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The goal of this paper is an exhaustive investigation of the link between
the tail measure of a regularly varying time series and its spectral tail pro-
cess, independently introduced in [Owada and Samorodnitsky (2012)] and
[Stochastic Process. Appl. 119 (2009) 1055–1080]. Our main result is to
prove in an abstract framework that there is a one-to-one correspondence be-
tween these two objects, and given one of them to show that it is always
possible to build a time series of which it will be the tail measure or the spec-
tral tail process. For nonnegative time series, we recover results explicitly or
implicitly known in the theory of max-stable processes.

1. Introduction. Regular variation is a fundamental concept for the extreme
value analysis of time series; see, for instance, Kulik (2016) and the articles in this
collection for a recent overview. For stationary multivariate time series, Basrak
and Segers (2009) proved that regular variation is equivalent to the existence of
the so-called tail and spectral tail processes which capture the entire tail behaviour
of the series. An important property of the spectral tail process is the time change
formula also proved by Basrak and Segers (2009). Recently, Segers, Zhao and
Meinguet (2017) and Owada and Samorodnitsky (2012) introduced the tail mea-
sure of a regularly varying, but not necessarily stationary, time series. The tail
measure is a homogeneous measure on the sequence space and it is shift-invariant
for a stationary time series. This is an advantage with respect to the tail process
which is never stationary. In addition, the tail process can be recovered from the
tail measure and it appears that the time change formula is a straightforward con-
sequence of the shift invariance of the tail measure.

A very natural question arises: given the tail process or the spectral tail process
of a time series, is it possible to reconstruct explicitly the tail measure? Further-
more, since the tail and spectral tail processes can be defined solely in terms of
the tail measure, given a process satisfying the time change formula, is it possible
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to define a tail measure and a time series of which it is the spectral tail process?
The latter question was recently solved positively by Janßen (2017) who shows
that given a process satisfying the time change formula, there exists a time series
of which it is the spectral tail process.

The purpose of this paper is twofold. In Section 2, we will attempt to present a
systematic theory of tail measures on a abstract complete separable metric space
and their representations, with a particular focus on shift-invariant tail measures.
This is done by means only of measure theory and the homogeneity and shift
invariance properties of a tail measure, without any appeal to regular variation
or probabilistic asymptotic arguments. We establish in Theorem 2.4 the stochas-
tic representation of tail measures with a characterization of the shift invariance.
These stochastic representations have a property similar to the time change formula
which we refer to as the tilt shift formula. The spectral tail process associated to
the tail measure is then related to its stochastic representation and we prove that
there is a one-to-one correspondence between spectral tail processes, stochastic
representations and shift invariant tail measures in Theorem 2.9.

In Section 2.5, we discuss dissipative representations of tail measures and char-
acterize the existence of such representations, which are deeply related to the
mixed moving average representation of max-stable processes. We conclude this
general investigation of tail measure by introducing maximal indices which extend
the candidate extremal index of Basrak and Segers (2009).

In Section 3, the abstract tail measures introduced in Section 2 are related to be
the tail measure of a regularly varying time series, in particular max-stable pro-
cesses; see de Haan (1984), Davis, Klüppelberg and Steinkohl (2013) or Buhl and
Klüppelberg (2016). The main result of this section is that we show that any shift-
invariant homogeneous measure ν can be obtained as the tail measure of a regu-
larly varying stationary times series. Our construction relies on a Poisson particle
system, similar to the representation of max-stable sequences, and on the regular
variation of Poisson point measures on abstract metric spaces. The main theoretical
tool we use is the theory of M0 convergence on metric spaces and its application
to regular variation, following Hult and Lindskog (2006). We also make use of
the theory of convergence of random measures as set out in Kallenberg (2017).
Our main result extends the above mentioned result of Janßen (2017) to our more
general framework. The properties of the proposed class of stationary regularly
varying time series are then studied and we show in particular that they admit ex-
tremal indices which coincide with the maximal indices introduced in Section 2.6.

2. Tail measures on a metric space.

2.1. Framework. The mathematical setting is the following. Let (E,E) be a
measurable cone, that is, a measurable space together with a multiplication by
positive scalars

(u,x) ∈ (0,∞) × E �→ ux ∈ E,
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which is measurable with respect to the product σ -field B(0,∞) ⊗ E/E and satis-
fies

1x = x, u
(
v(x)

) = (uv)x, u, v > 0,x ∈ E.

We assume that the cone admits a zero element 0E ∈ E such that u0E = 0E for all
u > 0 and that it is endowed with a pseudonorm, that is, a measurable function
‖ · ‖E : E �→ [0,∞) such that ‖ux‖E = u‖x‖E for all u > 0, x ∈ E and ‖x‖E = 0
implies x = 0E. The triangle inequality is not required.

The space EZ of E-valued sequences is endowed with the cylinder σ -algebra
F = E⊗Z and a generic sequence is denoted x = (xh)h∈Z. The sequence identi-
cally equal to 0E is denoted by 0EZ . The backshift operator B on EZ is defined by
(Bx)h = xh−1, x ∈ EZ, h ∈ Z. Its iterates are denoted Bk , k ∈ Z.

Let H : EZ �→ [0,∞] be an F -measurable function. We say that H is homo-
geneous of order α ∈ R, or shortly α-homogeneous, if H(ux) = uαH(x) for all
u > 0, x ∈ EZ.

The central object in this section is the notion of tail measure defined as follows.

DEFINITION 2.1 (Tail measure). A tail measure with index α > 0 is a positive
measure ν on (EZ,F) with the following properties:

(i) ν({0EZ}) = 0;
(ii) ν({‖x0‖E > 1}) = 1;

(iii) ν({‖xh‖E > 1}) < ∞ for all h ∈ Z;
(iv) ν is α-homogeneous, that is ν(uA) = u−αν(A) for all A ∈ F and u > 0.

The tail measure ν is called shift-invariant if furthermore

(v) ν(BA) = ν(A) for all A ∈F .

The following connection of tail measures on [0,∞)Z and max-stable process
is important.

REMARK 2.2. A time series X = (Xh)h∈Z is called α-Fréchet max-stable if(
n−1/α

n∨
i=1

X
(i)
h

)
h∈Z

d= (Xh)h∈Z,

where X(i), i ≥ 1 are independent copies of X. de Haan’s representation theo-
rem [de Haan (1984)] implies that any α-Fréchet max-stable sequence X can be
represented as

(2.1) (Xh)h∈Z
d=
(∨

i≥1

P(i)
h

)
h∈Z

,

where
∑

i≥1 δP(i) is a Poisson random measure on [0,∞)Z with intensity ν called
the exponent measure of X. Provided the marginal distribution of X0 is standard
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α-Fréchet, the exponent measure ν is a tail measure in the sense of Definition 2.1.
Conversely, for any tail measure ν on [0,∞)Z, Equation (2.1) defines an α-Fréchet
max-stable sequence with X0 following a standard α-Fréchet distribution.

The following lemma is useful to characterize tail measures. According to Def-
inition 2.1, the restriction of a tail measure ν to the set {‖xh‖E > 1} is finite so that
the Lemma allows to deal with finite measures in order to characterize ν.

LEMMA 2.3. Any tail measure ν is σ -finite and uniquely determined by its
restrictions to the sets {‖xh‖E > 1}, h ∈ Z.

PROOF. By property (i) of Definition 2.1, the tail measure ν is supported by

EZ \ {0EZ} = ⋃
h∈Z,n≥1

Ah,n,

with Ah,n = {x ∈ EZ : ‖xh‖E > n−1}. Since EZ \ {0EZ} is a countable union of
measurable sets, we can also write it as a countable union of pairwise disjoint
measurable sets. For instance, enumerating Ah,n, h ∈ Z, n ≥ 1 as Di , i ≥ 1 and
taking D1 = D1, Di = Di ∩ (D1 ∪ · · · ∪ Di−1)

c, i ≥ 2, we have that EZ \ {0EZ} =⋃
i≥1 Di with the sets Di , i ≥ 1, being pairwise disjoint. Since by property (iii) and

(iv), we have that ν(Di ) < ∞, i ≥ 1, then ν is σ -finite and completely determined
by its restrictions to the sets Di , i ≥ 1; hence by its restriction to the sets Ah,n,
h ∈ Z, n ≥ 1. Using further the homogeneity property (iv), it follows that ν is
determined by its restriction to the sets {‖xh‖E > 1}, h ∈ Z. �

2.2. Stochastic representation of tail measures. The following theorem pro-
vides a fundamental stochastic representation of a tail measure in terms of a E-
valued stochastic process Z = (Zh)h∈Z and characterizes shift-invariant tail mea-
sures.

THEOREM 2.4. A measure ν on (EZ,F) is a tail measure with index α > 0 if
and only if there exists an E-valued stochastic process Z = (Zh)h∈Z defined on a
probability space (�,A,P) such that

(2.2)
P(Z = 0EZ) = 0, E

[‖Z0‖α
E

] = 1,

E
[‖Zh‖α

E

]
< ∞ for all h ∈ Z,

and

ν(A) =
∫ ∞

0
P(rZ ∈ A)αr−α−1 dr, A ∈F .(2.3)

Moreover, ν is shift-invariant if and only if, for all nonnegative measurable α-
homogeneous functions H and h ∈ Z,

E
[
H

(
BhZ

)] = E
[
H(Z)

]
.(2.4)
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Note that in Equation (2.3), both terms may be equal to +∞, for instance, if A =
{‖x‖E > 0}. This raises however no difficulty since the results from measure theory
we use (e.g., Fubini–Tonneli theorem) hold true for any nonnegative functions and
σ -finite measures, regardless the integrals are finite or not.

We call the identity (2.4) the tilt shift formula, abbreviated TSF. It characterizes
the shift-invariance of the measure ν defined by (2.3) which does not depend on
the choice of a norm. It looks very much like stationarity of the process Z, but let
us emphasize that (2.4) is restricted to α-homogeneous test functions so it is much
weaker than stationarity. Of course, if Z is stationary then it satisfies (2.4). The tilt
shift formula is equivalent to each of the following equivalent conditions which
will also be referred to indifferently as the TSF:

(i) for all nonnegative measurable 0-homogeneous functions H0 : EZ →
[0,∞] and h ∈ Z,

E
[‖Z0‖α

EH0
(
BhZ

)] = E
[‖Zh‖α

EH0(Z)
];(2.5)

(ii) for all nonnegative measurable functions K : EZ →R and h ∈ Z,

E
[‖Z0‖α

EK
(‖Z0‖−1

E BhZ
)] = E

[‖Zh‖α
EK

(‖Zh‖−1
E Z

)]
.(2.6)

Indeed, (2.6) obviously implies (2.4) and (2.5), (2.5) is obtained by applying (2.4)
to the α-homogeneous function H(x) = ‖x0‖α

EH0(x) and (2.6) is obtained by ap-
plying (2.4) to the α-homogeneous function H0(x) = ‖x0‖α

EK(‖x0‖−1
E Bhx) de-

fined to be 0 if ‖x0‖E = 0.

REMARK 2.5. In the case E = [0,∞)Z, if ν has representation Equation (2.3),
then the max-stable process X with exponent measure ν defined by (2.1) can be
represented as

(Xh)h∈Z
d=
(∨

i≥1

UiZ
(i)
h

)
h∈Z

,

where
∑

i≥1 δUi
is a Poisson random measure on (0,∞) with intensity αu−α−1 du

and, independently, Z(i), i ≥ 1, are independent copies of Z. We note in pass-
ing that TSF for Brown–Resnick max-stable processes first appears in Dieker and
Mikosch [(2015), Lemma 5.2]; see also Hashorva [(2018), Theorem 6.9] for gen-
eral max-stable processes.

PROOF OF THEOREM 2.4. It is easily checked that the measure ν defined by
(2.3) is a tail measure. The condition ν({0EZ}) = 0 follows from P(Z = 0EZ) = 0.
A direct computation yields

ν
({‖xh‖E > 1}) = E

∫ ∞
0

1{r‖Zh‖E > 1}αr−α−1 dr = E
[‖Zh‖α

E

]
,
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whence we deduce

ν{‖x0‖E > 1} = E
[‖Z0‖α

E

] = 1, ν
({‖xh‖E > 1}) = E

[‖Zh‖α
E

]
< ∞.

Homogeneity of order α follows from the simple change of variable r ′ = u−1r : for
all u > 0 and A ∈ F , we have

ν(uA) =
∫ ∞

0
P(rZ ∈ uA)αr−α−1 dr =

∫ ∞
0

P
(
u−1rZ ∈ uA

)
αr−α−1 dr

= u−α
∫ ∞

0
P(rZ ∈ uA)αr−α−1 dr = u−αν(A).

Conversely, let ν be a tail measure and let us prove the existence of a representation
(2.3). Let us first prove that there exists at least one measurable functional τ :
EZ → [0,∞) having the following properties:

(i) τ(x) = 0 if and only if x = 0EZ ;
(ii) τ is 1-homogeneous;

(iii) ν({τ(x) > 1}) = 1.

Define ph = ν({‖xh‖E > 1}) for h ∈ Z and let q ∈ (0,∞)Z be a positive sequence
such that

∑
h∈Z phq

α
h < ∞. Consider the map τ : EZ → [0,∞] defined by

τ(x) = sup
h∈Z

qh‖xh‖E.

Then τ is 1-homogeneous and since ‖xh‖E = 0 if and only if xh = 0E for all h ∈ Z,
we have τ(x) = 0 if and only if x = 0EZ . By the homogeneity of ν, we have

ν
({

τ(x) > 1
}) ≤ ∑

h∈Z
ν
({qh‖xh‖E > 1}) = ∑

h∈Z
phq

α
h < ∞,

ν
({

τ(x) > 1
}) ≥ qα

0 ν
({‖x0‖E > 1}) = qα

0 > 0,

whence ν({τ(x) > 1}) ∈ (0,∞). Therefore, by multiplying the sequence q by a
suitable normalizing constant, we can impose that ν({τ(x) > 1}) = 1.

Let now τ be an arbitrary measurable map having the properties (i), (ii) and (iii)
and define the “unit sphere” Sτ = {τ(x) = 1} and the polar coordinate mapping

T : EZ \ {0EZ} → (0,∞) × Sτ ,

x �→ (
τ(x),x/τ(x)

)
.

Define the probability measure σ on Sτ by

σ(A) = ν
({

τ(x) > 1,x/τ(x) ∈ A
})

, A ∈ F,

and the measure να on (0,∞) with density αx−α−1 with respect to Lebesbue mea-
sure. Since T is one-to-one and τ is homogeneous, we obtain the polar represen-
tation of ν, that is ν ◦ T −1 = να ⊗ σ or explicitly, for all A ∈ F ,

(2.7) ν(A) =
∫ ∞

0

∫
EZ

1{rx ∈ A}σ(dx)αr−α−1 dr.
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Indeed, starting from the right-hand side of (2.7), we compute∫ ∞
0

∫
EZ

1{rx ∈ A}σ(dx)αr−α−1 dr

=
∫ ∞

0

∫
EZ

1
{
τ(x) > 1, rx/τ(x) ∈ A

}
ν(dx)αr−α−1 dr

=
∫ ∞

0

∫
EZ

τ(x)−α1
{
τ(x) > 1, rx ∈ A

}
ν(dx)αr−α−1 dr

=
∫ ∞

0

∫
EZ

τ(x)−α1
{
rτ (x) > 1,x ∈ A

}
ν(dx)αr−α−1 dr

=
∫

EZ

1{x ∈ A}ν(dx) = ν(A).

We use throughout these lines that ν({τ(x) = 0}) = ν({0EZ}) = 0. The successive
equalities rely on the definition of σ , the changes of variable r ′ = r/τ (x) and x′ =
x/r , the homogeneity of ν and τ and finally the fact that

∫ ∞
0 1{r > z}αr−α−1 dr =

z−α with z = 1/τ(x).
Consider now a probability space (�,A,P) on which we can define an EZ-

valued random element Z with distribution σ . Then (2.7) is exactly the stochastic
representation (2.3). The conditions in (2.2) are a consequence of Definition 2.1
together with (2.3): ν({0EZ}) = P(Z = 0EZ) = 0 and ν({‖xh‖E > 1}) = E[‖Zh‖α

E]
is finite for all h ∈ Z and equal to 1 for h = 0.

Finally, assume that ν is shift-invariant and let H0 : EZ → [0,∞] be a 0-
homogeneous measurable function. Using the stochastic representation (2.3) and
Fubini–Tonelli’s theorem for all h ∈ Z we obtain

E
[‖Z0‖α

EH0
(
BhZ

)] = E

[
H0

(
BhZ

) ∫ ∞
0

1{r‖Z0‖E > 1}αr−α−1 dr

]
=

∫
EZ

H0
(
Bhx

)
1{‖x0‖E > 1}ν(dx)

=
∫

EZ

H0(x)1{‖xh‖E > 1}ν(dx)

= E

[
H0(Z)

∫ ∞
0

1{r‖Zh‖E > 1}αr−α−1 dr

]
= E

[
H0(Z)‖Zh‖α

E

]
.

The third equality uses the shift invariance of ν and this proves that (2.5) holds.
Conversely we prove that the tilt shift formula (2.5) implies the shift invariance

of ν. For this purpose, we note that for all h ∈ Z and A ∈ F ,

ν
(
A ∩ {‖xh‖E > 1}) =

∫ ∞
0

E
[
1{rZ ∈ A, r‖Zh‖E > 1}]αr−α−1 dr
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=
∫ ∞

1
E
[‖Zh‖α

E1{rZ/‖Zh‖E ∈ A}]αr−α−1 dr(2.8)

=
∫ ∞

1
E
[‖Z0‖α

E1
{
rBhZ/‖Z0‖E ∈ A

}]
αr−α−1 dr.

We used successively the stochastic representation (2.3), the change of variable
r ′ = r‖Zh‖E [where ‖Zh‖E is almost surely finite as a consequence of (2.2)] and
the tilt-shift formula (2.5). Similarly, for k ∈ Z,(

ν ◦ B−k)(A ∩ {‖xh‖E > 1})
=

∫ ∞
0

E
[
1
{
rBkZ ∈ A, r‖Zh−k‖E > 1

}]
αr−α−1 dr

=
∫ ∞

1
E
[‖Zh−k‖α

E1
{
rBkZ/‖Zh−k‖E ∈ A

}]
αr−α−1 dr

=
∫ ∞

1
E
[‖Z0‖α

E1
{
rBhZ/‖Z0‖E ∈ A

}]
αr−α−1 dr.

This proves that ν = ν ◦B−k on the set {‖xh‖E > 1}. Since this holds for all h ∈ Z,
Lemma 2.3 implies ν = ν ◦ B−k , whence ν is shift-invariant. �

2.3. The spectral tail process and the time change formula. The following no-
tion of tail process and spectral tail process plays an important role in the theory of
regularly varying time series; see Basrak and Segers (2009). We define here these
objects in terms of the tail measure only. The link between these two approaches
will be made in Section 3.3 and was already pointed by Owada and Samorodnitsky
(2012), Section 4.

DEFINITION 2.6 (Local tail process). Let ν be a tail measure on EZ and as-
sume that h ∈ Z is such that ph = ν({‖xh‖E > 1}) > 0. The local tail process of ν
at lag h is the process Y (h) with distribution

P
(
Y (h) ∈ A

) = 1

ph

ν
({‖xh‖E > 1,x ∈ A}), A ∈F .

The process �(h) = Y (h)/‖Y (h)
h ‖E is called the local spectral tail process at lag h.

For h = 0, we write simply Y = Y (0) and � = �(0), called the tail process and
the spectral tail process associated to ν.

PROPOSITION 2.7. Let ν be a tail measure with stochastic representation
(2.3). Then ph = ν({‖xh‖E > 1}) = E[‖Zh‖α

E] < ∞. If ph > 0, then ‖Y (h)
h ‖E and

�(h) = Y (h)/‖Y (h)
h ‖E are independent, ‖Y (h)

h ‖E has an α-Pareto distribution, that
is,

P
(‖Y (h)

h ‖E > u
) = u−α, u > 1,
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and the distribution of �(h) is given by

P
(
�(h) ∈ A

) = p−1
h E

[‖Zh‖α
E1{Z/‖Zh‖E ∈ A}], A ∈ F .(2.9)

PROOF. By definition of the local tail process and using the stochastic repre-
sentation (2.3), we have for all measurable H : EZ → [0,∞],

phE
[
H

(
Y (h))] =

∫
EZ

H(x)1{‖xh‖E > 1}ν(dx)

=
∫ ∞

0
E
[
H(rZ)1{r‖Zh‖E > 1}]αr−α−1 dr

=
∫ ∞

0
E
[
H(rZ)1

{
r‖Zh‖E > 1,0 < ‖Zh‖ < ∞}]

αr−α−1 dr

=
∫ ∞

1
E
[‖Zh‖α

EH(rZ/‖Zh‖E)
]
αr−α−1 dr.

The last equality relies on the change of variable r ′ = r‖Zh‖E. Applying this
identity with the 0-homogeneous function H0(x) = 1{x/‖xh‖E ∈ A,‖xh‖E > 0}
yields

P
(
�(h) ∈ A

) = E
[
H0

(
Y (h))] =

∫ ∞
1

E
[‖Zh‖α

EH0(Z/‖Zh‖E)
]
αr−α−1 dr

= p−1
h E

[‖Zh‖α
E1{Z/‖Zh‖E ∈ A}],

proving Equation (2.9). �

COROLLARY 2.8. A tail measure ν is shift-invariant if and only if ph = 1 and

�(h) d= Bh� for all h ∈ Z. Then the spectral tail process � characterizes the tail
measure ν and satisfies

E
[
H0

(
Bh�

)] = E
[‖�h‖α

EH0(�)
]
, h ∈ Z,(2.10)

for all 0-homogeneous measurable H0 : EZ → [0,∞) vanishing on {‖x0‖E = 0}.
We call Equation (2.10) the time change formula, abbreviated TCF. It first ap-

peared in Basrak and Segers (2009) in the context of stationary regularly varying
time series. While the original proof was based on limiting arguments, we propose
here a direct proof based on shift invariance of the tail measure, which was already
noticed in Owada and Samorodnitsky (2012). In view of Proposition 2.7, the TCF
is in fact a direct consequence of the TSF (see the proof below). The condition that
H0 vanishes on {‖x0‖E = 0} is important. To stress this, the TCF can be formulated
in the equivalent form: for all 0-homogeneous measurable H0 : EZ → [0,∞),

E
[
H0

(
Bh�

)
1{‖�−h‖E > 0}] = E

[‖�h‖α
EH0(�)

]
, h ∈ Z.(2.11)

To see this, simply apply (2.10) to the function x �→ H0(x)1{‖x0‖E > 0}.
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PROOF OF COROLLARY 2.8. If ν is shift-invariant, then the tilt shift formula
(2.5) together with E[‖Z0‖α

E] = 1 implies ph = 1 for all h ∈ Z. Equations (2.5)
and (2.9) together imply, for all h ∈ Z, A ∈ F ,

P
(
�(h) ∈ A

) = E
[‖Zh‖α

E1{Z/‖Zh‖E ∈ A}]
= E

[‖Z0‖α
E1

{
BhZ/‖Z0‖E ∈ A

}] = P
(
Bh� ∈ A

)
,

whence �(h) d= Bh�. Conversely, if ph = 1 and �(h) d= Bh� for all h ∈ Z, then
we have for all 0-homogeneous function H0,

E
[‖Z0‖α

EH0
(
BhZ

)] = E
[
H0

(
Bh�

)] = E
[
H0

(
�(h))] = E

[‖Zh‖α
EH0(Z)

]
,

hence the TSF is satisfied and ν is shift-invariant by Theorem 2.4.
If ν is shift-invariant, then Equation (2.8) can be rewritten as

ν
(
A ∩ {‖xh‖E > 1}) =

∫ ∞
1

E
[
1
{
rBh� ∈ A

}]
αr−α−1 dr,

for all h ∈ Z and A ∈ F . In view of Lemma 2.3, we deduce that � characterizes
the shift-invariant tail measure ν. Furthermore, we have for all 0-homogeneous
function H0,

E
[‖�h‖α

EH0(�)
] = E

[
‖Z0‖α

E
‖Zh‖α

E

‖Z0‖α
E

H0(Z/‖Z0‖E)

]
= E

[‖Zh‖α
EH0(Z)1{‖Z0‖E > 0}]

= E
[‖Zh‖α

EH0(Z)
] = E

[
H0

(
Bh�

)]
,

where the second line of equalities is valid provided that H0 vanishes on {‖x0‖E =
0}. This shows that if ν is shift-invariant, the spectral tail process satisfies the TCF
(2.10). �

We have introduced the spectral tail process � associated to a tail measure ν.
In the shift-invariant case, it satisfies P(‖�0‖E = 1) = 1 and the TCF (2.10) and it
also characterizes ν. A natural question then arises: if � satisfies P(‖�0‖E = 1) =
1 and the TCF, can it be obtained as the spectral tail process of some shift-invariant
tail measure ν? In the multivariate setting E = R

d , this question was addressed
recently by Janßen (2017) in connection with the theory of max-stable processes.
The next theorem still provides a positive answer in the more general framework.
Our proofs are different and work directly on the level of the tail measure (not on
the level of a stationary regularly varying time series, see Theorem 3.7 below).

THEOREM 2.9. The mapping which to a tail measure associates its spectral
tail process is a one-to-one correspondence between the class of shift-invariant
tail measures and the class of processes � satisfying P(‖�0‖E = 1) = 1 and the
TCF (2.10).
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PROOF. Starting from a process � satisfying P(‖�0‖E = 1) = 1 and the TCF
(2.10), we need to construct a shift-invariant tail measure ν with spectral tail pro-
cess �. For q ∈ [0,∞)Z and x ∈ EZ, we define

‖x‖q,α =
(∑

j∈Z
qj‖xj‖α

E

)1/α

.

We can always choose the sequence q such that

P
(
0 <

∥∥Bk�
∥∥
q,α < ∞) = 1 for all k ∈ Z.(2.12)

It suffices to choose q such that qk > 0 for all k ∈ Z and
∑

k∈Z qk = 1. Then
P(‖Bk�‖q,α > 0) = 1 since qk > 0 and ‖�0‖E = 1 almost surely. Moreover, ap-
plying the time change formula (2.11) with H ≡ 1 yields E[‖�k‖α

E] ≤ 1 for all
k ∈ Z, so that

E
[∥∥Bk�

∥∥α
q,α

] = ∑
j∈Z

qkE
[‖Bk�j‖α

E

] ≤ ∑
k∈Z

qk = 1.

Define Z̃
(k) = Bk�/‖Bk�‖q,α , k ∈ Z and the positive measure νq on EZ by

νq(A) = ∑
k∈Z

qk

∫ ∞
0

P
(
rZ̃

(k) ∈ A
)
αr−α−1 dr(2.13)

for all A ∈ F . Then νq is obviously α-homogeneous and νq({0EZ}) = 0 and we
have furthermore, for all measurable function H : EZ → [0,∞),∫

EZ

H(x)1{‖x0‖E > 1}νq(dx)

= ∑
k∈Z

qk

∫ ∞
0

E
[
H

(
rZ̃

(k))1{r‖Z̃(k)
0 ‖E > 1

}]
αr−α−1 dr

= ∑
k∈Z

qk

∫ ∞
0

E

[
H

(
rBk�

‖Bk�‖q,α

)
1
{
r‖�−k‖E >

∥∥Bk�
∥∥
q,α

}]
αr−α−1 dr

= ∑
k∈Z

qk

∫ ∞
1

E

[
H

(
rBk�

‖�−k‖E

) ‖�−k‖α
E

‖Bk�‖α
q,α

]
αr−α−1 dr

= ∑
k∈Z

qk

∫ ∞
1

E

[
‖�−k‖α

EH

(
rBk�

‖�−k‖
) ‖�0‖α

‖Bk�‖α
q,α

]
αr−α−1 dr.

In these lines, we used successively the definition (2.13), the definition of Z̃, the
change of variable r ′ = ‖Bk�‖q,α‖�−k‖−1

E r (note that the event {‖�−k‖E = 0}
has no contribution to the expectations) and finally the fact that P(‖�0‖ = 1) = 1.
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The time change formula now entails∫
EZ

H(x)1{‖x0‖E > 1}νq(dx)

= ∑
k∈Z

qk

∫ ∞
1

E

[
H

(
r�

‖�0‖E

) ‖�k‖α
E

‖�‖α
q,α

]
αr−α−1 dr(2.14)

=
∫ ∞

1
E
[
H(r�)

]
αr−α−1 dr.

Applying this identity to the 0-homogeneous function x → H(‖x0‖−1
E x) ×

1{‖x0‖E > 0} proves that νq has spectral tail process �. It is easily obtained along
the same lines, that for all h ∈ Z,∫

EZ

H(x)1{‖xh‖E > 1}νq(dx) =
∫ ∞

1
E
[
H

(
rBh�

)]
αr−α−1 dr.

The right-hand side does not depend on q and taking H ≡ 1 yields νq({‖xh‖E >

1}) = 1, h ∈ Z. Therefore, the νq ’s are tail measures that coincide on the sets
{‖xh‖E > 1}, h ∈ Z. By Lemma 2.3, they are all equal, and hence νq does not
depend q . This entails that νq is shift-invariant since it is readily checked that
νq ◦ B−h = νBhq whence νq ◦ B−h = νq . �

REMARK 2.10. In two particular cases, a simpler construction of the tail mea-
sure corresponding to a given spectral tail process is available.

• If P(‖�h‖E > 0) = 1 for all h ∈ Z, then the sequence q can be chosen as q = δ0
and we obtain

ν(A) =
∫ ∞

0
P(r� ∈ A)αr−α−1 dr.

This provides a stochastic representation (2.3) of ν with Z = � such that
‖Z0‖E = ‖�0‖E = 1 almost surely.

• If P(
∑

h∈Z ‖�h‖α
E < ∞) = 1, then we can choose q ≡ 1 which yields

ν(A) = ∑
h∈Z

∫ ∞
0

P
(
rBhZ̃ ∈ A

)
αr−α−1 dr,(2.15)

with Z̃ = �/(
∑

k∈Z ‖�k‖α
E)1/α . This representation is related to the mixed

moving maximum representation of max-stable process; see, for example,
Dombry and Kabluchko (2017) and Section 2.5.

We will later need the following lemma on the support of a tail measure. We say
that a set C ∈ F is a cone if x ∈ C implies ux ∈ C for all u > 0.

LEMMA 2.11. Let ν be a tail measure which admits the stochastic represen-
tation (2.3). Let C be a cone. Then ν(C) = 0 ⇔ P(Z ∈ C) = 0. If ν and C are
shift-invariant, then ν(C) = 0 ⇔ P(� ∈ C) = 0.
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PROOF. If C is a cone, then Equation (2.3) yields ν(C) = P(Z ∈ C) × ∞,
which proves the first statement.

If ν is shift-invariant with spectral tail process � and C is a shift invariant cone,
the representation (2.13) yields

ν(C) = ∑
k∈Z

∫ ∞
0

P
(
rBk�/

∥∥Bk�
∥∥
q,α ∈ C

)
αr−α−1 dr

= ∑
k∈Z

∫ ∞
0

P(� ∈ C)αr−α−1 dr = P(� ∈ C) × ∞.

This proves the second statement. �

2.4. Another representation of the tail measure. We propose here another con-
struction proof of Theorem 2.9. It is based on the infargmax functional I defined
on EZ by

I (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∞ if lim sup
k→−∞

‖xk‖E = sup
k∈Z

‖xk‖E,

j ∈ Z if sup
k≤j−1

‖xk‖E < ‖xj‖E = sup
k∈Z

‖xk‖E,

+∞ if sup
k≤j

‖xk‖E < sup
k∈Z

‖xk‖E for all j.

For x ∈ EZ \ {0EZ}, a sufficient condition for I (x) ∈ Z is lim|k|→∞ ‖xk‖E = 0.
For two sequences q ∈ [0,∞)Z and x ∈ EZ, we define the pointwise multipli-

cation q · x by (q · x)k = qkxk , k ∈ Z.

PROPOSITION 2.12. Let � be a process which satisfies the time change for-
mula (2.10) and let q ∈ (0,∞)Z be such that P(I (q · �) ∈ Z) = 1. Define the
measure νq on EZ by

νq(A) = ∑
j∈Z

∫ ∞
0

P
(
rBj� ∈ A,I

(
q · Bj�

) = j
)
αr−α−1 dr, A ∈ F .

Then νq does not depend on q and defines a shift-invariant tail measure with tail
spectral process �.

Note that any q ∈ (0,∞)Z such that
∑

k∈Z qα
k < ∞ satisfies P(I (q · �) ∈

Z) = 1. Indeed, the time change formula implies that E[‖�h‖α
E] ≤ 1, h ∈ Z, so that

E[∑j∈Z qα
j ‖�j‖α

E] < ∞ and therefore lim|j |→∞ qj‖�j‖E = 0 and I (q · �) ∈ Z

almost surely.

PROOF. It is straightforward to check that νq is α-homogeneous and satisfies
νq({0EZ}) = 0. For all measurable function H : EZ → [0,∞), we have∫

EZ

H(x)1{‖x0‖E > 1}νq(dx)
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= ∑
j∈Z

∫ ∞
0

E
[
H

(
rBj�

)
1
{
r‖�−j‖E > 1, I

(
q · Bj�

) = j
}]

αr−α−1 dr

= ∑
j∈Z

∫ ∞
1

E

[
‖�−j‖α

EH

(
rBj�

‖�−j‖E

)
1
{
I
(
q · Bj�

) = j
}]

αr−α−1 dr

= ∑
j∈Z

∫ ∞
1

E

[
H

(
r�

‖�0‖E

)
1
{
I (q · �) = j

}]
αr−α−1 dr

=
∫ ∞

1
E

[
H(r�)

∑
j∈Z

1
{
I (q · �) = j

}]
αr−α−1 dr

=
∫ ∞

1
E
[
H(r�)

]
αr−α−1 dr.

We used here the definition of νq from Proposition 2.12, the change of variable
r ′ = r/‖�−j‖E (note that the event {‖�−j‖E = 0} has no contribution to the in-
tegrals), the time change formula, the fact that P(‖�0‖E = 1) = 1 and finally the
assumption

∑
j∈Z P(I (q · �) = j) = 1.

At this point, we have retrieved Equation (2.14) and the remainder of the proof
follows exactly the same lines as the proof of Theorem 2.9. �

REMARK 2.13. In the particular case P(I (�) ∈ Z) = 1, we can take q ≡ 1
and we get

ν(A) = ∑
j∈Z

∫ ∞
0

P
(
rBj� ∈ A,I (�) = 0

)
αr−α−1 dr, A ∈ F .

Introducing the process Q such that L(Q) = L(� | I (�) = 0), we obtain

ν(A) = P
(
I (�) = 0

)∑
j∈Z

∫ ∞
0

P
(
rBjQ ∈ A

)
αr−α−1 dr, A ∈ F .

This representation is similar as the one from Equation (2.15). In fact, this is a
special case of a moving shift representation of ν; see Section 2.5.

2.5. Moving shift representations and dissipative tail measures. We consider
in this section the relationship between the existence of a moving shift represen-
tation and the dissipative/dissipative decomposition of a tail measure. Note that
ergodic properties of tail measures are also considered in Owada and Samorodnit-
sky (2012), Section 5. We introduce only the minimum amount of ergodic theory
and define the notion of dissipative tail measure. For more details on (infinite mea-
sure) ergodic theory, we refer to Aaronson (1997). The σ -field on EZ generated by
cones, or equivalently by 0-homogeneous functions, is denoted by C.
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DEFINITION 2.14. The dynamical system (EZ,C, ν,B) is said dissipative if
there exists a cone C0 ∈ C such that the sets BhC0, h ∈ Z, are pairwise disjoint and
ν is supported by D = ⋃

h∈Z BhC0, that is, ν(EZ \ D) = 0.

On the other hand, Remarks 2.10 and 2.13 above motivate the following defini-
tion.

DEFINITION 2.15. We say that a shift-invariant tail measure ν has a moving
shift representation if there exists a stochastic process Z̃ such that

(2.16) ν(A) = ∑
h∈Z

∫ ∞
0

P
(
rBhZ̃ ∈ A

)
αr−α−1 dr, A ∈ F .

The conditions ν({0EZ}) = 0 and ν({‖x0‖E > 1}) = 1 entail

(2.17) P(Z̃ = 0EZ) = 0,
∑
h∈Z

E
[‖Z̃h‖α

E

] = 1.

Indeed, we have

ν
({‖x0‖E > 1}) = ∑

h∈Z

∫ ∞
0

P(r‖Z̃−h‖E > 1)αr−α−1 dr = ∑
h∈Z

E
[‖Z̃h‖α

E

]
.

Conversely, it is easily proved that, for any stochastic process Z̃ satisfying (2.17),
the measure ν defined by (2.16) is a shift-invariant tail measure.

REMARK 2.16. Definition 2.15 is strongly related to the notion of mixed mov-
ing maximum representation for max-stable process. If a max-stable process X
has a dissipative exponent measure with representation (2.16), then it can be rep-
resented as

Xh
d= ∨

i≥1

UiZ̃
(i)
h−Ti

, h ∈ Z,

where
∑

i≥1 δ(Ui,Ti) is a Poisson random measure on (0,∞) × Z with intensity
equal to the product of αu−α−1 du with the counting measure on Z, and, inde-
pendently, Z̃

(i) are independent copies of Z̃. This is a mixed moving maximum
representation and X is generated by a dissipative flow [Dombry and Kabluchko
(2017), Theorem 8].

REMARK 2.17. Theorem 3.7 states that any tail measure has a stochastic rep-
resentation (2.3). One can wonder what is a stochastic representation for a tail
measure ν given by a moving shift representation (2.16). A possible construction
is as follows: starting from Z̃, consider an independent Z-valued random variable
K such that pk = P(K = k) ∈ (0,1), k ∈ Z and define

Z = ∑
k∈Z

p
−1/α
k BkZ̃1{K = k}.(2.18)
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In this construction, Z appears as a randomly shifted and rescaled version of Z̃. It
is easy to check that the stochastic representation (2.3) and the dissipative repre-
sentation (2.16) define the same tail measure ν.

The converse is not true, that is, a shift-invariant tail measure does not always
have a moving shift representation of the form (2.16). The next result is strongly
related to Dombry and Kabluchko (2017), Theorem 3. We say that ν (resp., Z, �)
is supported by A ∈ F if ν(Ac) = 0 with Ac the complement of A in EZ [resp.,
P(Z ∈ Ac) = 0, P(� ∈ Ac) = 0].

PROPOSITION 2.18. Let ν be a shift-invariant tail measure. The following
statements are equivalent:

(i) (EZ,C, ν,B) is dissipative;
(ii) ν has a moving shift representation (2.16);

(iii) ν is supported by {x : ∑h∈Z ‖xh‖α < ∞};
(iv) ν is supported by {x : lim|h|→∞ ‖xh‖E = 0};
(v) ν is supported by {x : I (x) ∈ Z}.

PROOF. 1. (i) ⇒ (ii): let C0 be as in Definition 2.14. According to Theo-
rem 2.4, there exists an E-valued stochastic process Z which satisfies (2.2) and
(2.3). Therefore, the restriction ν0 of the tail measure ν to C0 can be represented
as

ν0(A) =
∫ ∞

0
P(rZ ∈ A)αr−α−1 dr,

for all measurable sets A ⊂ C0. The fact that ν is dissipative implies that ν =∑
h∈Z ν0 ◦ B−h, and hence that ν admits the representation (2.16) with Z̃ = Z.
2. (ii) ⇒ (iii): If ν has a dissipative representation (2.16), then Z̃ satisfies (2.17)

and E[∑h∈Z ‖Z̃h‖α
E] < ∞ implies that Z̃ is supported by {x : ∑h∈Z ‖xh‖α

E < ∞}.
Then the representation (2.16) implies that this set also supports ν.

3. (iii) ⇒ (iv) ⇒ (v): these implications are trivial since
∑

h∈Z ‖xh‖α
E < ∞

implies lim|h|→∞ ‖xh‖E = 0, which in turn implies I (x) ∈ Z for x �= 0EZ [recall
ν({0EZ}) = 0].

4. (v) ⇒ (i): take C0 = {x : I (x) = 0} to check that ν is dissipative. �

REMARK 2.19. Since the sets {x : ∑h∈Z ‖xh‖α
E < ∞}, {x : lim|h|→∞ ‖xh‖E =

0} and {x : I (x) ∈ Z} are shift-invariant cones, Lemma 2.11 implies that (iii), (iv)
and (v) can be equivalently expressed with Z or � where Z is a stochastic repre-
sentation of ν as in (2.3) and � is the corresponding spectral tail process.
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2.6. Maximal indices. We introduce in this section the maximal indices of a
shift-invariant tail measure ν that are closely connected with the extremal indices
of regularly varying stationary time series; see Section 3.4 below.

Given an α-homogeneous shift-invariant tail measure ν and a 1-homogeneous
functional τ : EZ → [0,∞] such that ν({τ(x) > 1}) = 1, we define the quantity
θτ ∈ [0,1], called maximal index, by

(2.19) θτ = lim
n→∞

1

n
ν
({

max
0≤h≤n−1

τ
(
Bhx

)
> 1

})
.

The existence of the limit is a consequence of Fekete’s subadditive lemma. The
shift invariance of ν implies that the sequence un = ν({max0≤h≤n−1 τ(Bhx) > 1}),
n ≥ 1, is subadditive. As a consequence, un/n converge to infn≥1 un/n and the
limit is in [0,1] since the sequence is nonnegative and u1 = 1.

The next result shows that the maximal indices of a dissipative tail measure are
positive and provides expressions of the maximal indices in terms of the stochastic
representation and the spectral tail process of the tail measure.

PROPOSITION 2.20. Assume that ν is dissipative and that the 1-homogeneous
measurable function τ : EZ → [0,∞] satisfies ν({τ(x) > 1}) = 1. Then θτ > 0 and

θτ = E

[
sup
h∈Z

τα(BhZ̃
)] = E

[
suph∈Z τα(Bh�)∑

h∈Z ‖�h‖α
E

]
= P

(
I (�) = 0

)
E

[
sup
h∈Z

τα(BhQ
)]

,

with Z̃ as in the dissipative representation (2.16), � the spectral tail process of
ν and Q is a random sequence in EZ with distribution L(� | I (�) = 0) as in
Remark 2.13.

REMARK 2.21. For a dissipative tail measure ν and τ(x) = ‖x0‖E, we also
have the following identity proved in Planinić and Soulier [(2018), Lemma 3.2]

θτ = P

(
sup
i≥1

‖Y i‖E ≤ 1
)

= P

(
sup
i≥1

‖Y i‖E > 1
)
,

where Y i = Y�i , i ∈ Z and Y is a Pareto random variable with tail index α, inde-
pendent of the sequence {�j }. This means that the maximal index is in this case
the candidate extremal index introduced in Basrak and Segers (2009). The link
with the usual extremal index will be made in Section 3.

The proof of Proposition 2.20 makes use of the following identity due to
Smith and Weissmannn [(1996), Lemma 3.2]: for a summable sequence (uh)h∈Z ∈
[0,∞)Z,

(2.20) lim
n→∞

1

n

∑
h∈Z

max
0≤k≤n−1

uh+k = sup
h∈Z

uh.
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PROOF OF PROPOSITION 2.20. Since ν is dissipative, we can introduce a dis-
sipative representation (2.16) and write

ν
(

max
0≤k≤n−1

τ
(
Bkx

)
> 1

)
= ∑

h∈Z

∫ ∞
0

P

(
r max

0≤k≤n−1
τ
(
Bk+hZ̃

)
> 1

)
αr−α−1 dr

= ∑
h∈Z

E

[
max

0≤k≤n−1
τα(Bk+hZ̃

)]
.

For n = 1, we have in particular
∑

h∈Z E[τα(BhZ̃)] = 1 thanks to the normalizing
condition ν(τ (x) > 1) = 1. This proves that the sequence uh = τα(BhZ̃), h ∈ Z,
is almost surely summable and (2.20) implies

lim
n→∞

1

n

∑
h∈Z

max
0≤k≤n−1

τα(Bk+hZ̃
) = sup

h∈Z
τα(BhZ̃

)
almost surely.

Furthermore, for all n ≥ 1, the left-hand side in the previous equation is bounded
from above by

∑
h∈Z τα(BhZ̃) which has finite expectation. Lebesgue’s dominated

convergence theorem implies

θτ = lim
n→∞

1

n
ν
(

max
0≤k≤n−1

τ
(
Bkx

)
> 1

)
= lim

n→∞
1

n

∑
h∈Z

E

[
max

0≤k≤n−1
τα(Bk+hZ̃

)] = E

[
sup
h∈Z

τα(BhZ̃
)]

.

This proves the first formula. The second and third expressions of θτ are special
cases obtained for Z̃ = �/(

∑
k∈Z ‖�k‖α

E)1/α and Z̃ = P
1/α(I (�) = 0)Q; see Re-

marks 2.10 and 2.13. �

3. Regularly varying time series on a metric space. In this section, we will
build a regularly varying time series with a prescribed tail measure. For this pur-
pose, we first recall the most important definitions and properties of M0 conver-
gence and regular variation on a metric space. For the sake of clarity, the results
are stated for a general metric space F in Sections 3.1 and 3.2 and we consider the
specific case F = EZ in later sections.

3.1. Regular variation on a metric space. We follow here Hult and Lindskog
(2006), Section 3. Let (F,d) be a metric space and let 0F be an element of F. We
assume that there exists a continuous map (s,x) → sx from [0,∞) × F to F such
that for all x ∈ F and s ≤ t ∈ (0,∞), s(tx) = (st)x, 0x = 0F and

d(0F, sx) ≤ d(0F, tx).

Such a map will be called a distance compatible outer multiplication. We denote
the ball with center at 0F and radius r ≥ 0 by Br . We endow F with its Borel
σ -field.
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Let M0(F) be the set of boundedly finite measures on F\ {0F}, that is, measures
ν such that ν(A) < ∞ for all measurable sets A such that A ∩ Br = ∅ for some
r > 0. Such sets will be called separated from 0F. The null measure will be denoted
by 0M. We will say that a sequence {νn, n ≥ 1} of measures in M0(F) converges

in M0(F) to a measure ν, which we will denote by νn
M0(F)−→ ν, if

lim
n→∞νn(A) = ν(A),

for all measurable set A separated from 0F and such that ν(∂A) = 0. This type of
convergence is referred to as weak# convergence in Daley and Vere-Jones (2003)
and simply vague convergence in Kallenberg (2017). For more details on the re-
lationship between these different types of convergence, we refer to Lindskog,
Resnick and Roy (2014) or Basrak and Planinić (2018).

By Kallenberg [(2017), Lemma 4.1], limn→∞ νn
M0(F)−→ ν if and only if

limn→∞ νn(f ) = ν(f ) for all bounded Lipschitz continuous functions with sup-
port separated from zero. Hult and Lindskog (2006) proved that convergence in
M0(F) is equivalent to weak convergence on the complement of balls centered at
0F. More precisely,

νn
M0(F)−→ ν

⇐⇒ for all but countably many r > 0, νn|Bc
r

w−→ ν|Bc
r
,

(3.1)

where ν|A is the measure ν restricted to the set A and
w→ denotes weak conver-

gence. Convergence in M0 can be metrized. Let ρr be Prohorov’s distance on the
set of finite measures defined on Bc

r . Let ρ be the metric on M0(F) defined by

ρ(μ, ν) =
∫ ∞

0
e−t (ρr(μ, ν) ∧ 1

)
dr, μ, ν ∈ M0(F).(3.2)

Then (M0(F), ρ) is a complete separable metric space; cf. Hult and Lindskog
(2006), Theorem 2.3.

We can now define regular varying measures and random elements in F.

DEFINITION 3.1.

• A Borel measure μ on F is said to be regularly varying if there exists a nonde-

creasing sequence {an} and a measure μ∗ ∈ M0(F) such that nμ(an·) M0(F)−→ μ∗.
We then write μ ∈ RV(F, {an},μ∗).

• An F-valued random element X defined on a probability space (�,A,P) is said
to be regularly varying if there exists a nondecreasing sequence {an} tending to

infinity and a nonzero measure ν on F \ {0F} such that nP(a−1
n X ∈ ·) M0(F)−→ ν.

We then write X ∈ RV(F, {an}, ν).
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By Hult and Lindskog [(2006), Theorem 3.1], if X ∈ RV(F, {an}, ν), then there
exists α > 0 which will be called the tail index of X such that the measure ν is α-
homogeneous and the sequence {an} is regularly varying with index 1/α. We will
need the following result which is a straightforward application of the mapping
theorem Hult and Lindskog (2006), Theorem 2.5.

LEMMA 3.2. Let (F, d) and (F′, d ′) be two complete separable metric spaces
each endowed with a distance compatible outer multipication. Let 0F ∈ F and let
T : F → F′ be a 1-homogeneous map such that T (0F) = 0F′ . Set F0 = F \ {0F}
and F′

0 = F′ \ {0F′ }. Let μ, μ∗ be a Borel measures on F and let {an} be a non-
decreasing sequence such that μ ∈ RV(F0, an,μ

∗). If T is μ∗ almost surely con-
tinuous, continuous at 0F, and μ∗ ◦ T −1 is not the null measure, then μ ◦ T −1 ∈
RV(F′

0, an,μ
∗ ◦ T −1).

PROOF. Define μn = nμ(an·). By assumption, μn
M0(F)−→ μ∗. By homogeneity

of T , μn ◦ T −1 = nμ ◦ T −1(an·). We want to apply Hult and Lindskog [(2006),

Theorem 2.5] to prove that μn ◦ T −1 M0(F
′)−→ μ∗ ◦ T −1. Since T (0F) = 0F′ , there

only remain to prove that if A is bounded away from 0F′ , then T −1(A) is bounded
away from 0F. If A ⊂ F′ is bounded away from 0F′ , there exists ε > 0 such that y ∈
A implies d(y,0F′) > ε. Since T is continuous and T (0F) = 0F′ , there exists η > 0
such that d(x,0F) ≤ η implies d(T (x),0F′) ≤ ε. This proves that if x ∈ T −1(A)

then d(x,0F) > η. �

3.2. Regular varying Poisson point processes. Let N0(F) be the set of bound-
edly finite point measures on F \ {0F}, that is, measures ν such that ν(A) ∈ N for
all bounded Borel set A separated from 0F. This implies that ν has a finite number
of points outside each ball centered at 0F and we can write ν = ∑

j≥1 δxj
where

the points of ν are numbered in such a way that

d(0F,xi ) ≥ d(0F,xj )

if i ≤ j . It is then easily seen that N0(F) is a closed subset of M0(F) and that the

convergence νn
M0(F)−→ ν implies the convergence of points in F.

The restriction of the distance ρ defined in (3.2) to the space N0(F) has the
following property. Let the null measure be denoted by 0M and let π ∈ N0(F). Let
the largest distance of a point of π to 0F be denoted by |||π |||F, that is,

|||π |||F = sup
x∈π

d(0F,x).

If r > |||π |||F, then π has no point outside Br , and thus ρr(0M, π) = 0. Moreover,
by definition of the Prohorov distance,

ρr(0M, π) = inf
{
α > 0 : π(

F ∩ Bc
r

) ≤ α,F closed
} = π

(
Bc

r

)
.
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That is, the Prohorov distance of a point measure to the zero measure is its number
of points. Therefore, if r > |||π |||F, then ρr(0M, π) = 0. This yields

ρ(0M, π) =
∫ |||π |||F

0
e−r(ρr(0M, π) ∧ 1

)
dr ≤ |||π |||F.(3.3)

On the other hand, if r < |||π |||F then ρr(0M, π) ≥ 1 and 1 − e−x ≥ (x ∧ 1)/2, thus
we have

ρ(0M, π) ≥
∫ |||π |||F

0
e−r dr = (

1 − e−|||π |||F) ≥ 1

2

(|||π |||F ∧ 1
)
.(3.4)

These bounds imply that a subset A ⊂ N0(F) is separated from 0M if there exists
ε > 0 such that |||π |||F > ε for all π ∈ A.

We define the multiplication (t, ν) → t · ν for t ∈ (0,∞) and ν ∈ M0(F) by

t · ν(f ) =
∫

E
f (tx)ν(dx)

for all nonnegative measurable functions f . If ν = ∑
j≥1 δxi

is a point measure,
then t · ν = ∑

j≥1 δtxj
. Multiplication is continuous with respect to the product

topology. For π ∈ N0 and 0 < s < t ,

ρr(0M, sπ) = π
(
s−1Bc

r

) ≤ π
(
s−1Bc

r

) = ρr(0M, sπ).

Therefore, we can define a regularly varying point process on F\{0F} as a regularly
varying element in N0(F) in the sense of Definition 3.1.

THEOREM 3.3. Let μ0,μ ∈ M0(F) and {an} be a nondecreasing sequence

such that an → ∞ and nμ0(an·) M0(F)−→ μ as n → ∞. Let � be a Poisson point
measure on F \ {0F} with mean measure μ0. Then � ∈ RV(N0(F), {an},μ∗) where
μ∗ is a measure on N0(F) \ {0M} defined by

μ∗(B) =
∫

F
1{δx ∈ B}μ(dx),

for all Borel set B of N0(F) endowed with the distance ρ, and δx denotes
the Dirac mass at x ∈ E. If μ is α-homogeneous and � ∼ PPP(μ), then � ∈
RV(N0(F), n1/α,μ∗).

Note that the limit measure μ∗ is the image of μ under the injection of F into
N0(F) defined by x �→ δx . It is concentrated on the subset of point measures that
have exactly one point. The underlying heuristic is that given that � is large [in the
sense d(0,�) > u with u → ∞], then � can be approximated by a random point
measure with only one large point. This is yet another instance of the so-called
single large jump principle.
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PROOF. We need to prove the convergence

(3.5) nP(�/an ∈ ·) M0

(
N0(F)

)
−→ μ∗.

By Theorem A.1, the convergence (3.5) holds if

(3.6) lim
n→∞n

(
E
[
1 − e− ∫

F f (x/an)�(dx)]) =
∫
N0(F)

(
1 − e− ∫

F f (x)π(dx))μ∗(dπ),

for all continuous function f : F → [0,∞) vanishing on a neighborhood of 0F. By
definition of μ∗, the right-hand side of (3.6) is equal to∫

N0(F)

(
1 − e− ∫

F f (x)π(dx))μ∗(dπ) =
∫

F

(
1 − e−f (x))μ(dx).

On the other hand, since � is a Poisson point process, we have

n
(
E
[
1 − e− ∫

F f (x/an)�(dx)]) = n

(
1 − exp

[∫
F

(
e−f (x/an) − 1

)
μ0(dx)

])
= n

(
1 − exp

[
n−1

∫
F
−(

1 − e−f (x))μn(dx)

])
,

with μn = nμ0(an·). The function 1 − e−f is nonnegative, bounded and with sup-
port separated from zero; moreover, μn → μ in M0 by assumption, therefore,

lim
n→∞n

(
E
[
1 − e− ∫

F f (x/an)�(dx)])
= lim

n→∞n

(
1 − exp

[
n−1

∫
F

(
e−f (x) − 1

)
μn(dx)

])
=

∫
F

(
1 − e−f (x))μ(dx).

This proves the convergence (3.6) and the claimed regular variation of �. �

3.3. Regularly varying time series. We now introduce the notion of a regularly
varying time series. We consider a complete separable metric space (E,dE) with
an element 0E and we assume that the metrid dE has the homogeneity property
dE(0E, sx) = s dE(0E,x) for all s > 0 and x ∈ E. We then define the pseudo norm
‖x‖E = dE(0E,x).

DEFINITION 3.4. Let X = {Xj, j ∈ Z} be a time series with values in E. It is
said to be regularly varying if (Xs, . . . ,Xt ) is regularly varying in Et−s+1 for all
s ≤ t ∈ Z.

Owada and Samorodnitsky (2012) proved that if X is regularly varying, then
there exists a measure ν on EZ, called the tail measure of X, whose finite dimen-
sional projections are the exponent measures νs,t and having the properties of a tail
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measure as introduced in Definition 2.1. If X is stationary, then the tail measure is
shift invariant.

Consider the metric dF on F = EZ defined by

dF(x,y) = ∑
j∈Z

2−|j |(dE(xj ,yj ) ∧ 1
)
.(3.7)

It is proved in Segers, Zhao and Meinguet [(2017), Theorem 4.1] that the regular
variation of the time series X in the sense of Definition 3.4 is equivalent to the
regular variation of X seen as a random element with values in the complete sepa-
rable metric space (F,dF) in the sense of Definition 3.1, that is, X ∈ RV(F, {an}, ν)

with an such that limn→∞ nP(‖X0‖E > an) = 1. Therefore, we will hereafter in-
differently say that X is regularly varying in the sense of Definition 3.4 with tail
measure ν or X ∈ RV(EZ, {an}, ν).

The local tail process and spectral tail process associated to the tail measure ν
can be reinterpreted as limiting quantities for the regularly varying time series X.
Their existence also characterizes regular variation. The next result generalizes
Basrak and Segers [(2009), Theoreom 2.1] for a nonstationary time series.

LEMMA 3.5. Let ν be a tail measure on EZ and for h ∈ Z set ph = ν({‖x‖E >

1}). For h, such that ph > 0, let Y (h) and �(h) be the local tail and spectral
tail processes associated to ν as in Definition 2.6. The following statements are
equivalent:

(i) X ∈ RV(EZ, {an}, ν);
(ii) For all h ∈ Z, limn→∞ nP(‖Xh‖E > an) = ph and for all h such that

ph > 0, we have, as u → ∞,

L(X/u | ‖Xh‖E > u)
d−→ Y (h);(3.8)

(iii) For all h ∈ Z, limn→∞ nP(‖Xh‖E > an) = ph and for h such that ph > 0,

L(X/‖Xh‖E | ‖Xh‖E > u)
d−→ �(h).(3.9)

If X is stationary, then �(h) d= Bh� and ν is shift-invariant.

PROOF. We start by proving the implication (i) ⇒ (ii). By definition of regular
variation, for every h ∈ Z we have limn→∞ nP(‖Xh‖E > an) = ph and for every
set A depending only on a finite number of coordinates, we have

lim
n→∞nP(X ∈ A,‖Xh‖E > an) = ν

({A ∩ {‖xh‖E > 1}).
By definition of the local tail process, we obtain

lim
n→∞P(X ∈ A | ‖Xh‖E > an) = 1

ph

ν
({A ∩ {‖xh‖E > 1}) = P

(
Y (h) ∈ A

)
.
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To prove the converse implication (ii) ⇒ (i), we first note that the tail measure is
characterized by its finite dimensional projections. Therefore, it suffices to prove
that these projections are characterized by the tail process. Let A be a set which
depends only on the coordinates between s and t , s ≤ t ∈ Z, and bounded away
from zero in Et−s+1. This means that there exists ε > 0 such that x ∈ A im-
plies that

∑t
h=s 1{‖x‖E > ε} ≥ 1. Note also that if ph = 0, then for all ε > 0,

limn→∞ nP(‖Xh‖E > anε) = 0. Thus in the following computations we will omit
the indices h such that ph = 0. Decomposing according to the first exceedance
over εan, we obtain

νs,t (A) = lim
n→∞nP

(
a−1
n Xx,t ∈ A

)
= lim

n→∞
t∑

h=s

nP
(
a−1
n Xx,t ∈ A,‖Xh‖E > ε, max

s≤i<h
‖Xi‖E ≤ ε

)

= lim
n→∞

t∑
h=s
ph>0

nP
(
a−1
n ‖Xh‖E > anε

)

× P(a−1
n Xx,t ∈ A,‖Xh‖E > ε,maxs≤i<h ‖Xi‖E ≤ ε)

P(a−1
n ‖Xh‖E > anε)

=
t∑

h=s
ph>0

ε−αphP

(
εY

(h)
s,t ∈ A, max

s≤i≤h−1
‖Y i‖E ≤ 1

)
.

This proves that the finite dimensional distributions of the tail process character-
ize the tail measure. The proof of the equivalence (ii) ⇔ (iii) is straightforward
generalization of the corresponding result for Rd valued time series in Basrak and
Segers (2009) and is omitted. �

REMARK 3.6. In the case E = [0,∞), Lemma 3.5 implies that the tail mea-
sure of a time series X ∈ RV([0,∞)Z, {an}, ν) is the exponent measure of the
limiting max-stable process, see Remarks 2.2 and 2.5. More precisely, let X(i),
i ≥ 1, be i.i.d. copies of X. Then the regular variation of X implies that

a−1
n

n∨
i=1

X(i) fi.di.−→
∞∨
i=1

P(i),

where the suprema are taken componentwise and
∑∞

i=1 δP(i) is a Poisson point
process on [0,∞)Z with mean measure ν. This also shows that for a max-stable
process the tail measure and the exponent measure are the same.

In the sequel, given a shift-invariant tail measure, or equivalently given a spec-
tral tail process, we will build a time series



3908 C. DOMBRY, E. HASHORVA AND P. SOULIER

3.3.1. Construction of a stationary regularly varying time series. As seen in
Section 2, the tail measure of a stationary regularly varying time series with tail in-
dex α > 0 is a shift-invariant tail measure with homogeneous with index α. A nat-
ural question is whether any shift-invariant tail measure ν on F = EZ is the tail
measure of a stationary regularly varying time series X. The purpose of this sec-
tion is to prove that the answer is positive and provide one construction for such a
process X.

Our intuition is guided by the case E = [0,∞). Then, given a tail measure ν on
[0,∞)Z, the max-stable process X with exponent measure ν is regularly varying
with tail measure ν. Furthermore, X is stationary if and only if ν is shift-invariant.
This provides a straightforward solution in the nonnegative case. Before we gen-
eralize it, we recall the Poisson point process representation of the max-stable
process X: if ν admits representation (2.3) with Z a nonnegative time series, then

X
d= ∨

i≥1

�
−1/α
i Z(i),

where {�i}i≥1 are the points of a homogeneous Poisson process on [0,∞) and
independently, Z(i), i ≥ 1, are independent copies of Z and the supremum is taken
componentwise.

In the general framework where E is a complete separable metric space and ν is
a tail measure on F = EZ, we consider a Poisson point process � ∼ PPP(ν). Note
� can be constructed as

(3.10) � = {
�

−1/α
i Z(i), i ≥ 1

}
.

We interpret the point process � as a particle system that evolves in time, the
ith particle having position ϕ

(i)
h = �

−1/α
i Z

(i)
h at time h. The random process ϕ(i) =

�
−1/α
i Z(i) ∈ F = EZ is hence the trajectory of the ith particle. We construct a time

series X that records at each time h the position of the particle which is farthest
away from 0E, which we will call the largest point. More formally, we define

(3.11) Xh = ϕ
(ih)
h , ih = arg max

i≥1
‖ϕ(i)

h ‖E, h ∈ Z.

Provided P(‖Zh‖E > 0) > 0, there are almost surely infinitely many particles
at time h with positive norm and a unique particle with the largest norm. This
is because the random variables �i , i ≥ 1 have continuous distributions and
limi→∞ �

−1/α
i = 0 almost surely. Therefore, the arg max in (3.11) is unique and

the random variable ih is well defined.

THEOREM 3.7. Given a shift-invariant tail measure ν on EZ, the E-valued
time series X defined by (3.11) is stationary and regularly varying on EZ with
sequence an = n1/α and tail measure ν.
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PROOF. We will use the mapping Lemma 3.2. We consider F = EZ endowed
with the metric dF defined in (3.7).

Define the subset N �
0 (E) ⊂ N0(E) as the set of point measures that have exactly

one largest point and consider the map T : N �
0 (E) → E that associate to such a

point measure its largest point. By Lemma B.2, N �
0 (E) is open and T is continuous

on N �
0 (E). We extend T to N0(E) by setting the value 0E on N0(E) \N �

0 (E).
Given a point measure π ∈ N0(F) and h ∈ Z, we define Ph(π) as the restriction

to E \ {0E} of the image of π under the projection x �→ xh. More precisely, if
π = ∑∞

i=1 δx(i) with x(i) ∈ F, then Ph(π) is the point measure on E \ {0E} with

points x
(i)
h such that x

(i)
h �= 0E. For the particle system � = {ϕ(i), i ≥ 1},

Ph� = {
ϕ

(i)
h : i ≥ 1, ϕ

(i)
h �= 0E

}
records the position at time h ∈ Z of the nonzero particles. Using the representation
(3.10), we also have

Ph� = {
�

−1/α
i Z

(i)
h : i ≥ 1,Z

(i)
h �= 0E

}
.

Since � is Poisson, Ph� is a Poisson point process on E \ {0E} with intensity

μ(B) = ν
({x : xh ∈ B}) = ν

({x : x0 ∈ B}),
for all Borel measurable sets B ⊂ E \ {0E}. The marginal measure μ does not
depend on h ∈ Z because ν is shift-invariant. Moreover, Ph� ∈ N �

0 (E) almost

surely since for i �= j , P(�
−1/α
i ‖Z(i)

h ‖E = �
−1/α
j ‖Z(j)

h ‖E) = 0.
We now define the map T on M0(F) onto F by

T (π) = {
T (Phπ),h ∈ Z

}
.

The time series X defined in (3.11) can be reexpressed in terms of the map T :
X = T (�). The stationarity of Xh follows from the shift-invariance of ν since

BX = T (B�)
d= T (�) where B� = {Bϕ(i), i ≥ 1} d= �. The regular variation

of X will be obtained as a consequence of Lemma 3.2. By construction, T is 1-
homogeneous, T (0M) = 0F and we will check the following properties:

(a) the map T is continuous at 0M;
(b) the map T is almost surely continuous with respect to the distribution of �.

– To prove that T is continuous at 0M, recall that the space F is endowed with the
distance defined in (3.7) and note that for π = ∑∞

i=1 δx(i) ∈ N0(F),

dF
(
0F,T (π)

) = ∑
h∈Z

2−|h| max
i≥1

(‖x(i)
h ‖E ∧ 1

) ≤ 3 max
i≥1

dF
(
0F,x

(i)) = 3|||π |||F.

On the other hand, applying (3.4), we obtain that if ρ(0M, π) < 1/4, then

dF
(
0F,T (π)

) ≤ 12ρ(0M, π).

This proves (a).
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– We now prove (b). By Lemma B.3, it suffices to prove that the projections Th =
T ◦ Ph are continuous for all h. Since P(Ph� ∈ N �

0 (E)) = 1, this follows from

the continuity of T on N �
0 (E) which is established in Lemma B.2.

To conclude the proof, there only remains to prove that the tail measure of X
is ν. By Lemma 3.2 and Theorem 3.3, the tail measure of X is μ∗ ◦T −1, given for
A ∈ F \ {0F} by

μ∗ ◦ T −1(A) =
∫

F
1
{
T (δx) ∈ A

}
ν(dx).

For x = {xh, h ∈ Z} ∈ F, we have T (δx) = {T (δxh
), h ∈ Z} = x if x �= 0F and

T (0F) = T (0M) = 0F. Thus μ∗ ◦ T −1 = ν. �

The next two propositions state some interesting elementary properties of the
process X defined by (3.11). They are strongly related to max-stability. Let g :
F → F be the map defined by g(x) = {‖xh‖E, h ∈ Z}.

PROPOSITION 3.8. Consider the process X defined by (3.11). Then the non-
negative time series {‖Xh‖E, h ∈ Z} is max-stable with exponent measure ν ◦ g−1.

PROOF. The max stability follows from the representation ‖Xh‖E =
supi≥1 �

−1/α
i ‖Zi‖E and the fact that ν ◦ g−1 is the exponent measure is a con-

sequence of the mapping theorem Lemma 3.2, since for a max-stable process, the
tail measure and exponent measure are the same. �

In order to study further the stability property of the process X, we define the
binary operation � defined on E by

x1 � x2 =
{
x1 if ‖x1‖E ≥ ‖x2‖E,

x2 otherwise,
x1,x2 ∈ E.

Note that the binary operation � is associative, that is, (x1 � x2) � x3 = x1 �
(x2 � x3) for all x1,x2,x3 ∈ E. It is not commutative since x1 � x2 �= x2 � x1
if x1 and x2 are distinct elements with the same norm. However, elements with
distinct norms do commute. More generally, if x1, . . . ,xn are elements in E such
that exactly one element has maximal norm, x∗ say, then x1 � · · · � xn = x∗ does
not depend on the order of the xi’s.

PROPOSITION 3.9. The process X defined by (3.11) admits the Lepage repre-
sentation

X
d=

∞⊙
i=1

�
−1/α
i Z(i),(3.12)
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with {�i, i ≥ 1} and {Z(i), i ≥ 1} as in (3.10) and the operation � is taken compo-
nentwise. Furthermore, the process X is stable with respect to the operation � in
the sense that

n−1/α
n⊙

i=1

X(i) d= X,(3.13)

for every n ≥ 1, X(1), . . . ,X(n) being independent copies of X.

PROOF. The representation (3.12) is simply a rewriting of the definition of the
process X, that is,

∞⊙
i=1

�
−1/α
i Z(i) = T (�),

where � ∼ PPP(ν). Let n ≥ 1, �1, . . . ,�n be i.i.d. copies of � and X(1), . . . ,X(n)

be independent copies of X. Since T is 1-homogeneous, we have

n−1/α
n⊙

i=1

X(i) = T
(
n−1/α�1 ∪ · · · ∪ n−1/α�n

) d= T (�),

since n−1/α�1 ∪ · · · ∪ n−1/α�n ∼ PPP(ν). �

3.4. Extremal indices and m-dependent approximation. The purpose of this
section is to investigate more advanced properties of the process X defined by
(3.11) such as existence of extremal indices and m-dependent tail equivalent ap-
proximations. Anti-clustering is also discussed in the next section. For the sake of
generality, we do not restrict our study to the process (3.11) but rather consider a
large class of processes constructed on the Poisson particle system � ∼ PPP(ν).

Let us first introduce the notion of extremal index that provides an insight in
the dependence structure of a stationary regularly varying time series. For a time
series ξ ∈ RVα([0,∞)Z, (an), ν), we compare the growth rates of

Mn = max
1≤h≤n

ξh and M̃n = max
1≤h≤n

ξ̃h,

where the random variables ξ̃h are independent copies of ξ0. Regular variation and
independence imply that M̃n/an converges to a standard α-Fréchet distribution,
that is,

lim
n→∞P

(
a−1
n max

1≤h≤n
ξ̃h ≤ x

)
= e−x−α

,

for all x > 0. Under assumptions discussed below, one can prove that

lim
n→∞P

(
a−1
n max

1≤h≤n
ξh ≤ x

)
= e−θx−α

,
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for x > 0 where θ ∈ [0,1] is called the extremal index. If θ = 0, we have
a−1
n Mn

P→ 0: the maximum has a slower growth rate in the dependent case. When
θ > 0, the maximum grows at rate an as in the independent case. The extremal
index can also be defined as the limit, if it exists,

θ = lim
n→∞ log

P(max1≤h≤n ξh ≤ an)

P(ξ ≤ an)n
.(3.14)

In the abstract framework X ∈ RV(EZ, (an), ν), we consider, for any 1-homo-
geneous continuous H : E → [0,∞), the extremal index (if it exists) of the non-
negative time series {H(Xh), h ∈ Z}:

(3.15) θH = lim
n→∞ log

P(max1≤h≤n H(Xh) ≤ an)

P(H(X0) ≤ an)n
.

The homogeneity and continuity of H ensure that H(X) ∈ RV([0,∞)Z, {an}, ν ◦
H−1), provided ν ◦ H−1 is not the null measure.

There exists a vast literature on the extremal index and several conditions have
been introduced that ensure the existence of a positive extremal index. Building
on Chernick, Hsing and McCormick (1991) and using the tail measure through the
tail process introduced by Basrak and Segers (2009), we will only consider here
a condition based on m-dependent tail equivalent approximations. An E-valued
time series X is called m-dependent if the σ -fields σ(Xh, h ≤ h0) and σ(Xh, h ≥
h0 + m + 1) are independent for all h0 ∈ Z. In particular, a stationary 0-dependent
time series is a series of independent and identically distributed random variables.

DEFINITION 3.10. A process X is said to have a tail equivalent approximation
if there exists a sequence of processes {X(m),m ≥ 1} such that

lim
m→∞ lim sup

n→∞
nP

(
dE

(
Xh/an,X

(m)
h /an

)
> ε

) = 0.(3.16)

The relationship between m-dependent tail equivalent approximation and ex-
istence of an extremal index is made clear in the following theorem. Since the
extremal index is essentially defined for nonnegative time series, we focus on that
case.

LEMMA 3.11. Let X(m) ∈ RV([0,∞)Z, {an}, ν(m)) be stationary and m-
dependent. Then X(m) has a positive extremal index equal to the maximal index
θ

(m)
τ0 of ν(m) associated to the map τ0 defined on [0,∞)Z by τ(x) = x0. If more-

over X(m) is a tail equivalent approximation of a nonnegative time series X and if
the limit limm→∞ θ

(m)
τ0 exists, then it is the extremal index of X.

PROOF. Since an m-dependent sequence is α mixing with arbitrary fast rate,
the existence of the extremal index θ is proved by Basrak and Segers [(2009),
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Theorem 4.5] and is given by θ(m) = P(maxi≥1 Y
(m)
i ≤ 1). Thus θ = θτ0 by Re-

mark 2.21. The second statement is a consequence of Chernick, Hsing and McCor-
mick (1991), Proposition 1.4. �

Based on this result, we now prove the existence of the extremal index θH the
process X considered in (3.11). The process X is defined by means of the sta-
tionary N0(E)-valued sequence P = {Ph(�),h ∈ Z} and the map T introduced
in the proof of Theorem 3.7 but the specific form of T is irrelevant and only 1-
homogeneity and continuity are needed. Therefore, we will first prove that the
stationary sequence P admits an m-dependent tail equivalent approximation and
then obtain the extremal index of time series derived from P .

THEOREM 3.12. Let ν be a tail measure on EZ and � ∼ PPP(ν) be the
associated particle process. Consider the stationary N0(E)-valued process P =
{Ph(�),h ∈ Z}. If ν has a dissipative representation (2.16), then P has an m-
dependent tail-equivalent approximation.

PROOF. Note first that � can be expressed as

� = ∑
i≥1

δ
�

−1/α
i BTi Z̃

(i) ,(3.17)

where δ
�

−1/α
i

is a Poisson point process on (0,∞) with mean measure να , Z̃
(i)

are i.i.d. copies of the process Z̃ in (2.16), B is the shift operator and
∑∞

i=1 δTi

is a Poisson point process on Z with mean measure the counting measure on Z,
independent of everything else. Indeed, it suffices to check that the mean measure
of the point process on the right-hand side of (3.17) is ν. This follows from (2.16).

We now define the m-dependent approximation P (m) of P . For m ≥ 1, define

P
(m)
h = ∑

i≥1

δ
�

−1/α
i Z̃

(i)
h−Ti

1{|h − Ti | ≤ m}.

We must now check the tail equivalence condition (3.16). By stationarity, it suffices
to check it for h = 0. That is, we must prove that for all ε > 0,

lim
m→∞ lim sup

n→∞
nP

(
ρ
(
a−1
n P 0, a

−1
n P

(m)
0

)
> ε

) = 0.(3.18)

Set Rm = ∨∞
i=1 �

−1/α
i ‖Z̃(i)

−Ti
‖E1{|Ti | > m}. For r > a−1

n Rm, a−1
n P

(m)
0 and a−1

n P 0
have the same points on Bc

r . Therefore,

ρ
(
a−1
n P 0, a

−1
n P

(m)
0

) =
∫ anRm

0

(
ρr

(
a−1
n P 0, a

−1
n P

(m)
0

) ∧ 1
)
e−r dr ≤ anRm.

Thus (3.18) will be obtained as a consequence of

lim
m→∞ lim sup

n→∞
nP(Rm > anε) = 0.(3.19)
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To prove (3.19), note that for nonnegative random variables Zi , i ≥ 1, since �
−1/α
1

has a Fréchet distribution, we have

P

( ∞∨
i=1

�
−1/α
i Zi > x

)
≤

∞∑
i=1

P
(
�

−1/α
i Zi > x

)

≤
∞∑
i=1

P
(
�

−1/α
1 Zi > x

) =
∞∑
i=1

(
1 − e−x−α

E[Zα
i ]).

Therefore, if
∑∞

i=1 E[Zα
i ] < ∞, we obtain by dominated convergence

lim sup
x→∞

xα
P

( ∞∨
i=1

�
−1/α
i Zi > x

)
≤

∞∑
i=1

E
[
Zα

i

]
.

Applying this bound to Rm, we obtain by dominated convergence theorem

lim
m→∞ lim sup

n→∞
nP(Rm > anε) ≤ lim

m→∞
∞∑
i=1

E
[‖Z0‖α

E1{|Ti | > m}] = 0.

This proves (3.19). �

To a function H : N0(E) → [0,∞), we associate the function Ĥ : EZ →
[0,∞)Z defined by Ĥ (x) = {H(δxh

), h ∈ Z}, x ∈ EZ.

COROLLARY 3.13. Under the assumptions of Theorem 3.12, let H : N0(E) →
[0,∞) be a Lipschitz continuous 1-homogeneous function such that ν({Ĥ (x) >

1}) = 1. Then the time series XH = {H ◦Ph(�),h ∈ Z} is in RV([0,∞)Z, {n1/α},
νH) with νH = ν ◦ Ĥ−1, has an m-dependent tail equivalent approximation and
an extremal index equal to the maximal index θτ associated to ν and the map τ

defined on EZ by τ(x) = H(δx0).

PROOF. We will apply Lemma 3.11 and Theorem 3.12. Let P (m) be the m-
dependent approximation of P defined in the proof of Theorem 3.12. Then the time
series X(m) defined by X

(m)
h = H ◦ Ph(�), h ∈ Z is m dependent and regularly

varying by Lemma 3.2. By Lemma 3.11, its extremal index θ(m) is given by

θ(m) = E[max|h|≤m H̄α(Z̃h)]
E[∑|h|≤m H̄α(Z̃h)] .

The tail equivalence condition (3.16) holds by the Lipschitz property of H . Thus
the sequence {X(m)} is a tail equivalent approximation of X and we can apply
Lemma 3.11 which proves (by application of the dominated convergence theorem)
that the extremal index of X is

θ = lim
m→∞ θ(m) = E[maxh∈Z H̄ α(Z̃h)]

E[∑h∈Z H̄ α(Z̃h)] . �
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3.5. The anti-clustering condition. In the literature of time series and extremal
index, the anti-clustering condition introduced by Davis and Hsing (1995) plays
quite an important role; see, for example, Janssen et al. (2018), Mikosch and Win-
tenberger (2016), Basrak and Tafro (2016), Basrak, Krizmanić and Segers (2012).
Let us first define the notion of anti-clustering for a stationary regularly varying
sequence.

DEFINITION 3.14. A stationary time series X ∈ RV(EZ, (an), ν) satisfies the
anti-clustering condition if there exists an intermediate sequence rn → ∞, rn/n →
0, such that

(3.20) lim
m→∞ lim sup

n→∞
P

(
max

m≤|h|≤rn
dE(Xt /an,0E) > u

∣∣ dE(X0/an,0E) > u
)

= 0.

When E = R, we retrieve the classical anti-clustering condition of Davis and
Hsing (1995), Condition 2.8. Although we have not used anti-clustering in our
analysis of extremal index (Corollary 3.13), we show below that, for the class of
processes considered, anti-clustering is equivalent to the existence of a dissipative
representation for ν. This suggests that assuming the existence of a dissipative
representation for ν in Corollary 3.13 is not a too strong condition.

THEOREM 3.15. The following statements are equivalent:

(i) ν has a dissipative representation (2.16);
(ii) the process (Ph(�))h∈Z satisfies the anti-clustering condition in (N0(E))Z

in [0,∞)Z;
(iii) for all H as in Corollary 3.13, XH satisfies the anti-clustering condition

in [0,∞)Z;
(iv) the max-stable process {|||Ph(�)|||E, h ∈ Z} satisfies the anti-clustering

condition [0,∞)Z.

PROOF. Since the process {|||Ph(�)|||E, h ∈ Z} is max-stable, the equivalence
between (i) and (iv) is proved in Debicki and Hashorva (2016), Theorem 2.1.
The implication (ii) ⇒ (iii) is a consequence of the Lipshitz property of H ;
the implication (iii) ⇒ (iv) is trivial since the map ||| · |||E satisfies the condi-
tion of Corollary 3.13. Conversely, (iv) implies (ii) since 1

2(|||Ph(�)|||E ∧ 1) ≤
dN0(E)(a

−1
n Ph(�),0M) ≤ |||Ph(�)|||E by (3.3) and (3.4). �

APPENDIX A: CONVERGENCE IN M0(N0(F))

For μ ∈ M0(N0(F)), we denote by Bμ the set of Borel sets B ⊂N0(F) that are
bounded away from zero and such that μ(π(∂B) > 0) = 0, with ∂B the boundary
of B .
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THEOREM A.1. Let μ,μ1,μ2, . . . ∈ M0(N0(F)). The following statements
are equivalent:

(i) μn
M0(N0(F))−→ μ as n → ∞.

(ii) μn
fidi−→ μ as n → ∞, in the sense that

μn

(
π(Ai) = mi,1 ≤ i ≤ k

) → μ
(
π(Ai) = mi,1 ≤ i ≤ k

)
as n → ∞

for all k ≥ 1, (m1, . . . ,mk) ∈N
k \ {0} and A1, . . . ,Ak ∈ Bμ.

(iii) for all bounded continuous f : F → [0,∞) vanishing on a neighborhood
of 0F,∫

N0(F)

(
1 − e−π(f ))μn(dπ) −→

∫
N0(F)

(
1 − e−π(f ))μ(dπ) as n → ∞

with π(f ) = ∫
F f (x)π(dx).

This theorem is similar to the characterization of weak convergence of prob-
ability measure on N0(F) in terms of their finite dimensional distributions and
Laplace functional by Zhao (2016), Theorem 3.10 and Corollary 3.11. We con-
sider here M0-convergence of measures with possibly infinite total mass, so that
we exclude in (ii) the event {π(Ai) = 0,1 ≤ i ≤ k} that may have infinite mass and
we use in (iii) a modified Laplace transform with 1 − e−π(f ) instead of e−π(f ) so
as to ensure that the integrals are finite.

PROOF. We begin with some notation and preliminaries that will be used
throughout the proofs below. We denote by Bc

F,r (resp., Bc
N0(F),r ) the complement

of the ball with center 0 and radius r > 0 in F [resp., N0(F)]. The bounds (3.3) and
(3.4), imply that for r ≤ 1,

(A.1) Bc
N0(F),r ⊂ {

π
(
Bc

F,r

)
> 0

} ⊂ Bc
N0(F),r/4.

Let μ ∈ M(N0(F)) be fixed and consider a sequence ri ↓ 0 such that
μ(∂Bc

N0(F),ri
) = μ(π(∂Bc

F,ri
) > 0) = 0 for all i ≥ 1. By Hult and Lindskog

[(2006), Theorem 2.2], the M0-convergence μn
M0−→ μ is equivalent to the weak

convergence μ
(ri)
n

w−→ μ(ri) for all i ≥ 1, where μ
(r)
n (resp. μ(r)) denotes the re-

striction of μn (resp., μ) to Bc
N0(F),r . By the inclusion (A.1), this is also equivalent

to the weak convergence μ̃
(ri )
n

w−→ μ̃(ri ) for all i ≥ 1, where μ̃
(r)
n (resp., μ̃(r)) de-

notes the restriction of μn (resp., μ) to {π(Bc
F,ri

) > 0}. The restriction μ̃
(ri )
n will be

useful because they behave well with respect to finite dimensional distributions.
The weak convergence μ

(ri)
n

w−→ μ(ri) (or μ̃
(ri )
n

w−→ μ̃(ri )) of finite measures
can be characterized as in Zhao [(2016), Theorem 3.10 and Corollary 3.11] by the
weak convergence of finite dimensional distributions or pointwise convergence of
Laplace functionals. Note that the result and proof in Zhao (2016) are given for
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weak convergence of probability measures only, but they are easily extended to
finite measures since weak convergence is then equivalent to convergence of the
total mass together with weak convergence of the normalized measures.

Proof of (i) ⇒ (ii). From the preliminary discussion, the M0-convergence

μn
M0−→ μ implies, for all i ≥ 1, the convergence of μn(B

c
N0(F),ri

) → μ(Bc
N0(F),ri

)

and the weak convergence of the finite dimensional distributions μ
(ri)
n

fidi−→ μ(ri).
This entails the convergence of finite dimensional distributions in the sense of ii)

because any set A ∈ Bμ is bounded away from zero and hence in Bc
N0(F),ri

for ri
small enough,

Proof of (ii) ⇒ (iii). It is enough to prove that (ii) implies weak convergence

of the finite dimensional distributions μ̃
(ri )
n

fidi−→ μ̃(ri ) for all ri ≥ 1. Let k ≥ 1,
A1, . . . ,Ak ∈ Bμ and m1, . . . ,mk ≥ 0. Setting A0 = Bc

F,ri
∈ Bμ, we have

(A.2) μ̃(ri )
n

(
π(Aj ) = mj,1 ≤ j ≤ k

) = μ̃n

(
π(A0) > 0, π(Aj ) = mj,1 ≤ j ≤ k

)
and (ii) implies convergence to

(A.3) μ̃(ri )
(
π(Aj ) = mj,1 ≤ j ≤ k

) = μ̃
(
π(A0) > 0, π(Aj ) = mj,1 ≤ j ≤ k

)
.

This proves μ̃
(ri )
n

fidi−→ μ̃(ri ) and μn
M0−→ μ.

Proof of (iii) ⇒ (i). We prove that (iii) implies that, for all i ≥ 1, the measures
μ̃

(ri )
n , μ̃(ri ) have finite total mass and converge weakly μ̃

(ri )
n

w−→ μ̃(ri ) as n → ∞.
We first prove convergence of the total mass

(A.4) μ̃(ri )
n

(
N0(F)

) = μn

(
π
(
Bc

F,ri

)
> 0

) → μ̃(ri )
(
N0(F)

) = μ
(
π
(
Bc

F,ri

)
> 0

)
.

Consider approximating functions h+
l (x) ↓ 1{x ∈ clBc

F,ri
} and h−

l (x) ↑ 1{x ∈
intBc

F,ri
} that are continuous with values in [0,1] and vanish on a neighborhood

of 0F. The notation cl and int stands for the closure and interior of the set, respec-
tively. ∫

N0(F)

(
1 − e−tπ(h−

l ))μn(dπ) ≤
∫
N0(F)

(
1 − e−tπ(Bc

F,ri
))

μn(dπ)

≤
∫
N0(F)

(
1 − e−tπ(h+

l ))μn(dπ).

The left- and right-hand sides in the previous inequalities converge, and hence
are bounded uniformly in n ≥ 1. Furthermore, since π(Bc

F,ri
) takes values in

{0,1,2, . . .}, the quantity∫
N0(F)

(
1 − e−tπ(Bc

F,ri
))

μn(dπ) = ∑
m≥1

(
1 − e−tm)

μn

(
π
(
Bc

F,ri

) = m
)

satisfies(
1 − e−t )μn

(
π
(
Bc

F,ri

)
> 0

) ≤
∫
N0(F)

(
1 − e−tπ(Bc

F,ri
))

μn(dπ) ≤ μn

(
π
(
Bc

F,ri

)
> 0

)
.
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We deduce supn≥1 μn(π(Bc
F,ri

) > 0) < ∞ and this holds for all i ≥ 1. Then, letting
n → ∞ in∫

N0(F)

(
1 − e−tπ(h−

l ))μn(dπ) ≤ μn

(
π
(
Bc

F,ri

)
> 0

)
≤ (

1 − e−t )−1
∫
N0(F)

(
1 − e−tπ(h+

l ))μn(dπ),

we get

lim inf
n→∞ μn

(
π
(
Bc

F,ri

)
> 0

) ≥
∫
N0(F)

(
1 − e−tπ(h−

l ))μ(dπ),

lim sup
n→∞

μn

(
π
(
Bc

F,ri

)
> 0

) ≤ (
1 − e−t )−1

∫
N0(F)

(
1 − e−tπ(h+

l ))μ(dπ).

Letting l → ∞ and t → ∞, monotone convergence entails that the right-hand side
in the last two inequalities converge to μ(π(clBc

F,ri
) > 0) and μ(π(intBc

F,ri
) >

0), respectively. These two quantities are equal because we have chose ri such
that Bc

F,ri
∈ Bμ, that is, μ(π(∂Bc

F,ri
) > 0) = 0. Consequently, μn(π(Bc

F,ri
) > 0) →

μ(π(Bc
F,ri

) > 0) as n → ∞, proving (A.4).

To prove that μ̃
(ri )
n

w−→ μ̃(ri ) using the Laplace functional, it is enough to prove

lim
n→∞

∫
N0(F)

e−π(f )μ̃(ri )
n (dπ) =

∫
N0(F)

e−π(f )μ̃(ri)(dπ)

for all bounded continuous f : F → [0,∞) vanishing on a neighborhood of 0F. In
view of equation (A.4), this is equivalent to

lim
n→∞

∫
N0(F)

(
1 − e−π(f ))μ̃(ri )

n (dπ) =
∫
N0(F)

(
1 − e−π(f ))μ̃(ri)(dπ).

The proof is similar to that of Equation (A.4) where the measures μn(dπ)

and μ(dπ) are replaced throughout the proof by (1 − e−π(f ))μn(dπ) and (1 −
e−π(f ))μ(dπ), respectively. Details are left to the reader for the sake of brevity. It
is useful to note that(

1 − e−tπ(h±
l ))(1 − e−π(f )) = (

1 − e−π(th±
l )) + (

1 − e−π(f )) − (
1 − e−π(f +th±

l ))
so that (iii) allows to deal with the limit of the integrals as n → ∞. �

APPENDIX B: LEMMAS FOR THE PROOF OF THEOREM 3.7

The Prohorov distance �E between two bounded measures μ, ν on a Borel space
E is defined by Daley and Vere-Jones [(2003), Section A2.5]

�E(μ, ν) = inf
{
ε ≥ 0 : μ(A) ≤ ν

(
Aε) + ε,

ν(A) ≤ μ
(
Aε) + ε for all closed sets A

}(B.1)
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LEMMA B.1. Let μ, ν be two point measures on a metric space (E, d). Then
�E(μ, ν) ≥ |μ(E) − ν(E)|. If x,y ∈ E, then �E(δx, δy) ≤ d(x,y) ∧ 1.

PROOF. Assume for instance that μ(E) = n and ν(E) = k with k < n. Let
x1, . . . ,xn be the points of μ and let A = {x1, . . . ,xn}. Then A is closed, μ(A) =
n and for all ε > 0, ν(Aε) ≤ k. This proves that �E(μ, ν) ≥ n − k. The second
statement is in Dudley (2002), Section 11.3, page 394. �

Recall from Section 3.3.1 the definition of the set N �
0 (E) and the map T and the

definition of the metric ρ in (3.2).

LEMMA B.2. The subset N �
0 (E) is open in N0(E) and the map T : N0(E) → E

is continuous on N �
0 (E).

PROOF. Let π ∈ N �
0 (E) and m = |||π |||E. Then there exists η > 0 such that π

has exactly one point in B(T (π), η). A point measure π ′ ∈ N0(E) has either zero
point or 1 or at least two points in Bc

m−η. By Lemma B.1, in the first and last cases,
ρr(π,π ′) ∧ 1 = 1, hence

ρ
(
π,π ′) ≥

∫ ∞
m−η

e−r dr ≥ e−m.

Thus, if ρ(π,π ′) < e−m, then π ′ has exactly one point in Bc
m−η, which is there-

fore its single largest point and π ′ ∈ N �
0 (E). This proves that N �

0 (E) is open. By
Lemma B.1 again, for r > m − η, we have ρr(π,π ′) ∧ 1 = dE(T (π), T (π ′)) ∧ 1
thus

ρ
(
π,π ′) ≥

∫ ∞
m−η

e−r(dE
(
T (π), T

(
π ′)) ∧ 1

)
dr ≥ (

dE
(
T (π), T

(
π ′)) ∧ 1

)
e−m.

This proves that T is continuous at π . �

LEMMA B.3. Let (S,dS) be a metric space and g : S → F = EZ. Then S is
continuous with respect to the distance dF defined in (3.7) if and only if gj : S → E
defined by gj (s) = (g(s))j for s ∈ S is continuous for all j ∈ Z.

PROOF. The direct implication is trivial. We prove the converse. Assume that
gj is continuous for all j . Fix s0 ∈ S, ε ∈ (0,1) and choose K such that 2−K ≤ ε/4.
By assumption, there exists η (which depends on ε and K) such that for all j ∈
{−K, . . . ,K} and s ∈ S such dS(s0, s) ≤ η, dE(gj (s0), gj (s)) ≤ ε/2. This yields

dF
(
g(s0), g(s)

) = ∑
j∈Z

2−|j |dE
(
gj (s0), gj (s)

) ∧ 1

≤ ε

6

∑
|j |≤K

2−|j | + ∑
|j |>K

2−|j | ≤ ε.
�
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