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SPECTRAL GAP OF RANDOM HYPERBOLIC GRAPHS AND
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BY MARCOS KIWI1 AND DIETER MITSCHE

University of Chile and Université de Nice Sophia-Antipolis

Random hyperbolic graphs have been suggested as a promising model
of social networks. A few of their fundamental parameters have been stud-
ied. However, none of them concerns their spectra. We consider the ran-
dom hyperbolic graph model, as formalized by [Automata, Languages, and
Programming—39th International Colloquium—ICALP Part II. (2012) 573–
585 Springer], and essentially determine the spectral gap of their normal-
ized Laplacian. Specifically, we establish that with high probability the sec-
ond smallest eigenvalue of the normalized Laplacian of the giant component
of an n-vertex random hyperbolic graph is at least �(n−(2α−1)/D), where
1
2 < α < 1 is a model parameter and D is the network diameter (which is
known to be at most polylogarithmic in n). We also show a matching (up to a
polylogarithmic factor) upper bound of n−(2α−1)(logn)1+o(1).

As a byproduct, we conclude that the conductance upper bound on the
eigenvalue gap obtained via Cheeger’s inequality is essentially tight. We also
provide a more detailed picture of the collection of vertices on which the
bound on the conductance is attained, in particular showing that for all subsets
whose volume is O(nε) for 0 < ε < 1 the obtained conductance is with high
probability �(n−(2α−1)ε+o(1)). Finally, we also show consequences of our
result for the minimum and maximum bisection of the giant component.

1. Introduction. It has been empirically observed that many networks, in par-
ticular so-called social networks, are typically scale-free and exhibit a nonvanish-
ing clustering coefficient. Several models of random graphs exhibiting either scale-
freeness or nonvanishing clustering coefficient have been proposed. A model that
seems to naturally exhibit both properties is the one introduced rather recently by
Krioukov et al. [18] and referred to as random hyperbolic graph model, which
is a variant of the classical random geometric graph model adapted to the hyper-
bolic plane. The resulting graphs have key properties observed in large real-world
networks. This was convincingly demonstrated by Boguñá et al. in [5] where a
maximum likelihood fit of the autonomous systems of the internet graph in hyper-
bolic space is computed. The impressive quality of the embedding obtained is an
indication that hyperbolic geometry underlies important real networks. This partly
explains the considerable interest the model has attracted since its introduction.
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Formally, the random hyperbolic graph model Unfα,C(n) is defined in [15] as
described next: for α > 1

2 , C ∈ R, n ∈ N, set R = 2 logn + C (log denotes here
and throughout the paper the natural logarithm), and build G = (V ,E) with vertex
set V a subset of n points of the hyperbolic plane H2 chosen as follows:

• For each v ∈ V , polar coordinates (rv, θv) are generated identically and indepen-
dently distributed with joint density function f (r, θ), with θv chosen uniformly
at random in the interval [0,2π) and rv with density:

f (r) :=
⎧⎪⎨⎪⎩

α sinh(αr)

C(α,R)
if 0 ≤ r < R,

0 otherwise,

where C(α,R) = cosh(αR) − 1 is a normalization constant.
• For u, v ∈ V , u �= v, there is an edge with endpoints u and v provided the dis-

tance (in the hyperbolic plane) between u and v is at most R, that is, the hy-
perbolic distance between two vertices whose native representation polar coor-
dinates are (r, θ) and (r ′, θ ′), denoted by dh := dh(ru, rv, θu − θv), is such that
dh ≤ R where dh is obtained by solving

(1) cosh dh := cosh r cosh r ′ − sinh r sinh r ′ cos
(
θ−θ ′).

The restriction α > 1
2 and the role of R, informally speaking, guarantee that the

resulting graph has bounded average degree (depending on α and C only): intu-
itively, if α < 1

2 , then the degree sequence is so heavy tailed that this is impossible,
and if α > 1, then as the number of vertices grows, the largest component of a
random hyperbolic graph has sublinear order [3], Theorem 1.4. In fact, although
some of our results hold for a wider range of α, we will always assume 1

2 < α < 1,
since as already discussed, this is the most interesting regime.

A common way of visualizing the hyperbolic plane H2 is via its native repre-
sentation where the choice for ground space is R2. Here, a point of R2 with polar
coordinates (r, θ) has hyperbolic distance to the origin O equal to its Euclidean
distance r . In the native representation, an instance of Unfα,C(n) can be drawn by
mapping a vertex v to the point in R2 with polar coordinate (rv, θv) and draw-
ing edges as straight lines. Clearly, the graph drawing will lie within BO(R) (see
Figure 1).

The adjacency, Laplacian and normalized Laplacian are three well-known ma-
trices associated to a graph, all of whose spectrum encode important information
related to fundamental graph parameters. For nonregular graphs, such as a random
hyperbolic graph G = (V ,E) obtained from Unfα,C(n), arguably the most rele-
vant associated matrix is the normalized Laplacian LG. Note that LG is positive
semidefinite and has smallest eigenvalue 0. Certainly, the most interesting param-
eter of LG is its eigenvalue gap λ1(G). Since for 1

2 < α < 1, a typical occurrence
of G has �(|V |) isolated vertices, the eigenvalue 0 of G has high multiplicity, and
thus λ1(G) = 0. On the other hand, it is known that for the aforesaid range of α,
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FIG. 1. Native representation of the largest connected component (with 585 vertices) of an in-
stance of Unfα,C(n) with α = 0.55, C = 2.25 and n = 740. The solid (resp., segmented) circle is the

boundary of BO(R) [resp., BO(R
2 )].

most likely the graph G has a component of linear order [3], Theorem 1.4 (see
also Theorem 16 and Corollary 17 below) and all other components are of poly-
logarithmic order [16], Corollary 13, which justifies referring to the linear size
component as the giant component. Thus, the most basic nontrivial question about
the spectrum of random hyperbolic graphs is to determine the spectral gap of their
giant component. Implicit in the proof of [3], Theorem 1.4, (once more, see also
Theorem 16 and Corollary 17 below) is that the giant component of a random hy-
perbolic graph G is the one that contains all vertices whose radial coordinates are
at most R

2 , which we onward refer to as the center component of the hyperbolic
graph and denote by H := H(G).

The preceding discussion motivates our study of the magnitude of the second
largest eigenvalue λ1 = λ1(H) of the normalized Laplacian matrix LH of the cen-
ter component H of G chosen according to Unfα,C(n). Formally, denoting by d(v)

the degree of v in G (which equals v’s degree in H ), the normalized Laplacian of
H is the (square) matrix LH whose rows and columns are indexed by the vertex
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set of H and whose (u, v)-entry takes the value

LH (u, v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if u = v,

− 1√
d(u)d(v)

if uv is an edge of H,

0 otherwise.

Alternatively, LH := I − D
−1/2
H AHD

−1/2
H , where AH denotes the adjacency ma-

trix of H and DH is the diagonal matrix whose (v, v)-entry equals d(v). It is well
known that LH is positive semidefinite and its smallest eigenvalue equals 0 with
geometric multiplicity 1 (given that H is by definition connected). Note that the
stochastic matrix associated to the simple random walk in H is PH := D−1

H AH =
D

−1/2
H (I −LH)D

1/2
H . Hence, results concerning the spectra of LH easily translate

into results about the spectra of PH, and hence has implications concerning the
rate of convergence toward the stationary distribution of such random walks and
related Markov processes.

One often used approach for bounding λ1(H) for a connected graph H =
(U,F ) is via the so-called Cheeger inequality. To explain this, recall that for
S ⊆ U , the volume of S, denoted vol(S), is defined as the sum of the degrees of
the vertices in S, that is, vol(S) := ∑

v∈S d(v). Also, recall that the cut induced by
S in H , denoted by ∂S, is the set of graph edges with exactly one endvertex in S,
that is, ∂S := {uv ∈ F : |{u, v} ∩ S| = 1}. The conductance of S in H , ∅� S �U ,
is defined as

(2) h(S) := |∂S|
min{vol(S),vol(U \ S)} ,

and the conductance of H is h(H) := min{h(S) : ∅� S � U}. Cheeger’s inequal-
ity (see, e.g., [9], Section 2.3) states that for an arbitrary connected graph G,

(3)
1

2
h2(G) ≤ λ1(G) ≤ 2h(G),

and often provides an effective way for bounding the eigenvalue gap of graphs.
Our main result gives a stronger characterization of λ1(H) than the one obtained
through Cheeger’s inequality. In fact, we show that λ1(H) essentially matches the
upper bound given by (3), that is, λ1(H) equals h(H) up to a small polylogarithmic
factor. As a byproduct, we obtain an almost tight bound on the conductance of the
giant component of random hyperbolic graphs.

Notation. All asymptotic notation in this paper is with respect to n. Expres-
sions given in terms of other variables such as O(R) are still asymptotics with
respect to n, since these variables still depend on n. We say that an event holds
asymptotically almost surely (a.a.s.), if it holds with probability tending to 1 as
n → ∞. We say that an event holds with extremely high probability (w.e.p.), if for
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a fixed (but arbitrary) constant C′ > 0, there exists an n0 := n0(C
′) such that for

every n ≥ n0 the event holds with probability at least 1 − n−C′
. Throughout the

paper, denote by υ := υ(n) a function tending to infinity arbitrarily slowly with
n. By a union bound, we get that the union of polynomially (in n) many events
that hold w.e.p. is also an event that holds w.e.p. For N ∈ N, we denote the set
{1, . . . ,N} by [N ]. For a graph G = (V ,E) with S,S′ ⊆ V and S ∩ S′ = ∅, we
denote by E(S,S′) the set of edges having one endvertex in S, and one endver-
tex in S′. For v ∈ V , we denote the neighborhood of v inside S by NS(v), that
is, NS(v) := {w ∈ S : vw ∈ E}. Finally, we will often consider a subset S of ver-
tices of a connected component of a given graph in which case S will denote its
complement with respect to the vertex set of the component.

Poissonization. Despite the fact that in the original model of Krioukov et al.
[18] the n points were chosen uniformly at random, it is from a probabilistic point
of view arguably more natural to consider the Poissonized version of this model.
Specifically, we consider a Poisson point process on the hyperbolic disk of radius
R and denote its point set by P . The intensity function at polar coordinates (r, θ)

for 0 ≤ r < R and 0 ≤ θ < 2π is equal to

g(r, θ) := δe
R
2 f (r, θ)

with δ = e−C
2 . Throughout the paper, we denote this model by Poiα,C(n). Note in

particular that
∫ R

0
∫ 2π

0 g(r, θ) dθ dr = δe
R
2 = n, and thus E|P| = n. The main ad-

vantage of defining P as a Poisson point process is motivated by the following two
properties: the number of points of P that lie in any region A ∩ BO(R) follows a
Poisson distribution with mean given by

∫
A g(r, θ) dr dθ = nμ(A ∩ BO(R)), and

the numbers of points of P in disjoint regions of the hyperbolic plane are inde-
pendently distributed. Moreover, by conditioning P upon the event |P| = n, we
recover the original distribution. Therefore, since P(|P| = n − k) = �(1/

√
n) for

any k = O(1), any event holding in P with probability at least 1 − o(fn) must
hold in the original setup with probability at least 1 − o(fn

√
n), and in partic-

ular, any event holding with probability at least 1 − o(1/
√

n) holds a.a.s. in the
original model. Also, an event holding w.e.p. in Poiα,C(n) also holds w.e.p. in
Unfα,C(n). Henceforth, unless stated otherwise, our results will be presented in
the Poissonized model only; the corresponding results for the uniform model fol-
low by the above considerations.

1.1. Main contributions. The following theorem is the main result of this pa-
per. It bounds from below the spectral gap of random hyperbolic graphs.

THEOREM 1. If H is the center component of G chosen according to
Poiα,C(n) and D := D(H) denotes the diameter of H , then w.e.p.,

λ1(H) = �
(
n−(2α−1)/D

)
.
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We also have the following complementary result. We remark that a similar
upper bound, slightly less precise but in the more general setup of geometric inho-
mogeneous random graphs, was obtained in [6].

LEMMA 2. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n) or Unfα,C(n). Then a.a.s. h(H) ≤ υn−(2α−1) logn.

Whereas Theorem 1 gives a global lower bound on the conductance of a random
hyperbolic graph, we obtain additional information from the next theorem. By
classifying subsets of vertices according to their structure and their volume, we
can show the following theorem.

THEOREM 3. Let H = (U,F ) be the center component of G = (V ,E) cho-
sen according to Poiα,C(n), and let 0 < ε < 1. W.e.p., for every set S ⊆ U with
vol(S) = O(nε), we have h(S) = �(n−(2α−1)ε+o(1)).

We also obtain the following corollary regarding minimum and maximum sizes
of arbitrary bisectors (recall that a bisection of a graph is a bipartition of its vertex
set in which the number of vertices in the two parts differ by at most 1, and its size
is the number of edges which go across the two parts).

COROLLARY 4. Let H = (U,F ) be the giant component of G = (V ,E) cho-
sen according to Poiα,C(n). Then the following statements hold:

(i) With extremely high probability, the minimum bisection of H is b(H) =
�(n2(1−α)/D), where D := D(H) is the diameter of H .

(ii) For any ξ > 0, with probability at least 1 − o(n−1+ξ ), the maximum bisec-
tion of H is B(H) = �(n).

1.2. Related work. Although the random hyperbolic graph model was rela-
tively recently introduced [18], quite a few papers have analyzed several of its
properties. However, none of them deals with the spectral gap of these graphs. In
[15], the degree distribution, the maximum degree and global clustering coeffi-
cient were determined. The already mentioned paper of Bode, Fountoulakis and
Múller [3] characterized the existence of a giant component as a function of α;
very recently, more precise results including a law of large numbers for the largest
component in these networks was established in [13]. The threshold in terms of
α for the connectivity of random hyperbolic graphs was given in [4]. Concern-
ing diameter and graph distances, except for the aforementioned papers of Kiwi
and Mitsche [16] and Friedrich and Krohmer [14], the average distance of two
points belonging to the giant component was investigated in [1]. Results on the
global clustering coefficient of the so-called binomial model of random hyperbolic
graphs were obtained in [8], and on the evolution of graphs on more general spaces
with negative curvature in [12].
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The model of random hyperbolic graphs for 1
2 < α < 1 has similarities with two

different models studied in the literature: the model of inhomogeneous long-range
percolation in Zd as defined in [10], and the model of geometric inhomogeneous
random graphs, as introduced in [7]. In both cases, each vertex is given a weight,
and conditionally on the weights, the edges are independent (the presence of edges
depending on one or more parameters). In [10], the degree distribution, the ex-
istence of an infinite component and the graph distance between remote pairs of
vertices in the model of inhomogeneous long-range percolation are analyzed. On
the other hand, results on typical distances, diameter, clustering coefficient, separa-
tors and existence of a giant component in the model of geometric inhomogeneous
graphs were given in [6, 7], and bootstrap percolation in the same model was stud-
ied in [17]. Both models are very similar to each other, and similar results were
obtained in both cases.

1.3. Organization. In Section 2, we give an overview of the general proof
strategies of our main results. In Section 3, we collect some known general useful
results and establish a couple of new ones concerning random hyperbolic graphs
that we later rely on. In Section 4, we determine up to polylogarithmic factors
both the conductance and the eigenvalue gap of the normalized Laplacian of the
giant component of random hyperbolic graphs. In Section 5, we essentially show
that only linear size vertex sets S of the giant component of random hyperbolic
graphs can induce “small bottlenecks” measured in terms of conductance, that is,
if h(S) is approximately equal to the conductance of the giant component H , then
S must contain essentially a constant fraction of H ’s vertices. In Section 6, we
derive results concerning related graph parameters such as minimum and maxi-
mum bisection as well as maximum cuts of random hyperbolic graphs. Finally, in
Section 7, we discuss some questions our results naturally raise as well as possible
future research directions.

2. Overview of the proof of the main theorems. The proof of Theorem 1 is
based on the so-called multicommodity flow method. Specifically, it is based on
the fact that λ1(H) can, by its variational characterization, be bounded from below
as a function of a suitably chosen multicommodity flow defined on H . Roughly
speaking, we seek a flow between all pairs of vertices satisfying certain flow de-
mands and routed through relatively short paths in such a way that no single edge
has too much flow going through it. We point out that the classical canonical path
technique of routing the flow between each pair of vertices through one single path
cannot give the claimed result, hence we have to split the flow over different paths.
Our main task therefore consists in finding such a flow by exploiting properties of
the hyperbolic model. In a nutshell, for pairs of vertices “close” to the origin of
the hyperbolic plane we route the flow evenly through many paths of length 3 all
of whose vertices are also relatively close to the origin. We then extend the flow
to pairs of vertices where at least one vertex is “far” from the origin by attaching
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a “shortest” path from each such vertex to one “close” to the origin; from there
on, the same strategy of length 3 paths as before is applied. A crucial ingredient
on which the analysis relies concerns properties of the mentioned “shortest” paths
implied by the metric of the underlying hyperbolic space. The corresponding up-
per bound of Lemma 2 is easier, by Cheeger’s inequality it is enough to find an
upper bound on the conductance of H . The latter can be obtained by considering
the set of vertices of H that belong to a half disk of BO(R).

In order to obtain Theorem 3, we decompose the graph in a way that takes into
account the underlying geometry. Informally said, the decomposition establishes
the existence of regions R of BO(R) such that for sets of vertices S whose volume
is O(nε) for some 0 < ε < 1 the following holds: (i) R covers a significant fraction
of the edges incident to S, and (ii) the fraction of vertices of R that belong to S ∩R
and to S ∩R are both nontrivial, or both vol(S ∩R) and vol(S ∩R) are a nontrivial
fraction of vol(P ∩R). In either case, the number of cut edges of ∂S within R is
relatively large. The main task is to classify sets S according to their shape so that
corresponding regions R can be found.

Additional technical contributions are derived in the process of establishing both
theorems. We show that w.e.p. the volume of H is linear in n, and that moreover,
the volume of a not too small sector of BO(R) is w.e.p. at most proportional to its
angle, provided that inside the sector there is no vertex very close to the origin (see
Lemma 15 for details). Whereas this result is not surprising, we hope that it will
be useful in other contexts as well.

3. Preliminaries. In this section, we collect some of the known properties as
well as derive some additional ones concerning random hyperbolic graphs. For
future reference, we also state some known approximations for different terms that
are useful in the study of random hyperbolic graphs, for example, terms concerning
distances and angles.

By the hyperbolic law of cosines (1), the hyperbolic triangle formed by the
geodesics between points p′, p′′ and p, with opposing side segments of length d′

h,
d′′

h and dh, respectively, is such that the angle formed at p is

(4) θdh

(
d′

h,d′′
h
) = arccos

(
cosh d′

h cosh d′′
h − cosh dh

sinh d′
h sinh d′′

h

)
.

Clearly, θdh(d
′
h,d′′

h) = θdh(d
′′
h,d′

h). Next, we state a very handy approximation for
θdh(·, ·).

LEMMA 5 ([15], Lemma 3.1). If 0 ≤ min{d′
h,d′′

h} ≤ dh ≤ d′
h + d′′

h, then

θdh

(
d′

h,d′′
h
) = 2e

1
2 (dh−d′

h−d′′
h)(1 + �

(
edh−d′

h−d′′
h
))

.
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REMARK 6. We will use the previous lemma also in this form: let p′ and
p′′ be two points at distance dh from each other such that rp′, rp′′ > R

2 and
min{rp′, rp′′ } ≤ dh ≤ R. Then, taking d′

h = rp′ and d′′
h = rp′′ in Lemma 5, we get

θdh(rp′, rp′′) := 2e
1
2 (dh−rp′−rp′′ )(1 + �

(
e

dh−rp′−rp′′ )).
Note also that θdh(rp′, rp′′), for fixed rp′, rp′′ > R

2 , is increasing as a function of
dh (for dh satisfying the constraints). Below, when aiming for an upper bound, we
always use dh = R.

Throughout, we will need estimates for measures of regions of the hyperbolic
plane, and more specifically, for regions obtained by performing some set algebra
involving a few balls. For a point p of the hyperbolic plane H2, the ball of radius ρ

centered at p will be denoted by Bp(ρ), that is, Bp(ρ) := {q ∈ H2 : dh(p, q) ≤ ρ}.
Also, we denote by μ(S) the measure of a set S ⊆ H2, that is,

μ(S) :=
∫
S
f (r, θ) dr dθ.

Next we collect a few results for such measures.

LEMMA 7 ([15], Lemma 3.2). If 0 ≤ ρ < R, then

(5) μ
(
BO(ρ)

) = e−α(R−ρ)(1 + o(1)
)
.

Moreover, if p ∈ BO(R), then for Cα := 2α/(π(α − 1
2)),

(6) μ
(
Bp(R) ∩ BO(R)

) = Cαe− rp
2

(
1 + O

(
e−(α− 1

2 )rp + e−rp
))

.

A direct consequence of (5) is the following.

COROLLARY 8. If 0 ≤ ρ′
O < ρO < R, then

μ
(
BO(ρO) \ BO

(
ρ′

O

)) = e−α(R−ρO)(1 − e−α(ρO−ρ′
O) + o(1)

)
.

Sometimes we will require the following stronger version of (6).

LEMMA 9 ([16], Lemma 4). If rp ≤ ρp and ρO + rp ≥ ρp , then for Cα :=
2α/(π(α − 1

2))

μ
(
Bp(ρp) ∩ BO(ρO)

) = Cα

(
e−α(R−ρO)− 1

2 (ρO−ρp+rp)) + O
(
e−α(R−ρp+rp)).

At several places in this paper, we need the following concentration bound.
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THEOREM 10 ([2], Corollary A.1.14). Let Y be the sum of mutually indepen-
dent indicator random variables, μ = E(Y ). For all ε > 0, there is a cε > 0 that
depends only on ε such that

P
(|Y − μ| > εμ

)
< 2e−cεμ.

For Poisson variables, we also need the following slightly stronger bound.

THEOREM 11 ([2], Theorem A.1.15). Let P have Poisson distribution with
mean μ. For 0 < ε < 1,

P
(
P ≤ μ(1 − ε)

) ≤ e−ε2μ/2,

and for ε > 0,

P
(
P ≥ μ(1 + ε)

) ≤ (
e−ε(1 + ε)−(1+ε))

)μ
.

We immediately derive the following lemma.

LEMMA 12. Let P be the vertex set of a graph chosen according to Poiα,C(n).
If S ⊆ BO(R) is such that μ(S) = ω( 1

n
logn), then, w.e.p. |S ∩ P| = nμ(S)(1 +

o(1)). Otherwise, w.e.p. |S ∩P| ≤ υ logn.

Many of the proof arguments we will later put forth involve statements concern-
ing the set of vertices that belong to a specific sector of the hyperbolic disk BO(R),
in particular, its size and volume. The next two lemmas provide estimates for such
quantities. We first approximate the degree of vertices of G as a function of their
radius.

Throughout the paper, let ν′ := 2 logR + ω(1) ∩ o(logR).

PROPOSITION 13. Let v be a vertex of G chosen according to Poiα,C(n).

If rv ≤ R − ν′, then w.e.p. d(v) = �(e
1
2 (R−rv)), and if rv > R − ν′, then w.e.p.

d(v) ≤ (logn)1+o(1).

PROOF. Assume first that rv ≤ R − ν′. Note that d(v) = |Bv(R) ∩ P|. Since
by Lemma 7 we have μ(Bv(R) ∩ BO(R)) = �(e− rv

2 ) = ω(
logn

n
), by Lemma 12

the first part of the claim follows. If rv ≥ R − ν′, then μ(Bv(R) ∩ BO(R)) is
bounded from above by μ(Bw(R) ∩ BO(R)) where w is a point of BO(R) with

rw = R − ν′. We have μ(Bw(R) ∩ BO(R)) = �( 1
n
e

ν′
2 ) = ω(

logn
n

), and hence by

Lemma 12, w.e.p. d(v) ≤ nμ(Bw(R) ∩ BO(R)) = O(e
ν′
2 ) = (logn)1+o(1). �

When working with a Poisson point process P , for a positive integer �, we refer
to the vertices of G that belong to BO(�) \ BO(� − 1) as the �th band or layer
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and denote it by P� := P�(G), that is, P� = P ∩ BO(�) \ BO(� − 1). We also need
estimates for the cardinality and the volume of the P�’s.

Since our results are asymptotic, we may and will ignore floors in the following
calculations, and assume that certain expressions such as R − 2 logR

1−α
or the like are

integers, if needed. In what follows, also let

�low :=
⌊(

1 − 1

2α

)
R

⌋
,

ν := 1

α
logR + ω(1) ∩ o(logR).

PROPOSITION 14. Let G = (V ,E) be chosen according to Poiα,C(n) and let
P� := P�(G):

(i) If � ≥ �low +ν, then w.e.p. |P�| = �(ne−α(R−�)). Moreover, if � < �low +ν,
then w.e.p. |P�| = O(eαν) = (logn)1+o(1).

(ii) If �low + ν ≤ � ≤ R − ν′, then w.e.p. vol(P�) = �(e
1
2 R−(α− 1

2 )(R−�)).

PROOF. Note that eαν = (logn)1+o(1) ∩ ω(logn). Consider the first part
of the claim. By Lemma 7, we have μ(BO(�) \ BO(� − 1)) = e−α(R−�)(1 −
e−α)(1 + o(1)), which is ω(

logn
n

) if � ≥ �low + ν, so the result follows by ap-
plying Lemma 12. Assume now that � < �low + ν. By Lemma 7, we have that
μ(BO(�low + ν)) = e−α(R−(�low+ν))(1 + o(1)) = �(eαν

n
) = ω(

logn
n

), so applying
again Lemma 12, w.e.p., |P�| ≤ |P ∩ BO(�low + ν)| = O(eαν).

Since vol(P�) = ∑
v∈P�

d(v), and for each such vertex v, by Proposition 13,

its degree is, w.e.p., �(e
1
2 (R−rv)), the second part of the claim then follows easily

from the first part. �

Since the introduction of the random hyperbolic graph model [18], it was
pointed out that it gives rise to sparse networks, specifically constant average de-
gree graphs (a fact that was soon after rigorously established in [15]). It follows
that the expected volume of random hyperbolic graphs is �(n), and thus their cen-
ter component has, in expectation, volume O(n). A close inspection of [3] (see
Theorem 16 below) actually yields that the volume of the center component is
�(n) w.e.p. In this paper, we aim for results that hold w.e.p. and will require very
sharp estimates not only for the volume of the center component of random hy-
perbolic graphs but also for collections of vertices restricted to some regions of
BO(R). Next, we describe the regions we will be concerned about. Let � be a
φ-sector, that is, � contains all points in BO(R) making an angle of at most φ at
the origin with an arbitrary but fixed reference point. If a vertex v lies in the bisec-
tor of �, we say that � is centered at v. Moreover, for a φ-sector � and a vertex
v ∈ �, we say that ϒ := � \ BO(rv) is a sector truncated at v, and if in addition
� is centered at v, then we say it is a sector truncated and centered at v. Our next
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result gives precise estimates for the volume of the center component vertices that
belong to sectors and truncated sectors. Although the result is not surprising, we
believe it is useful to isolate it not only for ease of reference later in this work, but
also for reference in followup work. However, due to its rather technical nature we
suggest the reader to skip the proof at first reading.

LEMMA 15. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n). Then, w.e.p. vol(U) = O(n). Moreover, let v ∈ P� be such
that � ≤ (1 − ξ)R for some arbitrarily small ξ > 0. If ϒ is a sector truncated at v

of angle φ = �(e− �
2 ), then w.e.p. vol(ϒ) = O(φn).

PROOF. Consider the first part of the lemma. Let ε′ = ε′(α) > 0 be a suffi-
ciently small constant and let r0 = (1 − 1

2α
− ε′)R. By Lemma 7, μ(BO(r0)) =

(1 + o(1))e−α(R−r0) = �(e−( 1
2 +αε′)R). Hence, |P ∩ BO(r0)| is a Poisson random

variable with mean t = �(n−2αε′
). Thus, by Theorem 11, for every C′ > 0 there

exists a sufficiently large constant C′′ = C′′(α) > 0, so that

P
(∣∣P ∩ BO(r0)

∣∣ ≥ C′′

t
E

(∣∣P ∩ BO(r0)
∣∣)) ≤

(
3C′′

t

)−C′′

= �
(
n−2αε′C′′)

≤ n−C′
.

Hence, w.e.p. |P ∩BO(r0)| ≤ C′′ = O(1). Thus, by Proposition 13, w.e.p. vol(P ∩
BO(r0)) = O(n). Recall that ν = 1

α
logR + ω(1) ∩ o(logR). By the same argu-

ment, using Corollary 8 and Proposition 13, the total contribution to the volume of
vertices v with r0 ≤ rv ≤ �low + ν is w.e.p.,

O
(∣∣P ∩ BO(�low + ν)

∣∣ max
v /∈BO(r0)

d(v)
)

= O
(
ne−α(R−�low−ν)e

1
2 (R−r0)

)
= O

(
n

1
2α

+ε′
eαν)

= o(n),

where the last equality follows for sufficiently small ε′ > 0, since α > 1
2 . Similarly,

for vertices v with �low + ν ≤ rv ≤ R − ν′, recalling that ν′ := 2 logR + ω(1) ∩
o(logR), by Proposition 13 and Proposition 14 part (i), the total volume of these
vertices, using the formula for the sum of a geometric series, is w.e.p.

R−ν′∑
�=�low+ν

O
(
ne−α(R−�)e

1
2 (R−�)) = O

(
n2(1−α)) R−ν′∑

�=�low+ν

e(α− 1
2 )�

= O
(
ne−(α− 1

2 )ν′)
= o(n).
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For the remaining volume, we may at the expense of a factor 2 assume that all
remaining edges are incident to pairs of vertices in BO(R) \ BO(R − ν′). Fix in-
tegers R − ν′ ≤ i ≤ j ≤ R and assume v ∈ Pi and w ∈ Pj . Partition BO(R) into
N := � 2π

θR(i−1,j−1)
 sectors denoted (in clockwise order) by �1,�2, . . . ,�N . Ob-

serve that if vw is an edge of G then (v,w) besides belonging to Pi × Pj also
belongs to �k × �k′ for some k, k′ ∈ [N ] where |k − k′| ≤ 1. For given i, j , let
μi

j = 1
N
E|Pj | and μ

j
i = 1

N
E|Pi |. For an integer c ≥ 1, for either b = i and a = j ,

or b = j and a = i, say �k ∩ Pb is c-regular if 2cμa
b ≤ |�k ∩ Pb| ≤ 2c+1μa

b .

Note that μa
b = �(n2(1−α)e(α− 1

2 )b− 1
2 a) and by Theorem 11, �k ∩ Pb is c-regular

with probability e−�(c2cμa
b). For any ordered pair (i, j) and any a, b as before,

we have ( 1
logn

)O(1) ≤ μa
b ≤ (logn)O(1). Hence, w.e.p., for every b and every k,

|�k ∩Pb| = (logn)O(1).

Let c, c̃ ≥ 1 be integers. In expectation, for i < j , there are Ne
−�(c2cμ

j
i +c̃2c̃μi

j )

pairs of sectors (�k,�k′) with |k − k′| ≤ 1 such that �k ∩ Pi is c-regular and
�k′ ∩ Pj is c̃-regular. Clearly, for a fixed value of k − k′ ∈ {−1,0,1}, disjoint
pairs of sectors (�k,�k′) are independent. Hence, if this expectation is ω(logn),

by Theorem 10, for i < j , w.e.p. there are 2Ne
−�(c2cμ

j
i +c̃2c̃μi

j ) such pairs of
sectors (�k,�k′), and this also holds after taking a union bound over the three
possible values of k − k′. Otherwise, if the expectation is O(logn), then w.e.p.,
by Theorem 10, the number of such pairs is at most υ logn, and since for ev-
ery k and b, we have w.e.p. |�k ∩ Pb| = (logn)O(1), the total number of edges
between such pairs of sectors is w.e.p. (logn)O(1). Similarly, w.e.p., there are

2Ne−�(c2cμ
j
i ) pairs of sectors (�k,�k′) with |k − k′| ≤ 1 such that �k ∩ Pi is

c-regular and |�k′ ∩ Pj | ≤ 2μi
j or the expected number of such pairs of sectors

is O(logn), and as before, the number of edges between such pairs of sectors is
w.e.p. (logn)O(1). A similar argument suffices for handling the case of pairs of
sectors (�k,�k′) with |k − k′| ≤ 1 such that |�k ∩ Pi | ≤ 2μ

j
i and �k′ ∩ Pj is

c̃-regular. For the remaining pairs of sectors (�k,�k′), we have |�k ∩Pj | ≤ 2μi
j

and |�k′ ∩ Pi | ≤ 2μ
j
i . Hence, for the number of edges between Pi and Pj , we

obtain that, w.e.p.,∣∣E(Pi ,Pj )
∣∣ ≤ ∑

k,k′∈[N]
|k−k′|≤1

∣∣E(�k ∩Pi ,�k′ ∩Pj )
∣∣

= O
(
Nμ

j
i μ

i
j

)(
22 + ∑

c≥1

2c+2e−�(c2cμ
j
i ) + ∑

c̃≥1

2c̃+2e
−�(c̃2c̃μi

j )

+ ∑
c≥1,̃c≥1

2c+c̃+2e
−�(c2cμ

j
i +c̃2c̃μi

j )
)

+ (logn)O(1)
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= O
(
Nn4(1−α)e−(1−α)(i+j)) ∑

c≥0

2ce−�(c2cμ
j
i )

∑
c̃≥0

2c̃e
−�(c̃2c̃μi

j )

+ (logn)O(1).

Now, for i < j , observe that since α < 1, we have μi
j = �(1), and hence∑

c̃≥0 2c̃e
−�(c̃2c̃μi

j ) = O(1). On the other hand, let c∗ = c∗(i, j) := min{c ∈
N : 2cμ

j
i ≥ 1

2}. Observe that we may ignore values of c smaller than c∗, as
for such pairs of sectors (�k,�k′) no vertices in �k′ ∩ Pi are present, and

hence no edges are counted. Then
∑

c≥c∗ 2ce−�(c2cμ
j
i ) ≤ 2c∗ ∑

c′≥0 2c′
e−�(c∗2c′ ) =

O((2(1 − δ))c
∗
) for some δ > 0. Thus, w.e.p.,∣∣E(Pi ,Pj )

∣∣ = O
(
e(α− 1

2 )(i+j)n3−4α)(
2(1 − δ)

)c∗ + (logn)O(1).

The same calculations can also be applied for i = j and k �= k′. For i = j

and k = k′, edges within the same sector are counted. Hence, since μi
i =

�(1) and thus
∑

c≥0 22c+2e−�(c2cμi
i ) = O(1), we obtain w.e.p. |E(Pi ,Pi)| =

O(e(2α−1)in3−4α) + (logn)O(1). Hence, w.e.p.,∑
R−ν′≤i≤j≤R

∣∣E(Pi ,Pj )
∣∣

= (logn)O(1) + ∑
R−ν′≤i≤j≤R

O
(
e(α− 1

2 )(i+j)n3−4α(
2(1 − δ)

)c∗)
.

Now, in order to bound the second right-hand side term, write i = R− ı, j = R−j

with 0 ≤ j ≤ ı ≤ ν′. Observe that since 2c∗ = �(1 + n−2(1−α)e
1
2 j−(α− 1

2 )i) =
�(1 + e(α− 1

2 )ı− 1
2 j ). Consider first pairs (i, j) with c∗ = O(1). For such pairs,

n3−4α
∑

R−ν′≤i≤j≤R

e(α− 1
2 )(i+j) = O(n)

∑
0≤j≤ı≤ν′

e(α− 1
2 )(−ı−j) = O(n),

where we used the formula for a geometric series. Consider then pairs (i, j)

with c∗ = ω(1). For such a pair, 2c∗ = �(e(α− 1
2 )ı− 1

2 j ), so (2(1 − δ))c
∗ =

�(e(1−δ′)((α− 1
2 )ı− 1

2 j)) for some 0 < δ′ < 1. Hence,

n3−4α
∑

R−ν′≤i≤j≤R

O
((

2(1 − δ)
)c∗

e(α− 1
2 )(i+j))

= O(n)
∑

0≤j≤ı≤ν′
e−αj e−δ′((α− 1

2 )ı− 1
2 j)

= O(n)
∑

0≤ı≤ν′
e−δ′(α− 1

2 )ı
ı∑

j=0

e(−α+ δ′
2 )j = O(n)

∑
0≤ı≤ν′

e−δ′(α− 1
2 )ı = O(n),
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where we again used the formula for a geometric series, thus completing the proof
of the first part of the claimed result.

Now consider the second part of the lemma, and let v ∈ P� with � = λR ≤
(1 − ξ)R for some arbitrarily small ξ > 0. Since φ = �(n−λ), we may partition ϒ

into t = �(
φ

n−λ ) subsectors T1, . . . , Tt of angle �(n−λ) and bound the volume of
each subsector Tk separately. Let λ̂ be such that 1 − λ − 2α(1 − λ̂) = −ε′ for
sufficiently small ε′ = ε′(α) > 0. Note that since α > 1

2 , for ε′ small enough,
we have 1 > λ̂ > λ. For a fixed Tk , consider first vertices w ∈ P ∩ Tk with
� ≤ rw ≤ �̂ := �̂λR�. Since the expected number of vertices of such radius inside
Tk , by Lemma 7 and the choice of angle for defining Tk , is O(n−ε′

), by the same
reasoning as in the first part of the lemma, w.e.p. there are O(1) such vertices, and

their total volume is, by Proposition 13, w.e.p. O(1)e
1
2 (R−�) = O(n1−λ). Next, let

λ be such that 1 − λ − 2α(1 − λ) = ε′. Note that 1 > λ > λ̂ and consider vertices
w ∈ P ∩ Tk with �̂ ≤ rw ≤ � := �λR�. As in the first part of the lemma, the total
contribution of these vertices to the volume of Tk is, w.e.p.,

O
(
e

1
2 (R−�̂)n1−λe−α(R−�)) = O

(
n1−λ̂+ε′) = O

(
n

1−λ+ε′
2α

+ε′) = o
(
n1−λ)

,

where the last equality follows by choosing ε′ = ε′(α) sufficiently small.
Next, let us consider vertices w ∈ P ∩ Tk with � ≤ rw ≤ R − ν′. By the same

argument as in the first part of the lemma, the total volume of such vertices is
w.e.p.,

R−ν′∑
�′=�

O
(
n1−λe−α(R−�′))e 1

2 (R−�′) = o
(
n1−λ)

.

As before, we may assume that the remaining edges are incident to pairs of vertices
in BO(R) \ BO(R − ν′), with at least one vertex inside Tk . Since most vertices
indeed have all its neighbors inside Tk , we may in fact also consider only pairs
of vertices in Tk \ BO(R − ν′). For these pairs, the argument is as before, we fix
integers R − ν′ ≤ i ≤ j ≤ R, and partition Tk into � φ

θR(i−1,j−1)
 sectors of equal

angle. Since λ < 1, the same argument as in the first part, replacing the number of
sectors N by O(Nn−λ), shows that the number of such edges is w.e.p. O(n1−λ).
Hence, since vol(ϒ) = ∑

k vol(Tk), and for each k, w.e.p. vol(Tk) = O(n1−λ), we
have w.e.p. vol(ϒ) = O(tn1−λ) = O(φn), and the second part of the lemma is
finished as well. �

Recall that a π -sector is a φ-sector with angle π , that is a half disk. Next, we
combine our previous lemma with known facts about the giant component of ran-
dom hyperbolic graphs in order to observe that both the volume and the size of
their center component are linear in n, and that this holds even if one considers
only the vertices that belong to a fixed π -sector of BO(R).
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THEOREM 16 (Theorem 1.4 of [3]). Let H = (U,F ) be the center component
of G = (V ,E) chosen according to Poiα,C(n). Let � be a π -sector, then w.e.p.
|U ∩ �| = �(n). Moreover, w.e.p. H is the giant component of G.

PROOF. A close inspection of Theorem 1.4 part (ii) of [3] shows that it can
also be performed in the Poiα,C(n) model. Moreover, after suitably adapting the
value of C, and thus of T as defined in Section 4.2 of [3], equation (4.21) and then
also Lemma 4.2 of [3] in fact hold w.e.p., and thus, the proof given there shows
that w.e.p. |U | = �(n). The same proof holds also when restricting to one half of
BO(R), and hence w.e.p. |U ∩ �| = �(n). For the second part of the corollary,
once more a close inspection of the same theorem (Lemma 4.1, equations (4.3)
and (4.21) of Theorem 1.4 of [3]) show that the claimed result holds in the Poisson
model, and it holds w.e.p. �

An immediate consequence of Lemma 15 and Theorem 16 is the following.

COROLLARY 17. Let H = (U,F ) be the center component of G = (V ,E)

chosen according to Poiα,C(n). Then w.e.p. vol(U) = �(n). Moreover, if � is a
π -sector, then w.e.p. vol(U ∩ �) ≥ |U ∩ �| = �(n).

Regarding the diameter of the center component, we have the following result.

THEOREM 18 (Theorem 1 and Theorem 3 of [14]). Let H = (U,F ) be the
center component of G = (V ,E) chosen according to Poiα,C(n) and let D =
D(H) denote its diameter. Then w.e.p.,

D = �(logn) ∩ O
(
(logn)

1
1−α

)
.

PROOF. Again, the results stated in [14] are stated with smaller probability,
but a close inspection of them shows that they hold w.e.p. The original results
are stated in the uniform model, but again, they hold in the Poissonized model as
well. �

The following lemma is implicit in [3]; we make it explicit here.

LEMMA 19. Let H = (U,F ) be the center component of G = (V ,E) chosen

according to Poiα,C(n). If � is a φ-sector with φ = ω( 1
n
(logn)

1+α
1−α ), then w.e.p.

vol(U ∩ �) ≥ |U ∩ �| = �(φn(logn)−
2α

1−α ).

PROOF. Let �bdr := �R− 2 logR
1−α

�. Since d(v) ≥ 1 for any v ∈ U , the inequality

vol(U ∩�) ≥ |U ∩�| is trivial. In order to show that |U ∩�| = �(φn(logn)
2α

1−α ),
note that, using the lower bound on φ, by Lemma 7 and Lemma 12, the number of
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vertices in � ∩ P�bdr is w.e.p. �(φn(logn)−
2α

1−α ). Note also that for every vertex
v ∈ P� with R

2 ≤ � ≤ �bdr, by Remark 6 and Corollary 8, the expected number of

neighbors of v inside P�−1 is �(ne−α(R−�)e
1
2 (R−2�)) = �(log2 n), and hence, by

Lemma 12 this holds w.e.p. Thus, all vertices v ∈ P� connect through consecutive
layers to vertices that belong to BO(R

2 ), and thus are part of the center compo-

nent H . Hence, |U ∩ �| = �(φn(logn)−
2α

1−α ). �

To conclude this section, we make a final important observation that simplifies
arguing about the center component (and thus the giant component) of random
hyperbolic graphs.

REMARK 20. The proof of the previous lemma shows that w.e.p. all vertices
in P ∩BO(R − 2 logR

1−α
) in fact belong to the center component, and hence, for each

� ≤ R − 2 logR
1−α

, w.e.p. P�(G) = P�(H). We will use this without further mention
throughout the paper.

4. Spectral gap. The purpose of this section is to bound from below the spec-
tral gap of the center component H of a random hyperbolic graph, that is, proving
Theorem 1. As we show next, this result is essentially tight. Indeed, we first prove
Lemma 2 by showing a simple upper bound for λ1(H) obtained via Cheeger’s in-
equality, that is, via an upper bound on the graph conductance of H . We include
the bound mainly for completeness sake.

PROOF OF LEMMA 2. Let � be a π -sector. We have to show that h(�) ≤
υn−(2α−1) logn. Let P be the set of vertices (points) if G is chosen according to
Poiα,C(n), and let U be the set of vertices (points) if G is chosen according to
Unfα,C(n). First, observe that by Corollary 17 w.e.p. vol(�),vol(P \ �) = �(n).
Since Corollary 17 holds w.e.p., the same results clearly hold in the uniform model
as well. Hence, it suffices to show that a.a.s. |E(U ∩ �,U \ �)|, |E(U ∩ �,P \
�)| = n2(1−α)O(logn). Define UN as a uniformly distributed set of N points in
the hyperbolic disk of radius R = 2 logn+C, that is, UN equals P conditioned on
|P| = N . We first determine the expected value of |E(UN ∩ �,UN \ �)|. Clearly,

E
(∣∣E(UN ∩ �,UN \ �)

∣∣)
= 2

(
N

2

)
P

(
u ∈ UN ∩ �,v ∈ UN \ �,dh(ru, rv, θu − θv) ≤ R

)
.

We divide the computation of the latter probability into two cases depending on
whether or not ru + rv ≤ R, and denote the corresponding probabilities by P ′ and
P ′′. Recalling that C(α,R) = cosh(αR) − 1 and since 2 sinhx sinhy = cosh(x +
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y) − cosh(x − y),

P ′ = 1

4

∫∫
ru+rv≤R

f (ru)f (rv) drv dru

= α2

4(C(α,R))2

∫∫
ru+rv≤R

sinh(αru) sinh(αrv) drv dru

= α

8(C(α,R))2 R sinh(αR) − 1

4C(α,R)

= O(R)e−αR = n−2αO(logn).

Now, in order to compute P ′′, observe that if for u ∈ UN ∩ �, v ∈ UN \ � with
ru + rv ≥ R, we have uv ∈ F , then either θu + (2π − θv) ≤ θR(ru, rv) or θv − θu ≤
θR(ru, rv), where θR(·, ·) is as defined in (4). Clearly, for (θu, θv) ∈ [0, π)×[π,2π)

the area of both triangles defined by the aforestated two inequalities is θ2
R(ru, rv),

and hence the probability that (θu, θv) satisfies one of the two inequalities is
1

4π2 θ2
R(ru, rv). Thus, by Lemma 5,

P ′′ = 1

4π2

∫∫
ru+rv≥R

θ2
R(ru, rv)f (ru)f (rv) dru drv

= α2

π2(C(α,R))2

∫∫
ru+rv≥R

eR−ru−rv
(
1 + �

(
eR−ru−rv

))
× sinh(αru) sinh(αrv) dru drv

= α2eR

4π2(C(α,R))2

∫∫
ru+rv≥R

e−(1−α)(ru+rv)

× (
1 + O

(
eR−ru−rv + e−2αru + e−2αrv

))
dru drv

= O(R)e−αR = n−2αO(logn).

Summarizing, by setting N = n, we have E(|E(U∩�,U \�)|) = O(n2(1−α) logn).
For the model Poiα,C(n),

E
(∣∣E(P ∩ �,P \ �)

∣∣) = ∑
N≥0

E
(∣∣E(UN ∩ �,UN \ �)

∣∣)P(|P| = N
)

= O
(
n−2α logn

) ∑
N≥0

(
N

2

)
e−n nN

N !

= O
(
n2(1−α) logn

) ∑
N≥2

e−n nN−2

(N − 2)!
= O

(
n2(1−α) logn

)
.

In either case, the desired statement follows by Markov’s inequality. �
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We now undertake the more challenging task of establishing a lower bound on
the spectral gap of the center component of random hyperbolic graphs. By Theo-
rem 18, w.e.p. the diameter of the giant component of a graph chosen according to

Unfα,C(n) is O((logn)
1

1−α ) when 1
2 < α < 1. A well-known relation between the

spectral gap and the diameter of graphs (see, e.g., [9], Lemma 1.9) establishes that
for a connected graph G with diameter D it holds that λ1(G) ≥ 1/(D vol(V (G))).
Thus, since by Corollary 17, w.e.p. vol(V (H)) = �(n), we get that λ1(H) =
�( 1

n
(logn)−

1
1−α ). Since by Lemma 2 we have h(H) ≤ υn−(2α−1) logn, the lower

bound λ1(H) ≥ 1
2h2(H) obtained from Cheeger’s inequality [see (3)] cannot be

asymptotically tight when α > 3
4 . Below, we prove a lower bound on λ1(H) which

in fact establishes that up to polylogarithmic (in n) factors, the upper bound given
by Cheeger’s inequality is asymptotically tight.

In order to bound λ1(H) from below, we rely on the multicommodity flow tech-
nique developed in [11, 20]. The basic idea is to consider a multicommodity flow
problem in the graph and obtain lower bounds on λ1(H) in terms of a measure
of flows. Formally, a flow in H is a function f mapping a collection of (oriented)
simple paths Q := Q(H) in H = (U,F ) to the positive reals. Moreover, for all
s, t ∈ U , s �= t , the following flow demand constraint is satisfied by f :

(7)
∑

q∈Qs,t

f (q) = d(s)d(t)

vol(U)
,

where Qs,t is the set of all (oriented) paths q ∈ Q from s to t . Clearly, an extension
of f to a function on oriented edges of H is obtained by setting f (e) equal to the
total flow routed by f through the oriented edge e, that is, f (e) := ∑

q�e f (q).
In order to measure the quality of the flow f a function on oriented edges,

denoted f , is defined by

(8) f (e) := ∑
q∈Q:q�e

f (q)|q|,

where |q| is the length (number of edges) of the path q . The term f (e) is referred
to as the elongated flow through e. The flow’s quality is captured by the quantity
ρ(f ) := maxe f (e), where the maximum is taken over oriented edges. The follow-
ing result is the cornerstone of the multicommodity flow method. We include the
claim’s proof for several reasons; (i) for concreteness sake, (ii) due to its elegance
and conciseness and (iii) for clarity of exposition, because in all instances known
to us, the result is stated in the language of reversible Markov chains, and its inter-
pretation in graph theoretic terms might not be straightforward for the reader.

THEOREM 21 (Sinclair [20]). If f is a flow in a connected graph H = (U,F ),
then

λ1(H) ≥ 1

ρ(f )
.
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PROOF. Recall (see, e.g., [9], equation (1.5)) the following characterization of

λ1 := λ1(H) = inf
ψ

∑
s,t :st∈F (ψ(s) − ψ(t))2∑

s,t∈U(ψ(s) − ψ(t))2 d(s)d(t)
vol(U)

,

where the infimum is taken over all nonconstant functions ψ : U →R.
For an oriented edge e, let e− and e+ denote its start- and endvertices. Note now

that for any ψ and any flow f in H , the denominator of the last displayed equation
can be bounded from above as follows:∑

s,t∈U

(
ψ(s) − ψ(t)

)2 d(s)d(t)

vol(U)

= ∑
s,t∈U

∑
q∈Qs,t

f (q)

(∑
e∈q

(
ψ

(
e−) − ψ

(
e+)))2

≤ ∑
q∈Q

f (q)|q|∑
e∈q

(
ψ

(
e−) − ψ

(
e+))2

= ∑
e

(
ψ

(
e−) − ψ

(
e+))2

f (e)

≤ ρ(f )
∑
e

(
ψ

(
e−) − ψ

(
e+))2

= ρ(f )
∑

s,t :st∈F

(
ψ(s) − ψ(t)

)2
,

where the first inequality is by Cauchy–Schwarz, and the second one by definition
of ρ(f ). (Note that the first equality in the preceding displayed derivation requires
that Qs,t is nonempty for all s, t ∈ U , which is indeed the case given that H is
connected.) �

A particular version of the multicommodity flow method, referred to as the
canonical path method, consists in routing, for every pair of distinct vertices
s, t ∈ U , the required d(s)d(t)/vol(U) flow demand via a single oriented path go-
ing from s to t . This simplified method cannot deliver as strong bounds on λ1(H)

as the ones we claim. Indeed, for the canonical path method, the elongated flow on
any edge used by a path carrying flow from s to t must be at least d(s)d(t)/vol(U).
Taking s and t as the maximum degree vertices in H , known results on the maxi-
mum degree of hyperbolic random graphs (see [15], Theorem 2.4) lead to bounds

on elongated flows not smaller than �(n
1
α
−1), and hence to bounds on λ1(H)

no better than O(n1− 1
α ), which would be worse than the claimed lower bound of

�(n−(2α−1)/D) if α < 1√
2

(with some effort maybe one might be able to show
that the method does not provide strong bounds even for larger values of α).
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To simplify the exposition, we will use Theorem 21 in a slightly easily derived
variant stated below. First, say that {Q′,Q′′} is a path consistent partition of Q :=
Q(H) provided there is a path oriented from s to t in Q′ if and only if no such path
is found in Q′′, that is, for all s, t ∈ U , s �= t , the set Q′

s,t is nonempty if and only
if Q′′

s,t is empty. Moreover, for Q̃ ⊆ Q, we say f̃ : Q → R+ is a Q̃-flow provided
f̃ (q) = 0 if q /∈ Q̃ and for every s, t ∈ U , s �= t such that Q̃s,t is nonempty, the
following holds:

(9)
∑

q∈Q̃s,t

f̃ (q) = d(s)d(t)

vol(U)
.

We extend to Q̃-flows, in the natural way, the notions of elongated flow and maxi-
mum elongated flow. In order to more easily apply Theorem 21 we will construct
a flow satisfying its hypothesis as a sum of Q̃-flows. Our next result validates such
an approach.

COROLLARY 22. Let H = (U,F ) be a connected graph and {Q′,Q′′} a path
consistent partition of Q := Q(H). Let f ′, f ′′ : Q → R+ be such that f ′ is a
Q′-flow and f ′′ is a Q′′-flow, then f ′ + f ′′ is a flow in H and

ρ
(
f ′ + f ′′) ≤ ρ

(
f ′) + ρ

(
f ′′).

PROOF. The result follows since ρ(f ′ + f ′′) = maxe(f ′(e) + f ′′(e)) ≤
ρ(f ′) + ρ(f ′′). �

Key to our approach is the fact that w.e.p. random hyperbolic graphs admit mul-
ticommodity flows of moderate maximum elongated flow. To prove this assertion,
we associate to the center component H of G chosen according to Poiα,C(n) a
path consistent partition {Q′,Q′′} of Q := Q(H). The collection Q′ will consist of
paths whose endvertices are both “sufficiently close” to the origin O . In contrast,
Q′′ will consist of the collection of paths one of whose endvertices is not “suffi-
ciently close” to the origin O . We will fix the flow for path q with endvertices s

and t , so that it satisfies (7) while distributing an equal amount of flow among all
paths in Qs,t .

In addition to the already defined quantities �low = �(1 − 1
2α

)R� and ν′ =
2 logR + ω(1) ∩ o(logR), the following quantities will also play an important
role in the construction of Q′ and Q′′:

�min :=
⌈(

α − 1

2

)
R + ν′

⌉
,(10)

�mid :=
⌊
R − 1

2

⌋
,(11)

�max :=
⌊(

3

2
− α

)
R − ν′

⌋
.(12)
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Observe that �min + �max = R. For sufficiently large n, it always holds that �min <

�mid < �max and �min < �low + ν < �mid. From now on, we assume without further
mention that n is large enough so that these inequalities hold. Henceforth, for an
integer � ≤ �max, we let

�̃ =

⎧⎪⎪⎨⎪⎪⎩
�max if � < �min,

2�mid − � + 1 if �min ≤ � ≤ �mid,

�mid if � > �mid.

Note that R
2 ≥ �mid = R

2 + �(1) and �mid ≤ �̃ ≤ �max. Moreover, observe that
� ≤ �mid if and only if �̃ > �mid, and that � + �̃ ≤ R for every � ≤ �mid. As before,
often we shall ignore the floors/ceilings in the preceding definitions, since it only
introduces low order term approximations in our derivations. Recall that whenever
referring to expressions such as R − logR

1−α
or the like, when needed, we will also

assume that these are integers.
Details concerning Q′ as well as an associated Q′-flow are provided in the

next section, and in the subsequent one analogous results concerning Q′′ are dis-
cussed.

4.1. A Q′-flow. For s ∈ Pk and t ∈ Pk′ with k, k′ ≤ �max, let Q′
s,t be the col-

lection of length 3 oriented paths from s to t whose first internal vertex belongs
to Pk̃ and the other internal vertex is in Pk̃′ . Also, let Q′ be the union of all such
Q′

s,t ’s. We classify paths in Q′ as follows [see Figure 2(a)]:

• Type I: both endvertices belong to BO(�mid)

FIG. 2. Illustration of path types and edge classes. The inner shaded ring corresponds to
BO(�mid) \ BO(�mid − 1), the outer shaded ring to BO(�max) \ BO(�max − 1) for α = 5/8.
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• Type II: both endvertices belong to BO(�max) \ BO(�mid)

• Type III: one endvertex is in BO(�mid) and the other one in BO(�max) \
BO(�mid).

Next, we relate the size of the Q′
s,t ’s to the size of certain collections of edges

of H = (U,F ). This will be useful for estimating their size.

PROPOSITION 23. If vg ∈Pg and vh ∈ Ph with g ≤ h ≤ �max, then

∣∣Q′
vg,vh

∣∣ =

⎧⎪⎪⎨⎪⎪⎩
∣∣E(Pg̃,Ph̃)

∣∣ if g,h ≤ �mid,∣∣E(
Pg̃,NP�mid

(vh)
)∣∣ if g ≤ �mid < h,∣∣NP�mid

(vg)
∣∣ · ∣∣NP�mid

(vh)
∣∣ if g,h > �mid.

PROOF. The claim holds for g,h ≤ �mid because for each edge e ∈ E(Pg̃,Ph̃)

there is a path in Q′
vg,vh

with node set {vg, e
−, e+, vh} and the middle edge

of any path in Q′
vg,vh

belongs to E(Pg̃,Ph̃). The remaining cases are handled
similarly. �

As already mentioned, we will evenly split the flow that needs to be sent from a
vertex s to another vertex t among all oriented paths connecting s to t . This partly
explains, at least when s, t ∈ U ∩ BO(�max), why we next estimate the number of
paths in Q′

s,t .

PROPOSITION 24. W.e.p., For g,h ≤ �max where g ≥ �mid the following
hold:

(i) If vg ∈ Pg , then |NPh̃
(vg)| = �(e−(α− 1

2 )(R−h̃)e
1
2 (R−g)) = �(e−(α− 1

2 )(R−h̃) ×
d(vg)). In particular, |NP�mid

(vg)| = �(n−(α− 1
2 )e

1
2 (R−g)) = �(n−(α− 1

2 ) ×
d(vg)).

(ii) |E(Pg,Ph̃)| = �(ne−(α− 1
2 )(R−h̃)e−(α− 1

2 )(R−g)).

(iii) If S ⊆ P�mid , then |E(Pg, S)| = �(|S|√ne−(α− 1
2 )(R−g)).

PROOF. Consider the first part of the claim. If h̃ = g = �mid, since P�mid in-
duces a clique in H , then Nh̃(vg) = Ph̃. Since �mid = R

2 +�(1) and Proposition 13
implies that w.e.p. d(vg) = �(

√
n), the claim trivially holds by Proposition 14

part (i). Assume that h̃ + g > 2�mid ≥ R − 1, so h̃ + g ≥ R by our integrality as-
sumption regarding R. Note that if a vertex in Ph̃ is a neighbor of vg ∈ Pg in H ,
then the small relative angle (in the interval [0, π)) between such a vertex and vg

is O(θR(g, h̃)), which by Lemma 5, equals �(e
1
2 (R−g−h̃)). Applying Lemma 7,

we infer that μ(BO(h̃) \ BO(h̃ − 1)) = e−α(R−h̃)(1 − e−α)(1 + o(1)). Thus, for a
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sector � of BO(R) of angle φ = �(e
1
2 (R−g−h̃)),

μ
(
� ∩ BO(h̃) \ BO(h̃ − 1)

) = φμ
(
BO(h̃) \ BO(h̃ − 1)

)
= �

(
1

n

)
e−(α− 1

2 )(R−h̃)e
1
2 (R−g).

Since g ≤ �max, h̃ ≥ �mid and because ν′ = 2 logR + ω(1), recalling the definition
of �mid and �max, we deduce that

e
1
2 (R−g)−(α− 1

2 )(R−h̃) ≥ e
1
2 (R−�max)−(α− 1

2 )(R−�mid) = �
(
e

ν′
2
) = ω(logn).

We have established that μ(�∩BO(h̃)\BO(h̃−1)) = ω(
logn

n
), so the desired con-

clusions follow by Proposition 13 and Lemma 12. The second part of (i) follows
immediately since �mid = R

2 + �(1).
Consider now the second part of the claim. Note that |E(Pg,Ph̃)| =∑
v∈Pg

|NPh̃
(v)|. Since g ≥ �mid, the claim follows immediately from the first

part by a union bound and by Proposition 14 part (i).
For the last part of the claim, observe that |E(Pg, S)| = ∑

w∈S |NPg (w)|. By
part (i), a union bound over the elements of P�mid yield that w.e.p., for all w ∈ S

it holds that |NPg (w)| = �(e−(α− 1
2 )(R−g)e

1
2 (R−�mid)). The conclusion follows by

definition of �mid. �

Next, we establish the main result of this section.

PROPOSITION 25. Let H = (U,F ) be the center component of G = (V ,E)

chosen according to Poiα,C(n). For all q ∈Q′
s,t , let

f ′(q) := d(s)d(t)

vol(U)
· 1

|Q′
s,t |

.

Then, w.e.p. Q′ ⊆ Q(H), f ′ is a well-defined Q′-flow and ρ(f ′) = O(n2α−1).

PROOF. For s, t ∈ BO(�max), Proposition 23 and Proposition 24, imply that
|Q′

s,t | �= 0. Thus, f ′ is well defined. Moreover, by the way in which f ′ is pre-
scribed,

∑
q∈Q′

s,t
f ′(q) = d(s)d(t)/vol(U), so f ′ is a flow.

We need to bound the elongated flow on the edges traversed by paths in Q′.
First, we identify which edges e of H are traversed. Paths in Q′ traverse edges of
H whose endvertices are in BO(�max). Moreover, the endvertices of e are not both
in BO(�mid − 1), and a path in Q′ either starts or ends with e if and only if at least
one of the endvertices of e is in BO(�mid). If follows that an edge e traversed by
a path in Q′ can belong to one of four edge classes described forthwith. An upper
bound on the elongated flow of the members of each of these classes is separately
derived below (recall that for an oriented edge e, the expressions e− and e+ denote
its start- and endvertices).
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Since Q′
s,t = Q′

t,s for every distinct s, t ∈ U , the elongated flow f ′ is the same
for both orientations of a given edge. Thus, in our ensuing discussion we fix (ar-
bitrarily) one of the two possible orientations of e when bounding its elongated
flow.

Spread out edges [one endvertex of e is in BO(�mid) and the other one in
BO(�max) \ BO(�mid)]: The only possibility is that for some k ≤ �mid, the edge
e is incident to a vertex in Pk and to another one in Pk̃ . Fix the orientation of e so
that e− ∈ Pk and e+ ∈ Pk̃ . Necessarily, e is either the first edge of a Type I or a
Type III path in Q′ that traverses it. Dealing with both cases separately, we obtain

f ′(e)
3

= d(e−)

vol(U)

( ∑
�≤�mid

∑
t∈P�

d(t)

|Q′
e−,t

|
∣∣NP�̃

(
e+)∣∣

+ ∑
�mid<�≤�max

∑
t∈P�

d(t)

|Q′
e−,t

|
∣∣E({

e+}
,NP�mid

(t)
)∣∣).

Let S1 and S2 be the first and second summands inside the parenthesis of the right-
hand side above.

First, we bound S1. Assume � ≤ �mid and t ∈ P�. By Proposition 23, |Q′
e−,t

| =
|E(Pk̃,P�̃)|. Since k̃ > �mid, parts (i) and (ii) of Proposition 24 apply, implying
that w.e.p., |NP�̃

(e+)|/|E(Pk̃ ,P�̃)| = O( 1
n
eα(R−k̃)). Hence, w.e.p.,

S1 = O

(
1

n
eα(R−k̃)

) ∑
�≤�mid

vol(P�).

We now bound S2 from above. Assume �mid < � ≤ �max and t ∈ P�. By
Proposition 23, |Q′

e−,t
| = |E(Pk̃ ,NP�mid

(t))|. Moreover, since k̃ ≥ �mid, Proposi-

tion 24 part (iii) yields that, w.e.p., |Q′
e−,t

| = �(|NP�mid
(t)|√ne−(α− 1

2 )(R−k̃)). By

part (i) of the same proposition, we get that w.e.p. d(t)/|Q′
e−,t

| = �(n−(1−α) ×
e(α− 1

2 )(R−k̃))). Also,
∑

t∈P�
|E({e+},NP�mid

(t))| = |E(NP�mid
(e+),P�)|, and by

Proposition 24 part (i) and part (iii), w.e.p. |E(NP�mid
(e+),P�)| = �(n1−α ×

e−(α− 1
2 )(R−�)e

1
2 (R−k̃)). Recalling that by Proposition 14, we know that w.e.p.

vol(P�) = �(ne−(α− 1
2 )(R−�)) for �mid < � ≤ �max, it follows that, w.e.p.,

S2 = �
(
n−(1−α)e(α− 1

2 )(R−k̃)) ∑
�mid<�≤�max

∣∣E(
NP�mid

(
e+)

,P�

)∣∣
= �

(
1

n
eα(R−k̃)

) ∑
�mid<�≤�max

vol(P�).

Summarizing, f ′(e) = d(e−)
vol(U)

�( 1
n
eα(R−k̃) ∑

�≤�max
vol(P�)). Since the summa-

tion in this last expression is clearly at most vol(U) and observing that by
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Proposition 13, w.e.p. d(e−) = �(ne− k
2 ), we conclude that w.e.p. f ′(e) =

O(e− k
2 +α(R−k̃)). Finally, recall that k ≤ �mid and α > 1

2 , so α(R − k̃) − 1
2k ≤

max{(α − 1
2)k + O(1), α(R − �max)} ≤ α(R − �max). By definition of �max and

since α < 1, we infer that w.e.p. f ′(e) = O(eα(R−�max)) = O(nα(2α−1)eαν′
) =

o(n2α−1).
Belt edges [both endvertices of e in BO(�mid) \ BO(�mid − 1)]: The only possi-

bility is that e is the middle edge of a path in Q′ of Type II. In particular,

f ′(e)
3

= 1

vol(U)

∑
�mid<�,�′≤�max

∑
s∈NP�

(e−)

∑
t∈NP

�′ (e
+)

d(s)d(t)

|Q′
s,t |

.

By Proposition 23, if s ∈ P� and t ∈ P�′ with �mid < �,�′ ≤ �max, then |Q′
s,t | =

|NP�mid
(s)| · |NP�mid

(t)|. By Proposition 24 part (i), for w ∈ P� ∪P�′ , expressions

like d(w)/|NP�mid
(w)| equal, w.e.p., �(nα− 1

2 ). Since a vertex cannot have more
neighbors than its degree, w.e.p.,

f ′(e) = �(n2α−1)

vol(U)

∑
�mid<�≤�max

∣∣NP�

(
e−)∣∣ ∑

�mid<�′≤�max

∣∣NP�′
(
e+)∣∣

≤ �(n2α−1)

vol(U)
d
(
e−)

d
(
e+)

.

By Proposition 13, w.e.p. d(e−), d(e+) = �(
√

n), and so by Lemma 15, w.e.p.,
f ′(e) = O(n2α−1).

Middle edges [both endvertices of e in BO(�max) \ BO(�mid)]: Now, e can only
appear as the middle edge of a path in Q′ of Type I. Say e− ∈ Pk̃ and e+ ∈Pk̃′ for
k, k′ ≤ �mid. Note that if e is traversed by some path in Q′

s,t , then it must be the
case that s ∈ P� for some � such that �̃ = k̃ (if k̃ �= �max there is only one such �,
otherwise � ≤ �min). A similar statement holds for t . By Proposition 23, for s ∈ P�

and t ∈ P�′ where �̃ = k̃ and �̃′ = k̃′, we have that |Q′
s,t | = |E(Pk̃,Pk̃′)|, and hence

f ′(e)
3

= 1

vol(U)

∑
�:�̃=k̃

∑
�′:�̃′=k̃′

∑
s∈P�

∑
t∈P�′

d(s)d(t)

|Q′
s,t |

= 1

vol(U)
· 1

|E(Pk̃,Pk̃′)|
∑

�:�̃=k̃

vol(P�)
∑

�′:�̃′=k̃′
vol(P�′).

Since k̃, k̃′ > �mid, by Proposition 24 part (ii), recalling that �min +�max = R, since
�min < �low + ν [where ν = 1

α
logR + ω(1) ∩ o(logR)] and the way in which k̃ is

defined, w.e.p.,∣∣E(Pk̃ ,Pk̃′)
∣∣ = �

(
ne−(α− 1

2 )(R−k̃)e−(α− 1
2 )(R−k̃′))

= �
(
ne−(α− 1

2 )(max{k,�low+ν}+max{k′,�low+ν})).
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Also, by Proposition 14 part (ii) and definition of �low, w.e.p.,

e(α− 1
2 )max{k,�low+ν} ∑

�:�̃=k̃

vol(P�)

=
⎧⎨⎩O

(
ne−(α− 1

2 )(R−2k)) if k ≥ �low + ν,

O
(
n

(2α−1)2
2α e(α− 1

2 )ν vol(U)
)

if k < �low + ν.

Since k ≤ �mid ≤ R
2 and 2α−1

α
< 1 (given that α < 1), by Lemma 15, w.e.p., the

case that dominates above is when k < �low + ν, which in turn is o(nα+ 1
2 ). Hence,

again using Lemma 15, w.e.p., f ′(e) = o( 1
vol(U)

· 1
n

· (nα+ 1
2 )2) = o( n2α

vol(U)
) =

o(n2α−1).
Belt incident edges [one endvertex of e in P�mid and the other one in BO(�max) \

BO(�mid)]: Fix the orientation of e so e− ∈Pk for �mid < k ≤ �max and e+ ∈ P�mid .
Note that e can be the first edge of either a Type II or Type III path, or the middle
edge of a Type III path. Each alternative gives rise to one of the terms on the right
hand side of the following identity:

f ′(e)
3

= d(e−)

vol(U)

∑
�≤�max

∑
t∈P�

d(t)

|Q′
e−,t

|
∣∣E({

e+}
,NP�̃

(t)
)∣∣

+ 1

vol(U)

∑
�≤�mid:�̃=k

∑
s∈P�

∑
�mid<�′≤�max

∑
t∈NP

�′ (e
+)

d(s)d(t)

|Q′
s,t |

.

Let S1 and S2 be the first and second terms on the right-hand side above.
First, we bound S1. Let t ∈P� for � ≤ �max. By Proposition 23, if � ≤ �mid, then

|Q′
e−,t

| = |E(NP�mid
(e−),P�̃)| and NP�̃

(t) = P�̃ [in particular, E({e+},NP�̃
(t)) =

NP�̃
(e+)]. Moreover, if � > �mid, then |Q′

e−,t
| = |NP�mid

(e−)| · |NP�mid
(t)| and �̃ =

�mid. Since vertices in P�mid induce a clique in H , we have |E({e+},NP�̃
(t))| =

|NP�mid
(t)|. Thus,

S1 = d(e−)

vol(U)

( ∑
�≤�mid

|NP�̃
(e+)| · vol(P�)

|E(NP�mid
(e−),P�̃)|

+ 1

|NP�mid
(e−)|

∑
�mid<�≤�max

vol(P�)

)
.

By parts (i) and (iii) of Proposition 24 if � ≤ �mid, then w.e.p. |E(NP�mid
(e−),

P�̃)| = �(|NP�mid
(e−)| · |NP�̃

(e+)|). By part (i) of the same proposition, w.e.p.

d(e−)/|NP�mid
(e−)| = �(n−(α− 1

2 )). It follows that, w.e.p.,

S1 = �(n−(α− 1
2 ))

vol(U)

∑
�≤�max

vol(P�).

Since the P�′’s are disjoint and contained in U , we clearly have
∑

�≤�max
vol(P�) ≤

vol(U). Hence, w.e.p. S1 = O(n−(α− 1
2 )) = o(n2α−1).
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Now, we bound S2. Assume t ∈ BO(�max)\BO(�mid) and s ∈ P� with � ≤ �mid.
By Proposition 23, it holds that |Q′

s,t | = |E(P�̃,NP�mid
(t))|. By Proposition 24

part (iii), w.e.p., |E(P�̃,NP�mid
(t))| = �(n1−αe−(α− 1

2 )(R−�̃)d(t)). Hence, w.e.p.,

S2 =�(n−(1−α))

vol(U)

∑
�≤�mid:�̃=k

�
(
e(α− 1

2 )(R−�̃)) vol(P�)
∑

�mid<�′≤�max

∣∣NP�′
(
e+)∣∣.

Since the number of neighbors of a vertex is at most its degree and given that, by
Proposition 13, w.e.p. d(e+) = �(

√
n), we infer that w.e.p.,

S2 = 1

vol(U)
�

(
nα− 1

2 e(α− 1
2 )(R−k)) ∑

�≤�mid:�̃=k

vol(P�).

Clearly,
∑

�≤�mid:�̃=k vol(P�) ≤ vol(U). Recalling that k > �mid, the definition of

�mid and since α > 1
2 , we conclude that w.e.p. S2 = O(n2α−1). �

4.2. A Q′′-flow. The collection Q′′ will contain paths between distinct ver-
tices s and t of the center component H if and only if at most one of s and t

belongs to BO(�max). Paths in Q′′ will have a similar structure as in Q′; we in-
formally describe it first for paths both of whose endvertices s and t belong to
BO(R) \ BO(�max). Specifically, such paths will consist of three parts. The first
part connects s to a vertex s′ in P�max . We denote this part by qs,s′ . The last part
connects a vertex t ′ in P�max to t . We denote it by qt ′,t . The middle part will be a
path from s′ to t ′ belonging to Q′

s′,t ′ as defined in the previous section. In fact, the
collection of paths from s to t , that is, Q′′

s,t , will be paths that first traverse qs,s′ ,
then a path in Q′

s′,t ′ and finally the path qt ′,t . For q ∈ Q′′
s,t , we refer to qs,s′ and

qt ′,t as end parts of qs,t and to qs′,t ′ as the middle part of q . If only s belongs to
BO(R) \ BO(�max), we let t ′ = t and qt ′,t be the length 0 path consisting of the
single vertex t . We define s ′ and qs′,s similarly if t is in BO(R) \ BO(�max).

In order to specify how s ′ and t ′ are chosen and paths qs,s′ and qt ′,t defined,
we borrow from [14] the following useful concept of “betweenness” (recall that
�ϕp0,p1 denotes the small relative angle in [0, π) between p0,p1 ∈ H2): say that
vertex p′ lies between vertices p and p′′ if �ϕp,p′ + �ϕp′,p′′ = �ϕp,p′′ . Also,
given a finite set S ⊆ H2 and p,p′ ∈ S we say that p′′ follows p in S , if there is
no p′ ∈ S \ {p,p′′} such that p′ is between p and p′′. Now, let u0, u1 ∈P�max+1 be
such that u1 follows u0 in P�max+1 and s is between u0 and u1. Consider a shortest
path in H (ties broken arbitrarily) between s and an element of {u0, u1}—denote
the latter element by ub. We will show that, w.e.p. ub has a neighbor in P�max .
We denote by qs,s′ the oriented path that starts at s, traverses the aforementioned
shortest path up to ub and ends in ub’s closest neighbor, henceforth denoted by s′,
that belongs to P�max . Similarly, define t ′ and qt,t ′ . Let qt ′,t equal the latter but with
the reverse orientation.
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An important fact concerning the just described end parts of paths in Q′′ arises
from a key property of geometric graphs, which depending on the model, precludes
the existence of some vertex-edge configurations. In [14], for hyperbolic geometric
graphs, two very simple forbidden configurations are identified (each one obtained
as the contrapositive of the two claims stated in the following result).

LEMMA 26 ([14], Lemma 9). Let G = (V ,E) be a hyperbolic geometric
graph. Let u, v,w ∈ V be vertices such that v is between u and w, and let uw ∈ E:

(i) If rv ≤ min{ru, rw}, then {uv, vw} ⊆ E.
(ii) If rw ≤ rv ≤ ru, then vw ∈ E.

Our two following results establish, first, that w.e.p. qs,s′ with the stated prop-
erties does indeed exist in H , and second, show that the end part of a path in Q′′
exhibits a very useful property: it is essentially contained in a small angular sec-
tor to which s′ belongs and, except for potentially one internal vertex, the path is
completely contained in BO(R) \ BO(�max).

LEMMA 27. Let � ∈ {�max, �max + 1}. W.e.p., for any two points u0, u1 ∈ P�

such that u1 follows u0 in P� it holds that �ϕu0,u1 ≤ υ
n
eα(R−�) logn. More-

over, w.e.p., every u ∈ P�max+1 has a neighbor v ∈ P�max such that �ϕu,v ≤
υ
n
eα(R−�max) logn.

PROOF. Fix u0 ∈ P�. Let Ru0 be the collection of points P� such that 0 <

�ϕu0,u ≤ υ
n
eα(R−�) logn. By Lemma 7 and by definition of �,

μ(Ru0) = υ

n
eα(R−�)(logn)e−α(R−�)(1 − e−α)(

1 + o(1)
) = ω

(
logn

n

)
.

Hence, by Lemma 12 together with a union bound over all u0 ∈ P�, w.e.p., Ru0 is
not empty for each u0 ∈ P�.

Consider now the second part of the claim. Let v0, v1 ∈ P�max be such that v1
follows v0 in P�max and u is between v0 and v1. From the first part, we know that
w.e.p. �ϕu,v0,�ϕu,v1 ≤ υ

n
eα(R−�max) logn. By Lemma 5, we have θR(�max, �max −

1) = �(e
1
2 (R−2�max)) = �(n−2(1−α)). By definition of �max, it holds that �ϕu,vb

≤
υ
n
eα(R−�max) logn = υn−(1−α)(2α+1)eαν′

logn. Since 2α + 1 > 2, we conclude that
w.e.p. �ϕu,vb

= o(θR(�max, �max − 1)), so u and vb are neighbors in H . �

The following result establishes the existence of end parts with certain useful
characteristics.

PROPOSITION 28. Let H = (U,F ) be the center component of a graph cho-
sen according to Poiα,C(n). Let D be the diameter of H . W.e.p. for every vertex
s ∈ BO(R) \ BO(�max) of H , there is a path in H of length at most D + 1 with
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endvertices s and s′ ∈ P�max all of whose internal vertices, except for at most one,
lie outside BO(�max) and determine together with s′ an angle at the origin which
is at most φmax := (1 + 1

eα )υ
n
eα(R−�max) logn.

PROOF. Let u0 and u1 be as described in the beginning of this section, that is,
u0, u1 ∈ P�max+1 such that u1 follows u0 in P�max+1 and s is between u0 and u1.
Consider a shortest path in H between s and an element of {u0, u1}, say q̃ . Clearly,
q̃ exists because H is connected. The length of q̃ is at most D. Suppose that some
internal vertex of q̃ belongs to BO(�max). Say w is the first such vertex one en-
counters when moving along q̃ beginning at s. Assume first that w is between u0
and u1. By Lemma 27, we know that u0u1 is an edge of H , so by Lemma 26
part (i), wub is an edge of G (and thus of H ) for any b ∈ {0,1}. Assume then that
w is not between u0 and u1 (in particular w /∈ {u0, u1}). Let w̃ be the vertex right
before w when moving along q̃ from s to w. Note that by the choice of w, we have
that w̃ /∈ BO(�max). Moreover, we may assume that w̃ and all other vertices before
w̃ when moving along q̃ beginning at s are between u0 and u1, as otherwise, in
the path q̃ , instead of moving to the first vertex not between u0 and u1, one could
by Lemma 26 part (i) directly move to ub for some b ∈ {0,1}, contradicting the
fact that q̃ is a shortest path. Let b ∈ {0,1} be such that ub is between w and w̃.
By Lemma 26 part (ii), the edge wub belongs to G, hence also to H . In summary,
all but at most one of q̃’s internal vertices lie outside BO(�max) and in between
u0 and u1. By Lemma 27, it follows that all but one of the vertices of q̃ deter-
mine an angle at the origin with ub which is at most υ

eαn
eα(R−�max) logn. Again

by Lemma 27, if we concatenate q̃ with the edge ubv where v ∈ P�max is as in the
statement of Lemma 27, we obtain a path qs,v with the desired properties. �

For future reference, we next derive some useful volume estimates, one of
which involves a natural extension of our neighborhood definition. Specifically, for
w ∈ U consider the set of neighbors W that belong to P�, that is, W = NP�

(w).
Denote by NP�

(W) the set of neighbors of vertices in W that belong to P�, that is,
NP�

(W) := ⋃
w∈W NP�

(w).

LEMMA 29. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n). The following hold w.e.p.:

(i) If w ∈ P�max , then
∑

t∈U\BO(�max):t ′=w d(t) = O(υeα(R−�max) logn).
(ii) If w ∈ Pg for some �mid ≤ g ≤ �max, then∑

t∈U\BO(�max):t ′∈NP�max
(W)

d(t)

=
⎧⎨⎩�

(√
ne

1
2 (R−�max)

)
if W = {w} and g = �mid,

�
(√

ne
1
2 (R−g)) if W = NP�mid

(w).
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PROOF. For the first part, assume t ∈ U \ BO(�max) is such that t ′ = w. By
Proposition 28 (for φmax as defined there), w.e.p. the angle at the origin determined
by t and w is at most φ := φmax. Thus, w.e.p. t must belong to the φ-sector centered
at w, henceforth denoted by �, and hence to the truncated sector � \ BO(�max).
By Lemma 15, we conclude that, w.e.p.,∑

t∈U\BO(�max):t ′=w

d(t) ≤ ∑
t∈U∩�\BO(�max)

d(t) = �(φn) = O
(
υeα(R−�max) logn

)
.

For the second part, let φW = inf{φ : there is a φ-sector � ⊇ W }. We proceed
as in the first part. Consider t ∈ U \BO(�max) such that t ′ is a neighbor of a vertex
in W . Note that the angle between a vertex in W and one of its neighbors in P�max

is O(θR(�mid, �max)). As in the first part, the angle at the origin determined by
t ∈ U \ BO(�max) and t ′ is at most φmax. Hence, the angle at the origin determined
by t and w is φ := �(φmax + φW + θR(�mid, �max)). If W = {w}, then φW = 0,
and hence φ = �(θR(�mid, �max)), and the first result of the second part follows as
before. Similarly, if W = NP�mid

(w), then φW = �(θR(�mid, g)), and hence in this
case, φ = �(θR(�mid, g)). The argument is once again as in the first part. �

The main result of this section is the following.

PROPOSITION 30. Let H = (U,F ) be the center component of G = (V ,E)

chosen according to Poiα,C(n). For all q ∈ Q′′
s,t , let

f ′′(q) := d(s)d(t)

vol(U)
· 1

|Q′′
s,t |

.

Then, w.e.p. Q′′ ⊆ Q(H), f ′′ is a well-defined Q′′-flow and ρ(f ′′) = O(Dn2α−1).

PROOF. Since |Q′′
s,t | = |Q′

s′,t ′ |, when at most one of s and t belongs to
BO(�max), Proposition 23 and Proposition 24, imply that |Q′′

s,t | �= 0. Thus, f ′′
is well defined. Moreover, by definition,

∑
q∈Q′′

s,t
f ′(q) = d(s)d(t)/vol(U), so f ′′

is a flow.
We next bound ρ(f ′′), that is, the elongated flow f ′′(e) for each oriented edge

e traversed by some path in Q′′. To facilitate the argument, we classify oriented
edges e of H used by paths in Q′′ and bound their elongated flows separately.
The edges traversed by middle parts of paths in Q′′ are grouped as in the proof
of Proposition 25, that is, into spread out, belt and belt incident edges [so called
middle edges, that is, edges with both endvertices in BO(�max) \ BO(�mid), are
ignored because they are not traversed by paths in Q′′]. The edges traversed by
end parts of paths in Q′′ will be referred to as remote edges. These edges have at
least one endvertex in BO(R) \ BO(�max).

For bounding elongated flows, we use a trivial bound on the length of paths
in Q′′. Specifically, we note that by construction end parts of paths in Q′′ have
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length at most D + 1 where D is the diameter of the center component H . Since
every path in Q′ has length 3, it follows that, every path in Q′′ has length at most
D′ := 2D + 5.

Let e be an edge of H . Since Q′′
s,t = Q′′

t,s for every distinct s, t ∈ U , the elon-
gated flow f ′′ is the same for both orientations of e. Thus, in our ensuing discus-
sion we fix arbitrarily one of the two possible orientations of e.

Spread out edges [one endvertex of e in BO(�mid) and the other one in
BO(�max) \ BO(�mid)]: fix the orientation of e so that e− ∈ BO(�mid) and e+ /∈
BO(�mid). The only paths q ∈ Q′′ that could traverse e are those whose middle
part traverses e. This can happen only when the middle part of q is of Type III
and the first vertex of q is e− (in particular, the initial end part of q is the length 0
path {e−}). Assume now that s and t are start- and endvertices of q . Observe that
t /∈ BO(�max) since otherwise s, t ∈ BO(�max) contradicting the fact that q ∈ Q′′
(therefore, since t ′ ∈ P�max , the middle part of q indeed cannot be of Type I, as
asserted earlier).

Moreover, it must be that (i) s = e− ∈ Pk for some k ≤ �mid, (ii) the middle
part of q must be a length 3 path with e− and t ′ as endvertices, and (iii) one
internal vertex of the middle part of q is e+ and the other internal vertex belongs
to NP�mid

(e+) ∩ NP�mid
(t ′) (in particular, belongs to P�mid ). Hence, there are at

most |NP�mid
(e+) ∩ NP�mid

(t ′)| ≤ |NP�mid
(t ′)| feasible middle parts of q . Hence,

f ′′(e) ≤ D′d(e−)

vol(U)

∑
t∈U\BO(�max)

∑
q∈Q′′

e−,t
:q�e

d(t)

|Q′′
e−,t

|

≤ D′d(e−)

vol(U)

∑
t∈U\BO(�max):∃q∈Q′′

e−,t
,q�e

d(t)

|Q′′
e−,t

|
∣∣NP�mid

(
t ′

)∣∣.
The way we built Q′′, Proposition 23 and Proposition 24 part (iii), imply that

|Q′′
e−,t

| = |Q′
e−,t ′ | = |E(Pk̃,NP�mid

(t ′))| = �(|NP�mid
(t ′)|e−(α− 1

2 )(R−k̃)√n). Now,
observe that if q ∈ Q′′

e−,t
traverses e, then t ′ is a neighbor of some vertex in W :=

NP�mid
(e+). It follows that, w.e.p.,

f ′′(e) = �

(
D′d(e−)

vol(U)
· 1√

n
e(α− 1

2 )(R−k̃)
∑

t∈U\BO(�max):t ′∈NP�max
(W)

d(t)

)
.

Also, by Proposition 13, w.e.p. d(e−) = �(e
1
2 (R−k)), so applying Lemma 29 we

deduce that w.e.p. f ′′(e) = O( D′
vol(U)

ne− k
2 eα(R−k̃)). Furthermore, by definition of

�max and since α > 1
2 , we have α(R − k̃) − k

2 ≤ max{(α − 1
2)k,α(R − �max)} =

α(R − �max). Since by Lemma 15, w.e.p. vol(U) = �(n), recalling that α < 1
and the definition of �max, we conclude that w.e.p. f ′′(e) = O(D′eα(R−�max)) =
O(D′nα(2α−1)eαν′

) = o(D′n2α−1) = o(Dn2α−1).
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Belt edges (both endvertices of e in P�mid ): the only paths q ∈ Q′′ that could
traverse e are those whose middle part have e as a middle edge. This can happen
only if the middle part of q is a Type II path. Assume q ∈ Q′′

s,t traverses e. Then s′
must be a neighbor of e− ∈ P�mid [in particular, s /∈ BO(�mid)]. Similarly, it must
be that t ′ is a neighbor of e+ ∈ P�mid [in particular, t /∈ BO(�mid)]. By definition
of Q′′ and Proposition 23, we have |Q′′

s,t | = |Q′
s′,t ′ | = |NP�mid

(s′)| · |NP�mid
(t ′)|.

Applying Proposition 24 part (i) and recalling the definition of �mid, we get that
w.e.p. |Q′′

s,t | = �(n−(2α−1)d(s′)d(t ′)). Hence, w.e.p.,

f ′′(e) ≤ D′

vol(U)

∑
s,t∈U\BO(�mid)

∑
q∈Q′′:q�e

d(s)d(t)

|Q′′
s,t |

≤ �

(
D′

vol(U)
n2α−1

) ∑
s∈U\BO(�mid):s′e−∈F

d(s)

d(s′)
∑

t∈U\BO(�mid):e+t ′∈F

d(t)

d(t ′)
.

Note that s′ = s if s ∈ U ∩ BO(�max) and s′ ∈ P�max otherwise. Assume s ∈
U \ BO(�max) is such that s′ is a neighbor of e− in H . By Proposition 13, w.e.p.

d(e−) = �(
√

n) and d(s′) = �(e
1
2 (R−�max)). By definition of �max and considering

the cases s = s′ and s �= s′ separately (applying Lemma 29 in the latter), it follows
that, w.e.p.,∑

s∈U\BO(�mid):s′e−∈F

d(s)

d(s′)
≤ d

(
e−) + �

(
e− 1

2 (R−�max)
) ∑
s∈U\BO(�max):s′e−∈F

d(s)

= O(
√

n).

The same argument shows that w.e.p.
∑

t∈U\BO(�mid):e+t ′∈F
d(t)
d(t ′) = O(

√
n). Ap-

plying Lemma 15, w.e.p. vol(U) = �(n), we conclude that w.e.p. f ′′(e) =
O(D′n2α−1) = O(Dn2α−1).

Belt incident edges [one endvertex of e in P�mid and the other one in BO(�max) \
BO(�mid)]: let us fix the orientation of e so that e+ ∈ P�mid . Let k > �mid be such
that e− ∈ Pk .

Let q ∈ Q′′ be a path that traverses e. Since e has both its endvertices in
BO(�max), e must belong to the middle part of q . By definition of Q′, one of
the following must hold: (i) e is the first edge of a Type II path, or (ii) e is the first
edge of a Type III path, or (iii) e is the middle edge of a Type III path. Assume
q ∈ Q′′

s,t where s, t ∈ U . We make the following observations concerning each one
of the three situations just identified:

(i) It must hold that s ′ = e− and t /∈ BO(�mid) (otherwise, the middle part of
q cannot be of Type II). By Proposition 23, we have |Q′′

s,t | = |Q′
e−,t ′ | =

|NP�mid
(e−)| · |NP�mid

(t ′)|. Note also, that the paths in Q′′
s,t that traverse

e are in one to one correspondence with E({e+},NP�mid
(t ′)), so there are
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|NP�mid
(t ′)| of them (since P�mid induces a clique in H ). By Proposition 24

part (i), we infer that, w.e.p., the fraction of paths in Q′′
s,t that traverse e is

�(nα− 1
2 e− 1

2 (R−k)).
(ii) It must hold that s′ = e− and t ∈ P� for some � ≤ �mid. In fact, s /∈ BO(�max)

so e− must belong to P�max [since otherwise both s, t ∈ BO(�max) contra-
dicting the fact that q ∈ Q′′]. By Proposition 23, we now have |Q′′

s,t | =
|Q′

e−,t
| = |E(NP�mid

(e−),P�̃)|. So, by Proposition 24 part (i) and (iii), w.e.p.

|Q′′
s,t | = �(n1−αe−(α− 1

2 )(R−�̃)e
1
2 (R−�max)). Note also that the paths in Q′′

s,t

that traverse e are in one to one correspondence with NP�̃
(e+), so by Propo-

sition 24 part (i), w.e.p., there are �(
√

ne−(α− 1
2 )(R−�̃)) of them.

(iii) Now, it must hold that s ∈ P� for some � ≤ �mid such that �̃ = k and
t ∈ U \ BO(�max) [since otherwise both s, t ∈ BO(�max) contradicting the
fact that q ∈ Q′′]. By Proposition 23, we have that w.e.p. |Q′′

s,t | = |Q′
s,t ′ | =

|E(Pk,NP�mid
(t ′))|. Hence, by Proposition 24 part (i) and part (iii), w.e.p.

|Q′′
s,t | = �(n1−αe−(α− 1

2 )(R−k)d(t ′)). Moreover, if t ′e+ ∈ F , then there is ex-
actly one path in Q′′

s,t that traverses e.

The contribution of case (i) to f ′′(e) is, w.e.p.,

S1 := D′

vol(U)

∑
s∈U\BO(�mid),s

′=e−
d(s)

∑
t∈U\BO(�mid)

d(t)

|Q′′
s,t |

∣∣NP�mid

(
t ′

)∣∣
= D′

vol(U)
O

(
nα− 1

2 e− 1
2 (R−k)

∑
s∈U\BO(�mid):s′=e−

d(s)
∑

t∈U\BO(�mid)

d(t)

)
.

Clearly,
∑

t∈U\BO(�mid)
d(t) ≤ vol(U). If e− /∈ P�max , by Proposition 13, w.e.p. we

have that
∑

s∈U\BO(�mid):s′=e− d(s) = d(e−) = �(e
1
2 (R−k)). Hence, in this case,

S1 = O(D′nα− 1
2 ) = o(n2α−1), since α > 1

2 . Otherwise, that is, if e− ∈ P�max

(thence, k = �max), by Proposition 13, Lemma 29 and given that α > 1
2 , w.e.p.∑

s∈U\BO(�mid):s′=e− d(s) = d(e−)+∑
s∈U\BO(�max):s′=e− d(s) = O(υeα(R−�max) ×

logn). Hence, in this case, using that 1
2 < α < 1, w.e.p.,

S1 = O
(
D′nα− 1

2 e(α− 1
2 )(R−�max)υ logn

)
= O

(
D′nα(2α−1)e(α− 1

2 )ν′
υ logn

)
= o

(
D′n2α−1)

= o
(
Dn2α−1)

.
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The contribution of case (ii) to f ′′(e) is, w.e.p.,

S2 := D′

vol(U)
O

(
nα− 1

2 e− 1
2 (R−�max)

∑
�≤�mid

vol(P�)
∑

s∈U\BO(�max):s′=e−
d(s)

)
.

Clearly,
∑

�≤�mid
vol(P�) ≤ vol(U). By definition of �max and Lemma 29, we get

that, w.e.p.,

S2 = O
(
D′nα− 1

2 υe(α− 1
2 )(R−�max) logn

) = O
(
D′υnα(2α−1)e(α− 1

2 )ν′
logn

)
.

Since 1
2 < α < 1, we conclude that w.e.p. S2 = o(D′n2α−1) = o(Dn2α−1).

The contribution of case (iii) to f ′′(e) is, w.e.p.,

S3 := D′

vol(U)
O

(
n−(1−α)e(α− 1

2 )(R−k)
∑

�:�̃=k

vol(P�)
∑

t∈U\BO(�max):e+t ′∈F

d(t)

d(t ′)

)
.

By Proposition 13, w.e.p. d(t ′) = �(e
1
2 (R−�max)). So, by Lemma 29, it follows that,

w.e.p.,

∑
t∈U\BO(�max):e+t ′∈F

d(t)

d(t ′)
= O(

√
n).

Clearly,
∑

�:�̃=k vol(P�) ≤ vol(U). Since k > �mid, we conclude that, w.e.p. S3 =
O(Dn2α−1).

Remote edges [at least one endvertex of e belongs to BO(R) \ BO(�max)]: As-
sume q ∈ Q′′ traverses e. Since no path in Q′ uses a vertex not in BO(�max), edge
e must be traversed by one of the end parts of q . Note that there is an endvertex
in P�max , say v, which is common to all end parts of paths in Q′′ that traverse e.
Since for s ∈ U \ BO(�max) and t ∈ U , the fraction of paths in Q′′

s,t that traverse e

is trivially at most 1, we infer that, w.e.p.,

f ′′(e) ≤ 2D′

vol(U)

∑
s∈U\BO(�max)

∑
t∈U

∑
q∈Q′′

s,t :q�e

d(s)d(t)

|Q′′
s,t |

≤ 2D′ ∑
s∈U\BO(�max):s′=v

d(s).

(The factor 2 above follows from the fact that v belongs to either the start- or
end-part of a Q′′-path that traverses e.) By Lemma 29, the definition of �max

and since 1
2 < α < 1, it follows that w.e.p. f ′′(e) = O(D′υeαν′

nα(2α−1) logn) =
o(D′n2α−1) = o(Dn2α−1). �
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4.3. A Q-flow of moderate elongated length. Below we derive the main the-
orem and a corollary that follows easily from the results of the previous sections
and some results found in the literature.

PROOF OF THEOREM 1. The stated lower bound is a direct consequence of
Theorem 21, Corollary 22, Proposition 25 and Proposition 30. �

By Theorem 1 and Theorem 18, we immediately obtain the following.

COROLLARY 31. If J is the giant component of G chosen according to
Poiα,C(n), then w.e.p.,

λ1(J ) = �
(
n−(2α−1)/(logn)

1
1−α

)
.

5. Lower bound on the conductance. In this section, we will establish that
the lower bound on the conductance obtained in Section 4 can only be attained by
relatively large sets. In other words, our goal is to show Theorem 3. In order to de-
rive the theorem, we first prove a few auxiliary lemmas. We begin by establishing
that if for a fixed set S ⊆ U there are two bands, both being relatively far from the
boundary of BO(R), one of them having a large fraction of S, and the other having
a large fraction of S, then |∂S| must be fairly large.

Henceforth, for b ∈ {0,1} and S ⊆ U , denote S and S by S0 and S1, respectively.
We fix the following parameter:

�bdr :=
⌊
R − 2 logR

1 − α

⌋
.

Recall that Remark 20 guarantees that all vertices in BO(�bdr) are w.e.p., part of
the center component.

LEMMA 32. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n).

Let ω0 be a function tending to infinity so that ω0 = eo(log logn) but also ω0 =
ω(υ),2 and define ε := 1

ω0
(logn)−

1+α
1−α . Let � be a sector of BO(R) of angle φ ≥

υ
εω0

= υ
n
(logn)

1+α
1−α , and let �φ := �1

2R + log 1
φ

−2. Let �φ < �∗ ≤ �bdr. If for some
b ∈ {0,1},

|Sb ∩ � ∩P�∗ |
E|� ∩P�∗ | − |Sb ∩ � ∩P�φ |

E|� ∩P�φ |
≥ ε,

then w.e.p. |E(Sb ∩�,S1−b ∩�)| = �((φn)2(1−α) υ
ω0

(logn)−
2

1−α ). The same con-
clusion holds if in the hypothesis the roles of �φ and �∗ are interchanged.

2The condition of ω0 = eo(log logn) while at the same time ω0 = ω(υ) clearly implies a corre-
sponding upper bound on υ . Nevertheless, all previous results still hold.
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PROOF. Define ε̃ := ε
R

. First, for some � with �φ < � ≤ �bdr, we bound from
below |E(Sb ∩ �,S1−b ∩ �)| under the assumption

(13)
|Sb ∩ � ∩P�|
E|� ∩P�| − |Sb ∩ � ∩P�−1|

E|� ∩P�−1| ≥ ε̃.

Consider an angle equipartition �1, . . . ,�N of � where N := � φ
θR(�,�)

υ−1 logn.
Since ∣∣E(

Sb ∩ �,S1−b ∩ �
)∣∣

≥ ∣∣E(
Sb ∩ � ∩ (P�−1 ∪P�), S

1−b ∩ � ∩ (P�−1 ∪P�)
)∣∣(14)

≥ ∑
i∈[N]

∣∣E(
Sb ∩ �i ∩ (P�−1 ∪P�), S

1−b ∩ �i ∩ (P�−1 ∪P�)
)∣∣,

it suffices to bound from below the summation in the latter expression.
For i ∈ [N ], let mi := |�i ∩ P�−1|. Also, let m be the expected number of

elements of P�−1 that belong to a given 2π
N

-sector of �. Define m′
i and m′ similarly

but replacing � − 1 by �. By Remark 6, Corollary 8 and Lemma 12 and our upper
bound on �, since

Emi = �

(
φn

N
e−α(R−�+1)

)
= �

(
υ

logn
e(1−α)(R−�)

)
= �(υ logn) = ω(logn)

for every i, w.e.p., mi = (1+o(1))m and m′
i = (1+o(1))m′. Also, let δi denote the

fraction of vertices in Sb that belong to �i ∩P�−1, that is, δi = 1
mi

|Sb ∩�i ∩P�−1|,
and define δ′

i similarly again replacing �−1 by �. Since each �i is a sector of angle
2π
N

≤ θR(�, �), if a pair of vertices belongs to �i ∩ (P�−1 ∪P�), then they must be
neighbors in G (and thus also in H ). Hence, w.e.p., the ith term of the summation
in (14) is (1 + o(1))(δim + δ′

im
′)((1 − δi)m + (1 − δ′

i )m
′).

Moreover, observe that the constraint in (13) is equivalent to∑
i∈[N] δ′

im
′
i

E|� ∩P�| −
∑

i∈[N] δimi

E|� ∩P�−1| ≥ ε̃,

and w.e.p. it is stricter than the constraint 1
N

∑
i∈[N](δ′

i − δi) ≥ ε̃(1 + o(1)). Thus,
a lower bound as the one we seek can be derived by bounding from below the
optimum of the following problem:

min
∑

i∈[N]

(
δim + δ′

im
′)((1 − δi)m + (

1 − δ′
i

)
m′)

s.t.
1

N

∑
i∈[N]

(
δ′
i − δi

) ≥ ε̃
(
1 + o(1)

)
.

The minimum of a concave function over a bounded polyhedral domain is at-
tained at a vertex of the polytope. It is not hard to see that any vertex of the
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polytope obtained by intersecting the hypercube and a half-space has all its co-
ordinates equal to 0 or 1, except for at most one coordinate. It follows that the
minimization problem stated above attains its minimum when at most one among
δ1, . . . , δN, δ′

1, . . . , δ
′
N is distinct from 0 or 1.

Now, if ε̃N ≥ 2, there must exist at least ε̃N − 1 indices i such that for these
indices δi is set to 1 and δ′

i is equal to 0. If ε̃N < 2, there exists one index i

such that δi − δ′
i ≥ (1 + o(1))ε̃N/2. Since the function to be optimized is concave

in each δi and δ′
i , under this restriction the minimum is attained when for this

index i we have δi = (1 + o(1))ε̃N/2 and δ′
i = 0, or δi = 1 and δ′

i = 1 − (1 +
o(1))ε̃N/2. In all cases, the value of the optimization problem is �(ε̃mm′N). To
conclude, note that N = �(φnυ−1e−(R−�) logn). By Corollary 8, we have m′N =
�(φne−α(R−�)). Moreover, m = �(m′). Thus, w.e.p., |E(Sb ∩ �,S1−b ∩ �)| =
�(ε̃φne−(2α−1)(R−�) υ

logn
). The conclusion of the lemma then follows from noting

that �∗ −�φ ≤ R = O(logn), and hence there must exist two consecutive values of
� − 1 and � whose difference in terms of the fractions of Sb is at least ε̃. Recalling
that � > �φ and that our lower bound on |E(Sb ∩ �,S1−b ∩ �)| is increasing in �,
we are done for the first part. To conclude, observe that the roles of �φ and �∗ can
be interchanged in the proof above. �

We extend the definition of h(S) as follows: for a region R ⊆ BO(R) and a set
S with vol(S) = O(n1−ε) for some ε > 0, we set

hR(S) = |E(S ∩R, S)| + |E(S ∩R, S)|
vol(S ∩R)

.

Suppose now that given a fixed set S ⊆ U we could find a collection A of
regions of BO(R) such that (i) hR(S) is moderately large for all R ∈A, (ii) vol(S∩⋃

R∈AR) is a reasonably large fraction of vol(S), and (iii) no edge in ∂S is counted
more than O(1) times in

∑
R∈A(|E(S∩R, S)|+|E(S∩R, S)|). Then, since w.e.p.

vol(S) ≤ vol(S) [note that by Corollary 17, vol(U) = �(n), and by assumption
vol(S) = O(n1−ε)], and noting that for any positive numbers a, b, c, d we have
a+c
b+d

≥ min{a
b
, c

d
}, it will then follow that

h(S) = |∂S|
vol(S)

= �

(∑
R∈A vol(S ∩R)

vol(S)

)
·
∑

R∈A(|E(S ∩R, S)| + |E(S ∩R, S)|)∑
R∈A vol(S ∩R)

(15)

= �

(∑
R∈A vol(S ∩R)

vol(S)

)
· min
R∈AhR(S).

If we can do as above for an arbitrary set S such that vol(S) = O(n1−ε), then we
would be done. Below, we develop such an approach.

Next, we show that if there is a sufficient quantity of vertices of a fixed set S

in a certain sector � of BO(R), and all such vertices are relatively close to the
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boundary of BO(R) (henceforth referred to as simply the boundary), then there
must be a large [relative to vol(S)] number of edges between S ∩ � and S ∩ �.
The intuitive reason for this is the following: in most small angles inside the sector
there must exist some vertex a bit further away from the boundary belonging to
S and, therefore, within every such angle we find already one cut edge, therefore
yielding a large total number of cut edges.

LEMMA 33. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n). Let ε and φ be as in Lemma 32. If S ⊆ U and a φ-sector �

of BO(R) are such that |Sb ∩�| = �(E|�∩P�bdr |) and |Sb ∩�∩P�bdr | ≤ εE|�∩
P�bdr | for some b ∈ {0,1}, then w.e.p. |E(Sb ∩ �,S1−b)| = �(εE|� ∩P�bdr |).

PROOF. Recall that we say that v follows w in P�bdr if v,w ∈P�bdr and there is
no other vertex in P�bdr between v and w. Our first goal is to find sufficiently many
pairs v,w ∈ � ∩P�bdr such that v follows w, and moreover, v and w are in S1−b.
Note that w.e.p. (again by Corollary 8 and Lemma 12) we have �ϕv,w ≤ θR(�bdr −
1, �bdr − 1) ≤ υ

n
(logn)

2α
1−α

+1. Thus, w.e.p., by Lemma 12, the number of vertices

in P \P�bdr between v and w is υ(logn)
2α

1−α
+1 = υ(logn)

1+α
1−α = υ

εω0
. Hence, since

by hypothesis |Sb ∩ � ∩P�bdr | ≤ εE|� ∩ P�bdr |, w.e.p. there are O(εE|� ∩P�bdr |)
pairs v, w in �∩P�bdr so that v follows w, and moreover, both v,w ∈ Sb, each pair
defining a region of BO(R) corresponding to a sector with v, w on its boundary.
Thus, by our choice of ε [recall that ω0 = ω(υ)], the number of vertices that belong
to P ∩� which are between two vertices in Sb ∩�∩P�bdr is o(E|�∩P�bdr |). The
same holds also for those pairs v, w where one belongs to Sb and the other to
S1−b. However, since |Sb ∩ �| = �(E|� ∩P�bdr |), most of the vertices in Sb ∩ �

must be in regions between two vertices belonging to S1−b ∩ � ∩P�bdr .

Note also that, since by Lemma 5, θR(�bdr, �bdr) = �( 1
n
(logn)

2
1−α ), and

�ϕv,w ≤ υ
n
(logn)

1+α
1−α = o( 1

n
(logn)

2
1−α ), w.e.p. vertices v and w are neighbors

in G, and thus also in H .
Assume now that v and w belong to S1−b ∩ � ∩ P�bdr . Suppose there exists

u ∈ Sb between v and w with rv, rw < ru so that one of the following happens:
(i) u is adjacent to a vertex in S1−b (ii) u is adjacent to a vertex z ∈ Sb ∩BO(�bdr −
1) between v and w, in which case, since v and w are adjacent, by Lemma 26
part (i), the edges vz and wz must also be present, or (iii) u is adjacent to a vertex
z ∈ Sb ∩BO(�bdr −1) with θz /∈ [θw, θv] (since we assume v follows w, we assume
θv ≥ θw), in which case, by Lemma 26 part (ii), the edge wz or the edge vz also
has to be present. In all cases, for each of the aforementioned pair of vertices v, w

we obtain at least one edge going from Sb ∩� to S1−b, and since, w.e.p., there are
at least εω0

υ
E|�∩P�bdr | regions and every edge between Sb and S1−b is counted at

most twice, w.e.p. |E(Sb ∩ �,S1−b)| = εω0
υ
E|� ∩P�bdr | = �(εE|� ∩P�bdr |). �
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The next lemma shows that if for a fixed choice of S, in a certain sector there
is an important quantity of both S and S, then the sector’s conductance is large.
Intuitively, this can occur either because there exists one band having both large
fractions of S and S, or there are two bands, one having a large fraction of S, the
other having a large fraction of S, or because most of S is relatively close to the
center, and most of S is concentrated close to the boundary, in which case we can
apply Lemma 33.

LEMMA 34. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n). Let ω0, ε, φ and �φ be as in Lemma 32. Let �′ be a (2φ)-
sector of BO(R). If S ⊆ U is such that |S ∩ �′|, |S ∩ �′| = �(E|�′ ∩P�bdr |), then

for some b ∈ {0,1}, w.e.p. |E(Sb ∩ �′, S1−b)| = �((logn)−
4

1−α (φn)2(1−α)).

PROOF. Note that by Remark 6 every vertex v ∈ P�φ is adjacent to every
other vertex v′ ∈ P�φ satisfying �ϕv,v′ ≤ θR(�φ, �φ). Thus, since θR(�φ, �φ) ≥
(2 + o(1))eφ ≥ 2φ, in particular any two vertices in P�φ ∩ �′ are adjacent. By
choice of �φ and the lower bound on φ, w.e.p. |�′ ∩P�φ | = (1+o(1))E|�′ ∩P�φ |.
Thus, if for both b = 0 and b = 1 it holds that |Sb ∩�′ ∩P�φ | ≥ εE|�′ ∩P�φ |, then
w.e.p. |E(Sb ∩ �′, S1−b)| = �((εE|�′ ∩ P�φ |)2). Otherwise, for some b ∈ {0,1}
we have |Sb ∩ �′ ∩ P�φ | ≤ εE|�′ ∩ P�φ |. If there exists some �φ ≤ � ≤ �bdr

with |Sb ∩ �′ ∩ P�| ≥ 2εE|�′ ∩ P�|, by Lemma 32 (applied with �∗ = �),

we get that w.e.p. |E(Sb ∩ �′, S1−b ∩ �′)| = �((φn)2(1−α) υ
ω0

(logn)−
2

1−α ) =
�((logn)−

4
1−α (φn)2(1−α)). If not, then |S1−b ∩�′ ∩P�bdr | ≥ (1−2ε)E|�′ ∩P�bdr |.

We apply Lemma 33 [which we may since |S ∩�′| = �(E|�′ ∩P�bdr |)], we obtain
that w.e.p. |E(Sb ∩ �′, S1−b)| = �(εE|�′ ∩P�bdr |).

To conclude, observe that by our choice of �φ and Corollary 8, we have

(εE|�′ ∩ P�φ |)2 = �(ε2(φn)2(1−α)) = �( 1
ω2

0
(logn)−

2(1+α)
1−α (φn)2(1−α)) = �×

((logn)−
4

1−α (φn)2(1−α)), where the latter equality holds by our assumption on ω0.
Also, again by Corollary 8, our choice of �bdr and ε, we infer that εE|�′ ∩P�bdr | =
�( 1

ω0
(φn)(logn)−

1+3α
1−α ) = �((logn)−

4
1−α (φn)2(1−α)), where the latter equality

follows from the fact that 1
2 < α < 1 and by our assumption on ω0. �

A very similar lemma is the following.

LEMMA 35. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n). Let ω0, φ, �φ , ε be as in Lemma 32 and let � be a φ-sector
of BO . There is a sufficiently large C1 = C1(α) such that if S ⊆ U satisfies

vol(S ∩ �) ≥ C1E|� ∩P�bdr |(logn)
1

1−α , and |S ∩ �| = �
(
E|� ∩P�bdr |

)
,

then for some b ∈ {0,1}, w.e.p. |E(Sb ∩ �,S1−b)| = �((logn)−
4

1−α (φn)2(1−α)).
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PROOF. As in the proof of Lemma 34, if for both b = 0 and b = 1 it holds
that |Sb ∩ � ∩P�φ | = εE|� ∩P�φ |, then w.e.p. |E(Sb ∩ �,S1−b)| = �((εE|� ∩
P�φ |)2) = �((logn)−

4
1−α (φn)2(1−α)).

Otherwise, suppose that for some b ∈ {0,1} we have |Sb ∩ � ∩P�φ | ≤ εE|� ∩
P�φ |. If there exists some �φ ≤ � ≤ �bdr such that |Sb ∩ � ∩ P�| ≥ 2εE|� ∩ P�|,
by Lemma 32, w.e.p. |E(Sb ∩ �,S1−b)| = �((logn)−

4
1−α (φn)2(1−α)). If not and

b = 1, then Lemma 33 can be applied, and hence, w.e.p. |E(Sb ∩ �,S1−b)| =
�(εE|� ∩ P�bdr |). So, assume |S ∩ � ∩ P�| ≤ εE|� ∩ P�| for all �φ ≤ � ≤ �bdr

and |S ∩ � ∩ P�bdr | ≤ 2εE|� ∩ P�bdr |. If there exists a v ∈ S ∩ � ∩ BO(2 log 1
φ

+
R − �bdr), then by Lemma 5, the vertex v is adjacent to every vertex in P ∩ � ∩
BO(�bdr). By just counting edges between v and S ∩ � ∩ BO(�bdr), we obtain for
b = 0 w.e.p. |E(Sb ∩ �,S1−b)| ≥ |S ∩ � ∩ BO(�bdr)| ≥ (1 − 2ε)E|� ∩ P�bdr |.
If no such vertex v exists, then by Lemma 7, Lemma 12 and Proposition 13,

w.e.p. the volume of S ∩ � ∩ BO(�bdr) is at most C1
2 φn(logn)−

2α−1
1−α ≤ C1

2 E|� ∩
P�bdr |(logn)

1
1−α for C1 large enough: indeed, by Lemma 12 and Proposition 13,

the volume is, w.e.p., at most

�bdr∑
�=2 log 1

φ
+R−�bdr

max
{
υ logn,O

(
φne−α(R−�))}�(

e
1
2 (R−�)).

Using max{x, y} ≤ x + y, α < 1 and the formula for a geometric series, we ob-

tain a O(φn(logn)
1−2α
1−α +υφn(logn)−

α
1−α ) = O(φn(logn)

1−2α
1−α ) bound on the vol-

ume. Since every other vertex, once more by Proposition 13, w.e.p. has degree

O((logn)
1

1−α ), by our assumption on vol(S ∩ �), w.e.p. |S ∩ �| = �(vol(S ∩
�)(logn)−

1
1−α ) = �(E|� ∩ P�bdr |). Applying Lemma 33 with b = 0, we get that

w.e.p. |E(Sb ∩ �,S1−b)| = �(εE|� ∩P�bdr |). The previous discussion and simi-
lar observations as those in the last paragraph of the proof of Lemma 34 yield the
claim. �

We use the previous lemma in roughly the following way: for a fixed S ⊆ U ,
we start by applying the lemma with � a sector with a relatively large angle so
that inside it we cannot have only S [the existence of such an angle follows from
the fact that we are interested solely in the cases where vol(S) is sublinear in n],
and then, in case we have not found dense spots of S, we half the previous sector,
and continue recursively. Thus, we either detect subsectors of S, in which case the
previous lemmas imply a large conductance, or conclude that there is no relatively
large angle containing only S.

LEMMA 36. Let H = (U,F ) be the center component of G = (V ,E) chosen
according to Poiα,C(n). Let � be a sector of BO(R) of angle φ with φ ≥ φ0 :=
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υ
n
(logn)

1+α
1−α . Let j ≥ 0 be the largest integer such that 2−jφ ≥ φ0 and, for 0 ≤

i ≤ j ; let �
(i)
1 , . . . ,�

(i)

2i be an angular equipartition of �. Then there is a constant

0 < C2 < 1 such that w.e.p. |U ∩ �
(j)
k | ≥ C2

φn

2j (logn)−
2α

1−α for every 1 ≤ k ≤ 2j .
Moreover, let C1 > 0 be as in Lemma 35 and consider S ⊆ U such that |S ∩ �| ≤
C2
3 E|� ∩ P�bdr | and vol(S ∩ �) ≤ C1φn. Then, w.e.p., for each �

(j)
k one of the

following holds:

(i) there is 0 ≤ i ≤ j and a k′ for which h
�

(i)

k′
(S) = �((logn)−

4
1−α ( 2i

φn
)2α−1) and

�
(j)
k ⊆ �

(i)
k′ or

(ii) |S ∩ �
(j)
k | ≤ C2

3 E|�(j)
k ∩P�bdr |.

PROOF. The existence of C2 is a direct consequence of Lemma 19 and the
fact that, by Corollary 8 and Lemma 12, we have E|U ∩�

(j)
k | ≥ E|�(j)

k ∩P�bdr | =
�(

φn

2j (logn)−
2α

1−α ).
We show, by induction on i, 0 ≤ i ≤ j , that at recursion depth i we have

for all 1 ≤ k ≤ 2i either |S ∩ �
(i)
k | ≤ C2

3 E|�(i)
k ∩ P�bdr | and vol(S ∩ �

(i)
k ) ≤

2C1
φn

2i , or �
(i)
k ⊆ �

(i′)
k′ and h

�
(i′)
k′

(S) = �((logn)−
4

1−α ( 2i′
φn

)2α−1) for some 0 ≤
i ′ < i and 1 ≤ k′ ≤ 2i′ . By hypothesis and since �

(0)
1 = �, the claim holds for

i = 0. Assume it is true for i − 1. Let k′, k be such that �
(i)
k ⊆ �

(i−1)
k′ with

|S ∩�
(i−1)
k′ | ≤ C2

3 E|�(i−1)
k′ ∩P�bdr | and vol(S ∩�

(i−1)
k′ ) ≤ 2C1

φn

2i−1 . If |S ∩�
(i)
k | ≥

C2
3 E|�(i)

k ∩ P�bdr |, then also |S ∩ �
(i−1)
k | = �(|�(i−1)

k ∩ P�bdr |), and hence by

Lemma 34 applied with �′ = �
(i−1)
k′ we get that for some b ∈ {0,1} w.e.p.

|E(Sb ∩ �
(i−1)
k , S1−b)| = �((logn)−

4
1−α (

φn

2i−1 )2(1−α)). Since vol(S ∩ �
(i−1)
k′ ) ≤

2C1
φn

2i−1 , it follows that, w.e.p. h
�

(i−1)
k

(S) = �((logn)−
4

1−α (2i−1

φn
)2α−1). Other-

wise, if it happens that |S ∩ �
(i)
k | ≤ C2

3 |�(i)
k ∩ P�bdr | and also vol(S ∩ �

(i)
k ) >

2C1
φn

2i , then first note that still vol(S ∩ �
(i)
k ) ≤ vol(S ∩ �

(i−1)
k′ ) ≤ 4C1

φn

2i must

hold. In this case, applying Lemma 35 to �
(i)
k we get that for some b ∈ {0,1}

w.e.p. |E(Sb ∩ �
(i)
k , S1−b)| = �((logn)−

4
1−α (

φn

2i )2(1−α)) and thus h
�

(i)
k

(S) =
�((logn)−

4
1−α ( 2i

φn
)2α−1). This completes the induction since the only remaining

possibility is that |S ∩ �
(i)
k | ≤ C2

3 E|�(i)
k ∩P�bdr | and vol(S ∩ �

(i)
k ) ≤ 2C1

φn

2i . �

Now we are ready to prove Theorem 3. We show that every set S ⊆ U with
vol(S) = O(nε) has the desired conductance. Roughly speaking, the argument
goes as follows. We start with sufficiently large angles that cannot contain only S.
Either we find the desired number of cut edges for subsectors of these sectors via
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Lemma 36 part (i), or for the remaining vertices we will find in a not too small
angle around them sufficiently many vertices in S and in S, and hence we can also
find relatively many edges between S and S.

PROOF OF THEOREM 3. We will show that w.e.p. for all sets S with vol(S) =
O(nε) for some 0 < ε < 1 we have h(S) = �(n−(2α−1)ε+o(1)). We will consider
an arbitrary, but fixed set S and only at the very end of the proof take into account
all possible sets S.

Let �0 = (1 − ξ)R for some ξ = ξ(n) tending to 0 sufficiently slowly with n.
Consider C1 and C2 as in Lemma 35 and Lemma 36, respectively (recall that C1
should be thought of as a sufficiently large and C2 as a small constant). Fix a
set S such that vol(S) = O(nε). Hence, there exists a sufficiently large C′ > 0

so that we can partition BO(R) into φ-sectors, φ := C′n−(1−ε)(logn)
2α

1−α so that
w.e.p. in each such sector � we have |S ∩ �| ≤ 1

3 |U ∩ �|, |S ∩ �| ≤ C2
3 E|� ∩

P�bdr | and vol(S ∩ �) ≤ C1φn. To each of these sectors, we apply Lemma 36
with φ0 := θR(�0, �0). Thus, w.e.p., every sector � of angle 2−jφ, φ0 ≤ 2−jφ <

2φ0 arising from the application of the lemma is accounted for, that is, h�(S) =
�((logn)−

4
1−α (φn)1−2α) = �(n−(2α−1)ε+o(1)), or |S ∩ �| ≤ C2

3 |� ∩P�bdr |. Let O
be the collection of all sectors � associated to S which are accounted for. Similarly,
we say that a truncated sector ϒv centered at v ∈ S is accounted for, if hϒv(S) =
�(n−(2α−1)ε+o(1)).

Next, we iteratively build two additional collections of regions, denoted by A
and C: A will be the set of sectors (truncated or not) that are accounted for, and C
will be the set of regions that are “compensated,” that is, these regions will not be
accounted for, but we will show that their total volume is only slightly larger than
the volume of the collection of regions that is accounted for. Initially, A = O, that
is, R ∈ A if and only if R is a �

(j)
k for which the conditions of part (i) hold and

C = ∅. The iterative process that updates A and C proceeds as described next.

SECTOR-ACCOUNTING.

(i) Stop if S \ ⋃
R∈A∪C R = ∅. Otherwise, let v be the vertex in S \ ⋃

R∈A∪C R
closest to the origin and assume � is such that v ∈ P�.

(ii) If � ≤ �0, then let ϒv be the sector truncated and centered at v of angle
2θR(�,R).

(a) If μ(ϒv ∩ ⋃
R∈AR) < 1

2μ(ϒv), then add ϒv to A and go to Step (i).
(b) If μ(ϒv ∩ ⋃

R∈AR) ≥ 1
2μ(ϒv) and vol(S ∩ ϒv ∩ ⋃

R∈AR) =
o((logn)−

2α
1−α vol(S ∩ ϒv)), then add ϒv to A and go to Step (i).

(c) If μ(ϒv ∩ ⋃
R∈AR) ≥ 1

2μ(ϒv) and vol(S ∩ ϒv ∩ ⋃
R∈AR) =

�((logn)−
2α

1−α vol(S ∩ ϒv)), then add ϒv to C and go to Step (i).

(iii) If � > �0, then let ϒv be the sector truncated and centered at v of angle
2θR(�0, �0).
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(a) If ϒv ∩ ⋃
R∈AR = ∅, then add ϒv to A and go to Step (i).

(b) If ϒv ∩ ⋃
R∈AR �= ∅, then add ϒv to C and go to Step (i).

We claim that if a region R ends up in A, then it is accounted for. The claim
holds at the start of the process by definition of O.

Now, if v is such that ϒv was added to A in Step (ii)(a), then at the
moment ϒv was added, at least a constant fraction of the sectors of angle
2−jφ intersecting ϒv did not belong to O. For each such sector �

(j)
k /∈ O, by

Lemma 36 part (ii), we have |S ∩ �
(j)
k | ≤ C2

3 E|�(j)
k ∩ P�bdr | ≤ 1

3E|� ∩ P�bdr |.
Note that v is adjacent to every vertex in P�bdr ∩ ϒv [since θR(�, �bdr) ≥ θR(�,R)]
and at least a constant fraction of these belong to S. Hence, w.e.p. we ob-

tain |E({v}, S)| = �(nθR(�,R)(logn)−
2α

1−α ). Also, since by Lemma 15, w.e.p.

vol(S ∩ ϒv) = O(nθR(�,R)), we obtain w.e.p. hϒv(S) ≥ (logn)−
2α

1−α , and ϒv is
accounted for.

Similarly, consider a vertex v such that ϒv was added to A in Step (ii)(b). Let Av

be the collection of regions belonging to A just before ϒv was added to it. Since

by Lemma 19, w.e.p. |U ∩ ϒv ∩ ⋃
R∈Av

R| = �((logn)−
2α

1−α nθR(�,R)) and by

assumption together with Lemma 15, vol(S ∩ ϒv ∩ ⋃
R∈Av

R) = o((logn)−
2α

1−α ×
vol(S ∩ϒv)) = o((logn)−

2α
1−α nθR(�,R)), at least a constant fraction of the vertices

in U ∩ ϒv ∩ ⋃
R∈AR must belong to S. Since these are all adjacent to v, by

counting the edges from v to these, by analogous calculations as in the previous
case, we obtain w.e.p. hϒv(S) = ω(1), and ϒv is accounted for.

Next, consider a vertex v such that ϒv was added to A in Step (iii)(a). Again,
let Av be the collection of regions belonging to A just before ϒv was added to

it. Consider all vertices in P�bdr ∩ ϒv . Recall that θR(�bdr, �bdr) = �( 1
n
(logn)

2
1−α ).

The expected number of vertices in P�bdr in a sector of angle φ1 := υ 1
n
(logn)

2α
1−α

+1

is υ logn, and by Theorem 10 this holds w.e.p. Hence, w.e.p. the maximal angu-
lar distance between any two vertices v,w ∈ P�bdr such that v follows w in P�bdr

is at most φ1. Since φ1 < θR(�bdr, �bdr), w.e.p. any pair of such vertices is adja-
cent. Moreover, by Remark 20, w.e.p., every vertex in P�bdr belongs to U . Thus,
P�bdr ∩ ϒv induces a connected component in H . Also, since the expected number
of vertices in P�bdr ∩ ϒv is �(θR(�0, �0)E|P�bdr |) = ω(logn), this holds w.e.p.
By assumption of this case, ϒv ∩ ⋃

R∈Av
R = ∅, and by Lemma 36 part (ii),

at least a constant fraction of the vertices in P�bdr ∩ ϒv belongs to S. If at least
one of the vertices in P�bdr ∩ ϒv belongs to S, w.e.p. we have that P�bdr ∩ ϒv in-
duces a connected component in H with vertices both in S and S and |E(S ∩ ϒv,

S)| ≥ 1, and since by Lemma 15, w.e.p. vol(S ∩ ϒv) = O(nθR(�0, �0)) = O(n2ξ ),
we obtain hϒv(S) = �(n−2ξ ). The same argument applies if v is adjacent to a
vertex in S. If P�bdr ∩ ϒv ⊆ S and rv ≤ �bdr, by Lemma 26 part (i), given that ϒv

is centered at v, w.e.p., v lies between a pair of vertices of the connected compo-
nent of H induced by P ∩ ϒv ∩ BO(�) \ BO(� − 1), so v is adjacent to a vertex
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in S ∩ P�bdr ∩ ϒv as well, and the same conclusion holds. If rv > �bdr, then since
v is in U , it must be connected by a path to a vertex in S, and either we find on
this path, by Lemma 26 part (i) (in case the path uses only vertices with radius
larger than �bdr) or by Lemma 26 part (ii) otherwise, an edge between vertices in
S ∩ ϒv and S or between vertices in S and S ∩ ϒv . In both cases, we have w.e.p.
hϒv(S) = �(n−2ξ ) = �(n−(2α−1)ε+o(1)) by our assumption on ξ tending to 0, and
in all cases ϒv is accounted for.

To conclude, note that each edge is counted at most six times for the conduc-
tance of different regions in A: in order for an edge to be counted for the con-
ductance of a region R belonging to A, by definition of h(S) and hR(S) [see (2)
and (15)], at least one of its endpoints must belong to it. First, since the sectors
� which are accounted for by Lemma 36 are disjoint, each point p ∈ BO(R) can
appear in at most one such sector. Next, let R ∈ A be the first region in which p

appears in ACCOUNTING-SECTORS: since R is connected, it has a bisector, and
we may assume without loss of generality that p is to the left of the bisector of
R (here and below “to the left” is understood as preceding in a counter-clockwise
ordering; “to the right” is defined analogously). Since no vertex v with v ∈ R is
chosen in the algorithm after having added R to A, and since the measures of the
regions added to A are nonincreasing during the algorithm (and hence at any ra-
dial distance the width of the next region is at most as big as the previous one), no
region ϒv added to A after R, and with v to the right of R can contain p. If v is to
the left of R, then ϒv can contain p, but p is now to the right of the bisector of ϒv .
Hence, any region to the left of ϒv cannot contain p anymore. Summarizing, we
may associate each point p ∈ BO(R) to at most 1 region in O and 2 regions in
A \O, that is, to at most 3 regions R ∈ A, and hence a cut edge is counted at most
six times.

Next, let C′ be the collection of regions added to C in Step (ii)(c). By definition,

for every region R′ ∈ C′ we have vol(S ∩R′) = O((logn)
2α

1−α
∑

R∈A vol(S ∩R)).
By the same argument as above, each point p ∈ BO(R) can be contained in at
most two regions R′ ∈ C′. Thus, in particular any point p ∈ R for R ∈ A is
contained in at most two regions R′ ∈ C′, and we obtain vol(S ∩ ⋃

R′∈C′ R′) =
O((logn)

2α
1−α

∑
R∈A vol(S ∩ R)). The same argument also applies when adding

regions to C in Step (iii)(b): as before, every point p ∈ R for R ∈ A is contained in
at most two regions R′ ∈ C. Since for every such region R′, we have vol(S ∩R′) =
O(n2ξ ), and since ξ tends to 0 slowly enough so that n2ξ ≥ (logn)

2α
1−α , we obtain

vol(S) ≤ ∑
R∈A

(
O

(
(logn)

2α
1−α

)
vol(S ∩R) + O

(
n2ξ ))

= O
(
n2ξ ) ∑

R∈A
vol(S ∩R).

Hence, by (15), since hR(S) = �(n−(2α−1)ε+o(1)) for R ∈ A, and since nξ = no(1)

by our assumption on ξ , we are done for this set S.
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So far we have considered one single fixed set S. A close inspection of all prob-
abilistic events in Lemma 32 through Lemma 36 shows that they depend either on
the angle chosen, or on single vertices or pairs of vertices, but not on the whole
set of vertices belonging to S. The starting angles chosen in Lemma 36 can also
be chosen to be the same for all S, so that altogether for all S only polynomially
many angles are used. Hence, only a union bound over polynomially many events
is needed, and all properties given in all lemmata for one S hold simultaneously
for all choices of S. The proof of the theorem is complete. �

6. Bisections and cuts. In this section, we derive some consequences of the
previous sections’ results.

PROOF OF COROLLARY 4. Let H = (U,F ) be the giant component of
G = (V ,E) chosen according to Poiα,C(n). First, note that by Corollary 17,
w.e.p. |U | = �(n), and hence for any bisection {S,U \ S} of H , w.e.p. we have
vol(S) = �(n),vol(U \S) = �(n). By definition of conductance [see (2)] we have
h(S) = �( 1

n
|∂(S)|). Recalling Cheeger’s inequality [see (3)], for any graph G its

conductance h(G) satisfies h(G) ≥ 1
2λ1(G). Therefore, by Corollary 31, for any

bisection {S,U \ S}, w.e.p.,

|∂(S)|
n

= �
(
h(H)

) = �

(
1/D

n2α−1

)
,

and hence for any S with |S| = �1
2 |U | we must have |∂(S)| = �(n2(1−α)/D), so

the first part of the claimed result follows.
For the second part, observe that since by Lemma 15, w.e.p. vol(U) = O(n),

clearly B(H) = O(n). On the other hand, consider the bisection {S,U \ S} with
S consisting of those �1

2 |U | vertices of H with minimal radial coordinate ru. By
Lemma 7 and Lemma 12, there exists a large constant C1 such that the number of
vertices in BO(R −C1) is w.e.p. smaller than εn ≤ 1

4 |U | for small enough ε. Thus,
there exists C′

1 < C1 such that w.e.p. all vertices v ∈ S belong to BO(R − C′
1).

Moreover, for every fixed 0 < δ < 1
2 , by Corollary 8, w.e.p. there exists a constant

c1 = c1(δ) with C1 > c1 > C′
1 such that a δ-fraction of the vertices in S belong to

BO(R) \ BO(R − c1).
Let now B := P ∩ BO(R − C1) \ BO(R − C1 − 1) and B′ := P ∩ BO(R −

C′
1) \ BO(R − c1). Recall that �bdr := �R − 2 logR

1−α
�. By Lemma 7 of [16], for

each vertex u ∈ B there is a positive probability to be connected through a path
of vertices of decreasing radii [with all internal vertices of the path belonging to
BO(R − C1 − 1)] to a vertex in P ∩ BO(�bdr), and moreover, by Remark 20,
w.e.p. every vertex in P ∩ BO(�bdr) belongs to H . W.e.p., |B| = �(n), and so
E|U ∩ B| = �(n), and since for any two vertices at angular distance 1

n
(logn)ω(1)

the events of having such a path to a vertex in P ∩ BO(�bdr) are independent,
V|U ∩ B| = n(logn)ω(1), and hence, by Chebyshev’s inequality, with probability
1 − O(n−1+ξ ) for any small constant ξ > 0, we have |U ∩B| = �(n).
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Next, for each vertex u ∈ B, by Lemma 9, there exists a nonzero probability P

that u has at least one neighbor in P ∩ BO(R − C′
1). By applying Lemma 9 one

more time, there is positive probability P ′ < P that it has at least one neighbor in
P ∩ BO(R − c1), and hence, for each u ∈ B, there is positive probability (at least
P − P ′) to have at least one neighbor in B′. For any two vertices u,u′ ∈ B such
that �ϕu,u′ ≥ C2

n
with C2 sufficiently large, the corresponding events of having

at least one neighbor in B′ are independent. Therefore, by the same argument as
before, by Chebyshev’s inequality, with probability at least 1 − O(n−1+ξ ), we
have |E(B,B′)| = �(n). Moreover, since C1 > c1 > C′

1, for every vertex u ∈ B,
the events of having a path of vertices of decreasing radii starting from u to P ∩
BO(�bdr) with all internal vertices of the path inside BO(R−C1 −1) and of having
an edge between u and a vertex in B′ are independent. Hence, recalling that we
have already shown that |U ∩ B| = �(n) with probability at least 1 − O(n−1+ξ )

for any small constant ξ > 0, we obtain with probability at least 1 − O(n−1+ξ )

that |E(U ∩ B,B′)| = �(n), and thus B(H) = �(n), so the second part of the
statement follows. �

The related questions regarding the minimum and maximum cut size of H (i.e.,
minimum and maximum number of edges between the two parts of a nontrivial
partition of the vertex set of H , resp.) follow easily from results proved here and in
the literature. For the minimum cut, by the proof of Theorem 3 of [14], w.e.p. there
exists a path of length �(logn) starting at a vertex u having no other neighbor.
Hence, w.e.p. there will be a leaf u in H and, therefore, by considering the cut set
{u}, we obtain mc(H) = 1. For the maximum cut, note that by Lemma 15, w.e.p.
vol(U) = �(n), and hence MC(H) = O(n). For a maximum bisection, as shown
above, the bound is attained, and hence MC(H) = �(n).

7. Conclusion and outlook. In this paper, we have, up to a polylogarithmic
factor, shown that the conductance of the giant component of a random hyperbolic
graph is �(n−(2α−1)), and the same holds for the spectral gap of the normalized
Laplacian of the giant component of such a graph. We have established that there
are relatively small bottlenecks that disconnect large fractions of vertices of the
graph’s giant component, and we also showed that for smaller sets of vertices, the
conductance of such sets, is compared to larger sets, bigger.

Given the fundamental nature of the two parameters studied in this paper, that
is, spectral gap and conductance, their determination should contribute to the un-
derstanding of the random hyperbolic graph model, and in particular, to the under-
standing of issues concerning well-known related topics such as the spread of in-
formation, mixing time of random walks, and similar phenomena in such a model.
It is widely believed that social networks are fast mixing (see, e.g., the discussion
in [19]) and that rumors spread fast in such networks. Given the interest in random
hyperbolic graphs as a model of networks that exhibit common properties of social
networks, it is natural to ask whether fast mixing and rumor spreading do indeed
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occur. The low conductance and the spectral gap we establish do not give evidence
that it is so.
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