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Coagulation-fragmentation processes describe the stochastic association
and dissociation of particles in clusters. Cluster dynamics with cluster-cluster
interactions for a finite number of particles has recently attracted attention
especially in stochastic analysis and statistical physics of cellular biology,
as novel experimental data are now available, but their interpretation remains
challenging. We derive here probability distribution functions for clusters that
can either aggregate upon binding to form clusters of arbitrary sizes or a sin-
gle cluster can dissociate into two sub-clusters. Using combinatorics proper-
ties and Markov chain representation, we compute steady-state distributions
and moments for the number of particles per cluster in the case where the
coagulation and fragmentation rates follow a detailed balance condition. We
obtain explicit and asymptotic formulas for the cluster size and the number of
clusters in terms of hypergeometric functions. To further characterize cluster-
ing, we introduce and discuss two mean times: one is the mean time two par-
ticles spend together before they separate and the other is the mean time they
spend separated before they meet again for the first time. Finally, we discuss
applications of the present stochastic coagulation-fragmentation framework
in cell biology.

Introduction. Clustering appears in various areas of science such as astro-
physics, where masses can form aggregate under gravitation, biochemistry where
molecules have to meet to react, colloids that aggregate in solution or ecology
where prey–predator have to meet to stabilize populations. A century ago, Von
Smoluchowski [33] described an irreversible aggregation of many particles in
clusters. Later on, a set of coagulation-fragmentation equations was proposed by
Becker–Döring when clusters can lose or gain only one particle at a time [6, 8, 21,
34]. Nowadays, continuous limit analysis [3, 26], determinist, stochastic, asymp-
totical and numerical methods are developed to study clustering and estimate the
number of clusters [2, 9, 11, 27, 32] and their sizes.

The coagulation models mentioned above have been extended for cluster growth
with a finite number of particles [23, 24], known as the Marcus–Lushnikov pro-
cess, and more recently for discrete coagulation-fragmentation models with an

Received November 2016; revised May 2017.
1Supported by a Marie Curie Award and a Simons fellowship.
MSC2010 subject classifications. Primary 60J20; secondary 05A17.
Key words and phrases. Markov chain, coagulation-fragmentation processes, stochastic pro-

cesses.

1449

http://www.imstat.org/aap/
https://doi.org/10.1214/17-AAP1334
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1450 N. HOZE AND D. HOLCMAN

infinite number of particles [5]. Many statistical and probabilistic studies have
been made on the Marcus–Lushnikov process [18]; however, much less is known
about the statistical properties for the coagulation-fragmentation of a finite num-
ber of particles [13]. Of particular interest in stochastic biology are models of
coagulation-fragmentation where the cluster size cannot exceed a given threshold
[14, 35]. These models are used in genetics to describe the organization in clusters
of the chromosome ends [14] or to model viral capsid assembly in cells [15, 16,
36]. This article presents several exact and asymptotic results and it aims to attract
attention toward developments of applied probability with direct applications to
interpret data.

We recall that the Smoluchowski equations for coagulation-fragmentation con-
sist of an infinite system of differential equations for the number nj (t) of clusters
of size j at time t in a population of infinite size [33]. The index j can take values
between 1 and ∞ and

dnj (t)

dt
= 1

2

j−1∑
k=0

A(k, j − k)nk(t)nj−k(t) − nj (t)

∞∑
k=1

A(j, k)nk(t)

(1)

− 1

2
nj (t)

j−1∑
k=1

B(k, j − k) +
∞∑

k=1

B(j, k)nk+j (t),

where the first line in the right-hand side corresponds to the coagulation and the
second accounts for the fragmentation. The coagulation kernel A(i, j) is the rate
at which two clusters of size i and j coalesce to form a cluster of size i + j ,
while the fragmentation kernel B(i, j) is the rate at which a cluster of size i + j

dissociates into a cluster of size i and a cluster of size j . When cluster sizes cannot
exceed a threshold M , the system of equations (1) is truncated and the coagulation
kernel is A(i, j) = 0 if i + j ≥ M [7, 10]. This system of equations is a mean-
field deterministic model of the coagulation-fragmentation process that describes
a discrete number of particles aggregating and dissociating, but it does not allow a
complete analysis of the cluster distribution in the small size limit [13].

The goal of this paper is to study a stochastic system of coagulation-fragmenta-
tion with a limited number of particles. We present exact solutions and expressions
for the distribution, statistical moments of clusters and number of particles per
cluster, using the following generic rules of coagulation-fragmentation: a cluster
of size i + j can give rise to two clusters of size i and j at a rate F(i, j), and two
clusters of size i and j form a new cluster of size i + j at a rate C(i, j).

We focus our analysis on coagulation-fragmentation processes (CFP) that verify
the detailed balance condition [12], for which there exists a function a(i) = ai such
that ∀i, j ∈ N:

(2)
C(i, j)

F (i, j)
= a(i + j)

a(i)a(j)
.
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The detailed balance condition ensures that, at equilibrium, each elementary co-
agulation or fragmentation process is equilibrated by its reciprocal process. Using
exact formulas for probabilities for these configurations when the total number of
clusters is fixed, we compute the probability distribution function of the number
of clusters. We also compute the probability distribution that the number of clus-
ter of size i is mi so that the distribution of sizes of the ensemble of clusters is
(m1, . . . ,mn). When there are exactly N particles and the total number of clusters
is fixed to K , we have the following identity for number conservation:

(3)
N∑

i=1

mi = K.

We shall show that when the total number of clusters is K , the conditional proba-
bility distribution function is given by

(4) p′(m1, . . . ,mN |K) = 1

CN,K

a(1)m1 · · ·a(N)mN

m1! · · ·mN ! ,

where the normalization constant CN,K can be computed explicitly [see formula
(126)]. We will use this formula to compute the statistical moments for the cluster
distributions. Using a combinatorial approach, we present several explicit formula
for the steady-state distributions of clusters. Some of the results presented here
were previously announced without proofs in the short letter [14].

The paper is organized as follows. In Section 1, we present the stochastic model
of coagulation-fragmentation for N independent particles that we analyze by a
Markov chain. We obtain explicit formula for the cluster configuration combi-
natorics using the partition of the integer N , for the distribution of particles in
clusters. We derive the time evolution equations for the number of clusters. These
equations represent a novel Markov chain, which allows us to determine the num-
ber of clusters at steady-state. By combining the expression for number of clusters
with the distribution of cluster in configuration conditioned on the number of clus-
ters, we obtain the distribution of the particles in clusters. In Section 3, we intro-
duce two characteristic times for studying the time distribution two particles are
in a cluster. These two times characterize the dynamics of exchange of particles
between clusters: the first one is the mean time that two particles spend together
before they separate, and the second is the mean time that they spend separated
before they meet again for the first time. The colocalization probability of two par-
ticles is defined as the fraction of time, the particles spend together. Sections 4–6
provide direct applications of these results to specific CFPs: we focus specifically
on the case of constant coagulation and fragmentation kernels in Section 4, for
which we obtain analytical expressions for the clusters distributions. We also ob-
tain several formula when the cluster size is limited.

In this article, to determine statistics of the cluster distribution, we alternatively
study two different systems. First, we study the distribution of clusters using the



1452 N. HOZE AND D. HOLCMAN

integer partition of the total number of particles. We obtain the probability dis-
tribution of cluster configurations. In this process, we use the term coagulation
when two clusters of a given size coalesce and form a new cluster. We use the term
fragmentation to describe the separation of a cluster into two smaller ones. The co-
agulation and fragmentation kernels that we have chosen here allow us to perform
another analysis: when the number of clusters is fixed, the overall rates of coagu-
lation and fragmentation are independent of the configurations of the clusters. We
will study aggregation-fragmentation, where the number of clusters is known. In
that case, we shall use the following terminology: formation describes the change
when a distribution of K becomes K − 1 clusters. We use separation to describe
the process by which a distribution of K clusters is transformed into a distribution
of K + 1 clusters.

1. Coagulation-fragmentation with a finite number of independent parti-
cles.

1.1. Stochastic coagulation-fragmentation equations for a finite number of par-
ticles. To describe the steady-state distribution for a CFP stochastic model with
a finite number of N particles, we shall use a continuous-time Markov chain in
the space of cluster configurations. The N particles distributed in clusters of size
(n1, . . . , nN) can undergo coagulation or fragmentation events under the constraint
that

(5)
N∑

k=1

nk = N.

To study the distribution of particles in clusters, we use the decomposition of the
integer N as the sum of positive integers (integer partition) [4]. The partitions of
the integer N are described in N dimensions by the ensemble

(6) PN =
{
(n1, . . . , nN) ∈ N

N ;
N∑

i=1

ni = N and n1 ≥ · · · ≥ nN ≥ 0

}
.

The probability P(n1, . . . , nN, t) of the configuration (n1, . . . , nN) at time t satis-
fies an ensemble of closed equations. Indeed, by considering all the possible co-
agulation or fragmentation events, the master equation is obtained by considering
the events occurring between time t and t + �t :

• Two clusters of size ni and nj coagulate with a probability C(ni, nj )�t to form
a cluster of size ni + nj .

• A cluster of size ni dissociates into two clusters of size k and ni − k with a
probability F(k,ni − k)�t .
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• Nothing happens with the probability 1 − ∑N−1
i=1

∑N
j=i+1 C(ni, nj )�t −∑N

i=1
∑ni−1

k=1 F(k,ni − k)�t .

Thus, the master equations are

d

dt
P (n1, . . . , nN, t)

= −
(

N−1∑
i=1

N∑
j=i+1

C(ni, nj ) +
N∑

i=1

ni−1∑
k=1

F(k,ni − k)

)
P(n1, . . . , nN, t)

(7)

+
N∑

k=1

∑
n′

i>0,n′
j>0

n′
i
+n′

j
=nk

C
(
n′

i , n
′
j

)
P
(
n1, . . . , n

′
i , . . . , n

′
j , . . . , nN, t

)

+
N−1∑
i=1

N∑
j=i+1

F(ni, nj )P (n1, . . . , ni + nj , . . . , nN, t).

Moreover, C(ni, nj ) = 0 if either ni or nj is equal to 0. We now introduce an
ensemble in N

N which consists of integer decompositions of clusters with a given
size:

(8) P ′
N =

{
(m1, . . . ,mN) ∈ N

N ;
N∑

i=1

imi = N and m1, . . . ,mN ≥ 0

}
.

In the ensemble P ′
N , mi is the number of occurrence of the integer i in the par-

tition of the integer N .The two ensembles PN and P ′
N correspond to different

representations of the clusters distributions. For example, when there are N = 9
particles, distributed in two clusters of one particle, two clusters of two and
one cluster of three. Then the distributions are (3,2,2,1,1,0,0,0,0) ∈ P9, and
(2,2,1,0,0,0,0,0,0) ∈ P ′

9.
A sufficient condition to obtain an invariant measure of the steady-state proba-

bility is the reversibility of the CFP [20, 22] where the coagulation-fragmentation
kernel satisfies the detailed balance condition: there exists a function a(i) = ai

such that [12]

(9) C(i, j)aiaj = F(i, j)ai+j .

The functions ai characterize the ratio of the coagulation and fragmentation rates,
and any function of the form a′

i = αiai with α �= 0 satisfies the above condition.
This condition insures the reversibility of the Markov chain and guarantees the ex-
istence of an invariant measure [12], where the steady-state probability of a given
configuration (m1, . . . ,mN) ∈ P ′

N is

(10) P ′(m1, . . . ,mN) = 1

CN

a
m1
1 · · ·amN

N

m1! · · ·mN ! ,
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where CN is a normalization constant. An explicit computation of the normal-
ization constant is difficult [31]. Here, we propose to estimate the probability of
occurrence of a certain cluster configuration (m1, . . . ,mN) by limiting the study
to the configurations of a given number of particles.

At this stage, we shall explain the rational for computing expression (10). This
expression is the distribution at equilibrium of particles in clusters, where the dis-
sociation (resp., association) rate is proportional to the number of elements (minus
one) (resp., the number of pairs of particles).

The equilibrium probability distributions associated to the Markov chain con-
figuration (m1, . . . ,mN) is computed from analyzing the transition between the
two neighboring states (m1, . . . ,mi − 1, . . . ,mj − 1, . . . ,mi+j + 1, . . . ,mN) and
(m1, . . . ,mN). It is obtained first from the coagulation rate ψ(i, j) of a cluster of
size i with one of size j , given the distribution (m1, . . . ,mN). The rate ψ(i, j) is
given by

ψ(i, j) = 1

2
C(i, j)mimj if i �= j(11)

= C(i, i)mi(mi − 1) otherwise.(12)

The factor 1
2 accounts for the symmetric cases ψ(i, j) and ψ(j, i). The fragmenta-

tion rate φ(i, j) from i + j to (i, j), that accounts for the transition from the con-
figuration (m1, . . . ,mi − 1, . . . ,mj − 1, . . . ,mi+j + 1, . . . ,mN) to (m1, . . . ,mN)

(Figure 1) is

(13) φ(i, j) = F(i, j)(mi+j + 1).

(m1, . . . ,mN)

Coagulation C(i, j)mimj

(m1, . . . ,mi − 1, . . . ,mj − 1, . . . ,mi+j + 1, . . . ,mN)

(m1, . . . ,mi−k + 1, . . . ,mk + 1, . . . ,mi − 1, . . . ,mN)

Fragmentation F(k, i − k)mi

FIG. 1. Markov chain representation of the transitions. Starting with a configuration
(m1, . . . ,mN), mi is the number of clusters of size i and N is the total number of particles. The frag-
mentation rate of a cluster of size i into one cluster of size k and one of size i − k is F(k, i − k)mi ,
while the rate of formation of a cluster of size i + j from two clusters of size i and j is equal to
C(i, j)mimj .
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Thus, the stationary probability π ′ satisfies the relation

π ′(m1, . . . ,mi − 1,mj − 1,mi+j + 1, . . . ,mN)

π ′(m1, . . . ,mN)

= ψ(i, j)

φ(i, j)
(14)

= 1

2

C(i, j)

F (i, j)

mimj

mi+j + 1
= 1

2

aiaj

ai+j

mimj

mi+j + 1
.

A direct computation shows that the probability P ′(m1, . . . ,mN) defined in equa-
tion (10) satisfies equation (14) (see Figure 1).

1.2. Cluster partitions with a finite number of particles. To determine the
cluster distribution at equilibrium, we compute here the probability of a config-
uration when the number of clusters K is fixed. We also find the probability of
having K clusters. The number of distributions of N particles into K clusters is
the cardinal of the ensemble

(15) PN,K =
{
(n1, . . . , nK) ∈ N

K;
K∑

i=1

ni = N and n1 ≥ · · · ≥ nK ≥ 1

}
,

which is also the ensemble of the partitions of the integer N as a sum of K integers.
This ensemble is in bijection with

(16) P ′
N,K =

{
(m1, . . . ,mN) ∈ N

N ;
N∑

i=1

imi = N and
N∑

i=1

mi = K

}
,

where the transformation PN,K → P ′
N,K defined by

(17) (n1, . . . , nK) 
→ (m1, . . . ,mN) =
( K∑

i=1

1{ni=1}, . . . ,
K∑

i=1

1{ni=N}
)

maps the partition (n1, . . . , nK), where N is written as a sum of K positive in-
tegers, to the number of occurrence of each integer into the image partition. The
partitions of N are written as

(18) PN = ⋃
K

PN,K and P ′
N = ⋃

K

P ′
N,K.

In Sections 4, 5 and 6, we derive explicitly expressions for the probabilities of
configurations in P ′

N,K .
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1.3. Statistical moments for the cluster configurations when the number of clus-
ters is fixed. We show now that the probability of configuration (m1, . . . ,mN),
when the total number of clusters is equal to K , is given by

(19) p′(m1, . . . ,mN |K) =
a

m1
1 ···amN

N

m1!···mN !
CN,K

,

where

(20) CN,K = ∑
(mi)∈P ′

N,K

a
m1
1 · · ·amN

N

m1! · · ·mN ! .

The normalization factor of equation (19) is computed using the following result.

REMARK 1. We consider the functions

(21) S(x) =
∞∑
i=1

aix
i

and the partial sums

(22) SN(x) =
N∑

i=1

aix
i.

The K th-power of these functions, that is, SK and SK
N have the same N th-order

coefficient and this coefficient determines CN,K . Moreover, the function

(23) g(x, y) = exp
(
S(x)y

)
is a generating function of the CN,K .

PROOF. The number of configurations (m1, . . . ,mN) that satisfy the condi-
tions

∑
i mi = K and

∑
i imi = N is the N th-order coefficient of the multinomial

expansion

(a1x1 + · · · + aNxN)K

(24)

= ∑
(m1,...,mN),

∑
mi=K

K!
m1! · · ·mN !(a1x1)

m1 · · · (aNxN)mN .

Using the N -tuple (x1, x2, . . . , xN) = (X,X2, . . . ,XN), we obtain

(25)
(a1X + · · · + aNXN)K

K! = ∑
(m1,...,mN),

∑
mi=K

∏
i

a
mi

i

mi !X
∑

i imi .
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We can group the terms by the exponents of X, which are equal to
∑

i imi . In
particular, for a partition (m1, . . . ,mN) ∈ P ′

N,K , the exponent is
∑

i imi = N , and
the N th-order coefficient in expression (25) is equal to

(26)
∑

(m1,...,mN)∈P ′
N,K

∏
a

mi

i

m1! · · ·mN ! = CN,K.

More generally,

SK(X)

K! =
∞∑

n=K

∑
(m1,...,mN)∈P ′

n,K

∏
a

mi

i

m1! · · ·mN !X
n(27)

=
∞∑

n=K

∑
(m1,...,mN)∈P ′

n,K

Cn,KXn.(28)

It follows that the function defined by

g(X,Y ) = exp
(
S(X)Y

)
(29)

=
∞∑

K=0

SK(X)

K! YK(30)

=
∞∑

K=0

∞∑
n=K

Cn,KXnYK(31)

is a generating function of the CN,K . �

REMARK 2. The coefficients CN,K defined by relation (20) satisfy the induc-
tion formula:

(32) (N + 1)CN+1,K =
N−K+1∑

k=0

(k + 1)ak+1CN−k,K−1

with

(33)

⎧⎪⎨
⎪⎩

CN,N = aN
1

N ! ,
CN,1 = aN .

PROOF. We start with the formulas (33). The coefficient CN,N is obtained
from the unique partition in P ′

N,N , which is given by m1 = N and mi = 0 if i > 1.

Therefore, CN,N = aN
1

N ! . The coefficient CN,1 is obtained from the partition mN = 1
and mi = 0 if i < N , and thus CN,1 = aN .
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We now prove relation (32). Differentiating the function σ(x) = SK(x)
K! , we get

(34) σ ′(x) = S′(x)
SK−1(x)

(K − 1)! .

We evaluate the left-hand side of (34) using equation (28), and obtain

σ ′(x) =
( ∞∑

n=K

Cn,Kxn

)′

=
∞∑

n=K−1

(n + 1)Cn+1,Kxn(35)

= xK−1
∞∑

n=0

(n + K)Cn+K,Kxn.

We evaluate the right-hand side of (34) using the definition of S (21) and we obtain

σ ′(x) =
( ∞∑

i=0

(i + 1)ai+1x
i

)( ∞∑
i=K−1

Ci,K−1x
i

)

(36)

= xK−1
∞∑

n=0

(
n∑

k=0

(k + 1)ak+1Cn−k+K−1,K−1

)
xn.

Thus, by equalizing the N th-order coefficient of σ ′(x), we have

(37) (N + 1)CN+1,K =
N−K+1∑

k=0

(k + 1)ak+1CN−k,K−1. �

Next, we estimate various moments when the number of clusters is fixed. We
summarize the main result in the following.

THEOREM 1.1. When the number of clusters is equal to K for a total of N

particles, the mean number of clusters of size i is

(38) 〈Mi〉N,K = ai

CN−i,K−1

CN,K

,

where ai and CN,K are defined in (9) and (20), respectively.

PROOF. The mean number of clusters of size i when the total number of clus-
ters is K is given by the following sum:

〈Mi〉N,K = ∑
P ′

N,K

mip
′(m1, . . . ,mN)(39)



STOCHASTIC COAGULATION-FRAGMENTATION 1459

= 1

CN,K

∑
P ′

N,K

mi

a
m1
1 · · ·amN

N

m1! · · ·mN !

= 1

CN,K

∑
P ′

N,K,mi>0

ai

a
m1
1 · · ·ami−1

i · · ·amN

N

m1! · · · (mi − 1)! · · ·mN ! ,(40)

where the subscript P ′
N,K,mi > 0 in the sum characterizes the partitions in P ′

N,K

containing at least one occurrence of the integer i. By considering the partitions
of P ′

N,K where i appears at least once and removing one i, we obtain exactly
the partitions of PN−i,K−1, except for the number of occurrence of i, where the
corresponding partitions in both sets have the same number of repetitions, i.e.

(41) ∀j �= i,mj in (m1, . . . ,mN−i) ∈ P ′
N−i,K−1

is equal to

(42) mj in (m1, . . . ,mN) ∈ P ′
N,K

and mi in (m1, . . . ,mN−i) ∈ P ′
N−i,K−1 is equal to mi + 1 in (m1, . . . ,mN) ∈

P ′
N,K . There are no clusters larger than N − i in the partitions [mj = 0 for

j > N − i for (m1, . . . ,mN) ∈ P ′
N,K , mi > 0]. Thus

〈Mi〉N,K = 1

CN,K

∑
P ′

N,K,mi>0

ai

a
m1
1 · · ·ami−1

i · · ·amN

N

m1! · · · (mi − 1)! · · ·mN !

= ai

CN,K

∑
PN−i,K−1

a
m1
1 · · ·ami

i · · ·amN

N

m1! · · ·mi ! · · ·mN !(43)

= ai

CN−i,K−1

CN,K

. �

We further have the following.

REMARK 3. 〈Mi〉N,K = 0 if i > N − K + 1.

PROOF. When the N particles are distributed in K clusters, the largest cluster
contains at most N −K +1 particles. The corresponding partition in P ′

N,K is given
by m1 = K − 1, mN−K+1 = 1, and mj = 0 otherwise. �

In the following, we determine the second moment of the number of clusters of
size i:

(44)
〈
M2

i

〉
N,K = 1

CN,K

∑
P ′

N,K

m2
i

a
m1
1 · · ·amN

N

m1! · · ·mN !
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and the covariance of the number of clusters of size i and j

(45)
〈
M2

i,j

〉
N,K = 1

CN,K

∑
P ′

N,K

mimj

a
m1
1 · · ·amN

N

m1! · · ·mN ! .

THEOREM 1.2. The second moment of the number of clusters of size i is

〈
M2

i

〉
N,K = a2

i

CN−2i,K−2

CN,K

+ ai

CN−i,K−1

CN,K

,(46)

and the covariance is

(47)
〈
M2

i,j

〉
N,K = aiaj

CN−i−j,K−2

CN,K

.

PROOF. The variance of the number of clusters of size i is given by

〈
M2

i

〉
N,K = 1

CN,K

∑
mi∈P ′

N,K

m2
i

a
m1
1 · · ·amN

N

m1! · · ·mN !

= 1

CN,K

∑
mi∈P ′

N,K

[
mi(mi − 1) + mi

]am1
1 · · ·amN

N

m1! · · ·mN !(48)

= 1

CN,K

∑
mi∈P ′

N,K,mi>1

a2
i

a
m1
1 · · ·ami−2

i · · ·amN

N

m1! · · · (mi − 2)! · · ·mN ! + 〈Mi〉N,K.

Using an argument similar to the proof of Theorem 1.1, we obtain

〈
M2

i

〉
N,K = 1

CN,K

∑
mi∈PN−2i,K−2

a2
i

a
m1
1 · · ·ami

i · · ·amN

N

m1! · · ·mi ! · · ·mN ! + 〈Mi〉N,K

(49)

= a2
i

CN−2i,K−2

CN,K

+ ai

CN−i,K−1

CN,K

.

The covariance of the number of clusters of size i and j is obtained from the term

(50)
〈
M2

i,j

〉
N,K = 1

CN,K

∑
P ′

N,K

mimj

a
m1
1 · · ·amN

N

m1! · · ·mN ! ,

which, by the same reasoning, leads to

(51)
〈
M2

i,j

〉
N,K = aiaj

CN−i−j,K−2

CN,K

. �
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2. Distribution of the number of clusters. In the previous section, we com-
puted the probability distribution of a cluster configuration and determined the
statistical moments for a fixed number of clusters. In this section, we study the
statistics of the entire cluster configurations. We focus here on the probability
distribution of the number of clusters and we shall compute the time dependent
probability density function

(52) PK(t) = P {K clusters at time t},
which is a birth-and-death process that we investigate using a Markov chain.

The probability of having K clusters at time t +�t is the sum of the probability
of starting at time t with K − 1 clusters and one of them dissociates into two
smaller ones plus the probability of starting with K + 1 clusters and two of them
associate plus the probability of starting with K and nothing happens (Figure 2).
The first probability is the product of PK−1 by the transition rate sK−1�t to go
from state with K − 1 clusters to K , while the second is the transition from K + 1
to K , which is the product of PK+1 by the transition rate fK+1�t of going from
K + 1 clusters to K . Thus the master equations are given by

(53)

⎧⎪⎪⎨
⎪⎪⎩

Ṗ1(t) = −s1P1(t) + f2P2(t),

ṖK(t) = −(fK + sK)PK(t) + fK+1PK+1(t) + sK−1PK−1(t),

ṖN(t) = −fNPN(t) + sN−1PN−1(t).

In Sections 4, 5 and 6, we will solve this system of equations explicitly at steady-
state for particular formation and separation kernels. We now derive a general for-
mula for the steady-state probability

(54) �K = lim
t→∞PK(t)

of having K clusters at steady-state and express it in terms of the ai . The steady-
state probabilities of the number of clusters are solution of the system

(55)

⎧⎪⎪⎨
⎪⎪⎩

0 = −s1�1 + f2�2,

0 = −(fK + sK)�K + fK+1�K+1 + sK−1�K−1,

0 = −fN�N + sN−1�N−1,

FIG. 2. Markov chain representation for the number of clusters. sK (resp., fK ) is the separation
(resp., formation) rate of a cluster when there are K clusters.
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with the normalization condition

(56)
N∑

K=1

�K = 1.

The probabilities �K are given by the ratio

(57)
�K

�K−1
= sK−1

fK

for K ≥ 2

and the coefficients sK and fK are the mean-field separation and formation rates,
respectively. Whereas the cluster configurations when the number of clusters is
fixed depend only on the kernel ai , the statistics of the number of clusters de-
pend on the cluster fragmentation and coagulation rates F and C. In the follow-
ing, we will focus on the coagulation condition C(i, j) = 1 and the fragmentation
F(i, j) = aiaj

ai+j
to state the following.

THEOREM 2.1. When C(i, j) = 1 and F(i, j) = aiaj

ai+j
, the separation rate

when there are K clusters is given by

(58) sK =
∑N

i=1
∑i−1

j=1 ajai−jCN−i,K−1

CN,K

and the formation rate when there are K clusters is

(59) fK = K(K − 1)

2
.

PROOF. The total dissociation rate d(n) of a cluster of size n is obtained by
summing over all the possible sizes resulting from the dissociation and is given by

d(n) =
n−1∑
i=1

F(i, n − i)

(60)

=
n−1∑
i=1

aian−i

an

.

The rate at which a given configuration (m1, . . . ,mN) ∈ P ′
N,K dissociates is∑N

i=1 d(i)mi . The separation rate for K clusters is thus

sK = ∑
P ′

N,K

N∑
i=1

d(i)mip
′(m1, . . . ,mN)

(61)

=
N∑

i=1

d(i)〈Mi〉N,K.
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Using relation (43), the separation rate becomes

(62) sK =
∑N

i=1 d(i)aiCN−i,K−1

CN,K

.

The separation rate of a distribution of K clusters equation (62) can thus be ex-
pressed as a function of the CN,K:

(63) sK =
∑N

i=1
∑i−1

j=1 ajai−jCN−i,K−1

CN,K

.

For K = 1, the only cluster is of size N and the separation rate is

(64) s1 = d(N).

The formation rates are given by

fK = ∑
P ′

N,K

1

2

(
N∑

i=1

mi(mi − 1)C(i, i) + ∑
i �=j

mimjC(i, j)

)

(65)
× p′(m1, . . . ,mN |K).

For a distribution of K clusters, this is equal to the number of cluster pairs

(66) fK = K(K − 1)

2
. �

We are now in position to study the statistics of the entire cluster configurations.
Indeed, using Bayes’ rule, the probability of a configuration (m1, . . . ,mN), that
contains K clusters is the product of the conditional probability p′(m1, . . . ,mN |K)

by the probability of having K clusters

(67) p′(m1, . . . ,mN,K) = p′(m1, . . . ,mN |K)�K.

The mean number of clusters of size i is thus

(68) 〈Mi〉N =
N∑

K=1

�K〈Mi〉N,K.

3. Invariant of clusters dynamics. We introduce and compute here several
measures of the cluster configurations that appear when the system is in a global
steady-state. First, we compute the probability to find two particles in the same
cluster, and second we measure two time scales associated to particle dynamics
in an ensemble of clusters: (1) the mean time that two particles spend together
before they separate and (2) the mean time that they spend separated before they
meet again for the first time (Figure 3). The probability that two given particles are
together is of interest in several cell biology examples: for instance, some genes
can be silenced if the telomeres that carry them are forming a cluster [28].
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FIG. 3. Cluster formation and dissociation. The time to separation TS is the mean time for two
specific particles (black) to spend in the same cluster. Before physical separation, the cluster can
aggregate with other clusters (grey) or some particles except either of the two can be separated. The
time to association TR is the mean time the two particles meet again after separation for the first
time.

3.1. The probability to find two particles in the same cluster. When the mean
number of clusters has reached its equilibrium, particles can still be exchanged
between clusters. To characterize this exchange, we compute the probability to
find two particles in the same cluster.

When the distribution of the clusters is (n1, . . . , nN), the probability P2(n1, . . . ,

nN) to find two given particles in the same cluster is obtained by using the prob-
ability to choose the first particle in the cluster ni , which is equal to the number
of particles in the cluster divided by the total number of particles ni

N
. The prob-

ability to have the second particle in the same cluster is ni−1
N−1 . Summing over all

possibilities, we get

(69) P2(n1, . . . , nN) =
K∑

i=1

ni

N

ni − 1

N − 1
= 1

N(N − 1)

(
K∑

i=1

n2
i − N

)
.

This probability is similar to Simpson’s diversity index [29], a measure frequently
used to quantify the diversity of ecosystems. We note that

(70)
N∑

j=1

n2
j =

N∑
i=1

i2mi.

Thus, when the distribution (n1, . . . , nN) contains K clusters, we use (n1, . . . ,

nK) ∈ PN,K and obtain by summing over all configurations of K clusters

∑
(n1,...,nK)∈PN,K

p(n1, . . . , nK |K)

K∑
j=1

n2
j = ∑

(mi)∈P ′
N,K

p′(mi)

N∑
j=1

j2mj(71)

=
N∑

j=1

j2
∑

(mi)∈P ′
N,K

mjp
′(mi)(72)

=
N∑

j=1

j2〈Mj 〉N,K,(73)
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where 〈Mj 〉N,K is the mean number of clusters of size j , when there are N par-
ticles distributed in K clusters [equation (38)]. Taking into account all possible
distributions of clusters, we obtain that the probability 〈P2〉 to find two particles in
the same cluster is

(74) 〈P2〉 =
N∑

K=1

∑
(n1,...,nK)∈PN,K

P2(n1, . . . , nK)p(ni)�K,

which can be written, using expressions (69) and (73) as

(75) 〈P2〉 = 1

N(N − 1)

N∑
K=1

�K

N∑
j=1

j2〈Mj 〉N,K − 1

N − 1
.

This approach can be generalized to the probability of having n ≥ 2 particles to-
gether.

3.2. Mean time for two particles to stay together in a cluster. We define the
mean time to separation (MTS) as the mean time between the arrival of two given
particles in a cluster and their separation after dissociation of the cluster. We first
compute the probability of a configuration (m1, . . . ,mN) conditioned on having
two particles in the same cluster. We then derive the transition rates from this
particular configuration to any of the states accessible by a single dissociation or
association event (see Figure 1). The accessible states are divided into two classes:
first, the configurations for which the particles are not initially in the same cluster
(separated state) and second the ones where they are together. The current state
is the configuration (m1, . . . ,mN), for which the particles are in the same cluster.
Upon a coagulation event, the particles stay in the same cluster. A dissociation
event can either occur for a cluster that did not contain the tracking particles or for
the cluster that contained the particles. In the latter case, there are two possibili-
ties: either the particles stay together after dissociation, or they are redistributed
to two different clusters (separated state). The rate of dissociation from the en-
semble (m1, . . . ,mN) to (m1, . . . ,mi + 1, . . . ,mk−i + 1, . . . ,mk − 1, . . . ,mN) is
2F(i, k − i)mk if i �= k/2 and F(k

2 , k
2)mk otherwise.

PROPOSITION 1. The probability that two particles in a cluster of size k,
given a configuration (m1, . . . ,mN) ∈ P ′

N,K separate after a dissociation is

(76) pS(k;m1, . . . ,mN) = 1

k(k − 1)

1∑N
i=1 d(i)mi

k−1∑
i=1

i(2k − i)F (i, k − i).

PROOF. The probability that two particles in a cluster of size k separates after
any dissociation event is equal to the product of the probability that the particles
are in the cluster multiplied by the probability that this dissociation results in the



1466 N. HOZE AND D. HOLCMAN

effective separation of the particles. The first probability is obtained by consider-
ing the total dissociation rate d(n) of a cluster of size n [see equation (60)]. The
probability that the cluster containing the two particles effectively dissociates is
thus proportional to d(k) and is normalized by the total dissociation rate for the
cluster configuration (m1, . . . ,mN):

(77)
d(k)∑N

i=1 d(i)mi

.

The probability of an effective separation Psep is the complementary of the prob-
ability that the two particles stay together. When the two resulting clusters are of
size i and k − i, this probability is equal to

(78) Psep = 1 − i(i − 1) + (k − i)(k − i − 1)

k(k − 1)
.

The probability that the two particles initially in a cluster of size k will be separated
is thus equal to

pS(k) = d(k)∑K
i=1 d(i)mi

k−1∑
i=1

(
1 − i(i − 1) + (k − i)(k − i − 1)

k(k − 1)

)

× F(i, k − i)

d(k)
(79)

= 1

k(k − 1)

1∑N
i=1 d(i)mi

k−1∑
i=1

F(i, k − i)i(2k − i).
�

The transition probability from the state (m1, . . . ,mN) to the separated one
equals the sum of the probabilities pS(k) to be separated over all cluster sizes k,

(80) PS(m1, . . . ,mN) =
K∑

k=1

pS(k)mk.

To derive the MTS, we first write the transition matrix of the Markov chain repre-
senting the transitions between the configurations of separated and nonseparated
states, and second, we determine the mean transition times between the states.

Ordering the configurations (m1, . . . ,mN) by arbitrary indices I , we define the
transition matrix T of size (q(N) + 1) × (q(N) + 1), where q(N) is the total
number of different partitions of the integer N . The elements of T of the first
q(N) rows and columns are the transition probabilities between states where the
two particles are together, while index q(N) + 1 represents the separated state.

For I, J ∈ (1, . . . , q(N)), the matrix entries [T ]I,J are either the coagulation or
dissociation rates given above (see Figure 1), while the transitions [T ]I,q(N)+1 are
equal to the rates to the separated state. Because the separated state is absorbing,
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we finally set [T ]q(N)+1,q(N)+1 = 1. Additionally, the matrix is normalized into a
stochastic matrix such that

(81) ∀I,

q(N)+1∑
J=1

[T ]I,J = 1.

We now estimate the mean time the two particles stay together. The mean
time τ(m1, . . . ,mN) from a configuration (m1, . . . ,mN) to any configuration
(m′

1, . . . ,m
′
N) accessible by a single coagulation or fragmentation event is the re-

ciprocal of the sum of all transition rates

(82) τ(m1, . . . ,mN) =
(

N∑
k=1

d(k)mk + K(K − 1)

2

)−1

,

where K = ∑N
i=1 mi and the coagulation kernel is constant C(i, j) = 1. We repre-

sent the transition times in a vector τ

(83) τ =

⎡
⎢⎢⎢⎣

τ(N,0, . . . ,0)

τ (N − 2,1, . . . ,0)
...

τ (0, . . . ,0,1)

⎤
⎥⎥⎥⎦ .

We shall now compute the vector

(84) t =

⎡
⎢⎢⎢⎣

t (N,0, . . . ,0)

t (N − 2,1, . . . ,0)
...

t (0, . . . ,0,1)

⎤
⎥⎥⎥⎦

which is the MTS for an ensemble of cluster configuration (m1, . . . ,mN): it is
related to the vector τ by [25]

(85) t =
∞∑

n=0

T nτ .

The vector t is computed using the matrices

(86) A = Iq(N)+1 − T

and

(87) A∗ = [Aq(N)+1]−1,

where Aq(N)+1 is the matrix A from which the q(N) + 1 row and column were
removed. Equation (85) is equivalent to

(88) t = A∗τ .
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The MTS averaged over the equilibrium configuration distribution is

(89) TS = p∗T t,

where p∗T = [p∗(m1, . . . ,mN)](m1,...,mN ) and p∗(m1, . . . ,mN) is the probability
distribution of the configuration (m1, . . . ,mN) when the two particles are in the
same cluster. Using Bayes’ theorem, the probabilities p∗(m1, . . . ,mN) are given
by

(90) p∗(m1, . . . ,mN) = P2(m1, . . . ,mN)p(m1, . . . ,mN)

〈P2〉 ,

where we recall that p(m1, . . . ,mN) is the probability of the configuration
(m1, . . . ,mN), 〈P2〉 is the probability that two specific particles are in the same
cluster [see computation equation (75)], and P2(m1, . . . ,mN) is the probability
that the two particles are in the same cluster configuration (m1, . . . ,mN). The con-
ditional probability p∗(m1, . . . ,mN) to select two particles in the same cluster,
conditioned on the distribution (m1, . . . ,mN) is larger for clusters of larger sizes.
We conclude this section with the following.

REMARK 4. The time that two particles spend separated TR can be similarly
determined, only the absorbing state in the transition matrix is the state at which
the two particles are in the same cluster. Interestingly, the probability two particles
are together is the fraction of time they spend together and is given by the ratio

(91) 〈P2〉 = TS

TS + TR

.

In the rest of the manuscript, we apply the previous analysis to three examples
of coagulation-fragmentation with a finite number of particles.

4. Example 1: The case ai = a. We consider the case of a constant kernel
ai = a. To compute the separation and formation rates sK and fK , we use that
F(i, j) = a and C(i, j) = 1. This fragmentation kernel corresponds to the follow-
ing model: a cluster of size n dissociates at a rate

∑n−1
i=1 F(i, n− i) = (n− 1)a and

the sizes of the resulting clusters are uniformly distributed between 1 and n − 1.
When there are N particles and a total number of clusters K , the partition of clus-
ters is denoted (n1, . . . , nK) ∈ PN,K . The total transition rate from a configuration
of K to K + 1 clusters is the sum over all possible dissociation rates

(92) sK =
K∑

i=1

(ni − 1)a = (N − K)a.

The formation rate is proportional to the number of pairs

(93) fK =
K−1∑
i=1

K∑
j=i+1

C(ni, nj ) = K(K − 1)

2
.
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Following relation (53), the steady-state probability �K for the number of clusters
of size K satisfies the time independent master equation

(94)

⎧⎪⎪⎨
⎪⎪⎩

s1�1 = f2�2,

(fK + sK)�K = fK+1�K+1 + sK−1�K−1,

fN�N = sN−1�N−1,

which leads to the relation

(95) �K+1 = (2a)K
(N − 1)!

K!(K + 1)!(N − K − 1)!�1.

Using the normalization condition
∑

K �K = 1, the probability �1 can be ex-
pressed as a hypergeometric series

(96) �1 = 1

1F1(−N + 1;2;−2a)
,

where

(97) 1F1(a;b; z) =
∞∑

n=0

(a)n

(b)n

zn

n! ,

is Kummer’s confluent hypergeometric function ([1], pages 503–535) and

(98) (x)n = x(x + 1) · · · (x + n − 1)

is the Pochhammer symbol. The average number of clusters at steady-state

μ1(a) =
N∑

K=1

K�K

(99)

= �1
d

dz

(
z1F1(−N + 1;2; z))|z=−2a.

The derivative of the Kummer’s function is

(100)
d

dz
1F1(a;b; z) = a

b
1F1(a + 1;b + 1; z).

Finally, the mean number of clusters is expressed as

μ1(a) = 1 + a(N − 1)
1F1(−N + 2;3;−2a)

1F1(−N + 1;2;−2a)
(101)

= 1 + a(N − 1)G1,

where we note G1 the function defined by

(102) G1 = 1F1(−N + 2;3;−2a)

1F1(−N + 1;2;−2a)
.
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More generally, we introduce the functions Gi defined by

(103) Gi = 1F1(−N + 1 + i;2 + i;−2a)

1F1(−N + 1;2;−2a)
.

Following the procedure presented above, all moments of the probability distribu-
tion �K can be computed and the nth-order moment μn is expressed using the
operator H defined by

(104) H(f )(z) = d

dz
zf (z),

by

(105) μn =
N∑

n=1

Kn�K = H(n)(1F1(−N + 1;2; z))|z=−2a

1F1(−N + 1;2;−2a)
.

Using the differentiation formula for the hypergeometric function (100), the mo-
ments μn can be written as

μn =
n∑

k=0

αn
k

(N − 1)!
(k + 1)!(N − 1 − k)!2

kakGk(106)

=
n∑

k=0

αn
k

�k+1

�1
Gk,(107)

where the coefficients αn
k are given by

αn
k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k!
k/2∑
j=0

(−1)j
(k + 1 − j)n + (j + 1)n

(k − j)! if k is even,

k!
(k−1)/2∑

j=0

(−1)j
(k + 1 − j)n − (j + 1)n

(k − j)! if k is odd,

and αn
0 = αn

n = 1. We can thus obtain the variance of the number of clusters, given
by

〈
V∞(a)

〉 = μ2 − μ2
1

= a(N − 1)G1(a,N)
(108)

+ 2

3
a2(N − 1)(N − 2)G2(a,N)

− a2(N − 1)2G2
1(a,N).
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4.1. Asymptotic formulas for the mean and variance of the cluster number. We
provide here approximations for the functions Gn defined in equation (103). Kum-
mer’s function can be expressed in terms of generalized Laguerre polynomials

(109) 1F1(−n;b; z) = n!
(b)n

Lb−1
n (z),

where n is an integer. The asymptotic behavior of Laguerre polynomials for
large n, fixed x > 0 and α, is given by [30]

Lα
n(−x) = n

α
2 − 1

4

2
√

π

e− x
2

x
α
2 + 1

4

exp
(

2

√
x

(
n + α + 1

2

))

×
(

1 +
m/2∑
ν=1

Cν(x)n−ν/2 + O
(
n−m/2)),

where m is a positive integer and Cν(x) is a regular and bounded functions for
x > 0, independent of N . Using the leading order term in the expansion for m = 2,
we get

Lα
n(−x) = n

α
2 − 1

4

2
√

π

e− x
2

x
α
2 + 1

4

exp
(

2

√
x

(
n + α + 1

2

))
(110)

× (
1 + C1(x)n−1/2 + O

(
n−1)).

We can now evaluate G1 by using the asymptotic expansion for 1F1(−N +
1;2;−2a) and 1F1(−N + 2;3;−2a). For large N , we have

1F1(−N + 1;2;−2a) = 1

N

(N − 1)1/4

2
√

π

e−a

(2a)3/4 exp(2
√

2aN)

(111)

×
(

1 + O

(
1√
N

))

and

1F1(−N + 2;3;−2a) = 1

N(N − 1)

(N − 2)3/4

2
√

π

e−a

(2a)5/4

(112)

× exp
(
2
√

2a(N − 1/2)
)(

1 + O

(
1√
N

))
.

Finally,

G1(a,N) =
√

2a

N
exp

(
2
√

2a(N − 1/2) − 2
√

2aN
)(

1 + O

(
1√
N

))
(113)

≈
√

2

aN
exp

(
−
√

a

2N

)
= G̃1(a,N).
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Similarly, the present computation can be generalized to obtain the asymptotic
approximation G̃n for the functions Gn, valid for large N and fixed n,

G̃n(a,N) ≈ (n + 1)!
(2aN)n/2 exp

(
−n

√
a

2N

)
.(114)

In Figure 4, we compare the exact value of G1 [defined in (102)] with the approx-
imation G̃1 given by expression (113). The approximation is more accurate for

intermediate values of a [see Figure 4(B)]. In addition, the error function |G1−G̃1|
G1

has a discontinuity in the derivative for a = 10. Indeed, at a = 10, the function G1
and G̃1 cross each other, and thus |G1 − G̃1| has a singular derivative, shown by a
cusp type behavior in Figure 4(B). Moreover, the function G1 is always decreasing

FIG. 4. Approximation of G1. (A) Plot of G1 (black) and approximation G̃1 [red, equation (113)]
versus N for a = 1,10,100 and 1000. (B) Comparison of the values of G1 and G̃1, measured as
|G1−G̃1|

G1
.
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with N , however, its approximation G̃1 is nonmonotonic [Figure 4(A)]. Finally, by
using the asymptotic expression (113), we find the approximation of the number
of clusters for large N ,

(115) μ1(a) ≈ 1 + √
2aN exp

(
−
√

a

2N

)
.

To obtain a numerical approximation of G1 for small a, we used the finite con-
tinued fraction decomposition for the ratio of hypergeometric functions 1F1 [19],
and obtain

G1(a,N) = 1F1(−N + 2;3;−2a)

1F1(−N + 1;2;−2a)
(116)

= 1

1 + (N+1)a/3
1+ (N−2)a/6

1+ (N+2)a/10

1+ (N−3)a/15

...+ a/(N−1)(2N−3)
1+a/(N−1)

.

We obtain the Taylor expansion of G1 for small a from the continued fraction,

G1(a,N)

= 1 − N + 1

3
a +

(
(N + 1)(N − 2)

18
+ (N + 1)2

9

)
a2

(117)

−
(

(N + 1)(N − 2)(N + 2)

180
+ (N + 1)(N − 2)2

108
+ (N + 1)3

27

)
a3

+ o
(
a3).

This expression is computed from the continued fraction G1 written

G1(a) = 1

1 + F1(a)a
(118)

= 1

1 + f1a
1+F2(a)

,

where the general term of the sequence Fn is

(119) Fn(a) = fn

1 + Fn+1(a)a

with Fn+1(a) = O(1). G1 can also be written as

(120) G1(a) = 1

1 + af1

1+ af2
1+ ···

1+afn

.
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To obtain a third-order Taylor expansion of G1, we simply used F1, F2, F3 and we
have truncated the rest of continued fraction to obtain

G1(a) = 1 − F1(a)a + F 2
1 (a)a2 − F 3

1 (a)a3 + o
(
a3).(121)

The expansion of F1 is

F1(a) = f1

1 + F2(a)a

= f1
(
1 − F2(a)a + F 2

2 (a)a2) + o
(
a2)

(122)
= f1

(
1 − f2(1 − f3a)a + f 2

2 (a)a2) + o
(
a2)

= f1 − f1f2a + (
f1f2f3 + f1f

2
2
)
a2 + o

(
a2).

Using F1 expansion into G1, we finally get

(123) G1(a) = 1 − f1a + (
f 2

1 + f1f2
)
a2 − (

f1f2f3 + f1f
2
2 + f 3

1
)
a3 + o

(
a3).

4.2. Statistics for the number of clusters of a given size. We now compute
several moments for the size of clusters when there are N particles. Using relation
(38), we first obtain the expression for the mean number of clusters of size n when
there are K clusters

〈Mn〉N,K = ∑
(mi)∈P ′

N,K

mnp
′(mi |K)

(124)

= a
CN−n,K−1

CN,K

.

Determining this relation requires computing the normalizing constant CN,K given
in equation (20). The normalizing constant CN,K is the N th-order coefficient of
SK , where S is the generating function (21)

(125) S(x) =
∞∑
i=1

aix
i = a

x

1 − x
.

The coefficient CN,K is thus equal to the (N −K)th-order coefficient of 1
K!

aK

(1−x)K

(Remark 1). We obtain this coefficient by differentiating N − K times 1
(1−x)K

and
estimating the derivative at x = 0. We obtain that

CN,K = 1

K!a
K 1

(N − K)!K(K + 1) · · · (K + N − K − 1)

(126)

= aK

K!
(N − 1)!

(K − 1)!(N − K)! .
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Thus, by combining (124) and (126), we obtain that the number of cluster of size n,
when the N particles are distributed in K clusters is

(127) 〈Mn〉N,K = (N − n − 1)!K!(N − K)!
(N − 1)!(K − 2)!(N − n − K + 1)! ,

which we remark to be independent of a. The mean number of clusters of size n is
obtained by summing over all possible configurations with K clusters,

〈Mn〉 =
N∑

K=1

〈Mn〉N,K�K

(128)

= (N − n − 1)!
(N − 1)!

∑
K

K(K − 1)(N − K)!
(N − n − K + 1)! �K.

Using expression (95) for �K , we obtain

〈Mn〉 = 2a
1F1(−N + 1 + n;2;−2a)

1F1(−N + 1;2;−2a)
if n < N(129)

and

〈MN 〉 = 1

1F1(−N + 1;2;−2a)
.(130)

The mean number of clusters of size N is exactly equal to the probability �1(N)

of having one cluster when there is N particles [see equation (96)]. Indeed this is
the only configuration where a cluster of size N can appear. The mean number of
clusters of size n is 2a �1(N)

�1(N−n)
, which means that it is given by the ratio of the

probability of having one cluster when there are N particles over the probability
of having one cluster when there are N − n particles.

The number of clusters can also be written using the function Gk defined in
(103),

〈Mn〉 =
n∑

k=0

(−1)k
(2a)k+1

(k + 1)!
n!

(n − k)!k!Gk(131)

= 2a

n∑
k=0

(−1)k
�k+1(n)

�1(n)
Gk,(132)

where �k(n) is the probability of having k clusters in a system of n particles. To
summarize this analysis, we plotted in Figure 5 the mean number of clusters of
size n for N = 5 particles.

4.3. Probability to find two particles in the same cluster. We now evaluate the
probability to find two particles in the same cluster for a constant kernel. When
there are N particles, we first prove the following.
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FIG. 5. (A) Mean number of clusters of size n as a function of the parameter a for N = 5 particles
[equation (130)], and total number of clusters μ1. (B) Mean number of clusters 〈Mn〉 as a function
of the cluster size n, for a = 0.05, a = 0.5 and a = 5.

LEMMA 1.

(133)
N∑

j=1

j2〈Mj 〉N,K = N + 2N
N − K

K + 1
,

where

(134) 〈Mj 〉N,K = (N − j − 1)!K!(N − K)!
(N − 1)!(K − 2)!(N − j − K + 1)!

is given by relation (127).

PROOF. Using formula (127), we have

N∑
j=1

j2〈Mj 〉N =
N∑

j=1

j2 (N − j − 1)!K!(N − K)!
(N − 1)!(K − 2)!(N − j − K + 1)!

= K(K − 1)(N − K)!
(N − 1)!(135)

×
N−K+1∑

j=1

j2 (N − j − 1)!
(N − j − K + 1)! .

To determine the sum in equation (135), we introduce the sum

(136) SN,K =
N−K+1∑

j=1

j2 (N − j − 1)!
(N − j − K + 1)! ,
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and prove now that

(137) SN,K = N !
(N − K)!

2N − K + 1

(K − 1)K(K + 1)
.

We first obtain a recurrence relation between SN+1,K and SN,K

SN+1,K =
N−K+2∑

j=1

j2(N − j)(N − 1 − j) · · · (N − K + 3 + j)

=
N−K+1∑

j=0

(j + 1)2(N − j − 1)(N − j − 2) · · · (N − K + 2 + j)

= (N − 1)!
(N − K + 1)!(138)

+
N−K+1∑

j=1

(
j2 + 2j + 1

)
(N − j − 1)(N − j − 2) · · · (N − K + 2 + j)

= (N − 1)!
(N − K + 1)! + SN,K + A + 2B,

where

(139) A =
N−K+1∑

j=1

(N − j − 1)(N − j − 2) · · · (N − K + 2 + j)

and

(140) B =
N−K+1∑

j=1

j (N − j − 1)(N − j − 2) · · · (N − K + 2 + j).

We first use a change of variable for A and find

A =
N−2∑

j=K−2

j (j − 1) · · · (j − K + 3)

(141)

=
N−2∑

j=K−2

j !
(j − K + 2)! = (K − 2)!

N−2∑
j=K−2

(
j

K − 2

)
.

Using the binomial relation

(142)
n∑

j=k

(
j

k

)
=

(
n + 1

k + 1

)
,
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we obtain

A = (K − 2)!
(
N − 1

K − 1

)
(143)

= (N − 1)!
(N − K)!(K − 1)

.

Similarly, we obtain for B

B =
N−2∑

j=K−2

(N − j − 1)
j !

(j − K + 2)!

= NA −
N−2∑

j=K−2

(j + 1)!
(j − K + 2)!

= NA − (K − 1)!
N−1∑

j=K−1

(
j

K − 1

)
(144)

= N !
(N − K)!(K − 1)

− N !
(N − K)!K

= N !
(N − K)!(K − 1)K

.

Finally, we obtain the induction relation for SN,K

SN+1,K = SN,K + 2
N !

(N − K)!(K − 1)K
+ (N − 1)!

(N − K)!(K − 1)

+ (N − 1)!
(N − K + 1)!(145)

= SN,K + N !(2N − K + 2)

(N − K + 1)!(K − 1)K
.

Using that SK,K = (K − 2)!, we finally evaluate the sum

SN,K = 1

(K − 1)K

N∑
j=K

(j − 1)!(2j − K)

(j − K)!

= 2

(K − 1)K

N∑
j=K

j !
(j − K)! − 1

(K − 1)!
N∑

j=K

(j − 1)!
(j − K)!

= 2(K − 2)!
N∑

j=K

(
j

K

)
− (K − 2)!

N−1∑
j=K−1

(
j

K − 1

)
(146)
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= 2(K − 2)!
(
N + 1

K + 1

)
− (K − 2)!

(
N

K

)

= (K − 2)!
(N − K)!

(
2
(N + 1)!
(K + 1)! − N !

K!
)

= N !
(N − K)!

2N − K + 1

(K − 1)K(K + 1)
,

which is formula (133). �

THEOREM 4.1. The probability to find two particles in the same cluster is

(147) 〈P2〉 = G1,

where G1 is defined in (102).

PROOF. Using equation (75) and Lemma 1, we can now compute the proba-
bility to find two particles in the same cluster

〈P2〉 = 1

N(N − 1)

N∑
K=1

�K

N∑
j=1

j2〈Mj 〉N,K − 1

N − 1
(148)

= 1

N(N − 1)

N∑
K=1

�K

(
N + 2N

N − K

K + 1

)
− 1

N − 1
.

Thus,

〈P2〉 = 2

N − 1

N∑
K=1

�K

N − K

K + 1
(149)

= − 2

N − 1
+ 2

N + 1

N − 1

N∑
K=1

1

K + 1
�K.

Following formula (99), the sum in equation (149) can be expressed by integrating
the Kummer’s function

(150)
N∑

K=1

1

K + 1
�K = �1

2

∫
z1F1(−N + 1;2; z) dz

z2

∣∣∣∣
z=2a

.

Integrating the hypergeometric series gives

(151)
∫

z1F1(−N + 1;2; z) dz = z2
2F2(−N + 1,2;2,3; z),
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which leads to
N∑

K=1

1

K + 1
�K = 1

2
2F2(−N + 1,2;2,3;−2a)

1F1(−N + 1;2;−2a)

(152)

= 1

2
1F1(−N + 1;3;−2a)

1F1(−N + 1;2;−2a)
.

By combining equations (149) and (152), we obtain

(153) 〈P2〉 = − 2

N − 1
+ N + 1

N − 1
1F1(−N + 1;3;−2a)

1F1(−N + 1;2;−2a)
.

The three-term recurrence relation for Kummer’s function ([1] equations 13.4.1–
13.4.6) gives

1F1(−N + 1;3;−2a) = N − 1

N + 1
1F1(−N + 2;3;−2a)

(154)

+ 2

N + 1
1F1(−N + 1;2;−2a).

Finally, using equation (102), we obtain

(155) 〈P2〉 = G1. �

To finish this section, we note that the large N asymptotic of the probability that
two particles are in the same cluster is

(156) 〈P2〉 ≈
√

2

aN
.

Many results presented in this section can be used to study the distribution of
clusters in biological systems such as telomere organization in yeast. We provided
here the explicit derivations of the exact and asymptotic formulas that can be used
to analyze experimental and simulation results [14].

5. Example 2: The case ai = a for i < M and ai = 0 if i ≥ M . In this sec-
tion, we consider N particles that can associate or dissociate at a constant rate, but
in addition they cannot form clusters of more than M particles. The configuration
space for distributions of N particles in K clusters of size less than M is

(157) P ′
N,K,M =

{
(mi)1≤i≤M;

M∑
i=1

imi = N,

M∑
i=1

mi = K

}
.

First, the minimal number of clusters is necessarily bounded by K ≥ N/M , since
the opposite would imply a cluster of at least M + 1 particles. The probability of a
configuration (m1, . . . ,mM) ∈ P ′

N,K,M is equal to

(158) Pr
{
(m1, . . . ,mM) ∈ P ′

N,K,M

} = 1

CN,K,M

1

m1! · · ·mM ! ,
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where the normalization constant CN,K,M is the N th-order coefficient of

(
aX + aX2 + · · · + aXM)K = aKXK

(
XM − 1

X − 1

)K

= aK

(
X

1 − X

)K K∑
n=0

(
K

n

)
(−1)nXnM(159)

= aK 1

(1 − X)K

K∑
n=0

(
K

n

)
(−1)nXnM+K.

Then the N th-order coefficient of the polynomial is obtained by finding the (N −
nM − K)th-order coefficient of (1 − X)−K

CN,K,M = aK
K∑

n=0

(
K

n

)
(−1)n

1

(N − (nM + K))!D
(N−(nM+K))

(160)

×
(

1

(1 − X)K

)
|X=0

,

where we write D(n)(f ) as the nth-order derivative of some function f . Thus,
setting K0 = �N−K

M
�, where �·� is the floor function, we have

(161) CN,K,M = aKK

K0∑
n=0

(N − nM − 1)!
n!(K − n)!(N − (nM + K))!(−1)n.

For M = N , we find K0 = 0 and the normalization constant

(162) CN,K,N = aK (N − 1)!
(K − 1)!(N − K)! ,

is equal to the normalization constant CN,K obtained for the constant kernel in
Section 4.

The mean number of clusters of size i ≤ M conditioned on the number of clus-
ters K is

〈Mi〉K = ∑
mi∈P ′

N,K,M

mip(m1, . . . ,mM)

(163)

= a
CN−i,K−1,M

CN,K,M

.

To find the probability to have K clusters, we now redefine the formation rate. In
Section 4, the formation rate was proportional to the number of pairs of particles
since all of them could form a new cluster. In the present case, two clusters of size
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i and j can form a new cluster only if i + j ≤ M . The formation rate when there
are K clusters is thus

fK = ∑
(mi)∈P ′

N,K,M

p(m1, . . . ,mN)

(164)

×
(M/2∑

i=1

mi(mi − 1)

2
+

M∑
i,j=1

i+j≤M;i �=j

mimj

)
.

The formation rate can be written as a function of the coefficients CN,K,M as

(165) f2 = CN,2,M,

and for K > 2

fK = K(K − 1)

2

min(M
2 , N−K+2

2 )∑
i=1

CN−2i,K−2,M

(166)

+ K(K − 1)

2

min(M−1,N−K+1)∑
i,j=1
i+j≤M

CN−i−j,K−2,M.

The separation rate remains unchanged sK = (N − K)a, and the probabilities at
steady-state are given by

(167) �K = fK+1

sK
�K+1.

A simple expression is certainly hopeless, but the limit a → 0 is informative: con-
trary to the previous case with a constant kernel (M = N ), where the particles
form a single cluster of size N , the present system contains multiple steady-state
distributions. The clusters grow independently and reach either their limit size M

or are configured such that the sum of the sizes of each pair of cluster is larger than
M . All possible configurations contain exactly �N/M� clusters, where �.� is the
ceiling function.

We illustrate the limit case a → 0 for N = 9, M = 4 (Figure 6). Because a > 0,
all partitions are accessible, but as a → 0, the steady-state configurations are dom-
inated by the configurations with the largest possible cluster size (4,4,1), (4,3,2)

and (3,3,3). Applying formulas (161) and (163), we obtain the limit cluster con-
figuration probabilities

p(4,4,1) = 3

10
,

p(4,3,2) = 6

10
,(168)

p(3,3,3) = 1

10
.
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FIG. 6. (A) Distribution of the number of clusters �K for N = 9, when cluster sizes are limited
(M = 4, black) and not limited (M = 9, red). There is a minimum of �N/M� clusters. From left to
right : a = 10−5, a = 0.5, a = 10. (B) Mean number of clusters of each size 〈Mn〉. For a → 0, for
N = 9 and M = 4 the clusters organize in three different cluster configurations, while for M = N a
single cluster containing N particles is formed.

These steady-state probabilities do not depend on the initial particles configura-
tions as long as a �= 0. For a = 0, there are three possible configurations (4,4,1),
(4,3,2) and (3,3,3): once equilibrium is attained, the clusters will remain un-
changed. The probability to get to equilibrium depends on the configuration and
the order of clustering events. When there is no limitation in the cluster forma-
tion (M = N = 9), a single cluster containing all particles is formed (Figure 6, left
panel). For large values of a, most clusters are very small, and the distributions are
similar for M = 4 and M = 9 (Figure 6, right panel).

The probability for two particles to be in the same cluster provides a good esti-
mation for the cluster distribution for various values of the parameter a (Figure 7).
When a is large, most particles are contained in very small clusters and the prob-
ability 〈P2〉 is similar for the cases M = 4 and M = 9. When a → 0, particles
tend to form larger clusters. A single cluster containing all particles is formed and
〈P2〉 → 1 when M = 9, but the maximal value of 〈P2〉 is less than 1 when the
maximal cluster size is limited. We can explicitly compute 〈P2〉 in the limit case
a → 0. For example, for M = 4, using equation (69), and summing over all possi-
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FIG. 7. Probability 〈P2〉 that two particles are in the same cluster. The parameters are N = 9 and
M = 4 (black), M = 9 (red). For large values of a � 1, only small clusters are present and the
steady-state distributions are similar for the cases M = 4 and M = 9. When a → 0, the clusters
organize in three different cluster configurations, while for M = N a single cluster containing N

particles is formed.

ble configurations (168), we obtain

〈P2〉 = p(4,4,1)P2(4,4,1) + p(4,3,2)P2(4,3,2) + p(3,3,3)P2(3,3,3)

= 3

10

24

72
+ 6

10

20

72
+ 1

10

18

72

= 7

24
.

6. Example 3: Application to the case ai = ai. We finally consider the case
ai = ai. It has been shown [12] that the number of clusters of size i is asymptoti-
cally

(169) 〈Mi〉 = aie−i
√

2a/N .

The generating function S [equation (21)] is given by

(170) S(x) = a
x

(1 − x)2 ,

which gives that

CN,K = aK 1

(N − K)!D
N−K 1

(1 − x)2K |x=0

= aK 1

(N − K)!
(N + K − 1)!

(2K − 1)!(171)

= aK

(
N + K − 1

N − K

)
.
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We thus obtain using formula (43) that

(172) 〈Mi〉N,K = i

(N−i+K−2
N−K−i+1

)
(N+K−1

N−K

) .

To obtain the number of clusters of size i, we determine the probability of a distri-
bution of K clusters �K . We consider the coagulation kernel C(i, j) = 1 and the
fragmentation kernel F(i, j) = a

ij
i+j

, and obtain that

d(n) =
n−1∑
i=1

a
i(n − i)

n
= a(n2 − 1)

6
.(173)

The separation rates are

(174) s1 = a(N2 − 1)

6
and for K ≥ 2

sK =
∑N−K+1

i=1 d(i)aiCN−i,K−1

CN,K

= a

6

∑N−K+1
i=1 i(i2 − 1)

(N−i+K−2
N−i−K+1

)
(N+K−1

N−K

)(175)

= a

6

1(N+K−1
N−K

) 1

(2K − 3)!
N−K+1∑

i=1

i(i2 − 1)(N − i + K − 2)!
(N − i − K + 1)! .

To go further in the determination of sK , we evaluate the sum

(176) ϕN,K = 1

(2K − 3)!
N−K+1∑

i=1

(i3 − i)(N − i + K − 2)!
(N − i − K + 1)! .

After the change of variables j = N − i − K + 1 in the sum, we obtain

ϕN,K = 1

(2K − 3)!
N−K∑
j=0

(
(N − K − j + 1)3 − (N − K − j + 1)

)

× (j + 2K − 3)!
j !

(177)

=
N−K∑
j=0

(
(N − K − j + 1)3 − (N − K − j + 1)

)(j + 2K − 3

2K − 3

)

=
N+K−3∑
j=2K−3

(
(N + K − 2 − j)3 − (N + K − 2 − j)

)( j

2K − 3

)
.
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We expand the sum and write ϕN,K , with G(N,K) = N + K − 2, as

ϕN,K = (
G(N,K)3 − G(N,K)

)G(N,K)−1∑
j=2K−3

(
j

2K − 3

)

+ (
1 − 3G(N,K)

)G(N,K)−1∑
j=2K−3

j

(
j

2K − 3

)

(178)

+ 3G(N,K)

G(N,K)−1∑
j=2K−3

j2

(
j

2K − 3

)

−
G(N,K)−1∑
j=2K−3

j3

(
j

2K − 3

)
.

We evaluate the sums using the formulas
n∑

j=k

(
j

k

)
=

(
n + 1

k + 1

)
,(179)

n∑
j=k

j

(
j

k

)
= (k + 1)

(
n + 2

k + 2

)
−

(
n + 1

k + 1

)
,(180)

n∑
j=k

j2

(
j

k

)
= (k + 1)(k + 2)

(
n + 3

k + 3

)

(181)

− 3(k + 1)

(
n + 2

k + 2

)
+

(
n + 1

k + 1

)
,

n∑
j=k

j3

(
j

k

)
= (k + 1)(k + 2)(k + 3)

(
n + 4

k + 4

)

− 6(k + 1)(k + 2)

(
n + 3

k + 3

)
(182)

+ 7(k + 1)

(
n + 2

k + 2

)
−

(
n + 1

k + 1

)
.

So the sum ϕN,K is equal to

ϕN,K = (
G(N,K)3 − G(N,K)

)(G(N,K)

2K − 2

)

+ (
1 − 3G(N,K)

)
(2K − 2)

(
G(N,K) + 1

2K − 1

)
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− (
1 − 3G(N,K)

)(G(N,K)

2K − 2

)

+ 3G(N,K)(2K − 2)(2K − 1)

(
G(N,K) + 2

2K

)
(183)

− 9(2K − 2)G(N,K)

(
G(N,K) + 1

2K − 1

)
+ 3G(N,K)

(
G(N,K)

2K − 2

)

− (2K − 2)(2K − 1)2K

(
G(N,K) + 3

2K + 1

)

+ 6(2K − 2)(2K − 1)

(
G(N,K) + 2

2K

)

− 7(2K − 2)

(
G(N,K) + 1

2K − 1

)
+

(
G(N,K)

2K − 2

)
,

which can be simplified into

ϕN,K =
(
G(N,K)

2K − 2

)(
G(N,K)3 + 5G(N,K)

)

− 6

(
G(N,K) + 1

2K − 1

)(
1 + 2G(N,K)

)
(2K − 2)

(184)

+ 3

(
G(N,K) + 2

2K

)(
G(N,K) + 2

)
(2K − 2)(2K − 1)

−
(
G(N,K) + 3

2K + 1

)
(2K − 2)(2K − 1)2K.

We now use that
(n+1
k+1

) = n+1
k+1

(n
k

)
to write ϕN,K as a function of

(G(N,K)+1
2K−1

)
. Using

equation (175), we obtain

sK = a

6

2K − 1

G(N,K) + 1

(
G(N,K)3 + 5G(N,K)

)
− a

(
1 + 2G(N,K)

)
(2K − 2)

(185)

+ a

2

(
G(N,K) + 2

)2 (2K − 2)(2K − 1)

2K

− a

6

(
G(N,K) + 2

)(
G(N,K) + 3

)(2K − 1)(2K − 2)

2K + 1
.
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The formation rates are given by

(186) fK = K(K − 1)

2
and the probability of having K clusters is given by the relation

(187) �K = fK+1

sK
�K+1.

7. Conclusion. In this paper, we investigated a certain class of discrete
coagulation-fragmentation processes with a finite number of particles. We de-
termined the steady-state probability distribution when the number of clusters is
fixed. We studied the cluster distributions using the partitions of the total number
of particles with a given number of clusters. We computed the distribution proba-
bility function in terms of multinomial coefficients.

This approach allows computing various statistical quantities and moments, in-
cluding the mean number of clusters of a given size conditioned on the total num-
ber of clusters. However, computing other quantities, such as the size of the largest
clusters cannot be derived from the present results and requires novel methods of
calculation.

Finally, we defined two new times to characterize the cluster dynamics: the first
one is the mean time that two particles spend together and the second is the mean
time they spend separated. We computed here the fraction of these times, which
is the probability that two particles are in the same cluster. We have applied these
results to specific coagulation-fragmentation kernels. For the constant kernel, we
obtained exact expressions of the number of clusters in terms of hypergeometric
function. When the size of the cluster is limited, we obtained a model of nucleation
in the limit a → 0 and found multiple steady-state distributions, depending on the
initial number of particles and the limit size.

Our study on coagulation-fragmentation of a finite number of particles was mo-
tivated by stochastic processes in chemical reaction theory and in molecular and
cell biology of the cell nucleus organization. When the clusters and free particles
evolve in a homogeneous region in dimension 2 or 3, the time two particles spend
separated (recurrence time) is exactly the reciprocal of the forward rate of a chem-
ical reaction. However, when the region is not homogenous so that clustering can
occur preferentially in some subregions, this is not anymore the case, and the re-
currence time can be shorter than the meeting time, as discussed in the context
of telomere clustering in yeast [17]. In that case, clustering favors encounter. The
time that two particles stay in the same cluster is an indicator of the possible ex-
change of genetic information between clustered telomeres, a process that remains
to be studied both experimentally and theoretically.

Acknowledgments. David Holcman thanks the Institute of Mathematics, Ox-
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