )

1/2

{
n−r +

j∧(r−1)∑
k=0

∣∣(QEL,y,	n
tj−k

− P
y
0,tj−k

)
ϕi

∣∣}.

(57)

Using the local error for functions ϕi ∈ C∞
b (RN ;R) contained in (44), we get∣∣[Qy

tj ,tj+1
− Q

EL,y
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ C(tj+1 − tj )

1/2

{
n−r + r

j∑
i=0

{
n−r + (ti+1 − ti)

(l+1)/2}}
.

(58)

Now, we simply use that tj+1 − tj ≤ C/n to get∣∣[Qy
tj ,tj+1

− Q
EL,y
tj ,tj+1

]
uy(tj+1, x)

∣∣
≤ Cn−1/2{

n−r + rn
{
n−r + n−(l+1)/2(1 − r/n)−l/2}}

≤ C
(
n1/2−r + n−l/2(1 − r/n)−l/2)

.

(59)

Combining with the local cubature errors and summing up, we get the global error[
P

y
0,tn

− Q
EL,y,	

γ,r
n

tn

]
f (x) ≤ C

(
n3/2−r + n−(l−2)/2(1 − r/n)−l/2)

.

4. Numerical examples.

4.1. Example 1. In this section, we implement and compare both algorithms.
We consider the following example with dimensions N = d = 1:

X
0,x
t = x +

∫ t

0
E

[
X0,x

s

]
ds + Bt,
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which has the explicit solution

Xx
t = xet + Bt .

In this case, EX
0,x
t = xet so the Taylor approximation of order q is easy to com-

pute:

T q
t

(
EX

0,x
t

) =
q∑

k=0

x

k! t
k.

We choose the Lipschitz terminal function f (x) = x+ := max{x,0} and, by inte-
grating the Gaussian density, we can compute

E
(
X

0,x
t

)+ = √
tφ

(
xet

√
t

)
+ xet

(
1 − �

(
−xet

√
t

))
,

where φ and � are the density and cumulative distribution function, respectively,
of a standard Gaussian random variable. We use the cubature formula of degree 5
contained in Lyons and Victoir [36]. We use a fourth-order adaptive Runge–Kutta
scheme to solve the ODEs. We choose our parameters in order to achieve the op-
timal rate of convergence as given by Theorem 1.4. Since the coefficients are uni-
formly elliptic, expect to be able to achieve order 2 convergence with a cubature
formula of degree 5. So, we only need to choose q ≥ 1 and γ ∈ (4,5) to achieve
quadratic convergence in the Taylor method, and r ≥ 3 in the Lagrange interpola-
tion method. We choose the parameters (x, T , γ, q, r) = (0.5,10,4.5,2,3) and the
results are presented in Figure 1. We fit a line to the last four points on the log-log
error plot and calculate its gradient as an estimate of the rate of convergence.

We see that both methods achieve the expected quadratic convergence rate. In
this simple example, the convergence is quite smooth and the Taylor method per-
forms better than the Lagrange interpolation method.

4.2. Example 2. We implement an example where the coefficients are not uni-
formly elliptic and N = d = 2. We write X

0,x
t = (X1

t ,X
2
t ) to lighten notation

slightly.
The example we consider is(

X1
t

X2
t

)
=

(
x1
x2

)
+

∫ t

0

([
2 + sin

(
EX2

s

)]
X1

t

)
◦ dB1

s +
∫ t

0

(
X2

t

X1
t

)
◦ dB2

s ,

where the coefficients are

V0 ≡ 0, V1
(
x1, x2, x

′) =
(

2 + sin
(
x′)

x1

)
,

V2
(
x1, x2, x

′) =
(
x2
x1

)
, ϕ1(x1, x2) = x2,
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FIG. 1. log–log error plot comparison between the Lagrange interpolation and Taylor methods for
Example 1. The gradient of each solid line is given by a linear regression on the last 5 points.

for all (x1, x2, x
′) ∈ R3. We note that at x1 = 0 the coefficients degenerate. Second,

we note that

V[(1,2)]
(
x1, x2, x

′) =
(

x1
2 + sin

(
x′) − x1

)
.

Since x1 and 2 + sin(x′) − x1 cannot both be zero at the same time, we see
that V1, V2 and V[(1,2)] span R2. The coefficients therefore satisfy Assumption 1.3
(A1), the uniform strong Hörmander condition, for m = 2. For m = 2, with a cu-
bature formula of degree 5, we expect to achieve a convergence rate of 3/2 ac-
cording to Theorem 1.4. To do so, we have to choose γ ∈ (4,5) and r > 7/2.
We choose the parameters (x1, x2, T , γ, r) = (1,0.5,1,4.5,4), with the terminal
function f (x) = x+. We implement the cubature formula of degree 5 in dimension
d = 2 from Lyons and Victoir [36]. In this case, the cubature measure is supported
on NCub = 13 paths. We could not find an explicit solution, so we compare the cu-
bature approximation to a Monte Carlo approximation with Euler–Maruyama dis-
cretisation. The results are presented in Figure 2. In this example, the convergence
is not as smooth as Example 1, but the log-log error plot looks approximately linear
after 7 steps. After this, the performance of each algorithm is remarkably similar.
Empirically we observe second-order convergence, whereas Theorem 1.4 predicts
a rate of 3/2.
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FIG. 2. log–log error plot comparison between the Lagrange interpolation and Taylor methods for
Example 2. The gradient of each solid line is given by a linear regression on the last 5 points.

APPENDIX: DERIVATIVE ESTIMATES FOR TIME-INHOMOGENEOUS
PARABOLIC PDES

In this section we obtain estimates on the derivatives of the solution of the linear
parabolic partial differential equation (PDE)

(∂t +Lt )u(t, x) = 0, (t, x) ∈ [0, T ) ×RN,

u(T , x) = f (x), x ∈ RN,
(60)

where f is either Lipschitz or continuous and bounded, and Lt is the time-
inhomogeneous differential operator, written in Hörmander form,

Lt = W0(t) + 1

2

d∑
i=1

Wi(t)
2.

The connection between parabolic PDEs and stochastic differential equations
has been well studied. Under various types of conditions on the vector fields
W0, . . . ,Wd and terminal condition f , the solution to (60) is given by u(t, x) =
E[f (X

t,x
T )], where (Xt,x

s )s∈[t,T ] solves the following Stratonovich SDE driven by
a Brownian motion B = (B1, . . . ,Bd), with the convention B0

t = t ,

(61) Xt,x
s = x +

d∑
i=0

∫ s

t
Wi

(
u,Xt,x

u

) ◦ dBi
u.
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In the homogeneous case, Kusuoka and Stroock [31] under a uniform Hörmander
condition and subsequently Kusuoka [30] under the weaker UFG condition, estab-
lish sharp estimates on the derivatives of the solution of (60). Crisan and Delarue
[9] extend this analysis to semi-linear equations. To our knowledge, these results
have not been obtained without using Malliavin calculus.

When the vector fields defining the time-inhomogeneous stochastic differen-
tial equation are smooth in time and space, we can consider the space-time pro-
cess (t,X

0,x
t )t∈[0,T ] on RN+1 and adapt existing results in the literature. There are

three main works we draw on: we first show how to adapt the results of Kusuoka
[30] to derive gradient bounds in the directions of the vector fields except W0;
we then adapt an argument from Crisan and Delarue [9] to prove that the time-
inhomogeneous semigroup is a generalised classical solution to a parabolic PDE,
and finally using this PDE as a tool, we adapt a result from Crisan, Manolarakis
and Nee [15] to derive gradient bounds in the direction of all the vector fields,
including W0.

We introduce the first assumption which we make throughout this section.

ASSUMPTION A.1. W0, . . . ,Wd ∈ C∞
b ([0, T ] ×RN ;RN).

Under this assumption, (61) has a unique strong solution. Now, let us define
the space–time process (X̃

(t,x)
s )s∈[t,T ] := (s,Xt,x

s )s∈[t,T ], taking values in RN+1,
which solves the equation

(62) X̃(t,x)
s =

(
t

x

)
+

∫ s

t

(
1

W0
(
X̃(t,x)

u

)) du +
d∑

i=1

∫ s

t

(
0

Wi

(
X̃(t,x)

u

)) ◦ dBi
u.

Defining x̃ := (t, x) ∈ RN+1 and W̃0, . . . , W̃d :RN+1 →RN+1 as follows:

∀x̃ ∈ RN+1 : W̃0(x̃) :=
(

1
W0(x̃)

)
, W̃i(x̃) :=

(
0

Wi(x̃)

)
for i = 1, . . . , d,

we can rewrite (62) more compactly as

(63) X̃x̃
s = x̃ +

d∑
i=0

∫ s

t
W̃i

(
X̃x̃

u

) ◦ dBi
u.

As we shall see, by working under the relaxed ŨFG condition (see Assump-
tion A.2), the solution of the PDE (60) is not necessarily differentiable in each
co-ordinate direction in RN . The solution of (60) remains differentiable in certain
directions, determined by the vector fields W̃0, . . . , W̃d . We now explain what we
mean by such a directional derivative.
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We can identify vector fields, U : Rm → Rm with differential operators acting
on sufficiently smooth functions ϕ :Rm →R by

(64) ∀y ∈ Rm : Uϕ(y) := ∇ϕ(y) · U(y) ≡
m∑

i=1

Ui(y)∂yi
ϕ(y).

We can define a directional derivative of ϕ in the direction U , even when ∂yj
ϕ does

not exist classically for all j = 1, . . . ,m. Let ws(y) be the solution to the ODE

dws(y)

ds
= U

(
ws(y)

)
, s ≥ 0,

w0(y) = y.

(65)

We say that ϕ is differentiable in the direction U if the function s �→ ϕ(ws(y)) is
differentiable at 0. Then we denote

Uϕ(y) = d

ds
ϕ

(
ws(y)

)|s=0,

which coincides with (64) when ϕ ∈ C1(Rm;R). In fact, we will see that the semi-
group associated to equation (61) is differentiable in directions determined by com-
mutators of the vector fields. The Lie bracket, or commutator, between two vector
fields U and W is then defined the differential operator

[U,W ]ϕ := U(Wϕ) − W(Uϕ),

which can be identified with the vector field

[U,W ](y) = ∂W(y)U(y) − ∂U(y)W(y),

where ∂W(y) := (∂yj
W i(y))1≤i,j≤m is the Jacobian matrix of W and similarly for

∂U .
Since we have assumed the vector fields W̃0, . . . , W̃d to be smooth, we can

repeatedly take commutators of them. Recall the notation A for multi-indices on
{0, . . . , d} from Section 1.1. We define W̃[α], for α ∈A inductively by forming Lie
brackets on RN+1:

W̃[i] := W̃i, W̃[α∗i] := [W̃[α],Wi] for i = 0 . . . , d,α ∈A.

We note that for all α ∈ A1(m) [i.e., for α �= (0)] the first component of the vector
field W̃[α] is zero. So for α ∈ A1(m), a derivative in the direction W̃[α] of a function
RN+1 � (t, x) �→ φ(t, x) ∈ R only acts in the x variable. We can therefore write
{W̃[α](t) : α ∈ A1(m)} and think of these as differential operators parametrised by
t and acting in the x variable. Only the vector field W̃0 acts in the t-direction.

With these concepts in mind, we can now introduce the second assumption we
make on the vector fields.
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ASSUMPTION A.2. ŨFG(m) condition: there exists a positive integer m such
that, for all α ∈ A with ‖α‖ > m, there exist ϕα,β ∈ C∞

b ([0, T ] ×RN ;R) with

W̃[α](t, x) = ∑
β∈A1(m)

ϕα,β(t, x)W̃[β](t, x).

REMARK A.3. Assumption A.2 is not sufficient to obtain the regularity of
the law of the associated nonhomogeneous (time dependent) diffusion process X.
Indeed, as observed in [7], the process X may not have a (smooth) density with
respect to the Lebesgue measure even when the vector fields W0, . . . ,Wd satisfy
the Hörmander condition. However, as we show below, Assumption A.2 suffices
to allows us to derive gradient bounds of the corresponding (time-inhomogeneous)
semigroup. These results hinge on the integration by parts formulae included in
Theorem A.7 below which give representations of directional derivatives

W̃[α1](t) · · · W̃[αn](t)(Pt,sf )(x)

of the semigroup Pt,sf . In order to duplicate the results in [7], we would need to
deduce integration by parts formulae (and subsequent bounds) for quantities of the
form

Pt,s

(
W̃[α1](t) · · · W̃[αn](t)f

)
(x).

For classical SDEs, such results were obtained in the paper [15]. As the differen-
tiability of the transition kernel of the solution time-inhomogeous stochastic dif-
ferential equation (61) is not required for the analysis of the cubature method (or
for it to work), we did not need to develop the corresponding integration by parts
formulae here.

A.1. Kusuoka–Stroock processes. This class of process was introduced by
Kusuoka and Stroock [32]. They will appear as Malliavin weights in our inte-
gration by parts formulas. The definition and properties we give here record the
regularity and growth of these processes with respect to different parameters. The
results allow one to develop integration by parts formulas in a systematic and trans-
parent way, which automatically leads to nice derivative estimates.

DEFINITION A.4 (Kusuoka–Stroock processes). Let E be a separable Hil-
bert space and let r ∈ R, M ∈ N. We denote by Kr (t,E,M) the set of functions:
�t : (t, T ] ×RN →DM,∞(E) satisfying the following:

1. For all s ∈ (t, T ], the map RN � x �→ �t(s, x) ∈ Lp(�) is M-times con-
tinuously differentiable for all p ≥ 1.

2. For any p ≥ 1, any multi-index α on {1, . . . ,N} and m ∈N with |α|+m ≤
M , we have

sup
x∈RN

sup
s∈(t,T ]

(s − t)−r/2∥∥∂α
x �t(s, x)

∥∥
Dm,p(E) < ∞.(66)
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REMARK A.5. 1. The number M denotes how many times the Kusuoka–
Stroock function can be differentiated and r measures the growth in (s − t).

2. This definition is slightly different to that in [32]: here our processes are
defined on (t, T ] instead of (0, T ] and we require continuity in Lp(�) rather than
almost surely.

We record here some properties which help when building Malliavin weights
later.

LEMMA A.6. (a) If �t ∈Kq
r (t,R,M) is F-adapted, and we define

�i
t (s, x) :=

∫ s

t
�t (u, x) dBi

u

for i ∈ {1, . . . , d} and �(s, x) := ∫ s
t �t (u, x) du, then �i

t ∈ Kq
r+1(t,R,M) and

�t ∈Kq
r+2(t,R,M).

(b) If �t,i ∈ Kqi
ri (t,R,Mi), i = 1, . . . , n, then

n∑
i=1

�t,i ∈ Kmaxi qi

mini ri

(
t,R,min

i
Mi

)
and

∏n
i=1 �t,i ∈ Kq1+···+qn

r1+···+rN
(t,R,mini Mi).

PROOF. The proof is essentially the same as the proof of Lemma 75 in [15].
�

A.2. Integration by parts and derivative bounds. We are now in a position
to prove the main integration by parts result.

THEOREM A.7. Assume that ŨFG(m) holds and fix s ∈ (t, T ]. Then, for any
α1, . . . , αn ∈ A1(m), there exist �1

t,α1,...,αn
∈ K0(t,R) and �2

t,α1,...,αn
∈ K0(t,R

N)

such that for f ∈ C∞
b (RN ;R),

W̃[α1](t) · · · W̃[αn](t)(Pt,sf )(x)

= (s − t)−
‖α1‖+···+‖αn‖

2 E
[
f

(
Xt,x

s

)
�1

t,α1,...,αn
(s, x)

](67)

and

W̃[α1](t) · · · W̃[αn](t)(Pt,sf )(x)

= (s − t)−
‖α1‖+···+‖αn−1‖

2 E
[∇f

(
Xt,x

s

)
�2

t,α1,...,αn
(s, x)

]
.

(68)

Moreover, for f continuous and bounded or Lipschitz, Pt,sf (x) is differentiable
in the directions {W̃[α](t) : α ∈ A1(m)} with

(69) sup
x∈RN

∣∣W̃[α1](t) · · · W̃[αn](t)(Pt,sf )(x)
∣∣ ≤ C‖f ‖∞(s − t)

−(|α1|+···+|αn|)
2
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and

(70) sup
x∈RN

∣∣W̃[α1](t) · · · W̃[αn](t)(Pt,sf )(x)
∣∣ ≤ C‖f ‖Lip(s − t)

1−(|α1|+···+|αn|)
2 ,

in each case, respectively.

REMARK A.8. We emphasise here that each W̃[α1](t) is a differential oper-
ator acting in x, parametrised by t , applied to the function x �→ Pt,sf (x). These
results are not valid, for example, W̃[α1](u)Pt,sf (x) when u �= t . We develop es-
timates on the derivative of (t, x) �→ Pt,sf (x) as a function on [0, T ] × RN in
Proposition A.15.

PROOF OF THEOREM A.7. Since the ŨFG condition is precisely the UFG
condition introduced in Kusuoka [30] on RN+1, we can use the results there.
We use the notation P̃sg(x̃) := E[g(X̃x̃

s )] for a suitably integrable function g :
RN+1 →R. By Kusuoka [30], Lemma 8 (see also [15], Corollary 32), we know for
any α1, . . . , αn ∈ A1(m), there exist �1

α1,...,αn
∈ K0(R) and �2

α1,...,αn
∈ K0(R

N+1)

such that for g ∈ C∞
b (RN+1;R),

W̃[α1](t) · · · W̃[αn](t)(P̃sg)(x̃) = (s − t)−
‖α1‖+···+‖αn‖

2 E
[
g
(
X̃x̃

s

)
�1

α1,...,αn
(s, x̃)

]
and

W̃[α1](t) · · · W̃[αn](t)(P̃sg)(x̃)

= (s − t)−
‖α1‖+···+‖αn−1‖

2 E
[∇g

(
X̃x̃

s

)
�2

α1,...,αn
(s, x̃)

]
.

Now for any function f ∈ C∞
b (RN ;R), we can extend it to g ∈ C∞

b (RN+1;R) by
g(t, x) := f (x). We then immediately have the integration by parts formulas (67)
and (68). We get the bound stated in (69) with the constant

C = sup
s∈[t,T ]

sup
x∈RN

E
∣∣�1

t,α1,...,αn
(s, x)

∣∣,
and a standard approximation argument gives the same estimate for bounded and
continuous f . Similarly, we obtain the bound in (70) with constant

C = sup
s∈[t,T ]

sup
x∈RN

E
∣∣�2

t,α1,...,αn
(s, x)

∣∣,
and a standard approximation argument allows one to obtain the same bound for
f Lipschitz with ‖∇f ‖∞ replaced by ‖f ‖Lip. �
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A.3. Uniform Hörmander setting. In this section, let us consider a stronger
assumption than the ŨFG(m) condition. Suppose that a uniform strong Hörmander
condition of order m holds, that is, we have the following.

ASSUMPTION A.9. USH(m): There exists δ > 0 and m ∈ N such that for all
ξ ∈ RN ,

inf
(t,z)∈[0,T ]×RN

∑
α∈A≥1(m)

〈
W[α](t, z), ξ

〉2 ≥ δ|ξ |2.

In this case, we recover differentiability of x �→ Pt,T f (x) in all directions.

COROLLARY A.10. Assume USH(m) holds. Let η be a multi-index on
{1, . . . ,N} and let f be Lipschitz. Then

sup
x∈RN

∣∣∂η(Pt,T f )(x)
∣∣ ≤ C‖f ‖Lip(T − t)−(|η|−1)m/2.

PROOF. First, let f ∈ C∞
b (RN ;R). For the first-order derivatives,

∂i
xE

[
f

(
X

t,x
T

)] =
N∑

k=1

E
[
∂kf

(
X

t,x
T

)
∂i
x

(
X

t,x
T

)k]
.

For the higher order derivatives, we note that there exist F i
α ∈ C∞

b ([0, T ]×RN ;R)

such that

ej = ∑
α∈A≥1(m)

F j
α (t, x)W[α](t, x),

where ej is the j th standard basis vector in RN . To see this, define W(t, x) to be
the N ×card(A≥1(m)) matrix whose columns are the vector fields (W[α])α∈A≥1(m)

evaluated at (t, x). USH(m) guarantees that WW�(t, x) is invertible. Then

Fj
α (t, x) := (

W�[
WW�]−1

(t, x)ej

)
α

satisfies the above relation. Then, for the second-order derivatives,

∂(j,i)
x E

[
f

(
X

t,x
T

)] =
N∑

k=1

∂j
xE

[
∂kf

(
X

t,x
T

)
∂i
x

(
X

t,x
T

)k]

=
N∑

k=1

∑
α∈A≥1(m)

F j
α (t, x)W[α](t)

(
E

[
∂kf

(
X

t,x
T

)
∂i
x

(
X

t,x
T

)k])
.
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We note that ∂i
x(X

t,x
T )k ∈ K0(t,R), so we can apply the IBPF in Kusuoka [30]

Lemma 8 to obtain the existence of Ht,α ∈ K0(t,R) such that

∂(j,i)
x E

[
f

(
X

t,x
T

)]
=

N∑
k=1

∑
α∈A≥1(m)

F j
α (t, x)(T − t)−|α|/2E

[
∂kf

(
X

t,x
T

)
Ht,α(T , x)

]

= (T − t)−m/2
N∑

k=1

E
[
∂kf

(
X

t,x
T

)
H̄t,i,j,k(T , x)

]
,

where

H̄t,i,j,k(T , x) := ∑
α∈A≥1(m)

(T − t)(m−|α|)/2Fj
α (t, x)Ht,α(T , x) ∈ K0(t,R),

and we have used that for all α ∈A≥1(m), ‖α‖ = |α| ≤ m. We get the bound

sup
x∈RN

∣∣∂(j,i)
x E

[
f

(
X

t,x
T

)]∣∣ ≤ (T − t)−m/2‖∇f ‖∞
N∑

k=1

sup
x∈RN

E
∣∣H̄t,i,j,k(T , x)

∣∣.
We can iterate this argument to arbitrary order. Then we can get the bound for a
Lipschitz f using the same approximation as before. �

A.4. Connection with PDE. In this section we make use of the integration by
parts formulae of Theorem A.7 to extend the notion of classical solution to the PDE
(60) to the case when the solution is not classically differentiable in all directions.
The notation and arguments in this section closely follows Crisan and Delarue
[9], who provide a similar notion of solution to semilinear PDEs with coefficients
which do not depend on time. The idea is very simple: it is a standard result that
for a terminal condition f ∈ C∞

p (RN ;R) the PDE (60) has a classical solution.
For f ∈ Cp(RN ;R), we consider a sequence of smooth approximations (fl)l≥1

to which we can associate solutions (vl)l≥1 to (60). For each vl , we can use the
integration by parts formula of Theorem A.7 to write the derivatives W 2

i (t)vl(t, x)

in a form which does not depend on any derivatives of fl . We then show that the
PDE still holds in the limit l → ∞.

We introduce some function spaces we will need to define what we mean by
a classical solution. We denote by B(0,R) the open ball in RN of radius R > 0
centred at zero. Let φ ∈ C∞

b ([0, T − 1/r] ×B(0,R);R) and define

‖φ‖W̃0,1[0,T −1/R]×B(0,R);∞
:= ‖φ‖[0,T −1/R]×B(0,R);∞ + ∥∥W̃0(t)φ

∥∥[0,T −1/R]×B(0,R);∞.
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Define D1,∞
W̃0

([0, T − 1/R] × B(0,R)) as the closure of C∞
b ([0, T − 1/R] ×

B(0,R);R) in Cb([0, T − 1/R] × B̄(0,R);R) with respect to the norm

‖ · ‖W̃0,1[0,T −1/R]×B(0,R);∞. And define

D1,∞
W̃0

([0, T
) ×RN) := ⋂

R≥1

D1,∞
W̃0

([0, T − 1/R] ×B(0,R)
)
.

Now, take ψ ∈ C∞
b (RN ;R) and, for any ball B, define

‖ψ‖W(t),1
B,∞ := ‖ψ‖B,∞ +

d∑
i=1

∥∥Wi(t)ψ
∥∥
B,∞

and

‖ψ‖W(t),2
B,∞ := ‖ψ‖W(t),1

B,∞ +
d∑

i=1

∥∥W 2
i (t)ψ

∥∥
B,∞.

We define D2,∞
W(t)(B) to be the closure of C∞

b (B;R) in Cb(B̄;R) with respect to

‖ · ‖W(t),2
B,∞ and

D2,∞
W(t)

(
RN ) := ⋂

R≥1

D2,∞
W(t)

(
B(0,R)

)
.

DEFINITION A.11 (Classical solution). We define a function v : [0, T ] ×
RN → R to be a classical solution to (60) if the following three conditions are
satisfied:

1. v ∈ D1,∞
W̃0

([0, T ) ×RN) and for each t ∈ [0, T ), v(t, ·) ∈ D2,∞
W(t)(R

N), such
that for i = 1, . . . , d ,

[0, T ) ×RN � (t, x) �→ (
Wi(t)v(t, x),W 2

i (t)v(t, x)
)

is a continuous function.
2. For all (t, x) ∈ [0, T ) ×RN ,

W̃0v(t, x) + 1

2

d∑
i=1

W 2
i v(t, x) = 0.

3. lim(t,y)→(T ,x) v(t, y) = f (x) for all x ∈ RN .

REMARK A.12. 1. Note that since, in general, the space D2,∞
W(t)(R

N) is dif-
ferent for each t ∈ [0, T ), our definition requires that v(t, ·) belongs to a different
space at each time t ∈ [0, T ).
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2. If φ ∈ C1,2([0, T ) × RN ;R), then φ ∈ D1,∞
W̃0

([0, T ) × RN) and φ(t, ·) ∈
D2,∞

W(t)(R
N) for all t ∈ [0, T ). Moreover,

‖φ‖W̃0,1[0,T −1/R]×B(0,r);∞ ≤ CR

{‖φ‖[0,T −1/r]×B(0,r);∞ + ‖∂tφ‖[0,T −1/R]×B(0,R);∞
+ ‖∇φ‖[0,T −1/R]×B(0,R);∞

}
,

‖φ‖W(t),2
B(0,R),∞ ≤ CR

{∥∥φ(t, ·)∥∥B(0,R);∞ + ∥∥∇φ(t, ·)∥∥B(0,R);∞
+ ∥∥∇2φ(t, ·)∥∥B(0,R);∞

}
,

where

CR = 1 + ‖W0‖[0,T −1/R]×B(0,R);∞

+
d∑

i=1

∥∥Wi(t, ·)
∥∥
B(0,R);∞ + ∥∥∂Wi(t, ·)

∥∥
B(0,R);∞.

It is then clear that our definition truly is an extension of the usual definition of
classical solution.

With this definition in hand, we have the following theorem.

THEOREM A.13. Assume that ŨFG(m) holds and let f : RN → R be con-
tinuous with polynomial growth. Then v(t, x) := Pt,T f (x) is a classical solution
to (60). It is also the unique solution amongst those which satisfy the following
polynomial growth condition: there exists q > 0 such that∣∣v(t, x)

∣∣ ≤ C
(
1 + |x|)q ∀t ∈ [0, T ], x ∈RN.

The proof of uniqueness relies on an Itô formula valid for functions differen-
tiable in the directions of the vector fields. We will also need a stochastic Taylor
expansion based on this formula in Section A.6 for the analysis of the error in the
cubature on Wiener space algorithm.

LEMMA A.14. Let v : [0, T ) × RN → R satisfy part (1) of Definition A.11
and be of at most polynomial growth. Then, for all u ∈ [t, T ),

v
(
u,Xt,x

u

) = v(t, x) +
∫ u

t

[
W̃0(s)v

(
s,Xt,x

s

) + 1

2

d∑
i=1

W 2
i (s)v

(
s,Xt,x

s

)]
ds

+
d∑

i=1

∫ u

t
Wi(s)v

(
s,Xt,x

s

)
dBi

s .

(71)
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PROOF. This can be proved by a mollification argument as in Proposition 7.1
in [9]. �

We can now prove Theorem A.13.

PROOF OF THEOREM A.13. Existence: Denote by (fl)l≥1 a sequence of mol-
lifications of f . Since f is continuous, fl converges to f uniformly on compact
subsets of RN . Since vl(t, x) − v(t, x) = E[fl(X

t,x
T ) − f (X

t,x
T )], it is clear that

vl converges to v uniformly on compact subsets of [0, T ] × RN . Therefore, v is
continuous up to the boundary at t = T . Now, consider the integration by parts
formula for Wivl and W 2

i vl provided by (67) as part of Theorem A.7. We get

Wivl(t, x) = (T − t)−1/2E
[
fl

(
X

t,x
T

)
�1

t,(i)(T , x)
]
,

W 2
i vl(t, x) = (T − t)−1E

[
fl

(
X

t,x
T

)
�1

t,(i,i)(T , x)
]
,

where, crucially, �1
t,(i), �

1
t,(i,i) are independent of fl . Then, considering the differ-

ences Wivl(t, x)−Wivm(t, x) and W 2
i vl(t, x)−W 2

i vm(t, x) over compact subsets
of [0, T ) × RN , we see that (Wivl,W

2
i vl)l≥1 converges uniformly on compact

subsets of [0, T )×RN . This proves that Wiv, W 2
i v exist and are continuous. Now,

each fl ∈ C∞
p (RN ;R), so associated to each, there is a classical solution vl of the

PDE (60). Since W̃0vl = −1
2

∑d
i=1 W 2

i vl , and W 2
i vl → W 2

i v uniformly on com-

pacts in [0, T ) × RN , we get that v ∈ D1,∞
W̃0

([0, T ) × RN). Moreover, taking the
limit in the PDE satisfied by vl shows that it is also satisfied by v.

Uniqueness: Using the Itô formula in Lemma A.14, we have for u < T ,

v
(
u,Xt,x

u

) = v(t, x) +
∫ u

t

[
W̃0(s)v

(
s,Xt,x

s

) + 1

2

d∑
i=1

W 2
i (s)v

(
s,Xt,x

s

)]
ds

+
d∑

i=1

∫ u

t
Wi(s)v

(
s,Xt,x

s

)
dBi

s .

Using part (2) of the definition, the drift term is zero and

(72) v
(
u,Xt,x

u

) = v(t, x) +
d∑

i=1

∫ u

t
Wi(s)v

(
s,Xt,x

s

)
dBi

s .

Now, using that v has polynomial growth and Xt,x
u has moments of all orders,

we can easily show that the left-hand side of (72) is square integrable, and so the
right-hand side is also. Hence the right-hand side is a true martingale and we can
take expectation in (72) to get

Ev
(
u,Xt,x

u

) = v(t, x)
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and using part (3) of the definition (continuity of v at the boundary t = T ) we can
take u ↗ T to get

Ef
(
X

t,x
T

) = v(t, x),

which proves uniqueness. �

A.5. Derivatives in the direction ˜W0. In Theorem A.7, we established in-
tegration by parts formulae for derivatives of x �→ Pt,T f (x) in the directions
{W̃[α](t), α ∈ A1(m)}. However, 0 /∈ A1(m), so we have no control over deriva-
tives in the direction W̃0. Using that Pt,T f (x) solves PDE (60) we are now able to
estimate derivatives in the W̃0 direction.

PROPOSITION A.15. Assume ŨFG(m) holds. Let α = (α1, . . . , αn) ∈ A and
use the notation W̃α(t) = W̃α1(t) · · · W̃αn(t). Then the function v(t, x) := Pt,T f (x)

is differentiable in the directions W̃0(t),W1(t), . . . ,Wd(t) and the following
bounds hold for all t ∈ [0, T ): for f continuous and bounded,

(73) sup
x∈RN

∣∣W̃α(t)v(t, x)
∣∣ ≤ C‖f ‖∞(T − t)

−(‖α1‖+···+‖αn‖)
2 .

For f Lipschitz,

(74) sup
x∈RN

∣∣W̃α(t)v(t, x)
∣∣ ≤ C‖f ‖Lip(T − t)

1−(‖α1‖+···+‖αn‖)
2 .

PROOF. Thinking of the W̃0,W1, . . . ,Wd as differential operators acting on
functions in

C∞([0, T ] × RN ;R), Corollary 78 in [15] shows that W̃α , α ∈ A satisfies the
following convenient identity:

(75) W̃αv =
‖α‖∑
i=1

∑
β1,...,βi∈A1,‖β1‖+···+‖βi‖=‖α‖

cα,β1,...,βi
W̃[β1] · · · W̃[βi ]v,

where cα,β1,...,βi
∈ R. The importance of this identity is that the left-hand side

contains derivatives possibly in the direction W̃0 whereas on the right- hand side,
there are only derivatives in directions W̃[α], α ∈ A1 which does not include W̃0.

Hence,

|W̃αv| ≤ C sup
β1,...,βi∈A1,‖β1‖+···+‖βi‖=‖α‖

|W̃[β1] · · · W̃[βi ]v|,

this being exactly the type of term we can control by Theorem A.7. �

Now, define, for ϕ ∈ C∞
b ([0, T − 1/R] ×B(0,R);R), the norm

‖ϕ‖W,n
[0,T −1/R]×B(0,R);∞ := ∑

α∈A(n)

‖W̃αϕ‖[0,T −1/R]×B(0,R);∞,
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and define D̂n([0, T − 1/R] × B(0,R)) as the closure of C∞
b ([0, T − 1/R] ×

B(0,R);R) in Cb([0, T − 1/R] × B̄(0,R);R) with respect to this norm. Then
set

D̂∞([0, T
) ×RN) := ⋂

R≥1,n≥1

D̂n([0, T − 1/R] ×B(0,R)
)
.

LEMMA A.16. The function v(t, x) := Pt,T f (x) is a member of D̂∞([0, T )×
RN) for all f ∈ Cp(RN ;R).

PROOF. We take a sequence (fl)l≥1 of smooth approximations of f and asso-
ciate a vl to each. For any n ∈ N and any α ∈ A(n), we can use the identity (75)
to write W̃α(t)vl(t, x) as a linear combination of terms of the form W̃[β](t)vl(t, x)

where β ∈ A1(n). This allows us to apply the integration by parts formulae in
Theorem A.7 to write

W̃α(t)vl(t, x) = t−‖α‖/2E
[
fl

(
X

t,x
T

)
�t,α(T , x)

]
for some �t,α ∈ K0(t,R). This converges over compact subsets of [0, T ) × RN .

�

The above lemma is used in the next section where we need to perform a
stochastic Taylor expansion of v(t, x) := Pt,T f (x) for Lipschitz f .

A.6. Stochastic Taylor expansion.

PROPOSITION A.17. Let f be Lipschitz continuous and assume that ŨFG(m)

holds for some m ∈ N. Then, u, the solution of equation (60) admits a stochastic
Taylor expansion for s < T ,

u
(
s,Xt,x

s

) = ∑
α∈A(l)

W̃αu(t, x)Iα
t,s(1) + R(l, t, s, x),

with the following estimate on the remainder:

(76) sup
x∈RN

∥∥R(l, s, t, x)
∥∥

2 ≤ C

l+2∑
k=l+1

(T − s)−(k−1)/2(s − t)−k/2.

This leads to a one-step cubature error estimate of

sup
x∈RN

∣∣E[
u
(
s,Xt,x

s

)] −EQt,s

[
u
(
s,Xt,x

s

)]∣∣
≤ C

l+2∑
k=l+1

(T − s)−(k−1)/2(s − t)−k/2.

(77)
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PROOF. For any g ∈ C∞
b ([t, s] × RN ;R), the following Stratonovich–Taylor

expansion is contained in, for example, Kloeden and Platen ([22], Theorem 5.6.1),

g
(
s,Xt,x

s

) = ∑
α∈A(l)

W̃αg(t, x)Iα
t,s(1) + R(l, t, s, x)

where

R(l, t, s, x, g) = ∑
−β∈A(l),β /∈A(l)

I
β
t,s

(
W̃βg

(·,Xt,x·
))

.

It is not immediate that this expansion is valid for g = u, the solution of equa-
tion (60) since it is not differentiable in all directions. However, the Stratonovich–
Taylor expansion follows from repeated application of the Itô formula contained
in Lemma A.14. We recall Lemma A.16, which says that (t, x) �→ Pt,T f (x) ∈
D̂∞([0, T ) × RN). This guarantees we can apply Itô’s formula as many times as
we wish and so the Stratonovich–Taylor expansion is still valid. We then have the
following estimate for g = u:

sup
x∈RN

∥∥R(l, s, t, x)
∥∥

2

≤ ∑
−β∈A(l),β /∈A(l)

∥∥Iβ
t,s

(
W̃βu

(·,Xt,x·
))∥∥

2

≤
l+2∑

j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣∣W̃βu(p, x)
∣∣∥∥Iβ

t,s(1)
∥∥

2

≤ C

l+2∑
j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣∣W̃βu(p, x)
∣∣(s − t)j/2,

(78)

where we have used the standard moment estimate on iterated Stratonovich in-
tegrals ‖Iβ

t,s(1)‖2 ≤ C(s − t)‖β‖/2. A similar estimate holds under the one step
cubature measure, Qt,s :

sup
x∈RN

∣∣EQt,s
R(l, t, s, x)

∣∣
≤ C

l+2∑
j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣∣W̃βu(p, x)
∣∣(s − t)j/2.

(79)

This is a standard estimate on iterated integrals of bounded variation paths. The
constant C depends on d , l and the length of the cubature paths. Inequali-
ties (78) and (79) give us control over the error in approximating Pt,sg(t, ·) by
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Qt,sg(t, ·),
sup

x∈RN

∣∣E[
u
(
s,Xt,x

s

)] −EQt,s

[
u
(
s,Xt,x

s

)]∣∣
= sup

x∈RN

∣∣(E−EQt,s
)R(l, t, s, x)

∣∣
≤ C

l+2∑
j=l+1

sup
β∈A(j)

sup
(p,x)∈[t,s]×RN

∣∣W̃βu(p, x)
∣∣(s − t)j/2.

To bound

sup
(p,x)∈[tj ,tj+1]×RN

∣∣W̃βu(p, x)
∣∣,

we use the estimate provided in (74) and taking the supremum over p ∈ [tj , tj+1],
we get

sup
(p,x)∈[tj ,tj+1]×RN

sup
β∈A(j)

∣∣W̃βu(p, x)
∣∣ ≤ C(T − tj+1)

(1−j)/2.
�

REFERENCES

[1] ABRAMOWITZ, M. and STEGUN, I. A. (1972). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables.

[2] ANTONELLI, F. and KOHATSU-HIGA, A. (2002). Rate of convergence of a particle method
to the solution of the McKean–Vlasov equation. Ann. Appl. Probab. 12 423–476.
MR1910635

[3] BAYER, C. and FRIZ, P. K. (2013). Cubature on Wiener space: Pathwise convergence. Appl.
Math. Optim. 67 261–278.

[4] BOSSY, M. (2005). Some stochastic particle methods for nonlinear parabolic PDEs. In ESAIM:
Proceedings 15 18–57. EDP Sciences.

[5] BOSSY, M. and TALAY, D. (1997). A stochastic particle method for the McKean–Vlasov and
the Burgers equation. Math. Comp. 66 157–192.

[6] CARDALIAGUET, P. (2012). Notes on mean field games (from P.-L. Lyons’ lectures at Collège
de France). https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf.

[7] CATTIAUX, P. and MESNAGER, L. (2002). Hypoelliptic non-homogeneous diffusions. Probab.
Theory Related Fields 123 453–483.

[8] CHASSAGNEUX, J.-F., CRISAN, D. and DELARUE, F. (2014). A Probabilistic approach to
classical solutions of the master equation for large population equilibria. ArXiv e-prints.
Available at arXiv:1411.3009.

[9] CRISAN, D. and DELARUE, F. (2012). Sharp derivative bounds for solutions of degenerate
semi-linear partial differential equations. J. Funct. Anal. 263 3024–3101.

[10] CRISAN, D. and GHAZALI, S. (2007). On the convergence rates of a general class of weak
approximations of SDEs. In Stochastic Differential Equations: Theory and Applications.
Interdiscip. Math. Sci. 2 221–248. World Sci. Publ., Hackensack, NJ.

[11] CRISAN, D., KURTZ, T. G. and LEE, Y. (2014). Conditional distributions, exchangeable
particle systems, and stochastic partial differential equations. Ann. Inst. Henri Poincaré
Probab. Stat. 50 946–974. MR3224295

http://www.ams.org/mathscinet-getitem?mr=1910635
https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf
http://arxiv.org/abs/arXiv:1411.3009
http://www.ams.org/mathscinet-getitem?mr=3224295


176 D. CRISAN AND E. MCMURRAY

[12] CRISAN, D., LITTERER, C. and LYONS, T. (2015). Kusuoka–Stroock gradient bounds for the
solution of the filtering equation. J. Funct. Anal. 268 1928–1971.

[13] CRISAN, D. and MANOLARAKIS, K. (2012). Solving backward stochastic differential equa-
tions using the cubature method: Application to nonlinear pricing. SIAM J. Financial
Math. 3 534–571.

[14] CRISAN, D. and MANOLARAKIS, K. (2014). Second order discretization of backward SDEs
and simulation with the cubature method. Ann. Appl. Probab. 24 652–678. MR3178494

[15] CRISAN, D., MANOLARAKIS, K. and NEE, C. (2013). Cubature methods and applications. In
Paris–Princeton Lectures on Mathematical Finance 2013. Lecture Notes in Math. 2081
203–316. Springer, Cham.

[16] CRISAN, D. and MCMURRAY, E. (2016). Smoothing properties of McKean–Vlasov SDEs.
Probab. Theory Related Fields 171 97–148. MR3800831

[17] CRISAN, D. and ORTIZ-LATORRE, S. (2013). A Kusuoka–Lyons–Victoir particle filter. In
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 20130076.

[18] DE RAYNAL, P. C. and TRILLOS, C. G. (2015). A cubature based algorithm to solve decoupled
Mckean–Vlasov forward–backward stochastic differential equations. Stochastic Process.
Appl. 125 2206–2255.

[19] GYURKÓ, L. G. and LYONS, T. J. (2010). Efficient and practical implementations of cubature
on Wiener space. In Stochastic Analysis 2010. 73–111. Springer, Berlin.

[20] JOURDAIN, B., MÉLÉARD, S. and WOYCZYNSKI, W. A. (2008). Nonlinear SDEs driven by
Lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 1–29.

[21] JOURDAIN, B., MÉLÉARD, S. and WOYCZYNSKI, W. A. (2008). Nonlinear SDEs driven by
Lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 1–29.

[22] KLOEDEN, P. E. and PLATEN, E. (1992). Numerical Solution of Stochastic Differential Equa-
tions. Applications of Mathematics (New York) 23. Springer, Berlin.

[23] KOHATSU-HIGA, A. and OGAWA, S. (1997). Weak rate of convergence for an Euler scheme
of nonlinear SDE’s. Monte Carlo Methods Appl. 3 327–345.

[24] KOLOKOLTSOV, V. N. (2004). Hydrodynamic limit of coagulation-fragmentation type models
of k-nary interacting particles. J. Stat. Phys. 115 1621–1653.

[25] KOLOKOLTSOV, V. N. (2010). Nonlinear Markov Processes and Kinetic Equations. Cambridge
Tracts in Mathematics 182. Cambridge Univ. Press, Cambridge.

[26] KOTELENEZ, P. M. and KURTZ, T. G. (2010). Macroscopic limits for stochastic partial differ-
ential equations of McKean–Vlasov type. Probab. Theory Related Fields 146 189–222.
MR2550362

[27] KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Stud-
ies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge.

[28] KURTZ, T. G. and PROTTER, P. E. (1996). Weak convergence of stochastic integrals and dif-
ferential equations. In Probabilistic Models for Nonlinear Partial Differential Equations.
Lecture Notes in Math. 1627 1–41. Springer, Berlin.

[29] KUSUOKA, S. (2001). Approximation of expectation of diffusion process and mathematical
finance. In Taniguchi Conference on Mathematics Nara ’98. Adv. Stud. Pure Math. 31
147–165. Math. Soc. Japan, Tokyo.

[30] KUSUOKA, S. (2003). Malliavin calculus revisited. J. Math. Sci. Univ. Tokyo 10 261–277.
[31] KUSUOKA, S. and STROOCK, D. (1985). Applications of the Malliavin calculus. II. J. Fac.

Sci., Univ. Tokyo, Sect. 1A, Math. 32 1–76.
[32] KUSUOKA, S. and STROOCK, D. (1987). Applications of the Malliavin calculus. III. J. Fac.

Sci., Univ. Tokyo, Sect. 1A, Math. 34 391–442.
[33] LEE, W. and LYONS, T. (2015). The adaptive patched cubature filter and its implementation.

arXiv preprint. Available at arXiv:1509.04239.
[34] LIONS, P.-L. (2014) Cours au collège de france. Available at http://www.college-de-france.fr/

site/pierre-louis-lions/seminar-2014-11-14-11h15.htm.

http://www.ams.org/mathscinet-getitem?mr=3178494
http://www.ams.org/mathscinet-getitem?mr=3800831
http://www.ams.org/mathscinet-getitem?mr=2550362
http://arxiv.org/abs/arXiv:1509.04239
http://www.college-de-france.fr/site/pierre-louis-lions/seminar-2014-11-14-11h15.htm
http://www.college-de-france.fr/site/pierre-louis-lions/seminar-2014-11-14-11h15.htm


CUBATURE ON WIENER SPACE FOR MCKEAN–VLASOV SDES 177

[35] LITTERER, C. and LYONS, T. (2011). Introducing cubature to filtering. In The Oxford Hand-
book of Nonlinear Filtering 768–796. Oxford Univ. Press, Oxford.

[36] LYONS, T. and VICTOIR, N. (2004). Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci. 460 169–198.

[37] MORALE, D., CAPASSO, V. and OELSCHLÄGER, K. (2005). An interacting particle system
modelling aggregation behavior: From individuals to populations. J. Math. Biol. 50 49–
66.

[38] NINOMYIA, S. and VICTOIR, N. (2008). Weak approximation scheme of stochastic differential
equations and applications to derivatives pricing. Appl. Math. Finance. 15 107–121.

[39] OGAWA, S. (1995). Some problems in the simulation of nonlinear diffusion processes. Math.
Comput. Simulation 38 217–223.

[40] RICKETSON, L. F. (2015). A multilevel Monte Carlo method for a class of McKean–Vlasov
processes. Available at https://arxiv.org/abs/1508.02299.

[41] TACHET, R. (2011). Des Combes. Calibration non paramétriques de modèles en finance. The-
ses, Ecole Centrale Paris.

[42] TEICHMANN, J. (2006). Calculating the Greeks by cubature formulae. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci. 462 647–670. MR2269681

DEPARTMENT OF MATHEMATICS

IMPERIAL COLLEGE LONDON

180 QUEEN’S GATE

LONDON SW7 2AZ
UNITED KINGDOM

E-MAIL: d.crisan@ic.ac.uk

https://arxiv.org/abs/1508.02299
http://www.ams.org/mathscinet-getitem?mr=2269681
mailto:d.crisan@ic.ac.uk

	Introduction
	Cubature on Wiener space
	Outline and main results

	Preliminary results
	Proof of Theorem 1.4
	Smooth bounded terminal condition
	Taylor method
	Lagrange interpolation method

	Lipschitz terminal condition, m = 1
	Taylor method
	Lagrange interpolation method

	Lipschitz terminal condition, m >=2
	Taylor method
	Lagrange interpolation method


	Numerical examples
	Example 1
	Example 2

	Appendix: Derivative estimates for time-inhomogeneous parabolic PDEs
	Kusuoka-Stroock processes
	Integration by parts and derivative bounds
	Uniform Hörmander setting
	Connection with PDE
	Derivatives in the direction W0
	Stochastic Taylor expansion

	References
	Author's Addresses

