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PARTICLE SYSTEMS WITH SINGULAR INTERACTION THROUGH
HITTING TIMES: APPLICATION IN SYSTEMIC RISK MODELING

BY SERGEY NADTOCHIY1 AND MYKHAYLO SHKOLNIKOV2

University of Michigan and Princeton University

We propose an interacting particle system to model the evolution of a
system of banks with mutual exposures. In this model, a bank defaults when
its normalized asset value hits a lower threshold, and its default causes in-
stantaneous losses to other banks, possibly triggering a cascade of defaults.
The strength of this interaction is determined by the level of the so-called
noncore exposure. We show that, when the size of the system becomes large,
the cumulative loss process of a bank resulting from the defaults of other
banks exhibits discontinuities. These discontinuities are naturally interpreted
as systemic events, and we characterize them explicitly in terms of the level
of noncore exposure and the fraction of banks that are “about to default.”
The main mathematical challenges of our work stem from the very singular
nature of the interaction between the particles, which is inherited by the lim-
iting system. A similar particle system is analyzed in [Ann. Appl. Probab. 25
(2015) 2096–2133] and [Stochastic Process. Appl. 125 (2015) 2451–2492],
and we build on and extend their results. In particular, we characterize the
large-population limit of the system and analyze the jump times, the regular-
ity between jumps, and the local uniqueness of the limiting process.

1. Introduction. Consider an interconnected system whose components
might fail, such as a banking system in which banks may default. The existing
approaches to quantitative modeling of such systems, roughly, fall into the follow-
ing two categories: (1) network models, and (2) particle systems with mean-field
interaction. Models of the first category are considered, for example, in [14, 24,
25]. These models are able to capture the current characteristics of the system with
high precision and to predict the effects of immediate external shocks. However, to
obtain analytical results on the risks associated with a given network (e.g., on the
probability of a default cascade of a certain size due to a specific external shock)
a limit, as the size of the system goes to infinity, needs to be taken. The results are
then expressed in terms of the average values of the members’ characteristics. In
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the models of the second category, it is assumed from the very beginning that there
are only a few characteristics by which any two particles (e.g., banks) can differ
and that the interaction between them is either of a mean-field type, or is given
implicitly through a correlation with a common factor. In contrast to the network
models, the particle systems are dynamic and allow to investigate how the system
evolves over time. Under suitable assumptions, it is possible to derive analytic
formulas for the risk of future failures in such systems, in addition to describing
the immediate (i.e., static) risk embedded in the system at a given point in time.
Analysis of this kind is often carried out in the context of losses due to defaults in
a large portfolio; see, for example, [3, 6, 8, 11, 15, 17] and the references therein.

In the present paper, we follow the mean-field approach in modeling the dynam-
ics of an interconnected system of banks. At the same time, we use an explicit (i.e.,
structural) mechanism of default contagion (i.e., interaction between the particles),
which, in particular, differentiates our setting from the models based on interact-
ing default intensities (cf., [8, 15]). The goal of our paper is to provide a method
for estimating the proximity of a systemic failure (i.e., for quantifying the systemic
risk), which would allow a regulator to intervene ahead of time. We understand the
systemic failure as the occurrence of a “significantly large” default cascade. It has
been documented in various studies (cf., [8, 14, 24]) that an interconnected bank-
ing system transitions between two regimes: the well-behaved regime, in which
the system spends most of its time, and during which the default cascades are very
small or do not appear at all, and the systemic crisis regime, which occurs rarely,
and which is characterized by large groups of banks defaulting in a short period of
time. Even though the presence of such phase transitions is well known, it is often
difficult to define precisely what constitutes a significantly large cascade. In our
setting, the times of such cascades are captured by the discontinuity points of the
cumulative loss process in a limiting system, thus providing a natural endogenous
definition of a systemic failure.

In addition, we provide an explicit connection between the occurrence of sys-
temic events and the internal characteristics of the banking system, which in prin-
ciple, can be observed and controlled by a regulator. More specifically, we describe
the time of systemic failure in terms of the level of mutual exposure of the banks
and the fraction of banks in the immediate danger of default. The level of mu-
tual exposure measures the interconnectedness of the system, allowing the firms to
lend to and borrow from each other. Such lending and borrowing may decrease the
individual risk of a bank, but it also provides channels for spreading losses from
individual defaults across the rest of the system (i.e., for creating default conta-
gion). This dual role of mutual exposure has been analyzed, for example, in [2, 14,
16, 24]. The mutual exposure of the banks is also known as the noncore exposure
(in contrast to the core exposure, which measures how much the banks lend to the
real economy), and its effects on the occurrence of systemic crises is analyzed,
for example, in [13, 26]. As mentioned above, the level of noncore exposure can
be controlled by a financial regulator, and such a control was implemented by the
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government of South Korea in the aftermath of the financial crisis of 2008 (cf. [1,
26]). The joint effect of the interconnectedness of the system (measured by the
level of noncore exposure, in the present case) and the fraction of members in the
immediate danger of failure on the occurrence of a large failure cascade has been
also investigated in [2, 24, 30].

The mathematical model considered in this paper is based on a system of Brow-
nian particles with singular interaction through hitting times. Systems of this type
are considered, for example, in [9] and [10] in connection to a problem from neu-
roscience, and we use and extend some of the ideas developed therein to establish
our results (for alternative models, with smooth interaction, we refer to [18] and
[15]). In particular, the convergence of the N -particle system as N → ∞ (Theo-
rem 2.4) is based on appropriate adaptations of the methods presented in [10]. The
main original contribution of our work is in the analysis of the limiting process.
Namely, Theorem 2.6 establishes regularity of the limiting process, while Theo-
rem 2.7 proves its local uniqueness. Theorem 2.7 amounts to proving the unique-
ness of the solution to a nonlocal nonlinear Cauchy–Dirichlet problem. It is worth
mentioning that the limiting process of a similar particle system has been analyzed
in [9] (see also [4, 5, 7], where the focus is on analyzing the possibility of a jump in
the limiting process and on describing stationary solutions when no jumps occur).
The paper [9] establishes regularity of the limiting process and proves its unique-
ness using a similar Cauchy–Dirichlet problem. However, the main results of [9]
require additional assumptions on the strength of interaction in the system, which,
in particular, rule out the possibility of a jump in the limiting process. As such
jumps have a natural practical interpretation (e.g., as systemic crises, in the ap-
plication proposed herein), we, specifically, focus on the cases where such jumps
may occur. As a consequence, the limiting process and the solution to the asso-
ciated Cauchy–Dirichlet problem, herein, do not possess as much regularity as in
[9], which, naturally, complicates the analysis. Concurrently with our work, a one-
dimensional discrete particle system with absorption has been considered in [12],
motivated by the recent results [20, 28] on the one-dimensional multiparticle dif-
fusion limited aggregation problem. In [12], the absorption boundary is moved up
instead of the remaining particles being shifted down, but the two points of view
are easily seen to be equivalent. For the motion of the boundary corresponding to
a discrete version of the mechanism in [9, 10] and certain i.i.d. initial conditions,
the main result of [12] identifies the scaling limit of the boundary explicitly.

2. Main results. Consider N banks and write X1
t ,X

2
t , . . . ,X

N
t for their to-

tal asset values at a time t ≥ 0, discounted according to the (possibly stochastic)
growth rate of the overall banking system. A bank i defaults when its total asset
value Xi drops below a barrier xi > 0. Since each asset value process can be nor-
malized by the corresponding barrier, we may assume without loss of generality
that x1 = x2 = · · · = xN = 1. In the absence of defaults, we let the asset value
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processes X1
t ,X

2
t , . . . ,X

N
t follow the stochastic differential equations (SDEs):

(2.1) dXi
t = Xi

t

(
α + σ 2/2

)
dt + Xi

t σ dBi
t , i = 1,2, . . . ,N,

where α ∈ R and σ > 0 are constants, and B1,B2, . . . ,BN are independent stan-
dard Brownian motions. Here, α stands for the return associated with the tradi-
tional investments of a bank (i.e., investments in companies outside of the banking
system), and σ is the volatility coefficient of such investments.

Now, suppose that the asset value process of a bank i hits the default barrier
xi = 1 at a time t , leading to the default of bank i. As a result of the default, the
asset values of other banks drop and may immediately cause further defaults, and
so on. When the default of a bank causes immediate defaults of other banks, we
speak of a default cascade. For the sake of tractability, we assume that, if k banks
default at time t , then the value of each remaining bank is reduced by the factor(

1 − k

St−

)−C

,

where St is the number of banks that have survived up to and including time t ,
and C ∈ [0,1) is a fixed constant. The value of C represents the level of noncore
exposure in the banking system. Notice that (1 − k/St−)C ≈ 1 −Ck/St−, if k/St−
is small. In such a case, the proposed loss function represents the losses from de-
fault contagion in a banking system in which every bank, in total, borrows from all
other banks the fraction C of the average bank’s value, with the sizes of individual
loans distributed proportionally to the other banks’ values. After the default event,
the asset value processes of the surviving banks continue to follow the dynamics
of (2.1) until one of them hits 1, and so on.

The informal description of the processes X1,X2, . . . ,XN in the previous two
paragraphs can be formalized as follows. We fix a time horizon T > 0, let

(2.2) Y i := logXi, τ i := inf
{
t ∈ [0, T ] : Y i

t ≤ 0
}
, i = 1,2, . . . ,N

be the logarithmic asset values and the default times of the banks, respectively, and
denote by

(2.3) St :=
N∑

i=1

1{τ i>t}, t ∈ [0, T ]

the size of the banking system. In addition, for any fixed t ∈ [0, T ] we consider the
order statistics

(2.4) Y
(1)
t− ≤ Y

(2)
t− ≤ · · · ≤ Y

(St−)
t−

of the vector (Y i
t− : τ i ≥ t). Then the number of defaults at time t ∈ [0, T ] is

defined by

(2.5) Kd
t :=

(
inf
{
k = 1,2, . . . , St− : Y (k)

t− +C log
(

1− k − 1

St−

)
> 0

}
−1

)
∧St−,
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with the convention inf∅ = ∞. Finally, each of the processes Y 1, Y 2, . . . , YN sat-
isfies

(2.6) Y i
t = Ỹ i

t 1{Ỹ i
s >0,s∈[0,t)} + Ỹ i

τ i 1{t>τ i},

where

(2.7) Ỹ i
t = Y i

0 + αt + σBi
t + (

1 ∧ (
Ỹ i

t + 1
)+) ∑

u≤t :Kd
u >0

C log
(

1 − Kd
u

Su−

)

for t ∈ [0, τ 0) ∩ [0, T ],
(2.8) Ỹ i

t = (−1) ∧ Ỹ i
τ 0− + α

(
t − τ 0)+ σ

(
Bi

t − Bi
τ 0

)
for t ∈ [τ 0,∞) ∩ [0, T ], and τ 0 := max1≤j≤N τj .

The paths of the processes Ỹ 1, Ỹ 2, . . . , Ỹ N and Y 1, Y 2, . . . , YN can be con-
structed sequentially on the time intervals from 0 to the first default time, from
the first default time to the next default time, and so on. It is easy to see that the
algebraic equations defining the values of these processes between jumps, of the
form

ỹ = y0 + (
1 ∧ (1 + ỹ)+

)
c,

with constants y0 ∈ R and c < 0, are uniquely solvable. The truncation factors
1 ∧ (Ỹ i

t + 1)+, i = 1,2, . . . ,N , included for a purely technical reason, ensure that
each process Ỹ i does not jump below −1. They are only needed in the proof of
convergence of this particle system (Theorem 2.4), and their exact form does not
affect the limit. In addition, these factors are constantly equal to 1 on [0, τ i), for
i = 1,2, . . . ,N , respectively, and, therefore, have no effect on the pre-default paths
Y i

t , t ∈ [0, τ i), i = 1,2, . . . ,N . We also extend the path of each Ỹ i to the interval
[0, T + 1] continuously, as follows:

Ỹ i
t = Ỹ i

T + α(t − T ) + σ
(
Bi

t − Bi
T

)
, t ∈ (T , T + 1].

The reason we continue the path of Ỹ i beyond τ i ∧ T , rather than stop the process
at this time, is that the paths need to be sufficiently “noisy” in order to establish
the desired convergence result.

We sometimes refer to the vector of processes (Ỹ 1, Ỹ 2, . . . , Ỹ N ) as the finite-
particle system. It is worth noting that

(2.9)

∑
u≤t :Kd

u >0

C log
(

1 − Kd
u

Su−

)
= ∑

u≤t :Kd
u >0

C(logSu − logSu−) = C log
St

N
,

t ∈ [
0, τ 0 ∧ T

)
,
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hence,

(2.10)
Ỹ i

t = Y i
0 + αt + σBi

t + (
1 ∧ (

Ỹ i
t + 1

)+)
C log

(
1

N

N∑
j=1

1{τ j>t}

)
,

t ∈ [
0, τ 0 ∧ T

)
.

However, the strong solution of (2.10) is not unique, because the default cascades
are not uniquely determined by (2.10) alone.

Being interested in the emergence of large (“systemic”) losses due to default
cascades, we study the large N asymptotics of the banking system by means of the
empirical measures

(2.11) μN := 1

N

N∑
i=1

δY i and μ̃N := 1

N

N∑
i=1

δỸ i .

We view μN and μ̃N as random probability measures on the spaces D([0, T ]) and
D([0, T + 1]), respectively, consisting of real-valued càdlàg paths. The latter are
endowed with the Skorokhod M1 topology (see, e.g., [10, 19, 27, 31], for a detailed
discussion of the M1 topology). The limiting object associated with the sequence
μ̃N , N ∈ N turns out to satisfy (see Theorem 2.4 below)

(2.12)

Y t = Y 0 + αt + σBt + (
1 ∧ (Y t + 1)+

)
�t, t ∈ [0, τ 0) ∩ [0, T ],

�t = C logP(τ > t), t ∈ [0, τ 0) ∩ [0, T ],
τ = inf

{
t ∈ [0, T ] : Y t ≤ 0

}
,

where B is a standard Brownian motion independent of Y 0 > 0, and

(2.13) τ 0 := inf
{
t ∈ [0, T ] : P

(
inf

s∈[0,t]Y s ≤ 0
)

= 1
}
.

The following definition identifies the relevant class of solutions to the above
equation.

DEFINITION 2.1. A real-valued càdlàg process Y t , t ∈ [0, T ] is called a phys-
ical solution to (2.12),3 if it satisfies (2.12) and, whenever �t 
= �t−, for some

t ∈ [0, τ 0) ∩ [0, T ], we have �t− − �t ∈ [D0
t ,Dt ], where

D
0
t := inf

{
y > 0 : y − C

P(τ ≥ t, Y t− ∈ (0, y))

P(τ ≥ t)
> 0

}
< ∞,(2.14)

Dt := inf
{
y > 0 : y − Ft(y) > 0

}
< ∞,(2.15)

Ft(y) := −C log
(

1 − P(τ ≥ t, Y t− ∈ (0, y))

P(τ ≥ t)

)
.(2.16)

3For simplicity, we refer to it as “physical solution.”
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REMARK 2.2. It is easy to see that, for any t ∈ [0, τ 0) ∩ [0, T ], it holds that
P(τ > t) > 0, and, hence, all quantities in (2.12), (2.16) are well defined.

REMARK 2.3. It is easy to notice that Dt = F(Dt), as Ft can only jump
upward.

The path Y t , t ∈ [0, τ ) ∩ [0, T ], for a physical solution Y , should be thought of
as the logarithmic asset value process of a typical bank in a large banking system,
which is made precise by the following theorem.

THEOREM 2.4. Suppose that, for all N ∈ N, the initial values Y 1
0 , Y 2

0 , . . . , YN
0

are i.i.d. according to a probability measure ν on [0,∞), with a bounded density
fν vanishing in a neighborhood of 0. Then the sequence of random measures μ̃N ,
N ∈ N is tight with respect to the topology of weak convergence, and every limit
point of this sequence belongs with probability one to the space of distributions of

physical solutions Y for which Y 0
d= ν.

Note that Theorem 2.4, in particular, proves the weak existence of a physical
solution. The function � in Definition 2.1 represents the aggregate losses (on the
logarithmic scale) of a typical bank in a large banking system resulting from the
defaults of other banks. When default cascades lead to a jump in �, we speak of
a systemic event. At the random time τ, the bank in consideration defaults; the
deterministic quantity τ 0 represents the time when the last bank defaults; D

0
t and

Dt , respectively, provide the lower and upper bounds on the maximum logarith-
mic value among the banks defaulting at time t . The term “physical solution” is
borrowed from [10].

One of the most interesting characteristics of the proposed model is the time of
the first systemic event

(2.17) tsys := inf
{
t ∈ [

0, τ 0)∩ [0, T ] : �t 
= �t−
}
,

when a nonnegligible fraction of banks defaults in a short period of time. The time
tsys can be viewed as the time of the first phase transition, with the banking system
passing abruptly from the well-behaved regime to the systemic crisis regime. Note
that Definition 2.1 provides a partial characterization of this time in terms of the
(observable) distribution of the values of particles that have survived thus far:

(2.18)
inf
{
t ∈ [

0, τ 0)∩ [0, T ] : Dt > 0
}

≤ tsys ≤ inf
{
t ∈ [

0, τ 0)∩ [0, T ] : D0
t > 0

}
.

The heuristic interpretation of the above inequality is that the normalized density of
survived particles, p(t, y)/P(τ ≥ t), where p(t, ·) is the density of the distribution
of Y t−1{τ≥t} restricted to (0,∞) [see Lemma 5.1 for the existence of p(t, ·)], near
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y = 0, can be used to measure the proximity to the time tsys of the first systemic
event. Simply put, a systemic event occurs when the normalized density at zero
exceeds the level 1/C. This observation yields a natural connection between a
systemic event and the two relevant observable quantities: the fraction of banks at
immediate risk and the level of noncore exposure.

It may seem artificial that we require the jumps of � to occur at the times

when D
0

> 0, in the definition of physical solution. The following proposition
shows that the latter causes no loss of generality (and it is also used in the proof of
Theorem 2.4).

PROPOSITION 2.5. Consider any càdlàg process Y satisfying (2.12), with the
associated � and τ 0. Then, for any t ∈ [0, τ 0), if there exists η ≥ 0, s.t.

P(τ ≥ t, Y t− ∈ (0, y))

P(τ ≥ t)
≥ y

C
∀y ∈ [0, η],

then, �t− − �t ≥ η.

Indeed, the above proposition shows that D
0
t > 0 is a sufficient condition for a

jump at time t , for any càdlàg process Y satisfying (2.12).
The above discussion motivates the analysis of physical solution in relation to

the value of its normalized density at zero. Our next result is concerned with the
regularity of a physical solution. Lemma 5.2 in [9] establishes the 1/2-Hölder
continuity of the cumulative loss process at any time at which it does not jump.
The subsequent results in [9] show that the normalized density at zero vanishes and
the cumulative loss process becomes continuously differentiable at all times, if the
strength of the interaction C is sufficiently small (the model analyzed in [9] is not
exactly the same as the present one, but the arguments used therein can be adapted
to the present case). Theorem 2.6, below, fills the gap between the two results: it
shows that the cumulative loss process possesses higher Hölder regularity (even
though it may not be continuously differentiable) if the normalized density at zero
vanishes, without the assumption that C is sufficiently small. In order to state this
result, we introduce

(2.19) r∗
t := lim

η↓0
sup

s∈(0,t]
ess sup
y∈(0,η)

p(s, y)

P(τ ≥ s)
,

where p(s, ·) is the density of the distribution of Y s−1{τ≥s} restricted to (0,∞).

THEOREM 2.6. Let Y be a physical solution, with the associated �, τ 0, r∗.
Suppose that Y 0 has a bounded density vanishing in a neighborhood of 0. Consider
any t0 ∈ (0, τ 0) for which r∗

t0
= 0. Then, for any t ′0 ∈ [0, t0) there exist C̃ < ∞ and

γ ∈ (0,1] such that

(2.20) |�t − �s | ≤ C̃|t − s|(1+γ )/2, s, t ∈ [
0, t ′0

]
.
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Next, we turn to the uniqueness of a physical solution. Note that establishing
uniqueness is not only interesting in its own right, but it would also strengthen the
convergence result significantly. Indeed, once the uniqueness is established, The-
orem 2.4 would imply that μ̃N , N ∈ N converge to a deterministic limit, which is
the law of the unique physical solution. To date, the uniqueness of a general phys-
ical solution given by Definition 2.1, or its analogue in [9, 10], remains an open
problem. Nevertheless, the uniqueness can be established in a class of sufficiently
regular solutions, which can be described via an associated Cauchy–Dirichlet sys-
tem. Such a uniqueness result is established in [9], under the additional assump-
tion that C is sufficiently small, which ensures that the cumulative loss process is
continuously differentiable and, in particular, rules out the possibility of a jump.
A local uniqueness result is also established in [9], and it does not require C to be
sufficiently small. Nevertheless, the latter result only holds on a time interval on
which the cumulative loss process is continuously differentiable. Herein, we do not
make an assumption that C is small, as we would like to analyze systems in which
the cumulative loss process can jump. In addition, we establish uniqueness on a
time interval on which the loss process neither jumps nor possesses a continuous
derivative. More specifically, we establish uniqueness up to the time

(2.21) treg = (
sup

{
t ∈ (

0, τ 0) : ‖λ‖L2([0,t]) < ∞})∧ T ,

where λ is the weak derivative of �, and we use the conventions: sup∅ = 0 and
‖λ‖L2([0,t]) = ∞ if � is not absolutely continuous on [0, t]. The following theo-
rem proves the uniqueness of the stopped physical solution Y t∧τ , t ∈ [0, treg), in
the class of solutions with treg > 0 and such that ‖λ‖L2([0,·]) “does not jump to
infinity.” Moreover, it provides a precise connection between the cumulative loss
process and the normalized density on [0, treg). Therein and throughout the pa-

per, we write W 1
2 ([0,∞)) (W 1,2

2 ([0, t] × [0,∞)), resp.) for the Sobolev space of
L2([0,∞)) (L2([0, t]×[0,∞)), resp.) functions whose first weak derivatives (first
weak derivatives in time and the first two weak derivatives in space, resp.) belong
to L2([0,∞)) (L2([0, t] × [0,∞)), resp.), equipped with the associated Sobolev
norm.

THEOREM 2.7. Let ν be a probability measure on [0,∞) admitting a density
fν in the Sobolev space W 1

2 ([0,∞)) with fν(0) = 0. Then:

(a) there exists a physical solution Y , such that Y 0
d= ν and the associated treg

and λ satisfy: treg > 0 and, if treg < T ,

lim
t↑treg

‖λ‖L2([0,t]) = ∞;

(b) the value of treg is the same for all physical solutions satisfying the con-
ditions of part (a), and the corresponding stopped physical solutions Y t∧τ , t ∈
[0, treg) are indistinguishable;
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(c) p(·, ·) is continuous on [0, treg) × [0,∞), with p(·,0) ≡ 0; moreover, the
weak derivative ∂yp satisfies (∂yp)(·,0) ∈ L2

loc([0, treg)) and

(2.22) λt = −C
σ 2

2

(∂yp)(t,0)∫∞
0 p(t, y) dy

for almost every t ∈ [0, treg).

Parts (a) and (b) of Theorem 2.7 show that the logarithmic asset value of a
typical bank in a large banking system behaves according to the unique stopped
physical solution until the time treg > 0, given by (2.21). Theorem 2.7(c) expresses
the value of λt through the slope of the normalized logarithmic asset value profile
of banks that are close to failure at time t .

REMARK 2.8. If treg = T , for every T > 0, then there exists a unique phys-
ical solution with locally square integrable λ on the entire time interval [0,∞).
The results of [9] can be used to show that such an extension is possible (even
with continuous λ) under additional assumptions on the initial condition and, most
importantly, for sufficiently small C (depending on the initial condition).

The rest of the paper is structured as follows. In Section 3, we analyze the
Cauchy–Dirichlet problem associated with a stopped physical solution before the
explosion of λ in the L2 norm, which is used in the proof of Theorem 2.7. Sec-
tion 4 studies the fixed-point problem satisfied by λ until it explodes in the L2

norm. We use Sobolev norm estimates for solutions to linear parabolic PDEs in
[22] (see [23], Chapter III, Section 6) and parabolic Sobolev inequalities (see, e.g.,
[23], Chapter II, Lemmas 3.3, 3.4) to show that the Banach fixed-point theorem is
applicable to a suitable “truncated” fixed-point problem. This yields the existence
and uniqueness of the solution to the original fixed-point problem. The latter is
used to construct the unique stopped physical solution until the explosion of λ in
the L2 norm, proving Theorem 2.7. It is worth noting that in the proofs of Section 4
we do not rely on Definition 2.1 of a physical solution, but rather work with (2.12)
only. Section 5 establishes a priori regularity properties of physical solutions and
connects the behavior of the normalized density p(t, y)/P(τ ≥ t) near y = 0 with
the Hölder continuity of �, proving Theorem 2.6. Section 6 provides the proof of
Proposition 2.5, which is an adaptation of the arguments used in [10]. Section 7 is
devoted to the proof of Theorem 2.4, and it also follows the ideas of [10].

3. Cauchy–Dirichlet problem. For ν as in Theorem 2.7, T1 ∈ (0,∞), and
λ ∈ L2([0, T1]) consider the Cauchy-Dirichlet problem

(3.1) ∂tp = −(α + λt )∂yp + σ 2

2
∂2
yp, p(0, ·) = fν,p(·,0) = 0.

The next two lemmas investigate its solution p.
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LEMMA 3.1. Let ν be as in Theorem 2.7. Then, for T1 ∈ (0,∞) and λ ∈
L2([0, T1]), there exists a unique generalized solution p of (3.1) in the space
W

1,2
2 ([0, T1] × [0,∞)). Moreover, p is nonnegative and satisfies the integrabil-

ity estimates

(3.2)

e− ∫ t
0 ( α+λs

σ
)2 ds

∫ ∞
0

(
2�

(
y

σ
√

t

)
− 1

)2
fν(y)dy

≤
∫ ∞

0
p(t, y)dy ≤ e

1
2

∫ t
0 ( α+λs

σ
)2 ds

∫ ∞
0

(
2�

(
y

σ
√

t

)
− 1

)1/2
fν(y)dy

for all t ∈ [0, T1], where � is the standard Gaussian cumulative distribution func-
tion.

LEMMA 3.2. Let ν be as in Theorem 2.7. Then, for T1 ∈ (0,∞) and λ ∈
L2([0, T1]), the unique generalized solution p ∈ W

1,2
2 ([0, T1] × [0,∞)) of (3.1)

fulfills

(3.3)
∫ ∞

0
p(t, y)dy =

∫ ∞
0

fν(y)dy − σ 2

2

∫ t

0
(∂yp)(s,0)ds, t ∈ [0, T1].

PROOF OF LEMMA 3.1. Step 1. The existence and uniqueness of the general-
ized solution p ∈ W

1,2
2 ([0, T1] × [0,∞)) of (3.1) follow from the results of [23],

Chapter III, Section 6 (see [23], Chapter III, Remark 6.3, and note that −(α + λ)

fulfills the condition (6.26) there). We also refer to the original reference [22].
Now, consider the process Z

λ

t , t ∈ [0, T1] defined by

(3.4)
Z

λ

0
d= ν, Z

λ

t = Z
λ

0 + αt +
∫ t

0
λs ds + σBt , t ∈ [0, T1 ∧ τ ],

τ = inf
{
t ∈ [0, T1] : Zλ

t = 0
}
, Z

λ

t = 0, τ ≤ t ≤ T1,

where B is a standard Brownian motion independent of Z
λ

0
d= ν. The Radon–

Nikodym and the Girsanov theorems show that the law of Z
λ

t has a density with

respect to that of (Z
λ

0 + σB)t∧τ for all t ∈ [0, T1]. In particular, the restriction of

the law of Z
λ

t to (0,∞) possesses a density p̃(t, ·) with respect to the Lebesgue
measure for all t ∈ [0, T1]. We claim next that the W

1,2
2 ([0, T1] × [0,∞))-solution

p of (3.1) equals p̃.
Step 2. We fix a t ∈ [0, T1], pick a function h ∈ W 1

2 ([0,∞)) with h(0) = 0, and
consider the auxiliary problem

(3.5)
∂sζ + (α + λs)∂yζ + σ 2

2
∂2
y ζ = 0,

ζ(t, ·) = h, ζ(·,0) = 0, ζ ∈ W
1,2
2

([0, t] × [0,∞)
)
.
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As with the problem (3.1) there exists a unique generalized solution ζ of (3.5).
Moreover, for any fixed K ∈ (0,∞) and with

(3.6) τK := inf
{
s ∈ [0, T1] : Zλ

0 + σBs = K
}

the PDE in (3.5) and the Itô formula in [21], Section 2.10, Theorem 1, yield

(3.7)

ζ
(
t ∧ τ ∧ τK,

(
Z

λ

0 + σB
)
t∧τ∧τK

)
= ζ

(
0,Z

λ

0
)+

∫ t∧τ∧τK

0
(∂yζ )

(
s,Z

λ

0 + σBs

)
σ dBs

−
∫ t∧τ∧τK

0
(∂yζ )

(
s,Z

λ

0 + σBs

)
(α + λs)ds

(note that ζ is a continuous bounded function and (∂yζ ) ∈ L4([0, t] × [0,∞)) by
the parabolic Sobolev inequality in the form of [23], Chapter II, Lemma 3.3, justi-
fying the applicability of the Itô formula cited). In view of the Girsanov theorem,
(3.7) implies

(3.8) ζ
(
t ∧ τ ∧ τK,Z

λ

t∧τ∧τK

)= ζ
(
0,Z

λ

0
)+

∫ t∧τ∧τK

0
(∂yζ )

(
s,Z

λ

s

)
σ dBs.

Next, we combine the Girsanov theorem with Hölder’s and Jensen’s inequalities
to obtain the chain of estimates

E

[∫ t∧τ∧τK

0

(
(∂yζ )

(
s,Z

λ

s

))2 ds

]

= E

[
e− ∫ t

0
α+λs

σ
dBs− 1

2

∫ t
0 ( α+λs

σ
)2 ds

∫ t∧τ∧τK

0

(
(∂yζ )

(
s,Z

λ

0 + σBs

))2 ds

]
≤ E

[
e−3

∫ t
0

α+λs
σ

dBs− 3
2

∫ t
0 ( α+λs

σ
)2 ds]1/3

×E

[(∫ t∧τ∧τK

0

(
(∂yζ )

(
s,Z

λ

0 + σBs

))2 ds

)3/2]2/3

≤ e
∫ t

0 ( α+λs
σ

)2 ds t1/3
E

[∫ t∧τ∧τK

0

∣∣(∂yζ )
(
s,Z

λ

0 + σBs

)∣∣3 ds

]2/3
.

The latter expression is finite thanks to [21], Section 2.2, Theorem 4, and (∂yζ ) ∈
L6([0, t]× [0,∞)) (a consequence of the parabolic Sobolev inequality in the form
of [23], Chapter II, Lemma 3.3). Consequently, taking the expectation on both
sides of (3.8) and passing to the limit K → ∞ we get

(3.9) E
[
ζ
(
t ∧ τ ,Z

λ

t∧τ

)]= E
[
ζ
(
0,Z

λ

0
)]

,

which can be rewritten as

(3.10)
∫ ∞

0
h(y)p̃(t, y)dy =

∫ ∞
0

ζ(0, y)fν(y)dy.
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On the other hand, p ∈ W
1,2
2 ([0, T1] × [0,∞)) implies that the norms

‖p(s, ·)‖L2([0,∞)), s ∈ [0, t] are uniformly bounded due to the continuity of the
evaluation maps p �→ p(s, ·) (see, e.g., [23], Chapter II, Lemma 3.4). This and a
density argument invoking the continuity of the evaluation maps one more time
show that the weak formulation of the problem (3.1) applies to test functions in
W

1,2
2 ([0, t] × [0,∞)). For the solution ζ of (3.5), it gives

(3.11)
∫ ∞

0
h(y)p(t, y)dy =

∫ ∞
0

ζ(0, y)fν(y)dy,

which together with (3.10) and the arbitrariness of h, t implies p̃ = p on [0, T1] ×
[0,∞).

Step 3. The nonnegativity of p is now an immediate consequence of the non-
negativity of p̃. In addition,

∫∞
0 p(t, y)dy can be rewritten as

E[1{Zλ
t >0}] =

∫ ∞
0

E
[
e− ∫ t

0
α+λs

σ
dBs− 1

2

∫ t
0 ( α+λs

σ
)2 ds1{y+σBs>0,0≤s≤t}

]
fν(y)dy.

At this point, the estimates of (3.2) follow from the Cauchy–Schwarz inequality in
the forms

E
[
e
∫ t

0
α+λs

σ
dBs+ 1

2

∫ t
0 ( α+λs

σ
)2 ds]−1

P

(
Bs > − y

σ
,0 ≤ s ≤ t

)2

≤ E
[
e− ∫ t

0
α+λs

σ
dBs− 1

2

∫ t
0 ( α+λs

σ
)2 ds1{y+σBs>0,0≤s≤t}

]
≤ E

[
e−2

∫ t
0

α+λs
σ

dBs−∫ t
0 ( α+λs

σ
)2 ds]1/2

P

(
Bs > − y

σ
,0 ≤ s ≤ t

)1/2

and the reflection principle for Brownian motion. �

We proceed to the proof of Lemma 3.2.

PROOF OF LEMMA 3.2. We pick a sequence hn, n ∈ N of infinitely differen-
tiable functions on [0,∞) such that:

(i) hn(y) = 1 if n−1 ≤ y ≤ n and hn(y) = 0 if y ≤ (n + 1)−1 or y ≥ n + 1,
(ii) hn is nondecreasing on [(n + 1)−1, n−1] and nonincreasing on [n,n + 1],

(iii) supn∈N sup[n,n+1] |h′
n| < ∞ and supn∈N sup[n,n+1] |h′′

n| < ∞.

The weak formulation of (3.1) for each such function reads

(3.12)

∫ ∞
0

hn(y)p(t, y)dy −
∫ ∞

0
hn(y)fν(y)dy

=
∫ t

0
(α + λs)

∫ ∞
0

h′
n(y)p(s, y)dy ds

+ σ 2

2

∫ t

0

∫ ∞
0

h′′
n(y)p(s, y)dy ds, t ∈ [0, T1].
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The monotone convergence theorem implies that the first line in (3.12) tends to∫ ∞
0

p(t, y)dy −
∫ ∞

0
fν(y)dy

in the limit n → ∞. Moreover, the first summand on the second line in (3.12) can
be rewritten as

(3.13)

∫ t

0
(α + λs)

∫ n−1

(n+1)−1
h′

n(y)p(s, y)dy ds

+
∫ t

0
(α + λs)

∫ n+1

n
h′

n(y)p(s, y)dy ds.

Combining p(s,0) = 0, s ∈ [0, T ], the uniform continuity of p on [0, T1] × [0,1]
(due to the parabolic Sobolev inequality in [23], Chapter II, Lemma 3.3), and prop-
erty (ii) above we see that the first summand in (3.13) converges to 0 as n → ∞.
The same is true for the second summand in (3.13) thanks to property (iii) above,
the upper bound of Lemma 3.1, and the dominated convergence theorem.

The second summand on the second line in (3.12) can be recast as

(3.14)
σ 2

2

∫ t

0

∫ n+1

n
h′′

n(y)p(s, y)dy ds + σ 2

2

∫ t

0

∫ n−1

(n+1)−1
h′′

n(y)p(s, y)dy ds.

As n → ∞, the first summand in (3.14) converges to 0 by the same argument as
used to analyze the second summand in (3.13). Next, we employ integration by
parts to transform the second summand in (3.14) to

(3.15) −σ 2

2

∫ t

0

∫ n−1

(n+1)−1
h′

n(y)(∂yp)(s, y)dy ds

(recall that p(s, ·) ∈ W 1
2 ([0,∞)), s ∈ [0, T1] thanks to the well-definedness of the

evaluation maps p �→ p(s, ·), see [23], Chapter II, Lemma 3.4). The quantity in

(3.15) converges to −σ 2

2

∫ t
0 (∂yp)(s,0)ds as n → ∞, since

lim sup
n→∞

∣∣∣∣∫ t

0

∫ n−1

(n+1)−1
h′

n(y)(∂yp)(s, y)dy ds −
∫ t

0
(∂yp)(s,0)ds

∣∣∣∣
= lim sup

n→∞

∣∣∣∣∫ t

0

∫ n−1

(n+1)−1
h′

n(y)

∫ y

0

(
∂2
yp

)
(s, z)dz dy ds

∣∣∣∣
≤ lim sup

n→∞

∫ t

0

∫ n−1

0

∣∣∂2
yp

∣∣(s, z)dz ds = 0,

where we have relied on properties (i), (ii) above and p ∈ W
1,2
2 ([0, T1] × [0,∞)).

All in all, we end up with (3.3) when we take the n → ∞ limit in (3.12). �
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4. Regular interval of the physical solution. The next proposition is the key
to the proof of Theorem 2.7 and establishes the existence and uniqueness of the
solution to the fixed-point problem associated with the function λ in (2.21).

PROPOSITION 4.1. Let ν be as in Theorem 2.7. Then:

(a) there exist a time treg ∈ (0, T ] and a function λ ∈ L2
loc([0, treg)) such that

for all T1 ∈ (0, treg) the unique generalized solution of

(4.1) ∂tp = −(α + λt )∂yp + σ 2

2
∂2
yp, p(0, ·) = fν, p(·,0) = 0

in W
1,2
2 ([0, T1] × [0,∞)) satisfies

(4.2) −C
σ 2

2

(∂yp)(t,0)∫∞
0 p(t, y)dy

= λt for almost every t ∈ [0, T1]

and limT1↑treg ‖λ‖L2([0,T1]) = ∞ if treg < T ;
(b) for any (treg, λ), (̃treg, λ̃) such that:

(i) treg, t̃reg ∈ (0, T ],
(ii) λ ∈ L2

loc([0, treg)), λ̃ ∈ L2
loc([0, t̃reg)) satisfy the fixed-point problem (4.1),

(4.2) for all T1 ∈ (0, treg), T1 ∈ (0, t̃reg), respectively,
(iii) limT1↑treg ‖λ‖L2([0,T1]) = ∞ if treg < T , limT1↑t̃reg ‖̃λ‖L2([0,T1]) = ∞ if t̃reg < T

it holds treg = t̃reg and λ = λ̃ almost everywhere.

PROOF. Step 1. Our first aim is to show for all M ∈ (0,∞) and all small
enough T1 = T1(M) ∈ (0, T ) the existence and uniqueness in L2([0, T1]) for the
“truncated” fixed-point problem

∂tp = −(α + λ
M,T1
t

)
∂yp + σ 2

2
∂2
yp,

(4.3)
p(0, ·) = fν, p(·,0) = 0, p ∈ W

1,2
2

([0, T1] × [0,∞)
)
,

− C
σ 2

2

(∂yp)(t,0)∫∞
0 p(t, y)dy

= λt for almost every t ∈ [0, T1],(4.4)

where

(4.5) λM,T1 := λ1{‖λ‖
L2([0,T1])≤M} + λ

M

‖λ‖L2([0,T1])
1{‖λ‖

L2([0,T1])>M}.

To this end, it suffices to verify that the mapping taking L2([0, T1]) functions λ

to the left-hand side of (4.4) [with p being the unique generalized solution of
(4.3)] is a contraction on L2([0, T1]), since then the Banach fixed-point theorem



104 S. NADTOCHIY AND M. SHKOLNIKOV

can be applied. We observe that the described mapping is well defined with its
range contained in L2([0, T1]) by the assumptions fν ∈ W 1

2 ([0,∞)), fν(0) = 0,
the existence and uniqueness result of [23], Chapter III, Remark 6.3, the well-
definedness of the evaluation map p �→ (∂yp)(·,0) of [23], Chapter II, Lemma 3.4,
and the lower bound in (3.2). The following two steps are devoted to the proof of
the contraction property.

Step 2. Given two L2([0, T1]) functions λ, λ̃, let p, p̃ be the corresponding
solutions of (4.3) and note that � := p − p̃ ∈ W

1,2
2 ([0, T1] × [0,∞)) satisfies

(4.6)
∂t� = −(α + λ̃

M,T1
t

)
∂y� + σ 2

2
∂2
y� + (̃

λ
M,T1
t − λ

M,T1
t

)
∂yp,

�(0, ·) = 0, �(·,0) = 0.

The source term in (4.6) admits the norm bound

(4.7)

∥∥(̃λM,T1
t − λ

M,T1
t

)
∂yp

∥∥
L2([0,T1]×[0,∞))

≤ ∥∥̃λM,T1
t − λ

M,T1
t

∥∥
L2([0,T1]) ess sup

t∈[0,T1]
∥∥(∂yp)(t, ·)∥∥L2([0,∞))

≤ 2‖̃λt − λt‖L2([0,T1]) ess sup
t∈[0,T1]

∥∥(∂yp)(t, ·)∥∥L2([0,∞)).

Moreover, the boundedness of the evaluation maps p �→ p(t, ·) (see [23], Chap-
ter II, Lemma 3.4) and the results of [23], Chapter III, Section 6, used for the
solution p of (4.3) give the respective estimates

(4.8) ess sup
t∈[0,T1]

∥∥(∂yp)(t, ·)∥∥L2([0,∞)) ≤ C1‖p‖
W

1,2
2 ([0,T1]×[0,∞))

≤ C2,

with constants C1 = C1(T ) < ∞ and C2 = C2(α,M,σ,‖fν‖W 1
2 ([0,∞)), T ) < ∞.

In view of (4.7), (4.8), we can now apply [23], Chapter II, Lemma 3.4, and the
results of [23], Chapter III, Section 6, to the solution � of (4.6) to find

(4.9)
ess sup
t∈[0,T1]

∥∥(∂y�)(t, ·)∥∥L2([0,∞)) ≤ C1‖�‖
W

1,2
2 ([0,T1]×[0,∞))

≤ C3C2‖̃λt − λt‖L2([0,T1]),
where the constant C3 < ∞ can be chosen in terms of α, M , σ and T only.

Next, we regard the PDE in (4.6) as a heat equation with Dirichlet boundary
conditions and the L2([0, T1] × [0,∞)) source

(4.10) g := −(α + λ̃
M,T1
t

)
∂y� + (̃

λ
M,T1
t − λ

M,T1
t

)
∂yp.

In particular, we can write

�(t, y) =
∫ t

0

∫ ∞
0

g(s, z)ψσ (t − s, z, y)dz ds,

(t, y) ∈ [0, T1] × [0,∞),

(4.11)
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(∂y�)(t, y) =
∫ t

0

∫ ∞
0

g(s, z)(∂yψσ )(t − s, z, y)dz ds,

(t, y) ∈ [0, T1] × [0,∞),

(4.12)

where

(4.13)

ψσ (t − s, y, z) := (
2πσ 2(t − s)

)−1/2

×
(

exp
(
− (y − z)2

2σ 2(t − s)

)
− exp

(
− (y + z)2

2σ 2(t − s)

))
is the Dirichlet heat kernel on [0,∞) with the diffusion coefficient σ . It now fol-
lows from Fubini’s theorem and the triangle inequality (first inequality), Young’s
inequality for convolution (second inequality), Cauchy–Schwarz inequality (third
inequality) and (4.7), (4.8) and (4.9) (fourth inequality) that

(4.14)

∥∥(∂y�)(·,0)
∥∥
L2([0,T1])

=
∥∥∥∥∫ ∞

0

∫ t

0
g(s, z)(∂yψσ )(t − s, z,0)ds dz

∥∥∥∥
L2([0,T1])

≤
∫ ∞

0

∥∥∥∥∫ t

0
g(s, z)(∂yψσ )(t − s, z,0)ds

∥∥∥∥
L2([0,T1])

dz

≤
∫ ∞

0

∥∥g(·, z)∥∥L2([0,T1])
∥∥(∂yψσ )(·, z,0)

∥∥
L1([0,T1]) dz

≤ ‖g‖L2([0,T1]×[0,∞))

(∫ ∞
0

∥∥(∂yψσ )(·, z,0)
∥∥2
L1([0,T1]) dz

)1/2

≤ C4‖̃λt − λt‖L2([0,T1])
(∫ ∞

0

∥∥(∂yψσ )(·, z,0)
∥∥2
L1([0,T1]) dz

)1/2
,

with a constant C4 = C4(α,M,σ,‖fν‖W 1
2 ([0,∞)), T ) < ∞.

Step 3. Next, we subtract (3.3) for p̃ from (3.3) for p, apply the triangle and the
Cauchy–Schwarz inequalities, and use (4.14) to find

(4.15)

sup
t∈[0,T1]

∣∣∣∣∫ ∞
0

�(t, y)dy

∣∣∣∣= σ 2

2
sup

t∈[0,T1]

∣∣∣∣∫ t

0
(∂y�)(s,0)ds

∣∣∣∣
≤ σ 2

2
T

1/2
1

∥∥(∂y�)(·,0)
∥∥
L2([0,T1])

≤ C5T
1/2
1 ‖̃λt − λt‖L2([0,T1]),

where the constant C5 < ∞ depends on α, M , σ , fν and T only.
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In addition, the triangle inequality and the lower bound in (3.2) imply∥∥∥∥ (∂yp)(·,0)∫∞
0 p(·, y)dy

− (∂yp̃)(·,0)∫∞
0 p̃(·, y)dy

∥∥∥∥
L2([0,T1])

≤
∥∥∥∥ 1∫∞

0 p(·, y)dy
(∂y�)(·,0)

∥∥∥∥
L2([0,T1])

+
∥∥∥∥(∂yp̃)(·,0)

(
1∫∞

0 p(·, y)dy
− 1∫∞

0 p̃(·, y)dy

)∥∥∥∥
L2([0,T1])

≤ C6

(∥∥(∂y�)(·,0)
∥∥
L2([0,T1]) +

∥∥∥∥(∂yp̃)(·,0)

∫ ∞
0

�(·, y)dy

∥∥∥∥
L2([0,T1])

)
,

with a constant C6 = C6(α,M,σ,fν, T ) < ∞. In view of (4.14), (4.15) and
the boundedness of the evaluation map p̃ �→ (∂yp̃)(·,0) (see [23], Chapter II,
Lemma 3.4), the latter upper bound is at most

(4.16) C7

((∫ ∞
0

∥∥(∂yψσ )(·, z,0)
∥∥2
L1([0,T1]) dz

)1/2
+ T

1/2
1

)
‖̃λt − λt‖L2([0,T1]),

where C7 < ∞ can be chosen in terms of α, M , σ , fν and T only. The desired
contraction property for small enough T1 = T1(M) ∈ (0, T ) readily follows.

Step 4. Now, we let

(4.17)
treg := sup

{
T1 ∈ (0, T ) : the problem (4.1), (4.2) has a solution

λ ∈ L2([0, T1])}
and claim that the supremum is taken over a nonempty set. Indeed, for fixed M ∈
(0,∞) and a small enough T1 = T1(M) ∈ (0, T ) consider the unique solution λ ∈
L2([0, T1]) of the truncated fixed-point problem (4.3), (4.4). The corresponding
solution p of (4.3) satisfies

(4.18)
∥∥−(α + λ

M,T1
t

)
∂yp

∥∥
L2([0,T1]×[0,∞)) ≤ (α + M)C2,

where C2 is as in (4.8). Repeating the estimates from (4.14) we get therefore

(4.19)

∥∥(∂yp)(·,0)
∥∥
L2([0,T1])

≤ (α + M)C2

(∫ ∞
0

∥∥(∂yψσ )(·, z,0)
∥∥2
L1([0,T1]) dz

)1/2

+
∥∥∥∥∫ ∞

0
fν(z)(∂yψσ )(t, z,0)dz

∥∥∥∥
L2([0,T1])

.

The fixed-point constraint (4.4), the lower bound in (3.2), and the latter inequality
give ‖λ‖L2([0,T1]) ≤ M upon decreasing the value of T1 = T1(M) ∈ (0, T ) if neces-
sary. Such a T1 belongs to the set on the right-hand side of (4.17), since λM,T1 = λ

and consequently λ is a solution of the fixed-point problem (4.1), (4.2).
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We show next that for every element T1 of the set on the right-hand side of
(4.17) the corresponding solution of the fixed-point problem (4.1), (4.2) is unique.
To this end, for any two solutions λ, λ̃ ∈ L2([0, T1]) we let M = 1+‖λ‖L2([0,T1]) ∨
‖̃λ‖L2([0,T1]). Then, for any ε ∈ (0, T1] the restrictions of both λ and λ̃ to [0, ε]
solve the truncated fixed-point problem (4.3), (4.4) on [0, ε]. Combining this
observation with the contraction property established in Steps 1–3 we find an
ε ∈ (0, T1] such that λt = λ̃t for almost every t ∈ [0, ε].

With this ε and the solution p ∈ W
1,2
2 ([0, ε] × [0,∞)) of the Cauchy–Dirichlet

problem in (4.3) we consider the mapping which takes L2([ε, (2ε)∧T1]) functions
ρ to

−C
σ 2

2

(∂yu)(·,0)∫∞
0 u(·, y)dy

,

where u is the unique solution of

(4.20)

∂tu = −(α + ρ
M,ε,(2ε)∧T1
t

)
∂yu + σ 2

2
∂2
yu,

u(ε, ·) = p(ε, ·), u(·,0) = 0,

u ∈ W
1,2
2

([
ε, (2ε) ∧ T1

]× [0,∞)
)

and

(4.21)

ρM,ε,(2ε)∧T1

:= ρ1{‖ρ‖
L2([ε,(2ε)∧T1])≤(M2−‖λ‖2

L2([0,ε]))
1/2}

+ ρ
(M2 − ‖λ‖2

L2([0,ε]))
1/2

‖ρ‖L2([ε,(2ε)∧T1])
1{‖ρ‖

L2([ε,(2ε)∧T1])>(M2−‖λ‖2
L2([0,ε]))

1/2}.

This mapping is well defined with range contained in L2([ε, (2ε)∧T1]), since one
can regard u as the restriction of the unique solution of

(4.22)

∂tu = −(α + ξ
M,(2ε)∧T1
t

)
∂yu + σ 2

2
∂2
yu,

u(0, ·) = fν, u(·,0) = 0,

u ∈ W
1,2
2

([
0, (2ε) ∧ T1

]× [0,∞)
)

to [ε, (2ε) ∧ T1] × [0,∞), where

(4.23) ξ
M,(2ε)∧T1
t :=

{
λt if t ∈ [0, ε),

ρ
M,ε,(2ε)∧T1
t if t ∈ [

ε, (2ε) ∧ T1
]
,

and use the assumptions fν ∈ W 1
2 ([0,∞)), fν(0) = 0, the existence and unique-

ness result of [23], Chapter III, Remark 6.3, for (4.22), the second assertion in [23],
Chapter II, Lemma 3.4, and the lower bound in (3.2).
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Moreover, the described mapping is a contraction on L2([ε, (2ε)∧T1]). Indeed,
repeating the analysis of Steps 1–3, replacing every occurrence of the interval [0, ε]
by [ε, (2ε) ∧ T1] and estimating

ess sup
t∈[ε,(2ε)∧T1]

∥∥(∂yu)(t, ·)∥∥L2([0,∞)),
∥∥(∂yu)(·,0)

∥∥
L2([ε,(2ε)∧T1])

via [23], Chapter II, Lemma 3.4, and the results of [23], Chapter III, Section 6, for
the problem (4.22) we conclude that the Lipschitz constant of the mapping does
not exceed

C
σ 2

2
C7

((∫ ∞
0

∥∥(∂yψσ )(·, z,0)
∥∥2
L1([0,ε]) dz

)1/2
+ ε1/2

)
,

where one can use the same constant C7 as in (4.16) [because the initial condition
in the problem (4.22) is the same as in the problem (4.3)]. It follows that λt = λ̃t

for almost every t ∈ [ε, (2ε) ∧ T1], as the restrictions of λ and λ̃ to [ε, (2ε) ∧ T1]
are both fixed points of the mapping in consideration. A sequential repetition of
the same argument on the time intervals[

(2ε) ∧ T1, (3ε) ∧ T1
]
,
[
(3ε) ∧ T1, (4ε) ∧ T1

]
, . . .

yields λt = λ̃t for almost every t ∈ [0, T1].
Part (b) of the proposition is an immediate consequence of the just established

uniqueness assertion. In addition, the latter allows to combine the solutions of the
fixed-point problem (4.1), (4.2) for different elements T1 of the set on the right-
hand side of (4.17) to a function λ ∈ L2

loc([0, treg)), with treg defined via (4.17). To
obtain part (a) of the proposition it remains to check limT1↑treg ‖λ‖L2([0,T1]) = ∞
if treg < T . If treg < T and limT1↑treg ‖λ‖L2([0,T1]) < ∞ were to hold, then λ ∈
L2([0, treg]) would be a solution of the fixed-point problem (4.1), (4.2) on [0, treg].
In addition, with p ∈ W

1,2
2 ([0, treg] × [0,∞)) being the corresponding solution of

the Cauchy–Dirichlet problem (4.1) the same arguments as in Steps 1–3 and the
first paragraph of Step 4 would give the existence of a solution ρ ∈ L2([treg, T̂ ]) to
the fixed-point problem

∂tu = −(α + ρt )∂yu + σ 2

2
∂2
yu,

(4.24)
u(treg, ·) = p(treg, ·), u(·,0) = 0,

− C
σ 2

2

(∂yu)(t,0)∫∞
0 u(t, y)dy

= ρt for almost every t ∈ [treg, T̂ ](4.25)

for (T̂ − treg) ∈ (0, T − treg) small enough (note that p(treg, ·) ∈ W 1
2 ([0,∞)) with

p(treg,0) = 0 thanks to the well-definedness of the evaluation map p �→ p(treg, ·);
see [23], Chapter II, Lemma 3.4). The concatenation of λ and ρ would then be
a solution of the fixed-point problem (4.1), (4.2) on [0, T̂ ], a contradiction to the
definition of treg in (4.17). �
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Given an initial condition Z0
d= ν as in Theorem 2.7, we define

(4.26)
Zt = Z0 + αt +

∫ t

0
λs ds + σBt , t ∈ [0, treg ∧ T ∧ τ),

τ = inf
{
t ∈ [0, T ] : Zt = 0

}
, Zt = 0, t ∈ [τ , treg ∧ T ),

with the pair (treg, λ) of Proposition 4.1(a). The next proposition establishes that,
until the explosion of the weak derivative of the cumulative loss process in the
L2 norm, any physical solution satisfying the conditions in Theorem 2.7(a) and
stopped upon hitting 0 must be given by Z.

PROPOSITION 4.2. Let ν be as in Theorem 2.7. Then:

(a) the process Z defined by (4.26) satisfies the fixed-point constraint

(4.27) λt = C∂t logP(τ > t) for almost every t ∈ [0, treg ∧ T );
(b) for any physical solution Y satisfying the conditions in Theorem 2.7(a), the

corresponding time treg > 0 and the stopped process Y t∧τ , t ∈ [0, treg ∧T ) coincide
with treg and Z in (4.26).

PROOF. For any T1 ∈ (0, treg ∧ T ), the argument employed in the proof of
Lemma 3.1 shows that the densities p(t, ·), t ∈ [0, T1] of the restrictions of the laws
of Zt , t ∈ [0, T1] to (0,∞), respectively, form a W

1,2
2 ([0, T1] × [0,∞))-solution

of (3.1). Consequently, the identity (3.3) and the lower bound in (3.2) reveal the
function t �→ log

∫∞
0 p(t, y)dy as absolutely continuous on [0, T1] with

(4.28)

∂t log
∫ ∞

0
p(t, y)dy

= −σ 2

2

(∂yp)(t,0)∫∞
0 p(t, y)dy

for almost every t ∈ [0, T1].

By combining (4.2) with (4.28), we arrive at (4.27), that is, part (a) of the proposi-
tion.

Next, we let λ be the weak derivative of the loss function of a physical solution
Y as in part (b) of the proposition and treg > 0 be the explosion time of λ in the L2

norm. We also fix a T1 ∈ (0, treg ∧T ) and denote by p(t, ·), t ∈ [0, T1] the densities
of the restrictions of the laws of Y t∧τ , t ∈ [0, T1] to (0,∞), respectively. Then,
both (4.27) and (4.28) hold. Moreover, substituting the right-hand side of (4.28)
for ∂t logP(τ > t) in (4.27) we get (4.2). Now, it follows from Proposition 4.1(b)
that the pair (treg, λ) is the one of Proposition 4.1(a). Part (b) of the proposition at
hand readily follows. �

We conclude the section with the proof of Theorem 2.7.
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PROOF OF THEOREM 2.7. Parts (a) and (b) of the theorem follow directly
from parts (a) and (b) of Proposition 4.2, respectively. Moreover, for any T1 ∈
(0, treg) the argument used in the proof of Lemma 3.1 identifies the densities
p(t, ·), t ∈ [0, T1] of the restrictions of the laws of Y t∧τ , t ∈ [0, T1] to (0,∞) with
the W

1,2
2 ([0, T1] × [0,∞))-solution of (3.1). Thus, the restriction (∂yp)(·,0) ∈

L2
loc([0, treg)) of the weak derivative ∂yp is well defined due to the second asser-

tion in [23], Chapter II, Lemma 3.4, and the characterization (2.22) follows from
(4.2). �

5. A priori regularity of physical solutions. We begin this section by stating
some elementary properties of physical solutions.

LEMMA 5.1. Let Y be a càdlàg process satisfying (2.12), with the associated
�, τ 0 and τ . Then, for t ∈ (0, τ 0):

(a) the associated loss function � is nonincreasing;
(b) the laws of Y t1{τ≥t} and Y t−1{τ≥t}, restricted to (0,∞), possess densities;

the latter are bounded by a constant independent of t if the law of Y 0 possesses a
bounded density;

(c) �t− = C logP(τ ≥ t);
(d) P(Y t− ≤ 0) > 0.

PROOF. Property (a) is immediate from the definition of �. To deduce prop-
erty (b) we notice that, for all 0 < a < b < ∞,

P
(
Y t1{τ≥t} ∈ (a, b)

)≤ P
(
Y 0 + σBt ∈ (a − αt − �t, b − αt − �t)

)
,

P
(
Y t−1{τ≥t} ∈ (a, b)

)≤ P
(
Y 0 + σBt ∈ (a − αt − �t−, b − αt − �t−)

)
,

and the two right-hand sides are bounded above by a constant times (b − a). This
constant can be chosen to be the same for all values of t in an interval bounded
away from zero, and it is uniform for all t ≥ 0 if Y 0 possesses a bounded den-
sity. To obtain property (c), we let s ∈ [0, t), ε ∈ (0,1) and employ the chain of
estimates
P(τ > s) − P(τ ≥ t)

≤ P

(
Y s > 0, inf

r∈[s,t) Y r ≤ 0
)

≤ P
(
Y s ∈ (0, ε)

)+ P

(
inf

r∈[s,t)
(
α(r − s) + σ(Br − Bs) + �r − �s

)≤ −ε
)
.

In view of the existence of �t− and property (b), the limit ε ↓ 0 of the limit supe-
rior s ↑ t of the latter upper bound is 0, and property (c) readily follows. Finally,
property (d) is a consequence of

Y t− ≤ Y 0 + αt + σBt , t ∈ (
0, τ 0),

which is in turn due to property (a). �
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Let us fix an arbitrary càdlàg process Y satisfying (2.12), with the associated �

and τ 0. Recall that p(t, ·) denotes the density of the distribution of Y t−1{τ≥t} re-
stricted to (0,∞), and note that it may no longer be described by the PDE analyzed
in the previous sections. In the rest of the section, we establish certain regularity
properties of Y , which, ultimately, allow us to conclude that � is Hölder continu-
ous, with a Hölder exponent strictly greater than 1/2, on any interval on which the
density at zero vanishes.

We assume that the law of Y 0 admits a bounded density and begin with an aux-
iliary construction. For fixed t ∈ [0, τ 0) and ε ∈ (0,∞), we consider the sequence
of processes Y

n
, n ∈ N defined recursively as follows:

Y
1
s = Y t− + (αs + σB̃s)1{τ≥t}, s ∈ [0, ε],(5.1)

Y
n

s = Y t− + (
αs + σB̃s + Ln−1)1{τ≥t}, s ∈ [0, ε], n ≥ 2,(5.2)

Ln = C logP
(
τ ≥ t, inf

s∈[0,ε]Y
n

s > 0
)

− �t−, n ≥ 1,(5.3)

where B̃s := Bt+s − Bt , s ∈ [0, ε] and �0− := 0. The latter logarithm is well
defined, since t < τ 0 and B̃ is independent of Y s , s ∈ [0, t]. By Lemma 5.1(c),

Y
2
s ≤ Y

1
s for all s ∈ [0, ε] with probability one. Then, by induction, we conclude

that the sequences Y
n

s , n ∈ N are nonincreasing for all s ∈ [0, ε] with probability
one.

LEMMA 5.2. Suppose that the law of Y 0 possesses a bounded density. Then
the following hold for any t ∈ [0, τ 0):

(a) If p(t, ·) satisfies

(5.4) lim
η↓0

ess sup
y∈(0,η)

p(t, y) = 0,

then there is a constant CL < ∞ depending only on C,σ,�t−,‖p(t, ·)‖L∞([0,∞))

such that

(5.5)
∣∣Ln

∣∣≤ CLε1/2

for all n ∈ N sufficiently large and all ε ∈ (0,∞) sufficiently small, where Ln is
defined by (5.3). Moreover, CL can be chosen to be arbitrarily small, provided
ε > 0 is small enough.

(b) If p(t, ·) satisfies

(5.6) p(t, y) ≤ Ĉyγ , y ∈ (0, η)

with some constants Ĉ < ∞, γ ∈ (0,1], and η > 0, then there is a constant CL <

∞ depending only on C,σ, Ĉ, γ, η,�t−,‖p(t, ·)‖L∞([0,∞)) such that

(5.7)
∣∣Ln

∣∣≤ CLε(1+γ )/2

for all n ∈ N sufficiently large and all ε ∈ (0,∞) sufficiently small.
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PROOF. Let κ(y) := ess supz∈(0,y) p(t, z), y ∈ (0,∞) and note that in the set-
ting of part (b) it holds κ(y) ≤ Ĉyγ , y ∈ (0,∞), where we have increased the
value of Ĉ if necessary [recall Lemma 5.1(b)]. We have the estimates

0 ≥ e�t−/C(eL1/C − 1
)= P

(
τ ≥ t, inf

s∈[0,ε]Y
1
s > 0

)
− P(τ ≥ t)

=
∫ ∞

0

(
P

(
inf

s∈[0,ε](αs + σB̃s) > −y
)

− 1
)
p(t, y)dy

≥ −2
∫ ∞

0
�

( |α|ε − y

σ
√

ε

)
p(t, y)dy ≥ −2

√
ε

∫ ∞
0

�(1 − y/σ)p(t, y
√

ε)dy

= −2
√

ε

∫ ι/
√

ε

0
�(1 − y/σ)p(t, y

√
ε)dy

− 2
√

ε

∫ ∞
ι/

√
ε
�(1 − y/σ)p(t, y

√
ε)dy

≥ −2
√

ε

(∫ ∞
0

�(1 − y/σ)κ(y
√

ε)dy + ∥∥p(t, ·)∥∥L∞([0,∞))e
−ε−1/4

)
=: −√

εC0(ε)

for all ι ∈ (0,1) and sufficiently small ε ∈ (0, ι3). Here, as before, � stands for
the standard Gaussian cumulative distribution function. It is clear from (5.4) that
C0(ε) → 0 as ε ↓ 0, and we conclude

(5.8) 0 ≥ L1 ≥ C log
(
1 − e−�t−/C

√
εC0(ε)

)≥ −2Ce−�t−/C
√

εC0(ε)

for all sufficiently small ε > 0. In the setting of part (b), we have the additional
upper bound

(5.9) C0(ε) ≤ 2εγ/2
(
Ĉ

∫ ∞
0

�(1 − y/σ)yγ dy + ∥∥p(t, ·)∥∥L∞([0,∞))

)
=: C1ε

γ/2.

For n ≥ 2, we find

(5.10)

e�t−/C(eLn/C − 1
)

= P

(
τ ≥ t, inf

s∈[0,ε]Y
n

s > 0
)

− P(τ ≥ t)

=
∫ ∞

0

(
P

(
inf

s∈[0,ε](αs + σB̃s) + Ln−1 > −y
)

− 1
)
p(t, y)dy

≥ −
∫ −Ln−1

0
p(t, y)dy − 2

∫ ∞
−Ln−1

�

( |α|ε − y − Ln−1

σ
√

ε

)
p(t, y)dy

≥ −
∫ −Ln−1

0
p(t, y)dy − 2

√
ε

∫ ∞
0

�(1 − y/σ)p
(
t, y

√
ε − Ln−1)dy.
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Next, we choose an ι ∈ (0,1) small enough, so that for all sufficiently small
ε ∈ (0, ι3) it holds

(5.11) 2Ce−�t−/C
√

εC0(ε) ≤ 2C6

1 − C5

√
ε < ι

where

(5.12)

C6 := CC3

1 − C2ικ(ι) − C3
√

ε
, C5 := C4κ(ι) < 1,

C4 := CC2

1 − C2ικ(ι) − C3
√

ε
,

C3 := 2e−�t−/C
∥∥p(t, ·)∥∥L∞([0,∞))

∫ ∞
0

�(1 − y/σ)dy,

C2 := e−�t−/C.

In particular, (5.11) implies

(5.13) L1 ≥ −2Ce−�t−/C
√

εC0(ε) ≥ − 2C6

1 − C5

√
ε > −ι.

Assuming that

(5.14) Ln−1 ≥ − 2C6

1 − C5

√
ε > −ι

for some n ≥ 2, the overall estimate in (5.10) yields

(5.15)
e�t−/C(eLn/C − 1

)≥ −Ln−1κ
(−Ln−1)

− 2
√

ε
∥∥p(t, ·)∥∥L∞([0,∞))

∫ ∞
0

�(1 − y/σ)dy,

so that

(5.16)

Ln ≥ C log
(
1 − C2

(−Ln−1)κ(−Ln−1)− C3
√

ε
)≥ C5L

n−1 − C6
√

ε

≥ −2C5C6

1 − C5

√
ε − C6

√
ε = −(1 + C5)C6

1 − C5

√
ε ≥ − 2C6

1 − C5

√
ε.

Thus, by induction,

(5.17) Ln ≥ − 2C6

1 − C5

√
ε =: −C7

√
ε > −ι, n ≥ 1.
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Finally, we apply (5.10) again to obtain for all sufficiently small ε > 0

(5.18)

e�t−/C(eLn/C − 1
)≥ Ln−1κ

(−Ln−1)
− 2

√
ε

∫ ι/
√

ε−C7

0
�(1 − y/σ)κ

(
(y + C7)

√
ε
)

dy

− 2
√

ε
∥∥p(t, ·)∥∥L∞([0,∞))

∫ ∞
ι/

√
ε−C7

�(1 − y/σ)dy

≥ Ln−1κ
(−Ln−1)− C8

√
εC0(ε)

and, hence, Ln ≥ −C5(−Ln−1) − C9
√

εC0(ε), n ≥ 2, for suitable constants
C8,C9 < ∞. Iterating the latter inequality we end up with

(5.19) 0 ≥ Ln ≥ − 2C9

1 − C5

√
εC0(ε)

for all n ∈ N sufficiently large. Both parts of the lemma readily follow. �

Next, we use the sequence Ln, n ∈ N to construct an auxiliary process Ỹ admit-
ting a comparison to the physical solution Y .

LEMMA 5.3. Suppose that the law of Y 0 possesses a bounded density and the
assumptions of part (a) or part (b) of Lemma 5.2 hold. Then, for all ε ∈ (0,∞)

sufficiently small, there is a continuous process Ỹ satisfying

(5.20) Ỹs = Y t− + (αs + σB̃s + L̃)1{τ≥t}, s ∈ [0, ε],
with

(5.21) L̃ = C logP
(
τ ≥ t, inf

s∈[0,ε] Ỹu > 0
)

− C logP(τ ≥ t).

Moreover,

(5.22) L̃ ≥ −CLε(1+γ )/2,

for all ε ∈ (0,∞) sufficiently small, where CL is as in the corresponding part
of Lemma 5.2 and γ should be set to 0 in the case of the setting of part (a) of
Lemma 5.2.

PROOF. By Lemma 5.2, for ε ∈ (0,∞) sufficiently small, the sequence Ln,
n ∈ N has a limit L̃. Hence, the processes Y

n
, n ∈ N converge uniformly on [0, ε]

to the process Ỹ defined by (5.20) with probability one, so that infs∈[0,ε] Y
n

s , n ∈N

tend almost surely to infs∈[0,ε] Ỹs . Clearly, the conditional distribution of the latter
random variable given {τ ≥ t} has no atoms, and hence,

(5.23) lim
n→∞P

(
τ ≥ t, inf

s∈[0,ε]Y
n
s > 0

)
= P

(
τ ≥ t, inf

s∈[0,ε] Ỹs > 0
)
,

which yields (5.21). The estimate (5.22) follows directly from Lemma 5.2. �
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Recall that Y is a càdlàg process satisfying (2.12), with the associated �, τ 0

and that t ∈ (0, τ 0).

LEMMA 5.4. Suppose that the law of Y 0 possesses a bounded density and that
� is continuous at t and on [t, t + ε] for some ε ∈ (0,∞) as in Lemma 5.3. Then,
with any solution Ỹ of (5.20), (5.21) for that ε, it holds

(5.24) �t+s − �t ≥ L̃, s ∈ [0, ε] ∩ [0, τ 0 − t).

PROOF. Suppose that there exists an s ∈ [0, ε] ∩ [0, τ 0 − t) such that �t+s −
�t < L̃. Since L̃ < 0, we must have s > 0. Due to the continuity of �, we can
further find an s′ ∈ (0, ε) such that �t+s′ −�t = L̃ and �t+s′′ −�t > L̃ for all s′′ ∈
[0, s′). Therefore, for any s′′ ∈ [0, s′], the definitions of Y , Ỹ and the properties of
Brownian motion give

1{τ>t+s′′} − 1{τ≥t,infr∈[0,ε] Ỹr>0} ≥ 0,

P(1{τ>t+s′′} − 1{τ≥t,infr∈[0,ε] Ỹr>0} > 0) > 0.

Taking s′′ = s′, we end up with �t+s′ −�t > L̃, which is the desired contradiction.
�

The following proposition shows that the conditions of Lemma 5.2 imply the
Hölder continuity of the cumulative loss process.

PROPOSITION 5.5. Suppose that the law of Y 0 possesses a bounded density
and that for some t0 ∈ (0, τ 0), � is continuous on [0, t0) and the assumption of part
(a) or part (b) of Lemma 5.2 applies for all t ∈ [0, t0). Then there exist C̃ < ∞ and
γ ∈ [0,1] such that

(5.25) |�t − �s | ≤ C̃|t − s|(1+γ )/2, s, t ∈ [0, t0),

where γ can be chosen strictly positive in the case of part (b) of Lemma 5.2.

PROOF. Combining Lemmas 5.2, 5.3, 5.4 we conclude that for any t ∈ [0, t0)

there is a constant CL < ∞ such that

(5.26) 0 ≥ �s − �t ≥ −CL(s − t)(1+γ )/2

holds for all s in a right neighborhood of t . The proposition now follows by noting
that the size of such neighborhoods can be chosen uniformly in t . �

Finally, we recall the definition of r∗
t from (2.19) and connect this quantity to

the assumption in part (b) of Lemma 5.2.
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PROPOSITION 5.6. Let Y be a physical solution,4 with the associated τ 0,
r∗, p. Suppose that Y 0 has a bounded density vanishing in a neighborhood of 0.
Consider any t0 ∈ (0, τ 0) for which r∗

t0
= 0. Then, there exist Ĉ, η ∈ (0,∞) and

γ ∈ (0,1] such that

(5.27) p(t, y) ≤ Ĉyγ , y ∈ (0, η), t ∈ (0, t0).

PROOF. The assumption r∗
t0

= 0 and Definition 2.1 of a physical solution
imply that � is continuous on [0, t0). Moreover, we note that the conditions in
Lemma 5.2(a) are satisfied for all t ∈ [0, t0). These observations allow us to apply
Proposition 5.5, which will be used further in the proof. Next, we fix s ∈ (0, t0)

and χ,y0 ∈ (0,∞), pick a function φχ ∈ C∞([0,∞)) with values in [0,1] and
support contained in (y0, y0 + χ), and define

(5.28) g(t, y) = E
[
φχ(Y t∧τ − y)

]
, (t, y) ∈ [0, s] ×R.

In addition, we let

(5.29) Zt := −αt + σ(Bs−t − Bs) + �s−t − �s, t ∈ [0, s],
and write F

Z = (FZ
t )t∈[0,s] for the filtration generated by Z. We also consider the

stopping time with respect to F
Z :

(5.30) θ := (
inf
{
t ∈ [0, s] : Zt /∈ (−y0, χ1η)

})∧ (
χ2η

2)∧ s,

where χ1, χ2, η ∈ (0,∞) are constants to be specified below. Note that, whenever
Y s−t ≥ 0, we have

(5.31) Zt ≥ Y s−t − Y s,

and whenever Y s−t , Y s ≥ 0, we have

(5.32) Zt = Y s−t − Y s.

The latter always holds on {t ≤ θ} ∩ {Y s ≥ y0}.
We claim that

(5.33) g(s − t ∧ θ,Zt∧θ ), t ∈ [0, s]
is a martingale with respect to F

Z . To this end, we use that, for any t ∈ [0, s], Y s−t

is independent of FZ
t and that

(5.34) 1{Y s≥y0}1{infr∈[0,s−t] Y r>0}1{t≤θ} = 1{Y s≥y0}1{infr∈[0,s] Y r>0}1{t≤θ},

4Note that, herein, we require that Y is a physical solution, as opposed to merely being a solution
to (2.12). This assumption is used in the first sentences in the proof.
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which yields

(5.35)

E
[
φχ(Y s)1{Y s≥y0}1{infr∈[0,s] Y r>0} | FZ

t

]
1{t≤θ}

= E
[
φχ(Y s−t − Zt)1{infr∈[0,s−t] Y r>0} | FZ

t

]
1{t≤θ}

= E
[
φχ(Y s−t − y)1{infr∈[0,s−t] Y r>0}

]∣∣
y=Zt

1{t≤θ}

= g(s − t,Zt )1{t≤θ},
where we have relied on Zt ≥ −y0, t ≤ θ . The first expression in (5.35) is a mar-
tingale multiplied by 1{t≤θ}, so that the last expression in (5.35) stopped at θ is a
martingale.

Applying the optional sampling theorem, we obtain

(5.36)

g(s,0) = E
[
g(s − θ,Zθ)

]
≤ P(Zθ 
= −y0, θ < s) sup

(t,z)∈[0,s]×[−y0,χ1η]
g(t, z)

+E
[
g(s − θ,−y0)1{Zθ=−y0}

]+E
[
g(0,Zs)1{Zθ 
=−y0,θ=s}

]
≤ P(Zθ 
= −y0, θ < s) sup

(t,z)∈[0,s]×[−y0,χ1η]
g(t, z)

+ sup
t∈[0,s]

g(t,−y0) + sup
z∈[−y0,χ1η]

g(0, z),

which implies further

(5.37)

(∫ y0+χ

y0

φχ(y)p(s, y)dy

)
≤ P(Zθ 
= −y0, θ < s)

(
sup

t∈[0,s]
ess sup

z∈[0,χ1η+y0+χ ]
p(t, z)

)∥∥φχ
∥∥
L1([0,∞))

+
(

sup
t∈[0,s]

ess sup
z∈[0,χ]

p(t, z)
)∥∥φχ

∥∥
L1([0,∞))

+
(

ess sup
z∈[0,χ1η+y0+χ ]

p(0, z)
)∥∥φχ

∥∥
L1([0,∞)).

Letting y0 ∈ (0, η) with η ∈ (0,∞) sufficiently small we get in the case s ≥
χ2η

2

(5.38)

P(Zθ 
= −y0, θ < s)

≤ P

(
inf

t∈[0,χ2η
2]
(
�s−t − �s − αt + σ(Bs−t − Bs)

)
> −η

)
+ P

(
sup

t∈[0,χ2η
2]
(
�s−t − �s − αt + σ(Bs−t − Bs)

)
> χ1η

)

≤ 1

2
,
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once we make χ1, χ2 ∈ (0,∞) sufficiently large, uniformly in η and s ∈ (0, t0).
Hereby, the second inequality in (5.38) relies on the 1/2-Hölder continuity of �,
which is in turn due to Proposition 5.5. In the case s < χ2η

2, we obtain similarly

(5.39)

P(Zθ 
= −y0, θ < s)

≤ P

(
sup

t∈[0,χ2η
2]
(
�s−t − �s − αt + σ(Bs−t − Bs)

)
> χ1η

)
≤ 1

2
.

Combining (5.37), (5.38), (5.39) and y0 ∈ (0, η) we end up with

(5.40)

∥∥φχ
∥∥−1
L1([0,∞))

∫ y0+χ

y0

φχ(y)p(s, y)dy

≤ 1

2

(
sup

t∈[0,s]
ess sup

z∈[0,(χ1+1)η+χ ]
p(t, z)

)
+
(

sup
t∈[0,s]

ess sup
z∈[0,χ]

p(t, z)
)

+
(

ess sup
z∈[0,(χ1+1)η+χ ]

p(0, z)
)
.

To complete the proof, we consider χ ∈ (0, η) in (5.40), and choose a sequence
of test functions, φχ , that approximates the indicator function of the set on which
p(s, ·) is close to its maximum, to obtain

(5.41)

ess sup
z∈[0,η]

p(s, z) ≤ 1

2

(
sup

t∈[0,s]
ess sup

z∈[0,(χ1+2)η]
p(t, z)

)
+
(

sup
t∈[0,s]

ess sup
z∈[0,χ]

p(t, z)
)

+
(

ess sup
z∈[0,(χ1+2)η]

p(0, z)
)
.

Next, we use r∗
s = 0 and take a limit as χ → 0 in the above, to conclude

(5.42)

ess sup
z∈[0,η]

p(s, z) ≤ 1

2

(
sup

t∈[0,s]
ess sup

z∈[0,(χ1+2)η]
p(t, z)

)
+
(

ess sup
z∈[0,(χ1+2)η]

p(0, z)
)
.

Replacing s by t ∈ [0, s] and taking the supremum over t ∈ [0, s] we find therefore

(5.43)

sup
t∈[0,s]

ess sup
z∈[0,η]

p(t, z) ≤ 1

2

(
sup

t∈[0,s]
ess sup

z∈[0,(χ1+2)η]
p(t, z)

)
+
(

ess sup
z∈[0,(χ1+2)η]

p(0, z)
)
.

An iteration of this inequality yields

(5.44)

sup
t∈[0,s]

ess sup
z∈[0,η]

p(t, z) ≤ 1

2n

(
sup

t∈[0,s]
ess sup

z∈[0,(χ1+2)nη]
p(t, z)

)
+ 2

(
ess sup

z∈[0,(χ1+2)nη]
p(0, z)

)
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for all n ∈ N. It remains to choose η̃ ∈ (0,∞) such that p(0, ·) vanishes on [0, η̃],
let η ∈ (0, η̃/(χ1 + 2)) and select n as the integer part of log(η̃/η)/ log(χ1 + 2) to
deduce

(5.45)

sup
t∈[0,s]

ess sup
z∈[0,η]

p(t, z)

≤ 2− log(η̃/η)/ log(χ1+2)+1
(

sup
t∈[0,s]

ess sup
z∈[0,η̃]

p(t, z)
)

= 2− log η̃/ log(χ1+2)+1
(

sup
t∈[0,s]

ess sup
z∈[0,η̃]

p(t, z)
)
ηlog 2/ logλ.

The proposition follows by noting that the factor in front of ηlog 2/ logλ can be
bounded by a constant Ĉ ∈ (0,∞) independent of s ∈ (0, t0). �

Combining Proposition 5.6 with Proposition 5.5, we get Theorem 2.6.

6. Jumps of the cumulative loss process. In this section, we prove Propo-
sition 2.5. The proof is an adaptation of [10], proof of Proposition 2.7. We fix
t ∈ [0, τ 0) and η ≥ 0 satisfying the condition in the proposition, but suppose
η̃ := η − (�t− − �t) > 0. Then we obtain by means of the elementary estimate

(6.1)

�t − �t−
C

= logP(τ > t) − logP(τ ≥ t)

≤ P(τ > t) − P(τ ≥ t)

P(τ ≥ t)
= −P(τ = t)

P(τ ≥ t)

that, for all y ∈ [0, η̃],

(6.2)

P(τ > t,Y t ∈ (0, y))

P(τ > t)

≥ P(τ > t,Y t− ∈ (0, y + �t− − �t))

P(τ ≥ t)

= P(τ ≥ t, Y t− ∈ (0, y + �t− − �t))

P(τ ≥ t)

− P(τ = t, Y t− ∈ (0, y + �t− − �t))

P(τ ≥ t)

≥ y + �t− − �t

C
+ �t − �t−

C
= y

C
.
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Next, we combine the conclusion of (6.2) and Fubini’s theorem to get, for s > t ,

(6.3)

�s − �t = C logP(τ > s) − C logP(τ > t) ≤ C
P(τ > s) − P(τ > t)

P(τ > t)

≤ − C

P(τ > t)

× P

(
Y t > 0, Y t − sup

r∈[t,s]
(
σ(Bt − Br) + �t − �r

)≤ −|α|(s − t)
)

≤ −
∫ η̃

0
P

(
y − sup

r∈[t,s]
(
σ(Bt − Br) + �t − �r

)≤ −|α|(s − t)
)

dy

≤ −E

[(
sup

r∈[t,s]
(
σ(Bt − Br) + �t − �r

)− |α|(s − t)
)

∧ η̃
]
.

Moreover, by the right continuity of � we have, for s − t > 0 small enough, that
supr∈[t,s](�t − �r) − |α|(s − t) ≤ η̃

2 . For such s > t , one can use the explicit
distribution of the Brownian supremum supr∈[t,s](σ (Bt − Br)) to deduce that the
last expression of (6.3) does not exceed

(6.4)

−E

[
sup

r∈[t,s]
(
σ(Bt − Br) + �t − �r

)− |α|(s − t)
]
+ k(s − t)

= −E

[
sup

r∈[t,s]
(
σ(Bt − Br) + �t − �r

)]+ (|α| + k
)
(s − t),

where k ∈ (0,∞) is a constant depending only on σ and η̃.
Finally, assuming an a priori estimate of the form

(6.5) �s − �t ≤ −c
√

s − t, s ∈ [t, t + h]
for some h ∈ (0,1) small enough in the sense above and c ≥ 0 [note that (6.5)
holds at least with c = 0], (6.3), (6.4) and the Brownian scaling property lead to
the improvement

(6.6)
�s − �t ≤ −

(
E

[
sup

r∈[0,1]
(σBr + c

√
r)
]
− (|α| + k

)√
h
)√

s − t,

s ∈ [t, t + h].
Repeating the arguments following [10], page 2458, second to last display, word-
by-word, we conclude that the possibility of such an improvement contradicts the
right continuity of �. This completes the proof.

7. Convergence of the finite-particle systems. This last section is devoted
to the proof of Theorem 2.4, and we work under the assumptions of that theorem
throughout the rest of the paper. Recall the equations (2.7), (2.8), (2.10), satisfied
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by the finite-particle system (Ỹ 1, Ỹ 2, . . . , Ỹ N ) and the definition (2.5) of the cas-
cade sizes, needed to uniquely determine the finite-particle system. We note that
the equations (2.7), (2.8) guarantee that the processes Ỹ 1, Ỹ 2, . . . , Ỹ N never jump
across −1. Our proof follows the line of reasoning in [10], and we often refer to
the results established therein.

Our first aim is to establish the tightness of the sequence of empirical measures
μ̃N = 1

N

∑N
i=1 δỸ i , N ∈ N. To this end, we start with the following lemma, which

is the analogue of [10], Lemma 5.2.

LEMMA 7.1. For any χ > 0, there exists some υ = υ(χ) ∈ (0,1) (indepen-
dent of N ) such that

(7.1) P
(∃t ∈ [0, υ] : 1 − St/N ≥ υ−1t1/4)≤ χ.

PROOF. We introduce the auxiliary particle system (Ŷ 1, Ŷ 2, . . . , Ŷ N ) defined
analogously to (Ỹ 1, Ỹ 2, . . . , Ỹ N ), but with the equation (2.10) replaced by

(7.2) Ŷ i
t = Ỹ i

0 + αt + σBi
t − 1 + C

2
(1 − Ŝt /N), t ∈ [0, T ].

More specifically, we substitute (2.5) by

(7.3) K̂d
t =

(
inf
{
k = 1,2, . . . , Ŝt− : Ŷ (k)

t− − 1 + C

2

k − 1

N
> 0

}
− 1

)
∧ Ŝt−,

and rewrite (2.7) for (Ŷ 1, Ŷ 2, . . . , Ŷ N ) accordingly. Fix an arbitrary χ1 ∈ (0,1).
By repeating the proof of [10], Lemma 5.2, we conclude that for any χ > 0 there
exists some υ = υ(χ) ∈ (0,1) (independent of N ) such that

(7.4) P
(∃t ∈ [

0, χ4
1 υ4] : 1 − Ŝt /N ≥ υ−1t1/4)≤ χ.

In fact, in [10] each particle shifts the locations of the other particles every time it
hits a new integer, which makes Ŝ even smaller. This observation allows to simplify
some parts of the proof of [10], Lemma 5.2, when deriving the estimate (7.4).

If χ1 ∈ (0,1) is chosen for the following to hold:

(7.5)
−1 + C

2
y1 ≤ C log(1 − y1),

−1 + C

2
y1 ≤ C log

(
1 − y1

1 − y2

)
, y1, y2 ∈ [0, χ1),

then on the complement of the event in (7.4) we have for all t ∈ [0, χ4
1 υ4] and all

k = 1,2, . . . , K̂d
t + 1:

(7.6)

−1 + C

2
(1 − Ŝt /N) ≤ C log(Ŝt /N),

−1 + C

2

k − 1

N
≤ C log

(
1 − k − 1

Ŝt−

)
.
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These inequalities and induction along the hitting times of zero for the auxiliary
particles yield, on the complement of the event in (7.4), for all t ∈ [0, χ4

1 υ4] and
all i = 1,2, . . . ,N ,

(7.7) Ỹ i
t∧τ i ≥ Ŷ i

t∧τ̂ i , Kd
t ≤ K̂d

t , St ≥ Ŝt .

The lemma follows upon decreasing the value of υ ∈ (0,1) if necessary. �

The next lemma is needed to prove the upper bound on jump sizes in the defini-
tion of a physical solution. It is the analogue of [10], Lemma 5.3, and its proof is a
simplified version of the proof of the latter. The present setting allows for a simpli-
fication, because each particle can only contribute to the cumulative loss process
once, that is, it can only “spike” once, in the terminology of [10].

LEMMA 7.2. There exist some C0 < ∞, ε > 0 such that for all r ∈ (0,1),
t ∈ [0, T ) and s ∈ (0, (T − t) ∧ ε) one can find an N0 = N0(r, s) ∈ N with

(7.8)

P

(
St−
N

≥ r,∀ι ≤
(

St− − St+s

St−
− 2s1/4

)+
:

1

St−
∣∣{τ i ≥ t, Ỹ i

t− + C log(1 − ι) ≤ 2s1/4}∣∣≥ ι

1 + s1/4

)

≥ P

(
St−
N

≥ r

)
− C0s

for all N ≥ N0, where | · | denotes the number of elements of a set.

PROOF. For an ε > 0, we consider arbitrary r ∈ (0,1), t ∈ [0, T ), s ∈ (0, (T −
t) ∧ ε) and work throughout on the event {St−/N ≥ r} (in particular, all events
are intersected with {St−/N ≥ r}, and all complements are taken with respect to
{St−/N ≥ r}). Then, for any k ∈ {0,1, . . . , St− − St+s} we have

∑N
i=1 1Ai,1(k) ≥ k,

where

(7.9)

Ai,1(k) :=
{
τ i ≥ t,

Ỹ i
t− + C log

(
1 − k

St−

)
− α−s + σ inf

s′∈[0,s]
(
Bi

t+s′ − Bi
t

)≤ 0
}
.

In addition, we define the events

(7.10)
A =

{
1

St−

N∑
i=1

1Ai,2 ≤ s

}
,

Ai,2 =
{
τ i ≥ t,−α−s + σ inf

s′∈[0,s]
(
Bi

t+s′ − Bi
t

)
< −s1/4

}
,
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let ι ∈ [0, (
St−−St+s

St− (1 + 2s1/4) − 2s1/4)+], and choose k as the integer part of
ι+s1/4

1+s1/4 St−, so that 0 ≤ k ≤ St− − St+s . Moreover, on Ai,1(k) ∩ (Ai,2)c:

(7.11)

Ỹ i
t− + C log(1 − ι) ≤ Ỹ i

t− + C log
(

1 − k

St−
(
1 + s1/4)+ s1/4

)

≤ Ỹ i
t− + C log

(
1 − k

St−

)
+ s1/4 ≤ 2s1/4.

Consequently, on A,

(7.12)

1

St−

N∑
i=1

1{τ i≥t,Ỹ i
t−+C log(1−ι)≤2s1/4}

≥ 1

St−

N∑
i=1

1Ai,1(k) − 1

St−

N∑
i=1

1Ai,2

≥ k

St−
− s ≥ ι + s1/4

1 + s1/4 − 1

Nr
− s ≥ ι

1 + s1/4

for N ≥ r−1s−1, provided ε is smaller than an appropriate uniform constant. Fi-
nally, we obtain P(Ac) ≤ C0s for some C0 < ∞ by conditioning on the informa-
tion up to time t and using Markov’s inequality in conjunction with a standard
estimate for Brownian motion. �

Next, we recall the space D([0, T +1]) of càdlàg functions on [0, T +1] that are
continuous at T + 1, endowed with the Skorokhod M1 topology (see, e.g., [10, 19,
27, 31] for a detailed discussion of the M1 topology). We write P(D([0, T + 1]))
for the space of probability measures on D([0, T +1]), endowed with the topology
of weak convergence.

PROPOSITION 7.3. The sequence μ̃N , N ∈ N is tight on P(D([0, T + 1])).

PROOF. We first claim that the sequence of Ỹ 1, indexed by N ∈ N, is tight on
D([0, T + 1]). To this end, we decompose Ỹ 1 into the sum of its continuous and
jump parts. Notice that, between the jump times, Ỹ 1 is given by

(7.13) Ỹ 1
t = Ỹ 1

0 + αt + σB1
t + 1{Ỹ 1

t ≥−1}C log(1 − St/N)

1 − 1{−1≤Ỹ 1
t ≤0}C log(1 − St/N)

.

Hence, the modulus of continuity of the continuous part of Ỹ 1 is bounded above
by the modulus of continuity of a Brownian motion with drift, started from Ỹ 1

0 .
The same is true for the supremum of the absolute value of the continuous part
of Ỹ 1. Moreover, the jump part of Ỹ 1 is nonincreasing, and the supremum of its



124 S. NADTOCHIY AND M. SHKOLNIKOV

absolute value is bounded above by the supremum of the continuous part plus 1,
since Ỹ 1 does not jump across −1. The tightness of the sequence of Ỹ 1, indexed
by N ∈ N, can be now deduced as in the proof of [10], Lemma 5.4, by invoking
our Lemma 7.1. To obtain the proposition from this, it remains to use a standard
argument from the theory of propagation of chaos; cf. [29], Proposition 2.2. �

We proceed with the proof of Theorem 2.4. Let us denote by ω the canonical
process in D([0, T + 1]) and introduce

(7.14) mt := 1{infs∈[0,t] ωs≤0}, t ∈ [0, T + 1].
By Proposition 7.3, the sequence μ̃N , N ∈ N is tight, and we write �∞ for the
law of an arbitrary limit point. In the remainder of the proof, we assume that all
limits are taken along the corresponding convergent subsequence of μ̃N , N ∈ N.
By repeating the first part of the proof of [10], Theorem 4.4, we find a countable set
J ⊂ [0, T + 1] such that for any t ∈ J c it holds 〈μ,mt−〉 = 〈μ,mt 〉 and μ(ωt− =
ωt) = 1 for �∞-almost every μ ∈ P(D([0, T + 1])). Hereby, 〈·, ·〉 stands for the
integral of a function of the canonical process with respect to a given measure. The
following lemma is the analogue of [10], Lemma 5.9, and its proof is postponed to
Section 7.1.

LEMMA 7.4. For �∞-almost every μ ∈ P(D([0, T + 1])) and any μn, n ∈N

converging weakly to μ, we have

(7.15) lim
n→∞〈μn,mt 〉 = 〈μ,mt 〉, t ∈ J c.

Next, we fix a rational T ′ ∈ J c ∩[0, T ], an integer � ≥ 1, elements 0 = s0 < s1 <

· · · < s� < T ′ of J c, and uniformly continuous bounded functions g1, g2, . . . , g� :
R → R. In addition, for any uniformly continuous bounded function G : R → R

we let

(7.16) QN := E

[
G̃

(〈
μ̃N ,

�∏
j=1

gj

(
ωsj − ω0 − Lsj

(
ω, μ̃N ))〉)(1 − 〈

μ̃N ,mT ′
〉)]

,

where

Lt(ω,μ) := (
(ωt + 1)+ ∧ 1

)
C log

(
1 − 〈μ,mt 〉),(7.17)

G̃(y) :=
(
G(y) − G

(
E

[
�∏

j=1

(αsj + σBsj )

]))2

,(7.18)

and we use the convention that the expression inside the expectation in the defini-
tion of QN is 0 whenever 〈μ̃N ,mT ′ 〉 = 1. Note

(7.19) QN = E

[
G̃

(
1

N

N∑
i=1

�∏
j=1

(
αsj + σBi

sj

))(
1 − 〈

μ̃N ,mT ′
〉)]

,
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so that limN→∞ QN = 0 by the strong law of large numbers. The last ingredient
in the proof of Theorem 2.4 is the following lemma, which is the analogue of [10],
Lemma 5.10.

LEMMA 7.5. The functional

(7.20)

P
(
D
([0, T + 1]))
� μ �→ G̃

(〈
μ,

�∏
j=1

gj

(
ωsj − ω0 − Lsj (ω,μ)

)〉)(
1 − 〈μ,mT ′ 〉)

is continuous at �∞-almost every μ.

PROOF. Lemma 7.4 implies that the mappings μ �→ 〈μ,msj 〉, j = 1,2, . . . , �

and μ �→ 〈μ,mT ′ 〉 are continuous at �∞-almost every μ. Pick such a μ and μn,
n ∈ N converging to μ. If 〈μ,ms�〉 = 1, then 〈μ,mT ′ 〉 = 1, and the value of the
functional at μ is 0. At the same time, limn→∞〈μn,mT ′ 〉 = 1, and the boundedness
of G̃ implies that the values of the functional at μn, n ∈ N converge to 0, yielding
the desired continuity.

If 〈μ,ms�〉 < 1, then for all n ∈ N sufficiently large 〈μn,ms�〉 is bounded away
from 1 by a constant (recall the continuity of 〈·,ms�〉 at μ). In particular, no discon-
tinuity can arise from the logarithm in the definition of Lt(ω,μ). Consequently,
we can repeat the proof of [10], Lemma 5.10, to conclude that the values of the
functional at μn, n ∈ N converge to its value at μ. �

Lemma 7.5 gives

(7.21)

∫
P(D([0,T +1]))

G̃

(〈
μ,

�∏
j=1

gj

(
ωsj − ω0 − Lsj (ω,μ)

)〉)

× (
1 − 〈μ,mT ′ 〉)�∞(dμ) = lim

N→∞QN = 0,

and hence,

(7.22) G

(〈
μ,

�∏
j=1

gj

(
ωsj − ω0 − Lsj (ω,μ)

)〉)= G

(
E

[
�∏

j=1

(αsj + σBsj )

])

for �∞-almost every μ with 〈μ,mT ′ 〉 < 1. The standard arguments in the proof of
[10], Lemma 5.4, allow to deduce from (7.22) that the process ωt −ω0 −Lt(ω,μ),

t ∈ [0, T ′] is a Brownian motion with drift and ω0
d= Ỹ 1

0 , under �∞-almost every μ

with 〈μ,mT ′ 〉 < 1. Since the set of possible T ′ is countable and dense in [0, T ], we
conclude that the canonical process satisfies the condition (2.12) in Definition 2.1
of a physical solution, under �∞-almost every μ.
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To see condition (2.15) in Definition 2.1, we cast the estimate (7.8) of
Lemma 7.2 as

(7.23)

P

(〈
μ̃N ,mt−

〉≤ 1 − r,∀ι ≤
(〈μ̃N ,mt+s〉 − 〈μ̃N ,mt−〉

1 − 〈μ̃N ,mt−〉 − 2s1/4
)+

:

μ̃N(mt− = 0,ωt− + C log(1 − ι) ≤ 2s1/4)

1 − 〈μ̃N ,mt−〉 ≥ ι

1 + s1/4

)
≥ P

(〈
μ̃N ,mt−

〉≤ 1 − r
)− C0s.

By following the last part of the proof of [10], Theorem 4.4, we obtain from this
for all r ∈ (0,1) sufficiently small and all t ∈ J ∩ [0, T ]:

(7.24)

�∞
(
〈μ,mt 〉 ≤ 1 − r/2,∀ι <

〈μ,mt − mt−〉
1 − 〈μ,mt−〉 :

μ(mt− = 0,ωt− + C log(1 − ι) ≤ 0)

1 − 〈μ,mt−〉 ≥ ι

)
≥ �∞

(〈μ,mt 〉 ≤ 1 − r
)
,

which in the limit r ↓ 0 yields

(7.25)

�∞
(
〈μ,mt 〉 < 1,∀ι <

〈μ,mt − mt−〉
1 − 〈μ,mt−〉 :

μ(mt− = 0,ωt− + C log(1 − ι) ≤ 0)

1 − 〈μ,mt−〉 ≥ ι

)
≥ �∞

(〈μ,mt 〉 < 1
)
.

Consequently,

(7.26) ∀ι <
〈μ,mt − mt−〉
1 − 〈μ,mt−〉 : μ(mt− = 0,ωt− + C log(1 − ι) ≤ 0)

1 − 〈μ,mt−〉 ≥ ι

for all t ∈ J ∩ [0, T ] and �∞-almost every μ with

(7.27) τ 0(μ) := inf
{
s ∈ [0, T ] : 〈μ,ms〉 = 1

}
> t.

Since the set J is countable, the latter statement holds for �∞-almost every μ and
all t ∈ J ∩ [0, T ] ∩ [0, τ 0(μ)). This implies, for all such μ and t ,

(7.28)
〈μ,mt − mt−〉
1 − 〈μ,mt−〉 ≤ μ(mt− = 0,ωt− ≤ ȳ)

1 − 〈μ,mt−〉 ,

with

(7.29) ȳ := inf
{
y > 0 : y + C log

(
1 − μ(mt− = 0,ωt− ≤ y)

1 − 〈μ,mt−〉
)

> 0
}
,

which yields the desired upper bound on the jumps of the canonical process. Propo-
sition 2.5 yields the lower bound, and we conclude that the canonical process satis-
fies the condition (2.15) in Definition 2.1 of a physical solution, under �∞-almost
every μ. The proof of Theorem 2.4 is complete.
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7.1. Proof of Lemma 7.4. Let us fix an arbitrary T1 ∈ (0,∞) and, as before,
denote by D([0, T1]) the space of real-valued càdlàg functions on [0, T1] that are
continuous at T1, endowed with the Skorokhod M1 topology. The following two
lemmas are the analogues of [10], Lemma 5.6, and [10], Proposition 5.8, respec-
tively, and we omit their proofs, since they constitute very minor modifications of
the proofs in [10].

LEMMA 7.6. Consider any ω ∈ D([0, T1]) satisfying the crossing property

(7.30) ∀s > 0 : τ < T1 =⇒ inf
t∈[τ,(τ+s)∧T1]

(ωt − ωτ ) < 0,

where τ := (inf{t ∈ [0, T1] : ωt ≤ 0}) ∧ T1. Then, for any ωn, n ∈ N converging to
ω in D([0, T1]) there exists a countable set J ⊂ [0, T1] such that

(7.31)

lim
n→∞mn

t := lim
n→∞ 1{infs∈[0,t] ωn

s ≤0} = 1{infs∈[0,t] ωs≤0} =: mt,

t ∈ [0, T1] \ J

and all points t of continuity of ω satisfying infs∈[0,t] ωs 
= 0 are contained in
[0, T1] \ J .

LEMMA 7.7. Consider any μ ∈P(D([0, T1])) satisfying

(7.32) ∀s > 0 : μ
(
τ < T1, inf

t∈[τ,(τ+s)∧T1]
(ωt − ωτ ) = 0

)
= 0,

where τ := (inf{t ∈ [0, T1] : ωt ≤ 0}) ∧ T1. Then, for any μn, n ∈ N converging
weakly to μ we have

(7.33) lim
n→∞〈μn,mt 〉 = 〈μ,mt 〉

for all points t of continuity of the mapping t �→ 〈μ,mt 〉.
The next lemma shows that the canonical process satisfies the crossing property

under �∞-almost every μ. It is the analogue of [10], Lemma 5.9.

LEMMA 7.8. For �∞-almost every μ, it holds

(7.34) ∀s > 0 : μ
(
τ < T + 1, inf

t∈[τ,(τ+s)∧(T +1)](ωt − ωτ ) = 0
)

= 0,

where τ := (inf{t ∈ [0, T + 1] : ωt ≤ 0}) ∧ (T + 1).

The proof of Lemma 7.8 is essentially the same as the proof of [10], Lemma 5.9,
with Step 2 therein allowing for a simplification, since the drift coefficient α is
constant in the present setting. It is also worth mentioning the typo in the sev-
enth displayed equation in the proof of [10], Lemma 5.9: “max(ζN

rN
t −, ζN

rN
t
) −

min(ζN
rN
s −, ζN

rN
s
)” should be replaced by “min(ζN

rN
t −, ζN

rN
t
) − max(ζN

rN
s −, ζN

rN
s
).”

Lastly, we observe that Lemma 7.4 is a direct consequence of Lemmas 7.7 and
7.8.
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