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In the first part of the paper, we study reflected backward stochastic dif-
ferential equations (RBSDEs) with lower obstacle which is assumed to be
right upper-semicontinuous but not necessarily right-continuous. We prove
existence and uniqueness of the solutions to such RBSDEs in appropriate
Banach spaces. The result is established by using some results from opti-
mal stopping theory, some tools from the general theory of processes such
as Mertens’ decomposition of optional strong supermartingales, as well as an
appropriate generalization of Itô’s formula due to Gal’chouk and Lenglart.
In the second part of the paper, we provide some links between the RBSDE
studied in the first part and an optimal stopping problem in which the risk of a
financial position ξ is assessed by an f -conditional expectation Ef (·) (where
f is a Lipschitz driver). We characterize the “value function” of the problem
in terms of the solution to our RBSDE. Under an additional assumption of
left upper-semicontinuity along stopping times on ξ , we show the existence
of an optimal stopping time. We also provide a generalization of Mertens’
decomposition to the case of strong Ef -supermartingales.

1. Introduction. Backward stochastic differential equations (BSDEs) have
been introduced by Bismut ([4]) in the case of a linear driver. The general theory
of existence and uniqueness of solutions to BSDEs has been developed by Pardoux
and Peng [30]. Through a result of Feynman–Kac-type, these authors have linked
the theory of BSDEs to that of quasilinear parabolic partial differential equations
(cf. [29]). BSDEs have found number of applications in finance, among which
pricing and hedging of European options and recursive utilities (cf., for instance,
[13, 14]). Also, a useful family of operators, the family of so-called f -conditional
expectations, has been defined through the notion of BSDEs and used in the liter-
ature on dynamic risk measures (cf., for instance, [2, 3, 32, 33, 35] among others).
We recall that the f -conditional expectation at time t ∈ [0, T ] (where T > 0 is a
fixed final horizon) is the operator which maps a given square-integrable terminal

Received July 2015; revised August 2016.
MSC2010 subject classifications. Primary 60G40, 93E20, 60H30; secondary 60G07, 47N10.
Key words and phrases. Backward stochastic differential equation, reflected backward stochastic

differential equation, optimal stopping, f -expectation, strong optional supermartingale, Mertens’
decomposition, dynamic risk measure, strong Ef -supermartingale.

3153

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/17-AAP1278
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3154 M. GRIGOROVA ET AL.

condition ξT to the position at time t of (the first component of) the solution to the
BSDE with parameters (f, ξT ). The operator is denoted Ef

t,T (·).
Reflected backward stochastic differential equations (RBSDEs) can be seen as

a variant of BSDEs in which the (first component of the) solution is constrained to
remain greater than or equal to a given process called the obstacle. Compared to
the case of (nonreflected) BSDEs, there is an additional nondecreasing predictable
process which keeps the (first component of the) solution above the obstacle.

RBSDEs have been introduced by El Karoui et al. [12] in the case of a Brownian
filtration and a continuous obstacle. In [14], El Karoui and Quenez also study their
links with the (nonlinear) pricing of American options. There have been several
extensions of these works to the case of a discontinuous obstacle and/or a larger
stochastic basis than the Brownian one (cf. [6, 15, 18–20, 28, 34]). In all these
extensions, an assumption of right-continuity on the obstacle is made. In the first
part of the present paper, we consider a further extension of the theory of RBSDEs
to the case where the obstacle is not necessarily right-continuous. Compared to
the right-continuous case, the additional nondecreasing process, which “pushes”
the (first component of the) solution to stay above the obstacle, is no longer right-
continuous. To prove our results, we use some tools from the optimal stopping
theory (cf. [11, 21, 22, 27]), some tools from the general theory of processes (cf.
[9]) such as Mertens’ decomposition of strong optional (but not necessarily right-
continuous) supermartingales (generalizing Doob–Meyer decomposition), a result
from the potential theory (cf. [9]), and a generalization of Itô’s formula to the case
of strong optional semimartingales in the vocabulary of [16] (but not necessarily
right-continuous) due to Gal’chouk and Lenglart (cf. [26]).

In the second part of the paper, we make some links between the RBSDEs stud-
ied in the first part and optimal stopping with f -conditional expectations. More
precisely, we are interested in the following optimization problem: we are given a
process ξ modelling a dynamic financial position. The risk of ξ is assessed by a
dynamic risk measure which (up to a minus sign) is given by an f -conditional ex-
pectation. The process ξ is assumed to be right upper-semicontinuous, but not nec-
essarily right-continuous. We aim at stopping the process ξ in such a way that the
risk be minimal. We characterize the value of the problem in terms of the unique
solution to the RBSDE associated with obstacle ξ and driver f studied in the first
part. We show the existence of an optimal stopping time for the problem under an
additional assumption of left upper-semicontinuity along stopping times on ξ , and
the existence of an ε-optimal stopping time in the more general case where this
assumption is not made. We provide an optimality criterion characterizing the op-
timal stopping times for the problem in terms of properties of the “value process”.
We thus extend some results of [34] to the case where the optimized process ξ is
not cadlag. We also establish a comparison principle for the RBSDEs studied in
the first part of our paper, as well as a generalization of Mertens’ decomposition to
the case of Ef -strong supermartingales.
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The remainder of the paper is organized as follows.
In Section 2, we give some preliminary definitions and properties. In Section 3,

we define our RBSDE and we prove existence and uniqueness of the solution.
Section 4 is dedicated to our optimal stopping problem with f -conditional expec-
tations. In Section 4.1, we formulate and motivate the problem. In Section 4.2,
we characterize the value function of the problem in terms of the solution of the
RBSDE studied in Section 3; we also give an optimality criterion and address the
question of existence of ε-optimal and optimal stopping times. In Section 5, we
derive some useful additional results: comparison principle for our RBSDEs (Sec-
tion 5.2) and “generalized” Mertens’ decomposition for Ef -strong supermartin-
gales (Section 5.1). In Section 6, we briefly present some further extensions of our
work. In the Appendix, we recall some useful results (“classical” Mertens’ decom-
position, a result from potential theory, Gal’chouk–Lenglart’s change of variables
formula), we give the proofs of three results (Proposition 2.1, Proposition A.2 and
Proposition A.1) used in the main part of the paper, and we also give some exam-
ples.

2. Preliminaries. Let T > 0 be a fixed positive real number. Let (E,E ) be
a measurable space equipped with a σ -finite positive measure ν. Let (�,F,P )

be a probability space equipped with a one-dimensional Brownian motion W

and with an independent Poisson random measure N(dt, de) with compen-
sator dt ⊗ ν(de). We denote by Ñ(dt, de) the compensated process, that is,
Ñ(dt, de) := N(dt, de) − dt ⊗ ν(de). Let F = {Ft : t ∈ [0, T ]} be the (complete)
natural filtration associated with W and N . For t ∈ [0, T ], we denote by Tt,T the
set of stopping times τ such that P(t ≤ τ ≤ T ) = 1. More generally, for a given
stopping time ν ∈ T0,T , we denote by Tν,T the set of stopping times τ such that
P(ν ≤ τ ≤ T ) = 1.

We use the following notation:

• P is the predictable σ -algebra on � × [0, T ].
• Prog is the progressive σ -algebra on � × [0, T ].
• B(R) [resp., B(R2)] is the Borel σ -algebra on R (resp., R2).
• L2(FT ) is the set of random variables which are FT -measurable and square-

integrable.
• L2

ν is the set of (E ,B(R))-measurable functions � : E → R such that
‖�‖2

ν := ∫
E |�(e)|2ν(de) < ∞. For � ∈ L2

ν , k ∈ L2
ν , we define 〈�, k 〉ν :=∫

E �(e)k (e)ν(de).
• B(L2

ν) is the Borel σ -algebra on L2
ν .

• H2 is the set of R-valued predictable processes φ with ‖φ‖2
H2 :=

E[∫ T
0 |φt |2 dt] < ∞.

• H2
ν is the set of R-valued processes l : (ω, t, e) ∈ (� × [0, T ] × E) �→ lt (ω, e)

which are predictable, that is (P⊗E ,B(R))-measurable, and such that ‖l‖2
H2

ν
:=

E[∫ T
0 ‖lt‖2

ν dt] < ∞.
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We introduce the vector space S2 defined as the space of R-valued optional (not
necessarily cadlag) processes φ such that |||φ|||2S2 := E[ess supτ∈T0,T

|φτ |2] < ∞.1

PROPOSITION 2.1. The map ||| · |||S2 is a norm on S2. In particular, if φ ∈ S2

is such that |||φ|||2S2 = 0, then φ is indistinguishable from the null process, that is,
φt = 0, 0 ≤ t ≤ T a.s. Moreover, the space S2 endowed with the norm ||| · |||S2 is a
Banach space.

The proof is given in the Appendix.
We will also use the following notation: Let β > 0. For φ ∈ H2, ‖φ‖2

β :=
E[∫ T

0 eβsφ2
s ds]. We note that on the space H2 the norms ‖ · ‖β and ‖ · ‖H2

are equivalent. For l ∈ H2
ν , ‖l‖2

ν,β := E[∫ T
0 eβs‖ls‖2

ν ds]. On the space H2
ν , the

norms ‖ · ‖ν,β and ‖ · ‖H2
ν

are equivalent. For φ ∈ S2, we define |||φ|||2β :=
E[ess supτ∈T0,T

eβτφ2
τ ]. We note that ||| · |||β is a norm on S2 equivalent to the norm

||| · |||S2 .

REMARK 2.1. By a slight abuse of notation, we shall also write ‖φ‖2
H2 (resp.,

‖φ‖2
β ) for E[∫ T

0 |φt |2 dt] (resp., E[∫ T
0 eβt |φt |2 dt]) in the case of a progressively

measurable real-valued process φ (cf., e.g., Remark 2.1 in [6] for the same nota-
tion).

DEFINITION 2.1 (Driver, Lipschitz driver). A function f is said to be a driver
if:

• f : � × [0, T ] × R2 × L2
ν → R, (ω, t, y, z, k ) �→ f (ω, t, y, z, k ) is Prog ⊗

B(R2) ⊗B(L2
ν)-measurable,

• E[∫ T
0 f (t,0,0,0)2 dt] < +∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0
such that dP ⊗ dt-a.e., for each (y1, z1, k1) ∈ R2 × L2

ν , (y2, z2, k2) ∈ R2 × L2
ν ,∣∣f (ω, t, y1, z1, k1) − f (ω, t, y2, z2, k2)

∣∣ ≤ K
(|y1 − y2| + |z1 − z2| + ‖k1 − k2‖ν

)
.

A Lipschitz driver f is called predictable if moreover f is P ⊗ B(R2) ⊗ B(L2
ν)-

measurable.

For real-valued random variables X and Xn, n ∈ N, the notation “Xn ↑ X” will
stand for “the sequence (Xn) is nondecreasing and converges to X a.s.”.

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand
limit of φ at t . We denote by �+φt := φt+ − φt the size of the right jump of φ at
t , and by �φt := φt − φt− the size of the left jump of φ at t .

1Note that when φ is right-continuous, |||φ|||2S2 = E[supt∈[0,T ] |φt |2] (cf., Remark A.1).
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DEFINITION 2.2. Let τ ∈ T0,T . An optional process (φt ) is said to be right
upper-semicontinuous (r.u.s.c.) [resp., left upper-semicontinuous (l.u.s.c.)] along
stopping times at the stopping time τ if for all nonincreasing (resp., nonde-
creasing) sequence of stopping times (τn) such that τn ↓ τ (resp., τn ↑ τ ) a.s.,
φτ ≥ lim supn→∞ φτna.s. The process (φt ) is said to be r.u.s.c. (resp., l.u.s.c.) along
stopping times if it is r.u.s.c. (resp., l.u.s.c.) along stopping times at each τ ∈ T0,T .
The right- (resp., left-) continuity property of an optional process (φt ) along stop-
ping times at a stopping time τ is defined similarly.

REMARK 2.2. Note that if (φt ) is an optional process and τ is a totally inac-
cessible stopping time, then (φt ) is left-continuous along stopping times at τ .

If the process (φt ) has left limits, (φt ) is l.u.s.c. (resp., left-continuous) along
stopping times if and only if for each predictable stopping time τ ∈ T0,T , φτ− ≤ φτ

(resp., φτ− = φτ ) a.s.
Note, moreover, that if an optional process (φt ) is right upper-semicontinuous

(r.u.s.c.), then it is r.u.s.c. along stopping times. The converse also holds true; it
is a difficult result of the general theory of processes proved in [7], Proposition 2,
page 300.

3. Reflected BSDE whose obstacle is not cadlag. Let T > 0 be a fixed ter-
minal time. Let f be a driver. Let ξ = (ξt )t∈[0,T ] be a left-limited process in S2. We
suppose moreover that the process ξ is r.u.s.c. A process ξ satisfying the previous
properties will be called a barrier, or an obstacle.

REMARK 3.1. Let us note that in the following definitions and results we can
relax the assumption of existence of left limits for the obstacle ξ . All the results still
hold true provided we replace the process (ξt−)t∈]0,T ] by the process (ξ

t
)t∈]0,T ]

defined by ξ
t
:= lim sups↑t,s<t ξs , for all t ∈]0, T ]. We recall that ξ is a predictable

process (cf., [8], Theorem 90, page 225). We call the process ξ the left upper-
semicontinuous envelope of ξ .

DEFINITION 3.1. A process (Y,Z, k,A,C) is said to be a solution to the re-
flected BSDE with parameters (f, ξ), where f is a driver and ξ is an obstacle,
if

(Y,Z, k,A,C) ∈ S2 ×H2 ×H2
ν × S2 × S2 and a.s. for all t ∈ [0, T ],(3.1)

Yt = ξT +
∫ T

t
f (s, Ys,Zs, ks) ds −

∫ T

t
Zs dWs

−
∫ T

t

∫
E

ks(e)Ñ(ds, de) + AT − At + CT − − Ct−,

Yt ≥ ξt for all t ∈ [0, T ] a.s.,

(3.2)
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A is a nondecreasing right-continuous predictable process

with A0 = 0 and such that
∫ T

0
1{Yt>ξt } dAc

t = 0 a.s. and

(Yτ− − ξτ−)
(
Ad

τ − Ad
τ−

) = 0 a.s. for all predictable τ ∈ T0,T ,

(3.3)

C is a nondecreasing right-continuous adapted purely

discontinuous process with C0− = 0 and such that

(Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0,T .

(3.4)

Here, Ac denotes the continuous part of the process A and Ad its discontinuous
part.

Equations (3.3) and (3.4) are referred to as minimality conditions or Sko-
rokhod conditions. We note that, by a classical result of the general theory of
processes ([8], Theorem IV.84), a process (Y,Z, k,A,C) ∈ S2 × H2 × H2

ν ×
S2 × S2 satisfies equation (3.1) in the above definition if and only if Yτ =
ξT + ∫ T

τ f (t, Yt ,Zt , kt ) dt − ∫ T
τ Zt dWt − ∫ T

τ

∫
E kt (e)Ñ(dt, de) + AT − Aτ +

CT − − Cτ−, where the equality holds a.s. for all τ ∈ T0,T . Let us also empha-
size that if (Y,Z, k,A,C) satisfies the above definition, then the process Y has left
and right limits.

REMARK 3.2. If (Y,Z, k,A,C) is a solution to the RBSDE defined above,
then �Ct(ω) = Yt (ω) − Yt+(ω) for all (ω, t) ∈ � × [0, T ) outside an evanescent
set. This observation is a consequence of equation (3.1). It follows that Yt ≥ Yt+,
for all t ∈ [0, T ), which implies that Y is necessarily r.u.s.c.

Moreover, since in our framework the filtration is quasi-left-continuous, mar-
tingales have only totally inaccessible jumps. Hence, if τ is a predictable stopping
time, we have Yτ −Yτ− = −(Aτ −Aτ−) a.s. From this, together with Remark 2.2,
it follows that the process Y is left-continuous along stopping times at a stopping
time τ if and only if �Aτ = 0 a.s.

We also note that equality (3.1) still holds with f (t, Yt ,Zt , kt ) replaced by
f (t, Yt−,Zt , kt ). Furthermore, the process (Yt + ∫ t

0 f (s, Ys,Zs, ks) ds)t∈[0,T ] is
a strong supermartingale (cf. Definition A.1).

REMARK 3.3 (The particular case of a right-continuous obstacle). In the par-
ticular case of a right-continuous obstacle ξ , we have that Y is right-continuous.
Indeed, observe that Yt ≥ Yt+ ≥ ξt+ = ξt [due to the right upper semicontinuity of
Y and to inequality (3.2)]. Hence, if t is such that Yt = ξt , then Yt = Yt+ = ξt . If
t is such that Yt > ξt , then Yt − Yt+ = Ct − Ct− = 0 [due to Remark 3.2 and to
(3.4)]. Thus, in both cases, Yt = Yt+; so, Y is right-continuous.

Moreover, the right-continuity of Y combined with Remark 3.2 give Ct = Ct−,
for all t . As C is right-continuous, purely discontinuous and such that C0− = 0,
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we deduce C ≡ 0. Thus, we recover the usual formulation of RBSDE with right-
continuous obstacle.

A simple introductory example where a solution to our RBSDE (from Defi-
nition 3.1) can be explicitly computed is presented in the Appendix (cf. Exam-
ple A.1).

Let us now investigate the question of existence and uniqueness of the solution
to the RBSDE defined above in the case where the driver f does not depend on y,
z and k . To this purpose, we first state a lemma which will be used in the sequel.

LEMMA 3.1 (A priori estimates). Let (Y 1,Z1, k1,A1,C1) ∈ S2 ×H2 ×H2
ν ×

S2 × S2 [resp., (Y 2,Z2, k2,A2,C2) ∈ S2 ×H2 ×H2
ν × S2 × S2] be a solution to

the RBSDE associated with driver f 1(ω, t) [resp., f 2(ω, t)] and with obstacle ξ .
There exists c > 0 such that for all ε > 0, for all β ≥ 1

ε2 we have

(3.5)

∥∥k1 − k2∥∥2
ν,β ≤ ε2∥∥f 1 − f 2∥∥2

β; ∥∥Z1 − Z2∥∥2
β ≤ ε2∥∥f 1 − f 2∥∥2

β;∣∣∣∣∣∣Y 1 − Y 2∣∣∣∣∣∣2
β ≤ 4ε2(

1 + 6c2)∥∥f 1 − f 2∥∥2
β.

PROOF. Let β > 0 and ε > 0 be such that β ≥ 1
ε2 . We set Ỹ := Y 1 − Y 2, Z̃ :=

Z1 − Z2, Ã := A1 − A2, C̃ := C1 − C2, k̃ := k1 − k2 and f̃ (ω, t) := f 1(ω, t) −
f 2(ω, t). We note that ỸT = ξT − ξT = 0; moreover,

Ỹτ =
∫ T

τ
f̃ (t) dt −

∫ T

τ
Z̃t dWt −

∫ T

τ

∫
E

k̃t (e)Ñ(dt, de)

+ ÃT − Ãτ + C̃T − − C̃τ− a.s. for all τ ∈ T0,T .

Thus, we see that Ỹ is an optional strong semimartingale in the vocabulary of
[16] (cf. Theorem A.3 for the definition) with decomposition Ỹ = Ỹ0 +M +A+B ,
where Mt := ∫ t

0 Z̃s dWs + ∫ t
0

∫
E k̃s(e)Ñ(ds, de), At := − ∫ t

0 f̃ (s) ds − Ãt and
Bt := −C̃t− (the notation is that of Theorem A.3 and Corollary A.2 from the Ap-
pendix). Applying Gal’chouk–Lenglart’s formula (more precisely Corollary A.2)
to eβt Ỹ 2

t gives: almost surely, for all t ∈ [0, T ],
eβT Ỹ 2

T = eβt Ỹ 2
t +

∫
]t,T ]

βeβs(Ỹs)
2 ds − 2

∫
]t,T ]

eβsỸs−f̃ (s) ds

− 2
∫
]t,T ]

eβsỸs− dÃs + 2
∫
]t,T ]

eβsỸs−Z̃s dWs

+ 2
∫
]t,T ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de) +
∫
]t,T ]

eβsZ̃2
s ds

+ ∑
t<s≤T

eβs(Ỹs − Ỹs−)2 −
∫
[t,T [

2eβsỸs d(C̃)s+ + ∑
t≤s<T

eβs(Ỹs+ − Ỹs)
2.
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Thus, we get (recall that ỸT = 0): almost surely, for all t ∈ [0, T ],

(3.6)

eβt Ỹ 2
t +

∫
]t,T ]

eβsZ̃2
s ds

= −
∫
]t,T ]

βeβs(Ỹs)
2 ds + 2

∫
]t,T ]

eβsỸs f̃ (s) ds

+ 2
∫
]t,T ]

eβsỸs− dÃs − 2
∫
]t,T ]

eβsỸs−Z̃s dWs

− 2
∫
]t,T ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de) − ∑
t<s≤T

eβs(Ỹs − Ỹs−)2

+ 2
∫
[t,T [

eβsỸs dC̃s − ∑
t≤s<T

eβs(Ỹs+ − Ỹs)
2.

We give hereafter an upper bound for some of the terms appearing on the right-
hand side (RHS for short) of the above equality.

Let us first consider the sum of the first and the second term on the RHS of
equality (3.6). By applying the inequality 2ab ≤ (a

ε
)2 + ε2b2, valid for all (a, b) ∈

R2, we get: a.s. for all t ∈ [0, T ],
−

∫
]t,T ]

βeβs(Ỹs)
2 ds + 2

∫
]t,T ]

eβsỸs f̃ (s) ds

≤ −
∫
]t,T ]

βeβs(Ỹs)
2 ds + 1

ε2

∫
]t,T ]

eβsỸ 2
s ds + ε2

∫
]t,T ]

eβsf̃ 2(s) ds

=
(

1

ε2 − β

)∫
]t,T ]

eβs(Ỹs)
2 ds + ε2

∫
]t,T ]

eβsf̃ 2(s) ds.

As β ≥ 1
ε2 , we have ( 1

ε2 − β)
∫
]t,T ] eβs(Ỹs)

2 ds ≤ 0, for all t ∈ [0, T ] a.s. For
the third term on the RHS of (3.6) it can be shown that, a.s. for all t ∈ [0, T ],
2

∫
]t,T ] eβsỸs− dÃs ≤ 0. The proof uses property (3.3) of the definition of the RB-

SDE and the property Y i ≥ ξ , for i = 1,2; the details are similar to those in the
case of a cadlag obstacle and are left to the reader (cf., for instance, [34], proof of
Proposition A.1).

For the the last but one term on the RHS of (3.6) we show that, a.s. for all
t ∈ [0, T ], 2

∫
[t,T [ eβsỸs dC̃s ≤ 0. Indeed, a.s. for all t ∈ [0, T ], ∫

[t,T [ eβsỸs dC̃s =∑
t≤s<T eβsỸs�C̃s . Now, a.s. for all s ∈ [0, T ], Ỹs�C̃s = (Y 1

s − Y 2
s )�C1

s − (Y 1
s −

Y 2
s )�C2

s . We use property (3.4), the nondecreasingness of (almost all trajectories
of) C1, and the fact that Y 2 ≥ ξ to obtain: a.s. for all s ∈ [0, T ],(

Y 1
s − Y 2

s

)
�C1

s = (
Y 1

s − ξs

)
�C1

s − (
Y 2

s − ξs

)
�C1

s = −(
Y 2

s − ξs

)
�C1

s ≤ 0.

Similarly, we obtain: a.s. for all s ∈ [0, T ], (Y 1
s − Y 2

s )�C2
s = (Y 1

s − ξs)�C2
s ≥ 0.

We conclude that, a.s. for all t ∈ [0, T ], 2
∫
[t,T [ eβsỸs dC̃s ≤ 0. The above obser-

vations, together with equation (3.6), lead to the following inequality: a.s., for all
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t ∈ [0, T ],

(3.7)

eβt Ỹ 2
t +

∫
]t,T ]

eβsZ̃2
s ds

≤ ε2
∫
]t,T ]

eβsf̃ 2(s) ds − 2
∫
]t,T ]

eβsỸs−Z̃s dWs

− 2
∫
]t,T ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de) − ∑
t<s≤T

eβs(Ỹs − Ỹs−)2.

From the above inequality, we derive first an estimate for ‖Z̃‖2
β and ‖k̃‖2

ν,β , and

then an estimate for |||Ỹ |||2β .

Estimate for ‖Z̃‖2
β and ‖k̃‖2

ν,β . Note first that we have∫
]t,T ]

eβs‖k̃s‖2
ν ds − ∑

t<s≤T

eβs(Ỹs − Ỹs−)2

=
∫
]t,T ]

eβs‖k̃s‖2
ν ds −

∫
]t,T ]

eβs
∫
E

k̃2
s (e)N(ds, de) − ∑

t<s≤T

eβs(�Ãs)
2

= − ∑
t≤s<T

eβs�Ã2
s −

∫
]t,T ]

eβs
∫
E

k̃2
s (e)Ñ(ds, de),

where, in order to obtain the first equality, we have used the fact that the processes
A· and N(·, de) “do not have jumps in common” (recall that the process A jumps
only at predictable stopping times, while the process N(·, de) does not jump at
predictable stopping times).

By adding the term
∫
]t,T ] eβs‖k̃s‖2

ν ds on both sides of inequality (3.7) and by
using the above computation, we derive that almost surely, for all t ∈ [0, T ],

(3.8)

eβt Ỹ 2
t +

∫
]t,T ]

eβsZ̃2
s ds +

∫
]t,T ]

eβs‖k̃s‖2
ν ds

≤ ε2
∫
]t,T ]

eβsf̃ 2(s) ds − 2
∫
]t,T ]

eβsỸs−Z̃s dWs

−
∫
]t,T ]

eβs
∫
E

(
2Ỹs−k̃s(e) + k̃2

s (e)
)
Ñ(ds, de).

Let us show that the stochastic integral “with respect to dWs” has zero expectation.
Note first that

(3.9) sup
t∈]0,T ]

Ỹ 2
t− = sup

t∈Q∩]0,T ]
Ỹ 2

t− ≤ ess sup
τ∈T0,T

Ỹ 2
τ a.s.,

where we have used the left-continuity of the process (Ỹs−) to obtain the
equality. From this property together with Cauchy–Schwarz inequality, we get
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E[
√∫ T

0 e2βsỸ 2
s−Z̃2

s ds] ≤ |||Ỹ |||S2‖Z̃‖2β < ∞. By standard arguments, we deduce

E[∫ T
0 eβsỸs−Z̃s dWs] = 0. By similar arguments, the last term on the RHS of in-

equality (3.8) has also zero expectation.
By applying (3.8) with t = 0, and by taking expectations on both sides of the

resulting inequality, we obtain Ỹ 2
0 + ‖Z̃‖2

β + ‖k̃‖2
ν,β ≤ ε2‖f̃ ‖2

β . We deduce the
desired estimates:

(3.10) ‖Z̃‖2
β ≤ ε2‖f̃ ‖2

β and ‖k̃‖2
ν,β ≤ ε2‖f̃ ‖2

β.

Estimate for |||Ỹ |||2β . From inequality (3.7), we derive that a.s., for all t ∈ [0, T ],

(3.11)

eβt Ỹ 2
t ≤ ε2

∫
]t,T ]

eβsf̃ 2(s) ds − 2
∫
]t,T ]

eβsỸs−Z̃s dWs

− 2
∫
]t,T ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de).

From this, together with Chasles’ relation for stochastic integrals, we get, for all
τ ∈ T0,T ,

eβτ Ỹ 2
τ ≤ ε2

∫
]0,T ]

eβsf̃ 2(s) ds − 2
∫
]0,T ]

eβsỸs−Z̃s dWs

+ 2
∫
]0,τ ]

eβsỸs−Z̃s dWs − 2
∫
]0,T ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de)

+ 2
∫
]0,τ ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de) a.s.

By taking first the essential supremum over τ ∈ T0,T and then the expectation
on both sides of the above inequality, we obtain

(3.12)

E
[
ess sup
τ∈T0,T

eβτ Ỹ 2
τ

] ≤ ε2‖f̃ ‖2
β + 2E

[
ess sup
τ∈T0,T

∣∣∣∣
∫ τ

0
eβsỸs−Z̃s dWs

∣∣∣∣
]

+ 2E

[
ess sup
τ∈T0,T

∣∣∣∣
∫
]0,τ ]

eβs
∫
E

Ỹs−k̃s(e)Ñ(ds, de)

∣∣∣∣
]
.

Let us consider the last term in (3.12). By using Remark A.1 applied to the
right-continuous process (

∫
]0,t] eβs

∫
E Ỹs−k̃s(e)Ñ(ds, de))t∈[0,T ] and Burkholder–

Davis–Gundy inequalities, we get

(3.13)

2E

[
ess sup
τ∈T0,T

∣∣∣∣
∫ τ

0
eβs

∫
E

Ỹs−k̃s(e)Ñ(ds, de)

∣∣∣∣
]

≤ 2cE

[√∫ T

0
e2βs

∫
E

Ỹ 2
s−k̃2

s (e)N(ds, de)

]
,
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where c > 0 is a positive “universal” constant (which does not depend on the other
parameters). Inequality (3.9) and the trivial inequality ab ≤ 1

2a2 + 1
2b2 lead to

2cE

[√∫ T

0
e2βs

∫
E

Ỹ 2
s−k̃2

s (e)N(ds, de)

]

≤ E

[√√√√1

2
ess sup
τ∈T0,T

eβτ Ỹ 2
τ

√
8c2

∫ T

0
eβs

∫
E

k̃2
s (e)N(ds, de)

]

≤ 1

4
E

[
ess sup
τ∈T0,T

eβτ Ỹ 2
τ

] + 4c2E

[∫ T

0
eβs

∫
E

k̃2
s (e)N(ds, de)

]

= 1

4
|||Ỹ |||2β + 4c2‖k̃‖2

ν,β .

Here, the equality has been obtained by adding and subtracting 4c2‖k̃‖2
ν,β (on the

left-hand side) and by using the fact that E[∫ T
0 eβs

∫
E k̃2

s (e)Ñ(ds, de)] = 0. By
using similar arguments, we obtain that the last but one term in (3.12) satisfies

(3.14) 2E

[
ess sup
τ∈T0,T

∫ τ

0
eβsỸs−Z̃s dWs

]
≤ 1

2
|||Ỹ |||2β + 2c2‖Z̃‖2

β,

where c is the same universal constant as above. By (3.12), we thus derive that
1
4 |||Ỹ |||2β ≤ ε2‖f̃ ‖2

β + 2c2‖Z̃‖2
β + 4c2‖k̃‖2

ν,β . This inequality, together with the es-

timates from (3.10), gives |||Ỹ |||2β ≤ 4ε2(1 + 6c2)‖f̃ ‖2
β , which is the desired result.

�

In the following lemma, we prove existence and uniqueness of the solution to
the RBSDE from Definition 3.1 (in the case where the driver f does not depend on
y, z and k ) and we characterize the first component of the solution as the “value
process” of an optimal stopping problem.

LEMMA 3.2. Suppose that f does not depend on y, z, k , that is, f (ω, t, y,

z, k ) = f (ω, t), where f is a progressive process with E[∫ T
0 f (t)2 dt] < +∞. Let

(ξt ) be an obstacle. Then the RBSDE from Definition 3.1 admits a unique solution
(Y,Z, k,A,C) ∈ S2 ×H2 ×H2

ν × S2 × S2, and for each S ∈ T0,T , we have

(3.15) YS = ess sup
τ∈TS,T

E

[
ξτ +

∫ τ

S
f (t) dt

∣∣∣ FS

]
a.s.

Moreover, the following property holds:

(3.16) YS = ξS ∨ YS+ a.s.

We also have YS+ = ess supτ>S E[ξτ + ∫ τ
S f (t) dt | FS] a.s., for all S ∈ T0,T .

If, furthermore, the obstacle (ξt ) is l.u.s.c. along stopping times, then (At ) is
continuous.
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The proof of the lemma is divided in several steps. First, we exhibit a “natural
candidate” Y to be the first component of the solution to the RBSDE with param-
eters (f, ξ); we prove that Y belongs to the space S2 and we give an estimate
of |||Y |||2S2 in terms of |||ξ |||2S2 and ‖f ‖2

H2 . In the second step, we exhibit “natural
candidates” for the processes A and C, and a “natural candidate” M for the mar-
tingale part of the solution to the RBSDE with parameters (f, ξ). In the third step,
we prove that the processes A and C belong to S2 and we give an estimate of
|||A + C−|||2S2 . In the fourth step, we apply the martingale representation theorem
to M , which gives the second component Z ∈ H2 and the third component k ∈ H2

ν

of the solution. In the fifth step, we show the uniqueness of the solution. Finally,
we prove property (3.16) and the last two assertions of the lemma.

PROOF. For S ∈ T0,T , we define Y(S) by

(3.17) Y(S) := ess sup
τ∈TS,T

E

[
ξτ +

∫ τ

S
f (u) du

∣∣∣ FS

]
.

By Proposition A.2 in the Appendix, there exists a ladlag optional process
(Y t )t∈[0,T ] which aggregates the family (Y (S))S∈T0,T

, that is,

(3.18) YS = Y(S) a.s. for all S ∈ T0,T .

Step 1. By using Jensen’s inequality and the triangular inequality, we get

(3.19)

|YS | ≤ ess sup
τ∈TS,T

E

[
|ξτ | +

∣∣∣∣
∫ τ

S
f (u) du

∣∣∣∣ ∣∣∣ FS

]

≤ E

[
ess sup
τ∈TS,T

|ξτ | +
∫ T

0

∣∣f (u)
∣∣du

∣∣∣ FS

]
= E[X|FS],

a.s., for all S ∈ T0,T , where we have set

(3.20) X :=
∫ T

0

∣∣f (u)
∣∣du + ess sup

τ∈T0,T

|ξτ |.

We apply the Cauchy–Schwarz inequality to obtain

(3.21) E
[
X2] ≤ cT ‖f ‖2

H2 + c|||ξ |||2S2,

where c > 0 is a positive constant, which, in the sequel, is allowed to differ from
line to line. From (3.19), we get ess supS∈T0,T

|YS |2 ≤ ess supS∈T0,T
|E[X|FS]|2 =

supt∈[0,T ] |E[X|Ft ]|2, where the equality follows from the right-continuity of the
process (E[X|Ft ])0≤t≤T , together with Remark A.1. By using this and Doob’s
martingale inequalities in L2, we obtain

(3.22)
E

[
ess sup
S∈T0,T

|YS |2
]
≤ E

[
sup

t∈[0,T ]
∣∣E[

X|Ft

]∣∣2]
≤ cE

[
X2]

≤ cT ‖f ‖2
H2 + c|||ξ |||2S2,

where the last inequality follows from (3.21).
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Step 2. By Proposition A.2, the process (Y t + ∫ t
0 f (u)du)t∈[0,T ] is a strong su-

permartingale. Due to the previous step and to the assumption f ∈ H2, it is of
class (D). Applying Mertens’ decomposition (cf. Theorem A.1) gives the follow-
ing:

(3.23) Y t = −
∫ t

0
f (u)du + Mt − At − Ct− for all t ∈ [0, T ] a.s.,

where M is a cadlag uniformly integrable martingale, A is a nondecreasing right-
continuous predictable process such that A0 = 0, E(AT ) < ∞, and C is a nonde-
creasing right-continuous adapted purely discontinuous process such that C0− = 0,
E(CT ) < ∞. Let τ ∈ T0,T . By Remark A.4, �+Y τ = 1{Y τ =ξτ }�+Y τ a.s. Now, by

(3.23), �Cτ = −�+Y τ a.s. It follows that �Cτ = 1{Y τ =ξτ }�Cτ a.s. In other terms,

the process C satisfies the minimality condition (3.4) (with Y replaced by Y ).
Moreover, thanks to a result from optimal stopping theory due to El Karoui (cf.
[11], Proposition 2.34; cf. also [22]), for each predictable stopping time τ , we
have �Aτ = 1{Y τ−=ξτ−}�Aτ a.s. For the continuous part Ac of A, again by a re-

sult from optimal stopping theory (cf. [23]), we have
∫ T

0 1{Y t>ξt } dAc
t = 0 a.s. The

process A thus satisfies the minimality condition (3.3) (with Y replaced by Y ).
We have YT = Y(T ) = ξT a.s. [due to (3.17) and (3.18)]. Also, from (3.17) and
(3.18), we have YS = Y (S) ≥ ξS a.s. for all S ∈ T0,T , which, along with a classi-
cal result of the general theory of processes (cf. [8], Theorem IV.84) implies that
Y t ≥ ξt ,0 ≤ t ≤ T , a.s.

Step 3. Let us consider the Mertens’ process associated with the strong su-
permartingale Y · + ∫ ·

0 f (u)du, that is the process (At + Ct−), where the pro-
cesses (At ) and (Ct−) are given by (3.23). We show that AT + CT − ∈ L2.
By arguments similar to those used in the proof of (3.19), we see that |YS +∫ S

0 f (u)du| ≤ E[X|FS], where X is the random variable defined in (3.20). This
observation, together with a result from potential theory (cf. Corollary A.1), gives
E[(AT + CT −)2] ≤ cE[X2], where c > 0. By combining this inequality with in-
equality (3.21), we obtain

(3.24) E
[
(AT + CT −)2] ≤ cT ‖f ‖2

H2 + c|||ξ |||2S2,

where we have again allowed the positive constant c to vary from line to line.
We conclude that AT + CT − ∈ L2. Hence, AT and CT −(= CT ) are square inte-
grable, which due to the nondecreasingness of A and C, is equivalent to A ∈ S2

and C ∈ S2.
Step 4. The martingale M from the decomposition (3.23) belongs to S2; this is a

consequence of Step 1, Step 3 and the fact that the process (
∫ t

0 f (u)du)t∈[0,T ] is in
S2 (since f ∈ H2). By the martingale representation theorem (cf., e.g., Lemma 2.3
in [37]), there exists a unique predictable process Z ∈ H2 and a unique predictable
k ∈ H2

ν such that dMt = Zt dWt + ∫
E kt (e)Ñ(dt, de). Combining this step with
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the previous ones gives that (Y ,Z, k,A,C) is a solution to the RBSDE with pa-
rameters f and ξ .

Step 5. Let us now prove the uniqueness of the solution. Let Y be the first com-
ponent of a solution to the RBSDE with driver f and obstacle ξ . Then, by the
previous Lemma 3.1 (applied with f 1 = f 2 = f ), we obtain Y = Y in S2, where
Y is given by (3.17). The uniqueness of the other components follows from the
uniqueness of Mertens’ decomposition of strong optional supermartingales and
from the uniqueness of the martingale representation. (We note that the unique-
ness of the second and the third component can be obtained also by applying the
previous Lemma 3.1.)

Step 6. Property (3.16) and the characterization of YS+ as the value function of
an optimal stopping problem follow from Proposition A.2 parts (ii) and (iii). The
last assertion of Lemma 3.2 follows from classical results (cf., for instance, the last
statement in Theorem 20 of [9], page 429, or [22]). �

With the help of the previous two lemmas, we now prove the existence and
uniqueness of the solution to the RBSDE from Definition 3.1 in the case of a
general Lipschitz driver.

THEOREM 3.1 (Existence and uniqueness of the solution). Let ξ be a left-
limited and r.u.s.c. process in S2 and let f be a Lipschitz driver. The RBSDE with
parameters (f, ξ) from Definition 3.1 admits a unique solution (Y,Z, k,A,C) ∈
S2 ×H2 ×H2

ν × S2 × S2.
Moreover, for all S ∈ T0,T , we have

(3.25) YS = ξS ∨ YS+ a.s.

Furthermore, if (ξt ) is assumed l.u.s.c. along stopping times, then (At ) is continu-
ous [or equivalently, the process (Yt ) is l.u.s.c. along stopping times].

REMARK 3.4. We will see that, as in the right-continuous case, the existence
and uniqueness result follows from a fixed-point theorem applied in an appropriate
Banach space. In the right-continuous case, the Banach space is classically the
product space H2 × H2 × H2

ν equipped with the norm ‖Y‖2
β + ‖Z‖2

β + ‖k‖2
ν,β

(cf., e.g., [12, 20, 34]). However, this Banach space does not suit our purpose.
Indeed, let us make the following observation. Let Y be an optional process such
that ‖Y‖β = 0. We then have Yt = 0, 0 ≤ t ≤ T dP ⊗ dt-a.e. When Y is right-
continuous, this implies the indistinguishability of Y from the null process 0, that
is, the property Yt = 0, 0 ≤ t ≤ T a.s. However, if Y is not right-continuous, the
implication is not necessarily true.2 Hence, applying a fixed point theorem in this

2However, the property holds for the “triple bar” map ||| · |||β on S2. More precisely, if Y ∈ S2 with

|||Y |||β = 0, then Yt = 0, 0 ≤ t ≤ T a.s. because ||| · |||β is a norm on S2. Note that ‖ · ‖β is only a

semi-norm on S2.
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space cannot give us uniqueness of the solution of our reflected BSDE in the sense
of processes, that is, up to indistinguishability.

PROOF. For each β > 0, we denote by B2
β the space S2 × H2 × H2

ν which

we equip with the norm ‖(·, ·, ·)‖B2
β

defined by ‖(Y,Z, k)‖2
B2

β

:= |||Y |||2β + ‖Z‖2
β +

‖k‖2
ν,β , for (Y,Z, k) ∈ S2 × H2 × H2

ν . Since (H2,‖ · ‖β) and (H2
ν,‖ · ‖ν,β) are

Banach spaces, and since by Proposition 2.1, (S2, ||| · |||β) is a Banach space, it
follows that (B2

β,‖ · ‖Bβ ) is a Banach space.

We define a mapping  from B2
β into itself as follows: for a given (y, z, l) ∈

B2
β , we set (y, z, l) := (Y,Z, k), where Y,Z, k are the first three components

of the solution (Y,Z, k,A,C) to the RBSDE associated with driver f (s) :=
f (s, ys, zs, ls) and with obstacle ξ . The mapping  is well defined by Lemma 3.2.

Let (y′, z′, l′) and (y′′, z′′, l′′) be two elements of B2
β . We set (Y ′,Z′, k′) =

(y′, z′, l′) and (Y ′′,Z′′, k′′) = (y′′, z′′, l′′). We also set Ỹ := Y ′ − Y ′′, Z̃ :=
Z′ − Z′′, k̃ := k′ − k′′, ỹ := y′ − y′′, z̃ := z′ − z′′, l̃ := l′ − l′′.

Let us prove that for a suitable choice of the parameter β > 0 the mapping  is
a contraction from the Banach space B2

β into itself. By applying Lemma 3.1, we
get

|||Ỹ |||2β + ‖Z̃‖2
β + ‖k̃‖2

ν,β ≤ 6ε2(
1 + 4c2)∥∥f (

y′, z′, l′
) − f

(
y′′, z′′, l′′

)∥∥2
β,

for all ε > 0, for all β ≥ 1
ε2 . By using the Lipschitz property of f and the fact that

(a + b + c)2 ≤ 3(a2 + b2 + c2) for all (a, b, c) ∈ R3, we obtain ‖f (y′, z′, l′) −
f (y′′, z′′, l′′)‖2

β ≤ CK(‖ỹ‖2
β + ‖z̃‖2

β + ‖l̃‖2
ν,β), where CK is a positive constant

depending on the Lipschitz constant K only. Thus, for all ε > 0, for all β ≥ 1
ε2 ,

we have |||Ỹ |||2β +‖Z̃‖2
β +‖k̃‖2

ν,β ≤ 6ε2CK(1 + 4c2)(‖ỹ‖2
β +‖z̃‖2

β +‖l̃‖2
ν,β). Now,

using Fubini’s theorem, we get ‖ỹ‖2
β ≤ T |||ỹ|||2β . Hence, we have

|||Ỹ |||2β + ‖Z̃‖2
β + ‖k̃‖2

ν,β ≤ 6ε2CK

(
1 + 4c2)

(T + 1)
(|||ỹ|||2β + ‖z̃‖2

β + ‖l̃‖2
ν,β

)
.

Thus, for ε > 0 such that 6ε2CK(1 + 4c2)(T + 1) < 1 and β > 0 such that β ≥ 1
ε2

the mapping  is a contraction. By the Banach fixed-point theorem, we get that 

has a unique fixed point in B2
β , denoted by (Y,Z, k), that is, such that (Y,Z, k) =

(Y,Z, k). By definition of the mapping , the process (Y,Z, k) is thus equal
to the first three components of the solution (Y,Z, k,A,C) to the reflected BSDE
associated with the driver process g(ω, t) := f (ω, t, Yt (ω),Zt(ω), kt (ω)) and with
obstacle ξ . It follows that (Y,Z, k,A,C) is the unique solution to the RBSDE with
parameters (f, ξ).

Property (3.25) follows from equation (3.16) of Lemma 3.2 and from the fact
that (Y,Z, k,A,C) is equal to the solution of the reflected BSDE associated with
the driver process g(ω, t) := f (ω, t, Yt (ω),Zt (ω), kt (ω)).
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The last assertion of the theorem follows from Lemma 3.2 (fourth assertion)
applied with the process g(ω, t) := f (ω, t, Yt (ω),Zt (ω), kt (ω)). �

4. Optimal stopping with f -conditional expectations.

4.1. Formulation of the problem. Let T > 0 be the terminal time and f be a
predictable Lipschitz driver. Let (ξt ,0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in
S2 modelling a dynamic financial position. The risk of ξ is assessed by a dynamic
risk measure equal, up to a minus sign, to the f -conditional expectation of ξ . More
precisely: let T ′ ∈ [0, T ] be a fixed (for the present) instant before the terminal
time T ; the gain of the position at T ′ is equal to ξT ′ and the risk at time t , where
t ∈ [0, T ′], is assessed by −Ef

t,T ′(ξT ′). Here, we use the usual notation Ef

·,T ′(ξT ′)
for the first component of the BSDE with driver f , terminal time T ′ and terminal
condition ξT ′ ; the random variable Ef

t,T ′(ξT ′) is referred to as the f -conditional
expectation of ξT ′ at time t . The modelling is similar when T ′ ∈ [0, T ] is replaced
by a more general stopping time τ ∈ T0,T .3

We are now interested in stopping the process ξ in such a way that the risk be
minimal. We are thus led to formulating the following optimal stopping problem
(at time 0):

(4.1) v(0) = − ess sup
τ∈T0,T

Ef
0,τ (ξτ ).

We recall that in our framework (as opposed to the simpler case of a Brownian
filtration) the monotonicity property of f -conditional expectations is not automat-
ically satisfied. From now on, we make the following assumption on the driver f ,
which ensures the nondecreasing property of Ef (·) by the comparison theorem for
BSDEs with jumps (cf. [33], Theorem 4.2).

ASSUMPTION 4.1. Assume that dP ⊗ dt-a.e. for each (y, z, k1, k2) ∈ R2 ×
(L2

ν)
2,

f (t, y, z, k1) − f (t, y, z, k2) ≥ 〈
θ

y,z,k1,k2
t , k1 − k2

〉
ν,

with

θ : [0, T ] × � ×R2 × (
L2

ν

)2 → L2
ν; (ω, t, y, z, k1, k2) �→ θ

y,z,k1,k2
t (ω, ·)

P ⊗ B(R2) ⊗ B((L2
ν)

2)-measurable, satisfying ‖θy,z,k1,k2
t (·)‖ν ≤ c for all (y, z,

k1, k2) ∈ R2 × (L2
ν)

2, dP ⊗ dt-a.e., where c is a positive constant, and such

3Recall that a process Y is the solution to the BSDE associated with driver f , terminal time τ and
terminal condition ζ (where ζ is an Fτ -measurable square-integrable random variable) if for almost
all ω ∈ �, for all t ∈ [0, T ], Yt (ω) = Ȳt (ω), where Ȳ denotes the solution to the BSDE associated
with driver f 1t≤τ , terminal time T and terminal condition ζ . The process Y is also denoted Ef·,τ (ζ ).
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that

(4.2) θ
y,z,k1,k2
t (e) ≥ −1,

for all (y, z, k1, k2) ∈R2 × (L2
ν)

2, dP ⊗ dt ⊗ dν(e)-a.e.

The above assumption is satisfied if, for example, f is of class C1 with respect
to k such that ∇kf is bounded (in L2

ν) and ∇kf ≥ −1 (see Proposition A.2. in
[10]).

REMARK 4.1. The strict comparison theorem for BSDEs with jumps (cf. The-
orem 4.4 in [33]) ensures that if the inequality (4.2) is strict, then Ef (·) is strictly
monotonous in the following sense: for τ ∈ T0,T , for ξ1, ξ2 ∈ L2(Fτ ) such that
ξ1 ≤ ξ2 a.s., and for S ∈ T0,T such that S ≤ τ a.s., the property Ef

S,τ (ξ
1) = Ef

S,τ (ξ
2)

a.s., implies ξ1 = ξ2 a.s.
A counter-example to the strict monotonicity of Ef (·) in the case where the

strict inequality in (4.2) is not assumed is given in [33] (cf. also Example A.2 in
the Appendix).

As is usual in optimal control, we embed the above problem (4.1) in a larger
class of problems. We thus consider for each S ∈ T0,T , the random variable

(4.3) v(S) = − ess sup
τ∈TS,T

Ef
S,τ (ξτ ),

which corresponds to the minimal risk measure at time S. Our aim is to charac-
terize v(S) for each S ∈ T0,T , and to study the existence of an S-optimal stopping
time τ ∗ ∈ TS,T , that is, a stopping time τ ∗ ∈ TS,T such that v(S) = −Ef

S,τ∗(ξτ∗)
a.s.

4.2. Characterization of the value function as the solution of an RBSDE. In
this section, we show that the minimal risk measure v defined by (4.3) coincides
with −Y , where Y is (the first component of) the solution to the reflected BSDE
associated with driver f and obstacle ξ . We also investigate the question of the
existence of an ε-optimal stopping time, and that of the existence of an optimal
stopping time (under suitable assumptions on the process ξ ).

The following terminology will be used in the sequel. Let Y be a process in S2.
Let f be a predictable Lipschitz driver satisfying Assumption 4.1:

• The process (Yt ) is said to be a strong Ef -supermartingale (resp., Ef -
submartingale), if Ef

S,τ (Yτ ) ≤ YS [resp., Ef
S,τ (Yτ ) ≥ YS ] a.s. on S ≤ τ , for all

S, τ ∈ T0,T .
The process (Yt ) is said to be a strong Ef -martingale if it is both a strong

Ef -super and Ef -submartingale.
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• Let S, τ ∈ T0,T be such that S ≤ τ a.s. The process Y is said to be a strong Ef -
supermartingale (resp., a strong Ef -submartingale) on [S, τ ] if for all σ,μ ∈
T0,T such that S ≤ σ ≤ μ ≤ τ a.s., we have Yσ ≥ Ef

σ,μ(Yμ) a.s. [resp., Yσ ≤
Ef

σ,μ(Yμ) a.s.] We say that Y is a strong Ef -martingale on [S, τ ] if it is both a
strong Ef -super and submartingale on [S, τ ].

REMARK 4.2. We note that a process Y ∈ S2 is a strong Ef -martingale on
[S, τ ] (where S, τ ∈ T0,T are such that S ≤ τ a.s.) if and only if, on [S, τ ], Y is
indistinguishable from the solution to the BSDE associated with driver f , terminal
time τ and terminal condition Yτ . It follows that for a process Y ∈ S2 to be a strong
Ef -martingale on [S, τ ], it is sufficient to have: Yσ = Ef

σ,τ (Yτ ) a.s., for all σ ∈ T0,T

such that S ≤ σ ≤ τ a.s.

PROPERTY 4.1. Let f be a predictable Lipschitz driver satisfying Assump-
tion 4.1. Let S, τ ∈ T0,T with S ≤ τ a.s. Let Y be a strong Ef -supermartingale on
[S, τ ]. We introduce the following two assertions:

(i) The process Y is a strong Ef -martingale on [S, τ ].
(ii) YS = Ef

S,τ (Yτ ) a.s.

Assertion (i) implies Assertion (ii).
If, in Assumption 4.1, we further assume the strict inequality θ

y,z,k1,k2
t > −1,

then Assertion (ii) implies Assertion (i).

PROOF. The implication (i) ⇒ (ii) is due to the definition. Let us show the
converse implication. Let σ ∈ T0,T be such that S ≤ σ ≤ τ a.s. By using (ii) and
the consistency property of f -expectations, we obtain YS = Ef

S,σ (Ef
σ,τ (Yτ )) a.s.

By using the strong Ef -supermartingale property of Y and the monotonicity of
f -expectations, we obtain Ef

S,σ (Ef
σ,τ (Yτ )) ≤ Ef

S,σ (Yσ ) ≤ YS a.s. From the previous

two equations, we get YS = Ef
S,σ (Ef

σ,τ (Yτ )) = Ef
S,σ (Yσ ) a.s. In particular,

(4.4) Ef
S,σ (Yσ ) = Ef

S,σ

(
Ef

σ,τ (Yτ )
)

a.s.

Since θ
y,z,k1,k2
t > −1, Ef (·) is strictly monotonous (cf. Remark 4.1). From this,

together with equality (4.4) and the inequality Yσ ≥ Ef
σ,τ (Yτ )a.s., we get Yσ =

Ef
σ,τ (Yτ ) a.s. The process Y is thus a strong Ef -martingale on [S, τ ]. �

We next show a lemma which will be used in the proof of the main result of this
section.

LEMMA 4.1. Let f be a predictable Lipschitz driver satisfying Assump-
tion 4.1 and ξ be a left-limited r.u.s.c. process in S2. Let (Y,Z, k,A,C) be the
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solution to the reflected BSDE with parameters (f, ξ) as in Definition 3.1. Let
ε > 0 and S ∈ T0,T . Let τ ε

S be defined by

(4.5) τ ε
S := inf{t ≥ S : Yt ≤ ξt + ε}.

The following two statements hold:

(i) Yτε
S

≤ ξτε
S

+ ε a.s.

(ii) The process Y is a strong Ef -martingale on [S, τ ε
S ].

We note that τ ε
S defined in (4.5) is a stopping time as the début after S of a

progressive set. Note also that τ ε
S is valued in [0, T ] as YT = ξT a.s.

PROOF. We first prove statement (i). By way of contradiction, we suppose
P(Yτε

S
> ξτε

S
+ ε) > 0. We have �Cτε

S
= Cτε

S
− C(τε

S )− = 0 on the set {Yτε
S

>

ξτε
S

+ ε}. On the other hand, due to Remark 3.2, �Cτε
S

= Yτε
S

− Y(τε
S )+. Thus,

Yτε
S

= Y(τε
S )+ on the set {Yτε

S
> ξτε

S
+ ε}. Hence,

(4.6) Y(τε
S )+ > ξτε

S
+ ε on the set {Yτε

S
> ξτε

S
+ ε}.

We will obtain a contradiction with this statement. Let us fix ω ∈ �. By def-
inition of τ ε

S (ω), there exists a nonincreasing sequence (tn) = (tn(ω)) ↓ τ ε
S (ω)

such that Ytn(ω) ≤ ξtn(ω) + ε, for all n ∈ N. Hence, lim supn→∞ Ytn(ω) ≤
lim supn→∞ ξtn(ω) + ε. As the process ξ is r.u.s.c., we have lim supn→∞ ξtn(ω) ≤
ξτε

S
(ω). On the other hand, as (tn(ω)) ↓ τ ε

S (ω), we have lim supn→∞ Ytn(ω) =
Y(τε

S )+(ω). Thus, Y(τε
S )+(ω) ≤ ξτε

S
(ω) + ε, which is in contradiction with (4.6). We

conclude that Yτε
S

≤ ξτε
S

+ ε a.s.
Let us now prove statement (ii). By definition of τ ε

S , we have: for a.e. ω ∈ �, for
all t ∈ [S(ω), τ ε

S (ω)[, Yt (ω) > ξt (ω) + ε. Hence, for a.e. ω ∈ �, the function t �→
Ac

t (ω) is constant on [S(ω), τ ε
S (ω)[; by continuity of almost every trajectory of

the process Ac, Ac· (ω) is constant on the closed interval [S(ω), τ ε
S (ω)], for a.e. ω.

Furthermore, for a.e. ω ∈ �, the function t �→ Ad
t (ω) is constant on [S(ω), τ ε

S (ω)[.
Moreover, Y(τε

S )− ≥ ξ(τε
S )− + ε a.s., which implies that �Ad

τε
S

= 0 a.s. Finally, for

a.e. ω ∈ �, for all t ∈ [S(ω), τ ε
S (ω)[, �Ct(ω) = Ct(ω) − Ct−(ω) = 0; therefore,

for a.e. ω ∈ �, for all t ∈ [S(ω), τ ε
S (ω)[, �+Ct−(ω) = Ct(ω) − Ct−(ω) = 0,

which implies that, for a.e. ω ∈ �, the function t �→ Ct−(ω) is constant on
[S(ω), τ ε

S (ω)[. By left-continuity of almost every trajectory of the process (Ct−),
we get that for a.e. ω ∈ �, the function t �→ Ct−(ω) is constant on the closed
interval [S(ω), τ ε

S (ω)]. Thus, for a.e. ω ∈ �, the map t �→ At(ω) + Ct−(ω) is con-
stant on [S(ω), τ ε

S (ω)]. Hence, Y is the solution on [S, τ ε
S ] of the BSDE associated

with driver f , terminal time τ ε
S and terminal condition Yτε

S
. We conclude by using

Remark 4.2. �

With the help of the previous lemma, we derive the main result of this section.



3172 M. GRIGOROVA ET AL.

THEOREM 4.1 (Characterization theorem). Let T > 0 be the terminal time.
Let (ξt ,0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in S2 and let f be a predictable
Lipschitz driver satisfying Assumption 4.1. Let (Y,Z, k,A,C) be the solution to
the reflected BSDE with parameters (f, ξ) as in Definition 3.1.

(i) For each stopping time S ∈ T0, we have

(4.7) YS = ess sup
τ∈TS,T

Ef
S,τ (ξτ ) a.s.

(ii) For each S ∈ T0,T and each ε > 0, the stopping time τ ε
S defined by (4.5) is

(Lε)-optimal for problem (4.7), that is,

(4.8) YS ≤ Ef

S,τ ε
S
(ξτε

S
) + Lε a.s.,

where L is a constant which only depends on T and the Lipschitz constant K of f .

REMARK 4.3. This result still holds when the assumption of existence of left
limits for the process ξ is relaxed (cf. also Remark 3.1).

In the case where ξ is right-continuous, we recover Theorem 3.2 of [34].

PROOF. Let ε > 0 and let τ ∈ TS,T . By Proposition A.1 in the Appendix, the
process (Yt ) is a strong Ef -supermartingale. Hence, for each τ ∈ TS,T , we have

YS ≥ Ef
S,τ (Yτ ) ≥ Ef

S,τ (ξτ ) a.s.,

where the second inequality follows from the inequality Y ≥ ξ and the monotonic-
ity property of Ef (·) (with respect to terminal condition). By taking the supremum
over τ ∈ TS,T , we get

(4.9) YS ≥ ess sup
τ∈TS,T

Ef
S,τ (ξτ ) a.s.

It remains to show the converse inequality. Due to part (ii) of the previous
Lemma 4.1, we have YS = Ef

S,τ ε
S
(Yτε

S
) a.s. From this equality, together with part

(i) of Lemma 4.1 and the monotonicity property of Ef (·), we derive

(4.10) YS = Ef

S,τ ε
S
(Yτε

S
) ≤ Ef

S,τ ε
S
(ξτε

S
+ ε) ≤ Ef

S,τ ε
S
(ξτε

S
) + Lε a.s.,

where the last inequality follows from the estimates on BSDEs (cf. Proposi-
tion A.4 in [33]). Inequality (4.8) thus holds. From (4.10) we also deduce YS ≤
ess supτ∈TS,T

Ef
S,τ (ξτ ) + Lε a.s. As ε is an arbitrary positive number, we get

YS ≤ ess supτ∈TS,T
Ef

S,τ (ξτ ) a.s. By (4.9), this inequality is an equality. �

We now investigate the question of the existence of optimal stopping times for
the optimal stopping problem (4.7). We first provide an optimality criterion for the
problem (4.7).
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PROPOSITION 4.1 (Optimality criterion). Let (ξt ,0 ≤ t ≤ T ) be a left-limited
r.u.s.c. process in S2 and let f be a predictable Lipschitz driver satisfying Assump-
tion 4.1. Let S ∈ T0,T and τ̂ ∈ TS,T . If Y is a strong Ef -martingale on [S, τ̂ ] with

Yτ̂ = ξτ̂ a.s., then the stopping time τ̂ is S-optimal [i.e., YS = Ef

S,τ̂
(ξτ̂ ) a.s.]. The

converse statement also holds true, if, in addition, the inequality from Assump-
tion 4.1 is strict (i.e., θ

y,z,k1,k2
t > −1).

PROOF. The first claim is immediate. Let us prove the second (and last) claim.
Assume the strict inequality in Assumption 4.1. Let τ̂ be S-optimal, that is, YS =
Ef

S,τ̂
(ξτ̂ ) a.s. Since by Theorem 4.1 and by Proposition A.1, Y is a strong Ef -

supermartingale, we have

YS ≥ Ef

S,τ̂
(Yτ̂ ) ≥ Ef

S,τ̂
(ξτ̂ ) = YS a.s.,

where the last inequality holds because Y ≥ ξ . It follows that YS = Ef

S,τ̂
(Yτ̂ ) a.s.

Since θ
y,z,k1,k2
t > −1, Property 4.1 can be applied, which yields that Y is a strong

Ef -martingale on [S, τ̂ ]. Moreover, since Ef

S,τ̂
(Yτ̂ ) = Ef

S,τ̂
(ξτ̂ ) a.s. with Yτ̂ ≥ ξτ̂

a.s., the strict monotonicity of Ef implies that Yτ̂ = ξτ̂ a.s. �

We note that, even in the case where ξ is right-continuous, the large inequality
θ

y,z,k1,k2
t ≥ −1 from Assumption 4.1 is not sufficient for the last statement of the

above proposition to hold true; a counter-example is given in the Appendix (cf.
Example A.2).

In Theorem 4.1(ii), we have shown the existence of an Lε-optimal stopping time
for problem (4.1). Under an additional assumption of left upper-semicontinuity
along stopping times of the process ξ , we will show the existence of an optimal
stopping time. To this purpose, we first give a lemma which is to be compared with
Lemma 4.1.

LEMMA 4.2. Let f be a predictable Lipschitz driver satisfying Assump-
tion 4.1. Let (ξt ,0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in S2 which we assume
also to be l.u.s.c. along stopping times. Let (Y,Z, k,A,C) be the solution to the
reflected BSDE with parameters (f, ξ). Let S ∈ T0,T . We define τ ∗

S by

(4.11) τ ∗
S := inf{u ≥ S : Yu = ξu}.

The following assertions hold:

(i) Yτ∗
S

= ξτ∗
S

a.s.

(ii) The process Y is a strong Ef -martingale on [S, τ ∗
S ].

PROOF. To prove the first statement, we note that Yτ∗
S

≥ ξτ∗
S

a.s., since Y is
(the first component of) the solution to the RBSDE with barrier ξ . We show that
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Yτ∗
S

≤ ξτ∗
S

a.s. by using the assumption of right-upper semicontinuity on the process
ξ ; the arguments are similar to those used in the proof of part (i) of Lemma 4.1
and are left to the reader.

Let us prove the second statement. By definition of τ ∗
S , we have that for a.e.

ω ∈ �, Yt (ω) > ξt (ω) on [S(ω), τ ∗
S (ω)[; hence, for a.e. ω, the trajectory Ac(ω)

is constant on [S(ω), τ ∗
S (ω)[ and even on the closed interval [S(ω), τ ∗

S (ω)] due
to the continuity. On the other hand, due to the assumption of l.u.s.c. along stop-
ping times on the process ξ , we have A(ω) = Ac(ω) for a.e. ω (see Theorem 3.1).
Thus, for a.e. ω, A(ω) is constant on [S(ω), τ ∗

S (ω)]. We show that Ct−(ω) is con-
stant on [S(ω), τ ∗

S (ω)] by the same arguments as those of the proof of part (ii) of
Lemma 4.1. We conclude by using Remark 4.2. �

REMARK 4.4. We see from the above proof that the assumption of l.u.s.c. of
ξ in Lemma 4.2 can be replaced by the assumption �Aτ∗

S
= 0. The assumption

�Aτ∗
S

= 0 is weaker than the assumption of l.u.s.c. of ξ as illustrated in Exam-
ple A.3 of the Appendix.

By the previous lemma and the first statement (“the optimality criterion”) from
Proposition 4.1, we derive the following existence result.

PROPOSITION 4.2. Let f be a predictable Lipschitz driver satisfying Assump-
tion 4.1. Let (ξt ,0 ≤ t ≤ T ) be a left-limited r.u.s.c. process in S2 which we assume
also to be l.u.s.c. along stopping times. Let S ∈ T0,T . The stopping time τ ∗

S de-

fined in (4.11) is optimal for problem (4.7), that is, YS = ess supτ∈TS,T
Ef

S,τ (ξτ ) =
Ef

S,τ∗
S
(ξτ∗

S
) a.s.

REMARK 4.5. We note that, due to Remark 4.4 and to the optimality criterion,
the optimality of τ ∗

S in the above proposition still holds if we relax the assumption
of l.u.s.c. of ξ to the (weaker) assumption �Aτ∗

S
= 0 a.s. We recall that, by Re-

mark 3.2, the condition �Aτ∗
S

= 0 a.s. is equivalent to Y being left-continuous
along stopping times at τ ∗

S . If the condition �Aτ∗
S

= 0 a.s. is violated, the stopping
time τ ∗

S might not be optimal (cf. Example A.3 from the Appendix).

We show the following property.

PROPOSITION 4.3. Let T > 0 be the terminal time. Let (ξt ,0 ≤ t ≤ T ) be
a left-limited r.u.s.c. process in S2 and let f be a predictable Lipschitz driver
satisfying Assumption 4.1. Let (Y,Z, k,A,C) be the solution to the reflected BSDE
with parameters (ξ, f ) as in Definition 3.1. The process Y is the Ef -Snell envelope
of ξ , that is, the smallest strong Ef -supermartingale greater than or equal to ξ .

REMARK 4.6. This result still holds when ξ is not left-limited (cf. Remarks
3.1 and 4.3).
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From Proposition 4.3 and Theorem 4.1, we deduce that the “value process” of
the optimal stopping problem (4.3) is characterized as the Ef -Snell envelope of
the reward process ξ . In the particular case of a classical (linear) expectation (i.e.,
when f = 0), we recover a characterization from the classical optimal stopping
theory stating that the “value process” of the “classical” linear optimal stopping
problem coincides with the Snell envelope of ξ , which is smallest strong super-
martingale greater than or equal to ξ (cf., e.g., [1]).

PROOF OF PROPOSITION 4.3. By Proposition A.1 in the Appendix, the pro-
cess Y is a strong Ef -supermartingale. Moreover, since Y is (the first component
of) the solution to the reflected BSDE with parameters (f, ξ), it is greater than or
equal to ξ (cf. Definition 3.1).

It remains to show the minimality property. Let Y ′ be another Ef -super-
martingale greater than or equal to ξ . Let S ∈ T0,T . For each τ ∈ TS,T , we
have Y ′

S ≥ Ef
S,τ (Y

′
τ ) ≥ Ef

S,τ (ξτ ) a.s., where the second inequality follows from
the inequality Y ′ ≥ ξ and the monotonicity property of Ef with respect to
the terminal condition. By taking the supremum over τ ∈ TS,T , we get Y ′

S ≥
ess supτ∈TS,T

Ef
S,τ (ξτ ) = YS a.s., where the last equality follows from Theorem 4.1.

The desired result follows. �

5. Additional results.

5.1. Ef -Mertens’ decomposition of Ef -strong supermartingales. We now
show an Ef -Mertens’ decomposition for Ef -strong supermartingales, which gen-
eralizes Mertens’ decomposition to the case of f -expectations. We first show the
following lemma.

LEMMA 5.1. Let (Yt ) ∈ S2 be a strong Ef -supermartingale (resp., Ef -
submartingale). Then (Yt ) is right upper-semicontinuous (resp., right lower-
semicontinuous).

PROOF. Suppose that (Yt ) is a strong Ef -supermartingale. Let τ ∈ T0,T and
let (τn) be a nonincreasing sequence of stopping times with limn→+∞ τn = τ

a.s. and for all n ∈ N, τn > τ a.s. on {τ < T }. Suppose that limn→+∞ Yτn ex-
ists a.s. The random variable limn→+∞ Yτn is Fτ -measurable as the filtration is
right-continuous. Let us show that

Yτ ≥ lim
n→+∞Yτn a.s.

Since (Yt ) is a strong Ef -supermartingale and the sequence (τn) is nonincreas-
ing, we have, for all n ∈ N, Ef

τ,τn(Yτn) ≤ Ef
τ,τn+1(Yτn+1) ≤ Yτ . We deduce that the

sequence of random variables (Ef
τ,τn(Yτn))n∈N is nondecreasing (hence, converges



3176 M. GRIGOROVA ET AL.

a.s.) and its limit (in the a.s. sense) satisfies Yτ ≥ limn→+∞ ↑ Ef
τ,τn(Yτn) a.s. This

observation, combined with the continuity property of BSDEs with respect to ter-
minal time and terminal condition (cf. [33], Proposition A.6) gives

Yτ ≥ lim
n→+∞Ef

τ,τn
(Yτn) = Ef

τ,τ

(
lim

n→+∞Yτn

)
= lim

n→+∞Yτn a.s.

This result, together with a result of the general theory of processes (cf. [7], Propo-
sition 2, page 300), ensures that the optional process (Yt ) is right-upper semicon-
tinuous. �

THEOREM 5.1 (Ef -Mertens’ decomposition). Let (Yt ) be a process in S2. Let
f be a predictable Lipschitz driver satisfying Assumption 4.1. The process (Yt ) is
a strong Ef -supermartingale (resp., Ef -submartingale) if and only if there ex-
ists a nondecreasing (resp., nonincreasing) right-continuous predictable process
A in S2 with A0 = 0 and a nondecreasing (resp., nonincreasing) right-continuous
adapted purely discontinuous process C in S2 with C0− = 0, as well as two pro-
cesses Z ∈H2 and k ∈ H2

ν , such that a.s. for all t ∈ [0, T ],

Yt = YT +
∫ T

t
f (s, Ys,Zs, ks) ds + AT − At + CT − − Ct−

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

ks(e)Ñ(ds, de).

This decomposition is unique.

PROOF. The “if part” has been shown in Proposition A.1 of the Appendix.
Let us show the “only if” part. Suppose that (Yt ) is a strong Ef -supermartingale.
Hence, (Yt ) is clearly the Ef -Snell envelope of (Yt ), that is the smallest strong
Ef -supermartingale greater or equal to (Yt ). By the characterization of the so-
lution of a reflected BSDE as the Ef -Snell envelope of the obstacle process (cf.
Proposition 4.3 and Remark 4.6), we derive that the process (Yt ) coincides with the
solution of the reflected BSDE associated with the obstacle (Yt ) (which is r.u.s.c.
by Lemma 5.1). The desired conclusion follows.

The uniqueness of the processes Z, k, A, C of the decomposition follows from
the uniqueness of the solution of the reflected BSDE. �

When Y is right-continuous, the process C of the Ef -Mertens’ decomposition
is equal to 0. In this case, the previous theorem reduces to the so-called Ef -Doob–
Meyer decomposition (cf. Proposition A.6 in [10]; cf. also [36] and [31]).

Through different techniques, a similar result to the above Theorem 5.1 has been
established in the recent paper [5] (in the Brownian framework).

REMARK 5.1. It follows from the previous theorem that strong Ef -super-
martingales and strong Ef -submartingales have left and right limits.
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5.2. Comparison theorem for RBSDEs.

THEOREM 5.2 (Comparison). Let ξ1, ξ2 be two obstacles. Let f 1and f 2 be
predictable Lipschitz drivers satisfying Assumption 4.1. Let (Y i,Zi, ki,Ai,Ci) be
the solution of the RBSDE associated with (ξ i, f i), i = 1,2. Suppose that ξ2

t ≤ ξ1
t ,

0 ≤ t ≤ T a.s. and that f 2(t, Y 2
t ,Z2

t , k
2
t ) ≤ f 1(t, Y 2

t ,Z2
t , k

2
t ), 0 ≤ t ≤ T dP ⊗ dt-

a.s.
Then Y 2

t ≤ Y 1
t ,∀t ∈ [0, T ] a.s.

PROOF. Step 1: Let us first consider the case where, along with the assump-
tions of the theorem, the following additional assumption holds: f 2(t, y, z, k) ≤
f 1(t, y, z, k) for all (y, z, k) ∈ R2 × L2

ν dP ⊗ dt-a.s. Let S ∈ T0,T . By the com-

parison theorem for BSDEs, for each τ in TS,T we have Ef 2

S,τ (ξ
2
τ ) ≤ Ef 1

S,τ (ξ
1
τ ) a.s.

By taking the essential supremum over τ ∈ TS,T and by using Theorem 4.1, we get
Y 2

S ≤ Y 1
S a.s.

Step 2: Let us now place ourselves under the assumptions of the theorem
(without the additional assumption on f 1 and f 2 from Step 1). Let δf be
the process defined by δft := f 2(t, Y 2

t ,Z2
t , k

2
t ) − f 1(t, Y 2

t ,Z2
t , k

2
t ). Note that

(Y 2,Z2, k2) is the solution of the reflected BSDE associated with obstacle ξ2

and driver f 1(t, y, z, k) + δft . Now, by assumption, we have f 1(t, y, z, k) +
δft ≤ f 1(t, y, z, k) for all (y, z, k). By Step 1 applied to the drivers f 1 and
f 1(t, y, z, k) + δft (instead of f 2), we get Y 2 ≤ Y 1. �

6. Further developments. In our ongoing work (cf. [17]), we study the case
of doubly reflected BSDEs where the barriers are not right-continuous.

APPENDIX

The following observation is given for the convenience of the reader.

REMARK A.1. Let Y be a right-continuous (or left-continuous) adapted pro-
cess. Then, supt∈[0,T ] Yt = supt∈[0,T ]∩Q Yt a.s., which implies that supt∈[0,T ] Yt is
a random variable. Moreover, due to the definition of the essential supremum, we
have supt∈[0,T ] Yt = ess supt∈[0,T ] Yt = ess supτ∈T0,T

Yτ a.s.

DEFINITION A.1. Let (Y )t∈[0,T ] be an optional process. We say that Y is a
strong (optional) supermartingale if Yτ is integrable for all τ ∈ T0,T and YS ≥
E[Yτ | FS] a.s., for all S, τ ∈ T0,T such that S ≤ τ a.s.

We recall a decomposition of strong optional supermartingales, known as
Mertens’ decomposition (see, e.g., [9], Theorem 20, page 429, combined with Re-
mark 3(b), page 205, and [9], Appendix 1, Theorem 20, equalities (20.2)).
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THEOREM A.1 (Mertens’ decomposition). Let Y be a strong optional super-
martingale of class (D). There exists a unique right-continuous left-limited uni-
formly integrable martingale (Mt), a unique predictable right-continuous non-
decreasing process (At ) with A0 = 0 and E[AT ] < ∞, and a unique right-
continuous adapted nondecreasing process (Ct ), which is purely discontinuous,
with C0− = 0 and E[CT ] < ∞, such that

(A.1) Yt = Mt − At − Ct−, 0 ≤ t ≤ T a.s.

In particular, all trajectories of Y have left and right limits.

REMARK A.2. Since the filtration in our framework is quasi-left-continuous,
martingales have only totally inaccessible jumps. From this and from Mertens’
decomposition (A.1), we deduce that, for each predictable stopping time τ , Yτ −
Yτ− = −(Aτ − Aτ−) a.s.

REMARK A.3. By Mertens’ decomposition (A.1), we get �Ct = Ct − Ct− =
Yt − Yt+. Hence, Yt ≥ Yt+, for all t ∈ [0, T ), which implies that Y is necessarily
r.u.s.c. Moreover, Y is right-continuous if and only if C ≡ 0.

By using this remark, we recover the well-known Doob–Meyer decomposi-
tion for right-continuous supermartingales of class (D). Indeed, let Y be a right-
continuous supermartingale (in the usual sense) of class (D). Then Y is a strong
(optional) supermartingale in the sense of the above definition (due to the optional
sampling theorem for right-continuous supermartingales). Mertens’ decomposi-
tion of Y reduces to Y = M − A (where M and A are as above), as C ≡ 0. This
corresponds to Doob–Meyer decomposition of Y . The following result from po-
tential theory can be found in [9].

THEOREM A.2 (Dellacherie–Meyer). Let K be a nondecreasing predictable
process (which is not necessarily right-continuous). Let U be the potential of the
process K , that is,

Ut := E[KT − Kt |Ft ]
for all t ∈ [0, T ]. Assume that there exists a nonnegative FT -measurable random
variable X such that US ≤ E[X|FS] a.s. for all S ∈ T0,T . Then there exists a
constant c > 0 such that

(A.2) E
[
K2

T

] ≤ cE
[
X2]

.

PROOF. For the proof of the result, the reader is referred to Paragraph 18 in
[9], Appendix 1, generalizing Theorem VI.99 of the same reference to the case
of a nondecreasing process which is not necessarily right-continuous nor left-
continuous. �
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By using the previous theorem, we obtain the following integrability property
of the Mertens’ process associated with a strong optional supermartingale, which
is used in the proof of Lemma 3.2.

COROLLARY A.1 (Mertens’ process of a strong supermartingale: a useful esti-
mate). Let Y be a strong optional supermartingale of class (D) such that: for all
S ∈ T0,T , |YS | ≤ E[X|FS] a.s., where X is a nonnegative FT -measurable random
variable.

Let us consider the Mertens’ process of Y , that is the process (At +Ct−), where
A and C are the two nondecreasing processes of Mertens’ decomposition of Y from
equation (A.1). There exists a constant c > 0 such that

(A.3) E
[
(AT + CT −)2] ≤ cE

[
X2]

.

PROOF. Let us introduce the notation Kt := At + Ct− (K is the Mertens’
process of Y ). Note that K is a nondecreasing predictable process (which is not
necessarily right-continuous).

Let S ∈ T0,T . From Mertens’ decomposition, we have YS = MS − KS a.s. and
YT = MT − KT a.s. By subtracting the second equation from the first, and by tak-
ing conditional expectations, we derive that YS − E[YT |FS] = E[KT − KS |FS]
a.s. Hence, the process (Ut ) defined by Ut := Yt − E[YT |Ft ] is the potential asso-
ciated with the nondecreasing predictable process K . Now, we have

(A.4) |US | = ∣∣YS − E[YT |FS]∣∣ ≤ |YS | + E
[|YT ||FS

] ≤ E[2X|FS] a.s.,

where the last inequality follows from the assumption. By applying Theorem A.2,
there exists a constant c > 0 such that E[K2

T ] ≤ cE[X2], which is the desired
conclusion. �

We recall the change of variables formula for optional strong semimartingales
which are not necessarily right-continuous. The result can be seen as a general-
ization of the classical It formula and can be found in [16], Theorem 8.2, (cf. also
[26], Chapter VI, Section 3, page 538). We recall the result in our framework in
which the underlying filtered probability space satisfies the usual conditions.

THEOREM A.3 (Gal’chouk–Lenglart). Let n ∈ N. Let X be an n-dimensional
optional strong semimartingale, that is, X = (X1, . . . ,Xn) is an n-dimensional
optional process with decomposition Xk = Xk

0 + Mk + Ak + Bk , for all k ∈
{1, . . . , n}, where Mk is a (cadlag) local martingale, Ak is a right-continuous
adapted process of finite variation such that A0 = 0, and Bk is a left-continuous
adapted process of finite variation which is purely discontinuous and such that
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B0 = 0. Let F be a twice continuously differentiable function on Rn. Then

F(Xt) = F(X0) +
n∑

k=1

∫
]0,t]

DkF(Xs−) d
(
Ak + Mk)

s

+ 1

2

n∑
k,l=1

∫
]0,t]

DkDlF (Xs−)d
〈
Mkc,Mlc〉

s

+ ∑
0<s≤t

[
F(Xs) − F(Xs−) −

n∑
k=1

DkF(Xs−)�Xk
s

]

+
n∑

k=1

∫
[0,t[

DkF(Xs) d
(
Bk)

s+

+ ∑
0≤s<t

[
F(Xs+) − F(Xs) −

n∑
k=1

DkF(Xs)�+Xk
s

]
, 0 ≤ t ≤ T a.s.,

where Dk denotes the differentiation operator with respect to the kth coordinate,
and Mkc denotes the continuous part of Mk .

COROLLARY A.2. Let Y be a one-dimensional optional strong semimartin-
gale with decomposition Y = Y0 + M + A + B , where M , A and B are as in the
above theorem. Let β > 0. Then, almost surely, for all t ≥ 0,

eβtY 2
t = Y 2

0 +
∫
]0,t]

βeβsY 2
s ds + 2

∫
]0,t]

eβsYs− d(A + M)s

+
∫
]0,t]

eβs d
〈
Mc,Mc〉

s + ∑
0<s≤t

eβs(Ys − Ys−)2

+
∫
[0,t[

2eβsYs d(B)s+ + ∑
0≤s<t

eβs(Ys+ − Ys)
2.

PROOF. It suffices to apply Gal’chouk–Lenglart’s formula with n = 2,
F(x, y) = xy2, X1

t = eβt and X2
t = Yt . Indeed, by applying Theorem A.3 and

by noting that the local martingale part and the purely discontinuous part of X1

are both equal to 0, we obtain

eβtY 2
t = Y 2

0 +
∫
]0,t]

βeβsY 2
s ds + 2

∫
]0,t]

eβsYs− d(A + M)s

+ 1

2

∫
]0,t]

2eβs d
〈
Mc,Mc〉

s + ∑
0<s≤t

eβs(Y 2
s − (Ys−)2 − 2Ys−(Ys − Ys−)

)

+
∫
[0,t[

2eβsYs d(B)s+ + ∑
0≤s<t

eβs((Ys+)2 − (Ys)
2 − 2Ys(Ys+ − Ys)

)
.
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The desired expression follows as Y 2
s − (Ys−)2 − 2Ys−(Ys − Ys−) = (Ys − Ys−)2

and (Ys+)2 − (Ys)
2 − 2Ys(Ys+ − Ys) = (Ys+ − Ys)

2. �

PROPOSITION A.1 (BSDE with “generalized” driver vs. BSDE). Let f be a
predictable Lipschitz driver satisfying Assumption 4.1. Let A be a nondecreasing
(resp., nonincreasing) right-continuous predictable process in S2 with A0 = 0 and
let C be a nondecreasing (resp., nonincreasing) right-continuous adapted purely
discontinuous process in S2 with C0− = 0. Let (Y,Z, k) ∈ S2 × H2 × H2

ν satisfy
a.s. for all t ∈ [0, T ],

(A.5)
Yt = YT +

∫ T

t
f (s, Ys,Zs, ks) ds + AT − At + CT − − Ct−

−
∫ T

t
Zs dWs −

∫ T

t

∫
E

ks(e)Ñ(ds, de).

Then the process (Yt ) is a strong Ef -supermartingale (resp., Ef -submartingale).

PROOF. We address the case where A and C are nondecreasing. Let τ, θ ∈ T0

be such that τ ≤ θ a.s. Let us show that Yτ ≥ Ef
τ,θ (Yθ ) a.s.

We denote by (X,π, l) the solution to the BSDE associated with driver f , ter-
minal time θ , and terminal condition Yθ ; then Ef

τ,θ (Yθ ) = Xτ a.s. (by definition
of Ef ).

Set Ȳt = Yt − Xt , Z̄t = Zt − πt and k̄t = kt − lt . Then

−dȲt = ht dt + dAt + dCt− − Z̄t dWt −
∫
E

k̄t (e)Ñ(dt, de), Ȳθ = 0,

where ht := f (t, Yt−,Zt , kt ) − f (t,Xt−, πt , lt ). By the same arguments as those
of the proof of the comparison theorem for BSDEs with jumps (cf. [33], Theo-
rem 4.2, or [36]), using Assumption 4.1 on f , we can show that

(A.6) ht ≥ δt Ȳt + βt Z̄t + 〈γt , k̄t 〉ν, 0 ≤ t ≤ T ,dP ⊗ dt-a.e.,

where γt := θ
Xt−,πt ,kt ,lt
t and where δ and β are predictable bounded processes

(which can be expressed as increment rates of f with respect to y and z).
Let �τ,· be the unique solution of the following forward SDE:

(A.7) d�τ,s = �τ,s−
[
δs ds + βs dWs +

∫
E

γs(e)Ñ(ds, de)

]
; �τ,τ = 1.

Suppose for a while that we have shown

(A.8) �τ,τ Ȳτ ≥ E

[∫ θ

τ
�τ,s− dAs +

∫ θ

τ
�τ,s dCs

∣∣∣ Fτ

]
a.s.

Then, since �τ,s ≥ 0 and �τ,τ = 1, we have Ȳτ ≥ 0 a.s., that is, Yτ ≥ Xτ = Ef
τ,θ (Yθ )

a.s., which is the desired result. It remains to show (A.8). To simplify the nota-
tion, we denote �τ,s by �s for s ≥ τ . We use that Ȳ is a strong optional semi-
martingale with decomposition Ȳ = M1 + A1 + B1, where M1

t = ∫ t
0 Z̄s dWs +
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∫ t
0

∫
E k̄s(e)Ñ(ds, de), A1

t := − ∫ t
0 hs ds − As , and B1

t := −Ct−, and we apply
Gal’chouk–Lenglart’s formula from Theorem A.3 with n := 2, X1 := Ȳ , X2 := �

and F(x1, x2) := x1x2. We obtain

(A.9)

�τY τ = −
∫ θ

τ
�s−(Z̄s + Ȳs−βs) dWs −

∫ θ

τ
�s(Ȳs−δs + Z̄sβs − hs) ds

+
∫ θ

τ
�s− dAs +

∫ θ

τ
�s dCs

−
∫ θ

τ

∫
E

�s−
(
k̄s(e) + Ȳs−γs(e)

)
Ñ(ds, de) − ∑

τ≤s≤θ

��s�Ys.

By using the fact that A· and N(·, de) do not have common jumps, we get∑
τ≤s≤θ ��s�Ys = ∫ θ

τ

∫
E �s−γs(e)k̄s(e)N(ds, de). By replacing this expression

in equation (A.9) and by doing some computations, we obtain

(A.10)

�τY τ = −
∫ θ

τ
�s−(Z̄s + Ȳs−βs) dWs

−
∫ θ

τ
�s

(
Ȳs−δs + Z̄sβs + 〈γs, k̄s〉ν − hs

)
ds

+
∫ θ

τ
�s− dAs +

∫ θ

τ
�s dCs

−
∫ θ

τ

∫
E

�s−
(
k̄s(e) + Ȳs−γs(e) + γs(e)k̄s(e)

)
Ñ(ds, de).

Now, the stochastic integral with respect to “dWs” in the above equation is a mar-
tingale (since � ∈ S2, Z̄ ∈ H2, Ȳ ∈ S2, and β is bounded). The stochastic integral
with respect to the Poisson random measure is also a martingale. By taking the
conditional expectation and by using the inequality (A.6), we derive (A.8). The
proof is thus complete. �

PROOF OF PROPOSITION 2.1. We first show that ||| · |||S2 is a norm on the
space of optional processes. The positive homogeneity and the triangular inequal-
ity are easy to check. Suppose now that φ ∈ S2 is such that |||φ|||S2 = 0. Then
ess supS∈T0,T

|φS |2 = 0 a.s., which, by definition of the essential supremum, im-

plies that |φS |2 = 0 a.s. for all S ∈ T0,T . By a classical result of the general theory
of processes ([8], Theorem IV.84), we obtain that the process φ is indistinguish-
able from the null process, that is, φt = 0, 0 ≤ t ≤ T a.s. We conclude that ||| · |||S2

is a norm on S2.
Let us prove that the space (S2, ||| · |||S2) is complete. We only sketch the proof

since its main steps are similar to those of the proof of the completeness of the
space (L2,‖ · ‖L2). Let (φn) be a Cauchy sequence in S2 for the norm ||| · |||S2 .
We extract a subsequence (φnk )k∈N such that |||φnk+1 −φnk |||S2 ≤ 1

2k , for all k ∈ N.
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Setting gn
t := ∑n

k=1 |φnk+1
t − φnk | for each n, by the triangular inequality, we de-

rive that |||gn|||S2 ≤ ∑n
k=1 |||φnk+1

t − φnk |||S2 ≤ ∑n
k=1

1
2k ≤ ∑∞

k=1
1
2k = 1. We set

gt := limn ↑gn
t , for all t ∈ [0, T ] (the limit exists in [0,+∞] as the sequence

(gn
t )n is nonnegative nondecreasing). Being the limit of optional processes, the

process g is optional. Since ess supτ∈T0,T
supn |gn

τ |2 = supn ess supτ∈T0,T
|gn

τ |2 a.s.,
using the monotone convergence theorem, we derive that |||g|||S2 = limn ↑|||gn|||S2 .
As the sequence (|||gn|||S2) is bounded by 1, we get |||g|||S2 ≤ 1. We then adapt
the arguments from the proof of the completeness of (L2,‖ · ‖L2) to show that
limn |||g − gn|||S2 = 0, and that |||φ − φnl |||S2 −→

l→∞ 0, which concludes the proof.

�

The following result of the optimal stopping theory is used in the proof of
Lemma 3.2.

PROPOSITION A.2. Let (Y (S)) be the family defined for S ∈ T0,T by

(A.11) Y(S) := ess sup
τ∈TS,T

E

[
ξτ +

∫ τ

S
f (u) du

∣∣∣ FS

]
.

(i) There exists a ladlag optional process (Y t )t∈[0,T ] which aggregates the
family (Y (S)) [i.e., YS = Y(S), for all S ∈ T0,T ].

Moreover, the process (Y t + ∫ t
0 f (u)du)t∈[0,T ] is a strong supermartingale.

(ii) We have YS = ξS ∨ YS+ a.s. for all S.
(iii) Furthermore, YS+ = ess supτ>S E[ξτ + ∫ τ

S f (u) du | FS] a.s., for all S.

REMARK A.4. It follows from (ii) that �+YS = 1{YS=ξS}�+YS a.s.

PROOF OF PROPOSITION A.2. For completeness, we give here a short proof
(cf. [27] when ξ is left- and right-limited, and [22], Section B, in the general case).
For S ∈ T0,T , we define Y(S) by

(A.12) Y(S) := Y (S) +
∫ S

0
f (u)du = ess sup

τ∈TS,T

E

[
ξτ +

∫ τ

0
f (u)du

∣∣∣ FS

]
,

where the equality follows from the definition of Y (S) [see (A.11)]. For S ∈ T0,T ,
define

(A.13) Y
+
(S) := ess sup

τ>S

E

[
ξτ +

∫ τ

0
f (u)du

∣∣∣ FS

]
.

By some well-known results of optimal stopping theory (cf., e.g., [21], Proposi-

tion D.3, or [22], Proposition 1.12), the family of random variables (Y
+
(S)) is a

supermartingale family which is right-continuous along stopping times in expec-
tation. By classical results (cf., e.g., [11] or [25], Proposition 4.1), there exists a
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process (Y
+
t ) which aggregates this family. By [21], Proposition D.3, (cf. also [22],

Proposition 1.9), we have

(A.14) Y (S) =
(
ξS +

∫ S

0
f (u)du

)
∨ Y

+
(S) a.s.,

for all S ∈ T0,T . It follows that the process (Y t ) defined by

(A.15) Y t :=
(
ξt +

∫ t

0
f (u)du

)
∨ Y

+
t

aggregates the family (Y (S)). Since (Y (S)) is a supermartingale family, (Y t ) is
a strong supermartingale. Now, we know (cf., e.g., [22], Proposition 4.14, com-

bined with [24], Appendix A1, paragraph 1) that Y
+
(S) = Y (S+), for all S ∈ T0,T ,

where Y(S+) denotes the right-hand limit of Y along stopping times at S, as de-
fined, for instance, in [22], Definition 4.5. On the other hand, we know that the
process (Y t ) aggregates the family (Y (S)), which entails that the process (Y t+)

aggregates the family (Y (S+)). By using equation (A.14), we conclude that

(A.16) YS =
(
ξS +

∫ S

0
f (u)du

)
∨ YS+ a.s.

for all S. By (A.12), we derive Y(S) = Y(S)− ∫ S
0 f (u)du = YS − ∫ S

0 f (u)du a.s.,

for all S ∈ T0,T . The ladlag optional process (Y t )t∈[0,T ] = (Y t − ∫ t
0 f (u)du)t∈[0,T ]

thus aggregates the family (Y (S))S∈T0,T
. Moreover, (Y t + ∫ t

0 f (u)du) = (Y t ) is a
strong supermartingale, which gives (i). By using (A.16), we derive (ii). By using
(A.13), we obtain (iii). �

EXAMPLE A.1 (A toy example). Let (ξt ) be a deterministic continuous de-
creasing bounded function. We set Yt := sups≥t ξs = ξt and At := ξ0 − ξt , for all
t ∈ [0, T ]. It is well known (cf. [12], or the classical Skorokhod’s problem as re-
called in [21]) that (Y,0,0,A) is the unique solution to the RBSDE with driver
f ≡ 0 and (continuous) obstacle ξ . Let us now change the obstacle ξ at a single
point t0 ∈ [0, T ). More precisely, we consider a function ξ̄ such that ξ̄t = ξt , for
t �= t0, and ξ̄t0 > ξt0 . We note that ξ̄ is r.u.s.c. but not right-continuous. In this very
simple example, we can compute explicitly a solution to the RBSDE (defined in
Definition 3.1) with parameters (0, ξ̄ ). We set Ȳt := sups≥t ξ̄s , for t ∈ [0, T ]. We
first rewrite Ȳ in a different manner. For t > t0, we have Ȳt = ξt = Yt . For t ≤ t0,
we have Ȳt = max(sups≥t,s �=t0

ξs, ξ̄t0) = max(sups≥t ξs, ξ̄t0) = max(ξt , ξ̄t0). We set
t1 := sup{s ≥ 0 : ξs ≥ ξ̄t0}, with the convention sup(∅) = 0. We note that Ȳt = ξ̄t0 ,
for t ∈ [t1, t0], and Ȳt = ξt = Yt , for t ∈ [0, t1). We define C̄t := (ξ̄t0 − ξt0)1t≥t0 ,
for t ∈ [0, T ]. We see that C̄ is nondecreasing, cadlag, purely discontinuous (in
fact, C̄ has one single jump) and it satisfies the minimality condition (3.4). We
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now consider the following two cases: (i) the case ξ̄t0 ≥ ξt0 , and (ii) the case
ξ̄t0 < ξt0 . In the case (i), we have t1 = 0; we set Āt := 0, for t ∈ [0, t0], and
Āt := ξt0 − ξt , for t ∈ (t0, T ]. In the case (ii), we have t1 > 0 and ξt1 = ξ̄t0 ; we
define Āt by Āt := ξ0 − ξt , for t ∈ [0, t1), Āt := ξ0 − ξt1 , for t ∈ [t1, t0], and
Āt := ξ0 − ξt1 + ξt0 − ξt , for t ∈ (t0, T ]. In both cases, the function Ā is non-
decreasing, continuous, and it satisfies the minimality condition (3.3). Moreover,
it can be easily checked that, Ȳt = ξ̄T + ĀT − Āt + C̄T − − C̄t−, for all t ∈ [0, T ].
We conclude that (Ȳ ,0,0, Ā, C̄) is a solution to the reflected BSDE with parame-
ters (0, ξ̄ ). We prove in Lemma 3.2 that (Ȳ ,0,0, Ā, C̄) is the unique solution. We
notice that Ȳ has a jump on the right at t0; the size �+Ȳt0 of the jump satisfies
�+Ȳt0 := Ȳt0+ − Ȳt0 = ξt0 − ξ̄t0 = −(Ct0 − Ct0−).

EXAMPLE A.2 (Counter-example). Let ν(du) := δ1(du), where δ1 denotes
the Dirac measure at 1. The process Nt := N([0, t]×{1}) is then a Poisson process
with parameter 1, and we have Ñt := Ñ([0, t] × {1}) = Nt − t . Let the driver f

be given by f (t, y, z, �) := 〈−1, �〉ν = −�(1). We introduce the associated adjoint
process �t,., defined for each r ∈ [t, T ] by �t,r = 1{Nr−Nt=0}er−t . Let the pay-off
process ξ be given by ξt := 1{Nt≥1}e−t , for all t ∈ [0, T ]. Note that ξ is adapted
and right-continuous. By the representation property for linear BSDEs with jumps
([33], Theorem 3.4) and classical computations, we get

Ef
t,τ (ξτ ) = E

[
�t,τ ξτ |Ft

] = e−tE
[
1{Nτ −Nt=0}1{Nτ ≥1}|Ft

]
= e−t1{Nt≥1}E[1{Nτ −Nt=0}|Ft ],

for all t ∈ [0, T ], for all τ ∈ Tt,T . We deduce that Yt := ess supτ∈Tt,T
Ef

t,τ (ξτ ) =
e−t1{Nt≥1} = ξt , for all t ∈ [0, T ] (as E[1{Nτ −Nt=0}|Ft ] ≤ 1 and the upper bound is
attained for τ = t). Let us focus on the optimal stopping problem at time t = 0. The
above computations imply that, for t = 0, Y0 := ess supτ∈T0,T

Ef
0,τ (ξτ ) = ξ0 = 0.

Moreover, the essential supremum (at time 0) is attained at any stopping time
τ ∈ T0,T [indeed, Ef

0,τ (ξτ ) = 0, for all τ ∈ T0,T ]. This is true, in particular, for
the stopping time τ̂ defined by τ̂ := T . However, we will see that the process
Y (computed above) is not an Ef -martingale on [0, τ̂ ]. To do so, let us denote
by X the (first component) of the solution to the BSDE with driver f , termi-
nal time T and terminal condition YT = ξT . For u ∈ [0, τ̂ ] = [0, T ], we have
Xu = Ef

u,T (ξT ) = e−u1{Nu≥1}E[1{NT −Nu=0}|Fu] = e−u1{Nu≥1}P [NT −Nu = 0] =
e−T 1{Nu≥1}. Hence, for u ∈ (0, T ), we have Yu = e−u > e−T = Xu on the set
{Nu ≥ 1}. Hence, the processes X and Y are not indistinguishable.

Let us also note that in this example Ef is not strictly monotonous. To see this,
we consider ξ1 := 0 and ξ2 := ξT = e−T 1{NT ≥1}. We have ξ1 ≤ ξ2 and Ef

0,T (ξ1) =
Ef

0,T (0) = 0 = Ef
0,T (ξT ) = Ef

0,T (ξ2). However, ξT �= 0 with a positive probability.
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EXAMPLE A.3. Let (ξt ) be an RCLL deterministic bounded function, increas-
ing on [0, t0[, decreasing on [t0, T ], and supposed to be continuous on [0, T ]
except at t0 ∈]0, T [ with ξt0 < ξt0−. Note that the function ξ is not l.u.s.c. at
time t0. We set Yt := sups≥t ξs and At := Y0 − Yt , for all t ∈ [0, T ]. By the
classical Skorokhod’s problem (cf. also [12]), (Y,0,0,A) is the unique solution
to the RBSDE with driver f ≡ 0 and obstacle ξ . We have Yt = ξt0−, if t < t0,
and Yt = ξt , if t ≥ t0. Let τ ∗

0 := inf{u ≥ 0 : Yu = ξu}. We have τ ∗
0 = t0. Note

that here �Aτ∗
0

= �At0 = ξt0− − ξt0 > 0. However, τ ∗
0 = t0 is not optimal for

Y0 = sups≥0 ξs = ξt0− because ξt0 < ξt0−. In fact, there does not exist an optimal
stopping time for Y0.

Let us now consider the case where, instead of being decreasing on [t0, T ], the
function ξ is increasing on [t0, T ] with ξT = ξt0−. Note that, again, the function ξ

is not l.u.s.c. For each t ∈ [0, T ], Yt = sups≥t ξs = ξt0−. The process A is constant
equal to 0, and τ ∗

0 = T is optimal for Y0 (and also for Yt , for all t ∈ [0, T ]).
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