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WHICH ERGODIC AVERAGES HAVE FINITE
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We show that the class of L2 functions for which ergodic averages of a
reversible Markov chain have finite asymptotic variance is determined by the
class of L2 functions for which ergodic averages of its associated jump chain
have finite asymptotic variance. This allows us to characterize completely
which ergodic averages have finite asymptotic variance when the Markov
chain is an independence sampler. From a practical perspective, the most im-
portant result identifies a simple sufficient condition for all ergodic averages
of L2 functions of the primary variable in a pseudo-marginal Markov chain
to have finite asymptotic variance.

1. Introduction. On a measurable space (E,E), let � := (�n)n∈N be an er-
godic, reversible, discrete time Markov chain with Markov transition kernel � and
invariant probability measure μ. By ergodic, we mean � is μ-irreducible; it need
not be aperiodic. Such chains are often simulated on a computer for the purpose
of computing Monte Carlo approximations of integrals μ(f ) := ∫

E f (x)μ(dx),
where f ∈ L1(E,μ) := {g : μ(|g|) < ∞}. Ergodic averages, n−1 ∑n

i=1 f (�i), as-
sociated with such Markov chains converge almost surely as n → ∞ to μ(f ) for
μ-almost all �1 and all f ∈ L1(E,μ) [see, e.g., Meyn and Tweedie (2009), Chap-
ter 17], and are frequently used to approximate intractable integrals in computer
science, physics and statistics. The behaviour of such approximations is now quite
well understood, and central limit theorems (CLTs) for rescaled ergodic averages
and quantitative bounds on their asymptotic variance have been established in a
number of settings. We define the asymptotic variance of ergodic averages of a
function f ∈ L2(E,μ) := {g : μ(g2) < ∞} to be

var(f,�) := lim
n→∞nvar

{
1

n

n∑
i=1

f (�i)

}
, �1 ∼ μ.

For ergodic, μ-reversible Markov chains, this limit exists for all f ∈ L2(E,μ)

but may be infinite. Denoting the function x �→ f (x) − c by f − c, where c is
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a constant, we observe that var(f,�) = var(f − c,�), and so one can restrict
consideration to zero-mean functions f ∈ L2

0(E,μ) := {g ∈ L2(E,μ) : μ(g) = 0}
without loss of generality.

A strong qualitative property of a Markov chain is that it is variance bounding
[Roberts and Rosenthal (2008)]: if � is variance bounding, then it satisfies

sup
f ∈L2

0(E,μ),varμ(f )=1

var(f,�) < ∞,

where varμ(f ) is the variance of f (�1) when �1 ∼ μ. For reversible Markov
chains, variance bounding is closely related to geometric ergodicity and equiv-
alent to finite var(f,�) for all f ∈ L2(E,μ). By Kipnis and Varadhan (1986),
this implies a

√
n-CLT for all f ∈ L2(E,μ) with limiting variance equal to the

asymptotic variance, that is, n−1/2 ∑n
i=1[f (�i) − μ(f )] converges weakly to a

N(0,var(f,�)) random variable when �1 ∼ μ. Hence, variance bounding pro-
vides some qualitative assurance of the practicality of using ergodic averages as
approximations of μ(f ) for all f such that varμ(f ) < ∞.

Some Markov chains used in practice are ergodic and reversible but not variance
bounding, so for at least some f ∈ L2

0(E,μ), var(f,�) is not finite: the proof of
Theorem 7 of Roberts and Rosenthal (2008) constructs one such f . On such oc-
casions, it is beneficial to have some guarantees on the subset of L2

0(E,μ) whose
ergodic averages do have finite asymptotic variance. Relevant results in this spirit
include Theorems 4.1–4.5 of Jarner and Roberts (2002), Theorem 2 of Jarner and
Roberts (2007) and Theorem 4.1 of Bednorz, Łatuszyński and Latała (2008), in-
volving the verification of Foster–Lyapunov drift criteria and/or regenerative prop-
erties of �. We note, however, that these results concern explicitly the existence
of a

√
n-CLT with finite limiting variance rather than finiteness of the asymptotic

variance.
In this paper, we consider the class of π -reversible, ergodic Markov chains X :=

(Xn)n∈N evolving on E whose Markov transition kernel is of the form

(1) P(x,A) := �(x)P̃ (x,A) + [
1 − �(x)

]
1A(x), A ∈ E,

where P̃ is the Markov transition kernel of a reversible Markov chain X̃ :=
(X̃n)n∈N, and � : E → (0,1]. Such chains arise frequently in statistical applica-
tions, Metropolis–Hastings chains being a notable example. We will refer to X̃

as the jump chain associated with X and P̃ the jump kernel associated with P .
The invariant probability measure π̃ associated with X̃ is related to π through
� and defined in Section 2. Jump chains are a recurring theme in the study of
Markov processes. For example, continuous time jump Markov processes are of-
ten defined in terms of a jump chain and a Poisson process describing the holding
times [see, e.g., Pardoux (2008), Chapter 7], which allows the use of discrete-
time techniques in their analysis. In the study of piecewise deterministic Markov
processes, properties like recurrence, geometric ergodicity can often be deduced
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from those of the jump chain, or an embedded chain more generally, which are
often simpler to derive [see, e.g., Costa (1990), Costa and Dufour (2008)]. In the
context of Markov chain Monte Carlo, jump chains have been studied by Douc
and Robert (2011) and Doucet et al. (2015), but for different purposes than here.
Denoting x �→ f (x)/�(x) by f/�, our first main result is that for f ∈ L2

0(E, π),
var(f,P ) < ∞ if and only if f/� ∈ L2

0(E, π̃) and var(f/�, P̃ ) < ∞, extending
a result by Doucet et al. (2015). This equivalence is interesting because it allows
us to infer that when P̃ is variance bounding, then those functions f such that
f/� ∈ L2

0(E, π̃) are exactly the functions in L2
0(E, π) for which var(f,P ) < ∞.

We apply this result to independent Metropolis–Hastings (IMH) Markov chains
as well as pseudo-marginal Markov chains. When P is an IMH kernel, we char-
acterize the class of π -integrable functions satisfying var(f,P ) < ∞. To the best
of our knowledge, this is the first result of this kind for independence samplers.
Pseudo-marginal Markov chains [Lin, Liu and Sloan (2000), Beaumont (2003),
Andrieu and Roberts (2009)] are a Monte Carlo innovation that has received con-
siderable recent attention. When P is a pseudo-marginal kernel, X is a π -reversible
Markov chain evolving on E = X×R+, where π admits as a marginal the invariant
distribution of a π̄ -reversible, “marginal” Markov chain X̄ evolving on X. The ex-
tension of the state space accommodates the inclusion of what can be viewed as a
multiplicative noise variable, and simulating X is in many respects like simulating
a noisy version of X̄. The noise introduced is of great practical importance: com-
putationally one can simulate X in some cases where one cannot simulate X̄, while
the properties of the noise variables introduced affect in a variety of ways the be-
haviour of X and associated ergodic averages. A brief summary of relevant results
in this active area of research can be found in Section 4. Our main contribution
in this context is Theorem 3, which gives a simple, sufficient condition for all er-
godic averages of functions f (·, u) = fX ∈ L2

0(X, π̄) to have var(f,P ) < ∞ when
X̄ is variance bounding. This condition is both necessary and sufficient in some
settings, but not in general, and amounts to uniformly bounded second moments
of the noise variables. This complements existing results, and in particular we do
not make explicit assumptions about X̄ beyond assuming it is variance bounding.
In contrast, previous sufficient conditions when X is not itself variance bounding
have been found when the marginal chain is strongly uniformly ergodic, or under
fairly specific assumptions on X̄ [Andrieu and Vihola (2016), Remark 15].

We close this section with some notation and definitions. N denotes the posi-
tive integers, R+ the nonnegative reals. For ν a measure on a measurable space
(S,S), and f a measurable function, we denote ν(f ) := ∫

S f (x)ν(dx). We define
L2(S, ν) = {f : ν(f 2) < ∞} and L2

0(S, ν) := {f ∈ L2(S, ν) : ν(f ) = 0}. Simi-
larly, L1(S, ν) = {f : ν(|f |) < ∞} and L1

0(S, ν) := {f ∈ L1(S, ν) : ν(f ) = 0}.
For functions f,g : S → R, we write f · g for the function x �→ f (x)g(x) and
when g is strictly positive f/g for the function x �→ f (x)/g(x). For a μ-reversible
Markov kernel �, we will say � is variance bounding when its associated Markov
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chain is variance bounding. We write ∧ and ∨ to denote min and max, respectively.
When we refer to a geometric distribution, we mean the distribution on N.

Many of our results rely on Dirichlet forms and the variational definition of the
right spectral gap of a Markov operator. For a generic measurable space (S,S) and
measure μ, we denote by 〈·, ·〉μ the inner product on L2(S,μ). We often rely on
viewing a μ-reversible Markov kernel � as a self-adjoint operator on L2(S,μ) or
L2

0(S,μ); this should always be clear from the context. We define the Dirichlet
form of a such a Markov kernel, for f ∈ L2(S,μ) as

E�(f ) := 〈
f, (I − �)f

〉
μ = 1

2

∫
S
μ(dx)�(x,dy)

[
f (y) − f (x)

]2
.

The right spectral gap of �, as an operator on L2
0(S,μ), is usually defined as the

distance of the right end of the spectrum from 1, or equivalently [Yosida (1980),
Theorem 2, page 320] as

(2) Gap(�) := inf
f ∈L2

0(S,μ),〈f,f 〉μ=1
E�(f ) = inf

f ∈L2(S,μ),varμ(f )>0

E�(f )

varμ(f )
,

where the rightmost infimum can be taken over L2
0(S,μ) or L2(S,μ). From The-

orem 14 of Roberts and Rosenthal (2008), � is variance bounding if and only if
Gap(�) > 0.

2. Relationship between X and X̃. We describe briefly the relationship be-
tween the chain X and its associated jump chain X̃, following Douc and Robert
(2011). Since X is π -reversible, it is straightforward to establish that X̃ is an er-
godic, π̃ -reversible Markov chain, where

(3) π̃(dx) = π(dx)�(x)/π(�),

from which it follows that π(f ) = π(�)π̃(f/�). One can construct a realization
of X from X̃ by introducing a sequence of holding times (τn)n∈N, where for each
n ∈ N, τn is conditionally independent of all other random variables given X̃n with
τn | {X̃n = x} ∼ Geometric(�(x)). By defining Sn := inf{k ≥ 1 : ∑k

i=1 τi ≥ n} for
n ∈ N, one can verify that (X̃Sn)n∈N is a realization of X with initial state X̃1.

Our first main result is the following, the converse part of which is the novel
addition to Proposition 2 of Doucet et al. (2015). The relation (4) may seem ob-
vious. Indeed, if one assumes that var(f,P ) and var(f/ρ, P̃ ) are both finite, then
(4) follows from the representation of X in terms of X̃ and a careful application of
the Kipnis–Varadhan CLT [Kipnis and Varadhan (1986)], as in the proof of Propo-
sition 2 in Doucet et al. (2015). The main difficulty lies in proving the first part of
the theorem, where the path-wise relation between X and X̃ does not offer much
traction without further restrictive assumptions.
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THEOREM 1. Let f ∈ L2
0(E, π). Then var(f,P ) < ∞ ⇐⇒ f/� ∈ L2

0(E, π̃)

and var(f/�, P̃ ) < ∞. Moreover,

(4) var(f,P ) = π
(
f 2/�

) − π
(
f 2) + π(�)var(f/�, P̃ ).

PROOF. The direction (⇒) and the expression for the variance is Proposi-
tion 2 of Doucet et al. (2015). We provide here the proof of (⇐). We recall the
variational expression for the asymptotic variance associated with a μ-reversible
Markov kernel � suggested by Caracciolo, Pelissetto and Sokal (1990), and dis-
cussed in Section 4 of Andrieu and Vihola (2016),

(5) var(f,�) = 2
[

sup
g∈L2(E,μ)

2〈f,g〉μ − E�(g)
]
− 〈f,f 〉μ, f ∈ L2

0(E,μ).

We observe from (1) that for g ∈ L2(E, π),

(6) EP (g) = 1

2

∫
E
π(dx)�(x)P̃ (x,dy)

[
g(y) − g(x)

]2 = π(�)E
P̃
(g)

and that 〈f/�,g〉π̃ = 〈f,g〉π/π(�). Let f/� ∈ L2
0(E, π̃), which implies f ∈

L2
0(E, π). Since L2(E, π) ⊆ L2(E, π̃), and using (6),

sup
g∈L2(E,π̃)

2〈f/�,g〉π̃ − E
P̃
(g) ≥ sup

g∈L2(E,π)

2〈f/�,g〉π̃ − E
P̃
(g)

= 1

π(�)

[
sup

g∈L2(E,π)

2〈f,g〉π − EP (g)
]
.

Combining this bound with the expressions for both var(f/�, P̃ ) and var(f,P )

using (5), we obtain

var(f,P ) ≤ π(�)var(f/�, P̃ ) + π
(
f 2/�

) − π
(
f 2)

,

so f/� ∈ L2
0(E, π̃) and var(f/�, P̃ ) < ∞ ⇒ var(f,P ) < ∞. �

REMARK 1. A different proof of Theorem 1 can also be obtained through the
analysis of the multiplication operator T : f �→ f/ρ between the Hilbert spaces
(L2

0(E, π), 〈·, ·〉1) and (L2
0(E, π̃), 〈·, ·〉2), where

〈f,g〉1 := 〈
(I − P)−1/2f, (I − P)−1/2g

〉
π ,

〈f,g〉2 := π(ρ)
〈
(I − P̃ )−1/2f, (I − P̃ )−1/2g

〉
π̃ .

In the process of showing that T is invertible and, therefore, proving Theorem 1,
one also obtains the interesting fact that T as defined is in fact an isometry, that is,

〈f,f 〉1 = 〈f/ρ,f/ρ〉2.

This proves (4) directly, without requiring a careful application of the CLT as was
done in the proof of Proposition 2 in Doucet et al. (2015).
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COROLLARY 1. If P̃ is variance bounding and f ∈ L2
0(E, π), then

var(f,P ) < ∞ ⇐⇒ f/� ∈ L2
0(E, π̃).

The following example illustrates one way this result can be applied.

EXAMPLE. Let p < 1/2 and � : N → (0,1], and consider the reversible
Markov chain X on N with P(1,1) = 1 − �(1)p, P(1,2) = �(1)p and for x > 1,
P(x, x) = 1 − �(x), P(x, x + 1) = �(x)p and P(x, x − 1) = �(x)(1 − p). The
jump chain X̃ is a simple random walk on N with π̃ the Geometric(1 −p/[1 −p])
distribution, and since p < 1/2 it is variance bounding [see, e.g., Meyn and
Tweedie (2009), Section 15.5.1]. We have π(x) ∝ [p/(1−p)]x/�(x) and it can be
shown that X is variance bounding if and only if infx∈X �(x) > 0. Irrespective of
this, Corollary 1 implies that the functions f ∈ L2

0(N, π) that have var(f,P ) < ∞
are those satisfying

∑
x∈N[p/(1 − p)]xf (x)2/�(x)2 < ∞.

The following proposition states that P̃ inherits variance bounding from P . The
example above shows that the converse clearly does not hold, and this is why
Corollary 1 provides a route to the characterization of functions whose ergodic
averages have finite asymptotic variance.

PROPOSITION 1. P and P̃ satisfy Gap(P̃ ) ≥ Gap(P ).

PROOF. If Gap(P ) = 0, then the result is trivial. If Gap(P ) > 0, then �∗ :=
π - ess inf� > 0 by Theorem 1 of Lee and Łatuszyński (2014). It follows that
L2(E, π̃) = L2(E, π). If g ∈ L2

0(E, π),

varπ(g)

varπ̃ (g)
= π(g2)

π̃(g2) − π̃(g)2 ≥ π(g2)

π̃(g2)
= π(g2)π(�)

π(� · g2)
≥ π(�),

and so varπ(g)/varπ̃ (g) ≥ π(ϕ) for any g ∈ L2(E, π). From (6), for any g ∈
L2(E, π̃) = L2(E, π),

E
P̃
(g)

varπ̃ (g)
= EP (g)/π(�)

varπ(g)
· varπ(g)

varπ̃ (g)
≥ EP (g)

varπ(g)
,

and it follows from (2) and taking infima that Gap(P̃ ) ≥ Gap(P ). �

REMARK 2. One can deduce from Theorem 1 that for f ∈ L2
0(E, π),

var(f̃ , P̃ ) = π(�)2 var(f/�, P̃ ) = π(�)
[
var(f,P ) − π

(
f 2/�

) + π
(
f 2)]

,

where f̃ := π(�) · f/�. It follows that the sequence of approximations of π(f )

defined by n−1 ∑n
i=1 f̃ (X̃i) has an asymptotic variance at least π(�) smaller than

n−1 ∑n
i=1 f (Xi). In the context of limiting variances for associated central limit

theorems, rather than the asymptotic variances studied here, this observation is one
of the main contributions and motivations for Douc and Robert (2011), which we
will return to in Section 5.
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In the sequel, we will apply Theorem 1 exclusively to the case where

(7) P(x,A) =
∫
A

q(x,dy)α(x, y) + [
1 − �(x)

]
1A(x), A ∈ E,

with q a Markov kernel, α : E2 → [0,1] an acceptance probability function and
�(x) := ∫

E q(x,dy)α(x, y) denoting the probability of accepting a proposal from
q(x, ·). In this case, the jump kernel P̃ is

P̃ (x,A) =
∫
A

q(x,dy)α(x, y)/�(x), A ∈ E,

and X̃ is the Markov chain of accepted proposals. A particular α, which guarantees
π -reversibility of P , is the Metropolis–Hastings acceptance probability function
[Metropolis et al. (1953), Hastings (1970)]

(8) α(x, y) = 1 ∧ π(dy)q(y,dx)

π(dx)q(x,dy)
.

3. Independent Metropolis–Hastings.

3.1. Characterization of functions with finite asymptotic variance. We now
apply Theorem 1 to characterize those f ∈ L2

0(E, π) with finite var(f,P ) when P

is an IMH kernel. In fact, we are able to characterize those f ∈ L1
0(E, π) with finite

var(f,P ) in this specific case. An IMH kernel is a Metropolis–Hastings kernel
where in (7), q(x, ·) = μ(·) for all x ∈ E, where μ is a probability measure such
that π � μ. The acceptance probability (8) is

α(x, y) := 1 ∧ w(y)

w(x)
, x, y ∈ E,where w := dπ

dμ
.

The resulting IMH chain X has been analyzed for various π and μ. For example,
Tierney (1994) noted that when w̄ := π - ess supw < ∞, X is uniformly ergodic
with a spectral gap of 1/w̄, and Mengersen and Tweedie (1996) showed that when
w̄ = ∞, X is not even geometrically ergodic. In Jarner and Roberts (2002) and
Jarner and Roberts (2007), conditions guaranteeing polynomial ergodicity of X,
and hence finite associated asymptotic variances for some functions, are obtained
under assumptions on π and μ. Using Theorem 1, however, we are able to charac-
terize exactly the class of functions with finite associated asymptotic variances.

THEOREM 2. Let f ∈ L1
0(E, π). For the IMH, var(f,P ) < ∞ if and only if

f ∈ L2
0(E, π) and w · f ∈ L2

0(E,μ).

Lemma 1 is used multiple times in our proofs.
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LEMMA 1. Let Y be a nonnegative random variable with E[Y ] = 1. Then

1

E[Y 2] + c
≤ E

[
1 ∧ Y

c

]
≤ 1 ∧ 1

c
.

PROOF. For the upper bound, we have E[1 ∧ Y
c
] ≤ 1 ∧E[Y

c
] = 1 ∧ 1

c
. For the

lower bound, letting ν be the probability measure associated with Y ,

E

[
1 ∧ Y

c

]
=

∫
R+

ν(dy)

(
1 ∧ y

c

)
=

∫
R+

ν(dy)y

(
1

y
∧ 1

c

)

≥
[∫

R+
ν(dy)y(y ∨ c)

]−1
≥ (

E
[
Y 2] + c

)−1
,

where we have used the fact that ν(dy)y is also a probability measure, Jensen’s
inequality and a ∨ b ≤ a + b. �

COROLLARY 2. For the IMH,

1

π(w) + w(x)
≤ �(x) ≤ 1 ∧ 1

w(x)
.

LEMMA 2. For the IMH, if f ∈ L1
0(E, π) \ L2

0(E, π), then var(f,P ) = ∞.

PROOF. Let A := {x ∈ E : f (x) ≥ 0} and B := {x ∈ E : f (x) ≤ 0}. Since f ∈
L1

0(E, π) \ L2
0(E, π), at least one of π(1A · f 2) or π(1B · f 2) is infinite, so let

C ∈ {A,B} satisfy π(1C · f 2) = ∞ and observe that μ(C) > 0 since π � μ. We
consider the event (X1, . . . ,Xn) ∈ Cn, noting that for x ∈ C, P(x,C) ≥ μ(C). On
the event (X1, . . . ,Xn) ∈ Cn, we have [∑n

i=1 f (Xi)]2 ≥ f (X1)
2, and so for any

n ∈ N,

var

(
1

n

n∑
i=1

f (Xi)

)
= E

[{
1

n

n∑
i=1

f (Xi)

}2]

≥ E
[
1Cn(X1, . . . ,Xn)n

−2f (X1)
2]

≥ n−2μ(C)n−1π
(
1C · f 2) = ∞.

Hence var(f,P ) is infinite. �

LEMMA 3. For the IMH, P̃ satisfies the one-step minorization condition

P̃ (x,A) ≥ π(�)π̃(A), x ∈ E,A ∈ E,

so X̃ is uniformly ergodic. Therefore, for f ∈ L2
0(E, π), var(f,P ) < ∞ ⇐⇒

f/� ∈ L2
0(E, π̃).
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PROOF. Straightforward calculations and (3) provide

P̃ (x,dy) = μ(dy)α(x, y)

�(x)
= μ(dy)[1 ∧ w(y)

w(x)
]

�(x)

= π(dy)[ 1
w(y)

∧ 1
w(x)

]
�(x)

= π̃(dy)π(�)[ 1
w(y)

∧ 1
w(x)

]
�(x)�(y)

= π̃ (dy)π(�)

[w(y) ∨ w(x)]�(x)�(y)
≥ π̃(dy)π(�),

where in the inequality we have used symmetry and that when w(x) ≥ w(y), the
upper bound in Corollary 2 implies that[

w(y) ∨ w(x)
]
�(x)�(y) = w(x)�(x)�(y) ≤ �(y) ≤ 1.

For the second part, since X̃ is uniformly ergodic it is variance bounding, and the
result follows from Corollary 1. �

LEMMA 4. For the IMH, let f ∈ L2
0(E, π). Then f/� ∈ L2

0(E, π̃), if and only
if w · f ∈ L2

0(E,μ).

PROOF. We note that f/� ∈ L2
0(E, π̃) ⇐⇒ π(f 2/�) < ∞. If π(f 2/�) < ∞,

then since w(x) ≤ 1/�(x) by Lemma 2,

μ
(
w2 · f 2) = π

(
w · f 2) ≤ π

(
f 2/�

)
< ∞.

For the converse, assume π(f 2) < ∞ and μ(w2 · f 2) = π(w · f 2) < ∞. We
consider two cases: π(w) < ∞ and π(w) = ∞. If π(w) < ∞, then �(x) ≥
1/[π(w) + w(x)] by Lemma 2, so

π
(
f 2/�

) ≤ π(w)π
(
f 2) + π

(
w · f 2)

< ∞.

If π(w) = ∞, then for each x ∈ X we define the region of certain acceptance
Ax := {y : w(y) ≥ w(x)} and observe that

�(x) =
∫

E
1 ∧ w(y)

w(x)
μ(dy) = μ(Ax) + π

(
A�

x

)
/w(x).

Since μ(w) = 1, w is μ-almost everywhere finite, and thus there exists a C > 0
such that B := {x : w(x) ≥ C} satisfies π(B�) > 0. For example, C could be an
appropriately chosen quantile of w(X) when X ∼ π . Moreover, since π(w) = ∞,
we must have π(B) > 0, which implies μ(B) > 0 since π � μ. We observe that
if x ∈ B ,

Ax ⊆ B ⇒ π
(
A�

x

) ≥ π
(
B�) ⇒ �(x) ≥ π

(
B�)/w(x),

while if x /∈ B ,

Ax ⊇ B ⇒ μ(Ax) ≥ μ(B) ⇒ �(x) ≥ μ(B).
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Therefore,

π
(
f 2/�

) = π
(
1B · f 2/�

) + π
(
1
B� · f 2/�

) ≤ π(1B · w · f 2)

π(B�)
+ π(1

B� · f 2)

μ(B)
< ∞.

�

PROOF OF THEOREM 2. This is a consequence of Lemmas 2, 3 and 4. �

REMARK 3. The characterization of L1
0(E, π) functions for which indepen-

dence sampler ergodic averages have finite asymptotic variance involved extend-
ing the L2

0(E, π) characterization with a specific result for this case, Lemma 2.
We are not aware of general results for reversible Markov chains ensuring that er-
godic averages of functions that are in L1

0(E, π) but not L2
0(E, π) do not have finite

asymptotic variance, which would allow the characterization of Theorem 1 to be
extended.

3.2. Comparison with self-normalized importance sampling. Self-normalized
importance sampling is an alternative way to define a Monte Carlo approximation
of π(f ) using a sequence of independent μ-distributed random variables (Zn)n∈N.
If we define

πSNIS
n (f ) :=

∑n
i=1 w(Zi)f (Zi)∑n

i=1 w(Zi)
, n ∈ N,

one obtains that
√

n{πSNIS
n (f ) − π(f )} converges weakly to a N(0, π(w · f̄ 2))

random variable whenever π(w · f̄ 2) < ∞, where f̄ = f − π(f ). Theorem 2 in-
dicates that the class of L1

0(E, π) functions f with finite var(f,P ) is in general
smaller than those satisfying w · f ∈ L2

0(E,μ). In particular, small values of w

are able to counterbalance large values of f in πSNIS
n (f ) while � ≤ 1 prevents

any such counterbalancing for the IMH, as can be seen from Lemma 3. The fol-
lowing bounds allow us to compare var(f,P ) with the limiting variance in the
self-normalized importance sampling CLT: the former is always larger than the
latter.

PROPOSITION 2. If f ∈ L2
0(E, π) and w · f ∈ L2

0(E,μ), we have

2π(�)π̃
(
f 2/�2) − π

(
f 2) ≤ var(f,P ) ≤ 2π̃

(
f 2/�2) − π

(
f 2)

,

and var(f,P ) ≥ π(w · f 2).

PROOF. Proposition 3 and Remark 1 of Doucet et al. (2015) show that for the
IMH, P̃ is a positive operator on L2

0(E, π̃) so var(f/�, P̃ ) ≥ π̃(f 2/�2). Lemma 3
implies that Gap(P̃ ) ≥ π(�) and spectral considerations [see, e.g., Section 3.5 of
Geyer (1992), based on Kipnis and Varadhan (1986)] give

π̃
(
f 2/�2) ≤ var(f/�, P̃ ) ≤ 2 − Gap(P̃ )

Gap(P̃ )
π̃

(
f 2/�2) ≤ 2 − π(�)

π(�)
π̃

(
f 2/�2)

.
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These inequalities, together with (4), imply the first set of inequalities. The last
inequality follows from Corollary 2 since

2π(�)π̃
(
f 2/�2) − π

(
f 2) ≥ π

(
w · f 2) + π

(
f 2/�

) − π
(
f 2) ≥ π

(
w · f 2)

. �

REMARK 4. When f ∈ L2
0(E, π) and w̄ = supx∈X w(x) < ∞, spectral con-

siderations provide the bounds π(f 2) ≤ var(f,P ) ≤ (2w̄ − 1)π(f 2). The upper
bound can be smaller or larger than the upper bound in Proposition 2, but the first
lower bound of Proposition 2 is always larger than π(f 2).

4. Pseudo-marginal Markov chains. We briefly motivate the construction of
pseudo-marginal chains, following the notation of Andrieu and Vihola (2015). Let
π̄ be a probability measure on (X,X ), and X̄ the π̄ -reversible Metropolis–Hastings
chain with proposal kernel q and acceptance probability function ᾱ(x, y) := 1 ∧
r̄(x, y), where

r̄(x, y) := π̄(dy)q̄(y,dx)

π̄(dx)q̄(x,dy)
, x, y ∈ X.

Letting π̄ and q̄ have densities, also denoted by π̄ and q̄ , w.r.t. some reference
measure, an associated pseudo-marginal Markov chain X can be constructed when
only unbiased, nonnegative estimates of π̄ (x) are available for each x ∈ X. That is,
there exists a collection of probability measures {Qx : x ∈ X} on nonnegative noise
variables such that

(9)
∫
R+

uQx(du) = 1, x ∈ X,

and so if U ∼ Qx then Uπ̄(x) is a nonnegative random variable with expectation
π̄(x). Defining the probability measure on (E,E) = (X ×R+,X ×B(R+)),

π(dx,du) := π̄ (dx)Qx(du)u,

the pseudo-marginal chain X is a π -reversible Metropolis–Hastings chain with
proposal kernel q(x,u;dy,dv) := q̄(x,dy)Qy(dv), and acceptance probability
function α(x,u;y, v) := 1 ∧ r(x,u;y, v), where

r(x,u;y, v) := r̄(x, y)
v

u
= vπ̄(dy)q̄(y,dx)

uπ̄(dx)q̄(x,dy)
, (x,u), (y, v) ∈ E.

From a computational perspective, this means that only variables representing the
unbiased estimates uπ̄(x) and vπ̄(y) of the densities π̄(x) and π̄(y) are required
to compute α. Since the ratio of these densities appears in r , unbiased estimates
of the density π̄ up to a common, but unknown, normalizing constant are also
sufficient; we focus here without loss of generality on the case (9) to simplify
the presentation of the results, rather than allowing the right-hand side therein
to be an arbitrary constant c > 0, in which case π̄(dx)Qx(du)u would define an
unnormalized version of π when c �= 1.
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The influence of {Qx : x ∈ X} on the behaviour of X and associated ergodic
averages has recently been the subject of intense research. For example, it is
known that if the noise variables U ∼ Qx are not almost surely bounded for π̄ -
almost all x, then X cannot be variance bounding, while if they are essentially
uniformly bounded, then X “inherits” variance bounding from X̄ [Andrieu and
Roberts (2009), Andrieu and Vihola (2015)]. In between these cases, which is
fairly common in statistical applications, the situation is more complex and X

may or may not inherit variance bounding depending on q̄ [see, e.g., Lee and Ła-
tuszyński (2014), Andrieu and Vihola (2015)].

A simplified version of a result by Andrieu and Vihola (2016) establishes a
partial order between different pseudo-marginal chains with noise variable distri-
butions obtained by averaging independent realizations of each x-dependent noise
variable a fixed number of times, thus extending results in Andrieu and Vihola
(2015) on the convergence of finite asymptotic variances to their marginal coun-
terparts in this setting. The issue of which ergodic averages have finite asymptotic
variances when X is not variance bounding, however, has been resolved only in
a few specific settings through sub-geometric drift and minorization conditions
[Andrieu and Vihola (2016), Remark 11]. In addition, a result by Bornn et al.
(2017) and its generalization by Sherlock, Thiery and Lee (2017) shows that the
class of functions with finite asymptotic variance cannot be enlarged by averaging
in the manner just described.

The pseudo-marginal kernel P described above can be written for A ∈ E as

P(x,u;A) :=
∫
A

q̄(x,dy)Qy(dv)α(x,u;y, v) + [
1 − �(x,u)

]
1A(x,u),

where �(x,u) := ∫
E q̄(x,dy)Qy(dv)α(x,u;y, v), and the marginal kernel P̄ can

be written, for A ∈ X ,

P̄ (x,A) :=
∫
A

q̄(x,dy)ᾱ(x, y) + [
1 − �̄(x)

]
1A(x),

where �̄(x) := ∫
E q̄(x,dy)ᾱ(x, y).

Our results are most easily stated by making reference to the second moments
of the noise variables, so we define

s(x) :=
∫
R+

u2Qx(du), x ∈ X,

and s̄ := π̄ - ess sup s.

4.1. Independent proposals. Our first result is a complete characterization of
the functions f ∈ L1

0(E, π) satisfying var(f,P ) < ∞ in the specific case where P

is also an IMH sampler and is essentially a corollary of Theorem 2.
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PROPOSITION 3. Assume q̄(x, ·) = μ̄(·) for all x ∈ X, and f ∈ L1
0(E, π).

Then var(f,P ) < ∞ if and only if f ∈ L2
0(E, π) and∫

E
u2 dπ̄

dμ̄
(x)f (x,u)2π̄(dx)Qx(du) < ∞.

PROOF. If we define μ(dx,du) = μ̄(dx)Qx(du), then P is exactly the π -
reversible IMH kernel with proposal μ and, in particular,

w(x,u) = dπ

dμ
(x,u) = u

dπ̄

dμ̄
(x).

Theorem 2 then implies that var(f,P ) < ∞ if and only if f ∈ L2
0(E, π) and w ·f ∈

L2
0(E,μ), and so the result follows from

μ
(
w2 · f 2) = π

(
w · f 2) =

∫
E
u

dπ̄

dμ̄
(x)f (x,u)2π(dx,du)

=
∫

E
u2 dπ̄

dμ̄
(x)f (x,u)2π̄(dx)Qx(du). �

COROLLARY 3. Assume q̄(x, ·) = μ̄(·) for all x ∈ X. If f (·, u) = fX ∈
L2

0(X, π̄), then var(f,P ) < ∞ if and only if∫
X
s(x)

dπ̄

dμ̄
(x)fX(x)2π̄(dx) < ∞,

which is clearly satisfied if s̄ < ∞ and π̄ - ess sup dπ̄/dμ̄ < ∞.

REMARK 5. It is possible that supx∈X s(x)dπ̄
dμ̄

(x) < ∞ even though s̄ = ∞.
Let, for example, π̄(dx) ∝ h(x)p(dx) and μ̄ = p, where h : X → (0,1), p is a
probability measure and Qx({1/h(x)}) = h(x) = 1 − Qx({0}). Then one obtains
s(x) = h(x)−1 and dπ̄

dμ̄
(x) ∝ h(x), so that s(x)dπ̄

dμ̄
(x) is constant for all x ∈ X.

This is equivalent to the IMH for a simple approximate Bayesian computation
model, where p is the prior distribution of the statistical parameter and h(x) the
probability of the observed data when x is the true parameter [Tavaré et al. (1997)].

REMARK 6. If for some C > 0, C−1 ≤ dπ̄
dμ̄

(x) ≤ C for all x ∈ X, then s̄ < ∞
is both necessary and sufficient for all ergodic averages of functions in L2

0(X, π̄) to
have finite asymptotic variance. Perhaps surprisingly, using π̄ as the proposal dis-
tribution can make the class of functions with finite asymptotic variance smaller
when s̄ = ∞: in the example of Remark 5, we obtain that this class is exactly
L2

0(X,p). Under this same condition, we also observe that a necessary and suffi-
cient condition for all bounded functions fX to have finite asymptotic variance is∫

X s(x)π̄(dx) < ∞.
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That the class of functions whose ergodic averages have finite asymptotic vari-
ance depends on the second moment function s is entirely consistent with results
by Bornn et al. (2017) and Sherlock, Thiery and Lee (2017). In particular, let us
define for N ∈ N a new collection of induced probability measures {QN

x : x ∈ X},
where for each x ∈ X, U ∼ QN

x is equal in distribution to the average of N indepen-
dent, Qx -distributed random variables. Letting v(x) be the variance of U ∼ Qx ,
we obtain s(x) = 1 + v(x) whereas the second moment function sN associated
with {QN

x : x ∈ X} satisfies sN(x) = 1 + v(x)/N . It is then clear that∫
X
s(x)

dπ̄

dμ̄
(x)fX(x)2π̄(dx) < ∞ ⇐⇒

∫
X
sN(x)

dπ̄

dμ̄
(x)fX(x)2π̄(dx) < ∞.

4.2. An auxiliary Markov kernel. The remainder of our results provide suffi-
cient conditions for the ergodic averages of a function in L2(E, π) to have finite
asymptotic variance. The proofs are based on a modification of P whose asso-
ciated asymptotic variances are larger than or equal to those associated with P

itself, so that the novel converse part of Theorem 1 can still be applied to obtain
results. Strictly for the purposes of this analysis, as in Andrieu and Vihola (2015)
and Doucet et al. (2015), we introduce an auxiliary Markov kernel R that has the
same proposal as P but a different acceptance probability function. In particular,
the acceptance probability is

αR(x,u;y, v) := {
1 ∧ r̄(x, y)

}{
1 ∧ v

u

}
.

We can therefore write R as

(10) R(x,u;A) :=
∫
A

q̄(x,dy)Qy(dv)ᾱ(x, y)

{
1∧ v

u

}
+[

1−�R(x,u)
]
1A(x,u),

where

(11) �R(x,u) :=
∫

E
q̄(x,dy)Qy(dv)αR(x,u;y, v).

It is straightforward to deduce that R is π -reversible, for example, by Lemma 2
of Banterle et al. (2015), and also that αR(x,u;y, v) ≤ α(x,u;y, v) for all
(x, u), (y, v) ∈ E. The kernels P and R are therefore ordered in the sense of Peskun
[Peskun (1973), Tierney (1998)], so var(f,P ) ≤ var(f,R) for all f ∈ L2(E, π).

Lemma 5 below could be deduced from Proposition 8 of Andrieu and Vihola
(2015), in which the context is slightly different; we provide a proof for complete-
ness. This result allows us to compare the spectral gaps of closely related Markov
kernels that operate on different spaces, and is central to our analysis of pseudo-
marginal Markov chains.

LEMMA 5. Let μ(dx,du) = ν(dx)μx(du) be a measure on (E,E) =
(X × U,X × U). Let Q be a ν-reversible sub-Markov kernel on (X,X ), � be
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the function x �→ Q(x,X) and P̄ be the ν-reversible Markov kernel

P̄ (x,A) =
∫
A

Q(x,dy) + [
1 − �(x)

]
1A(x), A ∈ X .

Letting P be the μ-reversible kernel

P(x,u;A) =
∫
A

Q(x,dy)μy(dv) + [
1 − �(x)

]
1A(x,u), A ∈ E,

we have Gap(P̄ ) ∧ �∗ ≤ Gap(P ) ≤ Gap(P̄ ), where �∗ = ν- ess inf�.

PROOF. Let f ∈ L2
0(E,μ) with 〈f,f 〉μ = 1. For each x ∈ X, we write fx for

the function u �→ f (x,u). Let f̄ (x) := μx(fx) = ∫
U f (x,u)μx(du) and note that

f̄ ∈ L2
0(X, ν). When a function g ∈ L2(X, ν) is treated as a function in L2(E,μ),

we adopt the convention that g(·, u) = g. We observe that

EP (f ) = 〈� · f,f 〉μ − 〈� · f̄ , f̄ 〉ν + EP̄ (f̄ ).

Let h(x) = varμx (fx). Then for any g ∈ L2(X, ν) we have 〈g · f,f 〉μ − 〈g ·
f̄ , f̄ 〉ν = 〈g,h〉ν , and so

EP (f ) = 〈�,h〉ν + EP̄ (f̄ ) ≥ 〈�,h〉ν + 〈f̄ , f̄ 〉ν Gap(P̄ )

≥ 〈�,h〉ν + 〈f̄ , f̄ 〉ν Gap(P̄ ) ∧ �∗

= 〈�,h〉ν + {〈f,f 〉μ − 〈1, h〉ν}
Gap(P̄ ) ∧ �∗

= Gap(P̄ ) ∧ �∗ + 〈�,h〉ν − 〈
Gap(P̄ ) ∧ �∗, h

〉
ν

≥ Gap(P̄ ) ∧ �∗.

Since f ∈ L2
0(E,μ) is arbitrary with 〈f,f 〉μ = 1, we obtain from (2) that

Gap(P ) ≥ Gap(P̄ ) ∧ �∗. That Gap(P ) ≤ Gap(P̄ ) also follows from (2) by con-
sidering functions f of x alone in L2

0(E,μ), since then EP (f ) = EP̄ (f̄ ). �

4.3. Independent noise distributions. Our first result assumes that the noise
distribution is state-independent, that is, Qx = Q for all x ∈ X, and that the
marginal jump chain is variance bounding.

PROPOSITION 4. Assume that Qx = Q for all x ∈ X, s̄ < ∞ and that the jump
kernel associated with P̄ is variance bounding. Then:

1. For f ∈ L2
0(E, π), var(f,P ) < ∞ if

∫
E
(u + s̄)u

f (x,u)2

�̄(x)
π̄(dx)Q(du) < ∞.

2. If f (·, u) = fX ∈ L2
0(X, π̄), then var(fX, P̄ ) < ∞ ⇒ var(f,P ) < ∞.
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These results complement the results of Doucet et al. (2015) and Sherlock et al.
(2015), who assume that the distribution of the weights is independent of x in order
to optimize the trade-off between computational cost and asymptotic variance. In
particular, Proposition 4 indicates that those results can be applied to ergodic aver-
ages of all L2

0(X, π̄) functions when the jump kernel associated with P̄ is variance
bounding.

When the noise distribution is state-independent, (10) simplifies to

R(x,u;A) =
∫
A

q̄(x,dy)Q(dv)
{
1 ∧ r(x, y)

}{
1 ∧ v

u

}
+ [

1 − �R(x,u)
]
1A(x,u),

where �R(x,u) = ∫
E q̄(x,dy)Q(dv)αR(x,u;y, v). If we define

(12) �U(u) :=
∫
R+

Q(dv)

{
1 ∧ v

u

}
, u ∈ R+,

then we observe that �R(x,u) = �̄(x)�U(u).

LEMMA 6. With s̄ = ∫
R+ u2Q(du), �U in (12) satisfies

1

s̄ + u
≤ �U(u) ≤ 1 ∧ 1

u
,

and
∫
R+ Q(du)u�U(u) ≥ (2s̄)−1.

PROOF. The first part follows from Lemma 1, since �U(u) = E[1∧ V
u
], where

V ∼ Q, and V is a nonnegative random variable with expectation 1. The second
part follows from the first part and Jensen’s inequality. �

PROOF OF PROPOSITION 4. For clarity, denote by P ∗ the jump kernel asso-
ciated with P̄ and let R̃ be the jump Markov kernel associated with R, that is,

R̃(x, u;dy,dv) := q̄(x,dy)Q(dv){1 ∧ r̄(x, y)}{1 ∧ v
u
}

�R(x,u)
.

From (3) and �R(x,u) = �̄(x)�U(u), R̃ is π̃ -reversible where, with Id the identity
function,

π̃(dx,du) := π̄(dx)�̄(x)

π̄(�̄)

Q(du)u�U(u)

Q(Id · �U)
.

The strategy of the proof is to deduce that Gap(R̃) > 0 from the fact that
Gap(P ∗) > 0. We then identify which functions f satisfy f/�R ∈ L2

0(E,μ), since
then var(f,P ) ≤ var(f,R) < ∞. Since P ∗ and R̃ operate on different spaces, X
and E = X × U, respectively, in order to compare their spectral gaps we will apply
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Lemma 5. We cannot do this directly, and thus we will introduce an auxiliary ker-
nel M , such that the right gaps of M and P ∗ can be compared using Lemma 5 and
such that

(13) Gap(M) > 0 ⇒ Gap(R̃) > 0.

Notice that we can express R̃ as

R̃(x, u;dy,dv) = q̄(x,dy){1 ∧ r̄(x, y)}Q(dv){1 ∧ v
u
}

�̄(x)�U(u)

= P ∗(x,dy)
Q(dv){1 ∧ v

u
}

�U(u)
.

We introduce the π̃ -reversible auxiliary Markov kernel M by modifying R̃ so that
the second coordinate forms a sequence of independent draws from the marginal
under π̃

M(x,u;dy,dv) := q̄(x,dy){1 ∧ r̄(x, y)}
�̄(x)

Q(dv)v�U(v)

Q(Id · �U)

= P ∗(x,dy)
Q(dv)v�U(v)

Q(Id · �U)
.

This choice allows to immediately deduce Gap(P ∗) > 0 ⇒ Gap(M) > 0 by ap-
plying Lemma 5 with Q = P ∗.

We will now compare Gap(M) and Gap(R̃). Notice that

R̃(x, u;dy,dv) = q̄(x,dy){1 ∧ r̄(x, y)}
�̄(x)

Q(dv)v{ 1
v

∧ 1
u
}

�U(u)

= M(x,u;dy,dv)
1

�U(u)�U(v)[v ∨ u]Q(Id · �U).

From Lemma 6, we have �U(u) ≤ 1 ∧ 1/u, so that �U(u)�U(v)[v ∨ u] ≤ 1 by
the same argument as in the proof of Lemma 3. Hence, R̃(x, u;dy,dv) ≥ Q(Id ·
�U)M(x,u;dy,dv), and it follows that

0 < EM(f ) ≤ Q(Id · �U)−1E
R̃
(f ), f ∈ L2

0(E,μ),

and so Gap(R̃) ≥ Q(Id ·�U)Gap(M) > 0 since Q(Id ·�U) ≥ (2s̄)−1 by Lemma 6.
Since var(f,R) ≥ var(f,P ), an application of Corollary 1 shows that all f ∈
L2

0(E, π) such that f/�R ∈ L2
0(E,μ) satisfy var(f,P ) < ∞ and we conclude the

first part by writing

π(�R)μ
(
f 2/�2

R

) =
∫

E

f (x,u)2

�R(x,u)
π(dx,du) =

∫
E

f (x,u)2

�̄(x)�U(u)
π̄(dx)Q(du)u

≤
∫

E
(u + s̄)u

f (x,u)2

�̄(x)
π̄(dx)Q(du),
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where the inequality follows from Lemma 6. For the second part, we have

π(�R)μ
(
f 2/�2

R

) ≤
∫

X

fX(x)2

�̄(x)
π̄(dx)

∫
R+

(u + s̄)uQ(du)

≤ 2s̄

∫
X

fX(x)2

�̄(x)
π̄(dx),

and π̄(f 2
X/�̄) < ∞ is equivalent by Corollary 1 to var(fX, P̄ ) < ∞ since P ∗ is

variance bounding. �

4.4. General case. Our most generally applicable result for pseudo-marginal
chains is the following. The strategy of the proof is similar in many respects to
that of Proposition 4, but more complicated. In addition, the assumption that P̄

is variance bounding is stronger (cf. Proposition 1) than the assumption that its
associated jump kernel is variance bounding.

THEOREM 3. Assume P̄ is variance bounding and s̄ < ∞. Then for f ∈
L2

0(E, π) satisfying ∫
E
f (x,u)2π̄(dx)Qx(du)u2 < ∞,

var(f,P ) < ∞. In particular, if f (·, u) = fX ∈ L2
0(X, π̄) then var(f,P ) < ∞.

Remark 6 indicates that the condition s̄ < ∞ is also necessary in some settings,
while of course Remark 5 indicates that it is not necessary in others.

In this case, �R does not factorize as in Section 4.3 since the distribution of the
weights is dependent on the proposed value of y. In order to define appropriate
auxiliary kernels to allow the application of Lemma 5 in the proof of Theorem 3,
we define the expected acceptance probability associated to a point x ∈ X as

(14) �R,X(x) :=
∫

Qx(du)u�R(x,u).

LEMMA 7. Let �R and �R,X be given by (11) and (14), respectively. Then for
each (x, u) ∈ E,

�̄(x)

s̄ + u
≤

∫
X
q̄(x,dy)ᾱ(x, y)

�̄(x)

s(y) + u
≤ �R(x,u) ≤ �̄(x)

{
1 ∧ 1

u

}
,

and for each x ∈ X, �̄(x)/(2s̄) ≤ �R,X(x) ≤ �̄(x).

PROOF. We can write �R(x,u) = ∫
X q̄(x,dy)ᾱ(x, y)

∫
R+ Qy(dv)[1 ∧ v

u
],

whence the first part holds by applying Lemma 1 to the inner integral. For the
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second part, we have

�R,X(x) =
∫
R+

Qx(du)u�R(x,u)

=
∫

X
q̄(x,dy)ᾱ(x, y)

∫
R

2+
Qx(du)uQy(dv)

[
1 ∧ v

u

]
,

so that �R,X(x) ≤ �̄(x). Moreover,

�R,X(x) =
∫

X
q̄(x,dy)ᾱ(x, y)

∫
R

2+
Qx(du)uQy(dv)v

[
1

v
∧ 1

u

]

≥
∫

X
q̄(x,dy)ᾱ(x, y)/

[
s(x) + s(y)

] ≥
∫

X
q̄(x,dy)ᾱ(x, y)/(2s̄),

where we have used Jensen’s inequality and the fact that a ∨ b ≤ a + b. �

PROOF OF THEOREM 3. Let R̃ be the jump kernel associated with R, which
from (3) is μ-reversible with

μ(dx,du) = π̄ (dx)Qx(du)u�R(x,u)

π(�R)
.

The strategy of the proof is as follows. We will use the fact that P̄ is variance
bounding to show that Gap(R̃) > 0; we will then identify which functions f sat-
isfy f/�R ∈ L2

0(E,μ), since then var(f,P ) ≤ var(f,R) < ∞. Since P̄ and R̃ op-
erate on X and E = X × U, respectively, in order to compare their spectral gaps we
will apply Lemma 5. We cannot do this directly, and thus we will introduce two
auxiliary kernels, M and M̄ , which do have the required structure and such that
the following sequence of implications holds:

(15) Gap(P̄ ) > 0 ⇒ Gap(M̄) > 0 ⇒ Gap(M) > 0 ⇒ Gap(R̃) > 0.

We decompose μ as μ(dx,du) = ν(dx)μx(du) where ν(dx) := π̄ (dx)�R,X(x)/

π(�R) and μx(du) := Qx(du)u�R(x,u)/�R,X(x). Since the ν-reversible kernel
M̄ must inherit a right spectral gap from P̄ , we choose M̄ to be the Metropolis–
Hastings kernel with proposal P̄ and target ν, that is,

M̄(x,A) :=
∫
A

q̄(x,dy)ᾱ(x, y)

[
1 ∧ �R,X(y)

�R,X(x)

]
+ [

1 − �M(x)
]
1A(x), A ∈ X ,

where �M(x) := ∫
X q̄(x,dy)ᾱ(x, y)[1 ∧ �R,X(y)/�R,X(x)]. The μ-reversible

Markov kernel M is then dictated by Lemma 5 to be

M(x,u;A) :=
∫
A

q̄(x,dy)ᾱ(x, y)

[
1 ∧ �R,X(y)

�R,X(x)

]
μy(dv) + [

1 − �M(x)
]
1A(x,u)

for A ∈ E , and we proceed to prove (15).
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We observe that P̄ being variance bounding implies � := infx �̄(x) > 0, by The-
orem 1 of Lee and Łatuszyński (2014). By Lemma 7, we have �R,X(y)/�R,X(x) ≥
�/(2s̄) so infx∈X �M(x) ≥ 1∧�/(2s̄) > 0. By Lemma 5, Gap(M) ≥ Gap(M̄)∧1∧
[�/(2s̄)] = Gap(M̄) ∧ [�/(2s̄)] and we now show that Gap(M̄) > 0. Since � > 0,
L2(X, ν) = L2(X, π̄). For f ∈ L2(X, π̄), we have

2EM̄(f ) =
∫

X

π̄ (dx)�R,X(x)

π(�R)
q̄(x,dy)ᾱ(x, y)

[
1 ∧ �R,X(y)

�R,X(x)

][
f (y) − f (x)

]2

≥ �

2s̄

∫
π̄(dx)q̄(x,dy)ᾱ(x, y)

[
f (y) − f (x)

]2 = 2
�

2s̄
EP̄ (f ).

Moreover, for f ∈ L2
0(X, π̄),

varπ̄ (f )

varν(f )
= π(�R)π̄(f 2)

π̄(�R,X · f 2) − π̄(�R,X · f )2/π(�R)
≥ π(�R)π̄(f 2)

π̄(�R,X · f 2)
≥ π(�R),

so that for all f ∈ L2(X, ν) = L2(X, π̄),

EM̄(f )

varν(f )
≥ �

2s̄

EP̄ (f )

varπ̄ (f )
· varπ̄ (f )

varν(f )
≥ �π(�R)

2s̄

EP̄ (f )

varπ̄ (f )
,

and it follows from (2) that Gap(M̄) ≥ Gap(P̄ )�π(�R)/(2s̄) > 0, and so

Gap(M) > 0. Finally, we compare R̃ with M . For f ∈ L2
0(E,μ), we have

2E
R̃
(f ) =

∫
μ(dx,du)

q̄(x,dy)Qy(dv)ᾱ(x, y)[1 ∧ v
u
]

�R(x,u)

[
f (y, v) − f (x,u)

]2

=
∫

μ(dx,du)
q̄(x,dy)Qy(dv)vᾱ(x, y)[ 1

v
∧ 1

u
]

�R(x,u)

[
f (y, v) − f (x,u)

]2

=
∫

μ(dx,du)
q̄(x,dy)ᾱ(x, y)[ 1

v
∧ 1

u
]

�R(x,u)

μy(dv)�R,X(y)

�R(y, v)

[
f (y, v) − f (x,u)

]2
.

From Lemma 7, we know that [v ∨ u]�R(x,u)�R(y, v) ≤ �̄(x)�̄(y) for all
(x, u), (y, v) ∈ E, so

2E
R̃
(f ) ≥

∫
μ(dx,du)q̄(x,dy)ᾱ(x, y)μy(dv)

�R,X(y)

�̄(x)�̄(y)

[
f (y, v) − f (x,u)

]2

≥ 1

2s̄

∫
μ(dx,du)q̄(x,dy)ᾱ(x, y)μy(dv)�̄(x)−1[

f (y, v) − f (x,u)
]2

≥ 1

2s̄

∫
μ(dx,du)q̄(x,dy)ᾱ(x, y)μy(dv)

[
1 ∧ �R,X(y)

�R,X(x)

][
f (y, v) − f (x,u)

]2

= 1

2s̄
2EM(f ).
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Hence Gap(R̃) ≥ Gap(M)/(2s̄) > 0, so by Corollary 1 all functions f ∈
L2

0(E, π) satisfying f/�R ∈ L2
0(E,μ) have var(f,R) < ∞. We have

π(�R)

∫
E

f (x,u)2

�R(x,u)2 μ(dx,du) =
∫

E

f (x,u)2

�R(x,u)
π̄(dx)Qx(du)u

≤
∫

E
f (x,u)2 s̄ + u

�̄(x)
π̄(dx)Qx(du)u

≤ s̄

�
π

(
f 2) + 1

�

∫
E
f (x,u)2u2π̄(dx)Qx(du),

and we conclude by noting that for f ∈ L2
0(E, π), var(f,P ) ≤ var(f,R). �

5. On alternatives to geometric random variables. One of the contributions
of Douc and Robert (2011) is to consider weighted ergodic averages associated
with the Markov chain X̃ to estimate π(f ). In particular, they propose alternative
random weights to (τn)n∈N that lead to estimators of π(f ) with a smaller limiting
variance in the corresponding CLT. The purpose of this last section is to point out
that in many situations, the reduction in variance can be limited.

We consider the sequence of estimators of π(f ), with X̃1 ∼ π̃ ,

Ȳ RB
n (f ) :=

∑n
i=1 f (X̃i)/�(X̃i)∑n

i=1 1/�(X̃i)
, Ȳ Geo

n (f ) :=
∑n

i=1 τif (X̃i)∑n
i=1 τi

, n ≥ 1,

which are the two extremes considered by Douc and Robert (2011), whose
Lemma 1 shows that the numerator of Ȳ RB

n (f ) is a Rao–Blackwellized version
of the numerator of Ȳ Geo

n (f ) (see also Lemma 8 below): indeed a key observation
is that τi is a Geometric(�(X̃i)) random variable whose expectation is therefore
1/�(X̃i). The following result summarizes the comparison between these two es-
timators, and is a special case of Douc and Robert [(2011), Theorem 1] but whose
assumptions on f are explicit.

PROPOSITION 5. Let f ∈ L1(π), f̄ := f − π(f ), f̄ /� ∈ L2
0(E, π̃) and

var(f̄ /�, P̃ ) < ∞. Then:

1. Ȳ RB
n (f )

a.s.→ π(f ) and Ȳ Geo
n (f )

a.s.→ π(f ) as n → ∞.

2.
√

n[Ȳ RB
n (f ) − π(f )] L→ N(0, σ 2

RB(f )), where

σ 2
RB(f ) = π(�)2 var(P̃ , f̄ /�).

3.
√

n[Ȳ Geo
n (f ) − π(f )] L→ N(0, σ 2

Geo(f )), where

σ 2
Geo(f ) = π(�)

{
π

(
f̄ 2/�

) − π
(
f̄ 2) + π(�)var(P̃ , f̄ /�)

}
.
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It is clear that σ 2
RB(f ) ≤ σ 2

Geo(f ) for all appropriate f , and this motivated Douc
and Robert (2011) to propose intermediate estimators with limiting variance in
between σ 2

RB(f ) and σ 2
Geo(f ). Remark 7, however, shows that the computational

benefits of such estimators are large only when the computational cost of obtain-
ing the improved estimates is considerably less than that of simulating the chain
itself.

REMARK 7. When

(16) var(P̃ , f̄ /�) ≥ π̃
(
f̄ 2/�2) = π

(
f̄ 2/�

)
/π(�),

then π(�)2 var(P̃ , f̄ /�) ≥ π(�)π(f̄ 2/�) and so σ 2
Geo(f ) ≤ 2σ 2

RB(f ). We note that
(16) holds, for example, when P̃ is a positive operator on L2

0(E, π̃).

In order to prove Proposition 5, we first consider the sequences of unbiased
estimators, with X̃1 ∼ π̃ , given by

Y RB
n (f ) := π(�)

n

n∑
i=1

f (X̃i)

�(X̃i)
, Y Geo

n (f ) := π(�)

n

n∑
i=1

τif (X̃i), n ≥ 1.

LEMMA 8. Let f/� ∈ L2(E, π̃) and var(f/�, P̃ ) < ∞. Then:

1. Y RB
n (f )

a.s.→ π(f ) as n → ∞ and Y Geo
n (f )

a.s.→ π(f ) as n → ∞.
2. Their asymptotic variances are

(17) lim
n→∞nvar

(
Y RB

n (f )
) = π(�)2 var(f/�, P̃ ),

and

(18) lim
n→∞nvar

(
Y Geo

n (f )
) = π(�)π

(
f 2/�

) − π(�)π
(
f 2) + π(�)2 var(f/�, P̃ ).

PROOF. The first part follows from the Markov chain law of large numbers.
For the second part, (17) follows from the definition of var(f/�, P̃ ). For (18), we
apply the law of total variance

nvar
(
Y Geo

n (f )
) = nE

[
var

(
Y Geo

n (f ) | X̃)] + nvar
(
E

[
Y Geo

n | X̃])
,

and observe that for any n ∈N,

nE
[
var

(
Y Geo

n (f ) | X̃)] = nπ(�)2
E

[
var

(
1

n

n∑
i=1

τif (X̃i)
∣∣∣ X̃

)]

= nπ(�)2
E

[
1

n2

n∑
i=1

f (X̃i)
2 var(τi | X̃i)

]
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= π(�)2
E

[
1

n

n∑
i=1

f (X̃i)
2 1 − �(X̃i)

�(X̃i)2

]

= π(�)2π̃
(
f 2 · (1 − �)/�2)

= π(�)π
(
f 2 · (1 − �)/�

)
,

while

nvar
(
E

[
Y Geo

n (f ) | X̃]) = nvar

(
E

[
π(�)

n

n∑
i=1

τif (X̃i)
∣∣∣ X̃

])

= nvar

(
π(�)

n

n∑
i=1

f (X̃i)/�(X̃i)

)

= nvar
(
Y RB

n (f )
)
,

and the result follows from (17) by taking limits. �

PROOF OF PROPOSITION 5. The first part follows from the Markov
chain law of large numbers applied to 1

n

∑n
i=1 f (X̃i)/�(X̃i), 1

n

∑n
i=1 1/�(X̃i),

1
n

∑n
i=1 τif (X̃i) and 1

n

∑n
i=1 τi . The second part follows from

√
n
[
Ȳ RB

n (f ) − π(f )
] = √

n

[∑n
i=1 f (X̃i)/�(X̃i)∑n

i=1 1/�(X̃i)
− π(f )

]

= √
n

[∑n
i=1 f̄ (X̃i)/�(X̃i)∑n

i=1 1/�(X̃i)

]

=
1√
n
π(�)

∑n
i=1 f̄ (X̃i)/�(X̃i)

π(�) 1
n

∑n
i=1 1/�(X̃i)

,

where the denominator converges almost surely to 1 by the Markov chain law of
large numbers and the numerator converges weakly to a mean 0 normal random
variable with variance σ 2

RB(f ) by Lemma 8 and Häggström and Rosenthal [(2007),
Corollary 6]; the result follows from Slutsky’s lemma. For the third part, similar to
the second part we obtain

√
n
[
Ȳ Geo

n (f ) − π(f )
] =

1√
n
π(�)

∑n
i=1 τif̄ (X̃i)

π(�) 1
n

∑n
i=1 τi

,

where the denominator converges almost surely to 1 by the Markov chain law
of large numbers and the numerator converges weakly to a mean 0 normal ran-
dom variable with variance σ 2

Geo(f ) by Lemma 8 and Häggström and Rosenthal
[(2007), Corollary 6]; the result follows from Slutsky’s lemma. �
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6. Concluding remarks. We have exploited the relationship between a re-
versible Markov chain X and its jump chain X̃ to characterize which ergodic av-
erages of the two chains have finite asymptotic variance. This allows one to de-
termine which ergodic averages of X have finite asymptotic variance when X̃ is
variance bounding. For independence samplers, this leads to a complete charac-
terization of which ergodic averages have finite asymptotic variance. In the case
of pseudo-marginal Markov chains, we provide a simple sufficient condition for
all ergodic averages of L2 functions of the primary variable to have finite asymp-
totic variance, even in situations where the pseudo-marginal chain is not variance
bounding. For example, if the second moments of the noise variables are uniformly
bounded but the noise variables themselves are not almost surely bounded then the
pseudo-marginal Markov chain cannot be variance bounding [Andrieu and Roberts
(2009), Andrieu and Vihola (2015)] and so at least some L2 functions do not have
a finite associated asymptotic variance [Roberts and Rosenthal (2008)]: it follows
from Theorem 3 that these cannot be functions of the primary variable alone.

Our pseudo-marginal results rely on the marginal chain or its jump chain being
variance bounding. In some cases, this may be verified using results in Roberts and
Rosenthal (2008) and references therein. Verifying whether a reversible Markov
chain is variance bounding in many practical situations will involve determining
if it is geometrically ergodic, for which Foster–Lyapunov drift criteria [see, e.g.,
Roberts and Rosenthal (2004), Theorem 9] can be used: for Metropolis chains,
the results of Jarner and Hansen (2000) are quite general. In practice, Theorem 3
allows one to determine that asymptotic variances of appropriate functions asso-
ciated with the pseudo-marginal chain are finite by separately determining that
the marginal chain is variance bounding, and that the uniformly bounded second
moment condition on the noise variables is satisfied.

Acknowledgements. We are grateful to the referees for helpful comments that
have improved the paper.
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BEDNORZ, W., ŁATUSZYŃSKI, K. and LATAŁA, R. (2008). A regeneration proof of the central limit
theorem for uniformly ergodic Markov chains. Electron. Commun. Probab. 13 85–98.

BORNN, L., PILLAI, N., SMITH, A. and WOODARD, D. (2017). The use of a single pseudo-sample
in approximate Bayesian computation. Stat. Comput. 27 583–590.

http://www.ams.org/mathscinet-getitem?mr=2502648
http://www.ams.org/mathscinet-getitem?mr=3313762
http://www.ams.org/mathscinet-getitem?mr=3563190
http://arxiv.org/abs/arXiv:1503.00996


WHICH ERGODIC AVERAGES HAVE FINITE ASYMPTOTIC VARIANCE? 2333

CARACCIOLO, S., PELISSETTO, A. and SOKAL, A. D. (1990). Nonlocal Monte Carlo algorithm
for self-avoiding walks with fixed endpoints. J. Stat. Phys. 60 1–53.

COSTA, O. L. V. (1990). Stationary distributions for piecewise-deterministic Markov processes.
J. Appl. Probab. 27 60–73.

COSTA, O. L. V. and DUFOUR, F. (2008). Stability and ergodicity of piecewise deterministic
Markov processes. SIAM J. Control Optim. 47 1053–1077.

DOUC, R. and ROBERT, C. P. (2011). A vanilla Rao–Blackwellization of Metropolis–Hastings al-
gorithms. Ann. Statist. 39 261–277. MR2797846

DOUCET, A., PITT, M. K., DELIGIANNIDIS, G. and KOHN, R. (2015). Efficient implementation of
Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102 295–
313.

GEYER, C. J. (1992). Practical Markov chain Monte Carlo. Statist. Sci. 7 473–483.
HÄGGSTRÖM, O. and ROSENTHAL, J. S. (2007). On variance conditions for Markov chain CLTs.

Electron. Commun. Probab. 12 454–464.
HASTINGS, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika 57 97–109.
JARNER, S. F. and HANSEN, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic

Process. Appl. 85 341–361. MR1731030
JARNER, S. F. and ROBERTS, G. O. (2002). Polynomial convergence rates of Markov chains. Ann.

Appl. Probab. 12 224–247. MR1890063
JARNER, S. F. and ROBERTS, G. O. (2007). Convergence of heavy-tailed Monte Carlo Markov

chain algorithms. Scand. J. Stat. 34 781–815. MR2396939
KIPNIS, C. and VARADHAN, S. R. S. (1986). Central limit theorem for additive functionals of

reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–
19.
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