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WEAKLY HARMONIC OSCILLATORS PERTURBED BY
A CONSERVATIVE NOISE1

BY CÉDRIC BERNARDIN, PATRÍCIA GONÇALVES2 AND MILTON JARA3

Université Côte d’Azur, Universidade de Lisboa and
Instituto de Matemática Pura e Aplicada

We consider a chain of weakly harmonic coupled oscillators perturbed
by a conservative noise. We show that by tuning accordingly the coupling
constant, energy can diffuse like a Brownian motion or superdiffuse like a
maximally 3/2-stable asymmetric Lévy process. For a critical value of the
coupling, the energy diffusion is described by a family of Lévy processes
which interpolate between these two processes.

1. Introduction. The problem of anomalous diffusion of energy in low di-
mensions has been the subject of intense research in recent years; see [12] for a
recent review. In [2], Hamiltonian chains of oscillators perturbed by conservative
noise were introduced as a mathematically tractable model for energy superdiffu-
sion. From the study of these models [2–4, 8, 11], the relevance of the different
conservation laws in the origin of anomalous diffusion has started to be mathemat-
ically understood. These results have served as an inspiration and match perfectly
the predictions of Spohn’s fluctuating hydrodynamics theory [15], which allows us
to make precise conjectures on the decay of correlations of these chains. Fluctuat-
ing hydrodynamics predicts several universality classes for the behavior of energy
correlations in these chains, and a natural question is to understand how these dif-
ferent universality classes are related. In particular, we focus on the derivation of
crossovers between different universality classes. We say that a family of equa-
tions, parametrized by some variable γ , is a crossover between two universality
classes if the equations governing these universality classes are recovered taking
the limits γ → 0 and γ → ∞.
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In [4, 8], it was proved that the scaling limit of the energy fluctuations of
stochastic harmonic chains with at least two conserved quantities is governed by a
fractional heat equation

(1.1) ∂tu = L u,

where L is the generator of a 3/2-stable Lévy process. Notice that there is some
freedom in the choice of L , which corresponds to the skewness of the correspond-
ing Lévy process. The skewness of this operator actually depends on the sound
velocity of the mechanical modes of the chain: volume in the case of [4] and
momentum and stretch in the case of the model considered in [8]. These results
correspond to the zero-tension universality class in the fluctuating hydrodynamics
framework [15, 16].

When energy is the only conserved quantity in the chain, energy has normal
diffusion, and energy fluctuations are governed by the usual heat equation, corre-
sponding to the Edwards–Wilkinson universality class

∂tu = �u.

In [5, 6], a crossover between these two universality classes was obtained by
introducing a noise of vanishing intensity that destroys the conservation of volume.
Tuning this intensity in a proper way, it was shown that energy fluctuations are
governed by the evolution equation

∂tu = Lγ u,

where Lγ is a nonlocal operator satisfying

lim
γ→0

Lγ = L , lim
γ→∞

√
γLγ = �.

In this article we take a different route, which we believe is more natural4 and
provides a different interpolating operator. The stochastic chains introduced in [2,
7] are generated by an operator of the form Lκ = κA+S, where A is the generator
of the deterministic (Hamiltonian) part of the dynamics and S is the generator of
the stochastic part of the dynamics. The operator A is antisymmetric with respect
to the Gibbs measures associated to the chain, and S is symmetric. If the operator
A is absent from the dynamics, namely κ = 0, energy is diffusive. If κ = 1, energy
is superdiffusive [4]. Therefore, our task is to find how should κ decay in order to
observe an evolution different from the cases κ = 0 and κ = 1.

This situation is very reminiscent of what happens in the so-called weakly asym-
metric, one-dimensional exclusion process. The relevant quantity there is the cur-
rent of particles through the origin. In the asymmetric case, it has been proved [10]

4We think it is more natural because here we only tune a parameter of the original model instead of
adding some extra stochastic noise to the original model in order to link the two universality classes.
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that the current of particles through the origin converges to the celebrated Tracy–
Widom law. In the symmetric case, fluctuations are Gaussian [9, 13]. The crossover
regime appears for κ := κn = γ

n1/2 , where 1
n

→ 0 is the space scaling, and it has
been described in [1, 14]. In a more elaborated development, the KPZ equation
serves as a crossover equation between the Edwards–Wilkinson universality class
and the KPZ universality class.

In our situation, since the macroscopic model is linear, fluctuations are always
Gaussian, but the covariance structure changes drastically with κ . It turns out that
the crossover scaling is κ = γ

n1/3 , and the crossover operator is given by

Lγ,1/3 = � + γ 3/2L .

It is clear that L0,1/3 = � and

lim
γ→∞

1

γ 3/2Lγ,1/3 = L ,

which is the operator governing the energy fluctuations for κ = 1.
Note that the scaling κ = γ

n1/3 differs from the crossover scaling of the asym-
metric exclusion process. In order to derive this scaling in a heuristic way, we need
to describe the results in [4] in more detail. Recall that the stochastic chains con-
sidered here have two conserved quantities: the energy and the so-called volume.
It turns out that the volume serves as a fast variable for the evolution of the energy.
Consider the chain generated by the operator n3/2(κA + λS). Let P n

t (x) be the
energy correlation function, defined as

P n
t (x) = Stn3/2

(�nx�),
where St is defined in (2.10), and let ψn

t (x, y) be the space-time energy-volume
correlation function defined as

ψn
t (x, y) = Stn3/2

(
�nx� +

⌊√
ny

2

⌋
, �nx� −

⌊√
ny

2

⌋)
,

where for x, y ∈ Z, St (x, y) is defined in (3.1). It turns out that these functions are
well approximated by the solution of

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tPt = −2κ∂xψt |y=0 + λ√

n
∂2
xPt ,

0 = −κ∂xψt + λ∂2
yψt ,

κ∂xPt (x) = −4λ∂yψt |y=0.

Note the presence of the correction term λ√
n
∂2
xPt . This coupled system can be

solved in ψ , giving an effective equation for Pt :

∂tPt = κ3/2

λ1/2 L Pt + λ√
n
∂2
xPt ,
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where L is the generator of the 3/2-stable Lévy process appearing in (1.1). If
we choose κ = γ λ1/3, the first operator does not depend on λ. We conclude that
for λ � √

n, the Laplacian part of this equation vanishes in the limit, while for
λ = √

n, the Laplacian part has a finite, nontrivial contribution in the limit. Since
κ = γ λ1/3 and λ = √

n, this corresponds to the microscopic generator n3/2κA +
n3/2λS = n2(γ n−1/3A + S), explaining the crossover scaling γ

n1/3 in the diffusive

scale, as well as the constant γ 3/2 in the definition of Lγ,1/3.
The fact that (1.2) provides a good approximation of P n

t and ψn
t is based on

the approach initiated in [4]. However to control the error terms appearing in this
approximation, we have to be more clever than in [4]. Indeed, one of the error
terms can not be estimated by a static estimate and is controlled by a dynamical
argument (see the discussion after Lemma 3.2).

The paper is organized as follows. In Section 2, we describe the model and the
main result. The proof is given in Section 3 and the technical computations appear
in the Appendix.

2. The model.

2.1. Description of the model. For η : Z→R and α > 0, define

(2.1) |||η|||α = ∑
x∈Z

∣∣η(x)
∣∣e−α|x|

and let 
α = {η : Z → R; |||η|||α < +∞}. The normed space (
α, ||| · |||) turns out
to be a Banach space. In 
α we consider the system of coupled ODEs

(2.2)
d

dt
η̃t (x) = κ

[
η̃t (x + 1) − η̃t (x − 1)

]
for t ≥ 0 and x ∈ Z,

where κ > 0 is a constant.The Picard–Lindelöf theorem shows that the system
(2.2) is well posed in 
α . We will superpose to this deterministic dynamics a
stochastic dynamics as follows. To each bond {x, x + 1}, with x ∈ Z, we associate
an exponential clock of rate one. Those clocks are independent among them. Each
time the clock associated to {x, x + 1} rings, we exchange the values of η̃t (x) and
η̃t (x + 1). Since there is an infinite number of such clocks, the existence of this
dynamics needs to be justified. If we freeze the clocks associated to bonds not
contained in {−M, . . . ,M}, the dynamics is easy to define, since it corresponds to
a piecewise deterministic Markov process. It can be shown that for an initial data
η0 in

(2.3) 
 = ⋂
α>0


α,

these piecewise deterministic processes stay at 
 and they converge to a well-
defined Markov process {ηt ; t ≥ 0}, as M → ∞, see [7] and references therein.
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This Markov process is the rigorous version of the dynamics described above.
Notice that 
 is a complete metric space with respect to the distance

(2.4) d(η, ξ) = ∑
�∈N

1

2�
min

{
1, |||η − ξ ||| 1

�

}
.

Let us describe the generator of the process {ηt ; t ≥ 0}. For x, y ∈ Z and η ∈ 
 we
define ηx,y ∈ 
 as

(2.5) ηx,y(z) =

⎧⎪⎪⎨⎪⎪⎩
η(y); z = x,

η(x); z = y,

η(z); z 
= x, y.

We say that a function f : 
 → R is local if there exists a finite set B ⊆ Z such
that f (η) = f (ξ) whenever η(x) = ξ(x) for any x ∈ B . For a smooth function f :

 → R we denote by ∂xf : 
 → R its partial derivative with respect to η(x). For
a function f : 
 → R that is local, smooth and bounded, we define Lκf : 
 → R

as Lκf = Sf + κAf , where for any η ∈ 
,

Sf (η) = ∑
x∈Z

(
f
(
ηx,x+1)− f (η)

)
,(2.6)

Af (η) = ∑
x∈Z

(
η(x + 1) − η(x − 1)

)
∂xf (η).(2.7)

The process {ηt ; t ≥ 0} has a family {μρ,β;ρ ∈ R, β > 0} of invariant measures
given by

(2.8) μρ,β(dη) = ∏
x∈Z

√
β

2π
exp

{
−β

2

(
η(x) − ρ

)2
}

dη(x).

It also has two conserved quantities. If one of the numbers

(2.9)
∑
x∈Z

η0(x),
∑
x∈Z

η0(x)2

is finite, then its value is preserved by the evolution of {ηt ; t ≥ 0}. Following [7],
we will call these conserved quantities volume and energy, respectively. Notice
that

∫
η(x) dμρ,β = ρ and

∫
η(x)2 dμρ,β = ρ2 + 1

β
.

REMARK 2.1. For the interpretation of the system considered here as a system
of coupled harmonic oscillators, we refer the interested reader to [7].

2.2. Description of the result. Fix ρ ∈ R and β > 0, and consider the process
{ηt ; t ≥ 0} with initial distribution μρ,β . Notice that {ηt + λ; t ≥ 0} has the same
distribution of the process {ηt ; t ≥ 0} with initial measure μρ+λ,β . Therefore, we
can assume, without loss of generality, that ρ = 0. We will write μβ = μ0,β and
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we will denote by P the law of {ηt ; t ≥ 0} and by E the expectation with respect
to P. The energy correlation function {St (x);x ∈ Z, t ≥ 0} is defined as

(2.10) St (x) = β2

2
E

[(
η0(0)2 − 1

β

)(
ηt (x)2 − 1

β

)]
for any x ∈ Z and any t ≥ 0. The constant β2

2 is just the inverse of the variance
of η(x)2 − 1

β
under μβ . By translation invariance of the dynamics and the initial

distribution μβ , we see that

(2.11)
β2

2
E

[(
η0(x)2 − 1

β

)(
ηt (y)2 − 1

β

)]
= St (y − x)

for any x, y ∈ Z. The following result was proved in [4].5

THEOREM 2.2 ([4]). Assume κ > 0. Let f,g : R → R be smooth functions of
compact support. Then,

(2.12) lim
n→∞

1

n

∑
x,y∈Z

f

(
x

n

)
g

(
y

n

)
Stn3/2(x − y) =

∫∫
f (x)g(y)Pt (x − y)dx dy,

where {Pt(x);x ∈ R, t ≥ 0} is the fundamental solution of the fractional heat equa-
tion

(2.13) ∂tu = −κ3/2
√

2

{
(−�)3/4 − ∇(−�)1/4}u.

It is not difficult to check that if κ = 0 then the following result holds.

THEOREM 2.3. Assume κ = 0. Let f,g : R→R be smooth functions of com-
pact support. Then,

(2.14) lim
n→∞

1

n

∑
x,y∈Z

f

(
x

n

)
g

(
y

n

)
Stn2(x − y) =

∫∫
f (x)g(y)Pt (x − y)dx dy,

where {Pt(x);x ∈ R, t ≥ 0} is the fundamental solution of the heat equation

(2.15) ∂tu = �u.

We note that the previous results are obtained by looking at the system in differ-
ent time scales: either in a superdiffusive time scale tn3/2 or in the diffusive time
scale tn2. Our aim is now to investigate a crossover between these two regimes by

5Note that in [4], κ = 1 was assumed for simplicity but it is straightforward to extend the results
there to cover the case κ 
= 1.
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letting κ to be arbitrary small. To this end, we introduce a large parameter n ∈ N

and take

(2.16) κ := κn = γ

nb
,

where γ > 0 is fixed and b ∈ (0,+∞). Observe that the two previous theorems
describe, respectively, the limiting cases b = 0 and b = +∞. The main result of
this paper is the following theorem.

THEOREM 2.4. Assume κn = γ

nb where b ≥ 0 and γ > 0. We define the expo-
nent a of the time scale by a = inf(3/2 + 3b/2,2). Let f,g : R → R be smooth
functions of compact support. Then,

(2.17) lim
n→∞

1

n

∑
x,y∈Z

f

(
x

n

)
g

(
y

n

)
Stna (x − y) =

∫∫
f (x)g(y)P

γ,b
t (x − y)dx dy,

where {P γ,b
t (x);x ∈ R, t ≥ 0} is the fundamental solution of the equation

(2.18) ∂tu = Lγ,bu

with Lγ,b being the generator of the following Lévy process:

(2.19) Lγ,b = 1b≥1/3� + γ 3/21b≤1/3L ,

where L = − 1√
2
{(−�)3/4 − ∇(−�)1/4}.

The most interesting regime is for b = 1/3 since the operator Lγ,1/3 is a Lévy
process connecting the Brownian motion to the totally asymmetric 3/2-stable Lévy
process:

Lγ,1/3 −→
γ→0

�

and

γ −3/2Lγ,1/3 −→
γ→∞ L .

3. Proof of Theorem 2.4. Following the method introduced in [4], the proof
of this theorem will be established by a careful study of the correlation function
{St (x, y);x 
= y ∈ Z, t ≥ 0} given by

(3.1) St (x, y) = β2

2
E

[(
η0(0)2 − 1

β

)
ηt (x)ηt (y)

]
for any t ≥ 0 and any x 
= y ∈ Z. Notice that this definition makes perfect sense for
x = y and, in fact, we have St (x, x) = St (x). For notational convenience, we define
St (x, x) as equal to St (x). However, these quantities are of different nature, since
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St (x) is related to energy fluctuations and St (x, y) is related to volume fluctuations
(for x 
= y).

Let a = inf(3/2 + 3b/2,2) which fixes the time scale in which we observe
the process at. The generator naLκn is denoted by Ln. From now on, we assume
β = 1, since the general case can be recovered from this particular case by scaling.

For d ≥ 1, denote by C ∞
c (Rd) the space of infinitely differentiable functions f :

Rd → R of compact support. For any function f ∈ C ∞
c (Rd), define the discrete

�2(Zd)-norm as

(3.2) ‖f ‖2,n =
√√√√ 1

nd

∑
x∈Zd

f

(
x

n

)2
.

Let g ∈ C ∞
c (R) be a fixed function. For any n ∈ N, any t ≥ 0 and any f ∈

C ∞
c (R), we define the field {S n

t ; t ≥ 0} as

(3.3) S n
t (f ) = 1

n

∑
x,y∈Z

g

(
x

n

)
f

(
y

n

)
Stna (y − x).

We observe that the previous field is the one which appears at the left-hand side of
(2.17). Rearranging terms in a convenient way we have that

(3.4)

S n
t (f ) = 1

2
E

[(
1√
n

∑
x∈Z

g

(
x

n

)(
η0(x)2 − 1

))

×
(

1√
n

∑
y∈Z

f

(
y

n

)(
ηtna (y)2 − 1

))]
.

By a simple application of the Cauchy–Schwarz inequality we have that

(3.5)
∣∣S n

t (f )
∣∣ ≤ ‖g‖2,n‖f ‖2,n.

For a function h ∈ C ∞
c (R2) we define {Qn

t (h); t ≥ 0} as

(3.6)

Qn
t (h) = 1

2
E

[(
1√
n

∑
x∈Z

g

(
x

n

)(
η0(x)2 − 1

))

×
(

1

n

∑
y 
=z∈Z

h

(
y

n
,
z

n

)
ηtna (y)ηtna (z)

)]
.

Note that Qn
t (h) depends only on the symmetric part of the function h and,

along this article, we will always assume, without loss of generality, that h(x, y) =
h(y, x) for any x, y ∈ Z. We also point out that Qn

t (h) does not depend on the
values of h at the diagonal {x = y}. Again, by a simple application of the Cauchy–
Schwarz inequality we have that

(3.7)
∣∣Qn

t (h)
∣∣ ≤ 2‖g‖2,n‖h‖2,n.
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REMARK 3.1. Observe that S n
t (f ) can be defined also for any function

f : 1
n
Z → R with compact support and that by using (3.5), the definition can be

extended to any function f : 1
n
Z → R such that ‖f ‖2,n < ∞. A similar remark

applies to Qn
t (h).

Note that, by an elementary computation, whose details are given in Ap-
pendix A, we have that

(3.8)
d

dt
S n

t (f ) = −2γ na−b−3/2Qn
t (∇nf ⊗ δ) + na−2S n

t (�nf ),

where for a function f ∈ C ∞
c (R), �nf : 1

n
Z → R is a discrete approximation of

the second derivative of f given by

(3.9) �nf

(
x

n

)
= n2

(
f

(
x + 1

n

)
+ f

(
x − 1

n

)
− 2f

(
x

n

))
and ∇nf ⊗ δ : 1

n
Z2 → R is a discrete approximation of the distribution f ′(x) ⊗

δ(x = y), where δ(x = y) is the δ of Dirac at the line x = y and it is given by

(3.10) (∇nf ⊗ δ)

(
x

n
,
y

n

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n2

2

(
f

(
x + 1

n

)
− f

(
x

n

))
; y = x + 1,

n2

2

(
f

(
x

n

)
− f

(
x − 1

n

))
; y = x − 1,

0; otherwise.

At this point we split the proof of the theorem according to the range of the
parameter b. First, we treat the case b > 1. For that purpose, we note that putting
together (3.7) plus the fact that ‖∇nf ⊗ δ‖2,n = O(

√
n), we get that for b > 1 and

a = 2,

lim
n→∞na−b−3/2Qn

t (∇nf ⊗ δ) = 0.

This concludes the proof of the theorem for b > 1, since equation (3.8) for S n
t (f )

is now closed and a simple tightness argument gives the result. Now we note that
applying the H−1-norm argument as in the proof of Theorem 4 in [3] we get that
for b > 1/2, the previous result still holds. We do not present this proof here since
it is a reproduction of the arguments of Theorem 4 of [3] but we ask the interested
reader to look particularly at the last inequality of the proof of that theorem and to
note that the time scaling for this range of b is a = 2. At this point we still need
to analyze the remaining cases where b ≤ 1/2. We also point out that the previous
arguments do not use the asymmetric part of the dynamics in order to control the
problematic term na−b−3/2Qn

t (∇nf ⊗ δ). The understanding of the effect of the
asymmetric part is crucial to cover the case b ≤ 1/2. From now on, we assume
that this is the case (in fact, the rest of the argument is valid for b < 1 but not for
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b = 1). Since from (3.8) the time evolution of S n
t depends on the time evolution

of Qn
t , we need also to find an equation similar to (3.8) for Qn

t , in order to close
the equation for S n

t . We note that this argument has already been used in [4] when
treating the case corresponding to b = 0. By a simple computation, whose details
are given in Appendix A, we have that

d

dt
Qn

t (h) = Qn
t

(
na−2�nh + γ na−b−1Anh

)− 2γ na−b−3/2S n
t (Dnh)

+ 2Qn
t

(
na−2D̃nh

)
,

(3.11)

where for h ∈ C ∞
c (R2) the operator �nh : 1

n
Z2 → R is a discrete approximation

of the 2-dimensional Laplacian of h and it is given by

(3.12)

�nh

(
x

n
,
y

n

)
= n2

(
h

(
x + 1

n
,
y

n

)
+ h

(
x − 1

n
,
y

n

)
+ h

(
x

n
,
y + 1

n

)
+ h

(
x

n
,
y − 1

n

)
− 4h

(
x

n
,
y

n

))
,

Anh : 1
n
Z2 →R is a discrete approximation of the directional derivative (−2,−2) ·

∇h and is given by

(3.13)

Anh

(
x

n
,
y

n

)
= n

(
h

(
x

n
,
y − 1

n

)
+ h

(
x − 1

n
,
y

n

)
− h

(
x

n
,
y + 1

n

)
− h

(
x + 1

n
,
y

n

))
,

the operator Dnh : 1
n
Z → R is a discrete approximation of the directional deriva-

tive of h along the diagonal x = y and it is given by

(3.14) Dnh

(
x

n

)
= n

(
h

(
x

n
,
x + 1

n

)
− h

(
x − 1

n
,
x

n

))
and the operator D̃n is defined as follows: D̃nh is a symmetric function from 1

n
Z2

into R, given by

(3.15) D̃nh

(
x

n
,
y

n

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n2
(
Ẽnh

(
x

n

)
− 1 − κ

2
F̃nh

(
x

n

))
; y = x + 1,

n2
(
Ẽnh

(
y

n

)
− 1 − κ

2
F̃nh

(
y

n

))
; y = x − 1,

0; otherwise,

with

(3.16) Ẽnh

(
x

n

)
= h

(
x

n
,
x + 1

n

)
− h

(
x

n
,
x

n

)
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and

(3.17) F̃nh

(
x

n

)
= h

(
x + 1

n
,
x + 1

n

)
− h

(
x

n
,
x

n

)
.

It is given by zero on the other points of 1
n
Z2.

In order to combine (3.8) and (3.11) in such a way that we obtain a simple
equation for the time evolution of S n

t we consider hn : 1
n
Z2 → R as the unique

square-integrable solution of the Poisson equation

(3.18) �nh

(
x

n
,
y

n

)
+ γ n1−bAnh

(
x

n
,
y

n

)
= 2γ n1/2−b∇nf ⊗ δ

(
x

n
,
y

n

)
.

Note that hn is independent of a. We get that6

(3.19)

d

dt
S n

t (f ) = − d

dt
Qn

t (hn) + S n
t

(
na−2�nf − 2γ na−b−3/2Dnhn

)
+ 2Qn

t

(
na−2D̃nhn

)
.

By integrating the last expression in time we have that for T > 0

S n
T (f ) − S n

0 (f ) =
∫ T

0
S n

t

(
na−2�nf − 2γ na−b−3/2Dnhn

)
dt

+ Qn
0(hn) − Qn

T (hn) + 2
∫ T

0
Qn

t

(
na−2D̃nhn

)
dt.

(3.20)

Now we need to analyze each term at the right-hand side of (3.20). Let us first
observe that for any b ≥ 0

(3.21) lim
n→∞‖hn‖2

2,n = 0.

This is proved in Appendix C.1. We note then that by (3.7) the second and third
terms at the right-hand side of (3.20) vanish, as n → ∞. The contribution of the
main term at the right-hand side of (3.20) is encapsulated in the following lemma
which is proved in Appendix C.2.

LEMMA 3.2. Let f ∈ C ∞
c (R). If a = inf(3/2 + 3b/2,2) and b ∈ (0,+∞),

then

(3.22) lim
n→∞

1

n

∑
x∈Z

∣∣∣∣{na−2�nf − 2γ na−b−3/2Dnhn

}(x

n

)
−Lγ,bf

(
x

n

)∣∣∣∣2 = 0,

where Lγ,b is defined in (2.19).

6Observe that Qn
t (hn) makes sense by Remark 3.1.
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The last term at the right-hand side of (3.20) is not so easy to control combin-
ing the Cauchy–Schwarz estimate with a bound on the L2-norm of the function
involved, that is of na−2D̃nhn. Nevertheless, by repeating the same argument as
above, that is, by rewriting the time evolution of the field Qn

t in terms of a solu-
tion of another Poisson equation which gives us an expression for the term at the
right-hand side of equation (3.20), we obtain the following result:

LEMMA 3.3. Let hn : 1
n
Z2 → R be the solution of the Poisson equation given

in (3.18), a = inf(3/2 + 3b/2,2) and b ∈ (0,1). For any T > 0 we have that

lim
n→∞E

[(∫ T

0
Qn

t

(
na−2D̃nhn

)
dt

)2]
= 0.

PROOF. As mentioned above, in order to prove the result we use again (3.11)
applied to h = vn where vn, is the solution of the Poisson equation

(3.23) na−2�nvn

(
x

n
,
y

n

)
+ γ na−1−bAnvn

(
x

n
,
y

n

)
= na−2D̃nhn.

Then by integrating in time (3.11) we have∫ T

0
Qn

t

(
na−2D̃nhn

)
dt

= 2γ na−b−3/2
∫ T

0
S n

t (Dnvn) dt − 2
∫ T

0
Qn

t

(
na−2D̃nvn

)
dt

+ Qn
T (vn) − Qn

0(vn).

Now, by using repeatedly the inequality (x + y)2 ≤ 2x2 + 2y2 in order to con-
clude we have to show that

lim
n→∞E

[(
na−b−3/2

∫ T

0
S n

t (Dnvn) dt

)2]
= 0,(3.24)

lim
n→∞E

[(
Qn

T (vn) − Qn
0(vn)

)2] = 0(3.25)

and

(3.26) lim
n→∞E

[(∫ T

0
Qn

t

(
na−2D̃nvn

)
dt

)2]
= 0.

We have the following estimates on vn which are proved in Appendix D.1.

LEMMA 3.4. The solution vn of (3.23) satisfies

lim
n→∞‖vn‖2

2,n = 0,(3.27)

lim
n→∞

∥∥na−b−3/2Dnvn

∥∥2
2,n = 0.(3.28)
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The expectation in (3.24), by (3.5) and (3.28), vanishes, as n → ∞. Similarly
the expectation in (3.25), by (3.7) and (3.27), vanishes as n → ∞. To bound the
third expectation above we could be tempted to combine the a priori bound (3.7)
with an estimate on the L2 norm of na−2D̃nvn. We leave the interested reader to
check that this argument only shows (3.26) for b > 1 (and a = 2) or for a < 2 (i.e.,
b < 1/3). Therefore, proving (3.26) for b > 1/3 requires extra work. To overcome
this problem, our idea is to establish the result of Lemma 3.3 with hn replaced by
vn by using the same method used in the current lemma but with the advantage
that now the a priori bound (3.7) combined with the estimates on the L2-norms of
the functions involved, will be sufficient to conclude the proof for any b < 1. This
is the content of Lemma E.1, from where we conclude the proof of the theorem.

�

In fact, in order to complete the proof, some tightness of the fields has to be
established. The arguments being similar to the ones given in [4], Section 5.2, we
do not repeat them and invite the interested reader to read the proofs there.

APPENDIX A: COMPUTATIONS INVOLVING THE GENERATOR Lκ

Let f : Z →R be a function of finite support, and let E (f ) : 
 →R be defined
as

E (f ) = ∑
x∈Z

f (x)η(x)2.

A simple computation shows that

SE (f ) = ∑
x∈Z

�f (x)η2(x),

where �f (x) = f (x + 1) + f (x − 1) − 2f (x) is the discrete Laplacian on Z. On
the other hand,

AE (f ) = −2
∑
x∈Z

∇f (x)η(x)η(x + 1),

where ∇f (x) = f (x + 1) − f (x) is the discrete right-derivative on Z. It follows
that

(A.1) LκE (f ) = −2κ
∑
x∈Z

∇f (x)η(x)η(x + 1) + ∑
x∈Z

�f (x)η2(x).

Now we prove (3.8). Note that

d

dt
S n

t (f ) = 1

2
E

[(
1√
n

∑
x∈Z

g

(
x

n

)(
η0(x)2 − 1

))×
(

na

√
n
Lκ

∑
y∈Z

f

(
y

n

)
ηtna (y)2

)]
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and by (A.1) it equals

1

2
E

[(
1√
n

∑
x∈Z

g

(
x

n

)(
η0(x)2 − 1

))×
(

na−2
√

n

∑
y∈Z

�nf

(
y

n

)
ηtna (y)2

)]

− 1

2
E

[(
1√
n

∑
x∈Z

g

(
x

n

)(
η0(x)2 − 1

))

×
(

2γ na−b−1
√

n

∑
y∈Z

∇nf

(
y

n

)
ηtna (y)ηtna (y + 1)

)]
.

Now, since η0(x)2 − 1 is mean zero we can remove the average of ηtn3/2(y)2 in the
first sum above to rewrite it as na−2S n

t (�nf ). In the second sum above, we recall
the definition of ∇nf ⊗ δ and we rewrite it as −2γ na−b−3/2Qn

t (∇nf ⊗ δ). From
this, we recover (3.8).

Now, let f : Z2 → R be a symmetric function of finite support, and let Q(f ) :

 →R be defined as

Q(f ) = ∑
x,y∈Z
x 
=y

η(x)η(y)f (x, y).

Define �f : Z2 →R as

(A.2)
�f (x, y) = f (x + 1, y) + f (x − 1, y) + f (x, y + 1)

+ f (x, y − 1) − 4f (x, y)

for any x, y ∈ Z and A f : Z2 →R by

(A.3) A f (x, y) = f (x − 1, y) + f (x, y − 1) − f (x + 1, y) − f (x, y + 1)

for any x, y ∈ Z. Notice that �f is the discrete Laplacian on the lattice Z2 and A f

is a possible definition of the discrete derivative of f in the direction (−2,−2).
Notice that we are using the same symbol � for the one-dimensional and two-
dimensional discrete Laplacian. From the context it will be clear which operator
we will be using. We have that

SQ(f ) = ∑
|x−y|≥2

f (x, y)
[
η(y)�η(x) + η(x)�η(y)

]
+ 2

∑
x∈Z

f (x, x + 1)
[(

η(x − 1) − η(x)
)
η(x + 1)

+ (
η(x + 2) − η(x + 1)

)
η(x)

]
= ∑

x,y∈Z
�f (x, y)η(x)η(y) − 2

∑
x∈Z

f (x, x)η(x)�η(x)(A.4)



WEAKLY HARMONIC CHAIN 1329

− 2
∑
x∈Z

f (x, x + 1)
[
η(x + 1)�η(x) + η(x)�η(x + 1)

]
+ 2

∑
x∈Z

f (x, x + 1)
[
η(x + 1)η(x − 1) + η(x + 2)η(x)

− 2η(x)η(x + 1)
]
.

Grouping terms involving η(x)2 and η(x)η(x + 1) together we get that

SQ(f ) = ∑
x,y∈Z
x 
=y

�f (x, y)η(x)η(y)

+ 2
∑
x∈Z

{[
f (x, x + 1) − f (x, x)

]+ [
f (x, x + 1) − f (x + 1, x + 1)

]}
× η(x)η(x + 1)

= Q(�f )

+ 2
∑
x∈Z

{[
f (x, x + 1) − f (x, x)

]+ [
f (x, x + 1) − f (x + 1, x + 1)

]}
× η(x)η(x + 1).

(A.5)

Similarly, we have that

AQ(f ) = ∑
x,y∈Z
x 
=y

A f (x, y)η(x)η(y)

+ 2
∑
x∈Z

{
η(x)2[f (x − 1, x) − f (x, x + 1)

]
− η(x)η(x + 1)

[
f (x, x) − f (x + 1, x + 1)

]}
= Q(A f )

+ 2
∑
x∈Z

{
η(x)2[f (x − 1, x) − f (x, x + 1)

]
− η(x)η(x + 1)

[
f (x, x) − f (x + 1, x + 1)

]}
.

(A.6)

From this it follows that

(A.7) LκQ(f ) = Q
(
(� + κA )f

)+ Dκ(f ),
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where the diagonal term Dκ(f ) is given by

Dκ(f ) = 2κ
∑
x∈Z

(
η(x)2 − 1

β

)(
f (x − 1, x) − f (x, x + 1)

)
+ 2

∑
x∈Z

η(x)η(x + 1)
(
2f (x, x + 1) − (1 + κ)f (x, x)

− (1 − κ)f (x + 1, x + 1)
)
.

(A.8)

Above in Dκ , we could add the normalization constant 1
β

for free, since∑
x∈Z f (x, x + 1) − f (x − 1, x) = 0. We also note that the operators f �→ Q(f ),

f �→ LQ(f ) are continuous maps from �2(Z2) to L2(μβ) and therefore, an ap-
proximation procedure shows that the identities above are true for any f ∈ �2(Z2).
Performing similar computations to those we did above for the field S n

t , it is quite
simple to deduce (3.11).

APPENDIX B: TOOLS OF FOURIER ANALYSIS

Let d ≥ 1 and let x · y denote the usual scalar product in Rd between x and y.
The Fourier transform of a function g : 1

n
Zd →R is defined by

ĝn(k) = 1

nd

∑
x∈Zd

g

(
x

n

)
e

2iπk·x
n , k ∈ Rd .

The function ĝn is n-periodic in all the directions of Rd . We have the following
Parseval–Plancherel identity between the �2-norm of g, weighted by the natural
mesh, and the L2([−n

2 , n
2 ]d)-norm of its Fourier transform:

(B.1) ‖g‖2
2,n := 1

nd

∑
x∈Zd

∣∣∣∣g(x

n

)∣∣∣∣2 =
∫
[− n

2 , n
2 ]d

∣∣ĝn(k)
∣∣2 dk := ‖ĝn‖2

2.

The function g can be recovered from the knowledge of its Fourier transform
by the inverse Fourier transform of ĝn:

(B.2) g

(
x

n

)
=

∫
[− n

2 , n
2 ]d

ĝn(k)e− 2iπx·k
n dk.

For any p ≥ 1 let [(∇n)
p] denote the pth iteration of the operator ∇n.

LEMMA B.1 ([4]). Let f : 1
n
Z →R and p ≥ 1 be such that

(B.3)
1

n

∑
x∈Z

∣∣∣∣[(∇n)
p]f(

x

n

)∣∣∣∣ < +∞.

There exists a universal constant C := C(p) independent of f and n such that for
any |y| ≤ 1/2,∣∣f̂n(yn)

∣∣ ≤ C

np| sin(πy)|p
∣∣∣∣1n ∑

x∈Z

[
(∇n)

p]f(
x

n

)
e2iπyx

∣∣∣∣.
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In particular, if f is in the Schwartz space S (R), then for any p ≥ 1, there exists
a constant C := C(p,f ) such that for any |y| ≤ 1/2,∣∣f̂n(yn)

∣∣ ≤ C

1 + (n|y|)p .

Several times we will use the following elementary change of variable property.

LEMMA B.2 ([4]). Let F :R2 →C be a n-periodic function in each direction
of R2. Then we have that∫∫

[− n
2 , n

2 ]2
F(k, �) dk d� =

∫∫
[− n

2 , n
2 ]2

F(ξ − �, �) dξ d�.

APPENDIX C: ESTIMATES INVOLVING hn

Let hn : 1
n
Z2 →R be the unique solution in �2( 1

n
Z2) of (3.18). Observe that hn

is a symmetric function. The Fourier transform of hn is not difficult to compute by
using Appendix B. First, we not that the Fourier transform of the function �nh for
a given, summable function h : 1

n
Z2 →R is given by

(̂�nh)n(k, �) = −n2�

(
k

n
,
�

n

)
ĥn(k, �),(C.1)

where

�

(
k

n
,
�

n

)
= −(

e
2πik

n + e− 2πik
n + e

2πi�
n + e− 2πi�

n − 4
)

= 4
[
sin2

(
πk

n

)
+ sin2

(
π�

n

)]
.

(C.2)

Similarly, the Fourier transform of Anh is given by

(̂Anh)n(k, �) = in


(
k

n
,
�

n

)
ĥn(k, �),(C.3)

where

i


(
k

n
,
�

n

)
= e

2πik
n + e

2πi�
n − e− 2πik

n − e− 2πi�
n

= 2i

(
sin

(
2πk

n

)
+ sin

(
2π�

n

))
.

(C.4)

Note in particular that 
(k
n
, �

n
) is a real number. Let us now compute the Fourier

transform of the function gn = ∇nf ⊗ δ defined in (3.10):

ĝn(k, �) = 1

n2

∑
x,y∈Z

[∇nf ⊗ δ]
(

x

n
,
y

n

)
e

2iπ(kx+�y)
n

= − in

2



(
k

n
,
�

n

)
f̂n(k + �).

(C.5)
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From the previous computations, we have that7

(C.6) ĥn(k, �) = 1√
n

i
(k
n
, �

n
)

γ −1nb�(k
n
, �

n
) − i
( k

n
, �

n
)
f̂n(k + �).

Our aim will be to study the behavior of hn, as n → ∞.

C.1. Proof of (3.21). We want to show that

(C.7) ‖hn‖2
2,n := 1

n2

∑
x,y∈Z

hn

(
x

n
,
y

n

)2
,

vanishes, as n → ∞. By Plancherel–Parseval’s relation, Lemma B.2 and (C.6), we
have that

‖hn‖2
2,n =

∫∫
[− n

2 , n
2 ]2

∣∣ĥn(k, �)
∣∣2 dk d�

= 1

n

∫∫
[− n

2 , n
2 ]2


(k
n
, �

n
)2|f̂n(k + �)|2

γ −2n2b�(k
n
, �

n
)2 + 
(k

n
, �

n
)2

dk d�

= 1

n

∫∫
[− n

2 , n
2 ]2


(
ξ−�
n

, �
n
)2|f̂n(ξ)|2

γ −2n2b�(
ξ−�
n

, �
n
)2 + 
(

ξ−�
n

, �
n
)2

dξ d�.

Since

(C.8) 


(
ξ − �

n
,
�

n

)2
≤ 4

∣∣1 − e
2iπξ

n
∣∣2 = 16 sin2

(
πξ

n

)
,

the last expression can be bounded from above by

16

n

∫ n/2

−n/2
sin2

(
πξ

n

)∣∣f̂n(ξ)
∣∣2[∫ n/2

−n/2

d�

γ −2n2b�(
ξ−�
n

, �
n
)2 + 
(

ξ−�
n

, �
n
)2

]
dξ

= 16n

∫ 1/2

−1/2
sin2(πy)

∣∣f̂n(ny)
∣∣2W̃n(y) dy,

(C.9)

where

W̃n(y) =
∫ 1/2

−1/2

dx

γ −2n2b�(y − x, x)2 + 
(y − x, x)2

≤
∫ 1/2

−1/2

dx

γ −2�(y − x, x)2 + 
(y − x, x)2 .

(C.10)

7If k and � both belong to nZ then the denominator appearing in the definition of ĥn is zero but

this is not a problem since the function [i
/(γ −1nb� − i
)](x, y) converges to −1 as (x, y) →
(k, �) ∈ Z2.
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Since by Lemma F.5 in [4], the right-hand side of (C.10) is of order |y|−3/2 for
y ∈ [−1

2 , 1
2 ], then, from Lemma B.1 we conclude that ‖hn‖2

2,n = O( 1√
n
). Indeed,

by a change of variables, (C.9) is bounded from above by a constant times

n

∫ 1/2

−1/2

√
y

(1 + (n|y|)p)2 dy ≤ n

∫ 1/2

−1/2

√
y

1 + (n|y|)2p
dy ≤ 1√

n

∫
R

√
y

1 + |y|2p
dy

= O

(
1√
n

)
,

as long as p is sufficiently big. This ends the proof of (3.21).

C.2. Proof of Lemma 3.2. In order to prove this lemma, let qn : 1
n
Z → R be

the function defined by

(C.11) qn

(
x

n

)
= na−b−3/2Dnhn

(
x

n

)
and let q :R →R be given by

q(x) =
∫ +∞
−∞

e−2iπyxG0(y)Ff (y) dy,

where Ff denotes the Fourier transform of f which is given by

(C.12) (Ff )(ξ) =
∫
R

e2iπxξf (x) dx

and G0(y) = √
2γ |πy|3/2ei sgn(y) π

4 . Observe that the Fourier transform of q ,
namely Fq , coincides with

√
γ

2 FL f .
Now we note that in the case b > 1/3 the proof of Lemma 3.2 trivially follows

from the next result and also by noting that the operator Lγ,b is simply the usual
Laplacian. In the case b ≤ 1/3, the proof of Lemma 3.2 follows from the next
result and also by noting that the factor in front of the discrete Laplacian is given
by na−2 = n

1
2 (3b−1), which vanishes as n → ∞ if b < 1/3, and is constant equal

to 1 for b = 1/3.

LEMMA C.1. We have that:

1. For b ≤ 1/3 and a = 3/2 + 3b/2,

(C.13) lim
n→+∞

1

n

∑
x∈Z

[
q

(
x

n

)
− qn

(
x

n

)]2
= 0.

2. For b > 1/3 and a = 2,

(C.14) lim
n→+∞

1

n

∑
x∈Z

q2
n

(
x

n

)
= 0.
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PROOF. By following the proof of Lemma D.1 in [4] we have that

q̂n(ξ) = −na−b−3/2 in

2

∫ n/2

−n/2



(
ξ − �

n
,
�

n

)
ĥn(ξ − �, �) d�.

By the explicit expression (C.6) for ĥn we obtain that

q̂n(ξ) = na−b−3/2
√

n

2

[∫ n/2

−n/2


(
ξ−�
n

, �
n
)2

γ −1nb�(
ξ−�
n

, �
n
) − i
(

ξ−�
n

, �
n
)
d�

]
f̂n(ξ).

By the inverse Fourier transform we get that

qn

(
x

n

)
= 2na−b

∫ n/2

−n/2
e− 2iπξx

n Gn

(
ξ

n

)
f̂n(ξ) dξ,

where

(C.15) Gn(y) = 1

4

∫ 1/2

−1/2


(y − z, z)2

γ −1nb�(y − z, z) − i
(y − z, z)
dz.

By Lemma F.1 we have that

Gn(y) =
√

γ

nb/2
√

2

∣∣sin(πy)
∣∣3/2

ei sgn(y) π
4 + O

(
sin2(πy)

)
if b < 1,

Gn(y) = O
(
n−b

∣∣sin(πy)
∣∣) if b ≥ 1.

(C.16)

Now we prove (C.14) and then (C.13). Recall that q̂n(ξ) = 2na−bGn(
ξ
n
)f̂n(ξ). By

Parseval–Plancherel’s equality, we have

1

n

∑
x∈Z

∣∣∣∣qn

(
x

n

)∣∣∣∣2 =
∫ n/2

−n/2

∣∣q̂n(ξ)
∣∣2 dξ = 4n2a−2b+1

∫ 1/2

−1/2

∣∣Gn(y)
∣∣2∣∣f̂n(ny)

∣∣2 dy.

If b ≥ 1, from the second equality in (C.16) and Lemma B.1, for p sufficiently big,
it follows that there exists a constant C > 0 such that

1

n

∑
x∈Z

∣∣∣∣qn

(
x

n

)∣∣∣∣2 ≤ Cn2a−4b+1
∫ 1/2

−1/2

|y|2
1 + (n|y|)p dy = O

(
n2a−4b−2)

and the right-hand side of the previous inequality goes to 0 since a = 2 and b ≥
1 > 1/2. In the case 1/3 < b < 1, we repeat the same argument as above using the
function given in the first equality in (C.16) and we get a bound in the form (for p

sufficiently big)

1

n

∑
x∈Z

∣∣∣∣qn

(
x

n

)∣∣∣∣2 ≤ C
n2a−2b+1

nb

∫ 1/2

−1/2

|y|3
1 + (n|y|)p dy

+ Cn2a−2b+1
∫ 1/2

−1/2

|y|4
1 + (n|y|)p dy

= O
(
n2a−2b−3)+ O

(
n2a−2b−4).
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Since a = 2 and 1 > b > 1/3 the right-hand side of the last inequality goes to 0.
Finally, we look at the case b ≤ 1/3. Let us define

(C.17)
G̃0(y) :=

√
2γ

∣∣sin(πy)
∣∣3/2

ei sgn(y) π
4 =

∣∣∣∣sin(πy)

πy

∣∣∣∣3/2
G0(y)

= G0(y) + O
(|y|9/2)

since sin(πy) = πy + O(|y|3) for y → 0. The factor 2na−bGn(
ξ
n
) that appears

in q̂n(ξ) can be written as 2na−bGn(
ξ
n
) = na−3b/2G̃0(

ξ
n
) + εn(

ξ
n
) where εn(y) =

na−bO(|y|2). Thus by using Lemma B.1 we have that

∫ n/2

−n/2

∣∣∣∣εn

(
ξ

n

)∣∣∣∣2∣∣f̂n(ξ)
∣∣2 dξ = n

∫ 1/2

−1/2

∣∣εn(y)
∣∣2∣∣f̂n(ny)

∣∣2 dy = O
(
n2a−2b−4).

Since a = 3/2 + 3b/2 and b < 1/3 < 1, the corrective term involving εn does
not contribute in (C.13) and we can assume that 2na−bGn(

ξ
n
) is replaced by

na−3b/2G̃0(
ξ
n
) in the expression of q̂n(ξ). Since a = 3/2 + 3b/2 we get in front

of G̃0 the factor n3/2. Again, we can replace G̃0 by G0 in the expression of q̂n(ξ)

because, by Lemma B.1 and (C.17),

∫ n/2

−n/2

∣∣∣∣n3/2G̃0

(
ξ

n

)
− n3/2G0

(
ξ

n

)∣∣∣∣2∣∣f̂n(ξ)
∣∣2 dξ ≤ Cn4

∫ 1/2

−1/2
|y|9∣∣f̂n(ny)

∣∣2 dy

= O
(
n−6).

Now, since we have been able to replace 2na−bGn(
ξ
n
) by n3/2G0(

ξ
n
) in the expres-

sion of q̂n(ξ) and that n3/2G0(
ξ
n
) = G0(ξ) the proof of Lemma B.1 in [4] can be

followed. For the interested reader, we present the details below. We have that

q

(
x

n

)
− qn

(
x

n

)
=

∫
|ξ |≥n/2

e− 2iπξx
n G0(ξ)Ff (ξ) dξ

+
∫
|ξ |≤n/2

e− 2iπξx
n G0(ξ)

[
Ff (ξ) − f̂n(ξ)

]
dξ

+
∫
|ξ |≤n/2

e− 2iπξx
n

(
n3/2G0 − 2na−bGn

)(ξ

n

)
f̂n(ξ) dξ.

(C.18)

Above we have used the fact that n3/2G0(
ξ
n
) = G0(ξ). From the triangular in-

equality together with Plancherel’s theorem applied to the two last terms at the
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right-hand side of the previous expression and from (C.16), we have that

1

n

∑
x∈Z

[
q

(
x

n

)
− qn

(
x

n

)]2
≤ 1

n

∑
x∈Z

∣∣∣∣∫|ξ |≥n/2
e− 2iπξx

n G0(ξ)(Ff )(ξ) dξ

∣∣∣∣2

+
∫
|ξ |≤n/2

∣∣G0(ξ)
[
Ff (ξ) − f̂n(ξ)

]∣∣2 dξ

+ C

n

∫
|ξ |≤n/2

|ξ |4∣∣f̂n(ξ)
∣∣2 dξ.

(C.19)

Note that the last term above goes to 0, as n → ∞, by Lemma B.1 for p sufficiently
big. The first term above, can be estimated in the same way as we did in the case
b > 1/3 and it vanishes as n → ∞. The second term term follows exactly the same
steps as in the proof of Lemma B.1 of [4] and for that reason we have omitted it.
This ends the proof of the lemma. �

APPENDIX D: PROOF OF LEMMA 3.4

We start by computing the Fourier transform of vn. Recall that vn is solution of
(3.23). Applying the Fourier transform, we get that

�̂nvn(k, �) + γ n1−bÂnvn(k, �) = ̂̃Dnhn.

Note that since hn does not depend on a it is the same for vn. From (C.1) and (C.3)
the left-hand side of the previous display is given by

−n2�

(
k

n
,
�

n

)
v̂n(k, �) + iγ n2−b


(
k

n
,
�

n

)
v̂n(k, �).

Now we need to compute the Fourier transform of D̃nhn. By a simple computation,
we get that

̂̃Dnhn(k, l) = ∑
x∈Z

{
Ẽnh

(
x

n

)
−

(
1 − k

2

)
F̃nh

(
x

n

)}

× {
e

2πi(kx+�(x+1))
n + e

2iπ(k(x+1)+�x)
n

}
= n

{
e

2iπ�
n + e

2iπk
n
}{̂̃Enh(k + �) −

(
1 − k

2

) ̂̃Fnh(k + �)

}
,

(D.1)

where Ẽnh and F̃nh were given in (3.16) and (3.17), respectively. From the previ-
ous computations, we conclude that the Fourier transform v̂n is given by

v̂n(k, �) = −1

n

e
2iπk

n + e
2iπ�

n

�( k
n
, �

n
) − iγ n−b
( k

n
, �

n
)

×
{̂̃Enh(k + �) −

(
1 − k

2

) ̂̃Fnh(k + �)

}
(D.2)
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= −γ −1nb−1 e
2iπk

n + e
2iπ�

n

γ −1nb�(k
n
, �

n
) − i
( k

n
, �

n
)

×
{̂̃Enh(k + �) −

(
1 − k

2

) ̂̃Fnh(k + �)

}
.

By Lemma B.2 and (3.16), we have that the Fourier transform of Ẽnh is given bŷ̃Enh(ξ) = 1

n

∑
x∈Z

e
2iπξx

n

(
hn

(
x

n
,
x + 1

n

)
− hn

(
x

n
,
x

n

))

= 1

n

∑
x∈Z

e
2iπξx

n

∫∫
[− n

2 , n
2 ]2

ĥn(k, �)e− 2iπ(k+�)x
n

{
e− 2iπ�

n − 1
}
dk d�

= 1

n

∑
x∈Z

e
2iπξx

n

∫ n/2

−n/2
e− 2iπux

n

{∫ n/2

−n/2
ĥn(u − �, �)

{
e− 2iπ�

n − 1
}
d�

}
du

=
∫ n/2

−n/2
ĥn(ξ − �, �)

{
e− 2iπ�

n − 1
}
d�.

(D.3)

In the last line, we used the inverse Fourier transform. By (C.6), we get that

̂̃Enh(ξ) = − 1√
n
f̂n(ξ)

∫ n/2

−n/2

(1 − e− 2iπ�
n )i
(

ξ−�
n

, �
n
)

γ −1nb�(
ξ−�
n

, �
n
) − i
(

ξ−�
n

, �
n
)
d�

= −√
nIn

(
ξ

n

)
f̂n(ξ),

(D.4)

where the function In is defined by

(D.5) In(y) =
∫ 1/2

−1/2

(1 − e−2iπx)i
(y − x, x)

γ −1nb�(y − x, x) − i
(y − x, x)
dx.

Again, by Lemma B.2 and (3.17) the Fourier transform of F̃nh is given bŷ̃Fnh(ξ) = 1

n

∑
x∈Z

e
2iπξx

n

(
hn

(
x + 1

n
,
x + 1

n

)
− hn

(
x

n
,
x

n

))

= (
e− 2iπξ

n − 1
)1

n

∑
x∈Z

e
2iπξx

n hn

(
x

n
,
x

n

)

= (
e− 2iπξ

n − 1
)1

n

∑
x∈Z

e
2iπξx

n

∫∫
[− n

2 , n
2 ]2

ĥn(k, �)e− 2iπ(k+�)x
n dk d�(D.6)

= (
e− 2iπξ

n − 1
)1

n

∑
x∈Z

e
2iπξx

n

∫ n/2

−n/2
e− 2iπux

n

{∫ n/2

−n/2
ĥn(u − �, �) d�

}
du

= (
e− 2iπξ

n − 1
) ∫ n/2

−n/2
ĥn(ξ − �, �) d�.
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By (C.6), we get

̂̃Fnh(ξ) = − 1√
n

(
1 − e− 2iπξ

n
)
f̂n(ξ)

×
∫ n/2

−n/2

i
(
ξ−�
n

, �
n
)

γ −1nb�(
ξ−�
n

, �
n
) − i
(

ξ−�
n

, �
n
)
d�

= −√
n
(
1 − e− 2iπξ

n
)
Ĩn

(
ξ

n

)
f̂n(ξ),

(D.7)

where the function Ĩn is defined by

(D.8) Ĩn(y) =
∫ 1/2

−1/2

i
(y − x, x)

γ −1nb�(y − x, x) − i
(y − x, x)
dx.

D.1. Proof of (3.27). In order to compute the discrete L2 norm of vn we use
Plancherel–Parseval’s relation, (D.2), Lemma B.2 and we have that

‖vn‖2
2,n =

∫∫
[− n

2 , n
2 ]2

∣∣v̂n(k, �)
∣∣2 dk d�

= 1

n2

∫ n/2

−n/2

∣∣∣∣ ̂̃Enh(ξ) −
(

1 − k

2

) ̂̃Fnh(ξ)

∣∣∣∣2

×
∫ n/2

−n/2

∣∣∣∣ e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

∣∣∣∣2 d�dξ

≤ C

n

∫ n/2

−n/2

∣∣∣∣ ̂̃Enh(ξ) −
(

1 − k

2

) ̂̃Fnh(ξ)

∣∣∣∣2Wn

(
ξ

n

)
dξ,

where

(D.9) Wn(y) =
∫ 1/2

−1/2

dx

�(y − x, x)2 + γ 2n−2b
(y − x, x)2 .

We observe that since b > 0, we can bound Wn(y) from above by

(D.10) Wn(y) ≤ n2b
∫ 1/2

−1/2

dx

�(y − x, x)2 + γ 2
(y − x, x)2 .

This integral has been estimated in Lemma F.5 of [4] and it is of order |y|−3/2 for
y → 0. Therefore, we have that

(D.11)
∣∣Wn(y)

∣∣ ≤ Cn2b|y|−3/2.

By the triangular inequality, in order to finish the proof, we are reduced to show
that

1

n

∫ n/2

−n/2

∣∣ ̂̃Enh(ξ)
∣∣2Wn

(
ξ

n

)
dξ and

1

n

∫ n/2

−n/2

∣∣ ̂̃Fnh(ξ)
∣∣2Wn

(
ξ

n

)
dξ(D.12)
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vanish as n → ∞. By (D.4), the term at the left-hand side of the previous display
is equal to∫ n/2

−n/2

∣∣f̂n(ξ)
∣∣2∣∣∣∣In

(
ξ

n

)∣∣∣∣2Wn

(
ξ

n

)
dξ = n

∫ 1/2

−1/2

∣∣f̂n(ny)
∣∣2∣∣In(y)

∣∣2Wn(y)dy.

By Lemma F.3 and Lemma B.1, we have

n

∫ 1/2

−1/2

∣∣f̂n(ny)
∣∣2∣∣In(y)

∣∣2Wn(y)dy

≤ Cn

∫ 1/2

−1/2

1

1 + |ny|p
|y|3/2

|y| + n−b
dy = 2C

1√
n

∫ n/2

0

1

1 + |z|p
|z|3/2

|z| + n1−b
dz

≤ 2C
1√
n

∫ n/2

0

|z|1/2

1 + |z|p dz

which goes to 0 as n → ∞ for p sufficiently big. Finally, by (D.7), Lemma F.3 and
Lemma B.1, the term at the right-hand side of (D.12) is bounded from above as∫ n/2

−n/2

∣∣1 − e
2πiξ

n
∣∣2∣∣∣∣Ĩn

(
ξ

n

)∣∣∣∣2∣∣∣∣f̂n

(
ξ

n

)∣∣∣∣2Wn

(
ξ

n

)
dξ

= n

∫ 1/2

−1/2

∣∣sin(πy)
∣∣2∣∣f̂n(ny)

∣∣2∣∣Ĩn(y)
∣∣2Wn(y)dy

≤ C
1√
n

∫ n/2

0

|z|1/2

1 + |z|p dz

which goes to 0 as n → ∞ for p sufficiently big.

D.2. Proof of (3.28). In order to compute the discrete L2 norm of Dnvn we
first note that by simple computations together with Lemma B.2 we have that (see
equation (E.7) in [4])

D̂nvn(ξ) = n
(
1 − e

2iπξ
n
) ∫ n

2

− n
2

v̂n(ξ − �, �)e− 2iπ�
n d�.(D.13)

By (D.2), the last expression equals

D̂nvn(ξ) = −(
1 − e

2iπξ
n
){̂̃Enh(ξ) −

(
1 − k

2

) ̂̃Fnh(ξ)

}

×
∫ n

2

− n
2

1 + e
2iπ(ξ−2�)

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)
d�

= −n
(
1 − e

2iπξ
n
){̂̃Enh(ξ) −

(
1 − k

2

) ̂̃Fnh(ξ)

}
Jn

(
ξ

n

)
,

(D.14)
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where Jn is given by

(D.15) Jn(y) =
∫ 1/2

−1/2

1 + e2iπ(y−2x)

�(y − x, x) − iγ n−b
(y − x, x)
dx.

Now, by using (D.4) and (D.7) we get

(D.16)
D̂nvn(ξ) = n3/2

2

(
1 − e

2iπξ
n
)
f̂n(ξ)In

(
ξ

n

)
Jn

(
ξ

n

)
− 4n3/2

(
1 − k

2

)
sin2

(
πξ

n

)
Ĩn

(
ξ

n

)
f̂n

(
ξ

n

)
Jn

(
ξ

n

)
,

where In is defined by (D.5). Finally, by Plancherel–Parseval’s relation we have
that ∥∥na−b−3/2Dnvn

∥∥2
2,n

≤ Cn2(a−b)
∫ n/2

−n/2
sin2

(
π

ξ

n

)∣∣f̂n(ξ)
∣∣2∣∣∣∣In

(
ξ

n

)∣∣∣∣2∣∣∣∣Jn

(
ξ

n

)∣∣∣∣2 dξ

+ Cn2(a−b)
∫ n/2

−n/2

∣∣∣∣sin
(
π

ξ

n

)∣∣∣∣4∣∣f̂n(ξ)
∣∣2∣∣∣∣Ĩn

(
ξ

n

)∣∣∣∣2∣∣∣∣Jn

(
ξ

n

)∣∣∣∣2 dξ

= Cn2(a−b)+1
∫ 1/2

−1/2

∣∣sin(πy)
∣∣2∣∣In(y)

∣∣2∣∣Jn(y)
∣∣2∣∣f̂n(ny)

∣∣2 dy

+ Cn2(a−b)+1
∫ 1/2

−1/2

∣∣sin(πy)
∣∣4∣∣Ĩn(y)

∣∣2∣∣Jn(y)
∣∣2∣∣f̂n(ny)

∣∣2 dy.

(D.17)

By using Lemma F.4, Lemma F.3 and Lemma B.1, choosing a p sufficiently large,
we can bound the first term at the right-hand side of (D.17) by a constant times

n2a−4b+1
∫ 1/2

0

y4

1 + (ny)p

1

(|y| + n−b)2 dy

= n2a−2−4b
∫ ∞

0

z4

1 + zp

1

(z + n1−b)2 dz.

(D.18)

If b ≤ 1, the previous integral is bounded from above by

n2a−4−2b
∫ ∞

0

z4

1 + zp
dz

which goes to 0 since a = inf(3/2 − 3/2b,2). If b > 1, the integral (D.18) is
bounded from above by

n2a−2−4b
∫ ∞

0

z2

1 + zp
dz

which goes to 0 since a = 2 in this case.
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The second term on the right-hand side of (D.17) is proved to go to 0 similarly
by using Lemma F.4, Lemma F.3 and Lemma B.1. This completes the proof of
(3.28).

APPENDIX E: PROOF OF (3.26)

LEMMA E.1. Let vn : 1
n
Z2 → R be the solution of (3.23) and let a =

inf(3/2 + 3b/2,2) and b ∈ (0,1). For any T > 0, we have that

lim
n→∞E

[(∫ T

0
Qn

t

(
na−2D̃nvn

)
dt

)2]
= 0.

PROOF. In order to prove the result we do the following. We use again (3.11)
for the solution wn of the Poisson equation

(E.1) na−2�nwn

(
x

n
,
y

n

)
+ γ na−1−bAnwn

(
x

n
,
y

n

)
= na−2D̃nvn.

Then, by integrating in time (3.11) we have∫ T

0
Qn

t

(
na−2D̃nvn

)
dt

= 2γ na−b−3/2
∫ T

0
S n

t (Dnwn)dt − 2
∫ T

0
Qn

t

(
na−2D̃nwn

)
dt

+ Qn
T (wn) − Qn

0(wn).

Now, by using repeatedly the inequality (x +y)2 ≤ 2x2 +2y2 in order to conclude
we have to show that

E

[(
na−b−3/2

∫ T

0
S n

t (Dnwn)dt

)2]
,

E
[(

Qn
T (wn) − Qn

0(wn)
)2]

and

E

[(∫ T

0
Qn

t

(
na−2D̃nwn

)
dt

)2]
vanish as n goes to infinity. The first display above, by (3.5) and (E.3), vanishes, as
n → ∞. Similarly the second (resp. third display), by (3.7) and (E.2) [resp. (E.4)],
vanishes as n → ∞. �

Therefore the previous lemma depends on the following estimates on wn.
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LEMMA E.2. Let a = inf(3/2 + 3b/2,2) and b ∈ (0,1). The solution wn of
(E.1) satisfies

lim
n→∞‖wn‖2

2,n = 0,(E.2)

lim
n→∞

∥∥na−b−3/2Dnwn

∥∥2
2,n = 0,(E.3)

lim
n→∞

∥∥na−2D̃nwn

∥∥2
2,n = 0.(E.4)

PROOF. We start by computing the Fourier transform of wn. Repeating the
computations done for (D.2) and recalling that wn is solution of (E.1), we obtain

ŵn(k, �) = −1

n

e
2iπk

n + e
2iπ�

n

�( k
n
, �

n
) − iγ n−b
( k

n
, �

n
)

×
{ ̂̃Envn(k + �) −

(
1 − k

2

)
̂̃Fnvn(k + �)

}
,

(E.5)

where Ẽnvn and F̃nvn are defined as in (3.16) and (3.17) with h replaced with vn.
• We start by proving (E.2). As in Section D.1, we have that

‖wn‖2
2,n ≤ C

n

∫ n/2

−n/2

∣∣∣∣ ̂̃Envn(ξ) −
(

1 − k

2

)
̂̃Fnvn(ξ)

∣∣∣∣2Wn

(
ξ

n

)
dξ,

where Wn is given in (D.9). By the triangular inequality, in order to finish the
proof, we are reduced to show that

1

n

∫ n/2

−n/2

∣∣ ̂̃Envn(ξ)
∣∣2Wn

(
ξ

n

)
dξ and

1

n

∫ n/2

−n/2

∣∣̂̃Fnvn(ξ)
∣∣2Wn

(
ξ

n

)
dξ(E.6)

vanish as n → ∞. Now we compute the Fourier transform of the previous func-
tions. As in (D.3) and using (D.2) we have that

̂̃Envn(ξ) = −1

n

∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

̂̃Enhn(ξ)
{
e− 2iπ�

n − 1
}
d�

+
(

1 − κ

2

)
1

n

∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

× ̂̃Fnhn(ξ)
{
e− 2iπ�

n − 1
}
d�

= √
nKn

(
ξ

n

){
In

(
ξ

n

)
−

(
1 − κ

2

)(
1 − e− 2πiξ

n
)
Ĩ

(
ξ

n

)}
f̂n(ξ),

(E.7)

where above we used (D.4), (D.7) and where Kn is given by

(E.8) Kn(y) =
∫ 1/2

−1/2

(e−2iπx − 1)(e2iπ(y−x) + e2iπx)

�(y − x, x) − iγ n−b
(y − x, x)
dx.
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Now, as in (D.6) and using (D.2) we have that

̂̃Fnvn(ξ) = −1

n

(
e− 2iπξ

n − 1
) ∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

̂̃Enhn(ξ) d�

+ 1

n

(
1 − κ

2

)(
e− 2iπξ

n − 1
) ∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

× ̂̃Fnhn(ξ) d�

= √
n
(
e− 2iπξ

n − 1
)
K̃n

(
ξ

n

){
In

(
ξ

n

)
−

(
1 − k

2

)(
1 − e− 2πiξ

n
)
Ĩn

(
ξ

n

)}
× f̂n(ξ),

(E.9)

where above we used (D.4), (D.7) and K̃n is given by

(E.10) K̃n(y) =
∫ 1/2

−1/2

e2iπ(y−x) + e2iπx

�(y − x, x) − iγ n−b
(y − x, x)
dx.

Now we estimate the term at the left-hand side of (E.6), which, by (E.7) and the
triangular inequality, can be bounded from above by the sum of the two terms
below. The first one is equal to∫ n/2

−n/2

∣∣f̂n(ξ)
∣∣2∣∣∣∣In

(
ξ

n

)∣∣∣∣2∣∣∣∣Kn

(
ξ

n

)∣∣∣∣2Wn

(
ξ

n

)
dξ

= n

∫ 1/2

−1/2

∣∣f̂n(ny)
∣∣2∣∣In(y)

∣∣2∣∣Kn(y)
∣∣2Wn(y)dy,

which by Lemma F.3, Lemma F.5, Lemma B.1 and (D.11) is bounded from above
by

Cn

∫ 1/2

−1/2

1

1 + |ny|p
|y|5/2

(|y| + n−b)2 dy = 2C
1√
n

∫ n/2

0

1

1 + |z|p
|z|5/2

(|z| + n1−b)2 dz

≤ 2C
1√
n

∫ n/2

0

|z|1/2

1 + |z|p dz

and goes to 0 as n → ∞ by choosing p sufficiently big. The second one is∫ n/2

−n/2

∣∣f̂n(ξ)
∣∣2∣∣∣∣Ĩn

(
ξ

n

)∣∣∣∣2∣∣1 − e− 2πiξ
n
∣∣2∣∣∣∣Kn

(
ξ

n

)∣∣∣∣2Wn

(
ξ

n

)
dξ

= n

∫ 1/2

−1/2

∣∣f̂n(ny)
∣∣2∣∣Ĩn(y)

∣∣2∣∣1 − e−2πiy
∣∣2∣∣Kn(y)

∣∣2Wn(y)dy,
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which Lemma F.3, Lemma F.5, Lemma B.1 and (D.11) is bounded from above by

Cn

∫ 1/2

−1/2

1

1 + |ny|p
|y|5/2

(|y| + n−b)2 dy = 2C
1√
n

∫ n/2

0

1

1 + |z|p
|z|5/2

(|z| + n1−b)2 dz

≤ 2C
1√
n

∫ n/2

0

|z|1/2

1 + |z|p dz

and goes to 0 as n → ∞ by choosing p sufficiently big. Therefore, we have shown
that the first term in (D.12) goes to 0 as n goes to infinity. The estimate for the term
at the right-hand side of (D.12) is similar and this proves (E.2).

• Now we prove (E.3). As in (D.14) together with (E.5) we have that

D̂nwn(ξ) = −n
(
1 − e

2iπξ
n
){̂̃Envn(ξ) −

(
1 − k

2

) ̂̃Fnvn(ξ)

}
Jn

(
ξ

n

)
,(E.11)

where Jn is given in (D.15). Now, by using (E.7) and (E.9) we get

D̂nwn(ξ) = −n3/2(1 − e
2iπξ

n
)
Kn

(
ξ

n

)
In

(
ξ

n

)
Jn

(
ξ

n

)
f̂n(ξ)

+ 4n3/2
(

1 − k

2

)
sin2

(
πξ

n

)
Kn

(
ξ

n

)
Ĩn

(
ξ

n

)
Jn

(
ξ

n

)
f̂n(ξ)

− 4n3/2
(

1 − k

2

)
sin2

(
πξ

n

)
K̃n

(
ξ

n

)
In

(
ξ

n

)
Jn

(
ξ

n

)
f̂n(ξ)

+ 4n3/2
(

1 − k

2

)2
sin2

(
πξ

n

)(
1 − e

−2iπξ
n

)
K̃n

(
ξ

n

)
Ĩn

(
ξ

n

)
Jn

(
ξ

n

)
× f̂n(ξ).

(E.12)

Finally, by Plancherel–Parseval’s relation we have that∥∥na−b−3/2Dnwn

∥∥2
2,n

≤ Cn2(a−b)+1
∫ 1/2

−1/2

∣∣sin(πy)
∣∣2∣∣In(y)

∣∣2∣∣Kn(y)
∣∣2∣∣Jn(y)

∣∣2∣∣f̂n(ny)
∣∣2 dy

+ Cn2(a−b)+1
∫ 1/2

−1/2

∣∣sin(πy)
∣∣4∣∣Ĩn(y)

∣∣2∣∣Kn(y)
∣∣2∣∣Jn(y)

∣∣2∣∣f̂n(ny)
∣∣2 dy

+ Cn2(a−b)+1
∫ 1/2

−1/2

∣∣sin(πy)
∣∣4∣∣In(y)

∣∣2∣∣K̃n(y)
∣∣2∣∣Jn(y)

∣∣2∣∣f̂n(ny)
∣∣2 dy

+ Cn2(a−b)+1
∫ 1/2

−1/2

∣∣sin(πy)
∣∣6∣∣Ĩn(y)

∣∣2∣∣K̃n(y)
∣∣2∣∣Jn(y)

∣∣2∣∣f̂n(ny)
∣∣2 dy.

(E.13)

By using Lemma F.4, Lemma F.3, Lemma F.5 and Lemma B.1, choosing a p

sufficiently large, we can bound the first term in on the right-hand side of (E.13)
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by a constant times

n2a−4b+1
∫ 1/2

0

y5

1 + (ny)p

1

(|y| + n−b)3 dy

= n2a−2−4b
∫ ∞

0

z5

1 + zp

1

(z + n1−b)3 dz.

The previous integral is bounded from above by

n2a−5−b
∫ ∞

0

z5

1 + zp
dz

which goes to 0 since a = inf(3/2 + 3/2b,2) ≤ 2 and b ≥ 0. The remaining terms
at the right-hand side of (E.13) are proved to go to 0 similarly by using Lemma F.4,
Lemma F.3 and Lemma B.1. This completes the proof of (E.3).

• Finally, we prove (E.4). We start by computing the Fourier transform of Ẽnwn

and F̃nwn. As in (D.3), we have that

̂̃Enwn(ξ) =
∫ n/2

−n/2
ŵn(ξ − �, �)

{
e− 2iπ�

n − 1
}
d�.(E.14)

By (E.5) the last expression is equal to

̂̃Enwn(ξ) = −1

n

∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

̂̃Envn(ξ)
{
e− 2iπ�

n − 1
}
d�

+
(

1 − κ

2

)
1

n

∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

× ̂̃Fnvn(ξ)
{
e− 2iπ�

n − 1
}
d�

= −√
n

(
Kn

(
ξ

n

))2{
In

(
ξ

n

)
−

(
1 − κ

2

)(
1 − e− 2πiξ

n
)
Ĩn

(
ξ

n

)}
f̂n(ξ)

+
(

1 − κ

2

)√
nKn

(
ξ

n

)
K̃n

(
ξ

n

)(
e− 2πiξ

n − 1
)

×
{
In

(
ξ

n

)
−

(
1 − κ

2

)(
1 − e− 2πiξ

n
)
Ĩn

(
ξ

n

)}
f̂n(ξ).

(E.15)

Now, as in (D.6) we have that

̂̃Fnwn(ξ) = (
e− 2iπξ

n − 1
) ∫ n/2

−n/2
ŵn(ξ − �, �) d�.(E.16)
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From (E.5) the last expression is equal to

̂̃Fnwn(ξ) = −1

n

(
e− 2iπξ

n − 1
) ∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

̂̃Envn(ξ) d�

+ 1

n

(
1 − κ

2

)(
e− 2iπξ

n − 1
) ∫ n/2

−n/2

e
2iπ(ξ−�)

n + e
2iπ�

n

�(
ξ−�
n

, �
n
) − iγ n−b
(

ξ−�
n

, �
n
)

× ̂̃Fnvn(ξ) d�

= −√
n
(
e− 2iπξ

n − 1
)
Kn

(
ξ

n

)
K̃n

(
ξ

n

)
×

{
In

(
ξ

n

)
−

(
1 − k

2

)(
1 − e− 2πiξ

n
)
Ĩn

(
ξ

n

)}
f̂n(ξ)

+ √
n

(
1 − κ

2

)(
e− 2iπξ

n − 1
)2
(
K̃n

(
ξ

n

))2

×
{
In

(
ξ

n

)
−

(
1 − k

2

)(
1 − e− 2πiξ

n
)
Ĩn

(
ξ

n

)}
f̂n(ξ).

(E.17)

Now we note that, in order to prove that∥∥na−2D̃nwn

∥∥2
2,n

vanishes as n → ∞, it is enough to show that∥∥na−1/2Ẽnwn

∥∥2
2,n and

∥∥na−1/2F̃nwn

∥∥2
2,n

vanish as n → ∞. This is true since by (D.1) and the trivial inequality (x + y)2 ≤
2x2 + 2y2 we have that

∥∥na−2D̃nwn

∥∥2
2,n = n2a−4 1

n2

∑
x,y∈Z

D̃nwn

(
x

n
,
y

n

)2

≤ 2n2a−2
∑
x∈Z

Ẽnwn

(
x

n

)2
+ 2n2a−2

∑
x∈Z

F̃nwn

(
x

n

)2

= 2
∥∥na−1/2Ẽnwn

∥∥2
2,n + 2

∥∥na−1/2F̃nwn

∥∥2
2,n.

We start with the term on the left-hand side of the last expression. From
Plancherel–Parseval’s relation, (E.15) and the inequality (x1 + · · · + xk)

2 ≤
k[x2

1 + · · · + x2
k ], we see that we have to estimate four terms which are all of

the same order. One of them is

n2a
∫ n/2

−n/2

∣∣∣∣Kn

(
ξ

n

)∣∣∣∣4∣∣∣∣In

(
ξ

n

)∣∣∣∣2∣∣f̂n(ξ)
∣∣2 dξ.
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By a change of variables the last term is equal to

n2a+1
∫ 1/2

−1/2

∣∣f̂n(ny)
∣∣2∣∣Kn(y)

∣∣4∣∣In(y)
∣∣2 dy.

By using Lemma F.3, Lemma F.5 and Lemma B.1 and doing again a change of
variables we bound the last term from above by

Cn2a−2b−2
∫ ∞

0

z5

1 + zp

1

(z + n1−b)3 dz

≤ nb−1
∫ ∞

0

z5

1 + zp
dz

(E.18)

since a ≤ 2. This integral goes to 0 as n goes to infinity as long as b < 1. For the
remaining integrals a similar computation can be done and the proof follows. �

APPENDIX F: ASYMPTOTICS OF FEW INTEGRALS

In this section, we compute or estimate several integrals. Some quantities are
going to appear many times, therefore for the sake of clarity we introduce some
notations. For any y ∈ [−1

2 , 1
2 ] we denote by w := w(y) the complex number w =

e2iπy . We denote by C the unit circle positively oriented, and z := e2iπx is the
dummy variable used in the complex integrals. With these notations we have

�(y − x, x) = 4 − z
(
w−1 + 1

)− z−1(w + 1),

i
(y − x, x) = z
(
1 − w−1)+ z−1(w − 1).

(F.1)

Hereafter, for any complex number z, we denote by
√

z its principal square root,
with positive real part. Precisely, if z = reiϕ , with r ≥ 0 and ϕ ∈ (−π,π ], then the
principal square root of z is

√
z = √

reiϕ/2. We introduce the degree two complex
polynomial:

(F.2) Pw(z) := z2 − 4

(1 + w̄) + γ n−b(1 − w̄)
z + w = (z − z−)(z − z+),

where |z−| < 1 and |z+| > 1. The important identities are

z−z+ = w, z− + z+ = 4

(1 + w̄) + γ n−b(1 − w̄)
.

Finally, we denote

an(w) := (1 + w̄) + γ n−b(1 − w̄),

δn(w) := 4 − w
[
(1 + w̄) + γ n−b(1 − w̄)

]2
,

so that the discriminant of Pw is 4δn(w)/a2
n(w) and

z+ = 2 + √
δn(w)

an(w)
, z− = 2 − √

δn(w)

an(w)
.
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LEMMA F.1. We have that

Gn(y) = 1

nb/2

√
γ

2

∣∣sin(πy)
∣∣3/2

ei sgn(y) π
4 + O

(
sin2(πy)

)
if b < 1,

Gn(y) = O
(
n−b

∣∣sin(πy)
∣∣) if b ≥ 1.

(F.3)

REMARK F.2. The reader will remark that the first (resp. second) estimate in
Lemma F.1 is in fact valid also if b ≥ 1 (resp. b < 1). On the other hand, it is the
first (resp. second) estimate in this lemma which is used in the case b < 1 (resp.
b ≥ 1).

PROOF OF LEMMA F.1. We compute the function Gn by using the residue
theorem. We have that

(F.4) Gn(y) = (1 − w̄)2

8iπ

γ n−b

an(w)

∮
C

fw(z) dz

with

(F.5) fw(z) = (z2 + w)2

z2Pw(z)
= (z2 + w)2

z2(z − z−)(z − z+)
.

Therefore, we get that

Gn(y) = (1 − w̄)2

4

γ n−b

an(w)

[
Res(fw,0) + Res(fw, z−)

]
= (1 − w̄)2

4

γ n−b

an(w)

[
z− + z+ + (z2− + w)2

z2−(z− − z+)

]

= (1 − w̄)2

4

γ n−b

an(w)

[
4

an(w)
− 8

an(w)
√

δn(w)

]

= γ n−b (1 − w̄)2

a2
n(w)

[
1 − 2√

δn(w)

]

= γ

4nb

(1 − w̄)2w
w
4 a2

n(w)

[
1 − 1√

1 − w
4 a2

n(w)

]

= γ

4nb
(1 − w̄)2wg

(
w

4
a2
n(w)

)
− γ

4nb

(1 − w̄)2w√
1 − w

4 a2
n(w)

,

(F.6)

where g : u ∈ C\{1} → u−1(1 − (1 − u)−1/2) + (1 − u)−1/2. We have that g(u) =
1

1+√
1−u

. Since
√

1 − u has a positive real part, we deduce that the function g is
uniformly bounded. Therefore, there exists a universal constant C > 0 such that∣∣∣∣Gn(y) + γ

4nb

(1 − w̄)2w√
1 − w

4 a2
n(w)

∣∣∣∣ ≤ Cn−b sin2(πy).
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Let us now observe that

(F.7) 1 − w

4
a2
n(w) =

(
1 + γ 2

n2b

)
sin2(πy) − i

γ

nb
sin(2πy)

and that

(F.8)

Arg
(

1 − w

4
a2
n(w)

)

= − sgn(y)
π

2
+ arctan

(
γ −1nb(1 + γ 2n−2b)

2
tan(πy)

)
.

Since cos2(πy) = 1 − sin2(πy), we have that∣∣∣∣1 − w

4
a2
n(w)

∣∣∣∣2 = sin2(πy)
[(

1 + γ 2n−2b)2 sin2(πy) + 4γ 2n−2b cos2(πy)
]

= sin2(πy)

{(
1 − γ 2

n2b

)2
sin2(πy) + 4γ 2

n2b

}
.

(F.9)

It follows that

Gn(y) = γ

nb

| sin(πy)|3/2

[(1 + γ 2n−2b)2 sin2(πy) + 4γ 2n−2b cos2(πy)]1/4
eiϕn(y)

+ O
(
n−b sin2(πy)

)(F.10)

with

(F.11) ϕn(y) = sgn(y)
π

4
− 1

2
arctan

(
γ −1nb(1 + γ 2n−2b)

2
tan(πy)

)
.

Let us look at first at the case b < 1. Then, by (F.9), we have that

γ

nb

| sin(πy)|3/2

[(1 + γ 2n−2b)2 sin2(πy) + 4γ 2n−2b cos2(πy)]1/4

= γ

nb/2
√

2γ

| sin(πy)|3/2

[1 + n2b

4γ 2 (1 − γ 2n−2b)2 sin2(πy)]1/4

=
√

γ

nb/2
√

2

∣∣sin(πy)
∣∣3/2 + εn(y).

(F.12)

We claim that εn(y) = O(sin2(πy)). To prove it, we distinguish two cases:

• | sin(πy)| ≥ n−b: Then, since |(1 + t)−1/4 − 1| ≤ 2 for t > 0, we have

∣∣εn(y)
∣∣ ≤ √

2γ | sin(πy)|3/2

nb/2 ≤ C sin2(πy).
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• | sin(πy)| ≤ n−b: Then, since |(1 + t)−1/4 − 1| ≤ t for t > 0, we have∣∣εn(y)
∣∣ ≤ C

| sin(πy)|3/2

nb/2 n2b sin2(πy)

= Cn3b/2∣∣sin(πy)
∣∣3/2 sin2(πy) ≤ C sin2(πy)

and the claim is proved. Therefore, we have that, for any y ∈ [−1/2,1/2],
Gn(y) =

√
γ

nb/2
√

2

∣∣sin(πy)
∣∣3/2

eiϕn(y) + O
(
sin2(πy)

)
.(F.13)

Observe also that∣∣eiϕn(y) − ei sgn(y) π
4
∣∣ ≤ ∣∣∣∣exp

{
− i

2
arctan

((
γ −1nb(1 + γ 2n−2b)

2

)
tan(πy)

)}
− 1

∣∣∣∣
≤ 1

2

∣∣∣∣arctan
(

1

2
γ −1nb(1 + γ 2n−2b) tan(πy)

)∣∣∣∣
≤ O

(
π

2
∧ nb

∣∣tan(πy)
∣∣).

(F.14)

It follows that

Gn(y) =
√

γ

nb/2
√

2

∣∣sin(πy)
∣∣3/2

ei sgn(y) π
4

+ O
(
sin2(πy)

)+ O
(
n−b/2∣∣sin(πy)

∣∣3/2 ∧ nb/2∣∣sin(πy)
∣∣5/2)

.

(F.15)

By considering the cases | sin(πy)| ≤ n−b and | sin(πy)| > n−b we see that

O
(
n−b/2∣∣sin(πy)

∣∣3/2 ∧ nb/2∣∣sin(πy)
∣∣5/2) = O

(
sin2(πy)

)
and this proves the first claim.

For the second item, assume that b ≥ 1 and start with the expression (F.10) and
we observe that, for some constant C > 0,

γ

nb

| sin(πy)|3/2

[(1 + γ 2n−2b)2 sin2(πy) + 4γ 2n−2b cos2(πy)]1/4

≤ C

nb

| sin(πy)|3/2

| sin(πy)|1/2 = C

nb

∣∣sin(πy)
∣∣.

(F.16)

�

LEMMA F.3. Let b ≥ 0. We have that for any y ∈ [−1/2,1/2]∣∣In(y)
∣∣ ≤ Cn−b | sin(πy)|3/2√

n−b + | sin(πy)|
and ∣∣Ĩn(y)

∣∣ ≤ Cn−b | sin(πy)|1/2√
n−b + | sin(πy)|

.
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PROOF. We have that

(F.17) In(y) = − γ

nb

(1 − w̄)

an(w)

1

2iπ

∮
C

gw(z) dz

with

(F.18) gw(z) = (z − 1)(z2 + w)

z2Pw(z)
= (z − 1)(z2 + w)

z2(z − z−)(z − z+)
.

It follows that

In(y) = − γ

nb

(1 − w̄)

an(w)

{
Res(gw,0) + Res(gw, z−)

}
= − γ

nb

(1 − w̄)

an(w)

{
1 − z− + z+

w
+

(
1

z−
− 1

)
z− + z+
z+ − z−

}

= − γ

nb

1 − w̄

an(w)

{
1 − 2

wan(w)
2

+ 1√
1 − w

4 a2
n(w)

an(w)
2 − 1 +

√
1 − w

4 a2
n(w)

1 −
√

1 − w
4 a2

n(w)

}

:= −γ (1 − w̄)

2nb
Kw

(
an(w)

2

)
with

(F.19) Kw(u) = 1

u

{
1 − 2

wu
+ 1√

1 − wu2

u − 1 + √
1 − wu2

1 − √
1 − wu2

}
, |u| < 1.

We observe first that uniformly in w we have by (F.7)

(F.20)
an(w)

2
= 1 + w̄

2
+ O

( |1 − w|
nb

)
and by (F.9) that

(F.21) c|w − 1|(|w − 1| + n−b) ≤
∣∣∣∣1 − w

a2
n(w)

4

∣∣∣∣ ≤ C|w − 1|(|w − 1| + n−b).
It follows that if w is not close to ±1, say |w ± 1| ≥ ε > 0, then Kw(an(w)

2 ) can be
uniformly bounded by a constant Cε independently of n.

If w is close to −1, then an(w) is close to 0. Performing a Taylor expansion of
Kw around u = 0, we obtain that uniformly in w,

Kw(u) = O(1).

It remains thus only to consider the case where w is close to 1, say |w − 1| ≤
ε, which implies that |an(w)/2 − 1| ≤ ε for n sufficiently large. We rewrite, for
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|w − 1| + |u − 1| ≤ ε,∣∣Kw(u)
∣∣ = ∣∣∣∣1u

{
1 − 2

wu
+ 1

1 − √
1 − wu2

+ u − 1√
1 − wu2

1

1 − √
1 − wu2

}∣∣∣∣
≤ Cε

[
1 + |u − 1|√

|1 − wu2|

]
.

(F.22)

We use now (F.20) and (F.21) to obtain

(F.23)
∣∣∣∣Kw

(
an(w)

2

)∣∣∣∣ ≤ Cε

[
1 +

√|w − 1|√
|w − 1| + n−b

]
≤ Cε

√|w − 1|√
|w − 1| + n−b

.

The conclusion of the first item follows.
Similarly, we have that

(F.24) Ĩn(y) = − γ

nb

1 − w̄

an(w)

1

2iπ

∮
C

hw(z) dz

with

(F.25) hw(z) = (z2 + w)

zPw(z)
= (z2 + w)

z(z − z−)(z − z+)
.

It follows that

Ĩn(y) = − γ

nb

(1 − w̄)

an(w)

{
Res(hw,0) + Res(hw, z−)

}
= γ (1 − w̄)

2nb
K̃w

(
an(w)

2

)
,

where

K̃w(u) = 1

u

{
1 − 1√

1 − wu2

}
, |u| < 1.

Let ε > 0 small be fixed. If |w ± 1| ≥ ε, then by (F.20) we deduce that for n

sufficiently large (uniformly in w in this domain)∣∣∣∣K̃w

(
an(w)

2

)∣∣∣∣ ≤ Cε.

If |w + 1| ≤ ε, then for n sufficiently large, uniformly in w in this domain,
|an(w)| ≤ ε. And we have that for |u| ≤ ε, uniformly in w, |Kw(u)| ≤ Cu. There-
fore, we deduce that in this case∣∣∣∣K̃w

(
an(w)

2

)∣∣∣∣ ≤ Cε.
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If |w − 1| ≤ ε, then for n sufficiently large, uniformly in w in this domain,
|an(w)/2 − 1| ≥ ε/2 and therefore, by (F.21) we have∣∣∣∣K̃w

(
an(w)

2

)∣∣∣∣ ≤ Cε√
|w − 1|2 + |w − 1|n−b

.

The conclusion of the second item follows. �

LEMMA F.4. Let b ≥ 0. We have that, for any y ∈ [−1/2,1/2],
∣∣Jn(y)

∣∣ ≤ C
| sin(πy)|−1/2√
n−b + | sin(πy)|

PROOF. We have that

(F.26) Jn(y) = − 1

(1 + w̄) + γ n−b(1 − w̄)

1

2iπ

∮
C

kw(z) dz

with

(F.27) kw(z) = (z2 + w)

z2Pw(z)
.

It follows that

Jn(y) = − 1

(1 + w̄) + γ n−b(1 − w̄)

{
Res(kw,0) + Res(kw, z−)

}
= 1

(1 + w̄) + γ n−b(1 − w̄)

{
z+ + z−

w
− 1

z−
z+ + z−
z+ − z−

}

= Hw

(
an(w)

2

)
with

Hw(u) = 1

u

{
2

wu
− 1√

1 − wu2

u

1 − √
1 − wu2

}
, |u| < 1.

Since uniformly in w we have Hw(u) = O(1) for u → 0, we have only to study
the behavior of Hw(an(w)

2 ) for w close to 1, which implies an(w)/2 close to 1 by
recalling (F.20). Therefore, for say |w − 1| ≤ ε with ε > 0 small, we have

(F.28)
∣∣∣∣Hw

(
an(w)

2

)∣∣∣∣ ≤ Cε

[
1 + 1√

|1 − w
a2
n(w)

4 |

]
.

Taking into account (F.21), we get the claim. �
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LEMMA F.5. Let b ≥ 0. We have that, for any y ∈ [−1/2,1/2],
∣∣Kn(y)

∣∣ ≤ C
| sin(πy)|1/2√

n−b + | sin(πy)|
and ∣∣K̃n(y)

∣∣ ≤ C
| sin(πy)|−1/2√
n−b + | sin(πy)|

.

PROOF. We have that

Kn(y) = 1

an(w)

1

2iπ

∮
C

gw(z) dz,

where

gw(z) = (z − 1)(z2 + w)

z2Pw(z)

has been introduced in (F.18) during the proof of Lemma F.3. We have, therefore,
that

(F.29) Kn(y) = −nb

γ

1

1 − w̄
In(y).

The estimate on Kn follows from Lemma F.3.
Similarly we have that

K̃n(y) = − 1

an(w)

1

2iπ

∮
C

hw(z) dz,

where

hw(z) = z2 + w

zPw(z)

has been introduced in (F.25) during the proof of Lemma F.3. We have, therefore,
that

(F.30) K̃n(y) = nb

γ

1

1 − w̄
Ĩn(y).

The estimate on K̃n follows from Lemma F.3. �

REFERENCES

[1] AMIR, G., CORWIN, I. and QUASTEL, J. (2011). Probability distribution of the free energy of
the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math.
64 466–537. MR2796514

http://www.ams.org/mathscinet-getitem?mr=2796514


WEAKLY HARMONIC CHAIN 1355

[2] BASILE, G., BERNARDIN, C. and OLLA, S. (2009). Thermal conductivity for a momentum
conserving model. Comm. Math. Phys. 287 67–98.

[3] BERNARDIN, C. and GONÇALVES, P. (2014). Anomalous fluctuations for a perturbed Hamil-
tonian system with exponential interactions. Comm. Math. Phys. 325 291–332.

[4] BERNARDIN, C., GONÇALVES, P. and JARA, M. (2016). 3/4-fractional superdiffusion in a
system of harmonic oscillators perturbed by a conservative noise. Arch. Ration. Mech.
Anal. 220 505–542. MR3461356

[5] BERNARDIN, C., GONÇALVES, P., JARA, M., SASADA, M. and SIMON, M. (2015). From
normal diffusion to superdiffusion of energy in the evanescent flip noise limit. J. Stat.
Phys. 159 1327–1368.

[6] BERNARDIN, C., GONÇALVES, P., JARA, M. and SIMON, M. (2016). Interpolation process
between standard diffusion and fractional diffusion. Ann. Inst. Henri Poincaré Probab.
Stat. To appear. Available at arXiv:1607.07238.

[7] BERNARDIN, C. and STOLTZ, G. (2012). Anomalous diffusion for a class of systems with two
conserved quantities. Nonlinearity 25 1099–1133. MR2904271

[8] JARA, M., KOMOROWSKI, T. and OLLA, S. (2015). Superdiffusion of energy in a chain of
harmonic oscillators with noise. Comm. Math. Phys. 339 407–453. MR3370610

[9] JARA, M. and LANDIM, C. (2006). Nonequilibrium central limit theorem for a tagged parti-
cle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 42 567–577.
MR2259975

[10] JOHANSSON, K. (2000). Shape fluctuations and random matrices. Comm. Math. Phys. 209
437–476.

[11] KOMOROWSKI, T. and OLLA, S. (2016). Ballistic and superdiffusive scales in the marcro-
scopic evolution of a chain of oscillators. Nonlinearity 29 962–999. MR3465990

[12] LEPRI, S., ed. (2016). Thermal Transport in Low Dimensions: From Statistical Physics to
Nanoscale Heat Transfer. Lecture Notes in Phys. 921. Springer, Cham.

[13] ROST, H. and VARES, M. E. (1985). Hydrodynamics of a one-dimensional nearest neighbor
model. In Particle Systems, Random Media and Large Deviations (Brunswick. Maine.
Contemp. Math. 41 329–342. Amer. Math. Soc., Providence, RI.

[14] SASAMOTO, T. and SPOHN, H. (2010). The crossover regime for the weakly asymmetric sim-
ple exclusion process. J. Stat. Phys. 140 209–231. MR2659278

[15] SPOHN, H. (2014). Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys.
154 1191–1227. MR3176405

[16] SPOHN, H. and STOLTZ, G. (2015). Nonlinear fluctuating hydrodynamics in one dimension:
The case of two conserved fields. J. Stat. Phys. 160 861–884. MR3373644

C. BERNARDIN

UNIVERSITÉ CÔTE D’AZUR

CNRS, LJAD
PARC VALROSE

06108 NICE CEDEX 02
FRANCE

E-MAIL: cbernard@unice.fr

P. GONÇALVES

CENTER FOR MATHEMATICAL ANALYSIS,
GEOMETRY AND DYNAMICAL SYSTEMS

INSTITUTO SUPERIOR TÉCNICO

UNIVERSIDADE DE LISBOA

AV. ROVISCO PAIS

1049-001 LISBOA

PORTUGAL

E-MAIL: patricia.goncalves@math.tecnico.ulisboa.pt

M. JARA

INSTITUTO DE MATEMÁTICA PURA

E APLICADA

ESTRADA DONA CASTORINA 110
22460-320 RIO DE JANEIRO

BRAZIL

E-MAIL: mjara@impa.br

http://www.ams.org/mathscinet-getitem?mr=3461356
http://arxiv.org/abs/arXiv:1607.07238
http://www.ams.org/mathscinet-getitem?mr=2904271
http://www.ams.org/mathscinet-getitem?mr=3370610
http://www.ams.org/mathscinet-getitem?mr=2259975
http://www.ams.org/mathscinet-getitem?mr=3465990
http://www.ams.org/mathscinet-getitem?mr=2659278
http://www.ams.org/mathscinet-getitem?mr=3176405
http://www.ams.org/mathscinet-getitem?mr=3373644
mailto:cbernard@unice.fr
mailto:patricia.goncalves@math.tecnico.ulisboa.pt
mailto:mjara@impa.br

	Introduction
	The model
	Description of the model
	Description of the result

	Proof of Theorem 2.4
	Appendix A: Computations involving the generator Lkappa
	Appendix B: Tools of Fourier analysis
	Appendix C: Estimates involving hn
	Proof of (3.21)
	Proof of Lemma 3.2

	Appendix D: Proof of Lemma 3.4
	Proof of (3.27)
	Proof of (3.28)

	Appendix E: Proof of (3.26)
	Appendix F: Asymptotics of few integrals
	References
	Author's Addresses

