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STABILITY CONDITIONS FOR A DISCRETE-TIME
DECENTRALISED MEDIUM ACCESS ALGORITHM

BY SEVA SHNEER1 AND ALEXANDER STOLYAR

Heriot-Watt University and University of Illinois at Urbana-Champaign

We consider a stochastic queueing system modelling the behaviour of a
wireless network with nodes employing a discrete-time version of the stan-
dard decentralised medium access algorithm. The system is unsaturated—
each node receives an exogenous flow of packets at the rate of λ packets
per time slot. Each packet takes one slot to transmit, but neighbouring nodes
cannot transmit simultaneously. The algorithm we study is standard in the
following sense: a node with an empty queue does not compete for medium
access; the access procedure by a node does not depend on its queue length
as long as it is nonzero. Two system topologies are considered, with nodes ar-
ranged in a circle and in a line. We prove that, for either topology, the system
is stochastically stable under the condition λ < 2/5. This result is intuitive for
the circle topology as the throughput each node receives in the saturated sys-
tem (with infinite queues) is equal to the so-called parking constant, which is
larger than 2/5. (This fact, however, does not help us to prove the result.) The
result is not intuitive for the line topology as in the saturated system some
nodes receive a throughput lower than 2/5.

1. Introduction. In this paper, we consider a stochastic queueing model, pri-
marily motivated by MAC (Medium Access Control) algorithms in wireless net-
works.

Wireless devices are an indispensable part of everyday life for most of us. Wire-
less networks are used to connect devices at home and at businesses, to connect
cell phones, sensors and even satellites. The sizes of wireless networks are grow-
ing at astonishing speeds, and with the development of the Internet of Things will
only continue to grow.

Wireless transmissions inevitably interfere with each other and if many devices
transmit simultaneously, some transmitted packets may be lost. There is therefore
a need for a MAC algorithm that controls which devices are going to transmit at
a given time. In wireless networks, there is a natural notion of neighbouring de-
vices, meaning that the transmissions generated by these devices interfere with
each other. The model in this paper corresponds to those MAC protocols that pre-
vent neighbours from transmitting simultaneously, thus avoiding collisions and
loss of packets.
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In this paper, we focus on single-hop wireless networks, where each generated
packet only needs to be transmitted once, by its source node (where the packet was
generated). We are interested in stability of a network, that is, the ability of the
nodes in the network to transmit all generated packets, without the packet queues
building up to infinity. If an access algorithm guarantees stability for all packet
arrival processes for which stability is possible in principle, such an algorithm is
called maximally stable (or throughput-optimal).

The celebrated MaxWeight (or, BackPressure) algorithms have been introduced
in [22] and have been shown to be maximally stable. They have later been extended
and generalised in a number of directions. Maximum stability is also known to be
achieved in the single-hop case by a class of α-fair algorithms (see [13, 14, 16]
for introduction of the fair-allocation concepts and [2, 9] for stability proofs). All
these algorithms are centralised, in that they need a central controller to know the
queue lengths at all nodes and then to solve an optimisation problem to make every
access control decision. Having such a central entity (and its ability to solve an op-
timisation problem for a vast number of devices) is not feasible in large networks.
There is, therefore, a need for decentralised algorithms where each node regulates
its own access to the medium.

A well-known and widely used (most notably in IEEE 802.11) example of a
decentralised MAC algorithm preventing collisions is the CSMA (Carrier Sense
Multiple Access) protocol, where each node has a random back-off time before at-
tempting to access the channel and if, on expiration of the back-off time, it does not
sense any other node transmitting, the node will start its own transmission. Let us
call this type of multiple access a standard CSMA, where “standard” refers to the
following properties: (a) each node does not know (and does not try to explicitly
learn) its neighbours and their states, (b) the access procedure is the same regard-
less of the node queue length, as long as it is nonzero, and (c) the node does not
access the channel when its queue length is zero (i.e., it has no packets to transmit).

Most results on networks governed by the standard CSMA protocol assume that
the system is saturated, that is, each node is assumed to always have a packet to
transmit (or, has an infinite queue), and the question of interest is the throughput
of the system, or of an individual node. The typical assumption is that service
times, as well as back-off times, are exponentially distributed, and the state of the
system is fully described by the activity process tracking which nodes are currently
transmitting. This Markov process turns out to be reversible and it has a product-
form stationary distribution, providing values of throughputs of individual nodes
(see [3, 10, 24]).

In practice, nodes generate packets at random times, and thus do not always
compete for the medium access. This calls for the analysis of unsaturated sys-
tems, where each node has its own process of exogenous packet arrivals. Such
unsaturated systems may not be approximated by saturated ones, or even bounded
by them. For example, if one exchanges an unsaturated node for a saturated one,
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this will be detrimental to the performance of the node’s neighbours but benefi-
cial for the neighbours’ neighbours (with whom the original node does not inter-
fere). In other words, the random process describing such a system does not have
the monotonicity property. Informally speaking, monotonicity means that two ver-
sions of the process, with the initial state of one dominating that of the other,
can be coupled so that this dominance relation persists at all times. The absence
of monotonicity substantially complicates the process analysis, including estab-
lishing stability conditions. It is also impractical in applications to keep a device
accessing the network if it does not have packets to transmit. [Hence property (c)
of a standard CSMA is important.] The analysis of general unsaturated networks
is extremely difficult, because, primarily due to lack of monotonicity, the queue
dynamics and transmission schedule of any node depends on the states of all other
nodes, in a very complicated manner.

Very few results are known for unsaturated systems [6, 23]. In [23], the authors
consider a continuous-time model and study the question of stability. They demon-
strate with an example that the condition that the packet arrival rate at each node
is smaller than the throughput of the node in the saturated system is not sufficient
for stability. This means, in particular, that the standard CSMA does not achieve
maximum stability.

The absence of maximum stability of the standard CSMA protocol led to the
development, starting with [12], of queue-based algorithms where the distribution
of the back-off duration of a node depends on the state of its queue. In particu-
lar, an algorithm of this type was proposed in [18] for a continuous-time model,
which guarantees maximum stability for single-hop systems on any graph. How-
ever, despite providing maximum stability, queue-based algorithms are difficult to
implement and are known to lead to high delays. [Hence, property (b) of a standard
CSMA is important.]

In this paper, our goal is to characterise the performance of a standard CSMA
algorithm. We would like to stress again that standard CSMA algorithms are im-
portant, because they are decentralised (and, therefore, easy to implement), be-
cause implementing a queue-based scheme leads to long delays, and because it is
impractical in the unsaturated situation to keep all nodes active at all times. We
will focus on two simple single-hop systems, consisting of N nodes arranged in
a circle or in a line. The systems operate in discrete time. To model a standard
CSMA in discrete, slotted time, we will assume that at the beginning of each time
slot the nodes are given access priorities, forming a permutation of the numbers
1, . . . ,N , picked independently (across time slots), uniformly at random from all
possible permutations. The node with the highest priority transmits in this slot if its
queue is nonempty. The node with the second-highest priority transmits in the slot
if its queue is nonempty and if none of its neighbour nodes are transmitting. And
so on, until all nodes are checked in their priority order. All transmission times are
equal to 1, so at the beginning of the next time slot no transmission is ongoing,
and the medium access process is repeated independently. Note that this algorithm
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is easy to implement in a decentralised fashion, with an arbitrarily small loss in
throughput (see below for a precise algorithm).

Our main result concerns the homogeneous system, where the arrival rates into
each node are equal. Nonhomogeneous systems are notoriously difficult, and even
a simpler random access algorithm, ALOHA, does not allow for an exact descrip-
tion of the stability region (see, e.g., [1, 4, 5, 21]).

The maximum stability for the homogeneous standard CSMA system on a circle
or on a line is given by λ < �N/2�/N , where λ is the packet arrival rate at each
node. (If N is even, the condition is simply λ < 1/2.) This is not achievable by the
CSMA protocol on a circle. Indeed, if all nodes have non-empty queues, then the
process of transmission scheduling by the nodes in a time slot is equivalent to the
discrete parking problem (see, e.g., [11, 15]), and there are known expressions for
the expected total number of transmissions per time slot (see [19] for expressions
adopted to a CSMA setting). On a circle, if all nodes have nonempty queues then,
by symmetry, the expected number of transmissions per slot is the same for all
nodes and is equal to the so-called parking constant (sometimes referred to as
jamming density), which we denote by cp = cp(N). Therefore, if λ exceeds cp ,
the system is unstable. The parking constant cp for the circle of N nodes is equal
to 1/2 if N = 4, 2/5 if N = 5, and it decreases over even values of N and increases
over odd values of N to the same limit 1/2(1 − e−2) ≈ 0.4323.

On the other hand, each nonempty node certainly transmits if its priority is
higher than the priorities of both of its neighbours, which happens with probability
1/3. Therefore, λ < 1/3 trivially leads to stability. One of the goals of our work is
to study how close the stability region of the standard CSMA algorithm on a circle
is to λ < cp (the best achievable for this algorithm).

The main result of the paper for the circle topology is that, under the standard
CSMA, λ < 2/5 leads to stability for a system with N ≥ 4. We conjecture that
λ < cp is sufficient for stability, but this is not proved.

It appears to be much more difficult to conjecture the stability condition for the
system on a line. If all nodes have nonempty queues, then the process of transmis-
sion scheduling in a slot is again equivalent to the discrete parking problem, but in
this situation the expected number of transmissions is different for different nodes.
For instance, the nodes on the edges will have transmission probabilities larger
than 1/2 and tending to 1 − e−1 ≈ 0.6321 as N → ∞, but the nodes right next
to them will have much lower transmission probabilities tending to e−1 ≈ 0.3679
(see [19]).

Our main result for the line topology is that, just like for the circle system,
λ < 2/5 leads to stability for a system with N ≥ 4. This result is not intuitive at
all, given that in the saturated system the transmission probability of the second
node from the edge is strictly less than 2/5 (see above). The result also stresses
once again that the saturated system does not provide a bound for the unsaturated
one, that it is unreasonable to make all nodes (including those which are empty)
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compete for the transmission at all times, and that it is important to study unsatu-
rated systems.

Our main results are proved using the fluid limit technique. The main difficulty
in the proofs is in dealing with situations when some of the queues in the fluid
limit are at zero. In this case, one has to study a rather complicated structure of
the occupancy and activation processes of a neighbourhood of nonzero queues.
We believe that the technique we developed may be used to study the behaviour
of CSMA and similar decentralised algorithms on more complicated topologies as
well.

We also provide a relatively short direct proof of stability for both topologies
under the condition λ < 3/8. This is weaker than our main results but we find
that the proof provides a good insight into the behaviour of the model. The lack
of efficiency of the random-access algorithm compared to the centralised one on
a circle or a line comes from the fact that at each time slot a number of pairs of
neighbouring nodes will not transmit. Therefore, we consider the Lyapunov func-
tion

∑
i (Qi + Qi+1)

2, where Qi is the queue length at node i. Another advantage
of this approach is that it provides some sufficient conditions for stability of inho-
mogeneous systems (with different arrival rates at the nodes).

The paper is structured as follows. We introduce the model and notation in Sec-
tion 2. In Section 3, we formulate and prove some auxiliary results and formulate
our main results. Section 4 is devoted to the proof of the main results. We provide
some conjectures and discuss our further research plans in Section 5.

2. Model and notation. Assume that we have N nodes (transmitters) on a
circle or on a line, and for any node we are going to say that the nodes to its
immediate left and right are its neighbours. More formally, if we consider the
circle topology, we will denote the neighbourhood of node i as

Nc(i) =

⎧⎪⎪⎨
⎪⎪⎩

{i − 1, i + 1} for i = 2, . . . ,N − 1,

{N,2} for i = 1,

{N − 1,1} for i = N,

and if we consider the line topology, we will denote the neighbourhood of node i

as

Nl(i) =

⎧⎪⎪⎨
⎪⎪⎩

{i − 1, i + 1} for i = 2, . . . ,N − 1,

{2} for i = 1,

{N − 1} for i = N.

Assume that each node has unlimited buffer space to queue packets waiting
for transmission. Time is slotted. At the beginning of each time slot, first new
transmissions are initiated, and then the arrivals of new packets (messages) occur.
Every message transmission time is equal to 1, so any transmission is completed
before the beginning of the next time slot.
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Denote by Qi(n) the queue length at node i at time n. Denote by ξi(n) the
number of new arrivals into node i at time n. We assume that ξi(n) are all i.i.d.
with Eξi(n) = λ.

We will assume that neighbours cannot transmit in the same time slot. The com-
petition for medium access is as follows. At the beginning of each time slot n,
an allocation of priorities {U1(n), . . . ,UN(n)} for nodes is chosen uniformly at
random from all possible permutations of the set {1, . . . ,N}. The node with the
highest priority 1 will transmit if its queue is not empty. The further procedure is
defined by induction: the node with the next-highest priority will transmit if its
queue is not empty and if no node in its neighbourhood is already transmitting. At
each time slot, this procedure is applied until the set of all nodes is exhausted, and
this procedure is repeated independently at each time slot. Upon completion of its
transmission, a packet leaves the system.

Denote by Di(n) the number of packets transmitted by node i in time slot n.
Note that Di(n) can only take values 0 and 1. Then the evolution of the length of
the queue of node i is as follows:

Qi(n + 1) = Qi(n) − Di(n) + ξi(n).

REMARK 1. Note that the discrete time medium access procedure described
above may be implemented in a decentralised way with a negligible loss in effi-
ciency. Indeed, assume that at the beginning of each time slot n, every node with a
nonempty queue [every node i such that Qi(n) > 0] generates a random variable
Wi(n) uniformly in (0, ε). We assume that the random variables {Wi(n)} are inde-
pendent in i and n. These random variables serve as back-off times for transmitters:
node i will wait exactly Wi(n) and at that time, if no node in its neighbourhood
is transmitting, will start its transmission. If at least one of the nodes in the neigh-
bourhood of node i is transmitting at time n + Wi(n), then node i stays silent for
the duration of the time slot. As we can see, only an ε proportion of each time slot
needs to be devoted to this competition, and ε may be made arbitrarily small.

Some basic notation we use throughout the paper: the norm of a vector q =
(q1, . . . , qN) is ‖q‖ .= ∑

i |qi |; �x� is the largest integer not greater than x; I(A)

denotes the indicator of an event A.

3. Results. In this section, we present the results of our paper. We start (in
Section 3.1) by formulating and proving some properties of expected numbers of
transmissions on intervals which are used in our proofs and which are also in-
teresting in their own right. We then proceed (in Section 3.2) to prove maximum
stability achievable by our algorithm (standard CSMA), for a system where nodes
change their locations at random at the beginning of every time slot. In Section 3.3,
we turn our attention back to the original system and prove stability for both circle
and line topologies in the case λ < 3/8 using a one-step Lyapunov function. Fi-
nally, in Section 3.4 we present our main results stating that the original system for
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both circle and line topologies is stable provided λ < 2/5. The proof of the main
results is based on fluid limits and is given in Section 4.

3.1. Some properties of parking constants for a segment. Denote by Lk the ex-
pected number of departures from a network consisting of k nodes on a line which
are assumed to be nonempty. Note again that the transmission initiation process
on a set of nonempty nodes is equivalent to the discrete-time parking problem,
therefore, Lk may be thought of as the expected number of cars parked on the
segment, and Lk/k—as the parking constant, or jamming density. We note here
that the original papers (see, e.g., [11, 15]) on the parking problem are devoted to
the expected amount of sites occupied by the parked cars (and each car needs two
sites), which is closely related to but slightly different from the number of expected
transmissions in our case. Formulas adapted to the CSMA situation are provided
in [19] and we are going to refer to this paper hereinafter.

LEMMA 2. Ln/n is nonincreasing for n ≥ 3.

PROOF. We need to show that Ln

n
≤ Ln−1

n−1 for all n ≥ 3, which is equivalent
to n(Ln − Ln−1) − Ln ≤ 0 for n ≥ 4. Note that, using the expression for Ln from
[19], Corollary 2,

Ln − Ln−1 =
n∑

k=1

(−1)k+1 2k−1

k! (n − k + 1) −
n−1∑
k=1

(−1)k+1 2k−1

k! (n − k)

=
n−1∑
k=1

(−1)k+1 2k−1

k! + (−1)n+1 2n−1

n! =
n∑

k=1

(−1)k+1 2k−1

k! ,

and hence

n(Ln − Ln−1) − Ln = n

n∑
k=1

(−1)k+1 2k−1

k! −
n∑

k=1

(−1)k+1 2k−1

k! (n − k + 1)

=
n∑

k=1

(−1)k+1 2k−1

k! (k − 1) =
n∑

k=2

(−1)k+1ck,

where we denoted ck = 2k−1

k! (k −1). It may be checked directly that the sum on the
RHS of the last expression is negative for n = 4 and n = 5. Also, for any n = 2m,
the sum is smaller than the sum for n = 2m − 1, so it is sufficient to consider odd
values of n. And the sums for odd values of n ≥ 5 are negative as c2m+1 ≤ c2m for
all m ≥ 3. �

LEMMA 3. Denote by Lk:m the expected number of departures from k first
nodes in a network consisting of m nonempty nodes. Then

(1) Lk:m ≤ Lk

for any k ≤ m.
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The statement of the lemma may be described in words as “by adding interfer-
ence, we reduce the expected number of departures”.

PROOF OF LEMMA 3. We use induction. The statement is trivial for m = 1.
Assume that the statement is correct for all m ≤ M − 1 and write

Lk:M =
k∑

i=1

1

M
(1 + Li−2 + Lk−i−1:M−i−1) + 1

M
Lk−1 +

M∑
i=k+2

1

M
Lk:i−2,

with appropriate conventions.
We can also write

Lk =
k∑

i=1

1

M
(1 + Li−2 + Lk−i−1) +

M∑
i=k+1

1

M
Lk,

by adding M − k dummy nodes to the right of node k. The statement is then easily
seen by comparing the two formulas. �

Formula (1) immediately implies

(2) Lk+m ≤ Lk + Lm

for any k and m. This can be described as “by stacking two nonempty pieces
together, we make things worse in terms of average number of departures”. Or,
again, “added interference reduces expected number of departures”.

3.2. Stability of a system with reshuffling. We present here an artificial system
which is not our primary interest and for which stability results are immediate.
Unlike the system we investigate, this system features global, rather than local,
interaction between nodes and its study is much simpler.

Using Lemma 2, we easily obtain that condition λ < min{LN/N,1/2} implies
λ < Lk/k for all k ≤ N .

Denote by Ck the expected number of departures from a network of k nonempty
nodes on a circle. For all k ≥ 1, Ck ≤ Lk . Indeed, this is trivial for k ≤ 2. For k ≥ 3,
obviously, Ck = Lk−3 +1, and using (2) it is easy to check that Lk−3 +1 ≤ Lk . Us-
ing CN ≤ LN , we can easily check that λ < CN/N implies λ < min{LN/N,1/2},
and then implies λ < Lk/k for all k < N .

This means that, under condition λ < min{LN/N,1/2} for the line topology
or λ < CN/N for the circle topology, on any nonempty segment of any length
(including all nodes being nonempty), the expected number of arrivals in a time
slot is smaller than the expected number of departures.

For either topology, define the following system, which we will refer to as the
system with reshuffling. In fact, we define three versions of it; in all of them arrivals
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happen according to the same rule as before. Version 1: at the beginning of each
slot, all system queues are reshuffled uniformly at random; that is, queue locations
are determined by a permutation of their indices, chosen uniformly at random.
Version 2: at the beginning of each slot, all empty queues stay where they are,
but all nonempty queues are reshuffled uniformly at random. Version 3: at the
beginning of each slot, all empty queues stay where they are, but nonempty queues
are reshuffled uniformly at random within each nonempty segment.

Given the property of nonempty segments derived above, we have the following
result.

THEOREM 4. For the circle topology, the system with reshuffling (any of the
three versions) is stable if λ < CN/N . For the line topology, the system with reshuf-
fling (any of the three versions) is stable if λ < min{LN/N,1/2}.

3.3. Stability in the case λ < 3/8. In this section, we prove that stability of the
original system in either topology is guaranteed if λ < 3/8. This is weaker than our
main results (also, the following theorem requires the second moment of the arrival
process to be finite, which is not needed in our main result). However, we think
that the proof sheds some light on the behaviour of the system as it is based on
the Lyapunov function that penalises the cases when pairs of neighbouring nodes
do not transmit—exactly what makes a random access inefficient on a circle or
a line segment. The following theorem also has a simple generalisation leading
to sufficient stability conditions for inhomogeneous arrival processes—something
our main result does not allow.

THEOREM 5. Let ξ be a random variable equal in distribution to ξi(n) for all
i and n. If λ < 3/8 and E(ξ2) < ∞, then the system in either topology is stable.

PROOF. We use the standard Foster–Lyapunov technique. Let us start with the
circle topology. Consider a function L :RN+ → R+ given by

L(x) =
N∑

i=1

(xi + xi+1)
2,

with the convention xN+1 = x1.
It is sufficient to show that if λ < 3/8, then there exist K < ∞ and ε > 0 such

that

(3) E
(
L

(
Q(1)

) − L
(
Q(0)

)|Q(0) = Q
)
< −ε

for all initial conditions Q(0) = (Q1(0), . . . ,QN(0)) = (Q1, . . . ,QN) = Q with∑N
i=1 Qi ≥ K .
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To show this, write

E
(
L

(
Q(1)

) − L
(
Q(0)

)|Q(0) = Q
)

=
N∑

i=1

E
(
(Qi + Qi+1 + ξi + ξi+1 − Di − Di+1)

2 − (Qi + Qi+1)
2)

≤ 2
N∑

i=1

(Qi + Qi+1)
(
2λ −E(Di) −E(Di+1)

)

+
N∑

i=1

E(ξi + ξi+1)
2 +

N∑
i=1

E(Di + Di+1)
2,

(4)

where for ease of notation we wrote ξk for ξk(0) and Dk for Dk(0). Note that in
the last expression

N∑
i=1

E(ξi + ξi+1)
2 +

N∑
i=1

E(Di + Di+1)
2 ≤ 2

N∑
i=1

E
(
ξ2
i

) + 2Nλ2 + 4N.

Denote the constant on the RHS of the last expression by C < ∞. Let us now
bound the first sum on the RHS of (4). In order to do this, rewrite it as

N∑
i=1

(Qi + Qi+1)
(
2λ −E(Di) −E(Di+1)

)

=
N∑

i=1

Qi

(
4λ −E(Di−1) − 2E(Di) −E(Di+1)

)
.

Now we consider all possible options for the states of the nearest neighbours of a
nonempty node i.

If Qi−1 = Qi+1 = 0, then

E(Di−1) + 2E(Di) +E(Di+1) = 2.

If Qi−1 = 1 and Qi+1 = 0 (or the other way around), then

E(Di−1) + 2E(Di) +E(Di+1)

= E(Di−1) + 2E(Di) = (
E(Di−1) +E(Di)

) +E(Di)

= 1 + E(Di) ≥ 3/2,

as in this case exactly one of nodes i − 1 and i is transmitting, and with a proba-
bility at least 1/2 it is node i.

Finally, if Qi−1 = Qi+1 = 1, then

E(Di−1)+2E(Di)+E(Di+1) = (
E(Di−1)+E(Di)

)+(
E(Di)+E(Di+1)

) ≥ 3/2,
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where we use the fact that E(Di−1) + E(Di) ≥ 3/4 for any two neighbouring
nonempty nodes i − 1 and i. To see this, note that the probability that neither node
i − 1 nor node i is transmitting is bounded from above by the probability of the
event that node i −1 has a priority lower than that of i −2 and node i has a priority
lower than that of i + 1 (an easy observation shows that the complement of this
intersection implies that either node i − 1 or node i will transmit), which is equal
to 1/4.

Combining these estimates, we can write

N∑
i=1

Qi

(
4λ −E(Di−1) − 2E(Di) −E(Di+1)

) ≤ (4λ − 3/2)

N∑
i=1

Qi,

and if λ < 3/8, then the RHS of (4) does not exceed −ε, provided
∑N

i=1 Qi ≥ K =
(C + ε)/(2(3/2 − 4λ)). This completes our proof for the circle topology.

The proof of Theorem 5 for the line topology follows the same lines and is based
on the Lyapunov function

L(x̄) =
N−1∑
i=1

(xi + xi+1)
2.

Its expected drift in one step may be bounded from above by

Q1
(
2λ −E(D1) −E(D2)

) +
N−1∑
i=2

Qi

(
4λ −E(Di−1) − 2E(Di) −E(Di+1)

)

+ QN

(
2λ −E(DN−1) −E(DN)

) + C.

Now if Q1 > 0, then E(D1) + E(D2) = 1 and the same holds for QN . The exact
same arguments as used in the proof for the circle topology are applied to the rest
of the drift, and we conclude that it is negative provided λ < 3/8. �

REMARK 6. From the proof of Theorem 5, we can also see that for a system
with inhomogeneous arrivals, if we denote by λi = E(ξi(n)), then

λi−1 + 2λi + λi+1 < 3/2

is sufficient for stability. The above is guaranteed, for instance, by

λi + λi+1 < 3/4

for every i.

3.4. Main results. The following lemma shows that for a circle of length N ≥
4, the parking constant is at least 2/5.

LEMMA 7. For any N ≥ 4, CN/N ≥ 2/5.
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A proof of this lemma is presented in the Appendix.
Our main result for the system on a circle is the following Theorem 8. (Its proof

is given in Section 4.)

THEOREM 8. The system with the circle topology and N ≥ 4 is stable if λ <

2/5.

REMARK 9. Note that the system we consider is trivially stable under the con-
dition λ < CN/N , if all nodes compete for transmission at all times, even when
they are empty. However, we want to emphasise that this fact does not imply The-
orem 8 and does not help to prove it. Recall that our main interest is the model of a
standard CSMA, under which each node is “completely unaware” of its surround-
ings and competes for the channel when and only when it has packets to transmit.
The difference between the models when all nodes are competing all the time and
when empty nodes remain silent, is even more evident from our next result for the
line topology.

The main result for the line system has the same form as for the circle. (Its proof
is also in Section 4.)

THEOREM 10. The system with the line topology and N ≥ 4 is stable if λ <

2/5.

REMARK 11. This result is more surprising than that for a circle as on a line,
if all nodes have nonempty queues, their transmission probabilities are different.
In fact, the transmission probability of the second node (or node N − 1) is equal to
3/8 if N = 4, 11/30 if N = 5 and can be shown to decrease over even values of N

and increase over odd values of N to the same limit 1 − e−1 ≈ 0.3679 (see [19]),
thus never exceeding 2/5. This demonstrates that in order to obtain correct stability
conditions, it is not sufficient to consider the throughputs of nodes in saturation.

4. Proof of main results.

4.1. Fluid limits. We will prove Theorem 8 and Theorem 10 using the fluid
limit technique [8, 17, 20]. (For the application of the fluid limit technique to dis-
crete time processes see, e.g., [7].) This section gives definitions and preliminaries
that will be needed in both proofs.

Denote by N = {1, . . . ,N} the set of all nodes, and by Q(n) = (Qi(n), i ∈ N )

the queue-length vector. The Markov process that we consider, Q(n), n = 0,1, . . . ,
is a discrete time countable irreducible Markov chain. To apply the fluid limit
technique, consider a sequence of processes Qr(·) with increasing initial state,
‖Qr(0)‖ = r ↑ ∞. (Here and below, the upper index r , which is the norm of initial
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state, is used as a process label.) To establish the process stability (positive recur-
rence), it suffices to prove that for some fixed integer T > 0 any such sequence of
processes is such that

(5) E
1

r

∥∥Qr(rT )
∥∥ → 0, r → ∞.

First, we will view the process Qr(·) (and all other system processes) in contin-
uous time t ≥ 0, by adopting the convention Qr(t) = Qr(�t�), t ≥ 0. Define the
associated processes as follows: F r

i (t) is the total number of exogenous arrivals
in node i by time t ; Hr

i (t) is the total number of departures from (transmissions
at) node i by time t . We will also need an additional family of processes, Gr

B(t),
whose definition requires some details, given next.

Denote by s a system occupancy state (at a given time), s = (si, i ∈ N ), where
si is 1 (resp., 0) if node i is occupied (resp., empty). There is, of course, only a finite
number 2N of possible states s. At time n, the occupancy state is given by si =
I{Qi(n) > 0}. Denote by u = (ui, i ∈ N ) a ranking realisation (at a given time),
where ui ∈ N is the ranking that node i receives. In other words, u ∈ U , where UN

is the set of permutations of (1, . . . ,N). Denote by d a transmission realisation
(at a given time), d = (di, i ∈ N ), di is 1 (resp., 0) if node i transmits (resp.,
does not transmit). Clearly, at any time, d = φ(s, u) is a deterministic function
of s and u. Denote by � the set of possible values of a triple (s, u, d). Then,
for B ⊆ � , denote by Gr

B(t) the total number of time slots, up to and including
time t , in which (s, u, d) ∈ B . (E.g., B can be a subset—or, “event”—like {Qi >

0 and node i + 1 transmits}.) To simplify notation, we often write Gr
σ (t) to mean

Gr
s=σ (t).
To summarise, the processes that we will consider are Qr

i (·), F r
i (·), Hr

i (·) for
i ∈N , and Gr

B(·) for B ∈ � .
Recall that the processes with different indices r have different fixed initial

states. We will construct all these processes (for all r) on a common probability
space as follows. The arrival process F r

i (·) for a given i (and for all r) is driven by
an independent i.i.d. sequence of random variables ξi(1), ξi(2), . . . , with a finite
mean Eξi(1) = λ; namely,

F r
i (t) = ∑

1≤n≤�t�
ξi(n).

The processes that drive transmissions (for all r) are as follows. For each s, we de-
fine an independent i.i.d. driving sequence of random elements us(	), 	 = 1,2, . . . ,
distributed randomly uniformly in UN . When the system is in occupancy state s

for the 	th time, the ranking realisation us(	) is taken, which uniquely determines
the transmission realisation d = φ(s, us(	)). Clearly, this collection of driving pro-
cesses defines the entire process uniquely for each initial state.

Denote by 
 the set of all possible pairs (u, d). For a given s, denote by
{Ps(u, d), (u, d) ∈ 
}, the probability distribution of a random outcome of (u, d)
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when the system occupancy state is s. In other words, Ps(u, d) the probability
distribution on 
, induced by u distributed uniformly in UN , and (deterministic)
mapping d = φ(s,u); clearly,

Ps(u, d) = 1

N !I
{
d = φ(s,u)

}
.

We use notation

Ps(A) = ∑
(u,d)∈A

Ps(u, d), A ⊆ 
,

for probabilities of events, and Ps(A|A′) for conditional probabilities.
Note that the driving processes are such that the following FSLLN properties

hold. With probability 1,

1

r
F r

i (rt) → λt u.o.c.,∀i ∈ N ,(6)

1

r

∑
	≤rτ

I
{(

us(	),φ
(
s, us(	)

)) ∈ A
} → Ps(A)τ u.o.c.,∀A ⊆ 
,∀s.(7)

For each r , we define fluid-scaled processes:

qr
i (t) = 1

r
Qr

i (rt), f r
i (t) = 1

r
F r

i (rt), hr
i (t) = 1

r
Hr

i (rt),

gr
B(t) = 1

r
Gr

B(rt).

DEFINITION 12. A collection of deterministic functions

χ = [(
qi(·), fi(·), hi(·), i ∈ N

)
,
(
gB(·),B ⊆ �

)]
is called a fluid limit if there exists a subsequence of r and the correspond-
ing sequence of the (scaled) process realisations χr = [(qr

i (·), f r
i (·), hr

i (·), i ∈
N ), (gr

B(·),B ⊆ �)] such that, as r → ∞ along this subsequence, (6) and (7)
hold, and

χr → χ u.o.c. for each component function.

The following lemma, describing basic properties of fluid limits, is standard
(see, e.g., [8, 17, 20]), and so is its proof, which we will omit.

LEMMA 13. Any fluid limit χ has the following basic properties:

(i) All component functions are Lipschitz continuous. Therefore, a.e. w.r.t.
Lebesgue measure, all component functions have derivatives; time points, where
this holds are called regular.

(ii) ‖q(0)‖ = 1.
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(iii) qi(t) = qi(0) + fi(t) − hi(t), ∀i.
(iv) fi(t) = λt , t ≥ 0, ∀i.
(v) hi(t) = g{di=1}(t), t ≥ 0, ∀i.

(vi) For any occupancy state σ and any A ⊆ 
,

g{s=σ,(u,d)∈A}(t) = Pσ (A)gσ (t).

For a regular time point t , it will be convenient to use notation

πt(B) = (d/dt)gB(t);
and we will sometimes write πt(σ ) to mean πt(s = σ). Clearly, πt(·) is a proba-
bility distribution on �; πt(B|B ′) denotes conditional probabilities.

The following lemma, describing convergence to fluid limits, is also standard
(see, again, [8, 17, 20]) and we omit its proof as well.

LEMMA 14. The sequence of fluid-scaled processes

χr = [(
qr
i (·), f r

i (·), hr
i (·), i ∈ N

)
,
(
gr

B(·),B ⊆ �
)]

is such that the following holds w.p. 1. For any subsequence of r there is a further
subsequence, along which

χr → χ u.o.c. for each component function,

where χ is a fluid limit.

To prove Theorem 8 and Theorem 10, it suffices to show that for some fixed
T > 0 and any fluid limit χ ,

(8)
∥∥q(t)

∥∥ = 0 ∀t ≥ T .

[The family of random variables ‖qr(T )‖ ≡ (1/r)‖Qr(rT )‖ is easily seen to be
uniformly integrable. This, along with (8) and Lemma 14, implies (5).]

4.2. Auxiliary definitions and facts.

4.2.1. Ranking and conditional ranking realisation constructions. Consider a
set of m nodes. They can be arranged in a circle or in a line. (For the definition that
follows, it is only required that a neighbour relation between the nodes is defined.)
For a given occupancy state s, the random process which determines the nodes’
ranking realisation—and the transmission realisation as well—is as follows. The
occupied nodes are initialised as active and idle nodes as inactive. The ranking,
from 1 to m, is assigned to nodes in the order of being chosen (or, picked). The
first node is chosen uniformly at random among all m nodes; if this node is active
and occupied, it transmits and then deactivates itself and its neighbours; if this node
is inactive, no further action is taken. The second node is chosen among the m − 1
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nodes not chosen before, and the action is taken according to the same rule as for
the first node. And so on, until all nodes are chosen—this produces the ranking
and transmission realisations of all nodes.

Let two nodes i and j be fixed. Later on we will need to generate the rank-
ing (and transmission) realisations, conditioned on the event ui < uj . It is easy to
check that this can be done via the following construction. The process, produc-
ing the ranking/transmission realisation, is the same as described above, with the
following modification. As long as both nodes i and j are not chosen yet, when
the next node is being chosen, nodes i and j are considered as a pair, which is
picked with the probability twice greater than that for a single node. If/when the
pair (i, j) is chosen, the node i is picked. After that, the process runs as usual
without modifications.

4.2.2. Properties of occupied segments of nodes.

DEFINITION 15. For a given occupancy state s, a set of k consecutive oc-
cupied nodes, bordering on idle nodes (or no nodes) on both sides, is called an
occupied segment of length k. Without loss of generality, for each k, we can and
will consider the occupied segment consisting of nodes 1, . . . , k, with nodes N (in
the case of a circle) and k + 1 being idle, and will denote it [1, k].

We are interested in the transmission probabilities of nodes within one occu-
pied segment (and one time slot). Clearly, these probabilities depend only on the
random mutual ranking of the nodes within this segment. The mutual ranking
u′ = (u′

1, . . . , u
′
k) ∈ Uk is determined by the total ranking u: u′

i < u′
j if and only

if ui < uj . The distribution of the mutual ranking u′ is uniform on the permuta-
tions set Uk . Formally speaking, we are interested in the probabilities Ps(A) in
the case when s is such that [1, k] is an occupied segment, and A depends only
on the mutual ranking and transmissions within this segment. For this reason, the
corresponding probabilities (with a slight abuse of notation) are denoted by Pk(A).

DEFINITION 16. Nodes i and j within the same occupied segment are called
friends (resp., foes) if |j − i| is even (resp., odd).

The following lemma means that if we add a node k + 1 or a pair of nodes
(k + 1, k + 2) to an occupied segment [1, k], this addition can only increase the
transmission probabilities of the nodes in [1, k] that are friends of node k + 1, and
can only decrease the transmission probabilities of the nodes in [1, k] that are foes
of k + 1.

LEMMA 17. Consider an occupied segment [1, k], and a subset L of its nodes
which are all mutual friends. Consider also the larger occupied segments [1, k+1]
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and [1, k +2]. Then, if node k +1 is a friend (resp., foe) of the nodes in L, we have

Pk(di = 1, i ∈ L) ≤ (resp. ≥)Pk+1(di = 1, i ∈ L),(9)

Pk(di = 1, i ∈ L) ≤ (resp. ≥)Pk+2(di = 1, i ∈ L).(10)

PROOF. Let us prove (9). [The proof of (10) is completely analogous.] We
will prove the following (stronger) statement. The ranking and transmission re-
alisations of the segments [1, k] and [1, k + 1] can be coupled (constructed on a
common probability space), so that for any i = 1, . . . , k: (di = 1 in [1, k]-segment)
implies (di = 1 in [1, k + 1]-segment) when i is a friend of k + 1; and (di = 0 in
[1, k]-segment) implies (di = 0 in [1, k + 1]-segment) when i is a foe of k + 1.
This property is proved by induction on k. The statement is trivially true for k = 0,
if we adopt the convention that this case corresponds to the “empty” segment—it
has no nodes and, therefore, no friends or foes of any other node. This is the base
of induction. Suppose the statement is true for k = 0,1, . . . ,m − 1. Let us prove
it for k = m. We are constructing the ranking and transmission realisations, jointly
for the segments [1,m] and [1,m + 1]. The segment [1,m + 1] is initialised to
have all nodes occupied and active; the segment [1,m] is initialised to have all
nodes occupied and active, but it is augmented by a “dummy” node m + 1, which
is initialised to be inactive. The process for ranking/transmission realisation runs
for m + 1 nodes, jointly in both systems. We stop this process when either (a) all
nodes are inactive or (b) node m + 1 is chosen. In the case (a), the transmission
realisation for nodes 1, . . . ,m in both systems is the same. In the case (b), there are
two sub-cases: (b.1) node m was already inactive and (b.2) node m was active. In
the case (b.1), the transmission of node m+1 in the [1,m+1]-system and its non-
transmission in the [1,m]-system will not affect nodes 1, . . . ,m in either system
and, therefore, the rest of the ranking/transmission realisations in both systems can
obviously be coupled to be the same. The remaining case to consider is (b.2). In
the [1,m + 1]-system, the node m—a foe of m + 1—is deactivated, and will not
transmit; in the [1,m]-system the node m remains active and, therefore, may even-
tually transmit; so, the property we are proving holds for node m. The remaining
active nodes in both systems are the same, except the right-most occupied segment
(if we consider only active occupied nodes) in the [1,m]-system has the additional
node m on the right. (As a degenerate special case, this segment may consist of
the single node m in the [1,m]-system and be “empty” in the [1,m + 1]-system.)
This right-most segment has a length at most m in the [1,m]-system. It remains to
apply the induction hypothesis to complete the construction of coupling. �

LEMMA 18. For any occupied segment of length k ≥ 1,

Pk(d1 = 1) ≥ 1/2.

PROOF. Pk(d1 = 1) ≥ Pk(u1 < u2) = 1/2. �
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LEMMA 19. For any occupied segment of length k ≥ 2,

Pk(d1 = 1) ≥ Pk(d2 = 1).

That is, an end node of a segment has the transmission probability not smaller than
that of its neighbour.

PROOF. Clearly, Pk(d1 = 1 or d2 = 1) = 1, and events {d1 = 1} and {d2 = 1}
are mutually exclusive. So, Pk(d1 = 1) + Pk(d2 = 1) = 1. And Pk(d1 = 1) ≥ 1/2
(Lemma 18). �

4.2.3. Additional properties of fluid limits. First, note some standard prop-
erties that hold at a regular point of a fluid limit: if qi(t) = 0, then necessarily
q ′
i (t) = 0, and then h′

i (t) = g′{di=1}(t) = πt(di = 1) = λ; if qi(t) > 0, then neces-
sarily πt(si = 1) = 1.

LEMMA 20. Consider a regular point t such that πt(di−1 = 1) > 0, qi(t) > 0,
qi+1(t) > 0. Then

πt(di+1 = 1 | di−1 = 1) ≥ 1/2.

PROOF. From qi(t) > 0, qi+1(t) > 0, we know that πt(si = 1, si+1 = 1) = 1.
Observe that

πt(di+1 = 1, di−1 = 1)

≥ πt(di+1 = 1, di−1 = 1, ui+1 < ui+2)

= πt(si+1 = 1, di+1 = 1, di−1 = 1, ui+1 < ui+2)

= πt(di−1 = 1, ui+1 < ui+2),

where we used πt(si+1 = 1) = 1 and the fact that (si+1 = 1, di−1 = 1, ui+1 <

ui+2) implies di+1 = 1. Therefore, to prove the lemma it suffices to prove

(11) πt(di−1 = 1, ui+1 < ui+2) ≥ (1/2)πt (di−1 = 1),

which is what we proceed to do.
We have

πt(di−1 = 1, ui+1 < ui+2)

= ∑
σ

πt (di−1 = 1, ui+1 < ui+2, s = σ)

= ∑
σ

πt (σ )Pσ (di−1 = 1, ui+1 < ui+2)

= ∑
σ

πt (σ )Pσ (ui+1 < ui+2)Pσ (di−1 = 1 | ui+1 < ui+2)
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= (1/2)
∑
σ

πt (σ )Pσ (di−1 = 1 | ui+1 < ui+2)

= (1/2)
∑

σ :σi−1=σi=σi+1=1

πt(σ )Pσ (di−1 = 1 | ui+1 < ui+2)

Analogously,

πt(di−1 = 1, ui+1 > ui+2)

= (1/2)
∑

σ :σi−1=σi=σi+1=1

πt(σ )Pσ (di−1 = 1 | ui+1 > ui+2).

We claim that for any s such that si−1 = si = si+1 = 1, we have

(12) Ps(di−1 = 1 | ui+1 < ui+2) ≥ Ps(di−1 = 1 | ui+1 > ui+2).

The proof of (12) is by coupling the ranking and transmission realisations under
the conditions {ui+1 < ui+2} and {ui+1 > ui+2}, which we label as (a) and (b),
respectively. The construction is as follows. We use the process for producing a
conditional ranking of this type, described in Section 4.2.1, for conditions {ui+1 <

ui+2} and {ui+1 > ui+2}, but we couple these processes. Specifically, as long as
neither i + 1 nor i + 2 is chosen yet, when the next node is being chosen these two
nodes are considered as a pair, which is picked with the probability twice greater
than that for a single node. If/when the pair (i + 1, i + 2) is chosen, the node i + 1
or i + 2 is picked deterministically, depending on whether the realisation is under
condition (a) or (b), respectively. The process runs like this, and is stopped when
(c1) node i−1 transmits or is deactivated, or (c2) the pair (i+1, i+2) is chosen. In
the former case, obviously, ui−1 is the same for conditions (a) and (b), so it remains
to consider the case (c2)\(c1). Note that before the pair (i + 1, i + 2) is chosen,
nodes i − 1, i, i + 1 are active. If node i + 2 was inactive, then under condition
(a) node i − 1 becomes an end node of an occupied segment (if we only consider
occupied active nodes), and under condition (b) node i − 1 is within the same
occupied segment, but with nodes i and i + 1 appended “on the right”; therefore,
starting from this state of the access process, by Lemma 17, the probability that
node i − 1 eventually transmits is higher under condition (a). Suppose node i + 2
was active (and then necessarily occupied). Consider two subcases: (c2.1) not all
nodes were occupied and active and (c2.2) all nodes were occupied and active.
[For the line topology, we only need to consider the case (c2.1).] In the case (c2.1),
under condition (a) node i −1 becomes an end node of an occupied segment (if we
only consider occupied active nodes), and under condition (b) node i − 1 is within
the same occupied segment, but with node i appended “on the right”; therefore,
starting from this state of the access process, by Lemma 17, the probability that
node i − 1 eventually transmits is higher under condition (a). In the case (c2.2),
under condition (a) node i − 1 becomes an end node of the occupied segment of
length N − 3 (if we only consider occupied active nodes), and under condition
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(b) node i − 1 is within the occupied segment of the same length N − 3, but with
node i − 1 being second from the end; therefore, starting from this state of the
access process, by Lemma 19, the probability that node i − 1 eventually transmits
is higher under condition (a). This completes the proof of claim (12).

Using (12), we obtain

πt(di−1 = 1, ui+1 < ui+2) ≥ πt(di−1 = 1, ui+1 > ui+2).

Given that

πt(di−1 = 1, ui+1 < ui+2) + πt(di−1 = 1, ui+1 > ui+2) = πt(di−1 = 1),

we obtain (11). �

4.3. Proof of Theorem 8. We are going to show that there exists ε > 0 such
that for any fluid limit, at any regular point t such that

∑N
i=1 qi(t) > 0,

(13)
N∑

i=1

q ′
i (t) ≤ −ε.

This will prove stability, because, clearly, (13) implies (8).
Consider first the case when qi(0) > 0 for all i. In this case, πt(si = 1) = 1

for all i and then, by symmetry, πt(di = 1) = CN/N for all i. Then q ′
i (t) = λ −

CN/N < 0 for all i by Lemma 7, and (13) follows (for any ε < CN/N − λ).
We now turn to the case when there is at least one i with qi(t) = 0. A group of

nodes (k +1, k +2, . . . , k + l) such that qk(t) = qk+l+1(t) = 0 and qk+i(t) > 0 for
all i = 1, . . . , l, we will call a positive group of size l. We will show that

(14)
l∑

i=1

q ′
k+i(t) < −ε1 < 0,

for any positive group (k + 1, k + 2, . . . , k + l) and, moreover, the constant ε1 in
our estimates will depend only on the size l of the group. Since there is only a
finite number of possible values of l, (13) will follow.

We are going to present our proof of (14) for different values of l:

1. First, consider the case l = 1. Recall πt(sk+1 = 1) = 1. Let

a = πt(sk = 1, sk+2 = 1)

and let

b = πt(sk−1 = 1, sk+3 = 1 | sk = 1, sk+2 = 1).

From Lemma 18, we immediately obtain

πt(dk+1 = 1 | sk = 0 ∪ sk+2 = 0) ≥ 1/2.
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And from Lemma 17, we get

πt(dk+1 = 1 | sk = 1, sk+2 = 1, sk−1 = 0 ∪ sk+3 = 0) ≥ 1/3

and

πt(dk+1 = 1 | sk = 1, sk+2 = 1, sk−1 = 1, sk+3 = 1) ≥ 179/420.

Indeed, due to Lemma 17, in the first case the worst possible s (appearing in the
condition) in terms of the smallest Ps(dk+1 = 1) is such that k + 1 is the middle
node in an occupied segment of length 3, and in the second case—such that it is the
middle node in an occupied segment of length 7. The corresponding probabilities
may either be calculated directly, or using [19], Theorem 1.

We obtain:

q ′
k+1(t) ≤ λ − 1/2(1 − a) − a

(
(1 − b)(1/3) + b(179/420)

)
= λ − 1/2 + a/2 − a

(
1/3 + b(13/140)

)
= λ − 1/2 + (1/2)a

(
1/3 − b(13/70)

)
.

Therefore, if

(15) a
(
1/3 − b(13/70)

)
< λ/2,

then q ′
k+1(t) < λ − 1/2 + λ/4 < 0, provided λ < 2/5, and (14) follows.

We can also write a different estimate of q ′
k+1(t):

q ′
k+1(t) = λ − πt(dk = 0, dk+2 = 0) = λ − 1 + πt(dk = 1 ∪ dk+2 = 1)

= λ − 1 + πt(dk = 1) + πt(dk+2 = 1) − πt(dk = 1, dk+2 = 1)

= λ − 1 + 2λ − πt(dk = 1, dk+2 = 1)

= 3λ − 1 − aπt (dk = 1, dk+2 = 1 | sk = 1, sk+2 = 1),

and to prove (14) it is sufficient to show that

(16) aπt (dk = 1, dk+2 = 1 | sk = 1, sk+2 = 1) > λ/2.

To summarise, in order to prove (14) in this case, it is sufficient to prove either
(15) or (16).

Note that, thanks to Lemma 17,

πt(dk = 1, dk+2 = 1 | sk = 1, sk+2 = 1, sk−1 = 1, sk+3 = 1) ≥ 1/5

and

πt(dk = 1, dk+2 = 1 | sk = 1, sk+2 = 1, sk−1 = 0 ∪ sk+3 = 0) ≥ 3/8.

Indeed, due to Lemma 17, in the first case the worst possible s (appearing in the
condition) in terms of the smallest Ps(dk = 1, dk+2 = 1) is such that k and k+2 are
nodes 2 and 4 in an occupied segment of length 5, and in the second case—such
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that they are nodes 2 and 4 in an occupied segment of length 4. The corresponding
probabilities are easy to verify directly.

We then have

πt(dk = 1, dk+2 = 1 | sk = 1, sk+2 = 1)

≥ (1/5)b + (3/8)(1 − b) = 3/8 − b(7/40),

and, in order to show (16), it is sufficient to show that

a
(
3/8 − b(7/40)

)
> λ/2.

Simple algebra shows that either the above or (15) holds for any values of a > 0
and b > 0.

2. Assume now that l = 2. Note that πt(dk+1 + dk+2 = 1 | dk = 0) = 1. (When
node k is not transmitting, exactly one of nodes k + 1 and k + 2 will transmit.)
Therefore,

q ′
k+1(t) + q ′

k+2(t) = 2λ − πt(dk = 1)πt (dk+2 = 1 | dk = 1) − πt(dk = 0)

= 3λ − 1 − λπt(dk+2 = 1 | dk = 1) ≤ (5/2)λ − 1 < 0,

because (from Lemma 20)

πt(dk+2 = 1 | dk = 1) ≥ 1/2.

3. Assume now that l = 3 and note that in this case

q ′
k+1(t) + q ′

k+2(t) + q ′
k+3(t)

= 3λ − (
πt(dk+1 = 1) + πt(dk+2 = 1) + πt(dk+3 = 1)

)
= 3λ − (

πt(dk+1 = 1) + πt(dk+3 = 1)
) − (

1 − πt(dk+1 = 1 ∪ dk+3 = 1)
)

= 3λ − 1 − πt(dk+1 = 1, dk+3 = 1) ≤ 3λ − 1 − 1/5 < 0

if λ < 2/5, where the second-last inequality above follows from Lemma 17, again
by considering s for which πt(dk+1 = 1, dk+3 = 1) is the smallest, equal 1/5.

4. Finally, consider the case l ≥ 4. Let us first focus on nodes k + 1 and k + 2.
Note that in our proof for the case l = 2 we only used the fact that for the node to
the left, node k, πt(dk = 1) = λ. Therefore, the proof may be repeated to show that

q ′
k+1(t) + q ′

k+2(t) < 0.

The same argument of course implies that

q ′
k+l−1(t) + q ′

k+l(t) < 0.

Note also that, due to Lemma 17, for any 3 ≤ i ≤ l − 2, πt(dk+i = 1) ≥ 179/420,
as the “worst” occupancy state s (among those with sj = 1 for i − 2 ≤ j ≤ i + 2),
in the sense of the smallest Ps(di = 1), is the one where i is the middle node
within an occupied segment of length 7 (and the corresponding probability may
be calculated directly of from [19], Theorem 1). As 179/420 > 2/5, our proof is
complete.
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4.4. Proof of Theorem 10. The proof of Theorem 10 follows the same lines as
that of Theorem 8.

Note that for all N ≥ 4, CN = 1 +LN−3 ≤ LN and, therefore, due to Lemma 7,
LN/N ≥ 2/5 and

N∑
i=1

q ′
i (t) = Nλ − LN < −ε

with a positive ε, if qi(t) > 0 for all i.
We can therefore consider positive groups of nodes bordering at least on one

side an existing node i with qi(t) = 0. Note that having no node on one side is
beneficial for a group of l ≥ 2 compared to having an existing node with qi(t) = 0.
Therefore, the proof of the negativity of the total drift of a group of l ≥ 2 nodes
carries over from Theorem 8 without changes.

The proof in the case l = 1 is unchanged again if the node k + 1 under consid-
eration is 3, . . . ,N − 2 as it relies only on considering nodes at a distance at most
2 from the target one. If node 1 (or node N ) is the node under consideration, then
due to Lemma 18, its drift is at most λ − 1/2 < 0. Therefore, it remains to look at
the case when the node under consideration is 2 (the case of node N − 1 is exactly
the same by symmetry). We are going to show that the drift of node 2 is negative
in this case. The proof follows the same lines as the one given for the case l = 1
in Theorem 8, with small changes in the worst cases for transmissions of certain
(groups of) nodes. We provide the argument here for completeness.

Recall πt(s2 = 1) = 1. Let

a = πt(s1 = 1, s3 = 1)

and let

b = πt(s4 = 1 | s1 = 1, s3 = 1).

From Lemma 18, we immediately obtain

πt(d2 = 1 | s1 = 0 ∪ s3 = 0) ≥ 1/2.

Trivially,

πt(d2 = 1 | s1 = 1, s3 = 1, s4 = 0) = 1/3

and from Lemma 17, we get

πt(d2 = 1 | s1 = 1, s3 = 1, s4 = 1) ≥ 11/30.

Indeed, due to Lemma 17, in the last case the worst possible s (appearing in the
condition) in terms of the smallest Ps(d2 = 1) is such that it is node 2 in a segment
of 5 nonempty nodes. The corresponding probability may either be calculated di-
rectly, or using formulas from [19].
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We obtain

q ′
2(t) ≤ λ − 1/2(1 − a) − a

(
(1 − b)(1/3) + b(11/30)

)
= λ − 1/2 + a/2 − a

(
1/3 + b(1/30)

)
= λ − 1/2 + (1/2)a

(
1/3 − b(1/15)

)
.

Therefore, if

(17) a
(
1/3 − b(1/15)

)
< λ/2,

then q ′
2(t) < λ − 1/2 + λ/4 < 0, provided λ < 2/5, and q ′

2(t) < 0.
We can also write a different estimate of q ′

2(t):

q ′
2(t) = λ − πt(d1 = 0, d3 = 0) = λ − 1 + πt(d1 = 1 ∪ d3 = 1)

= λ − 1 + πt(d1 = 1) + πt(d3 = 1) − πt(d1 = 1, d3 = 1)

= λ − 1 + 2λ − πt(d1 = 1, d3 = 1)

= 3λ − 1 − aπt (d1 = 1, d3 = 1 | s1 = 1, s3 = 1),

and to prove that q ′
2(t) < 0 it is sufficient to show that

(18) aπt (d1 = 1, d3 = 1 | s1 = 1, s3 = 1) > λ/2.

To summarise, in order to prove that q ′
2(t) < 0 in this case, it is sufficient to

prove either (17) or (18).
Note that, thanks to Lemma 17,

πt(d1 = 1, d3 = 1 | s1 = 1, s3 = 1, s4 = 1) ≥ 3/8

and

πt(d1 = 1, d3 = 1 | s1 = 1, s3 = 1, s4 = 0) = 2/3.

Indeed, due to Lemma 17, in the first case the worst possible s (appearing in
the condition) in terms of the smallest Ps(d1 = 1, d3 = 1) is such that 1 and 3 are
nodes 1 and 3 in an occupied segment of length 4.

We then have

πt(d1 = 1, d3 = 1 | s1 = 1, s3 = 1) ≥ (3/8)b + (2/3)(1 − b) = 2/3 − b(7/24),

and, in order to show (16), it is sufficient to show that

a
(
2/3 − b(7/24)

)
> λ/2.

Simple algebra shows that either the above or (17) holds for any values of a > 0
and 0 < b < 1.
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5. Conclusions, conjectures and further work. We considered a network of
N nodes arranged in a circle or a line where neighbouring nodes cannot transmit
at the same time and each node’s medium access is governed by a discrete-time
CSMA protocol. Our main result shows that the system in either topology is stable
for any N ≥ 4 if the per-node arrival rate λ < 2/5. This provides an upper bound
on the loss in throughput the standard (decentralised) CSMA algorithm suffers
compared to the maximum possible throughput of �N/2�/N that is achieved by
an ideal centralised protocol.

The result is intuitive for the circle topology. Indeed, instability for a system
of N nodes on a circle may be easily proved if λ > CN/N , where CN/N is the
parking constant which is higher than 2/5 and converges, as N goes to infinity, to
1/2(1 − e−2) ≈ 0.4323. Instability holds because, if all nodes are active, then each
of them receives a throughput of CN/N . We conjecture that stability in fact holds
if λ < CN/N . This is an open question.

We obtain a bound of 2/5 due to the fact that in the most technically diffi-
cult parts of the paper (see, e.g., cases l = 1 and l = 3 in the proof of the main
result) we focus on a segment containing 5 nodes and study the probabilities of
various activation states and covariances between occupancies of different nodes.
The value of CN/N is equal to 2/5 in the case N = 5, so our bound is tight in
this case. It may be possible to obtain tight bounds for larger networks if one can
find an efficient way of studying the correlations between occupancies and acti-
vations of a larger number of nodes. We believe however that this is cumbersome
for networks with N even slightly larger than 5 and infeasible for very large net-
works. Different techniques may therefore be needed to prove our conjecture for
an arbitrary N . We believe however that the techniques developed in this paper
are nevertheless interesting in their own right. In particular, they may be applied to
obtain sufficient conditions for stability in networks with more general topologies.
They might also become a part of different and/or more general techniques for the
analysis of nonmonotone processes.

Our result is not intuitive in the case of the line topology because, if all nodes are
active, some receive a throughput of less than 2/5. This illustrates how intricate the
system behaviour is and how the analysis of unsaturated systems is difficult even
in such simple topologies. The exact stability condition, even for a homogeneous
system, is an open problem for the line topology; this condition is even not easy to
conjecture.

We are currently also working on more difficult multi-hop networks where each
message has a source and a destination and may therefore need to be transmitted
by several nodes in the network. For a line, we consider traffic arriving at node
1 and requiring to reach node N . Each message thus needs to be transmitted by
every node in turn. We are interested in both stability and end-to-end throughput
of the system.
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For a circle, one can define a multi-hop network in, for instance, the following
way. Fix a constant m ≥ 1 and assume that each node gets on average λ/m new
packets per time slot. Assume that medium-access competition is done in the same
way as for the single-hop system but, upon a successful transmission from node i,
a message leaves the system with probability 1/m and goes to the queue of node
i + 1 with probability 1 − 1/m. It is easy to show that the average nominal traffic
load for any node is λ and we conjecture that λ < CN/N is sufficient for stability
for any m ≥ 1. As m → ∞ and N → ∞, the model on a circle may serve as an
approximation for the behaviour of a large line segment far away from the source.

We can in fact prove the above multi-hop stability conjecture for N = 4 using a
simplified version of the argument of the proof of Theorem 8. The proof however
heavily relies on the specific structure of the system of 4 nodes in that at every
time slot there are, essentially, at most two possible outcomes of the medium-
access competition. This proof does not generalise to larger values of N . Stability
for all N and all m ≥ 1 is a challenging and exciting question for further study.

APPENDIX

PROOF OF LEMMA 7. We are going to show that the sequence Cn/n is non-
increasing for even values of n and nondecreasing for odd values of n. Therefore,
for all even values of n ≥ 4,

Cn

n
≥ lim

n→∞
Cn

n
= 1

2

(
1 − e−2)

> 2/5,

and for all odd values of n ≥ 5,

Cn

n
≥ C5

5
= 2/5.

Using the expression for Lk from [19], Corollary 2, we can write

Cn

n
= 1 + Ln−3

n

= 1 + ∑n−3
k=1(−1)k+1 2k−1

k! (n − 2 − k)

n

=
n−3∑
k=1

(−1)k+1 2k−1

k! + 1

n

(
1 −

n−3∑
k=1

(−1)k+1 2k−1

k! (k + 2)

)

=
n−3∑
k=1

(−1)k+1 2k−1

k! + 1

n

(
1 −

n−3∑
k=1

(−1)k+1 2k−1

(k − 1)! −
n−3∑
k=1

(−1)k+1 2k

k!
)

=
n−3∑
k=1

(−1)k+1 2k−1

k! + 1

n

(
1 −

n−4∑
l=0

(−1)l+2 2l

l! −
n−3∑
k=1

(−1)k+1 2k

k!
)
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=
n−3∑
k=1

(−1)k+1 2k−1

k! + 1

n

(
1 − 1 − (−1)n−2 2n−3

(n − 3)!
)

=
n−3∑
k=1

(−1)k+1 2k−1

k! − 1

n
(−1)n

2n−3

(n − 3)! .

Consider now

Cn+2

n + 2
− Cn

n

= (−1)n−1 2n−3

(n − 2)! + (−1)n
2n−2

(n − 1)!

− 1

n + 2
(−1)n

2n−1

(n − 1)! + 1

n
(−1)n

2n−3

(n − 3)!

= (−1)n
2n−3

(n − 3)!
×

(
− 1

n − 2
+ 2

(n − 2)(n − 1)
− 4

(n + 2)(n − 1)(n − 2)
+ 1

n

)

= (−1)n
2n−3

(n − 3)!
(
− 1

n − 2
+ 2n

(n + 2)(n − 2)(n − 1)
+ 1

n

)

= (−1)n
2n−3

(n − 3)!
(
− n + 1

(n + 2)(n − 1)
+ 1

n

)

= (−1)n
2n−3

(n − 3)!
(
− 2

n(n + 2)(n − 1)

)
,

and this completes the proof. �
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