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CHANGE POINT DETECTION IN NETWORK MODELS:
PREFERENTIAL ATTACHMENT AND

LONG RANGE DEPENDENCE

BY SHANKAR BHAMIDI1, JIMMY JIN2 AND ANDREW NOBEL3

University of North Carolina

Inspired by empirical data on real world complex networks, the last few
years have seen an explosion in proposed generative models to understand
and explain observed properties of real world networks, including power law
degree distribution and “small world” distance scaling. In this context, a nat-
ural question is how to understand the effect of change points—how abrupt
changes in parameters driving the network model change structural properties
of the network. We study this phenomenon in one popular class of dynami-
cally evolving networks: preferential attachment models. We derive asymp-
totic properties of various functionals of the network including the degree
distribution as well as maximal degree asymptotics, in essence showing that
the change point does effect the degree distribution but does not change the
degree exponent. This provides evidence for long range dependence and sen-
sitive dependence of the evolution of the network on the initial evolution of
the process. We propose an estimator for the change point and prove consis-
tency properties of this estimator. The methodology developed highlights the
effect of the nonergodic nature of the evolution of the network on classical
change point estimators.

1. Introduction. The increasing availability of, and interest in, relational data
for real world systems, has motivated the study of theoretical models for complex
networks. The aim of these models is to explain structural features observed in the
data (e.g., power law degree distribution or “small world” connectivity), and to
understand and predict the behavior of dynamic processes on these networks. Dy-
namic processes on networks include disease contact networks, search algorithms,
random walks, evolution and dissolution of communities and a variety of related
processes [2, 10, 19, 23, 25, 42, 43, 58]. Among this research activity, the study
of temporal, or time varying, networks has been particularly active; see the recent
surveys [9, 31] and the references therein for methodological developments, as
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well as applications in a wide array of fields ranging from social networks, online
communication and cell biology.

Many dynamic network models involve a set of parameters that describe the
time evolution of networks under the model. A natural question in this context is
how to identify and understand the effect of change points—in particular, the ef-
fect of abrupt changes in parameters on the evolution and structural properties of
the network. First, consider the simplest version of the classical (offline) change
point detection problem for independent observations. Let F and G be (unknown
but different) distribution functions, and let γ ∈ (0,1) be a change point parameter.
We observe {Xi : 1 ≤ i ≤ n} where Xi are i.i.d. with distribution F for i ≤ �nγ �
and Xi are i.i.d. with distribution G (and independent of the initial segment) for
i > �nγ �. The simplest version of the classical change point problem is to consis-
tently estimate γ as n → ∞.

In this spirit, this paper has two goals:

(a) We begin with a variant of the standard preferential attachment model for
evolving networks that incorporates a change point. We study the effect of the
change point on the structural properties of the network, including the scale-free
(heavy tailed) behavior of the limiting degree distribution, and the asymptotics of
the maximal degrees.

(b) We then propose and study the consistency of an offline estimation proce-
dure to detect the location of the change point from observed data. Our analysis
provides insight into the effects of the nonstationarity of the network evolution on
existing methods for estimation in the i.i.d. and ergodic settings.

1.1. Organization of the paper. Over the last few decades there has been a
substantial amount of work on change point detection and preferential attachment
models. We defer a fuller discussion of related work, and its relevance to the paper,
until Section 3. Our change point preferential attachment model is defined in the
next section. In Section 1.3, we introduce notation required for the main results.
The main results are contained in Section 2, beginning with Section 2.1, which
describes the asymptotics for several functionals of the networks, including the
degree distribution and maximal degree. Section 2.2 describes change point esti-
mators and establishes their consistency. Proofs for the results on asymptotics of
network functionals can be found in Section 4. Section 5 develops a functional
central limit theorem for a specific functional of the network, which is used in
Section 6 to establish consistency of the proposed estimator.

1.2. Model formulation. We begin by describing the original model of pref-
erential attachment with no change point [4, 53, 60]. There are many variants of
this model. Throughout the paper, we will consider the simplest case where the
network at each stage is a tree, but we note that our methodology can be extended
to the general network setup. Begin with a single vertex at time m = 1. This vertex
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will be referred to as the root or the original progenitor of the process and denoted
by ρ. Fix a parameter α ≥ 0. At each integer time 1 < m ≤ n a new vertex en-
ters the system with a single edge that is connected in a stochastic fashion to a
pre-existing vertex. In particular, the edge connects to a pre-existing vertex v with
probability proportional to the current degree of v plus α. Let Tm denote the graph
at time m and let {Tm : 1 ≤ m ≤ n} be the graph valued process over n times steps.
Since each new vertex is connected to an existing vertex, for each m ≥ 1, Tm is
a tree rooted at ρ. Thus for m > 1, the degree of every vertex is at least 1. If we
regard the existing vertex to which a new vertex attaches as the parent of this ver-
tex, then one can view this process as generating a directed tree with edges pointed
from parents to children.

Our analysis is based on a continuous-time version of the preferential attach-
ment model for which a slight variant of the above discrete-time process is more
natural. Note that for directed, rooted trees, the degree of every vertex other than
the root is 1 + out-degree of that vertex; for the root, the degree and the out-degree
coincide. Fix a single vertex at time m = 1 and a parameter α > 0. The variant of
preferential attachment considered in this paper is as follows: at each stage m > 1,
a new vertex enters the system and connects to a pre-existing vertex v ∈ Tm−1 with
probability proportional to 1 + α plus the out-degree of v in Tm−1. This model
differs from the original only in the attachment probability to the root, and has all
the same asymptotic properties as the original model but is slightly easier to deal
with rigorously.

The preferential attachment model has been studied extensively and in particular
it is known [12] that the degree distribution converges in the large network limit.
Precisely, if Nn(k) is the number of vertices with degree k in Tn, then for each
fixed k ≥ 1:

(1.1)
Nn(k)

n

a.e.−→ pα(k) where pα(k) := (2 + α)

∏k−1
j=1(j + α)∏k+2
j=3(j + 2α)

.

Here, we use “a.e.” to denote convergence almost everywhere and in the above
expression, for k = 1, we use the notation

∏k−1
j=1 = 1. Writing Dα for a random

variable having the above distribution, it is easy to check that there exists a constant
c := c(α) > 0 such that

(1.2) P(Dα ≥ k) ∼ c

kα+2 as k → ∞.

Further arranging the degrees of the vertices in Tn in decreasing order as Mn(1) ≥
Mn(2) ≥ · · · ≥ Mn(n), it is known [6, 41] that for any fixed k ≥ 1, there exists a
nondegenerate probability distribution να

k on R
k+ such that

(1.3)
(
n

− (1+α)
(2+α) Mn(j) : 1 ≤ j ≤ k

) w−→ νk
α,

where we use
w−→ to denote weak convergence.
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1.2.1. Model with change point. Now fix two attachment parameters α,β > 0,
a change point parameter γ ∈ (0,1), and a system size n > 1. The model is as
before, but now the attachment dynamics change at time �nγ �:

(a) For time 0 < m ≤ �nγ �, the new vertex entering the system at time m

connects to pre-existing vertices with probability proportional to their current out-
degree plus 1 + α.

(b) For time �nγ � < m ≤ n, the new vertex connects to pre-existing vertices
with probability proportional to their current out-degree plus 1 + β .

Let θ = (α,β, γ ) be the parameters of the model. Let Tθ ,m denote the rooted tree
at time m, and let {Tθ ,m : 1 ≤ m ≤ n} denote the entire graph valued process. When
the context is clear, for ease of notation we suppress the dependence on θ and write
{Tm : 1 ≤ m ≤ n}. This model is the main object of interest for the rest of the paper.

1.3. Preliminary notation. To state our main results, we will need to define
some additional objects. Recall that θ := (α,β, γ ) is the parameter set used to
construct the model. Let {Eα(k) : k ≥ 1} be a sequence of independent exponential
random variables such that Eα(k) has rate k + α for each fixed k ≥ 1. We view the
random variables Eα(k) as the inter-arrival times of a point process Pα on R+. In
detail, define

Lα(m) = Eα(1) + · · · + Eα(m), m ≥ 1,

and define the point process

(1.4) Pα := (Lα(1),Lα(2), . . .
)
.

In an analogous fashion, define random variables {Eβ(k) : k ≥ 1} and {Lβ(k) :
k ≥ 1}, and the corresponding point process Pβ . For t ≥ 0, let Nα(t) := Pα[0, t]
denote the number of points in Pα which falls in the interval [0, t].

We will need a variant of the second point process. For j ≥ 1, let Pj
β be the

point process generated from the random variables {Eβ(m) : m ≥ j}. Thus the first
point arrives at exponential rate j + β , the second point arrives at rate j + 1 + β

after the first point and so forth. Let N
j
β(·) be the corresponding counting process

and note that N1
β(·) = Nβ(·). Define the constant

(1.5) a = 1

2 + β
log

1

γ
,

and define the “truncated” exponential distribution the interval [0, a] via the cu-
mulative distribution function

(1.6) Ga(s) = 1 − exp(−(2 + β)s)

1 − exp(−(2 + β)a)
, s ∈ [0, a].

Write Age for a random variable with distribution Ga (the reason for this terminol-
ogy will become clear in the proof). Generate a counting process Nβ(·) as above



CHANGE POINT DETECTION IN NETWORKS 39

(independent of Age) so that Nβ[0,Age] is the number of points that occur before
the random time Age.

We are now in a position to define the limiting degree distribution under the
change point model. Let Dα have distribution (1.1), namely the limiting degree
distribution without change point. Define an integer valued random variable Dθ as
follows:

(a) With probability 1 − γ , Dθ = 1 + Nβ[0,Age].
(b) With probability γ , Dθ = Dα + N

Dα

β [0, a], where the point process N
Dα

β

is generated conditional on the value of Dα .

Write pθ = (pθ (k) : k ≥ 1) for the probability mass function of Dθ , namely

(1.7) pθ (k) = P(Dθ = k), k ≥ 1.

2. Results. Let us now describe our main results. We state results about the
asymptotic degree distribution in Section 2.1. Change point estimates and associ-
ated consistency results are presented in Section 2.2.

2.1. Asymptotics for the degree distribution. Fix θ ∈ R+ × R+ × (0,1). For
fixed k ≥ 1, let Nn(k) denote the number of vertices with degree k in the ran-
dom tree Tn constructed in the change point model of Section 1.2.1. The random
variable Dθ in the following result is as defined in (1.7).

THEOREM 2.1. Let k ≥ 1 be fixed. The degree distribution satisfies

Nn(k)

n

P−→ P(Dθ = k) as n → ∞.

Further, for α 
= β and γ ∈ (0,1), pθ 
= pα . However, there exist constants 0 < c <

c′ such that for all k ≥ 1

(2.1)
c

kα+2 ≤P(Dθ ≥ k) ≤ c′

kα+2 .

REMARK 1. This theorem says that the network does feel the effect of the
change point in the empirical degree distribution if α 
= β and γ ∈ (0,1). However,
comparing (2.1) with (1.2), we see that for any fixed γ ∈ (0,1) the tail behavior
of the degree distribution is the same with and without the change point. This is a
little surprising as one might expect that the tail of the degree distribution would
scale like k−(2+β), especially when γ is close to zero and β < α so that the degree
distribution of the post-change process has a heavier tail. Nevertheless, the theorem
shows that the tail behavior of the pre-change process governs the tail behavior of
the final process, regardless of the other parameters.

REMARK 2. The techniques developed in this paper easily extend to the set-
ting of multiple change points. We describe these extensions in Theorem 3.1.
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FIG. 1. Log log plot showing the limiting degree distribution (red) and simulated network degree
distribution (blue) with network size n = 500,000 and a corresponding sample of the same size from
the predicted degree distribution. The model parameters are taken as α = 6, β = 1 and the change
point γ = 0.5. We discuss other values of the parameters in Section 3.

The next result deals with maximal degree asymptotics. As before, arrange the
degrees in Tn in decreasing order as Mn(1) ≥ Mn(2) ≥ · · · ≥ Mn(n).

THEOREM 2.2. Fix k ≥ 1 and consider the k maximal degrees (Mn(j) :
1 ≤ j ≤ k). Then the sequence of Rk+ valued random variables defined by

Mn(k) := (n− (1+α)
(2+α) Mn(j) : 1 ≤ j ≤ k

)
, n ≥ 1

is tight and bounded away from zero.

REMARK 3. Comparing the scaling of the maximal degrees above to the set-
ting of no change point in (1.3), we see that the order of magnitude of the maximal
degrees is not affected by the change point. We conjecture that {Mn(k) : n ≥ 1}
converges weakly to a nondegenerate distribution on R

k+, but do not pursue this
further in this paper.

2.2. Change point detection. In this section, we formulate a nonparametric
estimator for the change point based on observations of the network and establish
its consistency. While one could use the explicit linear nature of the attachment
scheme to devise parametric or likelihood-based estimators of the change point,
our aim is to develop more flexible methods that may work in settings where the
precise form of the attachment model before and after the change point is not
known. Extensions of the methodology to these more general settings are currently
under study. The plan of the rest of this section is as follows. Our estimator tracks
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the proportion of leaves as the process evolves and uses this functional to formulate
a nonparametric estimator. Thus we start by describing a functional central limit
for the proportion of leaves (Theorem 2.3). Then we formulate the actual estimator
based on this functional. Theorem 2.3 is then used to establish the consistency
result (Theorem 2.4) for the proposed estimator.

We begin with some notation and definitions. For fixed k ≥ 1, let Nn(k,m)

denote the number of vertices with degree k in the tree Tm at the time of appearance
of the mth vertex. Rescaling time by n, for 0 ≤ t ≤ 1, let N̂n(k, t) = Nn(k, �nt�)
and let

(2.2) p̂n(k, t) = N̂n(k, t)

nt
, 0 ≤ t ≤ 1,

be the proportion of vertices with degree k at time nt . The k = 1 case corresponds
to the number of leaves in the tree. To ease notation in the displays below, we will
write p̂n(1, t) = p̂n

t . Define the continuous function

(2.3) p
(∞)
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 + α

3 + 2α
if 0 < t ≤ γ,

2 + β

3 + 2β

(
1 −
(

γ

t

) 3+2β
2+β
)

+ 2 + α

3 + 2α

(
γ

t

) 3+2β
2+β

if γ ≤ t ≤ 1.

We will prove in Section 5.1 that for each fixed t ∈ (0,1], the value p
(∞)
t is the

limiting proportion of leaves in Tnt . Note that p
(∞)
t = p

(∞)
γ for t ≤ γ , namely the

function is constant until time γ . To simplify notation, define δ :R+ → [0,1] by

(2.4) δu := 1 + u

2 + u
, u ≥ 0,

and define the (positive) function σM : [0,1] → (0,∞) via

(2.5) σ 2
M(t) :=

⎧⎪⎨
⎪⎩

t2δα
[
δαp(∞)

γ

(
1 − δαp(∞)

γ

)]
if 0 ≤ t ≤ γ,

[3pt]γ 2δα

(
t

γ

)2δβ

δβp
(∞)
t

(
1 − δβp

(∞)
t

)
if γ < t ≤ 1.

Finally, define the functions

(2.6) σ 2(t) :=
{[

δαp(∞)
γ

(
1 − δαp(∞)

γ

)]
if 0 ≤ t ≤ γ,

[4pt]δβp
(∞)
t

(
1 − δβp

(∞)
t

)
if γ < t ≤ 1,

and

(2.7) μ(t) :=

⎧⎪⎪⎨
⎪⎪⎩

δα

tδα+1 , 0 < t ≤ γ,

[2pt] − δβγ δβ−δα

tδβ+1 , γ < t ≤ 1.
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Let {B(u) : u ≥ 0} be standard Brownian motion on R+, and define the diffusion
{M(t) : 0 ≤ t ≤ 1} via the prescription

(2.8) dM(t) = σM(t) dB(t), 0 ≤ t ≤ 1.

Then M is a deterministic time change of B(·), in the sense that

(2.9)
{
M(t) : 0 ≤ t ≤ 1

} d= {B(φ(t)
) : 0 ≤ t ≤ 1

}
where φ(t) =

∫ t

0
σ 2

M(s) ds,

and in particular, M(·) is a Gaussian process on [0,1]. Define

(2.10) g(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1

tδα
if 0 < t ≤ γ,

γ δβ−δα

tδβ
if γ < t ≤ 1,

and the associated process

(2.11) G(t) = g(t)M(t), 0 < t ≤ 1.

By Itô’s formula, G(·) solves the SDE

(2.12) dG(t) = μ(t)M(t) dt + σ(t) dB(t),

where σ(·) and μ(·) are as in (2.6) and (2.7), respectively. Then we have the fol-
lowing result.

THEOREM 2.3. Consider the process of re-centered and normalized number
of leaves

(2.13) Gn(t) := N̂n(1, t) − ntp
(∞)
t√

n
, 0 ≤ t ≤ 1.

Then as n → ∞, Gn
w−→ G. Here, G is the diffusion defined in (2.12)

w−→ denotes
weak convergence on D([0,1]) equipped with the Skorohod metric.

For the rest of this section, let pn(m) denote the proportion of leaves (degree one
vertices) in Tm, and let ε > 0 be fixed. Define two functions on [ε,1] as follows:

(2.14) th
(n) = 1

n(t − ε)

nt∑
m=nε

pn(m), ε ≤ t ≤ 1

and

(2.15) h
(n)
t = 1

n(1 − t)

n∑
m=nt+1

pn(m), ε ≤ t ≤ 1.
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In words, th
(n) represents the average proportion of leaves in the process between

time nε and nt , while h
(n)
t represents the same quantity after time nt . Let

(2.16) Dn(t) := (1 − t)
∣∣
th

(n) − h
(n)
t

∣∣, t ∈ [ε,1]
be the scaled absolute difference of the leaf proportions before and after time nt ,
and let Mn be the collection of t ∈ [ε,1] such that Dn(t) is close to its maximum
value D∗

n = maxt∈[ε,1] Dn(t). In detail,

(2.17) Mn :=
{
t ∈ [ε,1] : ∣∣Dn(t) − D∗

n

∣∣≤ logn√
n

}
.

Finally, let

(2.18) γ̂n := max{t : t ∈ Mn}.
The functionals D∗

n,Mn, and γ̂n all depend on ε but we suppress this dependence
to ease exposition below.

THEOREM 2.4. Assume that the change point γ > ε. Then γ̂n
P−→ γ , and, in

fact,

(2.19) |γ̂n − γ | = OP

(
logn√

n

)
.

Thus γ̂n is a consistent estimator for change points γ > ε.

REMARK 4. Consideration of t ≥ ε > 0 serves to control the factor t in the
denominator of (2.14). Technically, one should be able to choose a sequence εn ↓ 0
slowly enough so that the resulting estimators would be consistent for any γ > 0.
However, even proving the above result turns out to be nontrivial owing to the
nonergodic nature of the evolution of the process after the change point. Thus we
restrict ourselves to proving the above result. We hope to address distributional
convergence and sharper estimators for the above problem in future work.

REMARK 5. If we replace the threshold logn/
√

n in (2.17) by a threshold
of the form ωn/

√
n, where ωn tends to infinity arbitrarily slowly, then the corre-

sponding estimator satisfies (2.19) with bound OP (ωn/
√

n).

REMARK 6. See Figure 2 for a figure based on simulations for the function
Dn(t) with ε taken to be zero.

3. Discussion. In this section, we discuss the relevance of our results, their
connections to the existing change point literature and possible extensions.
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FIG. 2. The function Dn(t) with network size n = 200,000 and model parameters α = 6, β = 1
and the change point γ = 0.5 as in Figure 1.

3.1. Multiple change points. The proof techniques here carry over in a
straightforward fashion to the general setting of multiple change points. Fix time
points 0 < γ1 < γ2 < · · · < γk < 1 and parameters α, (βi)1≤k . As before, write
θ = (α, (βi)1≤i≤k, (γi)1≤i≤k) for the parameter set. Consider the random tree
Tn = Tθ ,n where:

(i) In the interval {1 < t ≤ γ1n}, vertices use the attachment scheme driven by
α (namely each new vertex attaches to an existing vertex with probability propor-
tional to out-degree plus 1 + α).

(ii) In subsequent intervals {(γj )n < t ≤ (γj+1)n} where 1 ≤ j ≤ k, vertices
perform the attachment scheme driven by the parameter βj . Here, we use the con-
vention γ0 = 0, γk+1 = 1.

As in Section 1.3 define the point processes Pα,Pβi
and for fixed j ≥ 1, the point

processes Pj
α,Pj

βi
. To simplify notation, for any t ≥ 0 and point process P , set

P[0, t] for the number of points in the interval [0, t]. Define the constants

(3.1) πj = γj+1 − γj , aj = 1

2 + βj

log
γj+1

γj

.

Note that π = (π0, π1, . . . , πk) is a probability mass function. Write Epoch for
a random variable with distribution π [i.e., P(Epoch = i) = πi for 0 ≤ i ≤ k].
Using the constants {ai : 1 ≤ i ≤ k} let Gai

denote corresponding truncated expo-
nential distributions as in (1.6) and let Agei denote a random variable with distri-
bution Gai

. Now construct the random variable TimeAlive as follows:

(a) Generate a collection of independent random variables Epoch and {Agei :
1 ≤ i ≤ k} with distributions specified as above.
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(b) Conditional on Epoch = i, let

TimeAlive = Agei +
k∑

j=i+1

aj ,

where again by convention, if Epoch = 0, Age0 = 0 and so TimeAlive =∑k
j=1 ai .

Construct a positive integer valued random variable Dθ as follows:

(i) Generate Epoch ∼ π as above and the corresponding random variable
TimeAlive.

(ii) If Epoch takes a nonzero value 1 ≤ i ≤ k, conditional on Epoch = i, gen-
erate the switching point process P� on the interval [0,TimeAlive] as follows:

(a) Initialization: In the interval [0,Agei], start with P� = Pβi
. Suppose

by time Agei , P�[0,Agei] = k. Now generate a point process Pk+1
βi+1

and let

P�[0,Agei + ai+1] = P�[0,Agei] +Pk
βi+1

[0, ai+1].
(b) Recursion: For each subsequent interval [aj , aj+1] with j > i, conditional

on P�[0,Agei + ai+1 + · · · + aj ] = kj , generate the point process Pkj+1
βj+1

. Define

P�[0,Agei +ai+1 +· · ·+aj+1] = P�[0,Agei +ai+1 +· · ·+aj ]+Pkj+1
βj+1

[0, aj+1].
Iterate until the last interval resulting in P�[0,TimeAlive].
Now define Dθ = 1 +P�[0,TimeAlive].

(iii) If Epoch = 0, so that TimeAlive = a1 +· · ·+ak , generate a random variable
Dα with distribution pα as in (1.1). Conditional on Dα , generate P� in the interval
[0, a1] with distribution PDα

β1
and then sequentially proceed as in (ii). In this case,

define Dθ = Dα +P�[0,TimeAlive].
Write pθ (·) for the p.m.f. of Dθ . As before for k ≥ 1, let Nn(k) denote the number
of vertices with degree k in Tn. Then we have the following result.

THEOREM 3.1. As n → ∞, we have

Nn(k)

n

P−→ pθ (k).

Further there exist constants 0 < c < c′ such that for all k ≥ 1

(3.2)
c

kα+2 ≤P(Dθ ≥ k) ≤ c′

kα+2 .

3.2. Possible extensions. Motivated by a number of illuminating comments
by the anonymous referees and the associate editor, here we describe possible ex-
tensions of the treatment in this paper. First, note that we use information on leaf
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densities in the large network n → ∞ limit to develop change point estimators.
As in [48], one should be able to build on the functional CLT for leaf counts to
establish a joint functional CLT for {N̂n(k, t) : 1 ≤ k ≤ K,0 ≤ t ≤ 1} after proper
normalization and re-centering for any fixed K ≥ 1. Modifying the estimator in
Section 6 should enable one to get estimators that perform better for finite n. We
are currently in the process of establishing functional central limit theorems, which
we then hope to use to develop change point estimators in order to rigorously
understand the increase in asymptotic mean-square efficiency using more degree
information.

Second, note that we have only considered the change point estimation problem
in this paper. As pointed out by the referee a natural extension to explore is ex-
tending this treatment to a hypothesis testing framework in the context of testing
the existence (or lack thereof) of a change point. We are currently in the process
of studying the (properly normalized) behavior of the functionals proposed in this
paper including the function Dn(·) defined in (2.16) under the null hypothesis of
no change point.

A final natural extension is understanding what happens if one does not have
data on every time point but rather a filtering (subset) of time points.

3.3. Change point detection. This problem of change point detection has a
long history owing to its importance in applications in fields ranging from qual-
ity control and reliability of industrial processes (e.g., quick detection of process
failure in production) to signal processing (e.g., automatic segmentation of signals
into stationary segments via identification of change points, etc.). We direct the
interested reader to [5, 13, 16, 17, 21, 51, 52, 54] and the references therein for an
overview of some of the statistical methodology and applications.

Recall the motivating example of an independent stream of data {Xi : 1 ≤ i ≤ n}
with a change point in the distribution from F to G at time nγ described in Sec-
tion 1. Let tH

(n)(·) and H
(n)
t denote the empirical distribution of the data before

and after t , namely

tH
(n) := 1

nt

nt∑
i=1

δXi
, H

(n)
t := 1

n(1 − t)

n∑
i=nt+1

δXi
, 0 < t < 1.

Now define

Dn(t) := t (1 − t)dist
(
tH

(n),H
(n)
t

)
,

where dist is any standard notion of distance between probability distributions on
R, for example, Kolmogorov–Smirnov or total variation distance. Finally, define

γ̂n = argmax
t∈[0,1]

Dn(t).

In [16], it is shown that γ̂n is a consistent estimator of γ . In contrast to the classical
setting above, the statistics Dn(t) defined in [see (2.16)] is not symmetric in t ,
reflecting the nonergodic nature of the evolution under the change point model.
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3.4. Temporal networks and change points. As described in the Introduction,
the availability of data on real world networks over the last few years has moti-
vated development of mathematical methodology in a wide array of fields. Work
similar in spirit to change point detection includes segmentation and boundary
detection, for example, [37, 57], the detection of anomalous subgraphs and mo-
tifs within networks, for example, [1, 27, 28, 44], and the detection of anomalous
edges via link prediction algorithms [32]. For a survey of this work, see [18]. There
is also an active literature concerning the detection of change points in temporal
(time-varying) network data, and in particular, structural properties of these such
networks. An algorithmic approach to understanding evolving communities in so-
cial networks based on minimum description length is given in [55], while more
statistically grounded approaches can be found in [24, 30, 39, 40, 47, 50, 61]. See
[46] for an overview of the state of the art regarding change point detection in
networks; this paper also develops new statistical methodology using a general-
ized hierarchical random graph model (GHRG) and various likelihood ratio based
test statistics to detect existence of change points via online detection algorithms
and studies the performance of these algorithms on synthetic as well as real data.
A rigorous analysis of dynamic models, in which each time slice of the model is
assumed to be an Erdős–Rényi random graph, is given in [38, 59].

3.5. Preferential attachment. The preferential attachment model has become
one of the standard workhorses in the complex networks community, based in part
on the fact that it exhibits the power law/heavy tailed degree distribution observed
in an array of real world systems. As the literature on preferential attachment is
large and very broad, we focus on work that is close in spirit to the work in this pa-
per. The preferential attachment model was introduced in the combinatorics com-
munity in [56] and was brought to the attention of the networks community in [4].
The papers [42] and [23] give survey-level treatments of a wide array of related
models, while [12] gives the first rigorous results on the asymptotic degree distri-
bution. More general models and results can be found in [11, 20, 25, 49] and the
references therein.

We are not aware of other analyses of the effect of change point in structural
properties of such network models. There has been a lot of recent interest in un-
derstanding and detecting the “initial seed” [14, 15, 22]. Here, one starts with
an initial “seed graph” at time m = 0 and then performs preferential attachment
started from that seed. The aim is then to estimate this initial seed based on an
observation of the network at some large time n. While different from this paper,
this body of work again emphasizes the sensitive dependence on initial conditions
for such network models.

3.6. Proof techniques. A number of techniques have been developed to rig-
orously analyze functionals such as asymptotic degree distributions (see [25, 58]
for nice pedagogical treatment). The standard technique involves writing down
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recursions for the expected degree distribution E(Nn(k)) using the prescribed dy-
namics of the process to show that these expectations (normalized by n) converge
in the limit, and then showing that the deviations |Nn(k) − E(Nn(k))| are small
via concentration inequalities.

In this paper, for understanding structural properties we use a different
technique, essentially embedding the discrete-time model in a corresponding
continuous-time branching process {BPn

θ (t) : t ≥ 0} (based on the Athreya–Karlin
embedding of urn processes [3]). This explains the various point processes that
arise in the description of the limiting degree distribution. While mathematically
more involved, this technique gives more insight into the results as it elucidates
the natural time scale of the process. In various other settings, this technique has
resulted in the study of much more general functionals of the process such as
the spectral distribution of the adjacency matrix [6] and has been used to derive
asymptotic results in “nonlocal” preferential attachment models [7]. In this paper,
the technique also allows one to intuitively understand why the degree exponent
does not change.

We advise the reader to come back to the text below after going through the
proofs but let us explain the basic intuition here. In the continuous-time version,
the process grows exponentially and in particular takes time τγn ≈ 1

2+α
logγ n +

OP (1) to get to size nγ . At this time, there is a change in the evolution where each
vertex adopts attachment dynamics driven by the parameter β . However, owing to
the exponential growth rate, the time for the process to get to size n is τn ≈ τγn +a

where a is as in (1.5). It turns out that this is not enough time for the dynamics with
attachment parameter β to change the degree exponent [since we only have to wait
an O(1) extra units of time to get to system size n from γ n]. These ideas are
made mathematically rigorous in the next few sections. For the interested reader,
much of the foundational work on continuous-time branching processes relevant
for this paper can be found in [33–35]. For functional central limit theorems in
these settings, we generalize techniques developed in [48] for the setting with no
change point.

3.7. Empirical dependence of the convergence on parameter values. Recall
that the Gaussian process defined in (2.12) underlying the main consistency result
Theorem 2.4 depends on θ = (α,β, γ ). One consequence of this dependence is that
when the parameter values α and β are close, the change point becomes harder to
detect in the sense that larger n is required to get good estimates. This is most
easily seen in terms of the fluctuations of the proportion of leaves in the graph.

In both Figures 3 and 4, the preferential attachment process starts with α = 6
and decreases, to β = 1 in 3 and β = 5 in 4. Furthermore, the predicted behavior
(red line) is almost the same: the proportion of leaves is constant up to the change
point γ = 0.5 and then increases, consistent with a decrease in the attachment
parameter.
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FIG. 3. Empirical proportion of leaves in a simulation with n = 200,000, α = 6, β = 1, γ = 0.5.
The red line represents the theoretical predictions in (2.3).

Despite the sizes of the final graphs in both simulations being n = 200,000
vertices, at first glance the fluctuations appear much greater in the latter case. On
closer examination, however, this is simply an illusion of the axes. In essence,
when the shift in parameters is smaller, the change in the proportion of leaves
pre- and post-γ is smaller compared to the natural fluctuations in the proportion

FIG. 4. Empirical proportion of leaves in a simulation with n = 200,000, α = 6, β = 5, γ = 0.5.
The red line represents the theoretical predictions in (2.3).
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of leaves which is of order
√

n (Theorem 2.3). Therefore, any difference is more
difficult to detect for same n. This is not surprising, but worth noting in practice.

4. Proofs. As described in Section 3.6, the main conceptual idea is a
continuous-time embedding of the discrete-time process. We start in Section 4.1 by
describing this embedding and deriving simple properties. Then in Section 4.2, we
prove Theorem 2.1. Section 4.3 proves the assertion that the degree exponent does
not change. Section 4.4 analyzes asymptotics for the maximal degrees. Section 5
contains an in-depth analysis of the density of leaves and proves Theorem 2.3.
Section 6 then uses this theorem to prove the consistency of the estimator namely
Theorem 2.4.

4.1. Preliminaries. We start with the following definition. To ease notation,
for the rest of the paper we use γ n instead of �γ n�.

DEFINITION 4.1 (Continuous-time branching process). Fix α > 0. We let
{BPα(t) : t ≥ 0} be a continuous-time branching process driven by the point pro-
cess Pα defined in (1.4). Precisely:

(a) At time t = 0, we start with one individual called the root ρ with an off-

spring point process with distribution Pρ
α

d= Pα . The times of this point process
represent times of birth of new offspring of ρ.

(b) Every new vertex v that is born into the system is given its own offspring

point process Pv
α

d= Pα , independent across vertices.

Label vertices using integer labels according to the order in which they enter
BPα so that the root is labelled as 1, the next vertex to be born labeled by 2 and so
on. For fixed t ≥ 0, we will view BPα(t) as a (random) labelled tree representing
the genealogical relationships between all individuals in the population present at
time t . See Figures 5 and 6. Write |BPα(t)| for the number of individuals in the
tree by time t . Fix m ≥ 1 and define the stopping time

(4.1) τm := inf
{
t : ∣∣BPα(t)

∣∣= m
}
.

Since there are no deaths and each individual reproduces at rate at least 1 + α, the
stopping times τm < ∞ a.s. for all m ≥ 1. Now consider the original preferential
attachment model where there is no change point. Using properties of the expo-
nential distribution, the following lemma is easy to check as a special case of the
famous Athreya–Karlin embedding [3].

LEMMA 4.2. Viewed as random rooted trees on vertex set [n] one has

BPα(τn)
d= Tn. In fact, the two processes of growing random trees have the same

distribution, namely {
BPα(τn) : n ≥ 1

} d= {Tn : n ≥ 1}.
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FIG. 5. The process BPα(·) in continuous time starting from the root ρ and stopped at τ15.

To construct the variant Tn where one has a change point, we run BPα(·) un-
til time τγn (when the original process reaches size γ n) and then every vertex
changes the way it reproduces. More precisely, after this stopping time, an indi-
vidual with k children would have reproduced at rate k + 1 + α in the original
model but in the change point model this vertex reproduces at rate k + 1 + β

and uses the parameter β instead of α for each subsequent offspring times. Each
new vertex v produced after time τγn reproduces according to an independent
copy of the point process Pβ . Call the resulting process BPn

θ (·) and run the pro-
cess until time τn when the continuous-time process has n individuals. Analo-
gous to (4.1), define the collection of stopping times {τm : 1 ≤ m ≤ n} by re-
placing BPα with BPn

θ . The following is a simple extension of the previous
lemma.

FIG. 6. The corresponding discrete tree containing only the genealogical information of vertices
in BPα(τ15).
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LEMMA 4.3. Recall the family of random trees {Tθ ,m : 1 ≤ m ≤ n} generated
using the change point preferential attachment model in Section 1.2.1. Then

{
BPn

θ (τm) : 1 ≤ m ≤ n
} d= {Tθ ,m : 1 ≤ m ≤ n}.

REMARK 7. Note that the processes {Tθ ,m : 1 ≤ m ≤ n} when one has a
change point are not nested in a nice manner as growing trees for different val-
ues of n. Compare this with the original model (without change point) where we
can view the entire sequence {Tn : n ≥ 1} as an increasing family of random trees.
In the above construction, it will be convenient to couple the processes across dif-
ferent n by using a single common branching process BPα to generate the tree
before the change point τγn and then let the process evolve independently after
the change point for different n using the prescribed dynamics modulated by the
attachment parameter β . Further, it will be convenient to allow the process BPn

θ to
continue to grow after time τn as opposed to stopping it exactly at time τn.

For future reference, for each vertex v, we will use Tv for the time of birth of this
vertex into the system. For fixed time t and a vertex v born before time t (namely
Tv ≤ t), we write dv(t) for the number of children of this vertex by time t . Note
that for all v 
= ρ ∈ BPn

θ (t), the full degree of v by time t is dv(t) + 1.
We will need some simple stochastic calculus calculations below to derive mar-

tingales related to processes of interest. Given a process {Z(t) : t ≥ 0} adapted to a
filtration {F(t) : t ≥ 0}, we write E(dZ(t)|F(t)) = a(t) dt for an adapted process
a(·) if Z(t)−∫ t

0 a(s) ds is a (local) martingale. Similarly, write Var(dZ(t)|F(t)) =
b(t) dt if the process

V (t) :=
(
Z(t) −

∫ t

0
a(s) ds

)2
−
∫ t

0
b(s) ds, t ≥ 0,

is a local martingale.
Now recall that BPα(τγn) is the random tree before the change point. These

random trees are distributed as the original preferential attachment model without
change point using attachment dynamics with parameter α. Using (1.1) and re-
calling that Nn(k, γ n) denotes the number of vertices with degree k results in the
following.

LEMMA 4.4. For each fixed k ≥ 1, we have Nn(k, γ n)/γ n
a.e.−→ pα(k), as

n → ∞ where pα(·) is the probability mass function in (1.1).

Recall that the branching process BPα is driven by the offspring point process
Pα and Pα(t) := Pα[0, t] is the number of points in [0, t]. Define the process

(4.2) Mα(t) := e−tPα(t) − (1 + α)
(
1 − e−t ), t ≥ 0.
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LEMMA 4.5. The process {Mα(t) : t ≥ 0} is a martingale with respect to the
natural filtration of Pα . In particular,

(4.3) E
(
Pα(t)

)= (1 + α)
(
et − 1

)
.

PROOF. Write {F(t) : t ≥ 0} for the natural filtration of the process. It is
enough to show for all t ≥ 0, E(dMα(t)|F(t)) = 0. By construction,

E
(
dPα(t)|F(t)

)= (1 + α +Pα(t)
)
dt.

Further,

E
(
dMα(t)|F(t)

)= e−tE
(
dPα(t)|F(t)

)− e−tPα(t) dt + (1 + α)e−t dt.

Elementary algebra completes the proof. The final assertion regarding (4.3) fol-
lows using the martingale property of Mα and the initial condition Pα(0) = 0. �

The starting point in the analysis of continuous-time branching processes is the
so-called Malthusian rate of growth parameter λ > 0, which solves the equation

(4.4)
∫ ∞

0
λe−λtE

(
Pα(t)

)
dt = 1.

Using Lemma 4.5 now implies

(4.5) λ = 2 + α.

Let Tλ be an exponential random variable with parameter λ independent of Pα and
consider the integer valued random variable Pα(Tλ). Note that (4.4) is equivalent
to E(Pα(Tλ)) = 1. Recall that Dα is a random variable with the (nonchange point)

degree distribution (1.1). It is easy to check that Dα − 1 d= Pα(Tλ). In particular
for α ≥ 0,

E
(
Pα(Tλ) log+Pα(Tλ)

)
< ∞.

Using standard Jagers–Nerman stable age-distribution theory for branching pro-
cesses [34, 35] now implies the following.

PROPOSITION 4.6. There exists an integrable a.s. positive random variable
Wα such that

e−(2+α)t
∣∣BPα(t)

∣∣ a.e.,L1−→ Wα.

In particular,

(4.6) τγn − 1

2 + α
logn

a.e.−→ W ′
α,

for a finite random variable W ′
α .
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We conclude this section with asymptotics for the amount of “continuous time”
where the attachment dynamics using β is valid, namely τn − τγn. Recall the con-
stant a from (1.5). We will also write {Fn(t) : t ≥ 0} for the natural filtration of the
process {BPn

θ (t) : t ≥ 0}.

LEMMA 4.7. Let ϒn = τn − τγn denote the time after the change point in the
continuous-time embedding. Then

√
n(ϒn − a)

w−→ 1

2 + β

√
1 − γ

γ
Z,

as n → ∞. Here, Z is a standard normal random variable.

PROOF. Note that BPn
θ (·) is a Markov process. Further, for t ≥ τγn conditional

on BPn
θ (t), the rate at which a new individual is born into the system is given by

λ(t) := ∑
v∈BPn

θ (t)

(
dv(t) + 1 + β

)

= (2 + β)
∣∣BPn

θ (t)
∣∣− 1.

(4.7)

In particular,

(4.8) ϒn
d=

n−1∑
j=�γ n�

Ej

(2 + β)j − 1
,

where {Ei : i ≥ 1} is a sequence of i.i.d. rate one exponential random variables.
Using Lyapunov’s central limit theorem now completes the proof. �

Using the distributional characterization in (4.8) and standard concentration in-
equalities for sums of independent random variables, one can show the following
tail bound on ϒn. We omit the proof.

LEMMA 4.8. For any κ > 0, there exists N = N(κ) < ∞ such that for all
n > N(κ),

P

(
|ϒn − a| > 1

n1/3

)
≤ 1

nκ
.

In particular, by Borel–Cantelli, P(|ϒn − a| ≤ n−1/3 eventually) = 1.

Here, the bound n−1/3 was arbitrary. An upper bound of n−(1/2−δ) with any
δ > 0 would result in the identical result—we fix n−1/3 for definiteness. We end
this section by defining the Yule process. Properties of this process will be needed
in the next few sections.
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DEFINITION 4.9 (Rate ν Yule process). Fix ν > 0. A rate ν Yule process is a
pure birth process {Yν(t) : t ≥ 0} with Yν(0) = 1 and where the rate of birth of new
individuals is proportional to size of the current population. More precisely,

P
(
Yν(t+) − Yν(t)|F(t)

) := νYν(t) dt + o(dt),

where {F(t) : t ≥ 0} is the natural filtration of the process.

The following is a standard property of the Yule process; see, for example, [45],
Section 2.5.

LEMMA 4.10. Fix time t > 0 and rate ν > 0. Then the random variable Yν(t),
namely the number of individuals in the population by time t has a Geometric
distribution with parameter p = e−νt , namely

P
(
Yν(t) = k

)= e−νt (1 − e−νt )k−1
, k ≥ 1.

4.2. Convergence of the degree distribution. In this section, we will prove
Theorem 2.1. Recall the description of the limit random variable Dθ in Section 1.3.
It will be easier to deal with the random variable Dout

θ := Dθ − 1. Then the distri-
bution of Dout

θ can be written succinctly as:

(a) with probability γ , Dout
θ := YBC where YBC := Dα − 1 + N

Dα

β [0, a];
(b) with probability 1 − γ , Dout

θ = YAC where YAC := Nβ[0,Age].
Now recall that for any time t and vertex v born before time t , dv(t) denotes the
number of children (out-degree) of vertex v at time t . For fixed k ≥ 0, define

(4.9) N̄BC
n (k) := ∑

v∈BPθ (τn)

1
{
Tv ≤ τγn, dv(τn) ≥ k

}

and

(4.10) N̄AC
n (k) := ∑

v∈BPθ (τn)

1
{
Tv > τγn, dv(τn) ≥ k

}
.

In words, N̄BC
n (k) denotes the number of vertices that were born before the change

point and have out-degree at least k by time τn (thus in the tree Tθ ,n) whilst N̄AC
n (k)

is defined similarly but for vertices born after the change point τγn. The following
proposition is equivalent to Theorem 2.1.

PROPOSITION 4.11. Fix k ≥ 0. Then we have

(4.11)
N̄BC

n (k)

n

P−→ γP(YBC ≥ k),
N̄AC

n (k)

n

P−→ (1 − γ )P(YAC ≥ k),

as n → ∞.

The rest of this section deals with proving this proposition.
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4.2.1. Analysis of N̄BC
n (·). We start with the easier case. We will need some

more notation. For fixed 0 ≤ j, k, define N̄BC
n (j : k) for the number of vertices that

were born before the change point τγn with out-degree exactly j at time τγn that
end up with at least k children by time τn. Note that∑

j≥k

N̄BC
n (j : k) = Nn(k + 1, γ n)

namely the number of vertices with total degree k + 1 (thus out-degree k) in the
tree before change point Tγ n. Recall that by Lemma 4.4, the asymptotic degree
distribution of Tγ n is Dα , and thus the asymptotic out-degree distribution of the
tree Tγ n is Dout

α = Dα − 1. Using the form of YBC, it is thus enough to show for
each fixed 0 ≤ j ≤ k,

(4.12)
N̄BC

n (j : k)

n

a.e.−→ γP
(
Dout

α = j
)
P
(
Pj+1

β [0, a] ≥ k − j
)
.

We start with the following simple lemma.

LEMMA 4.12. Fix 0 < p,q < 1, a sequence of non-negative integer valued
random variables {Nn : n ≥ 1} and a sequence {qn : n ≥ 1} ∈ [0,1]. Conditional
on Nn, let Sn be a Binomial(Nn, qn) random variable. Further suppose that

Nn

n

a.e.−→ p, qn → q.

Then Sn/n
a.e.−→ pq .

PROOF. We assume we work on a rich enough probability space where we
can couple {Sn : n ≥ 1} with a sequence {S̃n : n ≥ 1} where S̃n is Binomial(np, qn)

such that |Sn − S̃n| ≤ |Nn −np|. Standard exponential tail bounds for the Binomial
distribution coupled with Borel–Cantelli and the hypothesis of the lemma imply
that S̃n/n

a.e.−→ pq . Since |Sn − S̃n|/n ≤ |Nn/n−p|, again using the hypothesis of
the lemma completes the proof. �

We now proceed with the proof. Recall the definition of the random variable
N̄BC

n (j : k) at the beginning of this section. In the same vein, for each s ≥ 0 define
Z̄BC

n ((j : k), s) for the number of vertices born before the change point τγn such
that at τγn they have out-degree exactly j and further by time τγn + s they have
degree at least k. Then note that conditional on the information at time τγn:

(4.13) Z̄BC
n

(
(j : k), s

) d= Bin
(
Nn(j + 1, γ n),P

(
Pj+1

β [0, s] ≥ k − j
))

.

Further, the random variables of interest N̄BC
n (j : k) = Z̄BC

n ((j : k),ϒn) where ϒn

is as in Lemma 4.7. Thus writing a+
n = a + n−1/3 and a−

n = a − n−1/3 and using
Lemma 4.8,

(4.14) Z̄BC
n

(
(j : k), a−

n

)≤ N̄BC
n (j : k) ≤ Z̄BC

n

(
(j : k), a+

n

)
eventually a.s.
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Using the Binomial convergence Lemma 4.12 and noting that by Lemma 4.4 and
choice of a+

n , a−
n , the hypothesis of this lemma are satisfied, implies that

Z̄BC
n ((j : k), an)

n

a.e.−→ γP
(
Dout

α = j
)
P
(
Pj+1

β [0, a] ≥ k − j
)
,

where take an as either a+
n or a−

n . Now using (4.14) proves (4.12). This completes
the analysis of N̄BC

n (·). �

4.2.2. Analysis of N̄AC
n (·). We start by setting up some notation. Fix k ≥ 0 and

define the function

(4.15) gk(u) := P
(
Pβ[0, u] ≥ k

)
, u ≥ 0.

Here, Pβ is the offspring point process with attachment parameter β . Then writing
out the form of the distribution of YAC more explicitly [and using the definition of
a from (1.5)], to prove the second assertion of (4.11), we want to show

(4.16)
N̄AC

n (k)

n

P−→ γ (2 + β)

∫ a

0
e(2+β)ugk(a − u)du.

For s ≥ 0, define Z̄AC
n (k, s) for the number of individuals born in the interval

[τγn, τγ n+s] such that by time τγn+s, these vertices have at least k children. Then
note that N̄AC

n (k) = Z̄AC
n (k,ϒn). Mimicking the proof of NBC

n (k), it is enough to
show that

(4.17)
Z̄AC

n (k, an)

n

P−→ γ (2 + β)

∫ a

0
e(2+β)ugk(a − u)du,

where an is either the sequence a−
n = a − n−1/3 or a+

n = a + n−1/3. To ease no-
tation, we will just work with the sequence an = a. The entire proof goes through
by replacing a in the steps below by an.

We start with a few preliminary results. The first result describes strong con-
centration results of the growth of the number of individuals in BPn

θ in the interval
[τγn, τγ n + s]. Define the process

(4.18) Zn(u) := ∣∣BPn
θ (τγ n + u)

∣∣, 0 ≤ u ≤ a.

PROPOSITION 4.13. There exists a constant C < ∞ such that for all n,

P
(

sup
0≤u≤a

∣∣Zn(u) − nγ e(2+β)u
∣∣>√n logn

)
≤ C

logn
.

PROOF. The plan is to use Doob’s L2-maximal inequality for continuous-time
martingales (see, e.g., [36], Chapter 1.9). For this, we will need to derive martin-
gales related to the process Zn(·). Throughout we will write {Fn

t : 0 ≤ t ≤ a} for
the filtration {BPθ (τγ n + t) : 0 ≤ t ≤ a}.
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Recall from the rate description in (4.7) that Zn(·) is a pure birth process such
for any t ≥ 0, conditional on Fn

t , Zn(t) � Zn(t) + 1 at rate (2 + β)Zn(t) − 1.
Arguing as in the proof of Lemma 4.5, it is easy to check that the process

(4.19) M1(t) := (e−(2+β)tZn(t) − nγ
)− e−(2+β)t − 1

2 + β
, 0 ≤ t ≤ a,

is a mean-zero martingale. This in particular gives that

(4.20) e−(2+β)tE
(
Zn(t)

)= nγ + e−(2+β)t − 1

2 + β
, 0 ≤ t ≤ a.

By Doob’s L2-maximal inequality applied to the process M1(·), we have for any
λ > 0,

(4.21) P

(
sup

0≤t≤a

∣∣∣∣(e−(2+β)tZn(t) − nγ
)− e−(2+β)t − 1

2 + β

∣∣∣∣≥ λ

)
≤ E(M2

1 (a))

λ2 .

If we can show there exists a constant C < ∞ such that E(M2
1 (a)) ≤ Cn, using

λ = 0.5
√

n logn and algebraic manipulation of (4.21) completes the proof. So let
us now derive this bound on E(M2

1 (a)).
First, squaring the expression in (4.19), expanding and using (4.20) gives for

t ≥ 0,

(4.22) E
(
M2

1 (t)
)=E

(
e−(2+β)tZn(t) − nγ

)2 −
(

e−(2+β)t − 1

2 + β

)2
.

Thus we need to understand the evolution of the process Z 2
n (·). Again using the

rate description of Zn, this process undergoes a change

�Z 2
n (t) := Z 2

n (t+) − Z 2
n (t) = (1 + 2Zn(t)

)
,

at rate (2 + β)Zn(t) − 1. Using this, one may check that the following process on
[0, a]:

(4.23) M2(t) := e−2(2+β)tZ 2
n (t) −

∫ t

0
e−2(2+β)sβZn(s) ds − e−2(2+β)t

2(2 + β)
,

is also a martingale. In particular, since first moments are conserved,

(4.24) E
(
e−2(2+β)Z 2

n (t)
)= n2γ 2 +

∫ t

0
βe−2(2+β)sE

(
Zn(s)

)
ds − e−2(2+β)t − 1

2(2 + β)
.

Using (4.20) shows that there exists a constant C such that

(4.25)
∣∣E(e−2(2+β)Z 2

n (t)
)− n2γ 2∣∣≤ nγ.

Expanding the first bracket in (4.22), using (4.20) and (4.25) shows that
E(M2

1 (a)) ≤ Cn for some constant C. This completes the proof. �



CHANGE POINT DETECTION IN NETWORKS 59

Now divide the interval [τγn, τγ n + a] into �an1/3� intervals of length n−1/3:{[
τγn, τγ n + 1

n1/3

]
,

[
τγn + 1

n1/3 , τγ n + 2

n1/3

]
, . . . ,

[
τγn + an1/3 − 1

n1/3 , τγ n + an1/3

n1/3

]}
,

To ease notation, write the above collection as {Ii : 0 ≤ i ≤ an1/3 − 1}. Further, let
τn
i = τγn + i/n1/3 with τn

0 = τγn so that Ii = [τn
i , τ n

i+1].
Now write Birthi for the collection of vertices that were born in interval Ii (i.e.,

the collection of vertices v with birth times Tv ∈ Ii ) and write

Zn(Ii ) := |Birthi | = Zn

(
τn
i+1
)− Zn

(
τn
i

)
,

for the number of individuals born in this interval. Then the following is an easy
corollary of Proposition 4.13.

COROLLARY 4.14. We have

P

(
an1/3−1⋂

i=0

{∣∣Zn(Ii ) − (2 + β)γ n2/3e
(2+β)i

n1/3
∣∣< 2

√
n logn

})→ 1,

as n → ∞.

For future reference, write Gn for the event above. Namely,

(4.26) Gn :=
an1/3−1⋂

i=0

{∣∣Zn(Ii ) − (2 + β)γ n2/3e
(2+β)i

n1/3
∣∣< 2

√
n logn

}
.

Now for each interval Ii , we will partition the vertices born in this interval into
two classes:

(a) The collection of good vertices Gi : This consists of all v ∈ Birthi such that
they produce no children by the end of the interval, that is, vertices v with Tv ∈
[τγn + i/n1/3, τγ n + (i + 1)/n1/3] such that by time τγn + (i + 1)/n1/3, vertex
v still has no children. Note that since the intervals are of time length n−1/3, one
expects a large proportion of vertices born in the interval Ii to be good. Write
Z

good
n (Ii ) = |Gi | for the number of good vertices in Ii .

(b) The collection of bad vertices Bi := Birthi \ Gi : This consists of all ver-
tices born in Ii which produce at least one child by time τγn + i/n1/3. Write
Z bad

n (Ii ) = |Bi | for the number of such bad vertices in Ii . Write

Z bad
n :=

an1/3−1∑
i=0

Z bad
n (Ii )

for the total number of bad vertices.
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Fix a constant C and define the event Bn
i = {Z bad

n (Ii ) ≥ Cn1/3 logn}. These
events depend on C but we suppress this in the notation.

PROPOSITION 4.15. The constant C < ∞ can be chosen large enough such

that P(
⋃an1/3

i=1 Bn
i ) → 0 as n → ∞. In particular, for the total number of bad ver-

tices we have Z bad
n = OP (n2/3 logn).

PROOF. Fix an interval Ii . Note that every bad vertex is one of two types:

(a) A vertex that is a direct child of a vertex born before this time interval.
Write Dbad

n for these direct bad vertices and write Dbad
n (Ii ) = |Dbad

n | for the num-
ber of such vertices. Further, write Dbad

n,� (Ii ) for the total number of descendants
of direct bad vertices born in the interval Ii (including the direct bad vertices).

(b) A vertex that is bad and is a child of a vertex born in Ii . Thus the parent of
this vertex is necessarily bad.

Thus in particular we have that Z bad
n (Ii ) ≤ Dbad

n,� (Ii ). Now note that direct bad
vertices in Dbad

n are created via the following steps:

(i) A descendant (maybe good or bad) of a vertex born before Ii is born into
the system. The number of such individuals Rn(Ii ) ≤ Zn(Ii ), the total number of
individuals born in the interval Ii . Using Corollary 4.14, there exists a constant C

such that whp as n → ∞, for all the intervals 0 ≤ i ≤ an1/3 − 1, Rn(Ii ) ≤ Cn2/3.
(ii) Conditional on all these descendants of vertices born before Ii , such a

descendant has to give birth to one individual in the interval [i/n1/3, (i +1)/n1/3].
Recall that the time to give birth to the first child is an exponential random variable
E1 with rate (2 + β). Thus the probability of birthing this first child is bounded by

pn =P
(
E1 ≤ n−1/3)∼ 2 + β

n1/3 .

Further, by construction, none of these vertices can have a parent child relationship,
and thus their offspring lineages evolve independently.

In particular, conditional on all descendants of vertices born before time interval
Ii ,

(4.27) Dbad
n (Ii ) ≤st Bin

(
Rn(Ii ), pn

)
.

Here, st denotes stochastic domination. Thus using Corollary 4.14, (4.27) and stan-
dard tail bounds for the binomial distribution implies that there exists a constant
C < ∞ such that

(4.28) P
(
Dbad

n (Ii ) ≤ Cn1/3 logn for all 0 ≤ i ≤ (an1/3 − 1
))→ 1,

as n → ∞.
Let us now complete the analysis of Dbad

n,� (Ii ). Let us start with the evolution
of descendants of a single bad direct vertex after it gives birth to its child. This
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process then starts reproducing at rate 2 + β + 1 + β = 3 + 2β . Further, whenever
a new vertex is added to the system, the rate of production increases by at most
2 + β . Thus writing K = �3 + 2β� and ν = 2 + β , the number of descendants of
such a bad vertex can be bounded by a rate ν Yule process (see Definition 4.9)
that starts with K individuals at time zero. Write {YK

ν (t) : t ≥ 0} for such a pro-
cess. Thus the number of descendants of such a bad vertex in the time interval
[τγn + i/n1/3, τγ n + (i + 1)/n1/3] can be stochastically bounded by YK

ν (n−1/3).
In particular, conditional on Dbad

n (Ii ),

(4.29) Dbad
n,� (Ii ) ≤st

Dbad
n (Ii )∑
j=1

YK,(j)
ν

(
n−1/3).

Here, {YK,(j)
ν (·) : j ≥ 1} are an i.i.d. collection of Yule processes with distribu-

tion YK
ν (·). Using the explicit distribution of the Yule process at a fixed time

(Lemma 4.10), it is easy to check that given constant C > 0 we can find A > 0
such that

(4.30) P
(
Dbad

n,� (Ii ) ≥ 10KCn1/3 logn|Dbad
n (Ii ) ≤ Cn1/3 logn

)≤ exp
(−An1/3).

Using this exponential bound with (4.28) completes the proof. �

We now proceed with the proof of (4.17). For 0 ≤ i ≤ an1/3 − 1, let
Z

good
n (k, a : Ii ) be the number of good vertices in Birthi which have at least k

children by time a. Then note that conditional on BPn
θ (τ

n
i+1),

(4.31) Zgood
n (k, a : Ii )

d= Bin
(
Z good

n (Ii ), gk

(
a − i + 1

n1/3

))
.

Define the events

Gn
i :=

{∣∣∣∣Zgood
n (k, a : Ii ) − γ (2 + β)n2/3e

(2+β)i

n1/3 gk

(
a − i + 1

n1/3

)∣∣∣∣< Cn1/3 logn

}
.

PROPOSITION 4.16. There exists a constant C < ∞ such that
P(
⋂an1/3

i=1 Gn
i ) → 1 as n → ∞.

PROOF. Note that Z
good
n (Ii ) = Zn(Ii ) − Z bad

n (Ii ). Combining Corol-
lary 4.14 with Proposition 4.15 implies that

P

(
an1/3−1⋂

i=0

{∣∣Z good
n (Ii ) − (2 + β)γ n2/3e

(2+β)i

n1/3
∣∣< 3

√
n logn

})→ 1.

Now using the distributional identity (4.31) and standard tail bounds for the Bino-
mial distribution completes the proof. �
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We are finally in a position to complete the proof of (4.17), and thus (4.11).
First, note that

(4.32)
an1/3−1∑

i=0

Zgood
n (k, a : Ii ) ≤ Z̄AC

n (k, a) ≤
an1/3−1∑

i=0

Zgood
n (k, a : Ii ) + Z bad

n .

Using Proposition 4.15, n−1Z bad
n

P−→ 0. Using Proposition 4.16,
∑an1/3

i=1 Z
good
n (k, a : Ii )

n
∼ γ (2 + β)

n1/3

an1/3−1∑
i=0

e
(2+β)i

n1/3 gk

(
a − i + 1

n1/3

)

→ γ (2 + β)

∫ a

0
e(2+β)ugk(a − u)du.

This completes the proof of the convergence of the degree distribution of the model
to the asserted limit in Theorem 2.1. �

We conclude this section with a related result regarding the evolution of the
degree distribution. This follows by directly modifying the proof above. Recall the
definitions of Nn(k,m) and N̂n(k, t) from Section 2.2. For future use, define for
each k ≥ 1 and 0 ≤ t ≤ 1

(4.33) Nn,≥(k,m) =∑
j≥k

Nn(j,m), N̂n,≥(k, t) =∑
j≥k

N̂n(j, t),

namely the number of vertices with degree at least k respectively at discrete time
m and at time t when we rescale time by n. Write q̂

(n)
≥ (k, t) = N̂n,≥(k, t)/n. Note

that since we divide by n and not nt in this expression we have
∑∞

k=1 q̂
(n)
≥ (k, t) = t .

Now note that by Lemma 4.4 we have for each fixed 0 < t ≤ γ ,

(4.34) p̂(n)(k, t)
P−→ pα(k) = p(∞)(k, γ ),

where pα(k) as in (1.1) is the limiting degree distribution with no change point.
For γ ≤ t ≤ 1, akin to the definition of a in (1.5) define

(4.35) a(t) := 1

2 + β
log

t

γ
.

Analogous to the definition of Dθ in Section 1.3, define Dθ (t) by replacing a by
a(t) throughout the construction. Thus Dθ = Dθ (1). Let

(4.36) p(∞)(k, t) := P
(
Dθ (t) = k

)
, k ≥ 1, γ ≤ t ≤ 1.

Let p
(∞)
≥ (k, t) =P(Dθ (t) ≥ k). For 0 ≤ t ≤ 1, let q

(∞)
≥ (k, t) = tp

(∞)
≥ (k, t).

PROPOSITION 4.17. For all k ≥ 1, we have

sup
0≤t≤1

∣∣q̂(n)
≥ (k, t) − q

(∞)
≥ (k, t)

∣∣ P−→ 0,

as n → ∞.
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PROOF. For fixed t ≥ γ , define the stopping time

τtn = inf
{
s : ∣∣BPn

θ (s)
∣∣= tn

}
,

namely the first time that the continuous-time embedding reaches size tn. Note that
at this time, the corresponding tree has distribution Ttn. Write ϒn(t) = τtn − τγn

for the amount of (continuous) time it takes for the process to reach this size after
the change point. Then note that by Proposition 4.13 we can choose an appropriate
constant C < ∞ such that

(4.37) P

(
sup

γ≤t≤1

∣∣ϒ(t) − a(t)
∣∣≤ C

√
logn

n

)
→ 1,

as n → ∞, where a(t) is as defined in (4.35). Repeating the above proof for the
convergence of degree distribution and replacing a by a(t) throughout the argu-

ment shows that for each t ≥ γ N̂n,≥(k, t)/nt
P−→ P(Dθ (t) ≥ k). Combining this

with (4.34) implies that we have pointwise convergence q̂
(n)
≥ (k, t) → q

(∞)
≥ (k, t).

Now note that for each fixed n, the function q̂
(n)
≥ (k, ·) is nondecreasing on [0,1]

while the limit function is also monotonically increasing and continuous (and thus
uniformly continuous). Given ε > 0, fix δ > 0 such that for any t, s ∈ [0,1] with
|t − s| < δ, ∣∣q(∞)

≥ (k, t) − q
(∞)
≥ (k, s)

∣∣< ε

4
.

Divide [0,1] into intervals {[iδ, (i + 1)δ]} for 1 ≤ i ≤ 1/δ of length δ. Via the
pointwise convergence above, get n0 < ∞ large such that for all n > n0:

(4.38) P

(
sup

1≤i≤ 1
δ

∣∣q̂(n)
≥ (k, iδ) − q

(∞)
≥ (k, iδ)

∣∣< ε

4

)
≥ 1 − ε.

Write Gn(ε, δ) for the event in the above equation. Then on this event, by the
choice of δ, for all i we have |q̂(n)

≥ (k, iδ) − q̂
(n)
≥ (k, (i + 1)δ)| ≤ ε/2. Using mono-

tonicity, for any t ∈ [iδ, (i + 1)δ], |q̂(n)
≥ (k, iδ) − q̂

(n)
≥ (k, t)| ≤ ε/2. By the triangle

inequality on Gn(ε, δ), for all t ∈ [0,1] and n > n0,∣∣q̂(n)
≥ (k, t) − q

(∞)
≥ (k, t)

∣∣≤ ∣∣q̂(n)
≥ (k, t) − q

(n)
≥ (k, iδ)

∣∣+ ∣∣q̂(n)
≥ (k, iδ) − q

(∞)
≥ (k, iδ)

∣∣
+ ∣∣q(∞)

≥ (k, iδ) − q
(∞)
≥ (k, t)

∣∣
≤ ε

2
+ ε

4
+ ε

4
= ε.

Since n0 is independent of t , this completes the proof. �

4.3. Proof of the tail exponent for the limiting degree distribution. The aim of
this section is to prove the asserted tail bound, namely (2.1). First, note that the
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lower tail bound is obvious since with probability γ , Dθ stochastically dominates
Dα and by (1.2), Dα has the asserted tail behavior. The main crux is then proving
the upper bound, namely

(4.39) P(Dθ ≥ x) ≤ c′/x2+α.

Recall Definition 4.9 of the Yule process and in particular Lemma 4.10 on finite-
time marginal distribution of the Yule process.

Now note that in the description of the limit random variable Dθ , with probabil-
ity 1 −γ , Dθ = Nβ [0,Age] ≤st Nβ[0, a] where as before ≤st represents stochastic
domination. Now define

(4.40) ν = 2 + β, K = �1 + β�.
As before, let YK

ν be a rate ν Yule process started with K individuals at time zero.
Comparing the rate of production of new individuals in the point process Pβ with
YK

ν , we get that Nβ[0, a] ≤st YK
ν (a). By Lemma 4.10, YK

ν (a) is the sum of K

independent geometric random variables. Using the fact that a geometric random
variable has finite moment generating function in a neighborhood of zero and an
elementary Chernoff bound implies that there exist constants κ, κ ′ > 0 such that
for all x ≥ 1, we have an exponential tail bound:

(4.41) P
(
Nβ[0,Age] > x

)≤P
(
YK

ν (a) > x
)≤ κ ′ exp(−κx).

Thus when, with probability 1 − γ , Dθ = Nβ[0,Age], then the corresponding ran-
dom variable has an exponential tail. Thus the main contribution to the tail arises
when with probability γ , Dθ = Dα + N

Dα

β [0, a]. Arguing as above (and assuming
β ≥ 1), conditional on Dα = k, we have

N
Dα

β [0, a] ≤st

k∑
j=1

YK,(j)
ν (a),

where, as in (4.29), {YK,(j)
ν (·) : j ≥ 1} are a collection of independent rate ν Yule

processes each started at time zero with K individuals and independent of Dα . The
following elementary lemma completes the proof.

LEMMA 4.18. Let D ≥ 1 be a nonnegative integer valued random variable
with P(D ≥ x) ≤ c/xγ for all x ≥ 1, for two constants c, γ > 0. Let {Yi : i ≥ 1} be
a sequence of independent and identically distributed positive integer valued ran-
dom variables, independent of D. Consider the random variable D∗ :=∑D

j=1 Yi .
If Y1 has finite moment generating function in a neighborhood of zero then there
exists a constant c′ > 0 such that for all x ≥ 1,

P
(
D∗ ≥ x

)≤ c′/xγ .
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PROOF. For the rest of the proof, write μ =E(Y1) < ∞. Then note that

P
(
D∗ ≥ x

)≤
x

2μ∑
j=1

P(D = j)P

( j∑
i=1

Yi ≥ x

)
+P

(
D ≥ x

2μ

)

≤P

( x
2μ∑

i=1

Yi ≥ x

)
+ c

xγ
,

where the second equation follows using the fact that Yi ≥ 1 for all i and the tail
bound for D from the hypothesis of the lemma. To complete the proof, note that
standard large deviation bounds imply (since Yi has a finite moment generating
function about zero) imply that there exist constants κ, κ ′ such for all large x

P

( x
2μ∑

i=1

Yi ≥ x

)
≤ κ ′ exp(−κx).

This completes the proof. �

The only item left to complete the proof of Theorem 2.1 is to show that the
change point does change the degree distribution from the original (no change
point) model. In Section 5, we will carry out a detailed analysis of the density of
leaves which in particular will show that the asymptotic density of leaves pθ (1) 
=
pα(1).

4.4. Analysis of the maximal degree. The aim of this section is to prove The-
orem 2.2. First, note that, for any fixed k ≥ 1, writing Mγn(k) for the kth maximal
degree of a vertex in Tγ n namely in the tree just before the change point, using
(1.3) implies that Mγn(k)/n1/(2+α) converges weakly to a strictly positive random
variable. Since Mn(k) ≥ Mγn(k), this implies that given any ε > 0 and any fixed
k ≥ 1, there exists a constant K ′

ε > 0 such that

lim inf
n→∞ P

(
Mn(k)

n1/(2+α)
> K ′

ε

)
> 1 − ε.

Thus to complete the proof of Theorem 2.2, we need to show, given any ε > 0,
there exists Kε < ∞ such that

(4.42) lim sup
n→∞

P

(
Mn(1)

n1/(2+α)
< Kε

)
≥ 1 − ε.

For any vertex v ∈ [n] time point m ∈ [n], write deg(v,m) for the degree of vertex
v in Tm with the obvious convention that deg(v, k) = 0 if k < v. Then note that
Mn(1) = max(Mpre(n),Mpost(n)) where

(4.43) Mpre(n) := max
v∈[1,nγ ] deg(v, n), Mpost(n) := max

v∈[nγ+1,n] deg(v, n).
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Let us first analyze the maximal degree of vertices that appeared after the change
point. Recall the constants a from (1.5) and ν,K from (4.40).

LEMMA 4.19. We have P(Mpost(n) > 2Keν(a+1) logn) → 0 as n → ∞.

PROOF. We will assume β ≥ 1 below, else replace β with 1 in the rest of
the argument below. For simplicity, write kn = 2Keν(a+1) logn. Recall that in the
continuous-time embedding, Tv represents the time of birth of vertex v and further
for v ∈ [γ n+1, n], each such vertex is equipped with a offspring point process Pv

β .

As in Section 4.3, 1 + Pβ ≤st Y
K
ν where YK

ν is a rate ν Yule process started with
K individuals at time zero. Now note that via our continuous-time embedding,

Mpost(n) := max
v∈[γ n+1,n]

(
1 +Pv

β(0, τn − Tv)
)
,

since by time τn, a vertex born after the change time has been alive for τn − Tv ≤
τn − τγn := ϒn units of time. Now

P
(
Mpost(n) > kn

)≤P
(
Mpost(n) > kn,ϒn < a + 1

)
+P(ϒn > a + 10)

≤P
(

max
v∈[γ n+1,n]

(
1 +Pv

β(0, a + 1)
)
> kn

)

+P(ϒn > a + 1).

(4.44)

Using Lemma 4.7, we have lim supn→∞P(ϒn > a + 1) = 0. Let {YK
ν,v :

v ∈ [γ n + 1, n]} be a family of independent rate ν Yule processes started with
K individuals at time zero. Using Lemma 4.10, a simple union bound and the
choice of kn implies P(maxv∈[γ n+1,n] Y v

β (a + 1) > kn) → 0. �

Thus the above lemma implies that the maximal degree amongst vertices that
arrive after the change point is OP (logn). To complete the proof of (4.42), it is
enough to show that (4.42) holds with Mn(1) replaced by Mpre(1). Thus fix ε ∈
(0,1). Using Proposition 4.6, fix A = Aε such that

(4.45) lim sup
n→∞

P

(
τγn − 1

2 + α
logγ n > A

)
≤ ε/2.

Now consider the following process BPn
θ,�:

(a) Run the process BPα until time tn(A) := 1
2+α

logγ n + A.
(b) At this time: all vertices in BPα(tn) switch to the dynamics with parame-

ter β . Namely, each vertex now reproduces at rate proportional to its out-degree +
1 + β .

(c) Run this process for an additional a +1 units of time where a is as in (1.5).
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Abusing notation, let M�
pre,A(1) denote the maximal degree by time tn + a + 1

of all vertices born before time tn. We can obviously couple the original process
BPn

θ and BPn
θ ,� such that on the set {τγn − 1

2+α
logγ n ≤ A,ϒn ≤ a + 1} we have

Mpre(1) ≤ M�
pre,A(1). Further note that for any fixed K we have

P
(
Mpre(1) > Kn1/(2+α))

≤P

(
Mpre(1) > Kn1/(2+α),ϒn < a + 1, τγn <

1

2 + α
logγ n + A

)

+P(ϒn > a + 1) +P

(
τγn >

1

2 + α
logγ n + A

)
.

First, choosing A appropriately as in (4.45) and using Lemma 4.7 we get that for
any fixed K ,

lim sup
n→∞

P
(
Mpre(1) > Kn1/(2+α))≤ lim sup

n→∞
P
(
M�

pre,A(1) > Kn1/(2+α))+ ε/2.

The following lemma completes the proof of (4.42).

LEMMA 4.20. Fix A > 0. Given any ε > 0, we can choose K = K(A,ε) < ∞
such that

lim sup
n→∞

P
(
M�

pre,A(1) > Kn1/(2+α))≤ ε.

PROOF. First, note that until time tn(A), the process BPn
θ,� is a the continuous-

time version of a (nonchange point) preferential attachment model with attachment
parameter α. This continuous-time embedding was used to derive asymptotics for
the maximal degree in [6, 7]. In particular, the bounds derived in these papers
imply the following for a fixed A: Write M̃n(1) for the maximal degree exactly at
time tn(A). Then there exists L = L(A, ε) < ∞ such that

(4.46) lim sup
n→∞

P
(
M̃n(1) > Ln1/(2+α))≤ ε/2.

Now note that on the event {M̃n(1) ≤ Ln1/(2+α)} at time tn + a + 1, the degree
of every fixed vertex in the system is stochastically dominated by a rate ν Yule
process started with Ln1/(2+α) vertices at time zero and run for time a +1 where ν

is as in (4.40). Write Dn for such a random variable and note that by the description
of the dynamics of the Yule process and Lemma 4.10, we have that

(4.47) Dn
d=

Ln1/(2+α)∑
j=1

Yν,j (a + 1),

where {Yν,j (a + 1) : j ≥ 1} are i.i.d. Geometric random variables with p =
e−ν(a+1). Further note that using Proposition 4.6 on the size of the branching pro-
cess, we can choose C such that

(4.48) lim sup
n→∞

P
(∣∣BPn

θ ,�(tn)
∣∣> Cn

)≤ ε/2.
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Thus on the “good” event

Gn := {∣∣BPn
θ ,�(tn)

∣∣≤ Cn, M̃n(1) ≤ Ln1/(2+α)},
we have that

M�
pre,A(1) ≤st max

1≤v≤Cn
Dv

n := Mn,

where {Dv
n : v ≥ 1} is an i.i.d. sequence with distribution (4.47). Note that

E(Yν,i(a + 1)) = eν(a+1). Let K := 10Leν(a+1). Then standard large deviations
for the geometric distribution implies that there exists a constant C′ > 0 such that
for all n ≥ 1

P
(
Dn ≥ Kn1/(1+α))≤ exp

(−C′n1/(1+α)).
Thus by the union bound,

(4.49) P
(
Mn > Kn1/(1+α))≤ Cn exp

(−C′n1/(1+α))→ 0,

as n → ∞. Finally,

lim sup
n→∞

P
(
M�

pre,A(1) > Kn1/(2+α))
≤ lim sup

n→∞
P
(
Gc

n

)+ lim sup
n→∞

P
(
Mn > Kn1/(2+α))≤ ε,

using (4.46), (4.48) and (4.49). This completes the proof of the lemma, and thus
the analysis of the maximal degree asymptotics. �

5. Analysis of the proportion of leaves. The aim of this section is to prove
Theorem 2.3. In the next section, we will use the proportion of leaves (degree
one vertices) to construct consistent estimators of the change point γ . We start in
Section 5.1 by deriving strong error bounds between the expected proportion of
leaves and the asserted limits in (2.3). Then in Section 5.2, we complete the proof
of the functional central limit theorem. We start with some preliminary notation.
For the rest of the proof, to ease notation, we will write Nn(m) := Nn(1,m) for
the number of leaves in Tm and let N̂n(t) = Nn(nt). Recall the asserted limiting
proportion {p(∞)

t : 0 ≤ t ≤ 1} from (2.3). For each n ≥ 2, define the collection of
real numbers wn = {wm : 2 ≤ m ≤ n − 1}:

(5.1) wm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − 1 + α

(2 + α)m − 1

)
if 2 ≤ m ≤ nγ − 1,(

1 − 1 + β

(2 + β)m − 1

)
if nγ ≤ m ≤ n − 1.
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5.1. Expectation error bounds. The following proposition is the main result
of this section.

PROPOSITION 5.1. There exists a constant C < ∞ independent of n such that
the expectations satisfy

(5.2) sup
n≥1

sup
0≤t≤1

∣∣E(N̂n(t)
)− ntp

(∞)
t

∣∣≤ C.

REMARK 8. Note that by Proposition 4.17, we know there exists a function
p(∞)(0, ·) such that p̂(n)(0, t) → p(∞)(0, t) for 0 < t ≤ 1. By the bounded con-
vergence theorem, E(p̂(n)(0, t)) → p(∞)(0, t). Thus the above proposition implies
that p(∞)(0, t) = p

(∞)
t . In particular, it shows that the degree distribution owing

to the change point is different from the degree distribution without change point.
This is the final nail in proving Theorem 2.1.

REMARK 9. A similar result was shown in the context of no change point in
[58], Section 8.6, and [25] (not just for leaves but for all fixed k ≥ 1). Our proof
uses slightly different ideas starting from the same point as in [58]. While we do
not consider higher-degree vertices, as in [58], the result above can be used as a
building block to show identical error bounds for expectations of the number of
higher degree vertices about limit constants.

PROOF OF PROPOSITION 5.1. To ease notation, write ϑn(m) = E(Nn(m)).
The main crux of the proof is studying a recursion relation for ϑn(m + 1) in terms
of ϑn(m). We will give a careful analysis of the time period before the change point
and then describe how the same ideas give the result for after the change point.

For each 1 < m ≤ n, write Lm+1 for the event that vertex m + 1 connects to a
leaf vertex in Tm. Then note that conditioning on Tm, when m < nγ we have

E
(
Nn(m + 1)|Tm

)= Nn(m) + 1 −P(Lm+1|Tm)

= Nn(m) + 1 − (1 + α)Nn(m)

(2 + α)m − 1
.

(5.3)

When m ≥ nγ , we have the same recursion as above but with α replaced by β .
Taking full expectations and simplifying gives the following recursion:

(5.4) Nn(m + 1) = 1 + wmNn(m), ϑn(m + 1) = 1 + wmϑn(m),

where {wm : 2 ≤ m ≤ n} are as defined in (5.1).
Before the change point: Repeatedly using this recursion and using the boundary

condition ϑn(2) = 1 gives for m + 1 ≤ nγ ,

(5.5) ϑn(m + 1) =
m∑

s=2

m∏
k=s

(
1 − (1 + α)

(2 + α)k − 1

)
.

Now fix s0 ≥ 1 large enough such that the following three conditions hold:
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(i) For all k ≥ s0,

log k + γ ≤
k∑

i=1

1

i
≤ (log k + γ ) + 1

k
.

Here, γ is the Euler–Mascheroni constant. See [8].
(ii) For all k ≥ s0, 1 − (1+α)

(2+α)k−1 ≥ 1/2.
(iii) We may choose a constant C < ∞ such that for all k ≥ 1,

(5.6)
∞∑
i=k

1

((2 + α)k − 1)2 ≤ C

k
.

Further there exists a constant C′ such that for all s > s0, | exp(C/s) − 1| ≤ C ′/s
and ∣∣∣∣

(
1 − (1 + α)

(2 + α)s − 1

)
− e

− (1+α)
(2+α)s−1

∣∣∣∣≤ C′

s2 .

To ease notation, for the rest of the proof let δ = (1 + α)/(2 + α). Using the
elementary inequality 1 − x ≤ e−x for x ∈ (0,1) and the choice of s0 above, the
following inequalities with a constant C = C(s0, α) < ∞ are readily verified:

(A) For all m ≥ s ≥ s0,

(5.7)
∣∣∣∣e−∑m

i=s
δ
i −
(

s

m

)δ∣∣∣∣≤ C
sδ−1

mδ
.

(B) For all m ≥ s ≥ s0,

(5.8)
∣∣e−∑m

i=s
(1+α)
(2+α)i − e

−∑m
i=s

(1+α)
(2+α)i−1

∣∣≤ C
sδ−1

mδ
.

(C) For all m ≥ s ≥ s0,

(5.9)
m∏

k=s

(
1 − (1 + α)

(2 + α)k − 1

)
≤ C

(
s

m

)δ

.

Now note that by the “Lindeberg” trick, for any s ≤ m and two collections of
nonnegative numbers {wk : s ≤ k ≤ m} and {zk : s ≤ k ≤ m} we have

(5.10)

∣∣∣∣∣
m∏

k=s

wk −
m∏

k=s

zk

∣∣∣∣∣≤
m∑

k=s

|wk − zk|
∏

s≤l<k

zk

∏
l>k

wk.

Using this with wk = 1 − (1+α)
(2+α)k−1 and zk = e

− (1+α)
(2+α)k−1 and using (5.7), (5.8) and

(5.9) gives the following lemma.

LEMMA 5.2. Fix s0 as above. Writing δ = (1 + α)/(2 + α) there exists a
constant C < ∞ such that, for all m ≥ s ≥ s0,∣∣∣∣∣

m∏
k=s

(
1 − (1 + α)

(2 + α)k − 1

)
−
(

s

m

)δ
∣∣∣∣∣≤ C

sδ−1

mδ
.



CHANGE POINT DETECTION IN NETWORKS 71

Now using the form of the expectation ϑn(m) in (5.5), the error bound in the
above lemma and the integral comparison

1

mδ

∫ m−1

s0

xδ dx ≤
m∑

s0+1

(
s

m

)δ

≤ 1

mδ

∫ m+1

s0+2
xδ dx,

shows that there exists a constant C such that for m ≤ nγ

(5.11)
∣∣∣∣ϑn(m) − m

δ

∣∣∣∣≤ C.

This is the assertion for the expected number of leaves before the change point.
After the change point: We now describe the evolution of ϑn(m) for nγ <

m ≤ n. We only give the basic idea as the details are the same as before the change
point. First, note that by the above analysis, there exists a constant C such that
|ϑn(nγ ) − nγ/δ| ≤ C. Now the evolution of the process after γ n is as in (5.3)
with α replaced by β . Thus starting at m > nγ and using the argument above we
get

ϑn(m + 1) :=
m∑

s=nγ+1

m∏
j=s

(
1 − 1 + β

(2 + β)j − 1

)

+ ϑn(nγ )

m∏
j=nγ

(
1 − 1 + β

(2 + β)j − 1

)
.

(5.12)

Simplifying notation and writing m = nt where γ ≤ t ≤ 1 and repeating the ar-
guments above it is easy to check that there exists a constant C independent of n

such that

(5.13)
∣∣ϑn(nt) − ntp

(∞)
t

∣∣≤ C,

where p
(∞)
t is as in (2.3). This completes the proof. �

5.2. Proof of Theorem 2.3. A central limit theorem for the number of leaves
Nn(n) [in fact all degree counts Nn(k,n)] at time n in the setting of no change
point was established in [48]. We will extend this to a functional central limit
theorem in the change point setting. First, recall the function δα from (2.4). Define
the stochastic process

(5.14) M∗
n(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tδα
(Nn(nt) − ϑn(nt))√

n
if t ≤ γ,

γ δα

(
t

γ

)δβ (Nn(nt) − ϑn(nt))√
n

if t ≥ γ.

Recall the process M(·) in (2.8) and the relationship between M and G. Using
Proposition 5.1 and the continuous mapping theorem, it is enough to show the
following result.
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PROPOSITION 5.3. We have M∗
n(·) w−→ M(·) on D[0,1] as n → ∞.

PROOF. The main idea is to study martingales associated with the {Nn(m) :
2 ≤ m ≤ n} and then use the martingale functional central limit theorem. There
are an enormous number of variants of such functional limit theorems under a
multitude of conditions. We quote the specific form relevant to this setting. Recall
the function φ(·) and the corresponding diffusion M(·) defined in (2.9).

THEOREM 5.4 ([26, 29]). For each n ≥ 1, let {Mn(m) : 1 ≤ m ≤ n} be a
mean zero martingale with finite second moments adapted to a filtration {Fn(m) :
1 ≤ m ≤ n}. Write {Xn(m) : 1 ≤ m ≤ n} for the associated martingale difference
sequence namely Xn(m) = Mn(m) − Mn(m − 1) with Mn(0) = 0. Assume the fol-
lowing two hypotheses:

(i) For each 0 ≤ t ≤ 1,

(5.15) Vn(nt) :=
nt∑

m=1

E
([

Xn(m)
]2|Fn(m − 1)

) P−→ φ(t) as n → ∞.

(ii) For each fixed ε > 0,

(5.16)
∑
m≤n

E
([

Xn(m)
]2
1
{∣∣Xn(m)

∣∣> ε
}|Fn(m − 1)

) P−→ 0.

Then defining the process M̄n(t) := Mn(nt), one has M̄n
w−→ M in D[0,1].

For our example (following [48]), define the process

(5.17) N∗
n (m) = Nn(m) − ϑn(m)∏m−1

j=2 wj

, 2 ≤ m ≤ n.

Here, wj is as in (5.1). Using the recursion (5.4) results in the following lemma.

LEMMA 5.5. The process N∗
n is a martingale with respect to the filtration

generated by {Tm : 2 ≤ m ≤ n}.

Now define the corresponding martingale differences dn(m) = N∗
n (m) −

N∗
n (m−1). Define �n(m) = 1{m+1 connects to a nonleaf vertex in Tm−1}. Then

simple algebra and (5.4) implies that for m ≤ nγ

(5.18) dn(m) = 1∏m−1
j=2 wj

[
�n(m) + Nn(m − 1)

(1 + α)Nn(m − 1)

(2 + α)(m − 1) − 1
− 1
]

and

(5.19) E
(
�n(m)|Tm−1

)= 1 − (1 + α)Nn(m − 1)

(2 + α)(m − 1) − 1
.
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For m ≥ nγ , we have identical formulae as (5.18) and (5.19) but now α is replaced
by β . For the rest of the argument, we will replace the denominator for the second
term (2 + α)(m − 1) − 1 by (2 + α)(m − 1) − 1. It is easy to check that the error
is negligible and will ease presentation.

Now use Proposition 4.17 which allows us to uniformly approximate
Nn(m − 1)/(m − 1) by p

(∞)
m/n. Further the asymptotics of

∏m
j=2 wj derived in

the previous section implies that for m ≤ nγ ,
∏m

j=2 wj ∼ m−δα while for m > nγ ,∏m
j=2 wj ∼ (nγ )−δα (m/nγ )−δβ where δα, δβ as defined in (2.4). Taking condi-

tional expectations in (5.18), using (5.19) and using the above approximations
results in

E
([

dn(m)
]2|Tm−1

)

∼
⎧⎪⎨
⎪⎩

m2δα
[
δαp

(∞)
m/n

(
1 − δαp

(∞)
m/n

)]
if m ≤ nγ,

(nγ )2δα

(
m

n

)2δβ [
δβp

(∞)
m/n

(
1 − δβp

(∞)
m/n

)]
if m ≥ nγ.

(5.20)

Now consider the martingale

(5.21) Mn(m) := 1

nδα+1/2

Nn(m) − ϑn(m)∏m−1
j=2 wj

, 2 ≤ m ≤ n.

We will apply Theorem 5.4 to this martingale. Let {Xn(m) : 2 ≤ m ≤ n} denote the
corresponding martingale differences. First, fix t ≤ γ and recall the definition of
the cumulative conditional variance Vn(nt) until time t in (5.15). Using the first
expression in (5.20), we get

Vn(nt) ∼ 1

n2δα+1

nt∑
j=1

j2δα
[
δαp

(∞)
m/n

(
1 − δαp

(∞)
m/n

)]

→
∫ t

0
s2δα
[
δαp(∞)

s

(
1 − δαp(∞)

s

)]
ds = φ(t),

as n → ∞. Thus (5.15) is satisfied for t ≤ γ . A similar calculation now incorporat-
ing the second expression in (5.20) implies that (5.15) is satisfied for all t ∈ [0,1]
with φ as in (2.9). Now let us check the second condition namely (5.16). Note
that for m ≤ nγ , Xn(m) ≥ ε implies that 3mδα ≥ εnδα+1/2. For large n, this is
impossible for all m ≤ nγ . A similar calculation for m > nγ completes the proof
of (5.16). Using Theorem 5.4, we get that Mn(n·) w−→ M(·) in D[0,1]. Using the
asymptotics for

∏m
j=2 wj derived in Section 5.1 in (5.21) now completes the proof

of Proposition 5.3, and thus Theorem 2.3. �

6. Consistency of the estimator. The aim of this section is to prove The-
orem 2.4. Fix a truncation level ε > 0 from zero as in the theorem. Recall the
time-averaged proportion of leaves before and after each time t , namely (2.15)
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and (2.14). Also recall the expression for the limiting proportion of leaves from
(2.3). For any fixed interval [s, t] ⊆ [0,1], define H [s, t] by

(6.1) H [s, t] := 1

t − s

∫ t

s
p(∞)

u du.

The interpretation is as follows: the above gives the expected proportion of leaves
in the large network limit if one were to sample a time point U ∈ [s, t] uniformly
at random. Now define the two functions th

(∞) and h
(∞)
t via:

(a) Case 1: For ε ≤ t ≤ γ ,

th
(∞) := p(∞)

γ , h
(∞)
t := γ − t

1 − t
p(∞)

γ + 1 − γ

1 − t
H [γ,1].

(b) Case 2: For t > γ ,

th := γ − ε

t − ε
pγ + t − γ

t − ε
H
([γ, t]), ht := H

([t,1]).
In similar vein to (2.16), define the function

(6.2) D(t) := (1 − t)
∣∣
th

(∞) − h
(∞)
t

∣∣, t ∈ [ε,1].
Routine algebra shows that

(6.3) D(t) :=
{
(1 − γ )

∣∣p(∞)
γ − H [γ,1]∣∣ for ε ≤ t ≤ γ,

(1 − ε)
∣∣H [ε, t] − H [ε,1]∣∣ for t > γ.

Using the form of the limit proportion p
(∞)
t from (2.3) the following result is easy

to check.

LEMMA 6.1. Fix ε < γ and assume α 
= β . Then D(·) is a continuous func-
tion on [ε,1] such that D(·) is constant on the interval [ε, γ ] and then is strictly
monotonically decreasing on the interval [γ,1] with D(t) → 0 as t → 1. Further
the function has a strictly negative right derivative at γ , namely

(6.4) ∂+D(γ ) := lim
t↓γ

D(t) − D(γ )

t − γ
< 0.

Now Theorem 2.3 immediately results in the following result.

LEMMA 6.2. Fix ε > 0. Then

sup
t∈[ε,1]

∣∣Dn(t) − D(t)
∣∣= OP

(
1√
n

)
.

Combining Lemmas 6.1 and 6.2 completes the proof. �
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Erdős–Rényi random graphs. In Stochastic Models, Statistics and Their Applications.
Springer Proc. Math. Stat. 122 197–205. Springer, Cham. MR3336439

[60] YULE, G. U. (1925). A mathematical theory of evolution, based on the conclusions of
Dr. J. C. Willis, F.R.S. Philos. Trans. R. Soc. Lond. Ser. B 213 21–87.

http://www.ams.org/mathscinet-getitem?mr=2342706
http://www.ams.org/mathscinet-getitem?mr=2010377
http://www.ams.org/mathscinet-getitem?mr=2676073
http://www.ams.org/mathscinet-getitem?mr=1600720
http://arxiv.org/abs/arXiv:1403.0989
http://www.ams.org/mathscinet-getitem?mr=3539311
http://www.ams.org/mathscinet-getitem?mr=2343718
http://arxiv.org/abs/arXiv:1206.0773
http://www.ams.org/mathscinet-getitem?mr=2374974
http://www.ams.org/mathscinet-getitem?mr=0799155
http://www.ams.org/mathscinet-getitem?mr=0073085
http://www.ams.org/mathscinet-getitem?mr=0155708
http://www.ams.org/mathscinet-getitem?mr=0930497
http://www.ams.org/mathscinet-getitem?mr=1477933
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
http://www.ams.org/mathscinet-getitem?mr=3617364
http://www.ams.org/mathscinet-getitem?mr=3336439


78 S. BHAMIDI, J. JIN AND A. NOBEL

[61] ZHANG, W., PAN, G., WU, Z. and LI, S. (2013). Online community detection for large com-
plex networks. In Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence 1903–1909.

S. BHAMIDI

J. JIN

A. NOBEL

DEPARTMENT OF STATISTICS AND

OPERATIONS RESEARCH

UNIVERSITY OF NORTH CAROLINA

304 HANES HALL

CHAPEL HILL, NORTH CAROLINA 27599
USA
E-MAIL: bhamidi@email.unc.edu

jimmyjin@live.unc.edu
nobel@email.unc.edu

mailto:bhamidi@email.unc.edu
mailto:jimmyjin@live.unc.edu
mailto:nobel@email.unc.edu

	Introduction
	Organization of the paper
	Model formulation
	Model with change point

	Preliminary notation

	Results
	Asymptotics for the degree distribution
	Change point detection

	Discussion
	Multiple change points
	Possible extensions
	Change point detection
	Temporal networks and change points
	Preferential attachment
	Proof techniques
	Empirical dependence of the convergence on parameter values

	Proofs
	Preliminaries
	Convergence of the degree distribution
	Analysis of NnBC (·)
	Analysis of NnAC (·)

	Proof of the tail exponent for the limiting degree distribution
	Analysis of the maximal degree

	Analysis of the proportion of leaves
	Expectation error bounds
	Proof of Theorem 2.3

	Consistency of the estimator
	Acknowledgments
	References
	Author's Addresses

