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We consider a large queueing system that consists of many strategic
servers that are weakly interacting. Each server processes jobs from its unique
critically loaded buffer and controls the rate of arrivals and departures associ-
ated with its queue to minimize its expected cost. The rates and the cost func-
tions in addition to depending on the control action, can depend, in a sym-
metric fashion, on the size of the individual queue and the empirical measure
of the states of all queues in the system. In order to determine an approximate
Nash equilibrium for this finite player game, we construct a Lasry–Lions-type
mean-field game (MFG) for certain reflected diffusions that governs the lim-
iting behavior. Under conditions, we establish the convergence of the Nash-
equilibrium value for the finite size queuing system to the value of the MFG.

1. Introduction. Rate controlled queueing systems commonly arise from ap-
plications in communication systems; see, for example, [6, 23, 33, 52] and ref-
erences therein. Recently, they have also been considered in modeling limit or-
der books; see, for example, [11, 12, 17, 21, 44, 54]. A common approach to
the study of such rate control problems when the system is in heavy traffic is
through diffusion approximations. In a problem setting where there is interaction
between servers/queues in that the rates or costs associated with a particular queue
and server can depend on the states of the other queues, this approach leads to
a stochastic control problem for n-dimensional reflected diffusions, where n is
the number of queues in the system. When n is large, such control problems are
computationally intractable and in general this “curse of dimensionality” is un-
avoidable. However, when there are certain symmetries present and the interac-
tion between queues is weak, in that each queue has O(1/n) affect on any other
queue in the system. A natural approach is to consider, in addition to heavy traf-
fic, another asymptotic regime where the number of queues n approaches ∞ as
well. Such model settings arise in many applications, for example, cloud comput-
ing, live streaming, limit order books, customer service systems, etc. In many of
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these contexts, the servers are strategic, for example, in customer service networks,
servers respond to workload incentives (see [39]), and in the context of limit or-
der books, buyers and sellers place their orders in a strategic manner and interact
weakly through their impact on the price distribution.

We study one of the simplest forms of queuing networks, namely a collection of
n single server queues. The system is assumed to be critically loaded. For this, we
fix an arbitrary sequence of scaling parameters {en}n that satisfy en → ∞ when
n → ∞. We assume that, for each queue, the traffic intensity, which is the ra-
tio between the rate of arrivals to the rate of service is 1 − O(1/

√
en) (see [30]).

The arrival and service rates for each queue are O(en). In absence of control and
state dependence of rates, the analysis simply reduces to that of a single M/M/1
queue which in the heavy traffic can be approximated by a one-dimensional re-
flected Brownian motion. In the setting we consider, every server can exercise
control on the arrival and service rates associated with its own queue. This control
which is O(

√
en) is of lower order compared to the overall rate but it can have

significant impact on performance in the asymptotic regime we consider. In the
heavy traffic regime with a fixed number of servers, performance improvement
using an O(

√
en) control has been well studied (see, e.g., [52], Chapter 9). In a

setting (that is quite different from the one considered here) where the number of
nodes/servers approach ∞, numerical results that show performance improvement
under O(

√
en) controls can be found in [22]. In the model we consider, the rates

can depend on the state of the individual queue. Furthermore, a particular queue’s
state is influenced by the remaining queue states through their empirical measure.
The control action for each server can use information on the history of queue
lengths, arrival and processing times and control actions for all of the queues in the
system. We consider a rate control problem where each server aims to minimize
its individual cost. Although many different types of cost criteria can be consid-
ered, here for simplicity we consider a cost function over a finite time horizon.
This cost function may depend on the individual queue lengths, the control action
and the empirical measure of all the queue states. A natural way to formulate opti-
mality for such n-player games is through the notion of a (near) Nash equilibrium.
Computing Nash equilibria, even if one considers the simplified heavy traffic ap-
proximation in terms of reflected diffusions, is computationally a very challenging
problem when n is large. The goal of this work is to analyze an asymptotic formu-
lation where simultaneously each queue approaches heavy traffic and the number
of queues approaches ∞. There is extensive literature on heavy traffic limits of rate
controlled queuing systems with a fixed number of queues [6, 23, 52]; however, to
the best of our knowledge this is the first work to study the asymptotics for con-
trolled queues where in addition to heavy traffic, the number of queues approach
infinity as well. We will show that the asymptotics in this regime is governed by a
Lasry–Lions-type mean-field game (MFG) for reflected diffusions. We will use the
solution of the MFG to construct an asymptotic Nash equilibrium for the n-player
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queueing system. This equilibrium has a simple and appealing decentralized struc-
ture: each server bases his decision only upon the length of his own queue and
a deterministic measure valued function obtained from the solution of the MFG.
We also prove that the value of the above near Nash equilibrium converges to
the value function of the MFG as n → ∞. In general, closed-form solutions for
MFG of the form that arise here are not available, and thus one needs numerical
approximations. In [8], we study one such procedure that uses the Markov chain
approximation method ([53]) and establishes convergence of the scheme over a
small time interval. We refer the reader to [1–3, 15, 25, 26, 29, 42, 55] for some
recent results on numerical methods for mean-field games.

The theory of mean-field games was initiated a decade ago in the seminal work
of Lasry and Lions [58–60], and Huang, Malhamé and Caines [46, 47]. In recent
years, there has been a growing interest in this field. For recent theoretical devel-
opments and applications of this theory, see [24, 27, 28, 34, 38, 43, 56, 57] and
references therein. Mean-field approximations for weakly interacting stochastic
particles have a long history starting from the works of Boltzmann, McKean, Kac
and others (see [66] and references therein). Even in the context of queuing sys-
tems and communication networks, there have been many works [5, 7, 14, 18, 20,
22, 37, 40, 41, 48, 69]. Another related branch is agent based models with mean-
field interaction (but without strategic agents); see, for example, [9, 10, 36]. MFGs
have also been used by queuing theorists as a tool in recent years; see, for exam-
ple, [54, 61, 63, 70]. In contrast to these works, we consider an MFG associated
with queuing systems in heavy traffic.

We now make some comments on proof techniques. Roughly speaking, the so-
lution of a MFG considered here can be viewed as the solution of a fixed-point
problem on the space of probability measures on certain path spaces (see Sec-
tion 3). In order to characterize such solutions, in a setting where each agent’s state
evolution is described through a diffusion process, Lasry and Lions [58–60] stud-
ied well-posedness of two coupled nonlinear partial differential equations; one is
an equation of the Hamilton–Jacobi–Bellman (HJB)-type while the second takes
the form of a Kolmogorov forward equation. A somewhat different approach is
taken in recent works of Carmona, Delarue and Lacker [27, 28]. Using proba-
bilistic methods, authors characterize the MFG solution as a solution to certain
forward-backward stochastic differential equations.

In all the above papers the n-player system is described through a collection of
stochastic differential equations and the mean-field game gives the asymptotic be-
havior of the system as n → ∞. In contrast, in the current work, for a fixed value
of n the state process is given through a collection of controlled jump Markov pro-
cesses with jump sizes that approach 0 as n → ∞. Thus here we have two forms of
asymptotic behavior: one corresponds to the large agent limit while the other cor-
responds to diffusion approximations of pure jump processes with vanishing jump
sizes. Analyzing this simultaneous limit behavior, which is key to the proof of
Theorem 4.1 that identifies an asymptotic Nash equilibrium for the n-player game
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as n → ∞, requires new techniques. A key ingredient is to prove suitable tightness
properties and to analyze and characterize the weak limit points of certain stochas-
tic processes and random measures. Here, we make use of a result from [50] (see
Lemma 4.2 therein) which can be viewed as an extension of de Finetti’s theorem
for sequences of random measures on certain path spaces. In proving suitable tight-
ness properties of control processes, we consider a relaxed control formulation.
Our assumption on the uniqueness of the minimizer [Assumption 3.1(b)] ensures
that extending the class of controls in this manner does not lower the cost. Such re-
laxed control formulations have been widely used in stochastic control theory; see,
for example, [19, 32, 35, 53]. More recently, they have also been invoked in the
study of mean-field games [34, 56, 57]. Other key ingredients needed for the proof
are (a) regularity properties of the optimal feedback controls for certain stochas-
tic control problems for reflected diffusions; (b) weak formulation of stochastic
control problems for reflected diffusions. We find that the approach based on HJB
characterizations of value functions is particularly well suited for our problem set-
ting. In particular, regularity results from [62] for a quasilinear PDE with Neumann
boundary conditions give us the required estimates for obtaining the desired prop-
erties of the optimal feedback controls. Use of HJB theory in our analysis is a
feature that is common to the approach initiated by Lasry and Lions; however, a
point of departure is that instead of using Kolmogorov forward equations we char-
acterize probability distributions as unique weak solutions of suitable reflected
diffusions. In this sense, our approach is closer to [28] although, unlike [28], we
do not make use of forward backward stochastic differential equations in our work.

In summary, our main contributions are as follows. We

• consider a rate control problem for large symmetric queuing systems in heavy
traffic with strategic servers;

• introduce an MFG for controlled reflected diffusions, and in Theorem 3.1 estab-
lish its solvability under Assumption 3.1, and prove unique solvability assuming
in addition Assumption 3.2;

• use the solution of a diffusion MFG to construct, under Assumptions 3.1 and
4.1, an asymptotically optimal Nash equilibrium for the n player countable
state game using techniques that combine heavy traffic analysis with large agent
asymptotics (Theorem 4.1).

Thus Assumption 3.1 is a basic assumption for all our results. This assumption im-
poses Lipschitz continuity of the various functions in the model. Assumption 3.2,
that is introduced for the uniqueness of the solution of the MFG, is common in
the literature of MFG. It says that the drift is independent of the mean-field term
and that the running cost and terminal cost satisfy a certain monotonicity property;
see Remark 3.1 for a discussion of the assumption. In order to obtain an asymp-
totic Nash-equilibrium, we require, in addition to Assumption 3.1, Assumption 4.1
which as the first part of Assumption 3.2 says that the drift is free of the mean-field
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term, and in addition requires a basic convergence property for the initial condi-
tions. For this result, we do not require the monotonicity property, in particular the
uniqueness of the solution of the MFG is not needed.

The paper is organized as follows. In Section 2, we introduce the queueing
model, the scaling regime and the cost criterion. Next, in Section 3 we introduce
the MFG and present our main result on its solvability (Theorem 3.1). Section 4
constructs an asymptotic Nash equilibrium for the n-player game and the main
result of this section is Theorem 4.1 which proves asymptotic optimality.

1.1. Notation. We use the following notation. For metric spaces S1,S2 denote
by C(S1 : S2) the space of S2 valued continuous functions on S1. When S2 = R, we
abbreviate the notation to simply C(S1). The space C([0, T ] : S) for a Polish space
S will be equipped with the uniform topology. We will denote by D([0, T ] : S) the
space of S valued functions that are right continuous and have left limits (RCLL)
defined on [0, T ]. This space is equipped with the usual Skorohod topology. For
f ∈D([0, T ] :Rd) and 0 ≤ t ≤ T , ‖f ‖t

.= sup0≤s≤t ‖f (s)‖. In case that d = 1, we
often use |f |t . We will denote by Lip1(S) the space of real Lipschitz functions on
S whose Lipschitz norm is bounded by 1, namely the class of functions f : S →R

with ∣∣f (x) − f (y)
∣∣ ≤ d(x, y), x, y ∈ S,

where d denotes the metric on S . Denote by P(S) the space of probability mea-
sures on S . We endow P(S) with the topology of weak convergence of measures.
Convergence in distribution of S valued random variable Xn to X will be denoted
as Xn ⇒ X. For T ,L ∈ (0,∞), the space P(C([0, T ] : [0,L])) will be denoted as
PT ,L. The Wasserstein distance of order 1 on P(S), where S is a compact metric
space, is defined as

W1
(
η′, η

) = inf
{[∫

S
d(x, y) dπ(x, y)

]
: π ∈ P(S × S) with marginals η′ and η

}
,

where η,η′ ∈ P(S). We denote by C1,2([0, T ] × [0,L]) the space of functions f :
(0, T )× (0,L) →R that are continuously differentiable (resp., twice continuously
differentiable) with respect to (w.r.t.) the first (resp., second) variable and are such
that the function and the derivatives extend continuously to [0, T ] × [0,L]. For
φ ∈ C1,2([0, T ] × [0,L]), Dtφ,Dφ,D2φ will denote the time derivative and the
first two space derivatives of φ, respectively. For x ∈ S , δx ∈ P(S) denotes the
Dirac measure at x.

2. The n-server queuing control problem. We consider a symmetric n-
server stochastic queueing system. Each server i ∈ {1, . . . , n} is associated with
a queue with a finite capacity and is able to control the rates of the service and
arrivals of jobs to its queue. The rates can also depend on the state of the queue
and on the empirical measure of the states of all the n-queues. We will consider
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a regime where the arrival and processing rates are approximately the same and
are of the same order as the number of queues in the system. We now describe
our precise scaling regime and introduce the various processes that determine the
evolution of the state of the system.

2.1. Diffusion scaling. Fix T ,L > 0 and n ∈ N. Here, T denotes the terminal
time of our finite time horizon and [0,L] will be the state space of the scaled
queue length process. Let U be a compact subset of R. We will denote by λn,i

and μn,i the (controlled) arrival and service rates associated with queue i. Fix an
arbitrary sequence of scaling parameters {en}n that satisfy en → ∞ when n → ∞.
The rates will be O(

√
en) perturbations of certain nominal (uncontrolled) O(en)

overall rates. More precisely, we assume that there exist λ̂, μ̂ > 0, and bounded
and measurable functions λ,μ : [0, T ] ×P([0,L]) × [0,L] × U → R such that

λn,i(t) = λ̂en + λ
(
t, ν̃n(t), Q̃n,i(t), αn,i(t)

)√
en + o(

√
en),

μn,i(t) = μ̂en + μ
(
t, ν̃n(t), Q̃n,i(t), αn,i(t)

)√
en + o(

√
en),

(2.1)

where Q̃n,i(t) = 1√
en

Qn,i(t), Qn,i(t) is the size of the ith queue at time t ,

ν̃n(t)
.= 1

n

n∑
i=1

δ
Q̃n,i (t)

is the empirical distribution of the scaled queue lengths in the nth system at
time t , and αn,i(t) is the control that server i exercises at time t . The term
o(

√
en) represents an expression of the form rn(t, ν̃

n(t), Q̃n,i(t), αn,i(t)) where
rn : [0, T ] × P([0,L]) × [0,L] × U → R are measurable functions such that
rn/

√
en converges uniformly to 0 as n → ∞. Additional conditions on λ and μ

will be introduced in later sections. Each server in the nth system has a finite
buffer of size Ln = √

enL and arriving jobs to a full buffer are lost. We assume
that the system is in heavy traffic, namely

λ̂ = μ̂.

We now give a precise description of controlled stochastic processes of interest.
For each fixed n, let (	′,F ′,P′) be a probability space on which are given unit rate
independent Poisson processes Nn,i and Mn,i , i = 1, . . . , n. Roughly speaking,
Nn,i will correspond to the stream of jobs entering the ith queue and Mn,i to the
jobs that leave the system after service. The evolution of the ith controlled queue
is given as follows:

Qn,i(t) = Qn,i(0) + An,i(t) − Dn,i(t), i = 1, . . . , n, t ∈ [0, T ],(2.2)

where Qn,i(0) ≥ 0 is the initial size of the ith queue,

(2.3)

An,i(t) = Nn,i

(∫ t

0
1{Qn,i (s)<L}λn,i(s) ds

)
,

Dn,i(t) = Mn,i

(∫ t

0
1{Qn,i (s)>0}μn,i(s) ds

)
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are the arrival and departure processes, respectively, where λn,i and μn,i are
defined as in (2.1) in terms of control processes {αn,i}. We will assume that
{Qn,i(0)}ni=1 are exchangeable for all n. We require that the control processes
are suitably nonanticipative. Specifically, we assume that for some filtration {Ft }
on (	′,F ′,P′), αn,i is {Ft }-progressively measurable, Qn,i , n ≥ i ≥ 1 are {Ft }-
adapted, and

Ãn,i(t)
.= An,i(t) − ∫ t

0 1{Qn,i (s)<L}λn,i(s) ds√
en

,

D̃n,i(t)
.= Dn,i(t) − ∫ t

0 1{Qn,i (s)>0}μn,i(s) ds√
en

are {Ft } martingales with quadratic variations

(2.4)

〈
Ãn,i , Ãn,j 〉

(t) = δij

1

en

∫ t

0
1{Qn,i (s)<L}λn,i(s) ds,

〈
D̃n,i, D̃n,j 〉

(t) = δij

1

en

∫ t

0
1{Qn,i (s)>0}μn,i(s) ds,

and 〈Ãn,i , D̃n,j 〉(t) = 0, t ∈ [0, T ], i, j = 1, . . . , n where δij = 1 if i = j and 0
otherwise. The process αn = {αn,i}ni=1 will be referred to as an admissible control
and we denote the collection of all such controls by Un. With an abuse of termi-
nology, for αn = {αn,i}ni=1 as above, we will refer to αn,i as an admissible control
for the ith player.

From (2.2), we have the following evolution equation for the scaled queue
length processes. For t ∈ [0, T ],

Q̃n,i(t) = Q̃n,i(0) + Ãn,i(t) − D̃n,i(t)

+
∫ t

0
b̃n,i(s) ds + Ỹ n,i(t) − R̃n,i(t) + o(1),

(2.5)

where

Ỹ n,i(t)
.=

∫ t
0 1{Q̃n,i (s)=0}μ

n,i(s) ds
√

en

,

R̃n,i(t)
.=

∫ t
0 1{Q̃n,i (s)=L}λ

n,i(s) ds
√

en

,

b̃n,i(t)
.= b

(
t, ν̃n(t), Q̃n,i(t), αn,i(t)

)
, b

.= λ − μ,

(2.6)

and o(1) represents a stochastic process ηn,i satisfying for each i

sup0≤t≤T |ηn,i(t)| → 0, in probability, as n → ∞. The above dynamics can equiv-
alently be described in terms of a Skorohod map as we do below. Let D0[0, T ] be
the subset of D([0, T ] :R) consisting of all ψ such that ψ(0) ∈ [0,L].
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DEFINITION 2.1. Given ψ ∈ D0[0, T ] we say the triplet of functions (ϕ, ζ1,

ζ2) ∈ D([0, T ] :R3) solves the Skorohod problem for ψ if the following properties
are satisfied:

(i) For every t ∈ [0, T ], ϕ(t) = ψ(t) + ζ1(t) − ζ2(t) ∈ [0,L].
(ii) ζi are nonnegative and nondecreasing, ζ1(0) = ζ2(0) = 0, and∫

[0,T ]
1(0,L]

(
ϕ(s)

)
dζ1(s) =

∫
[0,T ]

1[0,L)

(
ϕ(s)

)
dζ2(s) = 0.

We denote by (ψ) = (1,2,3)(ψ) = (ϕ, ζ1, ζ2) and refer to  as the Skorohod
map.

It is known that there is a unique solution to the Skorohod problem for every
ψ ∈ D0[0, T ] and so the Skorohod map in Definition 2.1 is well defined. The
Skorohod map has the following Lipschitz property (see [51]).

LEMMA 2.1. There exists cS ∈ (0,∞) such that for all ω, ω̃ ∈ D0([0, T ]),
3∑

i=1

∥∥i(ω) − i(ω̃)
∥∥
T ≤ cS‖ω − ω̃‖T .

The dynamics in (2.5) can be described in terms of the Skorohod map as fol-
lows: (

Q̃n,i , Ỹ n,i , R̃n,i)(t)
= 

(
Q̃n,i(0) +

∫ ·
0

b̃n,i(s) ds

+ Ãn,i(·) − D̃n,i(·) + o(1)

)
(t), t ∈ [0, T ].

(2.7)

2.2. The control problem. We now introduce the cost function and the con-
trol problem studied in this work. The total expected cost for server i associ-
ated with the initial condition Q̃n(0) = (Q̃n,1(0), . . . , Q̃n,n(0)) and control αn =
(αn,1, . . . , αn,n) ∈ Un is given by

Jn,i(Q̃n(0);αn)
.= E

[∫ T

0
f

(
t, ν̃n(t), Q̃n,i(t), αn,i(t)

)
dt + g

(
ν̃n(T ), Q̃n,i(T )

)

+
∫ T

0
y
(
t, ν̃n(t)

)
dỸ n,i(t) +

∫ T

0
r
(
t, ν̃n(t)

)
dR̃n,i(t)

]
,

(2.8)

where f : [0, T ] × P([0,L]) × [0,L] × U → R is the running cost, g : P(R) ×
[0,L] → R is the terminal cost and r, y : [0, T ] × P([0,L]) → R+ are the costs
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associated with rejection of jobs and empty buffers, respectively. Here, f,g, y and
r are bounded measurable functions that will be required to satisfy additional con-
ditions that will be introduced in Section 3 (see Assumption 3.1). Each player
(server) seeks to minimize its cost. A natural formulation of optimality for such n-
player games is given in terms of a (near) Nash equilibrium. Computing near Nash
equilibria for such complex and large multi-player games is in general intractable,
and thus we instead consider an asymptotic formulation of the problem.

DEFINITION 2.2. A sequence of admissible controls {α̃n,i : 1 ≤ i ≤ n}n∈N is
called an asymptotic Nash equilibrium if for every player j , and every sequence of
admissible controls {βn}∞n=1 for that player, one has

lim sup
n→∞

Jn,j (
Q̃n(0); α̃n,1, . . . , α̃n,n)

≤ lim inf
n→∞ Jn,j (

Q̃n(0); α̃n,1, . . . , α̃n,j−1, βn, α̃n,j+1, . . . , α̃n,n)
.

Objective of this work is to show that, under conditions, an asymptotic Nash
equilibrium exists which can be approximated by analyzing a related MFG. The
main results are Theorem 3.1 (solvability of MFG) and Theorem 4.1 (asymptotic
optimality).

3. The MFG. A natural approach for constructing asymptotic near Nash equi-
libria for the above n-player game has emerged from the works of [24, 27, 28].
Starting point in this approach is to consider an MFG that formally corresponds to
the limit of the above n-player games as n → ∞. In this section, we give a pre-
cise description of this MFG in the current context and give our main results on
existence and uniqueness of solutions.

3.1. Description of the MFG. The basic idea in the formulation of the MFG
is to approximate the scaled queue length process for a typical queue by a suit-
able drift-controlled reflected Brownian motion. We next introduce this controlled
process. Let (	,F, {Ft},P) be a filtered probability space on which is given
a one-dimensional standard Ft -Brownian motion B . We will refer to the col-
lection (	,F, {Ft},P,B) as a system and denote it by �. Given x ∈ [0,L],
t ∈ [0, T ], and ν ∈ PT ,L, we denote by A(�, t, x, ν) the collection of all pairs
(α,Z) where α = {α(s)}0≤s≤T −t is a U -valued Fs-progressively measurable pro-
cess, Z = {Z(s)}0≤s≤T −t is a [0,L] × R+ × R+ valued Fs -adapted continuous
process such that, Z = (X,Y,R) and

Z(s) = (X,Y,R)(s)

= 

(
x +

∫ ·
0

b̄(u) du + σB(·)
)
(s), s ∈ [0, T − t],(3.1)
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where

b̄(u)
.= b

(
t + u, ν(t + u),X(u),α(u)

)
, u ∈ [0, T − t],

ν(s) is the marginal of ν at time instant s and σ =
√

2λ̂. We now introduce the cost
function in the MFG. Given ν ∈ PT ,L, x ∈ [0,L], t ∈ [0, T ], and a system � as
above, let (α,Z) ∈ A(�, t, x, ν). Define

Jν(t, x,α,Z)

.= E

[∫ T −t

0
f

(
s + t, ν(s + t),X(s), α(s)

)
ds

+ g
(
ν(T ),X(T − t)

)

+
∫ T −t

0
y
(
s + t, ν(s + t)

)
dY (s)

+
∫ T −t

0
r
(
s + t, ν(s + t)

)
dR(s)

]
.

(3.2)

We define the value function associated with the above cost as

Vν(t, x) = inf
�

inf
(α,Z)∈A(�,t,x,ν)

Jν(t, x,α,Z).(3.3)

DEFINITION 3.1. A solution to the MFG with initial condition x ∈ [0,L]
is defined to be a ν ∈ PT ,L such that there exist a system � and an (α,Z) ∈
A(�,0, x, ν) such that Z = (X,Y,R) satisfies P ◦ X−1 = ν and

(3.4) Vν(0, x) = Jν(0, x,α,Z).

If there exists a unique such ν, we refer to Vν(0, x) as the value of the MFG with
initial condition x.

To find a solution of the MFG, one usually follows the following iterative pro-
cedure:

(i) For a fixed ν ∈ PT ,L solve the stochastic control problem (3.3) (with t = 0),
namely find a system � and (α,Z) ∈ A(�,0, x, ν) such that (3.4) holds. Denote
by ν̄ the law of X where Z = (X,Y,R) and write ν̄ = �(ν) [this is not precise
since in general there may be more than one solution of the stochastic control
problem in (3.3)].

(ii) Find the fixed point of the map �, namely a ν̄ ∈ PT ,L for which ν̄ = �(ν̄).
Note that by definition, such a ν̄ will be a solution of the MFG.

We now analyze the MFG by following the above steps. The main result is The-
orem 3.1 which gives existence of solutions of the MFG under suitable conditions
and proves uniqueness of solutions under stronger conditions.
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3.2. Solving the stochastic control problem (3.3). For c ∈ (0,∞), let Mc be
the collection of all ν ∈ PT ,L such that

sup
0≤s<t≤T

W1(ν(t), ν(s))

(t − s)1/2 ≤ c

and let

M0 = ⋃
c>0

Mc.

Fix a measure ν ∈ M0. For ν ∈ PT ,L, the function t �→ ν(t) is a continuous func-
tion from [0, T ] to P([0,L]) and with an abuse of notation we denote this con-
tinuous function once more as ν. As one might expect, the value function Vν(t, x)

corresponds to the Hamilton–Jacobi–Bellman (HJB) equation:

−Dtφ − H
(
t, ν(t), x,Dφ

)

− 1

2
σ 2D2φ = 0, (t, x) ∈ [0, T ] × [0,L],

(3.5)

with the boundary conditions (BC)

φ(T , x) = g
(
ν(T ), x

)
,

Dφ(t,0) = −y
(
t, ν(t)

)
and

Dφ(t,L) = r
(
t, ν(t)

)
, t ∈ [0, T ],

(3.6)

where H is the Hamiltonian given as

H(t, η, x,p) = inf
u∈U

h(t, η, x,u,p)

and h : [0, T ] ×P([0,L]) × [0,L] × U ×R→R is defined as

h(t, η, x,u,p) = f (t, η, x,u) + b(t, η, x,u)p.(3.7)

We now introduce a key condition under which the above HJB equation character-
izes the value function Vν(t, x).

ASSUMPTION 3.1. (a) There exists cL ∈ (0,∞) such that for every t, t ′ ∈
[0, T ], η,η′ ∈ P([0,L]), x, x′ ∈ [0,L], and α,α′ ∈ U ,∣∣f (t, η, x,α) − f

(
t ′, η′, x′, α′)∣∣

+ ∣∣g(η, x) − g
(
η′, x′)∣∣ + ∣∣b(t, η, x,α) − b

(
t ′, η′, x′, α′)∣∣

+ ∣∣y(t, η) − y
(
t ′, η′)∣∣ + ∣∣r(t, η) − r

(
t ′, η′)∣∣

≤ cL

(∣∣t − t ′
∣∣ + W1

(
η,η′) + ∣∣x − x′∣∣ + ∣∣α − α′∣∣).

(3.8)

(b) For every (t, η, x,p) ∈ [0, T ] × P([0,L]) × [0,L] × R, there is a unique
α̂(t, η, x,p) ∈ U such that

α̂(t, η, x,p) = arg min
u∈U

h(t, η, x,u,p).(3.9)



12 E. BAYRAKTAR, A. BUDHIRAJA AND A. COHEN

From Berge’s maximum theorem (see [4], Theorem 17.31) and part (b) of
the above assumption, it follows that α̂ is a continuous function on [0, T ] ×
P([0,L]) × [0,L] ×R. Also note that (3.8) implies that b,f, g, y, r are bounded
functions, in particular,

(3.10) sup
(η,x,u)∈[0,T ]×P([0,L])×[0,L]×U

∣∣b(t, η, x,u)
∣∣ .= cB < ∞.

The first part of the condition implies Hölder-1/2 continuity in t when η is replaced
by ν(t) for some ν ∈ M0. For example, if ν ∈Mc, for t, t ′ ∈ [0, T ],

∣∣y(
t, ν(t)

) − y
(
t ′, ν

(
t ′

))∣∣ ≤ cL(c + √
T )

∣∣t − t ′
∣∣1/2

.(3.11)

Similar estimates hold for b,f, r and g.
Assumption 3.1 will guarantee that the value function is the unique classical

solution of the HJB equation (3.5) with BC (3.6) (see Proposition 3.1). The as-
sumption will also be used in the fixed-point argument (Section 3.3) and in the
asymptotic analysis of the n-player game (Section 4). Using Girsanov’s theorem,
it is easily checked that given a measurable function γ : [0, T ] × [0,L] → U ,
ν ∈ PT ,L, and (t, x) ∈ [0, T ] × [0,L] there is a unique weak solution Z to

(3.12)

Z(s) = (X,Y,R)(s)

= 

(
x +

∫ ·
0

b
(
t + t ′, ν

(
t + t ′

)
,X

(
t ′

)
, γ

(
t ′,X

(
t ′

)))
dt ′

+ σB(·)
)
(s),

s ∈ [0, T − t], namely there is a system � = (	,F, {Ft},P,B) on which is given
a Fs -adapted continuous process Z = (X,Y,R) solving the above equation and
if �′ = (	′,F ′, {F ′

t },P′,B ′) is another system on which is given a F ′
s -adapted

continuous process Z′ = (X′, Y ′,R′) solving the above equation with (Z,X,B)

replaced by (Z′,X′,B ′) then P ◦ Z−1 = P
′ ◦ (Z′)−1. Note also that with α(s) =

γ (s,X(s)), (α,Z) ∈ A(�, t, x, ν). We refer to the function γ as a feedback control
and we call it an optimal feedback control for the stochastic control problem in
(3.3) if

Vν(t, x) = Jν(t, x,α,Z).

The following result which is a consequence of Theorem 13.24 of [62] says that
the HJB equation (3.5) with BC (3.6) admits a unique classical solution which
can be characterized as the value function Vν . Moreover, there exists an optimal
feedback control with certain regularity properties. We follow the notation from
[62]. Let for δ ∈ (0,1], Hδ be the collection of maps ψ : (0, T )× (0,L) →R such
that

sup
0<t<t ′<T,0<x<x′<L

|ψ(t, x) − ψ(t ′, x′)|
|t − t ′|δ/2 + |x − x′|δ < ∞.
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Note that such a function can be continuously extended to [0, T ] × [0,L] and
we denote the extension by the same symbol. Also, let H2+ 1

2
be the collection

of continuous real functions ψ on [0, T ] × [0,L] such that x �→ ψ(t, x) is twice
continuously differentiable on (0,L) for all t ∈ (0, T ), t �→ ψ(t, x) is continuously
differentiable on (0, T ) for all x ∈ (0,L), the functions

ψ,Dtψ,DψD2ψ,

are bounded on (0, T ) × (0,L) and the functions Dtψ , D2ψ are in H1/2.

PROPOSITION 3.1. Fix ν ∈ M0 and suppose that Assumption 3.1 holds. Then
Vν ∈ H2+ 1

2
and it is the unique solution of (3.5)–(3.6). Furthermore, with α̂ as

introduced in Assumption 3.1, the map (s, x ′) �→ α̂(s, ν(s), x′,DVν(s, x
′)) is con-

tinuous and the feedback control γ̂ (u, x′) .= α̂(u + t, ν(u + t), x′,DVν(u + t, x′))
is an optimal feedback control for (3.3) for every t ∈ (0, T ). Moreover, any optimal
control α for (3.3) satisfies α(u,ω) = γ̂ (u,X(u,ω)), λt

T ⊗ P almost surely (a.s.),
where λt

T denotes the Lebesgue measure on [0, T − t].

PROOF. From [62], Theorem 13.24, and the paragraph following its statement,
it follows that (3.5)–(3.6) admits a solution in H2+ 1

2
. We remark that the key con-

ditions needed to appeal to this theorem are that

sup
0<t<t ′<T

|y(t, ν(t)) − y(t ′, ν(t ′))| + |r(t, ν(t)) − r(t ′, ν(t ′))|
|t − t ′|1/2 < ∞,

and for each M ∈ (0,∞)

sup
t,t ′∈[0,T ],x,x′∈[0,L],p,p′∈[−M,M],

t �=t ′,x �=x′,p �=p′

|H(t, ν(t), x,p) − H(t ′, ν(t ′), x′,p′)|
|t − t ′|1/2 + |x − x′| + |p − p′| < ∞.

Both these conditions are easily seen to hold on using Assumption 3.1 and the
property that ν ∈Mc for some c < ∞ [see, e.g., (3.11)].

We now argue uniqueness and characterize the solution as the value function Vν

in (3.3). Let ψ ∈ H2+ 1
2

be a solution of (3.5)–(3.6). Fix (t, x) ∈ [0, T ] × [0,L], a
system � and (α,Z) ∈ A(�, t, x, ν). By an application of Itô’s lemma and using
(3.5)–(3.6), we get

E
[
g
(
ν(T ),X(T − t)

)]
= E

[
ψ

(
T ,X(T − t)

)]

= ψ(t, x) +E

[∫ T −t

0
Dψ(s + t,0) dY (s)

−
∫ T −t

0
Dψ(s + t,L)dR(s)

]
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+E

∫ T −t

0

[
Dsψ

(
s + t,X(s)

)

+ b
(
s + t, ν(s + t),X(s), α(s)

)
Dψ

(
s + t,X(s)

)
(3.13)

+ 1

2
σ 2D2ψ

(
s + t,X(s)

)]
ds

≥ ψ(t, x) +E

[
−

∫ T −t

0
f

(
s + t, ν(s + t),X(s), α(s)

)
ds

−
∫ T −t

0
y
(
s + t, ν(s + t)

)
dY (s)

−
∫ T −t

0
r
(
s + t, ν(s + t)

)
dR(s)

]
.

Hence, with Z = (X,Y,R),

Jν(t, x,α,Z)

= E

[∫ T −t

0
f

(
s + t, ν(s + t),X(s), α(s)

)
ds

+ g
(
ν(T ),X(T − t)

)

+
∫ T −t

0
y
(
s + t, ν(s + t)

)
dY (s)

+
∫ T −t

0
r
(
s + t, ν(s + t)

)
dR(s)

]

≥ ψ(t, x).

(3.14)

Since �,α,Z are arbitrary, we get that Vν(t, x) ≥ ψ(t, x) for all (t, x) ∈ [0, T ] ×
[0,L]. Let γ̂ be as in the statement of the proposition with Vν replaced by ψ . Let
Z = (X,Y,R) be a solution of (3.12) with γ replaced by γ̂ given on some sys-
tem �. Then a similar calculation using Itô’s formula but with α(u) = γ̂ (u,X(u))

shows that Jν(t, x,α,Z) = ψ(t, x) for all (t, x) ∈ [0, T ] × [0,L]. This shows that
ψ = Vν and so Vν is the unique H2+ 1

2
solution of (3.5)–(3.6). Also, we have that

γ̂ as in the statement of the lemma is an optimal feedback control.
Since Vν ∈ H2+ 1

2
, the continuity of the map (t, x) �→ α̂(t, ν(t), x,DVν(t, x)) is

immediate from the continuity of the map α̂ that was noted below Assumption 3.1.
We now show that γ̂ is the unique optimal control for (3.3). Fix an optimal

control (α,Z) ∈ A(�, t, x, ν) given on some system �. We claim that α(u,ω) =
γ̂ (u,X(u,ω)), λt

T × P-a.s. Indeed, suppose that there is a set with a positive
λt

T × P-measure on which the equality fails. Then by Assumption 3.1(b) together
with (3.5)–(3.6), it follows that (3.13) holds with a strict inequality, which in turn
implies that (3.14) holds with a strict inequality. Recalling that Vν = ψ , we arrive
at a contradiction. �
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3.3. Solving the MFG. We now turn to step (ii) in solving the fixed-point prob-
lem. Although for existence of a fixed-point Assumption 3.1 will suffice, in order
to get uniqueness, we will need the following additional assumption. Similar as-
sumption has been used to argue uniqueness of fixed points in previous works
on MFG (see, e.g., [60], Theorem 2.4, [24], Section 3, [38], equation (17), [28],
Assumption (U)). Fix η0 ∈ P([0,L]).

ASSUMPTION 3.2. For every (t, η, x,u) ∈ [0, T ] ×P([0,L]) × [0,L] × U ,

b(t, η, x,u) = b(t, η0, x, u),

f (t, η, x,u) = f0(t, η, x) + f1(t, x, u),
(3.15)

y(t, η) = y(t, η0), r(t, η) = r(t, η0).(3.16)

Moreover, for every t ∈ [0, T ] and η,η′ ∈ P([0,L]), f0 and g satisfy the following
monotonicity property:∫ L

0

[
f0(t, η, x) − f0

(
t, η′, x

)
)
]
d
(
η − η′)(x) ≥ 0,

∫ L

0

(
g(η, x) − g

(
η′, x

))
d
(
η − η′)(x) ≥ 0.

Abusing notation, when Assumption 3.2 holds, we will write b(t, x, u) =
b(t, η0, x, u), y(t) = y(t, η0), and r(t) = r(t, η0).

REMARK 3.1. Examples satisfying Assumption 3.2 are given in [24], page 8,
and [13], page 6. Another natural example that satisfies this assumption is a cost
function that is linear in the mean-field term. That is,

f0(t, η, x) = a1(t)
(
c1 + ψ1(x)

) ∫ L

0
ψ1(y) dη(y),

g(η, x) = (
c2 + ψ2(x)

) ∫ L

0
ψ2(y) dη(y),

where a1 : [0, T ] → R+, ψ1,ψ2 : [0,L] → R, and c1, c2 ∈ R. From a modeling
perspective, by choosing positive and nondecreasing ψi’s and a positive a1, the
system planner penalizes all servers collectively when the empirical measure has
high ψi-moments, and in addition, it penalizes individual servers for long queues.

THEOREM 3.1. Under Assumption 3.1, there exists a solution of the MFG. If
in addition Assumption 3.2 holds, then there is a unique MFG solution.

The proof will appeal to Schauder’s fixed-point theorem. Since Schauder’s orig-
inal work (cf. [64]), there have been several versions of this result. We now quote
the version ([65], Theorem 4.1.1) that will be used here.
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LEMMA 3.1. Let M be a nonempty convex subset of a normed space B. Let
� be a continuous mapping of M into a compact set K ⊂ M. Then � has a fixed
point, namely there exists x ∈ K such that �(x) = x.

PROOF OF THEOREM 3.1. We will apply Lemma 3.1 to the space B of finite
signed measures on C([0, T ] : [0,L]) which is equipped with the Kantorovich–
Rubinstein norm

‖ν‖KR = sup
{∣∣∣∣

∫
C([0,T ]:[0,L])

F (ω)dν(ω)

∣∣∣∣ :

F ∈ Lip1
(
C
([0, T ] : [0,L]))

}
, ν ∈ B.

The distance driven by the norm, restricted to PT ,L, coincides with the Wasser-
stein’s distance of order 1 (see [68], Remark 6.5), which due to compactness of
[0,L] generates the same topology on PT ,L as that for weak convergence.

We now introduce a mapping � on the nonempty and convex set M0 that sat-
isfies the conditions stated in Lemma 3.1.

Definition of �. For ν ∈ M0, let αν denote the optimal feedback control γ̂ for
(3.3) (with t = 0) given through Proposition 3.1. Let Zν = (Xν,Y ν,Rν) denote
the unique weak solution of (3.12) with γ replaced with αν given on some system
� = (	,F, {Ft},P,B). Define �(ν) = P ◦ (Xν)−1.

Invariance of M0. For ν ∈ M0 and 0 ≤ s ≤ t < T ,

W1
(
�(ν)(t),�(ν)(s)

)
≤ E

∣∣Xν(t) − Xν(s)
∣∣

≤ cS max{cB,σ }
(
(t − s) +E sup

s≤u≤t

∣∣B(u) − B(s)
∣∣)

≤ 4Ĉ(t − s)1/2,

(3.17)

where Ĉ
.= cS max{cB,σ }, and the last inequality uses Doob’s maximal inequality.

This shows that �(ν) ∈ M0 for all ν ∈M0.
We now show that �(M0) is contained in a compact set in PT ,L, that is, �(M0)

is relatively compact.
Relative compactness of �(M0). For f ∈ C([0, T ] :R) and δ > 0, let

�f (δ) = sup
s,t∈[0,T ]:|t−s|≤δ

∣∣f (t) − f (s)
∣∣.

Then for ε, δ, � > 0 and ν ∈ M0, similar to the estimate in (3.17),

�(ν)
(
Xν : �Xν(δ) ≥ �

) ≤ 1

�
E sup

0≤s≤t≤s+δ≤T

∣∣Xν(t) − Xν(s)
∣∣

≤ Ĉ

�

(
δ +E sup

0≤s≤t≤s+δ≤T

sup
s≤u≤t

∣∣B(u) − B(s)
∣∣)
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≤ Ĉ

�

(
δ +E�B(δ)

)
.

Since E�B(δ) → 0 as δ → 0, we have from [16], Theorem 7.3, that {�(ν) : ν ∈
M0} is relatively compact in PT ,L.

Continuity of �. We now argue that � is a continuous map on M0. Consider a
system � = (	,F, {Ft},P,B) and let Z0 = (X0, Y 0,R0) be given as

(3.18) Z0(s) = (
X0(s), Y 0(s),R0(s)

) = 
(
x + σB(·))(s), 0 ≤ s ≤ T .

Define for ν′ ∈ M0

α0
ν′(t) = α̂

(
t, ν′(t),X0(t),DVν′

(
t,X0(t)

))
, t ∈ [0, T ].(3.19)

Let νn, ν ∈ M0 be such that νn → ν. Since sup0≤t≤T W1(ν
n(t), ν(t)) ≤ W1(ν

n, ν),
the above convergence implies that

lim
n→∞ sup

0≤t≤T

W1
(
νn(t), ν(t)

) = 0.(3.20)

We now show that α0
νn → α0

ν in λT × P-measure. Recall that α̂ is a continuous
map. Hence, in view of (3.20), for the desired convergence, it is sufficient to show
that

lim
n→∞E

[∫ T

0

∣∣DVνn

(
t,X0(t)

) − DVν

(
t,X0(t)

)∣∣dt

]
= 0.(3.21)

The proof is a modification of the proof of Theorem 2.1 in [45]. Applying Itô’s
lemma to Vν′(t,X0(t)) for fixed ν′ ∈ M0 and using from Proposition 3.1 the fact
that Vν′ solves (3.5)–(3.6), we have for every t ∈ [0, T ],

Vν′
(
t,X0(t)

) − Vν′
(
T ,X0(T )

)

=
∫ T

t
H

(
s, ν′(s),X0(s),DVν′

(
s,X0(s)

))
ds

− σ

∫ T

t
DVν′

(
s,X0(s)

)
dB(s)

+
∫ T

t
y
(
s, ν′(s)

)
dY 0(s) +

∫ T

t
r
(
s, ν′(s)

)
dR0(s).

(3.22)
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Let

�V n(t) = Vνn

(
t,X0(t)

) − Vν

(
t,X0(t)

)
,

�DV n(t) = DVνn

(
t,X0(t)

) − DVν

(
t,X0(t)

)
,

�gn(T ) = �V n(T ) = g
(
νn(T ),X0(T )

) − g
(
ν(T ),X0(T )

)
,

�yn(t) = y
(
t, νn(t)

) − y
(
t, ν(t)

)
,

�rn(t) = r
(
t, νn(t)

) − r
(
t, ν(t)

)
,

�ψn(t) = sup
α∈U

∣∣ψ(
t, νn(t),X0(t), α

)

− ψ
(
t, ν(t),X0(t), α

)∣∣, ψ ∈ {f, b}.

(3.23)

Then (3.22) and (3.23) imply

�V n(t) + σ

∫ T

t
�DV n(s) dB(s)

= �gn(T ) +
∫ T

t
�yn(s) dY 0(s) +

∫ T

t
�rn(s) dR0(s)

+
∫ T

t

[
H

(
s, νn(s),X0(s),DVνn

(
s,X0(s)

))

− H
(
s, νn(s),X0(s),DVν

(
s,X0(s)

))]
ds

+
∫ T

t

[
H

(
s, νn(s),X0(s),DVν

(
s,X0(s)

))

− H
(
s, ν(s),X0(s),DVν

(
s,X0(s)

))]
ds.

Squaring both sides and then taking expectations gives

E
[(

�V n(t)
)2] + σ 2

E

[∫ T

t

(
�DV n(s)

)2
ds

]

≤ 2(T − t)E

[∫ T

t

[
H

(
s, νn(s),X0(s),DVνn

(
s,X0(s)

))

− H
(
s, νn(s),X0(s),DVν

(
s,X0(s)

))]2
ds

]

+ 2Cn(t)

≤ 2c2
B(T − t)E

[∫ T

t

(
�DV n(s)

)2
ds

]
+ 2Cn(t),

(3.24)

where

Cn(t) = E

[
�gn(T ) +

∫ T

t
�yn(s) dY 0(s) +

∫ T

t
�rn(s) dR0(s)
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+
∫ T

t

[
H

(
s, νn(s),X0(s),DVν

(
s,X0(s)

))

− H
(
s, ν(s),X0(s),DVν

(
s,X0(s)

))]
ds

]2
.

Letting δ = σ 2/(4c2
B), we get from (3.24) that for every t ∈ [T − δ, T ],

E
[(

�V n(t)
)2] + σ 2

2
E

[∫ T

t

(
�DV n(s)

)2
ds

]
≤ 4Cn(t).(3.25)

We now show that lim supn→∞ sup0≤t≤T Cn(t) = 0. Note that there exists C1 ∈
(0,∞) such that the following inequality holds for all n ∈ N:

1

C1
sup

0≤t≤T

Cn(t) ≤ E
[(

�gn(T )
)2]

+E
[(

Y 0(T )
)2]

sup
0≤t≤T

(
�yn(t)

)2

+E
[(

R0(T )
)2]

sup
0≤t≤T

(
�rn(t)

)2

+E

[∫ T

0

(
�f n(s)

)2
ds

]

+E

[∫ T

0

(
�bn(s)

)2
ds

∫ T

0

(
DVν

(
s,X0(s)

))2
ds

]
.

(3.26)

Using the properties of the Skorohod map (Lemma 2.1), it follows that

E
[(

Y 0(T )
)2 + (

R0(T )
)2]

< ∞.

The convergence of the right-hand side of (3.26) to 0 is now immediate from As-
sumption 3.1(a), the boundedness of DVν , and (3.20). Thus from (3.25), we have
that

lim
n→∞E

[∫ T

T −δ

∣∣DVνn

(
t,X0(t)

) − DVν

(
t,X0(t)

)∣∣dt

]
= 0,

lim
n→∞E

[(
�V n(T − δ)

)2] = 0.

(3.27)

Using the second convergence in (3.27) and repeating the above argument for t ∈
[T − δ, T ] to the interval [T −2δ, T − δ], we see that (3.27) holds with T replaced
with T − δ. Proceeding recursively in this manner, we have (3.21). Hence we have
shown that

(3.28) α0
νn → α0

ν in λT × P-measure.
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Using the above property, we will now argue that �(νn) → �(ν) as n → ∞,
completing the proof of continuity of �. Let for ν′ ∈M0,

γν′(t, x) = α̂
(
t, ν′(t), x,DVν′(t, x)

)
,

b̂ν′(t, x) = b
(
t, ν′(t), x, γν′(t, x)

)
, (t, x) ∈ [0, T ] × [0,L]

and let Pν′
be a probability measure on (	,F) defined as

dPν′ = exp
[

1

σ

∫ T

0
b̂ν′

(
t,X0(t)

)
dB(t)

− 1

2σ 2

∫ T

0
b̂2
ν′

(
t,X0(t)

)
dt

]
dP.

(3.29)

By Girsanov’s theorem, Pν′ ◦ (X0)−1 = �(ν′). Thus to show �(νn) → �(ν), it
suffices to argue that Pνn → P

ν . We will in fact show that R(Pν ||Pνn
) → 0 as

n → ∞, where

R
(
P

ν ||Pνn) = E
ν

(
log

dPν

dPνn

)
= E

(
dPν

dP
log

dPν

dPνn

)

is the relative entropy of Pν with respect to P
νn

, which due to Pinsker’s inequality
(see [67], page 132) gives the convergence of Pνn

to P
ν .

Let

�b̂n(t, x) = b̂ν(t, x) − b̂νn(t, x),

�b̂2
n(t, x) = b̂2

ν(t, x) − b̂2
νn(t, x), (t, x) ∈ [0, T ] × [0,L].

With this notation,

log
dPν

dPνn = 1

σ

∫ T

0
�b̂n

(
t,X0(t)

)
dB(t) − 1

2σ 2

∫ T

0
�b̂2

n

(
t,X0(t)

)
dt.

Also, noting that since b is bounded E(dPν

dP
)2 .= κ < ∞, we have from the Cauchy–

Schwarz inequality

(3.30)

R
(
P

ν ||Pνn) ≤ √
κ

(
E

[
1

σ

∫ T

0
�b̂n

(
t,X0(t)

)
dB(t)

− 1

2σ 2

∫ T

0
�b̂2

n

(
t,X0(t)

)
dt

]2)1/2
.

Next, note that

E

[
1

σ

∫ T

0
�b̂n

(
t,X0(t)

)
dB(t)

]2

= 1

σ 2

∫ T

0
E

[
�b̂n

(
t,X0(t)

)]2
dt



RATE CONTROL UNDER HEAVY TRAFFIC WITH STRATEGIC SERVERS 21

= 1

σ 2

∫ T

0
E

[
b
(
t, ν(t),X0(t), α0

ν

(
t,X0(t)

))

− b
(
t, νn(t),X0(t), α0

νn

(
t,X0(t)

))]2
dt.

The last term converges to 0 from the boundedness and continuity of b, (3.20) and
(3.28). Similarly,

E

[
1

2σ 2

∫ T

0
�b̂2

n

(
t,X0(t)

)
dt

]2
→ 0

as n → ∞. Using the above two observations in (3.30), we have R(Pν ||Pνn
) → 0,

and thus, as argued earlier, the proof of continuity of � is complete. Thus we have
shown that � is a continuous map on M0, which is a nonempty convex subset of
the normed space B, into a compact set K ⊂ M0. Thus by the fixed-point theorem
in Lemma 3.1, � has a fixed point.

The first results on unique solvability of a MFG go back to [60]. Since then,
uniqueness has been argued in various settings (see, e.g., [24, 28, 38]). The proof
given below uses arguments similar to those in [28], Section 7.3; however, for
the sake of completeness we give the details. Consider as before a system � =
(	,F, {Ft},P,B) and let Z0 = (X0, Y 0,R0) be given through (3.18). Let ν1, ν2 ∈
M0. For i = 1,2, let α0

νi
and P

νi be given by (3.19) and (3.29), respectively, with
νi replacing ν′. Applying Itô’s lemma to Vν1(t,X

0(t)) and recalling that Vν1 solves
(3.5)–(3.6) with ν replaced with ν1, we get

Vν1

(
T ,X0(T )

) − Vν1(0, x)

= −
∫ T

0
H

(
t, ν1(t),X

0(t),DVν1

(
t,X0(t)

))
dt

+ σ

∫ T

0
DVν1

(
t,X0(t)

)
dB(t) + ζT

= −
∫ T

0
h
(
t, ν1(t),X

0(t), α0
ν1

(t),DVν1

(
t,X0(t)

))
dt

+ σ

∫ T

0
DVν1

(
t,X0(t)

)
dB(t) + ζT ,

where recalling the form of y and r from Assumption 3.2

ζT =
∫
[0,T ]

DVν1(t,0) dY 0(t) +
∫
[0,T ]

DVν1(t,L)dR0(t)

=
∫
[0,T ]

y(t) dY 0(t) +
∫
[0,T ]

r(t) dR0(t).

Observing that for t ∈ [0, T ]
h
(
t, ν1(t),X

0(t), α0
ν1

(t),DVν1

(
t,X0(t)

))
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= h
(
t, ν1(t),X

0(t), α0
ν1

(t),DVν2

(
t,X0(t)

)) +Rt ,

where

Rt = [
DVν1

(
t,X0(t)

) − DVν2

(
t,X0(t)

)]
b̂ν1

(
t,X0(t)

)
,

we have

Vν1(0, x) = g
(
ν1(T ),X0(T )

)

+
∫ T

0
h
(
t, ν1(t),X

0(t), α0
ν1

(t),DVν2

(
t,X0(t)

))
dt

+
∫ T

0
Rt dt − σ

∫ T

0
DVν1

(
t,X0(t)

)
dB(t) − ζT .

(3.31)

Similarly, applying Itô’s lemma to Vν2(t,X
0(t)),

Vν2(0, x) = g
(
ν2(T ),X0(T )

)

+
∫ T

0
H

(
t, ν2(t),X

0(t),DVν2

(
t,X0(t)

))
dt

− σ

∫ T

0
DVν2

(
t,X0(t)

)
dB(t) − ζT .

(3.32)

Subtracting (3.32) from (3.31),

Vν1(0, x) − Vν2(0, x)

= g
(
ν1(T ),X0(T )

) − g
(
ν2(T ),X0(T )

)

− σ

∫ T

0

[
DVν1

(
t,X0(t)

) − DVν2

(
t,X0(t)

)]
dBν1(t)

+
∫ T

0

[
h
(
t, ν1(t),X

0(t), α0
ν1

(t),DVν2

(
t,X0(t)

))

− H
(
t, ν2(t),X

0(t),DVν2

(
t,X0(t)

))]
dt,

where for i = 1,2, Bνi (t)
.= B(t) − 1

σ

∫ t
0 b̂νi

(s,X0(s)) ds, t ∈ [0, T ]. Since under
P

νi , Bνi is a standard Brownian motion, taking expectation under the measure Pν1 ,

Vν1(0, x) − Vν2(0, x)

= E
ν1

[∫ T

0

[
h
(
t, ν1(t),X

0(t), α0
ν1

(t),DVν2

(
t,X0(t)

))

− H
(
t, ν2(t),X

0(t),DVν2

(
t,X0(t)

))]
dt

+ g
(
ν1(T ),X0(T )

) − g
(
ν2(T ),X0(T )

)]
.

(3.33)
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A similar calculation shows

Vν1(0, x) − Vν2(0, x)

= E
ν2

[∫ T

0

[
H

(
t, ν1(t),X

0(t),DVν1

(
t,X0(t)

))

− h
(
t, ν2(t),X

0(t), α0
ν2

(t),DVν1

(
t,X0(t)

))]
dt

+ g
(
ν1(T ),X0(T )

) − g
(
ν2(T ),X0(T )

)]
.

(3.34)

By the definition of the H and the form of f in Assumption 3.2, we get

h
(
s, ν1(s),X

0(s), α0
ν1

(s),DVν2

(
s,X0(s)

))

≥ H
(
s, ν1(s),X

0(s),DVν2

(
s,X0(s)

))
= f0

(
s, ν1(s),X

0(s)
) + f1

(
s,X0(s), α0

ν2
(s)

) + DVν2

(
s,X0(s)

)
b̂ν2(s),

where the last equality uses the observation that since α̂(s, η, x,p) does not depend
on η, α̂(s, ν1(s),X

0(s),DVν2(s,X
0(s))) = α0

ν2
(s). Therefore, for all s ∈ [0, T ],

h
(
s, ν1(s),X

0(s), α0
ν1

(s),DVν2

(
s,X0(s)

))

− H
(
s, ν2(s),X

0(s),DVν2

(
s,X0(s)

))
≥ f0

(
s, ν1(s),X

0(s)
) − f0

(
s, ν2(s),X

0(s)
)
.

(3.35)

Similarly, for all s ∈ [0, T ],
H

(
s, ν1(s),X

0(s),DVν1

(
s,X0(s)

))
− h

(
s, ν2(s),X

0(s), α0
ν2

(s),DVν1

(
s,X0(s)

))

≤ f0
(
s, ν1(s),X

0(s)
) − f0

(
s, ν2(s),X

0(s)
)
.

(3.36)

Applying the last two inequalities to (3.33) and (3.34), we get

0 ≤ [
E

ν2 −E
ν1

][
g
(
ν1(T ),X0(T )

) − g
(
ν2(T ),X0(T )

)

+
∫ T

0

[
f0

(
s, ν1(s),X

0(s)
) − f0

(
s, ν2(s),X

0(s)
)]

ds

]
.

(3.37)

Until now, ν1 and ν2 were arbitrary measures in M0. Suppose now that νi ,
i = 1,2, are fixed points of �. Then, for i = 1,2, Pνi ◦ (X0)−1 = νi and so for
all s ∈ [0, T ], Pνi ◦ (X0(s))−1 = νi(s). In this case, using the inequalities in As-
sumption 3.2, we get that inequality (3.37) can be replaced with equality. We
claim that α0

ν1
= α0

ν2
, λ0

T × P-a.s. Indeed, suppose that there is a set with posi-
tive λ0

T × P-measure on which α0
ν1

�= α0
ν2

. Then on this set (3.35) and (3.36) will
hold with strict inequalities by Assumption 3.1(b). Since the measures P, Pν1 and



24 E. BAYRAKTAR, A. BUDHIRAJA AND A. COHEN

P
ν2 are equivalent, this will say that (3.37) holds with a strict inequality as well,

which contradicts the equality that was established above. This proves the claim.
Since b(t, η, x,u) does not depend on η, we conclude from the equality of α0

ν1

and α0
ν2

that b̂ν1(t,X
0(t,ω)) = b̂ν2(t,X

0(t,ω)), λ0
T × P-a.s., and thus by (3.29),

P
ν1 = P

ν2 . Combining this with the fact that νi are fixed points of �, we now have
ν1 = P

ν1 ◦ (X0)−1 = P
ν2 ◦ (X0)−1 = ν2. �

4. Asymptotic Nash equilibrium. The main result of this section is Theo-
rem 4.1. The main idea in the proof is to use a solution ν̄ to the MFG (which from
Theorem 3.1 exists under Assumption 3.1) and the associated feedback control
given by Proposition 3.1 in order to construct an admissible control α̃n = {α̃n,i}ni=1
for the n-player game. Specifically, the control will be given in a feedback form
through the following relation:

α̃n,i(t)
.= α̂

(
t, ν̄(t), Q̃n,i(t),DVν̄

(
t, Q̃n,i(t)

))
,(4.1)

where Q̃n,i is the corresponding scaled queue length under the feedback control.
Note that the only information each of the players uses is its own state. Therefore,
the problem is decentralized in the sense that players do not need to observe each
others’ states.

Our main condition, in addition to Assumption 3.1, for {α̃n} to be an asymptotic
Nash equilibrium is the following. It in particular says that the drift function does
not depend on the mean-field term. Fix η0 ∈P([0,L]).

ASSUMPTION 4.1. (a) For every t ∈ [0, T ], η ∈ P([0,L]), x ∈ [0,L], and
α ∈ U , one has

b(t, η, x,α) = b(t, η0, x,α);
(b) There exists x ∈ [0,L] such that for every i ∈ N,

lim
n→∞ Q̃n,i(0) = x.(4.2)

As before, with an abuse of notation, we will write b(t, η, x,α) as b(t, x,α)

when Assumption 4.1 holds. As discussed in Remark 3.1, part (a) of the assump-
tion means that the empirical measure affects the drift only through the control,
which in turn is affected by the empirical measure through the running cost.

Recall the probability space (	′,F ′,P′) from Section 2.1. Let for n ∈ N, t ∈
[0, T ] and i = 1, . . . , n, βn(t) : 	′ → U be such that

α̃n−i = {
α̃n,1, . . . , α̃n,i−1, βn, α̃n,i+1, . . . , α̃n,n}

is an admissible control (i.e., α̃n−i ∈ Un). The following is the main result of the
section.
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THEOREM 4.1. Suppose Assumptions 3.1 and 4.1 hold. Let ν̄, α̃n and α̃n−i ,
i = 1, . . . , n, n ∈ N be as introduced above. Then

lim sup
n→∞

Jn,1(
Q̃n(0); α̃n) = Vν̄(0, x) ≤ lim inf

n→∞ Jn,1(
Q̃n(0); α̃n−i

)
.(4.3)

Theorem 4.1 in particular says that for every ε > 0, there is n ∈ N sufficiently
large such that α̃n forms an ε-Nash equilibrium in the n-player game.

The proof is given in the next three sections. First, in Section 4.1 (Proposi-
tion 4.1) we will prove the convergence of empirical measures of the scaled queue
length processes under controls α̃n and α̃n−i to ν̄. Next, in Section 4.2 (Proposi-
tion 4.2) we will prove the first equality in (4.3), and finally Proposition 4.3 in
Section 4.3 will prove the inequality in (4.3).

4.1. Convergence of empirical measures. Let for i ∈ N, α̃n−i ∈ Un be as de-
fined below Assumption 4.1. Let

ν̃n−i = 1

n

n∑
j=1

δ
Q̃n,j ,

where Q̃n,j is the controlled queue length process defined by (2.5) with αn re-
placed with α̃n−i . The following result gives the convergence of ν̃n−i to ν̄.

PROPOSITION 4.1. Suppose Assumptions 3.1 and 4.1 hold. Then for every
i ∈ N, ν̃n−i converges in probability, in P(D([0, T ] : [0,L])), to ν̄ as n → ∞.

PROOF. Without loss of generality, we assume that i = 1. Recall that for j ∈
N, Q̃n,j is defined by (2.5) with αn replaced with α̃n−1. Define

ζ̃ n,i(t) = Q̃n,i(0) + Ãn,i(t) − D̃n,i(t) +
∫ t

0
b̃n,i(s) ds, t ∈ [0, T ],

where Ãn,i , D̃n,i are as in (2.3). Define for i = 1, . . . , n,

G̃n,i .= (
ζ n,i, Q̃n,i, Ỹ n,i, R̃n,i)

and let

�n .= 1

n − 1

n∑
i=2

δ
G̃n,i .

Note that since by assumption {Q̃n,i(0)}ni=1 are exchangeable and the controls
α̃n,i are given in terms of the same feedback function α̂ for each i = 2, . . . , n,
the processes {G̃n,i}ni=2 are exchangeable. Defining G̃n,i to be the zero process
for i > n, we can regard, G̃n .= {G̃n,i}∞i=2 as a random variable with values in
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D([0, T ] : (R4)⊗∞). We now argue the tightness of the sequence {G̃n}. It suffices
to show for each i, the tightness of {G̃n,i}n∈N in D([0, T ] :R4). Since

(4.4) sup
n,i,ω

sup
t∈[0,T ]

λn,i(t,ω) + μn,i(t,ω)

en

.= C0 < ∞,

the following two conditions are satisfied with Xn equal to 〈Ãn,i , Ãn,j 〉 and
〈D̃n,i , D̃n,j 〉 for all i, j .

(A) For each ε > 0, η > 0, there exists a δ > 0 and n0 ∈ N with the property
that for every family of stopping times {τn}n∈N [τn being an Ft -stopping time on
(	′,F ′,P′)] with τn ≤ T − δ,

sup
n≥n0

sup
θ≤δ

P
{∥∥Xn(τn) − Xn(τn + θ)

∥∥ ≥ η
} ≤ ε.

(T1) For every t in some dense subset of [0, T ], {Xn(t)}n∈N is a tight sequence
of R valued random variables.

Then by Rebolledo’s theorem (see [49], Theorem 2.3.2), {Ãn,i}n≥1 and {D̃n,i}n≥1

are tight in D([0, T ] : R) for each i. Also since the jumps of Ãn,i and D̃n,i are
of size 1/

√
en, these processes are C-tight (namely all weak limit points are con-

tinuous a.s.). From boundedness of b, we see that {∫ ·
0 b̃n,i(s) ds}n∈N is tight in

C([0, T ] : R). Combining this with Assumption 4.1(b), we see that {ζ n,i}n∈N is C-
tight in D([0, T ] :R). Using now the continuity of the Skorohod map (Lemma 2.1),
we have the desired tightness of {G̃n,i}n∈N.

Suppose now that, along some subsequence, G̃n converges to G̃
.= (ζ i, Q̃i, Ỹ i,

R̃i), in distribution, in D([0, T ] : (R4)⊗∞). Then G̃ ∈ C([0, T ] : (R4)⊗∞) a.s.
and from [50], Lemma 4.2, and the exchangeability of {G̃n,i}ni=2, it follows that
{G̃i}∞i=2 is exchangeable and (along the subsequence),

(4.5)
(
G̃n,�n) ⇒ (G̃,�)

in D([0, T ] : (R4)⊗∞) ×P(D([0, T ] :R4)) where �
.= limm→∞ 1

m−1
∑m

i=2 δ
G̃i .

We will now characterize the distribution of {Q̃i}. From tightness of {Ỹ n,i}n∈N

and {R̃n,i}n∈N argued above and (2.6), it follows that

1

en

∫ t

0
1{Q̃n,i (s)=0}μ

n,i(s) ds → 0 and
1

en

∫ t

0
1{Q̃n,i (s)=L}λ

n,i(s) ds → 0,

uniformly on [0, T ], in probability. Also, from (2.1) it follows that

sup
0≤t≤T

[∣∣∣∣λ
n,i(t)

en

− λ̂

∣∣∣∣ +
∣∣∣∣μ

n,i(t)

en

− μ̂

∣∣∣∣
]

→ 0 a.s.

as n → ∞. Thus from (2.4) (and the relation λ̂ = μ̂), for all i, j ,〈
Ãn,i , Ãn,j 〉

(t) → δij λ̂,
〈
D̃n,i, D̃n,j 〉

(t) → δij λ̂,
〈
Ãn,i , D̃n,j 〉

(t) → 0
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in probability, uniformly on [0, T ], as n → ∞. By standard martingale techniques,
it now follows that

{
Ãn,i − D̃n,i}

i≥1 ⇒ {
σBi}

i≥1,

in D([0, T ] : R∞), where {Bi} are mutually independent standard Brownian mo-
tions. Also, since for i ≥ 2,

(
Q̃n,i, Ỹ n,i , R̃n,i)(t)

= 

(
Q̃n,i(0) +

∫ ·
0

b̃n,i(s) ds

+ Ãn,i(·) − D̃n,i(·) + o(1)

)
(t), t ∈ [0, T ],

where

b̃n,i(t) = b
(
t, Q̃n,i(t), α̂

(
t, ν̄(t), Q̃n,i(t),DVν̄

(
t, Q̃n,i(t)

)))
,

we have from the continuity of b (Assumption 3.1), α̂ and DVν̄ , for i ≥ 2,
(
Q̃i, Ỹ i, R̃i)(t)

= 

(
x +

∫ ·
0

b
(
t, Q̃i(t), α̂

(
t, ν̄(t), Q̃i(t),DVν̄

(
t, Q̃i(t)

)))
dt

+ σBi(·)
)
(t).

(4.6)

Once again, using standard martingale arguments, it follows that, for 0 ≤ s ≤ t ≤
T , Bi(t)−Bi(s) is independent of σ {(Q̃i(u), R̃i(u), Ỹ i(u),Bi(u)) : u ≤ s}. From
the weak uniqueness property noted in Section 3.2 and the fact that ν̄ is a fixed
point of �, we now have that Q̃i has distribution ν̄ for i = 2,3, . . . . Using the
fact that {Bi} are mutually independent, a simple argument based on Girsanov’s
theorem shows that {Q̃i} are mutually independent as well. This characterizes the
distribution of {Q̃i}i≥2 as ν̄⊗∞. We now have from (4.5), the definition of �, and
the law of large numbers that

lim
n→∞ ν̃n−i = lim

n→∞
1

n

n∑
i=1

δ
Q̃n,i

= lim
n→∞

1

n − 1

n∑
i=2

δ
Q̃n,i

= lim
m→∞

1

m − 1

m∑
i=2

δ
Q̃i = ν̄.

The result follows. �
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REMARK 4.1. The above proof also shows that if α̃n−1 = α̃n, namely βn =
α̃n,1, then (4.6) holds for all i ≥ 1 and the law of {Q̃i}i≥1 is ν̄⊗∞.

4.2. Same strategy for all players. In this section, we prove the equality in
(4.3).

PROPOSITION 4.2. Suppose Assumptions 3.1 and 4.1 are satisfied. Let α̃n =
{α̃n,i}∞i=1 be as in (4.1). Then for all i ≥ 1,

lim
n→∞Jn,i(Q̃n(0); α̃n) = Vν̄(0, x).(4.7)

PROOF. Without loss of generality, we assume i = 1. From the proof of Propo-
sition 4.1 (see Remark 4.1),

(
Q̃n,1, Ỹ n,1, R̃n,1) ⇒ (

Q̃1, Ỹ 1, R̃1)
where the processes on the right-hand side are given through (4.6) with i = 1. Let

α̂
(
t, ν̄(t), Q̃1(t),DVν̄

(
t, Q̃1(t)

)) .= γ
(
t, Q̃1(t)

)
, t ∈ [0, T ].

Recall that f and g are bounded continuous functions and from Proposition 4.1
we have that, for every t ∈ [0, T ],

(
ν̃n(t), Q̃n,1(t), αn,1(t)

) ⇒ (
ν̄(t), Q̃1(t), γ

(
t, Q̃1(t)

))
.

This shows that

E

[∫ T

0
f

(
t, ν̃n(t), Q̃n,1(t), αn,1(t)

)
dt + g

(
ν̃n(T ), Q̃n,1(T )

)]

→ E

[∫ T

0
f

(
t, ν̄(t), Q̃1(t), γ

(
t, Q̃1(t)

))
dt

+ g
(
ν̄(T ), Q̃1(T )

)]
.

(4.8)

Also by continuity of y and r

(
y
(·, ν̃n(·)), r(·, ν̃n(·)), Ỹ n,1(·), R̃n,1(·))

⇒ (
y
(·, ν̄(·)), r(·, ν̄(·)), Ỹ 1(·), R̃1(·))

in D([0, T ] :R4). It then follows (cf. [31], Lemma 2.4)

(4.9)

(∫ T

0
y
(
t, ν̃n(t)

)
dỸ n,1(t),

∫ T

0
r
(
t, ν̃n(t)

)
dR̃n,1(t)

)

⇒
(∫ T

0
y
(
t, ν̄(t)

)
dỸ 1(t),

∫ T

0
r
(
t, ν̄(t)

)
dR̃1(t)

)
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as n → ∞. Also from Lemma 2.1,

(4.10) E
[(

Ỹ n,1(T )
)2 + (

R̃n,1(T )
)2] ≤ c2

SE

[
sup

0≤s≤T

∣∣ζ̃ n,1(s)
∣∣2]

.

Next, note that

E sup
0≤t≤T

(
Ãn,1(t)

)2 ≤ 4
1

en

∫ T

0
λn,1(s) ds ≤ 4C0T ,

where C0 is as in (4.4). Similarly, E sup0≤t≤T (D̃n,1(t))2 ≤ 4C0T . Combining
these estimates

sup
n

E

[
sup

0≤t≤T

∣∣ζ̃ n,1(s)
∣∣2]

< ∞

which combined with (4.9) and the boundedness of y, r implies

sup
n

E

[∫ T

0
y
(
t, ν̃n(t)

)
dỸ n,1(t) +

∫ T

0
r
(
t, ν̃n(t)

)
dR̃n,1(t)

]2
< ∞.

Combining this with the weak convergence in (4.9), we have

E

[∫ T

0
y
(
t, ν̃n(t)

)
dỸ n,1(t) +

∫ T

0
r
(
t, ν̃n(t)

)
dR̃n,1(t)

]

→ E

[∫ T

0
y
(
t, ν̄(t)

)
dỸ 1(t) +

∫ T

0
r
(
t, ν̄(t)

)
dR̃1(t)

]
.

(4.11)

Combining (4.8) and (4.11) and recalling from the optimality of α̂ that

Vν̄(0, x) = E

[∫ T

0
f

(
t, ν̄(t), Q̃1(t), α̂

(
t, ν̄(t), Q̃1(t),DVν̄

(
t, Q̃1)))

dt

+ g
(
ν̄(T ), Q̃1(T )

)
(4.12)

+
∫ T

0
y
(
t, ν̄(t)

)
dỸ 1(t) +

∫ T

0
r
(
t, ν̄(t)

)
dR̃1(t)

]
,

we have the desired convergence limn→∞ Jn,1(Q̃n(0); α̃n) = Vν̄(0, x). �

4.3. Deviation of Player 1. In this section, we prove the inequality on the
right-hand side of (4.3).

PROPOSITION 4.3. Suppose Assumptions 3.1 and 4.1 hold. Let ν̄, βn, α̃n−i be
as introduced at the beginning of Section 4. Then for each i ≥ 1

lim inf
n→∞ Jn,1(

Q̃n(0); α̃n−i

) ≥ Vν̄(0, x).(4.13)
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PROOF. As before, we assume without loss of generality that i = 1. We will
need to argue the tightness of the control sequence {βn} in an appropriate space.
For this, it will be convenient to consider a relaxed control formulation. Consider
the relaxation of the stochastic control problem in (3.1)–(3.3) where the control
space U is replaced by P(U), the drift function b is replaced by the function
bR : [0, T ] × [0,L] ×P(U) →R defined as

bR(t, x, r)
.=

∫
U

b(t, x, u)r(du), (t, x, r) ∈ [0, T ] × [0,L] ×P(U),

and the running cost function f is replaced by fR : [0, T ] ×P([0,L]) × [0,L] ×
P(U) →R, defined as

fR(t, η, x, r)
.=

∫
U

f (t, η, x,u)r(du),

(t, η, x, r) ∈ [0, T ] ×P
([0,L]) × [0,L] ×P(U).

Also, the class of admissible controls A(�, t, x, ν̄) is replaced by AR(�, t, x, ν̄)

of pairs (αR,Z) that are similar to pairs (α,Z) introduced above (3.1) except
that αR is P(U) valued rather than U valued and (3.1) holds with b̄(u) =
b(u,X(u),α(u)) replaced with bR(u,X(u),αR(u)). The corresponding cost func-
tion Jν̄,R is defined by (3.2) with f replaced by fR. The value function in this
relaxed formulation, denoted as Vν̄,R, is given by (3.3) with A replaced by AR.
Define the function hR by (3.7), replacing (f, b) with (fR, bR). Then from As-
sumption 3.1(b)

H(t, η, x,p) = inf
u∈U

h(t, η, x,u,p) = inf
r∈P(U)

hR(t, η, x, r,p).

This shows that Vν and Vν,R are both solutions of the PDE (3.5)–(3.6). In view of
the uniqueness result from Proposition 3.1, Vν = Vν,R.

Let βn
R(t)

.= δβn(t), t ∈ [0, T ] and define β̄n
R ∈ M(U × [0, T ]) as

β̄n
R(dudt)

.= βn
R(t)(du)dt,

where M(U ×[0, T ]) is the space of finite measures on U ×[0, T ] equipped with
the topology of weak convergence. Then we can rewrite

Jn,1(
Q̃n(0), α̃n−1

)
.= E

[∫
U×[0,T ]

f
(
t, ν̃n(t), Q̃n,1(t), u

)
β̄n
R(dudt)

+ g
(
ν̃n(T ), Q̃n,1(T )

)

+
∫ T

0
y
(
t, ν̃n(t)

)
dỸ n,1(t) +

∫ T

0
r
(
t, ν̃n(t)

)
dR̃n,1(t)

]
(4.14)
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and
(
Q̃n,1, Ỹ n,1, R̃n,1)

= 

(
Q̃n,1(0) +

∫
U×[0,·]

b
(
s, Q̃n,1(s), u

)
β̄n
R(duds)

+ Ãn,i(·) − D̃n,i(·) + o(1)

)
.

(4.15)

From Proposition 4.1, ν̃n ⇒ ν̄. Also, the arguments of the same proposition show
that

(4.16)
{
Q̃n,1(·), Ãn,1(·) − D̃n,1(·),

∫
U×[0,·]

b
(
s, Q̃n,1(s), u

)
β̄n
R(duds)

}
n∈N

are C-tight in D([0, T ] : R3). Furthermore, since U × [0, T ] is compact and
β̄n
R(U × [0, T ]) = T , the sequence {β̄n

R}n∈N is tight in M(U × [0, T ]). Suppose
now that along a subsequence (labeled once more as {n}) the sequence in (4.16)
along with {β̄n

R} converges in distribution to (Q̃1, σB1, ϑ, β̄R). Then from the Lip-
schitz property of b [Assumption 3.1(a)] we have, for t ∈ [0, T ],

ϑ(t) =
∫
U×[0,t]

b
(
s, Q̃1(s), u

)
β̄R(duds)

=
∫ t

0
bR

(
s, Q̃1(s), βR(s)

)
ds,

where βR(s) is obtained by disintegrating β̄ , that is, β̄R(duds) = βR(s)(du)ds.
Also, as in the proof of Proposition 4.1, it can be argued that B1 is a standard
Brownian motion, and thus we can conclude as in the proof of (4.6):

(4.17)
Z̃(t) ≡ (

Q̃1, Ỹ 1, R̃1)
(t)

= 

(
x +

∫ ·
0

bR
(
t, Q̃1(t), βR(t)

)
dt + σB1(·)

)
(t), t ∈ [0, T ].

Once again, by a standard martingale argument, one can argue that for 0 ≤ s ≤ t ≤
T , B1(t) − B1(s) is independent of

F̃s
.= σ

{
Q̃1(

s′), Ỹ 1(
s′), R̃1(

s′), β̄R
(
A × [

0, s′]) : 0 ≤ s′ ≤ s,A ∈ B(U)
}
.

Thus denoting by (	̃, F̃, P̃) the probability space on which the limit processes
are defined, � = (	̃, F̃, {F̃t}, P̃,B1) is a system and (β̄R, Z̃) ∈ AR(�,0, x, ν̄).
Exactly as in the proof of Proposition 4.2 we see that the convergence in (4.11)
holds. Also, using the weak convergence

(
ν̃n, Q̃n,1, β̄n

R
) ⇒ (

ν̄, Q̃1, β̄R
)
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and the Lipschitz property of f in Assumption 3.1, we have

E

[∫
U×[0,T ]

f
(
t, ν̃n(t), Q̃n,1(t), u

)
β̄n
R(dudt)

+ g
(
ν̃n(T ), Q̃n,1(T )

)]

→ E

[∫ T

0
f

(
t, ν̄(t), Q̃1(t), u

)
β̄R(dudt) + g

(
ν̄(T ), Q̃1(T )

)]
.

(4.18)

Combining the above convergence properties, we have as n → ∞,

Jn,1(
Q̃n(0), α̃n−1

) → Jν̄,R(0, x, β̄R, Z̃) ≥ Vν̄,R(0, x) = Vν̄(0, x).

Since the above holds for an arbitrary convergent subsequence of processes in
(4.16) and the sequence {β̄n

R}, the result follows. �
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