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The ensemble Kalman filter is a sophisticated and powerful data as-
similation method for filtering high dimensional problems arising in fluid
mechanics and geophysical sciences. This Monte Carlo method can be in-
terpreted as a mean-field McKean–Vlasov-type particle interpretation of the
Kalman–Bucy diffusions. In contrast to more conventional particle filters and
nonlinear Markov processes, these models are designed in terms of a dif-
fusion process with a diffusion matrix that depends on particle covariance
matrices.

Besides some recent advances on the stability of nonlinear Langevin-type
diffusions with drift interactions, the long-time behaviour of models with in-
teracting diffusion matrices and conditional distribution interaction functions
has never been discussed in the literature. One of the main contributions of
the article is to initiate the study of this new class of models. The article
presents a series of new functional inequalities to quantify the stability of
these nonlinear diffusion processes.

In the same vein, despite some recent contributions on the convergence of
the ensemble Kalman filter when the number of sample tends to infinity very
little is known on stability and the long-time behaviour of these mean-field
interacting type particle filters. The second contribution of this article is to
provide uniform propagation of chaos properties as well as Ln-mean error
estimates w.r.t. to the time horizon. Our regularity condition is also shown
to be sufficient and necessary for the uniform convergence of the ensemble
Kalman filter.

The stochastic analysis developed in this article is based on an original
combination of functional inequalities and Foster–Lyapunov techniques with
coupling, martingale techniques, random matrices and spectral analysis the-
ory.
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1. Introduction.

1.1. The Ensemble Kalman filter. The Ensemble Kalman filter (abbreviated
EnKF) has been introduced by G. Evensen in the seminal article [26] published in
1994. In the last two decades, the EnKF has become one of the main numerical
techniques for solving high dimensional forecasting and data assimilation prob-
lems, particularly in ocean and atmosphere sciences [2, 35, 44, 46, 54], weather
forecasting [4, 5, 16, 32], environmental and ecological statistics [25, 34], as well
as in oil reservoir simulations [27, 52, 57, 58, 67], and many others. We also refer
the reader to [10, 24] for recent reviews on Riccati equations, estimation and linear
filtering techniques.
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The mathematical foundations and the convergence of the EnKF are more re-
cent. They have started in 2011 with the independent pioneering works of F. Le
Gland, V. Monbet and V. D. Tran [43], and the one by J. Mandel, L. Cobb, J. D.
Beezley [48]. These articles provide Ln-mean error estimates for discrete time
EnKF and show that the EnKF converges towards the Kalman filter as the number
of samples tends to infinity. In a more recent study by X. T. Tong, A. J. Majda and
D. Kelly the authors analyze the long-time behaviour and the ergodicity of dis-
crete generation EnKF using Foster–Lyapunov techniques ensuring that the filter
is asymptotically stable w.r.t. any erroneous initial condition [64]. These important
properties ensure that the EnKF has a single invariant measure and initialization
errors of the EnKF will dissipate w.r.t. the time parameter.

Beside the importance of these properties, the only ergodicity of the particle
process does not give any information of the convergence and the accuracy of the
EnKF towards the optimal filter as the number of samples tends to infinity.

One of the main objective of this article is to analyze this convergence and quan-
tify the fluctuation of errors on large-time horizon. We provide uniform Ln-mean
error estimates w.r.t. the time parameter for the sample mean as well as for the
sample covariance matrices. Incidentally, the stochastic analysis we have devel-
oped also allows to quantify the stability properties of the Kalman–Bucy filter and
the corresponding matrix valued Riccati equations. These estimates are deduced
from the stability properties of a nonlinear diffusion interpretation of the Kalman–
Bucy filter equations.

To better connect this work with existing literature on nonlinear Markov pro-
cesses and particle methods, we emphasize that the EnKF can be seen as a mean-
field particle interpretation of a nonlinear McKean–Vlasov-type diffusion. These
probabilistic models were introduced in the end of the 1960s by H. P. McKean [49].
For a detailed discussion on these models and their application domains, we refer
the reader to the lecture notes of A. S. Sznitman [63], the ones by S. Méléard [50],
and the research monograph [21].

The refined convergence as well as the long-time behaviour of nonlinear diffu-
sion processes is still an active research area. When the interaction function only
enters in the drift part of the diffusion several results including uniform estimates
w.r.t., the time horizon are available [11, 17, 22, 23, 47]. Most of these works
are based on powerful and sophisticated coupling methods, nonlinear semigroup
analysis, as well as Gamma-two type techniques and optimal transport theory.

In our context, the Kalman–Bucy filter and the Riccati equation represent the
evolution equations of the mean and the covariance matrices of the random states
of a nonlinear diffusion process. We shall call this process the Kalman–Bucy dif-
fusion. The diffusion part of this class of processes depends on the covariance
matrix of its random states. The recent techniques developed in nonlinear Markov
processes theory are not suited to analyze the stability of these complex nonlinear
processes. To the best of our knowledge, the long-time behaviour of such nonlinear
diffusions with covariances matrices depending on the distribution of the random
states remains an open and important research question.
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In the present article, we initiate the study of the stability of this class of non-
linear diffusion models. We present a series of functional inequalities to quantify
the stability of these nonlinear diffusion processes. We also analyze the exponen-
tial stability of these processes w.r.t. Wasserstein distances and relative entropy
inequalities. The stability properties of the Kalman–Bucy filter are deduced by a
direct application of Jensen-type inequalities.

At the level of the particle population model, the EnKF also belongs to the
class of mean-field type particle filters. The stochastic analysis of particle filters
and related diffusions Monte Carlo schemes is rather well understood; see, for in-
stance, [20, 21] and the references therein. Nevertheless, the EnKF strongly differs
from particle filters or sequential Monte Carlo methods currently used in nonlinear
filtering theory, Bayesian inference and computational physics. Roughly speaking,
the EnKF is designed to approximate the Kalman filter (as well as the extended
Kalman filter) for high dimensional problems. In the reverse angle, particle filters
are designed to estimate the nonlinear filtering equation, and to sample sequentially
according to the flow of conditional distributions. In continuous time settings, the
EnKF is an interacting diffusion while particle filters are interacting jump particle
systems. As a result, none of the techniques developed in particle filtering theory
applies to analyze the fluctuations of the EnKF uniformly w.r.t. the time horizon.
It is clearly not the scope of this article to compare in full details these two particle
filtering methods. For a more thorough discussion on particle filtering techniques,
we refer the reader to [20, 21], and the references therein.

In the same vein, the stochastic analysis developed so far in the literature on
more general classes of mean-field particle methods cannot be used to analyze
the uniform convergence of particle approximating schemes involving interact-
ing covariances matrices. As mentioned above, the EnKF belongs to this class of
nonlinear diffusions with a mean-field particle interpretation based on covariance
matrices of interacting multidimensional particles. To the best of our knowledge,
the uniform propagation of chaos estimates developed in the present article seems
to be the first result of this type for this class of nonlinear diffusions.

To derive these uniform estimates, we develop a novel stochastic fluctuation
analysis which combines Foster–Lyapunov techniques with matrix valued martin-
gale methods, as well as random matrices and spectral analysis theory. The central
idea is to take advantage of the linear-Gaussian structure of the filtering problem
to enter the stability properties of the signal process and the (nonlinear) Riccati
matrix-valued equation into the fluctuation analysis of the EnKF. We also prove
that the stability property of the signal is a sufficient and necessary condition to
obtain uniform propagation of chaos estimates.

1.2. Organization of the article. The article is organized as follows:
Section 2 is dedicated to the description of the Kalman–Bucy filter, the nonlin-

ear diffusion process interpretation of the filter, as well as the mean-field EnKF
particle algorithm. In Section 3, we state some of the main theorems of the article.
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The first one shows that the sample mean and the random interacting covariance
matrices of the EnKF satisfy the same equation as the EnKF and the Riccati equa-
tion up to some fluctuation martingales whose angle brackets only depend on the
sample covariance matrices. These diffusion equations in matrix spaces are pivotal
as they allow to analyze the fluctuations of the EnKF using Foster–Lyapunov and
martingale techniques combined with trace and spectral-type inequalities.

The second theorem provides uniform convergence and propagations of chaos
estimates w.r.t. the time parameters.

Section 4 provides a detailed discussion on our regularity conditions. In Sec-
tion 4.1, we analyze the stability properties and the catastrophic divergence issues
of EnFK filters in terms of global divergence regions and ill-conditioned filtering
problems. We analyze the propagations of the fluctuations induced by the sam-
ple covariance matrices in terms of observer-type filters and stochastic Ornstein–
Ulhenbeck diffusions. In control theory, the terminology “observer” is often re-
stricted to deterministic models.

As its name indicates a stochastic observer is a stochastic process that uses
sensory history to estimate the true signal; the randomness comes from the fact
that the perturbations of the sensor are random. We design and we analyze the long
time behaviour of a class of stochastic observer driven by stochastic covariance
matrices. We also discuss some pivotal semigroup contraction properties in terms
of log-norms of matrices. Several illustrations are provided in Section 4.2.

Section 5 discusses the stability properties of Kalman–Bucy diffusions. Sec-
tion 5.2 is dedicated to uniform contraction inequalities for the nonlinear semi-
groups associated with the Riccati equation and Kalman–Bucy diffusions. Sec-
tion 5.3 presents some local functional inequalities to estimate the fluctuations of
the models around their steady state version w.r.t. the Wasserstein distance and the
relative entropy.

The remainder of the article is mainly concerned with the proof of the main
theorems presented in Section 3 and Section 5.

Section 6 presents some technical preliminary results used in the further devel-
opment of the article. Section 6.1 shows that our regularity conditions that ensure
the uniform convergence of the EnKF are sharp and cannot be relaxed. The section
also provides some uniform convergence estimates on the filter, the signal states,
and the Riccati equation. It also presents some semigroup estimates and related
trace inequalities of current use in this study. Section 6.2 is dedicated to the Ric-
cati equation. We analyze the explicit solution in the one-dimensional case and we
present a trace-type comparison lemma to analyze multivariate models.

Section 7 is concerned with the stochastic analysis of the EnKF. Section 7.1 is
dedicated to the proof of the stochastic differential equations satisfied by the EnKF
sample mean and the particle covariance matrices. Section 7.2 is dedicated to uni-
form moments estimates for the trace of the particle covariance matrices and the
random states of the EnKF. These results are deduced from a technical lemma, of
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its own interest; combining Foster–Lyapunov with martingale techniques to con-
trol the moments of Riccati-type stochastic differential equations uniformly w.r.t.
the time horizon.

Section 8 is mainly concerned with the detailed proofs of the uniform propaga-
tion of chaos theorem presented in Section 3.

The final section, Section 12, presents a brief summary of the contributions of
the article and proposes an avenue of open research projects.

1.3. Some basic notation and preliminary results. This section provides with
some notation and terminology used in several places in the article. Given some
random variable Z with some probability measure μ and some function f on
some product space Rr , we let μ(f ) = E(f (Z)) = ∫

f (x)μ(dx) be the integral of
f w.r.t. μ or the expectation of f (X). As a rule any multivariate random variable,
say Z, is represented by a column vector and we use the transposition operator
Z′ to denote the row vector. Given a distribution η on some product space R

r and
some measurable function f from R

r into R
r , we set η(f ) = (η(fi))1≤i≤r the

column vector with entries η(fi) where fi stands for the ith coordinate mapping
from R

r into R. We also denote by a+ = max (a,0) the real part of a number
a ∈R.

We let ‖ · ‖ be the Euclidean norm on R
r , for some r ≥ 1. We denote by Sr the

set of (r × r) symmetric matrices with real entries, and by S
+
r the subset of positive

definite matrices. We let Spec(A) be the set of eigenvalues of a square matrix A.
With a slight abuse of notation, we denote by Id the (r × r) identity matrix, for any
r ≥ 1.

We often denote by λi(A), with 1 ≤ i ≤ r , the nonincreasing sequence of eigen-
values of a symmetric (r × r)-matrix A. We also often denote by λmin(A) = λr(A)

and λmax(A) = λ1(A) the minimal and the maximal eigenvalue. We also set
Asym := (A + A′)/2 for any (r × r)-square matrix A. We recall that the norm
‖A‖ and logarithmic norm μ(A) of an (r1 × r1)-square matrix A are defined by
‖A‖ := sup‖x‖=1 ‖Ax‖ and

(1)
μ(A) := inf

{
α : ∀x〈x,Ax〉 ≤ α‖x‖2}= λmax(Asym)

= inf
{
α : ∀t ≥ 0

∥∥exp (At)
∥∥

2 ≤ exp (αt)
}
.

The above equivalent formulations show that

μ(A) ≥ ς(A) := max
{
Re(λ) : λ ∈ Spec(A)

}
,

where Re(λ) stands for the real part of the eigenvalues λ. The parameter ς(A) is
often called the spectral abscissa of A. Also notice that Asym is negative semidefi-
nite as soon as μ(A) < 0. The Frobenius matrix norm of a given (r1 × r2) matrix
A is defined by

‖A‖2
F = tr

(
A′A

)
with the trace operator tr(·).
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If A is a matrix r × r , we have ‖A‖2
F =∑

1≤i,j≤r A(i, j)2 ≥ ‖A‖2.
We also need to consider the nth Wasserstein distance between two probability

measures ν1 and ν2 on R
r defined by

Wn(ν1, ν2) = inf
{
E
(‖Z1 − Z2‖n) 1

n
}
.

The infimum in the above displayed formula is taken of all pairs of random vari-
ables (Z1,Z2) such that Law(Zi) = νi , with i = 1,2. We denote by Ent(ν1|ν2) the
Boltzmann-relative entropy

Ent(ν1|ν2) :=
∫

log
(

dν1

dν2

)
dν1 if ν1 
 ν2, and +∞ otherwise.

The state transition matrix associated with a smooth flow of (r × r)-matrices
A : u �→ Au is denoted by

Es,t (A) = exp
[∮ t

s
Au du

]
⇐⇒ d

dt
Es,t (A) = AtEs,t (A) and ∂sEs,t (A) = −Es,t (A)As

for any s ≤ t , with Es,s = Id, the identity matrix. Equivalently, in terms of the
fundamental solution matrices Et (A) := E0,t (A) we have Es,t (A) = Et (A)Es(A)−1.
Observe that for any s ≤ r ≤ t the exponential semigroup property

exp
[∮ t

s
Au du

]
= exp

[∮ t

r
Au du

]
exp

[∮ r

s
Au du

]
.

The following technical lemma provides a pair of semigroup estimates of the state
transition matrices associated with a sum of drif-type matrices.

LEMMA 1.1 (Perturbation lemma). Let A : u �→ Au and B : u �→ Bu be some
smooth flows of (r × r)-matrices. For any s ≤ t , we have∥∥Es,t (A + B)

∥∥
2 ≤ exp

(∫ t

s
μ(Au)du +

∫ t

s
‖Bu‖2 du

)
.

In addition, for any matrix norm ‖ · ‖ we have∥∥Es,t (A + B)
∥∥≤ αA exp

[
−βA(t − s) + αA

∫ t

s
‖Bu‖du

]
as soon as

∀0 ≤ s ≤ t
∥∥Es,t (A)

∥∥≤ αA exp
(−βA(t − s)

)
.

These estimates are probably well known but we have not found a precise ref-
erence. For the convenience of the reader, the detailed proof of this lemma is
housed in the Appendix, on page 840. For time homogeneous matrices At = A,
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the state transition matrix reduces to the conventional matrix exponential Es,t (A) =
e(t−s)A = Et−s(A).

The norm of Et (A) can be estimated in various ways: The first one is based on
the Jordan decomposition T −1AT = J decomposition of the matrix A in terms
of k Jordan blocks associated with the eigenvalues with multiplicities mi , with
1 ≤ i ≤ k. In this situation, we have the Jordan-type estimate

(2) eς(A)t ≤ ∥∥Et (A)
∥∥

2 ≤ κJor,t (T )eς(A)t

with

κJor,t (T ) =
( ∨

0≤j<n

tj

j !
)
‖T ‖2

∥∥T −1∥∥
2 and n := ∨

1≤i≤k

mi.

Observe that κJor,t (T ) depends on the time horizon t as soon as A is not of
full rank. In addition, whenever A is close to singular, the conditioning number
cond(T ) := ‖T ‖2‖T −1‖2 tends to be very large.

A second strategy is based on Schur decomposition U ′AU = D + T in terms
of an unitary matrix U , with D = diag(λ1(A), . . . ;λr(A)) and a strictly triangular
matrix T s.t. Ti,j = 0 for any i ≥ j . In this case, we have the Schur-type estimate

(3)
∥∥Et (A)

∥∥
2 ≤ κSch,t (T )eς(A)t with κSch,t (T ) := ∑

0≤i≤r

(‖T ‖t)i
i! .

The proof of these estimates can be found in [51, 65]. In both cases for any ε ∈
]0,1] and any t ≥ 0, we have

(4) eς(A)t ≤ ∥∥Et (A)
∥∥

2 ≤ κ(ε)e(1−ε)ς(A)t

for some constants κ(ε) whose values only depend on the parameters ε. When A

is asymptotically stable; that is all its eigenvalues have negative real parts, for any
positive definite matrix B we have

eς(A)t ≤ ∥∥Et (A)
∥∥

2 ≤ cond(TB) exp
[−t/

∥∥B−1/2TBB−1/2∥∥]
with the positive definite matrix

TB =
∫ ∞

0
eA′tBeAt dt ⇐⇒ A′T + T A = −B.

In this case, we have −1/‖B−1/2T B−1/2‖ ≥ 2ς(A). The proof of these estimates
can be found in [66] (Theorem 13.6 and exercise 13.11).

Recalling the norm equivalence formulae

‖A‖2
2 = λmax

(
A′A

)≤ tr
(
A′A

)= ‖A‖2
F ≤ r‖A‖2

2

for any (r × r)-matrix A, the above estimates are valid if we replace the L2-norm
by the Frobenius norm.
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Most of the semigroup analysis and the contraction inequalities developed in
this article are based on the logarithm norms instead of the spectral abscissa given
by the top (real part of the) eigenvalues. The reasons are two-fold:

First, as its name indicates, the logarithmic norm represents the logarithmic de-
cays of semigroups w.r.t. the L2-norm [cf. (1)]. These norms facilitate the stability
analysis of exponential semigroups.

On the other hand, most of the matrix exponential estimates expressed in terms
of spectral abscissas involve numerical constants that depends on the norm of the
diagonalization matrix and its inverse, but also on polynomial functions w.r.t. the
time parameter. When the matrix has an ill conditioned eigen-system, these con-
stants are generally too large to obtain an effective useful estimate. We refer the
reader to the formulae (2) and (3).

For a more thorough discussion on these norms and their used in the stability
analysis of homogeneous semigroups of the form etA, we refer to [73].

We end this section with a couple of rather well-known estimates in matrix
theory. For any (r × r)-square matrices (P,Q) by a direct application of Cauchy–
Schwarz inequality, we have

(5)
∣∣tr(PQ)

∣∣≤ ‖P‖F ‖Q‖F .

For any (symmetric and) positive semidefinite (r × r)-square matrices P and Q,
we have

(6)
tr
(
P 2)≤ (

tr(P )
)2 ≤ r tr

(
P 2) and

λmin(P ) tr(Q) ≤ tr(PQ) ≤ λmax(P ) tr(Q).

The above inequality is also valid when Q is positive semidefinite and P is sym-
metric. We check this claim using an orthogonal diagonalization of P and recall-
ing that Q remains positive semidefinite (thus with nonnegative diagonal entries).
When both matrices P and Q are negative semidefinite, the right-hand side in-
equality is still valid if we replace (λmin(P ), λmax(P )) by (λmax(P ), λmin(P )).

The tensor product, respectively the symmetric tensor product, of (r × r)-
matrices A, B are the (r2 × r2)-matrix A ⊗ B , respectively, A ⊗s B , given by
the formulae:

(A ⊗ B)(i,j),(k,l) = Ai,kBj,l = (A ⊗ B)
�
(i,k),(j,l),

4(A ⊗s B)(i,j),(k,l) = Ai,kBj,l + Ai,lBj,k + Aj,lBi,k + Aj,kBi,l .

The angle bracket 〈M〉 of an r-column-vector continuous martingale M is the
(r × r) matrix 〈M〉 such that

MM ′ − 〈M〉
is a martingale. More generally, the angle bracket 〈M〉 of an (r × r)-matrix valued
continuous martingale is the (r2 × r2)-matrix 〈M〉 such that

M ⊗ M ′ − 〈M〉 is a martingale.
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2. Description of the models.

2.1. The Kalman–Bucy filter. Consider a time homogeneous linear-Gaussian
filtering model of the following form:

(7)

{
dXt = (AXt + a)dt + R

1/2
1 dWt

dYt = (CXt + c) dt + R
1/2
2 dVt .

In the above display, (Wt ,Vt ) is an (r1 +r2)-dimensional Brownian motion, X0 is a
r1-valued Gaussian random vector with mean and covariance matrix (E(X0),P0)

[independent of (Wt ,Vt )], the symmetric matrices R
1/2
1 and R

1/2
2 are invertible,

A is a square (r1 × r1)-matrix, C is an (r2 × r1)-matrix, a is a given r1-dimensional
column vector and c is an r2-dimensional column vector, and Y0 = 0. We also let
Ft = σ(Ys, s ≤ t) be the filtration generated by the observation process.

It is well known that the conditional distribution ηt of the signal state Xt given
Ft is a r1-dimensional Gaussian distribution with mean and covariance matrix

X̂t := E(Xt |Ft ) and Pt := E
((

Xt −E(Xt |Ft )
)(

Xt −E(Xt |Ft )
)′)

given by the Kalman–Bucy filter

(8) dX̂t = (AX̂t + a)dt + PtC
′R−1

2

(
dYt − (CX̂t + c) dt

)
and the Riccati equation

(9)
d

dt
Pt = Ricc(Pt )

defined in terms of the quadratic drift function

Ricc : Q ∈ Sr1 �→ Ricc(Q) = AQ + QA′ − QSQ + R ∈ Sr1

with R = R1 and S := C′R−1
2 C. Note that the covariance matrix is just instrumen-

tal. More precisely, the Riccati equation (9) does not depend on the observations,
and can be solved offline. Nevertheless, when the dimension of the state is too
large, as in most ocean and atmosphere stochastic models, the solving of the Ric-
cati matrix evolution equation is untractable. Besides the problem of storing high
dimensional matrices, we often need to resort to spectral technique and change of
vector basis to solve analytically the Riccati equation. For high dimensional prob-
lems, these spectral techniques cannot be applied and another level of approxima-
tion need to be added. The idea of the EnKF is to replace the covariance matrices
by sample covariance matrices associated with a well-chosen mean-field particle
model. These probabilistic models are defined in more details in the next section.

2.2. A nonlinear Kalman–Bucy diffusion. Let e(x) = x denote the identity
mapping from Rr1 into itself. For any probability measure η on R

r1 , let m(η) =
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η(e) and Pη = η[(e −η(e))(e −η(e))′] denote the mean vector and the covariance
matrix, respectively.

We consider the conditional nonlinear McKean–Vlasov-type diffusion process

(10)
dXt = (AXt + a)dt + R

1/2
1 dWt

+Pηt C
′R−1

2

[
dYt − (

(CXt + c) dt + R
1/2
2 dV t

)]
,

where (W t ,V t ,X0) are independent copies of (Wt ,Vt ,X0) (thus independent
of the signal and the observation path). In the above displayed formula ηt :=
Law(Xt |Ft ) stands for the conditional distribution of the random state Xt given
the σ -field Ft . We shall call this probabilistic model the Kalman–Bucy (nonlinear)
diffusion process.

In contrast to conventional nonlinear diffusions, the interaction does not take
place only on the drift part but also on the diffusion matrix functional. In addition,
the nonlinearity does not depend on the distribution of the random states πt =
Law(Xt) but on their conditional distributions ηt := Law(Xt |Ft ).

Section 5.1 discusses in some details the mathematical foundations of this con-
ditional nonlinear diffusion process.

We will also check that the conditional expectations of the random states Xt

and their conditional covariance matrices Pηt w.r.t. Ft satisfy the Kalman–Bucy
filter and the Riccati equations (8) and (9), even when the initial variable is not
Gaussian; that is, we have that

(11) mt := m(ηt ) = X̂t and Pt = Pηt .

In other words, the flow of matrices Pηt only depends on the covariance matrix
of the initial state X0. This property comes from the structure of the nonlinear pro-
cess equation which ensures that the mean and the covariance matrices satisfy the
Kalman–Bucy filter and the Riccati equation. This property simplifies the stability
analysis of this process.

Given Pη0, the Kalman–Bucy diffusion (10) can be interpreted as a nonhomo-
geneous Ornstein–Uhlenbeck-type diffusion with a conditional covariance matrix
Pt = Pηt that satisfies the Riccati equation (9) starting from P0 = Pη0 . In this
interpretation, the nonlinearity of the process is encapsulated in the Riccati equa-
tion (9).

A more detailed description of the nonlinear semigroup of (10) is provided in
Section 5 dedicated to the stability properties of the Kalman–Bucy diffusions (see,

for instance, Lemma 5.2). If in addition X0
law= X0 (which is Gaussian), then given

Ft the random states Xt of the nonlinear diffusion (10) are r1-valued Gaussian ran-
dom variables with mean X̂t and covariance matrix Pt . Notice that deterministic
initial states X0 can also be seen as Gaussian with a null covariance matrix.

By (11), the stability properties of the Kalman–Bucy filter resume to the sta-
bility of the conditional expectations of the Kalman–Bucy diffusion, the reverse is
clearly not true. These questions are developed in some details in Section 5.2 and
Section 5.3.
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2.3. The Ensemble Kalman–Bucy filter. The ensemble Kalman–Bucy filter co-
incides with the mean-field particle interpretation of the nonlinear diffusion pro-

cess (10). To be more precise, we let (W
i

t , V
i

t , ξ
i
0)1≤i≤N be N independent copies

of (W t ,V t ,X0). In this notation, the EnKF is given by the Mckean–Vlasov-type
interacting diffusion process

(12)

⎧⎪⎪⎨⎪⎪⎩
dξ i

t = (
Aξi

t + a
)
dt + R

1/2
1 dW

i

t

+ P N
t C′R−1

2

[
dYt − ((

Cξi
t + c

)
dt + R

1/2
2 dV

i

t

)]
i = 1, . . . ,N

with the rescaled particle covariance matrices

(13) P N
t :=

(
1 − 1

N

)−1
PηN

t
= 1

N − 1

∑
1≤i≤N

(
ξ i
t − mN

t

)(
ξ i
t − mN

t

)′
,

the empirical measures

ηN
t := 1

N

∑
1≤i≤N

δξi
t

and the sample mean mN
t := m

(
ηN

t

)= 1

N

∑
1≤i≤N

ξi
t .

Note that (12) is a set of N stochastic differential equations coupled through the
empirical covariance matrix P N

t .
We also consider the N -particle model ζt = (ζ i

t )1≤i≤N defined as ξt =
(ξ i

t )1≤i≤N by replacing the sample covariance matrix P N
t by the true covariance

matrix Pt (in particular we have ξ0 = ζ0).
We end this section with some comments on these particle/ensemble filtering

processes.
When C = 0, the EnKF reduce to N independent copies of the Ornstein–

Uhlenbeck diffusive signal. In the same vein, for a single particle the covariance
matrix is null so that the EnKF reduce to a single independent copy of the signal.
In the case r1 = 1, we have

(14)
E
(∥∥mN

t − Xt

∥∥2)= 2 Var(Xt) and

E
(∥∥mN

t − X̂t

∥∥2)= E
(∥∥mN

t − Xt

∥∥2)+ Pt .

In these rather elementary situations, the stability property of the signal drift
matrix A is crucial to design some useful uniform estimates w.r.t. the time parame-
ter. The stability of the signal is a necessary condition to derive uniform estimates
for any type of particle filters [20, 21] w.r.t. the time parameter.

On the other hand by the rank nullity theorem, when N < r1 the sample covari-
ance matrix P N

t is the sample mean of N matrices of unit rank so that it has null
eigenvalues. As a result, in some principal directions the EnKF is only driven by
the signal diffusion. For unstable drift matrices, the EnKF experiences divergence
as it is not corrected by the innovation process.
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It should be clear from the above discussion that the stability of the signal is
a necessary and sufficient condition to design useful uniform estimates w.r.t. the
time horizon.

We shall return to this question in Section 6.1.
We also recall that evolution of the conditional distributions of a nonlinear sig-

nal given the observations satisfy a complex nonlinear and stochastic measure val-
ued equation. In probability and statistics literature, this equation is called the
Kushner–Stratonovitch nonlinear filtering equation [39, 61]. The unnormalized
version of the conditional probability distribution follows a linear measure-valued
equation, called the Zakai equation [71].

For linear-Gaussian models, the conditional distributions of the states are Gaus-
sian distributions. The evolution of the conditional expectations and covariance
error matrices resume to the Kalman–Bucy filter [14]. When the signal process (7)
is nonlinear or when its perturbations are non-Gaussian, it is tempting to design a
mean-field approximation of a nonlinear diffusion defined as in (10) by replacing
the linear drift x �→ Ax + a by a nonlinear one, say x �→ A(x). Of course, un-
der some appropriate regularity conditions the sample means converge to the first
moment of the nonlinear process at hand.

Unfortunately, it is well known that this nonlinear diffusion process cannot cap-
ture any of the statistics of the optimal filter.

We easily check this assertion by showing that the nonlinear Fokker–Planck
equation associated with the nonlinear process differs from the Kushner–Stratono-
vitch optimal filter equation.

Up to the best of our knowledge, there does not exist a single result that quan-
tifies the error between the conditional distributions nor some statistics of the ran-
dom states of the particle model with the ones of the optimal filter.

Besides these drawbacks and these open important questions, the EnKF is of
current use in nonlinear settings. This type of stochastic model can be thought of
as an extended EnKF approximation scheme.

The first step to understand these probabilistic models is to ensure the conver-
gence of the mean-field approximation to the distribution of the nonlinear diffu-
sion. We also refer the reader to the pioneering article [43] for a discussion on the
convergence of these nonoptimal mean-field models in the discrete time case. The
uniform convergence of these nonlinear EnKF is still an open important questions
for continuous as well as for discrete time filtering problems. We plan to investi-
gate these questions in a forthcoming article.

3. Statement of the main results.

3.1. A stochastic perturbation theorem. Our first main result shows that the
stochastic processes (mN

t ,P N
t ) satisfy the same equation as (mt ,Pt ) up to some

local fluctuation orthogonal martingales with angle brackets that only depends on
the sample covariance matrix P N

t .
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THEOREM 3.1 (Perturbation theorem). The stochastic processes (mN
t ,P N

t )

defined in (13) satisfy the diffusion equations

(15) dmN
t = (

AmN
t + a

)
dt + P N

t C′R−1
2

(
dYt − (

CmN
t + c

)
dt
)+ 1√

N
dMt

with the vector-valued martingale Mt = (Mt(k))1≤k≤r1 and the angle-brackets

(16)
d

dt
〈M〉t = R + P N

t SP N
t .

We also have the matrix-valued diffusion

(17) dP N
t = (

AP N
t + P N

t A′ − P N
t SP N

t + R
)
dt + 1√

N − 1
dMt

with a symmetric matrix-valued martingale Mt = (Mt(k, l))1≤k,l≤r1 and the angle
brackets

(18)
d

dt
〈M〉�t = 4P N

t ⊗s

(
R + P N

t SP N
t

)
.

In addition, we have the orthogonality property

∀1 ≤ k, l, l′ ≤ r1
〈
M(k, l),M

(
l′
)〉

t = 0.

This fluctuation-type theorem shows that the EnKF and the interacting sample
covariance matrices satisfy a Kalman–Bucy recursion and a stochastic-type Riccati
equation. The extra level of randomness comes from the fact the particles mimic
the random evolution of the nonlinear McKean–Vlasov-type diffusion (10). The
amplitude of these fluctuation-martingales is of order 1/

√
N , as any mean field-

type particle process.
In contrast with the optimal Kalman–Bucy filter, the fluctuations of the covari-

ance matrices may corrupt the natural stabilizing effects of the innovation process
defined by the centered observations increments (dYt − (CmN

t + c) dt).
For partially observed signals, we cannot expect any stability properties of

Kalman–Bucy filter and the EnKF without introducing some structural conditions
of observability and controllability on the signal-observation equation (7). When
a = 0 = c, observe that the Kalman–Bucy equation (8) implies that

(19) d(X̂t − Xt) = (A − PtS)(X̂t − Xt) dt + PtC
′R−1/2

2 dVt + R
1/2
1 dWt .

The EnKF evolution equation (15) stated in Theorem 3.1 shows that the evolution
of the error-vector (mN

t − Xt) has the same form as above by replacing Pt by
P N

t , up to some fluctuation martingale due to the interacting sample covariance
matrices P N

t and the internal perturbations of the particles.
This equation shows that the stability properties of these processes depends on

the nature of the eigenvalues of the matrices A − PtS and A − P N
t S.
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3.2. Stability of Kalman–Bucy nonlinear diffusions. We further assume that
(A,R

1/2
1 ) is a controllable pair and (A,C) is observable, that is the matrices

(20)
[
R

1/2
1 ,A

(
R

1/2
1

)
, . . . ,Ar1−1R

1/2
1

]
and

⎡⎢⎢⎢⎢⎣
C

CA
...

CAr1−1

⎤⎥⎥⎥⎥⎦
have rank r1. By Bucy’s theorem (cf. Theorem 5.6 on page 816), under these con-
ditions Pt converge exponentially fast to P as t ↑ ∞. This unique fixed point is
called the steady state error covariance matrix and it satisfies the algebraic Riccati
equation:

(21) Ricc(P ) = AP + PA′ − PSP + R = 0.

In addition, the matrix difference A − PS is asymptotically stable even when the
signal drift matrix A is unstable. Under the above condition, there exists some
parameters υ,�± > 0 such that

(22)
�− Id ≤

∫ υ

0
eAsReA′s ds ≤ �+ Id and

�− Id ≤
∫ υ

0
e−A′sSe−As ds ≤ �+ Id .

The parameter υ is often called the interval of observability-controllability.
For a more detailed discussion on these fixed-point Riccati equations (a.k.a.

algebraic Riccati equation) and the connexions with optimal control theory, we
refer the reader to [1, 15, 55, 68, 72] and the references therein.

In reference to signal processing and control theory literature, we adopt the
following terminology.

DEFINITION 3.2. The Kalman–Bucy filter X̂t associated with the initial
covariance matrix P0 = P is called the steady state Kalman–Bucy filter. The
Kalman–Bucy diffusion Xt starting from an initial random state X0 with covari-
ance matrix P 0 = P is called the steady state Kalman–Bucy diffusion.

It is important to observe that this stationary type filter does not require to solve
the Riccati equation (9). For a more thorough discussion on the stability properties
of Kalman–Bucy filters and Riccati equations, we refer the reader to [1, 3, 41,
55, 60, 68, 72]. We also refer the reader to Section 5.3 dedicated to contraction
estimates of Riccati semigroups and related fundamental matrices.

Our main objective is to extend these stability properties at the level of the
Kalman–Bucy nonlinear diffusion.

The conditional distributions ηt of the random states Xt given Ft is a stochastic
measure valued process. In contrast to more conventional nonlinear Markov dif-
fusions, the nonlinearity depends on the Ft -conditional covariance matrices. Thus
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the computation of the distribution πt = Law(Xt) of the random states Xt requires
to compute the conditional covariance matrices Pηt .

To study the stability properties of the flow πt , it is natural to introduce a copy
X

�

t of Xt coupled to Xt by choosing the same observation process, and by only
changing the random perturbations (W t ,V t ). In other words, (Xt ,X

�

t ) are Ft -
conditionally independent.

To describe our main results with some precision, we introduce some terminol-
ogy.

DEFINITION 3.3. Let (Pt ,P
�
t ) be a couple of solutions of the Riccati equation

(9) starting at two possibly different values (P0,P
�
0 ). We also denote by (Xt ,X

�

t )

a couple of Kalman–Bucy diffusions (10) starting from two random states with
covariances matrices (P0,P

�
0 ). We denote by (πt ,π

�
t ) and (ηt , η

�
t ) the distributions

and the Ft -conditional distributions of (Xt ,X
�

t ).
Let (X̂t , X̂

�
t ) denote the solutions of the Kalman–Bucy equation (8) using the

covariance matrices (Pt ,P
�
t ) [and starting from a random initial condition with

covariance matrices (P0,P
�
0 )]. Equivalently (cf. Lemma 5.2), we have

(23) (X̂t ,Pt ) = (
m(ηt ),P (ηt )

)
and

(
X̂�

t ,P
�
t

)= (
m
(
η�

t

)
,P
(
η�

t

))
.

Since Y0 = 0, the signal state is not observed at the origin. This clearly implies
that (

π0, π
�
0
)= (

η0, η
�
0
)

and (Pπ0,Pπ�
0
) = (Pη0,Pη�

0
) = (P0, P̂0).

Using (23), it should be clear that most of the stability properties of the Kalman–
Bucy diffusions (expressed in terms of some convex criteria) can be used to deduce
the ones of their conditional averages but the reverse is clearly not true. For in-
stance, using (23), for any n ≥ 1 and t ≥ 0 we readily check that

Wn

(
Law(X̂t ),Law

(
X̂�

t

))≤Wn

(
ηt , η

�
t

)
.

In this context, one of our main results can basically be stated as follows.

THEOREM 3.4. Assume the existence of a positive semidefinite fixed point P

of (21) s.t. μ(A − PS) < 0. For any n ≥ 2, ε ∈]0,1/2] and t ≥ 0, we have

(24) Wn

(
πt ,π

�
t

)≤ c(ε) exp
[
(1 − ε)μ(A − PS)t

](
Wn

(
π0, π

�
0
)+ ∥∥P0 − P �

0
∥∥
F

)
for some constant c(ε) < ∞ whose values depend on the parameter ε and on the
initial matrices (P0,P

�
0 ).

The proof of this theorem is provided in Section 10.
When (X0,X

�

0 ) are Gaussian variables, the probability distributions (ηt , η
�
t ) are

also Gaussian and, therefore, it is no surprise that any distance between these Gaus-
sian probability distributions could be controlled by some distance between their
respective mean vectors and covariance matrices; see, for instance, the article [28].
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THEOREM 3.5. Assume that (X0,X
�

0 ) are two Gaussian random variables
with covariance matrices (P0,P

�
0 ). Also assume that the algebraic Riccati equa-

tion (21) has a positive definite fixed-point P and μ(A−PS) < 0. In this situation,
there exists some t0 and some finite constant c that depends on (P0,P ) such that
for any t ≥ t0 and any ε ∈]0,2] we have the quenched almost estimate

(25) Ent
(
ηt |η�

t

)≤ c(ε)
[
exp

(
(1 − ε)μ(A − PS)t

)∥∥P0 − P �
0
∥∥
F + ∥∥X̂�

t − X̂t

∥∥2]
.

In addition, for any t ≥ t0 and any ε ∈]0,1/2] we have the annealed estimate

(26) Ent
(
πt |π�

t

)≤ c(ε) exp
(
(1 − ε)μ(A − PS)t

)(
W

2
2
(
π0, π

�
0
)+ ∥∥P0 − P �

0
∥∥
F

)
.

In the above display, c(ε) stands for some finite constant whose values depend on
the parameter ε and on the initial matrices (P0,P

�
0 )

We easily check (26) using (24), (25) and the convexity property of the relative
entropy

Ent(νK1|νK2) ≤
∫

ν(dy)Ent
(
K1(y, ·)|K2(y, ·))

which is valid for any Markov transitions Ki(y, dx) from R
r2 into R

r1 and any
probability distribution ν on R

r2 . In the above display, (νKi) stands for the proba-
bility measures on R

r1 defined by the transport formula

(νKi)(dx) :=
∫

ν(dy)Ki(y, dx).

The proof of the almost sure estimate (25) is provided in Section 11. For a
more thorough discussion on the stability properties of Kalman–Bucy diffusions
under weaker observability and controllability conditions, we refer the reader to
the recent review article [9].

3.3. An uniform propagation of chaos theorem. The EnKF avoid the numer-
ical solving of the Riccati equation (12) or the use of the steady state P by us-
ing interacting sample covariance matrices. Even when (ξ i

0)1≤i≤N are independent
copies of a Gaussian random variable X0 with the steady covariance matrix, the
initial sample covariance matrices P N

t defined in (13) fluctuates around the limit-
ing value P .

These random fluctuations of the sample covariance matrices P N
t eventually

corrupt the stability in the EnKF, even if the filtering problem is observable and
controllable in the conventional sense. For instance, in practical situations the em-
pirical covariance matrices may not be invertible for small sample sizes. This sim-
ple observation shows that the Lyapunov theory based on inverse of covariance
matrices developed in [3, 6, 45] cannot be applied in the context of EnKF.

In practice, it has also been observed that fluctuations of the sample-covariances
of the EnKF eventually mislead the natural stabilizing effect of the observation
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process in the Kalman–Bucy filter evolution. These fluctuations induce an under-
estimation of the true error covariances. As a result, the EnKF ignores the impor-
tant information delivered by the sensors. This lack of observation also leads to the
divergence of the filter.

Last but not least, from the numerical viewpoint the Kalman–Bucy filter and
the EnKF are also know to be nonrobust, in the sense that arithmetic errors may
accumulate even if the exact filter is stable.

All of these instability properties of the EnKF are well known. They are often
referred as the catastrophic filter divergence in data assimilation literature. For a
more thorough discussion on these issues, we refer the reader to the articles [29,
31, 36], and the references therein. As mentioned by the authors in [36], “catas-
trophic filter divergence is a well documented but mechanistically mysterious phe-
nomenon whereby ensemble-state estimates explode to machine infinity despite
the true state remaining in a bounded region.” The second main result of this arti-
cle is to provide uniform propagations of chaos properties w.r.t. the time horizon.
To this end, we assume that the following observability condition is satisfied:

(27) (S) S = ρ(S) Id for some ρ(S) > 0.

Under this condition, we have

(28) μ(A) − ρ(S)λmax(P ) ≤ μ(A − PS) ≤ μ(A) − ρ(S)λmin(P ) ≤ μ(A).

This shows that μ(A − PS) < 0 as soon as μ(A) < 0. When μ(A) > 0, it is also
met as soon as μ(A) ≤ ρ(S)λmin(P ).

Several examples of sensor models satisfying this condition are discussed in
Section 4.2.

THEOREM 3.6. Assume that the observability condition (S) is met and
μ(A) < 0. In this situation, for any n ≥ 1 and any sufficiently large N we have
the uniform estimates

(29)

sup
t≥0

E
[∥∥P N

t − Pt

∥∥n
F

] 1
n ≤ c(n)/

√
N and

sup
t≥0

E
[∥∥ξ1

t − ζ 1
t

∥∥n] 1
n ≤ c′(n)/

√
N.

When condition (S) is not necessarily met, but the signal-drift matrix A is stable
we have the uniform estimate

μ(A) < 0 =⇒ ∀1 ≤ n < 1 + N − 1

2r1

λmin(S)

λmax(S)
sup
t≥0

E
([

tr
(
P N

t

)]n)≤ c(n)

(cf. Proposition 7.2). The proof of the estimates (29) relies on the observability
condition (S). This condition is satisfied for any filtering problem with r1 = r2
with an invertible matrix C, up to a change of basis; see, for instance, (38).



808 P. DEL MORAL AND J. TUGAUT

We conjecture that condition (S) is purely technical and can be relaxed for stable
signal-drift matrices. For unstable drift matrices, the form of the matrix S may also
corrupt the regularity of the sample covariance matrices. We already know that for
r1 > N the matrices P N

t have necessarily at least one null eigenvalue, so that the
number of null eigenvalues of P N

t S is more likely to be larger when S is not of
full rank.

The following corollary is a consequence of (29).

COROLLARY 3.7. Under the assumptions stated in Theorem 3.6, for any n ≥
1 we have the uniform estimates

(30)

sup
t≥0

Wn

(
Law

(
ξ1
t

)
, ηt

)≤ c(n)/
√

N and

sup
t≥0

E
(∣∣ηN

t (f ) − ηt (f )
∣∣n) 1

n ≤ c′(n)/
√

N

for any 1-Lipschitz function f on R
r1 . In particular, this implies that

(31) sup
t≥0

E
[∥∥mN

t − X̂t

∥∥n] 1
n ≤ c(n)/

√
N.

Inversely, the uniform estimates (31) implies that μ(A) < 0 as soon as R �= 0 = C.

The detailed proof of Theorem 3.1 is postponed to Section 7.1. The proof of
Theorem 3.6 is based on uniform moments estimates developed in Section 7.2.
The detailed proof of the uniform estimates (29) is presented in full details in
Section 8.

It is important to observe that all the Ln-mean error estimates between the sam-
ple covariance p0 and P0, as well as the ones between the sample mean m0 and
X̂0, are immediate for t = 0 (as a direct application of the law of large numbers for
independent random sequences).

A discussion on the stability condition μ(A) < 0 is provided in Section 6. In
Section 6.1, we will show that this condition cannot be relaxed to derive uniform
estimates (31) as soon as R �= 0 and C = 0. The strong observability condition (S)
is discussed in some details in Section 4. Section 4.1 is dedicated to the stability
of stochastic observer processes defined as the Kalman–Bucy diffusion (8) by re-
placing Pηt by a flow of stochastic covariance matrices. Several illustrations are
presented in Section 4.2.

We also emphasize that the conditions (S) and μ(A) < 0 are only used to derive
uniform estimates w.r.t. the time horizon. Without these conditions, the statements
of Theorem 3.6 and Corollary 3.7 remain valid without the supremum operations
w.r.t. the time parameter. In this general situation, the constants c(n) and c′(n)

are replaced by some constants ct (n) and c′
t (n) whose values depend on the time

horizon.
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4. Some comments on our regularity conditions. The stability analysis of
diffusion processes is always much more documented than the ones on their pos-
sible divergence. For instance, in contrast with conventional Kalman–Bucy filters,
the stability properties of the EnKF are not induced by some kind of observability
or controllability condition. The only known results for discrete generation EnKF
is the recent work by X. T. Tong, A. J. Majda and D. Kelly [64]. One of the main
assumptions of the article is that the sensor-matrix is of full rank. The authors also
provide a concrete numerical example of filtering problem with sparse observa-
tions for which the EnKF experiences a catastrophic divergence.

The stability of linear dynamical systems with time varying drift-matrices At is
much complex than the one of time homogeneous models. In our context, the drift-
matrix are also random since they encapsulate the fluctuations of the stochastic
covariance matrices. As shown in [33], the fact that the real part of the spectrum
of At is negative is neither necessary nor sufficient for the exponential stability of
the system. It may even happen that the semigroup of the system is unstable even
if the real part of the eigenvalues of At remain negative for all times. Inversely, the
system may be stable even when one of the eigenvalues is positive for all times.

The analysis of the exponential stability of time varying linear system requires
to estimate the variations of the matrices At w.r.t. the time parameter. All types of
sufficient conditions stated in [13, 18, 33, 37, 38, 56] are restricted to determinis-
tic systems, and thus cannot be applied to interacting diffusion processes. They are
also based on continuity/tightness-type properties, as well as on piecewise smooth-
ness properties or on the uniform boundedness of the velocity field d

dt
At . These

regularity properties does not hold for stochastic diffusions. In our context, the
fluctuation matrices are given by

(32) Qt := √
N
(
P N

t − Pt

) ∈ Sr1 ⇐⇒ P N
t = Pt + 1√

N
Qt ∈ S

+
r1

.

Our next objective is to initiate a more refined mathematical analysis to under-
stand these divergence properties in terms of global divergence properties, locally
ill-conditioned filtering models and stochastic type observers.

4.1. Stable and divergence regions. To clarify the presentation, we further as-
sume that the Kalman–Bucy filter and the Riccati equation start at the steady state
P0 = P .

Let Zt be some observer type process defined as (8) by replacing Pηt by some
covariance matrix of the form (P +Qt) ∈ S

+
r1

, for some flow of symmetric matrices
Qt ∈ Sr1 mimicking the fluctuation matrices (32). In other words, the matrices Qt

reflects the fluctuations of the empirical covariance matrices P N
t around the steady

state P .
In this case, we have

(33) dZt = [
AZt − (P + Qt)S(Zt − Xt)

]
dt + (P + Qt)C

′R−1/2
2 dVt .
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When Qt = 0, the null matrix, the process Zt resumes to the steady state Kalman–
Bucy filter. We set

A − (P + Qt)S = A − QtS with A := A − PS

and

Et := exp
[∮ t

0
(A − QsS)ds

]
.

The vector error process Zt := Zt − Xt is given by the stochastic Ornstein–
Ulhenbeck process:

dZt = (A − QtS)Zt dt + √
2dWt ⇒ Zt = EtZ0 + √

2
∫ t

0
EtE

−1
s dWs .

In the above display, Wt stands for diffusion

Wt := (W t − Wt)/
√

2 + (P + Qt)C
′R−1/2

2 (Vt − V t)/
√

2

law= Wt + (P + Qt)C
′R−1/2

2 Vt

with covariance matrices Rt = I +(P +Qt)S(P +Qt). When the flow of matrices
Qt enter into the set

(34) Qdiv = {
Q ∈ Sr1 : ς(A − QS) > 0

}
the observer experiences a divergence in at least one of the principal directions.
Notice that

(35) ‖Et‖2 ≤ exp
[∫ t

0
μ(A − QsS)ds

]
.

This semigroup estimate allows to quantify the stability of the process Zt as soon
as μ(A − QsS) < −δ for some δ > 0 for sufficiently large time horizons.

One natural strategy is to analyze the contraction properties of the stochastic
flow Et generated by the stochastic matrices A−QtS and their logarithmic norms
μ(A − QtS). More precisely, under the strong observability condition (S) stated
in (27) we have

(36) μ(A − QsS) ≤ μ(A) + ρ(S)μ
(−(P + Qs)

)≤ μ(A) < 0

as soon as μ(A) < 0, for any possible symmetric fluctuations Qs s.t. P + Qs ≥ 0.
This shows that for stable signal-drift matrices μ(A) < 0 the condition (S) en-

sures that the stochastic observer is both theoretically and numerically stable for
any type of fluctuations Qs . The same reasoning will be used to show that the
stability of the signal is transferred to the EnKF filter.

Without condition (S) is easy to work out several examples of 2-dimensional fil-
tering problems with a stable-drift matrix μ(A) < 0 and such that μ(A − QsS) >

0 > λmin((A−QsS)sym) for some flow of symmetric matrices Qs s.t. P +Qs ≥ 0.
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In this context, even if the EnKF is numerically stable it is difficult to analyze the-
oretically this class of locally ill conditioned models using spectral and semigroup
techniques.

In the reverse angle, in practical situations the EnKF generally experiences se-
vere divergence when μ(A) > 0 > μ(A). In this situation, we already know from
(14) that we cannot expect to have uniform propagation of chaos estimates for any
fluctuation matrices. Also observe that(

(S) and μ(A) < 0
) =⇒ μ(A − QsS) < μ(A) + ρ(S)μ(−Qs) < μ(A) < 0

for any positive semidefinite fluctuations Qs ≥ 0 around the steady state P . Unfor-
tunately, we cannot ensure that the fluctuations of the sample covariance matrices
are always positive.

As mentioned above, the pivotal semigroup estimate (35) requires to estimate
the logarithmic norm of the stochastic flow of matrices A−QtS. Several technical
difficulties arise.

The first one comes from the fact that ς(A) < 0 does not implies that μ(A) < 0,
since A �= A

′
. When μ(A) > 0, the steady state Kalman–Bucy is locally ill-

conditioned, in the sense that the worst fluctuation around the true signal behave
like exp[μ(A)�t] is a short transient time �t . This local divergence property may
occur even when all the eigenvalues of A or even the ones of A are negative. This
indicates that it is hopeless to analyze the stability of the Kalman–Bucy filters esti-
mates based on the semigroup inequality (35) for such ill-conditioned systems. We
are faced to the same issues if we try to quantify the propagations of the fluctuation
Qt in the system. Some illustrations are discussed in the Appendix, on page 842.

This discussion indicates that the stability property μ(A) < 0 and the observ-
ability condition (27) seem to be essential to control the fluctuations of the EnKF
sample covariance matrices for any number of samples. These conditions also en-
sure the semigroup contraction properties needed to derive uniform Ln-mean error
estimates of the EnKF particle filter.

4.2. Full observation sensors. When the observation variables are the same as
the ones of the signal, the signal observation has the same dimension as the signal
and resumes to some equation of the form

(37) dYt = bXt dt + σ2 dVt

for some parameters b ∈ R and σ2 > 0. These sensors are used in data grid-type
assimilation problems when measurements can be evaluated at each cell. These
fully observed models are discussed in Section 4 in [30] in the context of the
Lorentz-96 filtering problems. These observation processes are also used to the
article [8] for application to nonlinear and multiscale filtering problem. In this
context, the observed variables represents the slow components of the signal. When
the fast components are represented by a some Brownian motion with a prescribed
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covariance matrix, the filtering of the slow components with full observations take
the form (37).

The sensor model discussed in (37) clearly satisfies condition (27) with the pa-
rameter ρ(S) = (b/σ2)

2. This rather strong condition (27) ensures that these fluc-
tuations does not propagate w.r.t. the time parameter, regardless of the initial data.
Under this condition, we shall prove that the particle EnKF has uniformly bounded
Ln-moments for any n ≥ 1 (see for Proposition 7.2).

We emphasize that the observability condition (27) is satisfied when the filtering
problem are similar to a fully observed sensor model; that is, up to a change of
basis functions. More precisely, any filtering problem (7) with r1 = r2 and s.t.
C := (R

−1/2
2 C) is invertible can be turned into a filtering problem equipped with

an identity sensor matrix; even when the original matrix S = C ′R−1
2 C = C′C does

not satisfies (27). To check this claim, we observe that

(38) Yt := R
−1/2
2 Yt and Xt := CXt =⇒

{
dXt = AXt dt +R1/2

1 dWt,

dYt = Xt dt + dVt

with the signal drift matrix A := CAC−1 and the diffusion covariance matrix R1 :=
CR1C′. In this situation, the filtering model (Xt ,Yt ) satisfies (27) with S = Id ⇒
ρ(S) = 1. The link between the logarithmic norm of A and the original signal drift
matrix A is given by the formula

μ(A) = 1

2
λmax

(
CAC−1 + (

CAC−1)′).
For orthogonal matrices C, we have μ(A) = μ(CAC′) = μ(A). Otherwise, the con-
dition μ(A) < 0 depends on the triplet of matrices (A,C,R2) associated with the
original filtering problem. For instance, when r1 = r2 = 2, R2 = Id and a symmet-
ric negative definite drift matrix A, the condition μ(A) < 0 is equivalent to the fact
that

(39) A1,1 < 0 and A1,1A2,2 > A2
1,2.

For sensor matrices of the form C = ( 1 0
0 β

)
, for some β �= 0, condition μ(A) < 0

takes the strongest form

A1,1 < 0 and A1,1A2,2 >

(
β + β−1

2

)2
A2

1,2.

To better understand the importance of the matrix S introduced in (9) observe
that

(40) dX̂t = (AX̂t + a)dt + Pt(dY t − SX̂t dt)

with the r1-dimensional observation process Y t given by

Y t := C′R−1
2 Yt =⇒ dY t = SXt dt + C′R−1/2

2 dVt .
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Let us assume that r1 = 1 < r2 = 2, and the (2 × 1)-sensor matrix is given by

C = [1, α] for some α ∈ R.

For unit diffusion covariance matrices, the partially observed filtering systems
(Xt , Yt ) and (Xt , Y t ) observable as soon as

(41) A1,2 + αA2,2 �= α(A1,1 + αA2,1).

Nevertheless, in this situation the diffusion matrix S = [ 1 α

α α2

]
of this new

2-dimensional Y t is no more invertible. This shows that these 1-dimensional partial
observations models cannot be turned into regular 2-dimensional sensors. These
2-dimensional filtering problems equipped with a 1-dimensional sensor are one of
the simplest examples of controllable and observable filtering problems that does
not satisfy the observability condition (27) even if the signal drift is stable.

5. Stability properties of Kalman–Bucy diffusions.

5.1. Kalman–Bucy diffusions. As noticed in the Introduction, the Kalman–
Bucy diffusion (10) strongly differs from conventional nonlinear diffusion pro-
cesses. The evolution of this new class of probabilistic models depends on the
Ft -conditional distribution of the random states.

This section provides a more detailed discussion on this new class of nonlinear
McKean–Vlasov-type diffusions with Ft -conditional distribution interactions.

DEFINITION 5.1. Let ϕs,t be the dynamical semigroup of the Riccati equation
(9) given for any s ≤ t by

ϕs,t (Ps) = Pt and set ϕ0,t = ϕt .

Assuming that the nonlinear diffusion (10) is well-posed, it is almost immediate
to check that the conditional mean and covariance satisfy the Kalman–Bucy equa-
tions (8) and (9). The next lemma ensures that the Kalman–Bucy diffusion (10) is
well-posed.

LEMMA 5.2. Consider the nonhomogeneous diffusion given by

(42)
dXt = (AXt + a)dt + R

1/2
1 dWt

+ ϕt(P0)C
′R−1

2

(
dYt − (

(CXt + c) dt + R
1/2
2 dV t

))
,

where (W t ,V t ,X0) are independent copies of (Wt ,Vt ,X0) and P0 = Pη0 . In this
situation, we have

ηt := Law(Xt |Ft ) =⇒ Pηt = ϕt(P0) and E(Xt |Ft ) = X̂t ,

where X̂t stands for the solution of the Kalman-filter (8) driven by the solution
Pt = Pηt of Riccati equation (9) starting at P0 =Pη0 .



814 P. DEL MORAL AND J. TUGAUT

PROOF. Observe that (42) is a nonhomogeneous linear diffusion process. This
implies that

(43)
dE(Xt |Ft ) = (

AE(Xt |Ft ) + a
)
dt

+ ϕt(P0)C
′R−1

2

(
dYt − (

CtE(Xt |Ft ) + c
)
dt
)
.

We set X̃t := Xt −E(Xt |Ft ). In this notation, we have

dX̃t = [
A − ϕt (P0)C

′R−1
2 C

]
X̃t dt + R

1/2
1 dWt − ϕt(P0)C

′R−1/2
2 dV t .

This implies that

d
(
X̃t X̃

′
t

)= [
A − ϕt(P0)C

′R−1
2 C

]
X̃t X̃

′
t dt

+ [
R

1/2
1 dWt − ϕt(P0)C

′R−1/2
2 dV t

]
X̃′

t

+ X̃t X̃
′
t

[
A − ϕt(P0)C

′R−1
2 C

]′
dt

+ X̃t

[
R

1/2
1 dWt − ϕt(P0)C

′R−1/2
2 dV t

]′
+ [

R1 + ϕt(P0)C
′R−1

2 Cϕt(P0)
]
dt.

This shows that the covariance matrix

Qt := Pηt := E
(
X̃t X̃

′
t |Ft

)= E
(
X̃t X̃

′
t

)
does not depend on the observation process. In addition, taking the expectations in
the above displayed formula,

d

dt
Qt = AQt + QtA

′ − ϕt(P0)SQt − QtSϕt (P0) + ϕt(P0)Sϕt (P0) + R.

We set

Ut := Qt − ϕt(P0).

In this notation, we find that

d

dt
Ut = AUt + UtA

′ − ϕt(P0)SUt − UtSϕt (P0)

= (
A − ϕt (P0)S

)
Ut + Ut

(
A − ϕt(P0)S

)′
.

The solution is given by

Ut = exp
(∮ t

0
(A −Pϕs(η0)S) ds

)
U0

(
exp

(∮ t

0
(A −Pϕs(η0)S) ds

))′
.

This shows that

Q0 = Pη0 ⇐⇒ ∀t ≥ 0 Qt = ϕt(P0).

This completes the proof of the lemma. �
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5.2. Stable signal processes. This short section provides some rather elemen-
tary contraction inequalities when the drif-matrix of the signal process is stable
w.r.t. the log-norm. The next proposition presents some global Lipschitz property.

PROPOSITION 5.3. For any time horizon t ≥ 0, we have the Lipschitz proper-
ties:

(44) (S) and μ(A) < 0 =⇒ ∥∥Pt − P �
t

∥∥
F ≤ exp

(
2μ(A)t

)∥∥P0 − P �
0
∥∥
F .

In addition for any n ≥ 2, we have

(45) Wn

(
πt ,π

�
t

)≤ exp
(
μ(A)t/2

)[
Wn

(
π0, π

�
0
)+ c

∥∥P0 − P �
0
∥∥
F

]
for some finite constant c.

The detailed proofs of (44) and (45) are provided in Section 9.
Rewritten in terms of the Riccati semigroup, by (23) we have

(44) ⇔ ∥∥Pt − P �
t

∥∥
F = ‖Pηt −Pη�

t
‖F = ∥∥ϕ0,t (Pπ0) − ϕ0,t (Pπ�

0
)
∥∥
F

≤ e2μ(A)t‖Pπ0 −Pπ�
0
‖F .

Of course there exist many distributions with a prescribed covariance matrix.
The next lemma provides some Lipschitz properties of the trace and the Frobenius
norm w.r.t. the Wasserstein metric. These properties allow to quantify the continu-
ity property of the covariation matrices w.r.t. a given distribution.

LEMMA 5.4. For any probability distributions (π0, π
�
0 ) on R

r1 , we have the
regularity property(

4−1∣∣tr(Pπ0 −Pπ�
0
)
∣∣)∨ ‖Pπ0 −Pπ�

0
‖F

≤W2
(
π0, π

�
0
)∥∥π�

0 (e2)
∥∥1/2 + 2−1/2

W2
(
π0, π

�
0
)2

with the function x = (xi)1≤i≤r1 ∈ R
r1 �→ e2(x) := (x2

i )1≤i≤r1R
r1 .

The proof of this lemma is rather technical and lengthy, thus it its housed in the
Appendix on page 841.

Lemma 5.4 can be used to deduce several functional contraction inequalities
w.r.t the Wasserstein distance between the initial distributions of the Kalman–Bucy
diffusion. For instance, combining Lemma 5.4 with (45) we readily obtain the
following proposition.

PROPOSITION 5.5. Assume that μ(A) < 0 and (S) is satisfied. In this case,
for any t ≥ 0, the following nonlinear functional inequality holds:

W2
(
πt ,π

�
t

)≤ ceμ(A)t/2
W2

(
π0, π

�
0
)[

1 + ∥∥π�
0 (e2)

∥∥1/2 +W2
(
π0, π

�
0
)]

for some finite constant c.

5.3. Unstable signal processes. The two main theorems stated in Section 3.2
(Theorems 3.4 and 3.5) show that the nonlinear Kalman–Bucy diffusions can be
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stable even when the drift-matrix of the signal is unstable. The proof of these
stability properties rely on Bucy’s analysis of the Riccati equation.

The following theorem is a direct consequence of the Lyapunov inequalities
and the uniform spectral estimates stated in Lemmas 4 and 5 and Theorem 4, in
the pioneering article by R. S. Bucy [14].

THEOREM 5.6 (Bucy [14]). When the filtering problem is uniformly observ-
able and controllable, for any t ≥ s ≥ υ , we have the uniform estimates

sup
P0∈S+

r1

∥∥∥∥exp
[∮ t

s
(A − PuS)du

]∥∥∥∥
2
≤ αυ exp

{−βυ(t − s)
}

for some parameters αυ < ∞ and βυ > 0. In addition, for any t ≥ 0 we have

(46)
∥∥Pt − P �

t

∥∥
2 ≤ αυ

(
P0,P

�
0
)

exp {−2βυt}∥∥P0 − P �
0
∥∥

2

for some constant αυ(P0,P
�
0 ) whose values only depend on (υ,P0,P

�
0 ).

These important contributions were published in 1967 by R. S. Bucy in [15].
Combining Theorem 5.6 with the perturbation Lemma 1.1, we find the follow-

ing corollary.

COROLLARY 5.7. Under the assumptions of Theorem 5.6 for any ε ∈]0,1],
any P0 ∈ S

+
r1

, and any s ≤ t we have the exponential semigroup estimates

(47)
∥∥∥∥exp

[∮ t

s
(A − PuS)du

]∥∥∥∥
2
≤ κε,ς (P0, υ) exp

(
(1 − ε)ς(A − PS)(t − s)

)
and

(48)
∥∥∥∥exp

[∮ t

s
(A − PuS)du

]∥∥∥∥
2
≤ κμ(P0, υ) exp

(
μ(A − PS)(t − s)

)
.

In the above displayed formulae, the finite constants κμ(P0, υ) and κε,ς (P0, υ)

defined by

logκμ(P0, υ) = κ(ε)−1 log
[
κε,ς (P0, υ)/κ(ε)

]
= ‖P0 − P‖2‖S‖2αυ(P0,P )/(2βυ)

with the parameters (κ(ε), αυ(P0,P ),βυ) presented in (4) and (46).

We also have

(49)

d

dt

(
Pt − P �

t

)= (
A − P �

t S
)(

Pt − P �
t

)+ (
Pt − P �

t

)
(A − PtS)′

⇒ (
Pt − P �

t

)= exp
(∮ t

s

(
A − P �

uS
)
du

)(
Ps − P �

s

)
×
[
exp

(∮ t

s
(A − PuS)du

)]′
.

This readily implies the following result.
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COROLLARY 5.8. Under the assumptions of Theorem 5.6 for any ε ∈]0,1]
and any t ≥ 0, we have the exponential semigroup estimates

(50)

∥∥Pt − P �
t

∥∥
2 ≤ κε,ς (P0, υ)κε,ς

(
P �

0 , υ
)

× exp
(
2(1 − ε)ς(A − PS)t

)∥∥P0 − P �
0
∥∥

2

as well as

(51)
∥∥Pt − P �

t

∥∥
2 ≤ κμ(P0, υ)κμ

(
P �

0 , υ
)

exp
(
2μ(A − PS)t

)∥∥P0 − P �
0
∥∥

2

with functions Q �→ κμ(Q,υ) and κς(Q,υ) defined in Corollary 5.7.

The article [53] also provides a similar exponential decay when P �
0 = P , with-

out the Lipschitz property w.r.t. the initial covariance matrix, and with half of the
order of the rate of decays to equilibrium stated above.

For completeness and to better connect our work with existing literature on
Riccati differential matrix equations, we end this section with some comments on
the contraction theory of Riccati flows w.r.t the Thompson metric.

We recall that the Thompson’s metric (a.k.a. part metric) on the space of definite
positive matrices P1, P2 is defined by

dT (P1,P2) = log max
(
M(P1/P2),M(P2/P1)

)
with

M(P1/P2) := inf {u ≥ 0 : P1 ≤ uP2}.
By a recent article by D. A. Snyder [59], we have

‖P1 − P2‖F ≤ (
exp

[
dT (P1,P2)

]− 1
)√√√√ ‖P1‖2

F + ‖P2‖2
F

1 + exp (2dT (P1,P2))

≤ edT (P1,P2)

√
‖P1‖2

F + ‖P2‖2
F .

The last assertion is valid as soon as dT (P1,P2) ≤ 1.
Let (Pt ,P

�
t ) be two solutions of the Riccati equation starting at some possibly

different states (P0,P
�
0 ) such that

α−1
1 P �

0 ≤ P0 ≤ α2P
�
0 =⇒ M

(
P0/P

�
0
)≤ α2 and M

(
P �

0 /P0
)≤ α1

for some α1, α2 > 0. By Theorem 8.5 in [42], for any β > 0 we have the contrac-
tion inequality

R ≥ βS =⇒ dT

(
Pt ,P

�
t

)≤ e exp (−2
√

βt) dT

(
P0,P

�
0
)

≤ e exp (−2
√

βt)(α1 ∨ α2)(52)

=⇒ ∥∥Pt − P �
t

∥∥
F ≤ e exp (−2

√
βt)(α1 ∨ α2)

√
‖Pt‖2

F + ∥∥P �
t

∥∥2
F
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as soon as t ≥ (2
√

β)−1 log (α1 ∨ α2). Choosing P �
0 = P and α1 = 1 ≤ α := α2,

we conclude that

(53)
P ≤ P0 ≤ αP and R ≥ βS

=⇒ ‖Pt − P‖F ≤ αee−2
√

βt (2‖P‖F + e2μ(A−PS)t‖P0 − P‖F

)
.

The estimates (52) and (53) are useful as soon ‖Pt‖F is uniformly bounded.
This property is ensured when the filtering problem is uniformly observable and
controllable. In this situation, the exponential rate to equilibrium given in (53) is
related to a signal to noise ratio associated with the pair of matrices (R,S).

We have derived a series of quantitative estimates for Kalman–Bucy diffusions.
These estimates can be used to analyze the stability properties of Kalman–Bucy
filters. For a more thorough discussion and a more recent account on the stability
of discrete generation Kalman filters, we refer to [12, 19, 62] and the references
therein. See also the pioneering article of Anderson [3], the one by Ocone and
Pardoux [53] on the stability of continuous time Kalman–Bucy filters, as well as
the book by H. Kwakernaak, R. Sivan [40].

6. A brief review on Ornstein–Ulhenbeck processes and Riccati equations.

6.1. Some uniform moment estimates. Our analysis on the convergence of the
EnKF requires that μ(A) < 0. This is not really surprising. The EnKF is designed
in terms of interacting covariance matrices and interacting Monte Carlo samples
based on the signal evolution. When μ(A) ≥ 0, the signal contains an unstable
component. In this case, the fluctuations induced by the Monte Carlo samples may
increase dramatically the global error variances. To analyze these interacting filters
based on an extra level of randomness, we need to strengthen the usual condition
μ(A − PS) < 0 discussed in Section 5 to ensure that the signal itself is stable.

Next, we show that the condition μ(A) < 0 cannot be relaxed. In the one-
dimensional case when C = 0, the EnKF resumes to N independent copies of
the signal and X̂t = E(Xt). In this case, we have

μ(A) ≥ 0 ⇐⇒ NE
[(

mN
t − X̂t

)2]= R
(
2μ(A)

)−1(
e2μ(A)t − 1

)−→t↑∞ ∞.

When μ(A) = 0, we use the convention (2μ(A))−1(e2μ(A)t − 1) = t . This shows
that, even for one-dimensional Brownian signal motions, it is hopeless to try to
find some uniform estimates for the sample mean.

Next, we provide a brief discussion on the stability of multidimensional sig-
nal processes. For multidimensional filtering problems, the solution of the signal
stochastic differential equation is given by the Ornstein–Uhlenbeck formula

Xt = eAtX0 − (
Id−eAt )A−1a +

∫ t

0
eA(t−s)R1/2 dWs.

The mean vector and the covariance matrix are given by(
E(Xt) + A−1a

)= etA(
E(X0) + A−1a

)
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and

P X
t = etAP0e

A′t +
∫ t

0
eAsReA′s ds.

In signal processing and control theory, the integral in the right-hand side term is
called the controllability Grammian. Recalling that ‖ exp (tA)‖ ≤ exp (μ(A)t) we
find that ∥∥E(Xt) + A−1a

∥∥≤ exp
(
μ(A)t

)∥∥E(X0) + A−1a
∥∥

and ∥∥∥∥∫ ∞
t

eAsReA′s ds

∥∥∥∥≤ exp
(
2tμ(A)

) ‖R‖
2|μ(A)| .

Recall that −A−1 = ∫∞
0 etA dt ⇒ ‖A−1‖ ≤ 1/|μ(A)|. Thus, the condition μ(A) <

0 (and of course course ‖a‖ < ∞) ensures that

lim
t→∞

∥∥E(Xt) + A−1a
∥∥= 0 = lim

t→∞

∥∥∥∥P X
t −

∫ ∞
0

eAsReA′s ds

∥∥∥∥.
It also yields the uniform moment estimates

(54)

sup
t≥0

E
(‖X̂t‖n)< ∞ and sup

t≥0
E
(‖Xt‖n)< ∞

as well as sup
t≥0

∥∥P X
t

∥∥
F < ∞

for any n ≥ 1. The last assertion is easily checked using Bernstein’s inequality

tr
(
eAeA′)≤ tr

(
eA+A′) (≤ r1e

2μ(A)).
A proof of this inequality result can be found in [7]; see also [69, 70] for a more
thorough discussion on trace inequalities.

6.2. Riccati equations. The Riccati equation (9) can be solved analytically for
nonobserved or noise-free signals (i.e., C = 0 or R = 0). The situation C = 0 has
already been discussed above. In this case, Pt = P X

t resumes to the covariance
matrix P X

t of the signal process.
When R = 0, the solution is given by

Pt = etA

(
P −1

0 +
∫ t

0
esA′

SesA ds

)−1
etA′

(⇒ Pt = (
P −1

0 + St
)−1 when A = 0

)
.

In more general situations, we need to resort to some numerical scheme or to some
additional algebraic development such as the Bernoulli substitution approach to re-
duce the problem to an ordinary linear differential equation in 2r1-dimensions. For
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one-dimensional signal processes (r1 = 1), Pt coincides with the variance between
X̂t and Xt . When S �= 0 and R �= 0, the Riccati equation takes the form

d

dt
Pt = −S(Pt − z1)(Pt − z2)

with the couple of roots

z1 = A − √
A2 + SR

S
< 0 < z2 = A + √

A2 + SR

S
.

The solution is given by the formula:

(55) Pt − z2 = (P0 − z2)
(z2 − z1)e

−2t
√

A2+SR

(z2 − P0)e−2t
√

A2+SR + (P0 − z1)
−→t→∞ 0.

The above formula underlines the fact that the Riccati equation is stable even for
unstable signals, that is, when A > 0. Also observe that

(56) 0 ≤ Pt ≤ z2 + (P0 − z2)+e−2t
√

A2+SR

as soon as P0 ≥ 0, where a+ := max (a,0), for any a ∈ R. We check this claim
using the decomposition

Pt − z2 = (P0 − z2)
(z2 − z1)e

−2t
√

A2+SR

(P0 − z2)(1 − e−2t
√

A2+SR) + (z2 − z1)
.

Assume that S �= 0 and let P = z2 the unique positive fixed point. In this case, we
notice that −√

A2 + SR = A−PS < 0 iff A2 ∧R > 0; and A−PS/2 = z1S/2 <

0 iff R > 0. Our regularity assumption A − PS/2 < 0 cannot capture the case
R = 0 and A �= 0.

Another direct consequence of this result is that the minimum variance function
t �→ Pt is uniformly bounded w.r.t. the time parameter. For matrix valued Riccati
equation, we can use the following comparison lemma.

LEMMA 6.1. We assume that μ(A) < 0. In this situation, we have tr(Pt ) ≤ gt

where gt stands for the solution of the Riccati equation

d

dt
gt = 2αgt − βg2

t + r starting at g0 = tr(P0)

with the parameters (α,β, r) = (μ(A), r−1
1 λmin(S), tr(R)).

PROOF. The key idea is to use the commutation inequality

(57)
tr
(
APt + PtA

′ − PtSPt + R
)

= 2 tr(AsymPt) − tr
(
SP 2

t

)+ tr(R) ≤ 2α tr(Pt ) − β
(
tr(Pt )

)2 + r.



UNIFORM PROPAGATION OF CHAOS 821

In the last display, we have used (6). This yields the Riccati differential inequality

d

dt
tr(Pt ) ≤ 2α tr(Pt ) − β

(
tr(Pt )

)2 + r

from which we conclude that

tr(Pt ) ≤ gt + e2αt (tr(P0) − g0
)

with ∂gt = 2αgt − βg2
t + r.

This completes the proof of the lemma. �

Using Theorem 3.4 or Lemma 6.1, we readily deduce the following uniform
estimates:

(58) μ(A) < 0 =⇒ sup
t≥0

tr(Pt ) < ∞ or equivalently sup
t≥0

‖Pt‖F < ∞.

The left-hand side inequality in (58) is proven using the same analysis as the one
of the scalar Riccati equation (55). The equivalence property in (58) is a direct
consequence of (6). The estimate (56) also implies that

0 ≤ tr(Pt ) ≤ r1μ(A)
1 + δ

λmin(S)
+
(

tr(P0) − r1μ(A)
1 + δ

λmin(S)

)
+

exp
[
2tμ(A)δ

]
with the parameter δ :=

√
1 + r−1

1 [tr(R)λmin(S)]/μ(A)2. These estimates are use-
ful as soon as P0 ≥ P . When P0 ≤ P , we clearly have tr(Pt ) ≤ tr(P ).

7. The Ensemble Kalman–Bucy filter equations.

7.1. Sample mean and covariance diffusions. This section is mainly con-
cerned with the proof of the stochastic differential equations (15) and (16).

The stochastic diffusion equation of the EnKF sample mean (15) is easily
checked using (12) with the r1-multidimensional martingale defined by

dMt = 1√
N

∑
1≤i≤N

R1/2 dW
i

t − 1√
N

∑
1≤i≤N

P N
t C′R−1/2

2 dV
i

t .

This clearly implies (16). Using (12), we also readily check that

d
(
ξ i
t − mN

t

)= (
A − P N

t S
)(

ξ i
t − mN

t

)
dt + dMi

t

with the r1-dimensional martingale

dMi
t := R1/2 dW̃ i

t − P N
t C′R−1/2

2 dṼ i
t

defined in terms of the diffusion processes

W̃ i
t = W

i

t − N−1
∑

1≤j≤N

W
j

t and Ṽ i
t = V

i

t − N−1
∑

1≤j≤N

V
j

t .



822 P. DEL MORAL AND J. TUGAUT

The angle-brackets 〈Mi(k),Mj(k′)〉t associated with the collection of vector val-
ued martingales Mi

t are given by the formulae

(59)
d

dt

〈
Mi(k),Mi(k′)〉

t =
(

1 − 1

N

)(
R + P N

t SP N
t

)(
k, k′)

and for i �= j

(60)
d

dt

〈
Mi(k),Mj (k′)〉

t = − 1

N

(
R + P N

t SP N
t

)(
k, k′).

To check this claim, we observe that

dMi
t :=

(
1 − 1

N

)[
R1/2 dW

i

t − P N
t C′R−1/2

2 dV
i

t

]
− 1

N

∑
j �=i

[
R1/2 dW

j

t − P N
t C′R−1/2

2 dV
j

t

]
= ∑

j

εi
j

[
R1/2 dW

j

t − P N
t C′R−1/2

2 dV
j

t

]
with

εi
j = 1i=j

(
1 − 1

N

)
− 1

N
1i �=j .

Therefore,

dMi
t (k) =∑

j,l

εi
jR

1/2(k, l) dW
j

t (l) −∑
j,l

εi
j

(
P N

t C′R−1/2
2

)
(k, l) dV

j

t (l)

from which we conclude that

d

dt

〈
Mi(k),Mi(k′)〉

t

=∑
j,l

∑
j ′,l′

εi
j ε

i
j ′R1/2(k, l)R1/2(k′, l′

)
1j=j ′1l=l′

+∑
j,l

∑
j ′,l′

εi
j ε

i
j ′
(
P N

t C′R−1/2
2

)
(k, l)

(
P N

t C′R−1/2
2

)(
k′, l′

)
1j=j ′1l=l′

=∑
j

(
εi
j

)2[∑
l

R1/2(k, l)R1/2(k′, l
)

+∑
j,l

(
P N

t C′R−1/2
2

)
(k, l)

(
P N

t C′R−1/2
2

)(
k′, l

)]

=∑
j

(
εi
j

)2(
R − P N

t SP N
t

)(
k, k′).
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In the last assertion, we have used the symmetry of the matrices R1/2 and(
P N

t C′R−1/2
2

)(
k′, l

)= (
P N

t C′R−1/2
2

)′(
l, k′)= (

R
−1/2
2 CP N

t

)(
l, k′).

Observe that∑
j

(
εi
j

)2 =
(

1 − 1

N

)2
+∑

j �=i

1

N2 =
(

1 − 1

N

)((
1 − 1

N

)
+ 1

N

)
=
(

1 − 1

N

)
.

When i �= i′ we have

d

dt

〈
Mi(k),Mi′(k′)〉

t =∑
j

εi
j ε

i′
j

(
R − P N

t SP N
t

)(
k, k′)

and ∑
j

εi
j ε

i′
j = εi

i ε
i′
i + εi

i′ε
i′
i′ + ∑

j /∈{i,i′}
εi
j ε

i′
j

= −2
1

N

(
1 − 1

N

)
+ (N − 2)

1

N2

= 1

N

((
2

N
− 2

)
+
(

1 − 2

N

))
= − 1

N
.

This completes the proof of the angle-bracket formulae (59) and (60).
This implies that

d
[(

ξ i
t − mN

t

)(
ξ i
t − mN

t

)′]
= (

A − P N
t S

)(
ξ i
t − mN

t

)(
ξ i
t − mN

t

)′
dt

+ (
ξ i
t − mN

t

)(
ξ i
t − mN

t

)′(
A′ − SP N

t

)
dt

+ (
1 − N−1)(R + P N

t SP N
t

)
dt + (

ξ i
t − mN

t

)(
dMi

t

)′ + dMi
t

(
ξ i
t − mN

t

)′
.

Summing the indices, we find that

dP N
t = [(

A − P N
t S

)
P N

t + P N
t

(
A′ − SP N

t

)+ (
R + P N

t SP N
t

)]
dt

+ 1√
N − 1

dMt

with

dMt := 1√
N − 1

∑
1≤i≤N

[(
ξ i
t − mN

t

)(
dMi

t

)′ + dMi
t

(
ξ i
t − mN

t

)′]
.

This completes the proof of (17). To check (18), we set εi
t := ξ i

t − mN
t . In this

notation, we have

dMt(k, l) := 1√
N − 1

∑
1≤i≤N

[
εi
t (k) dMi

t (l) + dMi
t (k)εi

t (l)
]
.
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This implies that

(N − 1)
d

dt

〈
M(k, l),M

(
k′, l′

)〉
= ∑

1≤i,i′≤N

[
εi
t (k)εi′

t

(
k′) d

dt

〈
Mi(l),Mi′(l′)〉t

+ εi
t (l)ε

i′
t

(
l′
) d

dt

〈
Mi(k),Mi′(k′)〉

t

]
+ ∑

1≤i,i′≤N

[
εi
t (k)εi′

t

(
l′
) d

dt

〈
Mi(l),Mi′(k′)〉

t

+ εi
t (l)ε

i′
t

(
k′) d

dt

〈
Mi(k),Mi′(l′)〉t].

By (59) and (60), we have

(N − 1)
d

dt

〈
M(k, l),M

(
k′, l′

)〉
=
(

1 − 1

N

) ∑
1≤i≤N

[
εi
t (k)εi

t

(
k′)(R + P N

t SP N
t

)(
l, l′

)
+ εi

t (l)ε
i
t

(
l′
)(

R + P N
t SP N

t

)(
k, k′)]

+
(

1 − 1

N

) ∑
1≤i≤N

[
εi
t (k)εi

t

(
l′
)(

R + P N
t SP N

t

)(
l, k′)

+ εi
t (l)ε

i
t

(
k′)(R + P N

t SP N
t

)(
k, l′

)]
− 1

N

∑
1≤i �=i′≤N

[
εi
t (k)εi′

t

(
k′)(R + P N

t SP N
t

)(
l, l′

)
+ εi

t (l)ε
i′
t

(
l′
)(

R + P N
t SP N

t

)(
k, k′)〉t ]

− 1

N

∑
1≤i �=i′≤N

[
εi
t (k)εi′

t

(
l′
)(

R + P N
t SP N

t

)(
l, k′)

+ εi
t (l)ε

i′
t

(
k′)(R + P N

t SP N
t

)(
k, l′

)]
.

Recalling that

1

N − 1

∑
1≤i≤N

εi
t (k)εi

t

(
k′)= P N

t

(
k, k′)
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and ∑
1≤i≤N

εi
t (k)

∑
1≤i′≤N

εi′
t

(
k′)= 0

⇒ 1

N − 1

∑
1≤i �=i′≤N

εi
t (k)εi′

t

(
k′)= − 1

N − 1

∑
1≤i≤N

εi
t (k)εi

t

(
k′)

= −P N
t

(
k, k′)

we find that
d

dt

〈
M(k, l),M

(
k′, l′

)〉
=
(

1 − 1

N

)
× [

P N
t

(
k, k′)(R + P N

t SP N
t

)(
l, l′

)+ P N
t

(
l, l′

)(
R + P N

t SP N
t

)(
k, k′)]

+
(

1 − 1

N

)
× [

P N
t

(
k, l′

)(
R + P N

t SP N
t

)(
l, k′)+ P N

t

(
l, k′)(R + P N

t SP N
t

)(
k, l′

)]
+ 1

N

[
P N

t

(
k, k′)(R + P N

t SP N
t

)(
l, l′

)+ P N
t

(
l, l′

)(
R + P N

t SP N
t

)(
k, k′)〉t ]

+ 1

N

[
p
(
k, l′

)(
R + P N

t SP N
t

)(
l, k′)+ P N

t

(
l, k′)(R + P N

t SP N
t

)(
k, l′

)]
.

This completes the proof of (18). The last assertion can be checked easily using
the fact that 〈M(n),Mi〉t does not depend on the index i.

This completes the proof of the EnKF differential equations (15) and (16).

7.2. Uniform moments estimates. The following technical lemma combines a
Foster–Lyapunov approach with martingale techniques to control the moments of
Riccati-type stochastic differential equations uniformly w.r.t. the time horizon.

LEMMA 7.1. Let Zt be some stochastic processes adapted to some filtration
Ft and taking values in some measurable state space (E,E). Let H be some non-
negative measurable function on (E,E) such that

(61) dH(Zt) = LtH(Zt) dt + dMt (H)

with an Ft -martingale Mt (H) and some Ft -adapted process LtH(Zt).

• Assume that

LtH(Zt) ≤ 2γ
√

H(Zt) + 3αH(Zt) − βH(Zt)
2 + r,

d

dt

〈
M(H)

〉
t ≤ H(Zt)

(
τ0 + τ1H(Zt) + τ2H(Zt)

2)
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for some parameters α < 0 and γ,β, r, τ0, τ1, τ2 ≥ 0. In this situation, we have
the uniform moment estimates

1 ≤ n < 1 + 2 min
(
β/τ2, |α|/τ1

) =⇒ sup
t≥0

E
(
H(Zt)

n)< ∞

with the convention β/0 = ∞ = |α|/0 when τ2 = 0 or when τ1 = 0.
• Assume that

LtH(Zt) ≤ 2τt (Zt )
√

H(Zt) + 2αH(Zt) + βt(Zt )

d

dt

〈
M(H)

〉
t ≤ H(Zt)γt (Zt )

for some α < 0 and some nonnegative functions (τt , βt , γt ) s.t.

δτ,t (n) := E
(
τt (Zt )

n) 1
n < ∞

δβ,t (n) := E
(
βt(Zt )

n) 1
n < ∞ and δγ,t (n) := E

(
γt (Zt )

n) 1
n < ∞

for any n ≥ 1. In this situation, we have the estimate

E
(
H(Zt)

n) 1
n

≤ eαt
E
(
H(Z0)

n) 1
n

+
∫ t

0
eα(t−s)[(δτ,s(2n)2/|α| + δβ,s(n) + (n − 1)δγ,s(n)/2

)]
ds.

PROOF. First, we observe that

∀ε > 0 : 2γ
√

H(Zt) ≤ εH(Zt) + 1

ε
γ 2.

Choosing ε = |α| > 0, we find that

LtH(Zt) ≤ 2αH(Zt) − βH(Zt)
2 + r + γ 2/|α|.

For any n ≥ 1, we have

dH(Zt)
n = Ln,tH(Zt) dt + dMn,t (H)

with the martingale dMn,t (H) := nH(Zt)
n−1dMt (H) and the drift

Ln,tH(Zt) = n

[
H(Zt)

n−1LtH(Zt) + (n − 1)

2
H(Zt)

n−2 d

dt

〈
M(H)

〉
t

]
≤ 2nαnH(Zt)

n − nβnH(Zt)
n+1 + nρnH(Zt)

n−1

with

αn = α + τ1
(n − 1)

2
< 0,

βn =
(
β − (n − 1)

2
τ2

)
> 0
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and

ρn =
(
r + (n − 1)

2
τ0

)
> 0

as soon as 1 ≤ n < 1 + 2|α|τ−1
1 and 1 ≤ n < 1 + 2βτ−1

2 . This implies that

1

n

d

dt
E
(
H(Zt)

n)≤ 2αnE
(
H(Zt)

n)− βnE
(
H(Zt)

n+1)+ ρnE
(
H(Zt)

n−1)
≤ 2αnE

(
H(Zt)

n)− βnE
(
H(Zt)

n)1+ 1
n + ρnE

(
H(Zt)

n)1− 1
n

and, therefore,

d

dt
E
(
H(Zt)

n) 1
n = 1

n
E
(
H(Zt)

n) 1
n
−1 d

dt
E
(
H(Zt)

n)
≤ 2αnE

(
H(Zt)

n) 1
n − βnE

(
H(Zt)

n) 2
n + ρn.

This shows that

E
(
H(Zt)

n) 1
n ≤ gn,t + e2αnt (

E
(
H0(Z0)

n) 1
n − gn,0

)
with

d

dt
gn,t = 2αngn,t − βng

2
n,t + ρn.

The end of the proof of the first assertion follows the same lines of arguments as
the ones of Lemma 6.1.

Now we come to the proof of the second assertion.
Arguing as above, we have

∀ε > 0 : 2τt (Zt )
√

H(Zt) ≤ εH(Zt) + τt (Zt )
2/ε.

Choosing ε = |α|, we find that

LtH(Zt) ≤ αH(Zt) + βt (Zt ) + τt (Zt )
2/|α|.

Therefore, there is no loss of generality to assume that τt (Zt ) = 0 by changing 2α

by α and βt (Zt ) by βt (Zt ) + τt (Zt )
2

|α| . By (61), we have

dH(Zt)
n = nH(Zt)

n−1LtH(Zt) dt

+ n(n − 1)

2
H(Zt)

n−2 d

dt

〈
M(H)

〉
t dt + nH(Zt)

n−1 dMt (H).

This implies that

d

dt
E
(
H(Zt)

n)≤ nαE
(
H(Zt)

n)
+ n

[
E
(
βt(Zt )H(Zt)

n−1)+ (n − 1)

2
E
(
γt (Zt )H(Zt)

n−1)].
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Using Hölder inequality, we have

E
(
βt(Zt )H(Zt)

n−1)≤ E
(
H(Zt)

n)1− 1
nE
(
βn

t (Zt )
) 1

n ≤ δβ,t (n)E
(
H(Zt)

n)1− 1
n .

In much the same way, we have

E
(
γt (Zt )H(Zt)

n−1)≤ δγ,t (n)E
(
H(Zt)

n)1− 1
n .

This yields the estimate:

∂E
(
H(Zt)

n)≤ nαE
(
H(Zt)

n)+ nδt (n)E
(
H(Zt)

n)1− 1
n

with δt (n) = δβ,t (n) + (n − 1)δγ,t (n)/2. We conclude that

d

dt
E
(
H(Zt)

n) 1
n = 1

n
E
(
H(Zt)

n) 1
n
−1 d

dt
E
(
H(Zt)

n)≤ αE
(
H(Zt)

n) 1
n + δt (n).

The last assertion is a direct application of Grönwall inequality.
The proof of the lemma is now complete. �

PROPOSITION 7.2. Assume that μ(A) < 0. In this situation, we have the uni-
form trace moment estimates

1 ≤ n < 1 + N − 1

2r1

λmin(S)

λmax(S)
=⇒ sup

t≥0
E
([

tr
(
P N

t

)]n)≤ c(n)

with the convention λmin(S)
λmax(S)

= 0 when S = 0. In addition, when condition (S) is met
we have

sup
t≥0

E
(∥∥ζ 1

t

∥∥2n)≤ c(n) and sup
t≥0

E
(∥∥ξ1

t

∥∥2n)≤ c(n).

The left-hand side estimates are valid for any n ≥ 1, while the right-hand side ones
are valid for 3n < 1 + N−1

2r1

λmin(S)
λmax(S)

.

PROOF. We set H(P N
t ) := tr(P N

t ) the trace function of the random sample
covariance matrices P N

t . Using (17), we prove evolution equation

dH
(
P N

t

)= LH
(
P N

t

)
dt + 1√

N − 1
dMt with Mt := tr(Mt)

and the drift

LH
(
P N

t

) := 2 tr
(
AsymP N

t

)− tr
(
Sp2

t

)+ tr(R).

Following the proof of Lemma 6.1, we also have the estimates

0 ≤ d

dt
〈M〉t = 4 tr

((
R + P N

t SP N
t

)
P N

t

)≤ 4H
(
P N

t

)(
μ(R) + μ(S)H

(
P N

t

)2)
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and

LH
(
P N

t

)≤ 2αH
(
P N

t

)− βH
(
P N

t

)2 + r

with

α := 2μ(A) < 0 , β := r−1
1 λmin(S) and r := tr(R).

The moment estimates of the trace of the sample covariance matrices are now
easily checked using Lemma 7.1.

Now we come to the proof of the moments estimates of the norm of the samples.
Notice that

dξ i
t = ((

A − P N
t S

)
ξ i
t + a + P N

t SXt

)
dt + dM

ξ,i
t

with r1-dimensional martingale

dM
ξ,i
t := R1/2 dW

i

t + P N
t C′R−1/2

2 d
(
Vt − V

i

t

)
.

We set H(Xt, ξt ) := ‖ξ1
t ‖2. In this notation, we have

dH(Xt , ξt ) = LtH(Xt , ξt ) dt + dMt (H) with dMt (H) = 2
〈
ξ1
t , dM

ξ,1
t

〉
and

LtH(Xt , ξt ) = 〈
ξ1
t ,
(
A + A′ − (

P N
t S + SP N

t

))
ξ1
t

〉+ 2
〈
ξ1
t , a + P N

t SXt

〉
+ tr

(
R + 2P N

t SCP N
t

)
.

On the other hand,

(S) =⇒ 〈
ξ1
t ,
(
A + A′ − (

P N
t S + SP N

t

))
ξ1
t

〉≤ 2μ(A)
∥∥ξ1

t

∥∥2
.

Using the inequality,

(62) 2〈x, y〉 ≤ 1

ε
‖x‖2 + ε‖y‖2

with 0 < ε = −μ(A) < −2μ(A) [recall that μ(A) < 0] y = ξ i
t and x = a +

P N
t SXt , we find that

LtH(Xt , ξt ) ≤ μ(A)
∥∥ξ i

t

∥∥2 + βt(Xt , ξt ) = μ(A)H(Xt , ξt ) + βt(Xt , ξt )

with

βt(Xt , ξt ) = ∣∣μ(A)
∣∣−1∥∥a + P N

t SXt

∥∥2 + tr
(
R + 2P N

t SCP N
t

)
.

On the other hand, we have∥∥a + P N
t SXt

∥∥≤ ‖a‖ + ‖S‖‖Xt‖
∥∥P N

t

∥∥ with
∥∥P N

t

∥∥≤ ∥∥P N
t

∥∥
F ≤ tr

(
P N

t

)
and

tr
((

R + P N
t SP N

t

)
P N

t

)≤ tr
(
P N

t

)(
μ(R) + μ(S)

(
tr
(
P N

t

))2)
.
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Combining these estimates with the trace estimates, we have just proven and the
signal state uniform moment estimates stated in (54) a direct application of the
Lemma 7.1 yields

sup
t≥0

E
(∥∥ξ1

t

∥∥2n)≤ c(n).

Notice that the control of the nth moment of βt(Xt , ξt ) involves the control of
the (3n)th moment of the trace of P N

t . The same analysis applies to ζ 1
t with P N

t

replaced by Pt .
This ends the proof of the proposition. �

8. Uniform estimates. This section is mainly concerned with the proof of the
uniform estimates presented in Theorem 3.6. The first step is to control and to esti-
mate the fluctuations of the particle covariance matrices involved in the EnKF filter
uniformly w.r.t. the time horizon. In Section 8.1, we present a key uniform control
of the Frobenius norm between the particle covariance matrices and their limiting
values. These estimates are used in Section 8.2 to derive the uniform propagation
of chaos properties of the EnKF.

8.1. Uniform convergence of empirical covariance matrices. The next theo-
rem is pivotal. It describes the evolution of the Frobenius norm of the “centered”
sample covariance matrices in terms of a nonlinear diffusion and provides some
key uniform convergence results.

THEOREM 8.1. The Frobenius norm of the sample covariance matrix fluctu-
ations satisfies the diffusion equation

(63) d
∥∥P N

t − Pt

∥∥2
F =

(
αt

(
P N

t

)+ 1

N − 1
βt

(
P N

t

))
dt + 2√

N − 1
dMt

with the drift functions

αt

(
P N

t

) := 2 tr
([(

A + A′)− 1

2

{(
P N

t + Pt

)
S + S

(
P N

t + Pt

)}](
P N

t − Pt

)2)
βt

(
P N

t

) := 2
[
γt

(
P N

t

)+ tr
(
R + P N

t SP N
t

)
tr
(
P N

t

)]
γt

(
P N

t

) := tr
((

R + P N
t SP N

t

)
P N

t

)
and a martingale Mt with angle bracket

d

dt
〈M〉t = 4 tr

(
P N

t

(
P N

t − Pt

)(
R + P N

t SP N
t

)(
P N

t − Pt

))
.

In addition, when μ(A) < 0 and (S) is satisfied we have the uniform mean error
estimates

2n < 1 + N − 1

2r1
=⇒ sup

t≥0
E
(∥∥P N

t − Pt

∥∥n
F

) 1
n ≤ c(n)/

√
N.
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PROOF. By (9) and (17), we have

d
(
P N

t − Pt

)= [
A
(
P N

t − Pt

)+ (
P N

t − Pt

)
A′ − (

P N
t SP N

t − PtSPt

)]
dt

+ 1√
N − 1

dMt

with the martingale Mt with angle brackets defined in (18). Using the decomposi-
tion,

P N
t SP N

t − PtSPt = (
P N

t − Pt

)
S
(
P N

t − Pt

)+ PtS
(
P N

t − Pt

)+ (
P N

t − Pt

)
SPt ,

we readily check that

A
(
P N

t − Pt

)+ (
P N

t − Pt

)
A′ − (

P N
t SP N

t − PtSPt

)
=
[
A − 1

2

(
P N

t + Pt

)
S

](
P N

t − Pt

)+ (
P N

t − Pt

)[
A′ − 1

2
S
(
P N

t + Pt

)]
.

This implies that

d
((

P N
t − Pt

)2)
= 2

(
P N

t − Pt

){[
A − 1

2

(
P N

t + Pt

)
S

](
P N

t − Pt

)
+ (

P N
t − Pt

)[
A′ − 1

2
S
(
P N

t + Pt

)]}
dt

+ 1

N − 1

[(
R + P N

t SP N
t

)
P N

t + P N
t

(
R + P N

t SP N
t

)
+ tr

(
P N

t

)(
R + P N

t SP N
t

)+ (
tr
(
R + P N

t SP N
t

))
P N

t

]
dt

+ 2√
N − 1

(
P N

t − Pt

)
dMt .

Taking the trace, we find that

d
∥∥P N

t − Pt

∥∥2
F

= 2 tr
([(

A + A′)− 1

2

{(
P N

t + Pt

)
S + S

(
P N

t + Pt

)}](
P N

t − Pt

)2)
dt

+ 2

N − 1

[
tr
((

R + P N
t SP N

t

)
p
)+ tr

((
R + P N

t SP N
t

))
tr
(
P N

t

)]
dt

+ 2√
N − 1

dMt

with the martingale

dMt = tr
((

P N
t − Pt

)
dMt

)= ∑
1≤k,l≤r1

(
P N

t − Pt

)
(l, k) dMt(k, l).
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The angle bracket of Mt is computed using (18). More precisely, we have

d

dt
〈M〉t = 4 tr

((
R + P N

t SP N
t

)(
P N

t − Pt

)
P N

t

(
P N

t − Pt

))
.

We check this claim using the decomposition

d

dt
〈M〉t = ∑

1≤k,l,k′,l′≤r1

(
P N

t − Pt

)
(l, k)

(
P N

t − Pt

)(
l′, k′) d

dt

〈
M(k, l),M

(
k′, l′

)〉
t .

Recalling that

d

dt

〈
M(k, l),M

(
k′, l′

)〉
t = (

R + P N
t SP N

t

)(
k, k′)P N

t

(
l, l′

)
+ (

R + P N
t SP N

t

)(
l, l′

)
P N

t

(
k, k′)

+ (
R + P N

t SP N
t

)(
l′, k

)
P N

t

(
k′, l

)
+ (

R + P N
t SP N

t

)(
l, k′)P N

t

(
k, l′

)
and using the symmetry of the matrices (P N

t ,Pt ) and (R + P N
t SP N

t ) we find that

d

dt
〈M〉t = ∑

1≤k,l,k′,l′≤r1

P N
t

(
l′, l

)(
P N

t − Pt

)
(l, k)

(
R + P N

t SP N
t

)(
k, k′)

× (
P N

t − Pt

)(
k′, l′

)
+ ∑

1≤k,l,k′,l′≤r1

(
P N

t − Pt

)
(k, l)

(
R + P N

t SP N
t

)(
l, l′

)(
P N

t − Pt

)(
l′, k′)

× P N
t

(
k′, k

)
+ ∑

1≤k,l,k′,l′≤r1

P N
t

(
k′, l

)(
P N

t − Pt

)
(l, k)

(
R + P N

t SP N
t

)(
k, l′

)
× (

P N
t − Pt

)(
l′, k′)

+ ∑
1≤k,l,k′,l′≤r1

(
P N

t − Pt

)
(l, k)P N

t

(
k, l′

)(
P N

t − Pt

)(
l′, k′)

× (
R + P N

t SP N
t

)(
k′, l

)
.

This shows that
d

dt
〈M〉t = 4 tr

(
P N

t

(
P N

t − Pt

)(
R + P N

t SP N
t

)(
P N

t − Pt

))
.

This completes the proof of the first assertion.
We set H(P N

t ,Pt ) = ‖P N
t −Pt‖2

F . In this notation, equation (63) takes the form

dH
(
P N

t ,Pt

)= LtH
(
P N

t ,Pt

)
dt + dMt (H) with Mt (H) := 2√

N − 1
Mt
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and

LtH
(
P N

t ,Pt

)= αt

(
P N

t

)+ 1

N − 1
βt

(
P N

t

)
.

Under condition (S), we have

tr
([(

A + A′)− 1

2

{(
P N

t + Pt

)
S + S

(
P N

t + Pt

)}](
P N

t − Pt

)2)
= tr

((
A + A′)(P N

t − Pt

)2)− ρ(S) tr
((

P N
t + Pt

)(
P N

t − Pt

)2)
.

Using (6), this implies that

αt

(
P N

t

)≤ 2λmax
(
A + A′)∥∥P N

t − Pt

∥∥2
F ≤ 4μ(A)H

(
P N

t ,Pt

)
and by (5) we have

d

dt

〈
M(H)

〉
t ≤ 42(N − 1)−1 tr

(
R + P N

t SP N
t

)
tr
(
P N

t

)
H
(
P N

t ,Pt

)
.

This implies that

LtH
(
P N

t ,Pt

)≤ 4μ(A)H
(
P N

t ,Pt

)+ (N − 1)−1βt

(
P N

t

)
.

Arguing as in the end of the proof of Proposition 7.2, we also have

sup
t≥0

E
(
βt

(
P N

t

)n)≤ c(n) and sup
t≥0

E
(
γt

(
P N

t

)n)≤ c′(n)

for any n s.t. 3n < 1 + N−1
2r1

. Using Lemma 7.1, we conclude that

E
(∥∥P N

t − Pt

∥∥2n
F

) 1
n ≤ c(n)/N.

For odd numbers, we use Hölder’s inequality

E
(∥∥P N

t − Pt

∥∥2n+1
F

)≤ E
(∥∥P N

t − Pt

∥∥2n
F

) 1
2E
(∥∥P N

t − Pt

∥∥2(n+1)
F

) 1
2 .

The end of the proof of the uniform estimates is now easily completed. The proof
of the theorem is now complete. �

8.2. Uniform propagation of chaos. This section is mainly concerned with the
proof of the second uniform estimate stated in the right-hand side of (29). We set

Zt = (Pt ,Xt , ζt , ξt )

χt := ξ1
t − ζ 1

t

H(Zt) := ‖χt‖2

and

qt := P N
t − Pt .
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We have

dχt = (
Aχt − (

P N
t Sξ1

t − PtSζ 1
t

)+ qtSXt

)
dt + qtC

′R−1/2
2 d

(
Vt − V

1
t

)
.

Observe that

P N
t Sξ1

t − PtSζ 1
t = P N

t Sχt + qtSζ 1
t .

This implies that

(64) dχt = ((
A − P N

t S
)
χt − qtS

(
ζ 1
t − Xt

))
dt + dMt

with

dMt = qtC
′R−1/2

2 d
(
Vt − V

1
t

)
.

The angle bracket matrix 〈M〉t = (〈M(k),M(l)〉t )1≤k,l≤r1 is given by the formula

(65)
d

dt
〈M〉t = 2qtSqt .

On the other hand, we have

d‖χt‖2 = 2〈χt , dχt 〉 + tr
(

d

dt
〈M〉t

)
dt

= 2
[〈
χt ,

(
A − P N

t S
)
χt

〉− 〈
χt , qtS

(
ζ 1
t − Xt

)〉+ tr
(
q2
t S
)]+ 2〈χt , dMt 〉.

This yields

dH(Zt) = LtH(Zt) dt + dMt (H) with dMt (H) := 2〈χt , dMt 〉
with

LtH(Zt) = 2
[〈
χt ,

(
A − P N

t S
)
χt

〉− 〈
χt , qtS

(
ζ 1
t − Xt

)〉+ tr
(
q2
t S
)]

and
d

dt

〈
M(H)

〉
t := 8〈χt , qtSqtχt 〉.

Using (27), (6) and (62), we check that

LtH(Zt) ≤ μ(A)‖χt‖2 + ∣∣μ(A)
∣∣−1∥∥qtS

(
ζ 1
t − Xt

)∥∥2 + 2μ(S)‖qt‖2
F .

On the other hand, we have∥∥qtS
(
ζ 1
t − Xt

)∥∥≤ ‖qt‖F ‖S‖∥∥ζ 1
t − Xt

∥∥.
This implies that

LtH(Zt) ≤ μ(A)H(Zt) + βt(Zt )

with

βt(Zt ) = [∣∣μ(A)
∣∣−1‖S‖2∥∥ζ 1

t − Xt

∥∥2 + 2μ(S)
]‖qt‖2

F .
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In much the same way, we have
d

dt

〈
M(H)

〉
t ≤ H(Zt)γt (Zt ) with γt (Zt ) := 8‖S‖‖qt‖2

F .

By Theorem 8.1, and using the uniform estimates stated in (54) and in Proposi-
tion 7.2 for any 2n < 1 + N−1

2r1
we have

sup
t≥0

E
(
βt (Zt )

n) 1
n ≤ c(n)/

√
N and sup

t≥0
E
(
γt (Zt )

n) 1
n ≤ c(n)/

√
N.

The proof of the uniform estimates in (29) is now a direct consequence of
Lemma 7.1. This completes the proof of Theorem 3.6.

9. Proof of Proposition 5.3. The estimate (44) is a direct consequence of the
perturbation Lemma 1.1 and the triangle inequality (28).

Now we come to the proof of (45). We set

Xt = X
�

t − Xt and Qt = P �
t − Pt .

Arguing as in (64), we have

(66)
dXt = ((

A − P �
t S
)
Xt − QtS(Xt − Xt)

)
dt + dMt

with
d

dt
〈M〉t = 2QtSQt .

This implies that

d‖Xt‖2 = 2
[〈
Xt ,

(
A − P �

t S
)
Xt

〉− 〈
Xt ,QtS(Xt − Xt)

〉+ tr
(
Q2

t S
)
/2
]+ dMt

with a real valued martingale with angle bracket
d

dt
〈M〉t = 8〈Xt ,QtSQtXt 〉 ≤ 8‖S‖‖Xt‖2‖Qt‖2.

Using the same arguments as in the proof of (29) given in the end of Section 8, we
conclude that

E
(‖Xt‖2n) 1

n ≤ eμ(A)t
E
(‖X0‖2n) 1

n + c

∫ t

0
eμ(A)(t−s)‖Qs‖2

F ds

for any n and some finite constant c. Using (44), we arrive at the estimate

E
(∥∥Xt − X

�

t

∥∥2n) 1
2n ≤ eμ(A)t/2

E
(∥∥X0 − X

�

0
∥∥2n) 1

2n

+ c

[∫ t

0
eμ(A)(t−s)e2μ(A)s ds

]1/2∥∥P0 − P �
0
∥∥
F

≤ eμ(A)t/2[
E
(∥∥X0 − X

�

0
∥∥2n) 1

2n + c′∥∥P0 − P �
0
∥∥
F

]
for some finite constant c′. Also notice that

(23) and (45)

⇒ E
(∥∥X̂t − X̂�

t

∥∥2n) 1
2n ≤ eμ(A)t/2[

E
(∥∥X̂0 − X̂�

0
∥∥2n) 1

2n + c
∥∥P0 − P �

0
∥∥
F

]
.

This completes the proof of Proposition 5.3.
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10. Proof of Theorem 3.4. We have

d(Xt − Xt) = (A − PtS)(Xt − Xt) + R
1/2
1 (dWt − Wt) + PtC

′R−1/2
2 (dVt − V t).

This implies that

d‖Xt − Xt‖2 = [
2
〈
Xt − Xt, (A − PtS)(Xt − Xt)

〉+ tr(R1 + PtSPt )
]
dt + dMt

with some martingale Mt s.t.

d

dt
〈Mt 〉 ≤ ‖Xt − Xt‖2 tr(R1 + PtSPt ).

We set AP := A−PS. For any u ∈]0,1], there exists some time horizon τu(P0) ≥
0 such that for any t ≥ τu(P0)

sup
t≥τu(P0)

μ(A − PtS) ≤ (1 − u)μ(AP ).

This yields

d‖Xt − Xt‖2 = [
2(1 − u)μ(AP )‖Xt − Xt‖2 + c(u)

]
dt + dMt

and
d

dt
〈Mt 〉 ≤ ‖Xt − Xt‖2c(u)

for some finite constant c(u) whose values only depend on u. By Lemma 7.1, we
conclude that

sup
t≥0

E
(‖Xt − Xt‖n)< ∞

for any n ≥ 1.
When X

�

t is the steady state Kalman–Bucy diffusion, we have P �
t = P , for any

t ≥ 0. In this situation, (66) takes the form

dXt = (
APXt − QtS(Xt − Xt)

)
dt + dMt

with Qt = P −Pt and a martingale Mt with d
dt

〈M〉t = 2QtSQt . This implies that

d‖Xt‖2 = 2
[〈Xt ,APXt 〉 − 〈

Xt ,QtS(Xt − Xt)
〉+ tr

(
Q2

t S
)
/2
]+ dMt

with a real valued martingale with angle bracket

d

dt
〈M〉t = 8〈Xt ,QtSQtXt 〉 ≤ 8‖S‖‖Xt‖2‖Qt‖2.

Using the log-norm Lipschitz estimate (51) in Corollary 5.8, we have

‖QtS‖F ≤ ‖S‖F ‖Qt‖F ≤ c(u) exp
(
2(1 − u)μ(AP )t

)‖S‖F ‖P0 − P‖F ,

tr
(
Q2

t S
)∨ ‖QtSQt‖F ≤ c(u)2 exp

(
4(1 − u)μ(AP )t

)‖S‖F ‖P0 − P‖2
F

for any u ∈]0,1], and t ≥ 0, and for some constant c(u) that depends on u.
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We set

Zt = (Xt , Pt ), H(Zt) = ‖Xt‖2 and Mt(H) := Mt

and we consider the parameter α := μ(AP ) and the function

τt (Zt ) := c(u) exp
(
2(1 − u)αt

)‖S‖F ‖P0 − P‖F ‖Xt − Xt‖,
βt (Zt ) := c(u)2 exp

(
4(1 − u)αt

)‖S‖F ‖P0 − P‖2
F ,

γt (Zt ) := (
4‖S‖)c(u)2 exp

(
4(1 − u)αt

)‖P0 − P‖2
F .

In this notation, we have

dH(Zt) ≤ LtH(Zt) dt + Mt(H)

with

LtH(Zt) ≤ 2αH(Zt) + 2τt (Zt )
√

H(Zt) + βt(Zt )

and
d

dt

〈
M(H)

〉
t ≤ H(Zt)γt (Zt ).

We also have

E
(
τt (Zt )

n) 1
n ≤ c1(u) exp

(
2(1 − u)αt

)‖P0 − P‖F ,

E
(
βt (Zt )

n) 1
n ∨E

(
γt (Zt )

n) 1
n ≤ c2(u) exp

(
4(1 − u)αt

)‖P0 − P‖2
F

for any n ≥ 1, for some constants ci(u) that depends on u, with i ∈ {1,2}. Using
Lemma 7.1, we check that for any u ∈]0,1] and any t ≥ 0 we have

E
(‖Xt‖2n) 1

n ≤ eαt
E
(‖X0‖2n) 1

n + c(u)e(1−u)αt‖P0 − P‖2
F

for some constants c(u) that depends on u. Using (23), we also check that

E
[∥∥X̂t − X̂�

t

∥∥2n] 1
2n ≤ c(u)e(1−u)αt/2(

E
(∥∥X̂0 − X̂�

0
∥∥2n) 1

2n + ‖P0 − P‖F

)
,

where X̂�
t is the steady state Kalman–Bucy filter. This completes the proof of the

proposition.

11. Proof of Theorem 3.5. To simplify the presentation, we assume that
P �

0 = P .
We further assume that the algebraic Riccati equation (21) has a positive definite

fixed point P (so that P is invertible). We also assume that μ(A − PS) < 0.
Let (Xt ,X

�

t ) be a couple of Kalman–Bucy diffusions (10) starting from two
possibly different Gaussian random variables with covariance matrices (P0,P ).
We recall that

X̂t = E(Xt |Ft ) and X̂�
t = E

(
X

�

t |Ft

)
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satisfy the Kalman–Bucy filter recursion (8) associated with the covariance matri-
ces (Pt ,P ), with Pt given by the Riccati equation (9).

Let (ηt , η
�
t ) be the (Gaussian) conditional distributions of (Xt ,X

�

t ) given the
σ -field Ft generated by the observation process. The conditional Boltzmann–
Kullback Leibler relative entropy of ηt w.r.t. η�

t is given by the formula:

Ent
(
ηt |η�

t

)= −1

2

(
tr
(
I −P −1Pt

)+ log det
(
PtP

−1)− 〈(
X̂�

t − X̂t

)
,P −1(X̂�

t − X̂t

)〉)
.

To estimate the logarithm of the determinant of the matrices PtP
−1 as t ↑ ∞, we

use the following technical lemma.

LEMMA 11.1. For any (r × r)-matrix A, we have

‖A‖F <
1

2
=⇒ ∣∣log det(I − A)

∣∣≤ 3

2
‖A‖F .

PROOF. By (5), for any n ≥ 1 we have∣∣tr(An)∣∣≤ ‖A‖n
F .

Using the well-known trace formulae,

log det(I − A) = tr
(
log (I − A)

)= −∑
n≥1

n−1 tr
(
An)

we conclude that ∣∣log det(I − A)
∣∣≤ − log

(
1 − ‖A‖F

)
.

The last assertion comes from the inequality

0 ≤ − log (1 − u) ≤ u + 1

2

u2

1 − u
= u

(
1 + 1

2

u

1 − u

)
≤ 3u/2

which is valid for any u ∈ [0,1/2[ .
This completes the proof of the lemma. �

For any u ∈]0,1], and t ≥ 0, there exists some c(u) that depends on u s.t.∥∥I − P −1Pt

∥∥
F ≤ ∥∥P −1∥∥

F ‖P − Pt‖F

≤ c(u) exp
(
2(1 − u)μ(A − PS)t

)‖P0 − P‖F .

Applying Lemma 11.1 to A = (P − Pt)P
−1, there exists some t0 that depends

on (P0,P ) and some finite constant c such that∣∣log det
(
PtP

−1)∣∣≤ 3

2
‖P − Pt‖F

∥∥P −1∥∥
F

for any t ≥ t0. On the other hand, we have∣∣tr(I − P −1Pt

)∣∣= ∣∣tr(P −1(P − Pt)
)∣∣≤ ∥∥P −1∥∥

F ‖P − Pt‖F .
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Finally, we notice that∣∣〈(X̂�
t − X̂t

)
,P −1(X̂�

t − X̂t

)〉∣∣≤ ∥∥P −1∥∥
2

∥∥X̂�
t − X̂t

∥∥2
.

We conclude that

0 ≤ Ent
(
ηt |η�

t

)≤ 3

2

∥∥P −1∥∥
F

(∥∥X̂�
t − X̂t

∥∥2 + ‖P − Pt‖F

)
for any t ≥ t0. The end of the proof of (25) is now clear. This completes the proof
of Theorem 3.5.

12. Conclusion. We have designed and analyzed a new class of conditional
nonlinear diffusion processes arising in filtering theory. In contrast with conven-
tional nonlinear Markov models, these Kalman–Bucy diffusion type models de-
pends on the conditional covariance matrices of the internal random states. To
analyze the stability properties of these models, a series of functional contraction
inequalities have been developed w.r.t. the Wasserstein distance, Frobenius norms
on random matrices and relative entropy criteria.

In this framework, the traditional Kalman–Bucy filter resumes to the time evo-
lution of the conditional averages of these nonlinear diffusions. The stability prop-
erties of the filter are now deduced directly from the ones of the nonlinear model.

The second important contribution of the article concerns the long-time be-
haviour and the refined convergence analysis of ensemble Kalman filters. The
EnKF is interpreted as a natural mean-field particle approximation of nonlinear
Kalman–Bucy diffusions. The performance of the EnKF is measured in terms
of uniform Ln-mean error estimates and uniform propagation of chaos properties
w.r.t. the time horizon.

We end this article with an avenue of open research problems.
The first project is to extend the analysis to nonlinear diffusions with an inter-

acting function that depends on the covariance matrices of the random states. A toy
model of that form is given by the one-dimensional diffusion

dXt = Var(Xt) (dWt − Xt dt),

where Wt stands for a Brownian motion. It is readily check that this nonlinear
diffusion is well-posed. In addition, the variance Pt = Var(Xt) = P0/(1 + P0t)

satisfies the Riccati equation:

d

dt
Pt = −P 2

t and Xt = (X0 + P0Wt)/(1 + P0t).

Besides the fact that the convergence rate of Pt towards 0 is not exponential, fol-
lowing the stochastic analysis developed in the present article several uniform
propagation of chaos properties can be developed for this toy model is a rather
simple way. The extension of these results to more general multidimensional dif-
fusions with drift remains an open research question.
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The second open question is to analyze the long-time behaviour of the extended
EnKF commonly used in nonlinear filtering theory and signal processing. In this
connection, we emphasize that these extended Kalman–Bucy filters require com-
puting the derivative of the drift coefficient w.r.t. the state variable, which is a
complex task and subject to potential error in high dimension. For nonlinear sys-
tems, the EnFK is commonly used in data assimilation literature with nonlinear
drift coefficients. The analysis of the long-time behaviour of these derivative-free
EnKF filters also remains an open important research problem.

Last but not least, another important problem is clearly to develop uniform prop-
agations of chaos properties of the EnKF in discrete time settings. Last, but not
least a series of research projects can be developed around the fluctuations and the
large deviations of this new class of mean-field-type particle models.

APPENDIX

Proof of Lemma 1.1. The first assertion is a direct consequence of the in-
equality:

∥∥Es,t (A + B)
∥∥

2 ≤ exp
(∫ t

s
μ(Au)du +

∫ t

s
‖Bu‖2 du

)
.

The above estimate is a direct consequence of the matrix log-norm inequality

μ(At + Bt) < μ(At) + μ(Bt) and the fact that μ(Bt) ≤ ‖Bt‖2.

This completes the proof of the first assertion. To check the second assertion, we
observe that

∂tEs,t (A + B) = (
∂tEt (A + B)

)
Es(A + B)−1

= AtEs,t (A + B) + BtEs,t (A + B).

This implies that

Es,t (A + B) = Es,t (A) +
∫ t

s
Eu,t (A)BuEs,u(A + B)du

for any s ≤ t from which we prove that

eβA(t−s)
∥∥Es,t (A + B)

∥∥≤ αA + αA

∫ t

s
‖Bu‖eβA(u−s)

∥∥Es,u(A + B)
∥∥du.

By Grönwall’s lemma, this implies that

eβA(t−s)
∥∥Es,t (A + B)

∥∥≤ αA exp
[∫ t

s
αA‖Bu‖du

]
.

This completes the proof of the lemma.
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Proof of Lemma 5.4. This section is mainly concerned with the proof of
Lemma 5.4. Let P1 and P2 be the covariance matrices of some r-valued random
variables Z1 and Z2. Let Zi be an independent copie of Zi , with i = 1,2, and set

Z1,2 := Z1 − Z2 and Z1,2 := Z1 − Z2.

Observe that

Z1 − Z1 = (Z2 − Z2) + (Z1,2 − Z1,2)

and for any i = 1,2 we have

2Pi = E(Zi ) with the random matrix Zi := (Zi − Zi)(Zi − Zi)
′.

This yields the decomposition

Z1 −Z2 = (Z2 − Z2)(Z1,2 − Z1,2)
′

+ (Z1,2 − Z1,2)(Z2 − Z2)
′

+ (Z1,2 − Z1,2)(Z1,2 − Z1,2)
′.

This shows that

2(P1 − P2) = E
(
(Z2 − Z2)(Z1,2 − Z1,2)

′)
+E

(
(Z1,2 − Z1,2)(Z2 − Z2)

′)
+E

(
(Z1,2 − Z1,2)(Z1,2 − Z1,2)

′)
from which we prove the trace formula

2 tr(P1 − P2) = 2E
(〈Z1,2 − Z1,2,Z2 − Z2〉)

+E
(‖Z1,2 − Z1,2‖2).

By the Cauchy–Schwarz inequality, we find that

2
∣∣tr(P1 − P2)

∣∣≤ 8E
(‖Z1,2‖2)1/2

E
(‖Z2‖2)1/2

+ 4E
(‖Z1,2‖2).

This yields

1

2

∣∣tr(P1 − P2)
∣∣≤ 2E

(‖Z1 − Z2‖2)1/2
E
(‖Z2‖2)1/2

+E
(‖Z1 − Z2‖2)

from which we find that

1

2

∣∣tr(Pη0) − tr(Pη�
0
)
∣∣≤ 2W2

(
η0, η

�
0
)∥∥η�

0(e2)
∥∥1/2 +W2

(
η0, η

�
0
)2

.
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In much the same way, we have

4‖P1 − P2‖2
F = ∑

1≤i,j≤r

[
E
(
(Z1,2 − Z1,2)(i)(Z1,2 − Z1,2)(j)

)
+E

(
(Z2 − Z2)(i)(Z1,2 − Z1,2)(j)

)
+E

(
(Z2 − Z2)(j)(Z1,2 − Z1,2)(i)

)]2
.

This implies that

2‖P1 − P2‖2
F = ∑

1≤i,j≤r

[{
E
(
(Z1,2 − Z1,2)(i)(Z1,2 − Z1,2)(j)

)}2

+ {
E
(
(Z2 − Z2)(i)(Z1,2 − Z1,2)(j)

)}2

+ {
E
(
(Z2 − Z2)(j)(Z1,2 − Z1,2)(i)

)}2]
.

Using the Cauchy–Schwarz inequality, we prove that

2‖P1 − P2‖2
F ≤ 2

∑
1≤i≤r

E
(
(Z1,2 − Z1,2)(i)

2) ∑
1≤j≤r

E
(
(Z2 − Z2)(j)2)

+
[ ∑

1≤i≤r

E
(
(Z1,2 − Z1,2)(i)

2)]2
.

This implies that
√

2‖P1 − P2‖F ≤ 4
√

2E
(‖Z1,2‖2)1/2

E
(‖Z2‖2)1/2 + 4E

(‖Z1,2‖2).
We find that

‖Pη0 −Pη�
0
‖F ≤W2

(
η0, η

�
0
)∥∥η�

0(e2)
∥∥1/2 + 1√

2
W2

(
η0, η

�
0
)2

.

This completes the proof of the lemma.

DIVERGENCE REGIONS—2D OBSERVERS

We illustrate the spectral analysis discussion given in Section 4.1 with
2-dimensional partially observed filtering problems associated with the parame-
ters

(r1, r2) = (2,1), C = [1,0], (R1,R2) = (Id,1)

and some unstable drift matrix A with a saddle equilibrium, that is,

−det(A) = A2 ∧ A1 > 0

with the column vectors A1 = (A1,1
A1,2

)
and A2 = (A2,1

A2,2

)
. In the above display, A2 ∧

A1 stands for the cross product of the vectors A2 and A1. Whenever A1,2 �= 0, the



UNIFORM PROPAGATION OF CHAOS 843

system is observable and controllable; thus there exists some unique steady state
P and Re(λmax(A)) < 0, or equivalently

tr(A) < P1,1 and A2 ∧ P1 > A2 ∧ A1.

The set of admissible fluctuation matrices Q (i.e., s.t. P + Q ≥ 0) is defined by

Q(P ) :=
{
Q ∈ Sr1 :

[
P1 − 1

2
Q1

]
∧ Q2 +

[
P2 + 1

2
Q2

]
∧ Q1 < P1 ∧ P2

}
∩ {Q ∈ Sr1 : Q1,1 ∈ [−P1,1,∞[ and Q2,2 ∈ [−P2,2,∞[}.

Given some Q ∈ Q(P ) several cases can happen. In the most favorable case, we
have (

P1,1 − tr(A)
)
> −Q1,1 and det

([
(A1 − P1) − Q1,A2

])
> 0

⇐⇒ Re
(
λmax(A − QS)

)
< 0.

The determinant condition is equivalent to

Q1 ∧ A2 < A2 ∧ P1 − A2 ∧ A1.

To be more precise, we have two negative eigenvalues when tr(A − QS)2 >

4 det(A − QS), otherwise we have a spiral phase portrait with complex eigen-
values with negative real parts. In both cases, the matrix A − QS remains stable.
Skipping the discussion on borderline cases, the other situations that may arise is
that

Q1 ∧ A2 > A2 ∧ P1 − A2 ∧ A1 or 0 < P1,1 − tr(A) < −Q1,1.

When the left-hand side condition is met, the eigenvalues have opposite signs and
the stochastic observer experience a catastrophic divergence in the direction of the
eigenvector associated with the positive one. When the right-hand side condition
is met, both eigenvalues are negative real numbers if tr(A − QS)2 > 4 det(A −
QS), otherwise they are both complex with the same negative real part. In both
situations, the observer diverges. The divergence set (34) is given by

Qdiv = {
Q ∈ Q(P ) : Q1 ∧ A2 > A2 ∧ P1 − A2 ∧ A1

}
∪ {Q ∈Q(P ) : Q1,1 < −(P1,1 − tr(A)

)}
.

For instance, for

A =
[
1 2
1 3

]
=⇒ P �

[
8.7 14.5

14.5 30

]
and A �

[ −7.4 2
−13.5 3

]
.

Notice that the system is locally ill-conditioned as λmax(A) = 5.4913 > 0. The set
of admissible fluctuations is given by

Q(P ) := {
Q ∈ Sr1 : Q1,2Q2,1 + 14.5(Q1,2 + Q2,1)

< 52.2 + 8.7Q2,2 + 30Q1,1 + Q1,1Q2,2
}

∩ {Q ∈ Sr1 : Q1,1 ∈ [−8.7,∞[ and Q2,2 ∈ [−30,∞[}.
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FIG. 1. Fluctuation-divergence effects.

In this situation, we have

Qdiv � {
Q ∈ Q(P ) : Q1,2 < 1.5Q1,1 − 1.8

}
∪ {Q ∈Q(P ) : Q1,1 ∈]−8.7,−4.7[}.

In this situation, the stable subset of Q(P ) is given by

Q ∈ Q(P ) : Q1,2 > 1.5Q1,1 − 1.8 and Q1,1 ∈]−4.7,∞[.
These convergence and divergence sets without the admissible conditions are

illustrated in Figure 1.
The trace of the divergence domain with diagonal matrices (i.e., Q1,2 = 0 =

Q2,1) resume to diagonal matrices s.t.

Q1,1 ∈]1.2,∞[ and 0 < 52.2 + 8.7Q2,2 + 30Q1,1 + Q1,1Q2,2.

The trace with the stable domain is

Q1,1 ∈]−4.7,1.2[ and 0 < 52.2 + 8.7Q2,2 + 30Q1,1 + Q1,1Q2,2.

An illustration of this set is given in Figure 2.
The fluctuation/divergence effects we can expect when the observer is driven by

fluctuations entering into the divergence domain are illustrated in Figure 3. A series
of realization of the stochastic observer driven by fluctuation matrices in the stable
domain are presented in Figure 4(a), (b); the ones driven by fluctuation matrices in
the divergence set are presented in Figure 4(c), (d). The entries Q2,2 are not seen
by the observer so we assume that Q2,2 = 0.
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FIG. 2. Trace of the stable domain with diagonal matrices.

FIG. 3. Fluctuation-divergence effects.
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FIG. 4. Stochastic observer and steady state in the stable and in the divergence domains.
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