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A FUNCTIONAL LIMIT THEOREM FOR LIMIT ORDER
BOOKS WITH STATE DEPENDENT PRICE DYNAMICS1

BY CHRISTIAN BAYER, ULRICH HORST AND JINNIAO QIU

Weierstrass Institute, Humboldt University Berlin and University of Michigan

We consider a stochastic model for the dynamics of the two-sided limit
order book (LOB). Our model is flexible enough to allow for a dependence
of the price dynamics on volumes. For the joint dynamics of best bid and ask
prices and the standing buy and sell volume densities, we derive a functional
limit theorem, which states that our LOB model converges in distribution to a
fully coupled SDE-SPDE system when the order arrival rates tend to infinity
and the impact of an individual order arrival on the book as well as the tick
size tends to zero. The SDE describes the bid/ask price dynamics while the
SPDE describes the volume dynamics.

1. Introduction. In modern financial markets, almost all transactions are set-
tled through Limit Order Books (LOBs). An LOB is a record—maintained by
an exchange or specialist—of unexecuted orders awaiting execution. Unexecuted
(standing) orders are executed against incoming market orders according to a set
of precedence rules. Most exchanges give orders at better price levels priority over
orders submitted at less competitive price levels (“price priority”) and orders with
the same price-priority are typically (though not always) executed on a first-in-
first-out basis (“time-priority”).2 From a mathematical perspective, LOBs can thus
be viewed as high-dimensional complex priority queuing systems. In this paper, we
present a probabilistic framework within which to derive functional scaling lim-
its for LOBs from individual order arrival dynamics. We assume that order arrivals
and cancellations follow a Poisson dynamics relative to the best bid and ask prices.
With our choice of scaling, prices follow a diffusion process while volume density
functions can be described by an infinite dimensional SDE, that is coupled with
the price process. As a special case we obtain law-of-large-numbers-type scaling
with absolutely continuous (in time) volume density functions.

1.1. Literature review. There is a substantial economic and econometric lit-
erature on LOBs [2, 4, 8, 11, 12, 29] that puts a lot of emphasis on the realistic
modeling of the working of the LOB. At the same time, only few authors have
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analyzed LOB dynamics from a more probabilistic perspective. Kruk [20] studied
a queuing theoretic LOB model with finitely many price levels. For the special
case of two price levels, in his model the scaled number of standing buy and sell
orders at the top of the book converges weakly to a semimartingale reflected two-
dimensional Brownian motion in the first quadrant. Cont, Stoikov and Talreja [6]
proposed an LOB model with finitely many submission price levels where the LOB
dynamics follows an ergodic Markov process. Cont and DeLarrard [5] established
a scaling limit for a Markovian limit order market in which the state of the book is
represented by the best bid and ask prices along with the liquidity standing at these
prices (“top of the book”). Under heavy traffic conditions, their bid and ask queue
lengths are given by a two-dimensional Brownian motion in the first quadrant with
reflection to the interior at the boundaries, similar to the diffusion limit for two
price levels in [20].

When scaling limits of financial price fluctuations or joint price and volume
fluctuations at selected price levels [5, 20] are studied, the limit can naturally be
described by ordinary differential equations or finite-dimensional diffusion pro-
cesses, depending on the choice of scaling. The mathematical analysis is more
challenging when the dynamics of the full book is considered. To the best of our
knowledge, Osterrieder [28] was the first to model LOBs as measure-valued diffu-
sions. Horst and Paulsen [14] were the first to prove a scaling limit for the full order
book. With their choice of scaling, the joint dynamics of volumes and prices con-
verges to a coupled system of two PDEs that describe the limiting volume dynam-
ics and two ODEs that describe the limiting price dynamics. A related model with
state-dependent prices in the approximating sequence but constant prices in the
limit is analyzed in [10] where the scaling limit is also empirically tested against
real LOB data. Lakner et al. [25] derived a scaling limit for a one-sided limit order
book model under the assumption that average investors place their limit orders
above the current best ask price. The opposite case when orders are placed in the
spread with higher probability is analyzed in [24], where the authors use a coupling
between a simple one-sided limit order book model and a branching random walk
to characterize the diffusion limit. Lasry and Lions [26], starting from a mean-field
game perspective, also describe the LOB by a coupled PDE model with the inter-
face given by the price; see also [23]. Keller-Ressel and Müller [19] describe the
LOB as a coupled system of SPDEs separated by a random interface (Stochastic
Stefan problem) that can again be interpreted as the price.

Despite the considerable empirical evidence that the state of the order book,
especially order imbalance at the top of the book, has a noticeable impact on or-
der dynamics (see [2, 4, 12] and references therein) the order flow in most limit
order book models either follows independent Poisson dynamics or depends on
the price process only as in [10, 14, 24, 25]. Notable exceptions are the papers by
Abergel and Jeddi [1], where Hawkes-type dynamics are used, Huang et al. [15]
and Huang and Rosenbaum [16] where the ergodicity of a general Markovian order
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book model is studied and the diffusivity of the rescaled price process in this gen-
eral framework is derived and Horst and Kreher [13] who obtained a deterministic
scaling limit for LOBs with fully state dependent event dynamics. In this paper,
we consider a diffusion limit for the full LOB dynamics, both prices and volumes,
where the price dynamics depends on standing volumes.

1.2. Our contribution. As in [14], our limit result requires two time scales: a
fast time scale for cancellations and limit order placements outside the spread and
a comparably slow time scale for market order arrivals and limit order placements
in the spread. The different time scales account for the well-documented fact that
placements and cancellations occur much more frequently than price changes. For
instance, using LOBSTER data for January 2, 2014, Horst and Paulsen [14] com-
puted the empirical probabilities for an incoming order to trigger price change for
Apple (0.016), Ebay (0.02), Facebook (0.02) and Microsoft (0.002). Estimates of
similar order are reported in [10] for the stock Bank of America.

In our model, market orders and limit order placements in the spread trigger
price changes. We refer to these order types as active orders. The probability of
an active order being a market order or spread placement at the bid or ask side
of the book depends on the standing volume. Limit order placements outside the
spread and cancellations of standing volume do not lead to price changes. We
refer to these order types as passive orders. Passive orders arrive according to
an independent Poisson at random distances from the best bid and ask price for
random amounts (placements) and propositions (cancellations), respectively.

In this framework, after suitable scaling the price processes follow diffusion
processes whose coefficients depend on standing volumes, and the volume density
functions (in absolute coordinates) are deterministic and absolutely continuous (in
time) functions of the price process. In particular, all fluctuations in standing vol-
umes result from fluctuations in the price process. While such a scaling already
results in a realistic limiting LOB dynamics, it seems desirable to us to allow
for additional fluctuations in standing volumes that do not originate from price
fluctuations. Our framework is flexible enough to allow for such fluctuations. In
a model with both positive and negative placements (additive cancellations), we
may allow placements to be correlated on a common factor that translates into an
additive martingale part driving the volume dynamics. While the “common factor
extension” should be viewed as a mostly mathematical extension it does shed fur-
ther light on the importance of time scales in our model. Our analysis suggests that
even the simple case of correlated additive volume fluctuations requires some form
of “common factor” upon which to condition volume fluctuations that changes on
a much slower time scale than individual order arrival dynamics and cancellations.
Of course, many other approaches to modelling volume fluctuations are perceiv-
able.

Our main result states that when the rate of active order arrivals scales by a fac-
tor n, the rate of passive order arrivals scales by a factor n2, the tick size scales by a
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factor 1/
√

n, the sizes (proportions) of incoming orders (canceled volumes) scale
by a factor 1/n2 and the impact of the common factor scales by a factor 1/n, then
the price processes converge to an SDE and the volume density functions in abso-
lute coordinates converge to an infinite dimensional SDE (SPDE in relative coor-
dinates) as n → ∞. The convergence concept we use is weak convergence in the
class of càdlàg stochastic processes with sample paths in R

2 × (H−1)2 where H−1

denotes the Sobolev space of order −1. The main challenge is to prove conver-
gence of the (H−1)2-valued volume processes. To prove tightness, we decompose
the volume processes into three components describing the aggregate placements,
the proportionality of the cancellations and the impact of the common factor at
the various price levels, respectively. We establish norm-bounds for each of these
processes from which we then deduce that the volume process as a whole satisfies
a standard tightness criteria. To characterize the limit, we first prove joint conver-
gence of prices and the martingale part of the volume processes. Subsequently, we
identify the limits of aggregate placements and cancellations and use C-tightness
(i.e., tightness with continuous limit processes) of the price and martingale part to
prove joint convergence of all the processes to the desired limit.

The key observation is that tightness of the volume processes is guaranteed
under mild assumptions on the price process; it does not require any particular
dependence of prices on volumes. In particular, it does not require the price pro-
cess to be independent from volumes. The characterization of the limiting volume
dynamics requires joint convergence of volumes and prices along a subsequence.
This is guaranteed if the price process is C-tight, a condition which, too, does not
require any particular assumptions on the interplay between prices and volumes.
If the limiting price process is known upfront, either because the approximating
price process is independent from volumes as in [14] or the limiting price process
is state-independent as in [10], then the limiting volume process exists and the joint
dynamics of prices and volumes is fully specified. The added difficulty under state
dependence is the identification of the limiting price/volume process. To this end,
we first characterize the limiting volume dynamics as a function of the—unknown
yet existing—weak accumulation point of the price process. Based on this partial
characterization result, we then fully characterize the joint evolution of prices and
volumes.

The remainder of this paper is organized as follows. In Section 2, we define a
sequence of limit order books in terms of our scaling parameters, state the main
result and give an outline of the proof. Section 3 is devoted to the analysis of the
volume dynamics. Section 4 characterizes the joint limit of the price/volume pro-
cess. A general result on the characterization of stochastic process limits, general
tightness results and some technical proofs are collected in an Appendix.

Notational conventions. For any (deterministic or random) function u :
[0,∞) × R → R, we denote by u(t) : R → R the function x �→ u(t, x) for
t ∈ [0,∞). Unless otherwise stated, (Lp,‖ · ‖Lp) (p ∈ [1,∞]) refers to the space
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Lp(R,B(R), dx). L2 is equipped with the usual inner product 〈·, ·〉. For σ -algebras
G ⊂ F, we shall write EG[·] := E[·|G]. Further, all random variables are defined
on a common probability space (�,F,P). We may write X(t) or Xt for the value
of a stochastic process X at time t ≥ 0.

2. Model and main results.

2.1. The discrete model. In this section, we introduce a sequence of contin-
uous time order book models with state-dependent price dynamics. The set of
price levels at which orders can be submitted in the nth model is {xn

j }j∈Z. We
put xn

j := j · �xn for each j ∈ Z where �xn is the tick size, that is, the minimum
difference between two consecutive price levels.

The state of the order book at time t ≥ 0 is given by a pair (Bn
t ,An

t ) with Bn
t ≤

An
t of best bid and ask prices together with the buy and sell limit order volumes

standing at the different price levels. We identify volumes at the best bid and ask
side of the book with step functions vb/a : [0,∞) →R

vn
b (t, x) := ∑

j∈Z
v

n,j
b,t 1[xn

j ,xn
j+1)

(x),

vn
a (t, x) := ∑

j∈Z
v

n,j
a,t 1[xn

j ,xn
j+1)

(x) (x ∈ R)

with the interpretation that the liquidity available for selling j ∈N ticks below the
best bid price at time t ≥ 0 is given by∫ Bn

t +(j+1)�xn

Bn
t +j�xn

vn
b (x) dx = �xn · vn,Bn

t /�xn+j

b ,

while the liquidity available for buying j ∈ N ticks above the best ask price at that
time is given by ∫ An

t +(j+1)�xn

An
t +j�xn

vn
a (x) dx = �xn · vn,An

t /�xn+j
a .

Our choice of notation allows to treat both sides of the books symmetrically, and
hence simplifies the presentation of the results.3 We are mainly interested in the
volume density functions in relative coordinates, denoted

un
b(t, x) := vn

b

(
t,Bn

t + x
)

and ua(t, x) := vn
a

(
t,An

t + x
)
,

respectively. That is, un
b(t, j · �xn) denotes the liquidity standing j ticks below

the best bid and un
a(t, j ·�xn) denotes the liquidity standing j ticks above the best

ask.

3We acknowledge that the choice of notation for the bid side is not intuitive as it implies that the
volume standing at price level x at time t is given by vb(t,2Bn

t − x). However, it greatly unifies the
presentation of the results and proofs.
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We call {un
b/a(t, x) : x ≥ 0} the visible book and {un

b/a(t, x) : x < 0} the shadow
book at time t ≥ 0 of the bid (b), respectively, the ask (a) side of the book. The
visible book collects the orders awaiting execution. The shadow book specifies the
volumes that will be placed into the spread, should such an event occur next. Since
several consecutive spread placements may occur the shadow book is defined on
the whole negative half-line. It will undergo random fluctuations similar to the
visible book and is just convenient tool to describe spread placements. Its precise
working will be further described in Section 2.1.1 below. See also [13, 14] for a
discussion of the shadow book.

Throughout, indices b and a refer to bid and ask side volumes, respectively. We
often use the index r to refer to either side of the book. Occasionally, we drop the
index altogether and write for instance just v(t, x) if we give generic arguments
that apply to both sides of the book. In both cases, we use Rn(t) or Rn

t to denote
either the best bid (r = b) or the best ask (r = a) price.

ASSUMPTION 2.1. The sequence of initial data (An
0,B

n
0 , vn

a (0, ·), vn
b (0, ·))

converges to (A0,B0, va,0(·), vb,0(·)) in both R
2 × L2 × L2 and R

2 × L∞ × L∞.

There are eight events—labeled Mr ,Lr ,Cr ,Pr (r = a, b)—that change the
state of the book. The events Mb,Lb,Cb,Pb affect the bid side of the book:

Mb . . .market sell order

Lb . . .buy limit order placed in the spread

Cb . . . cancellation of buy volume

Pb . . .buy limit order not placed in spread.

The events Ma,La,Ca,Pa affect the ask side of the book:

Ma . . .market buy order

La . . . sell limit order placed in the spread

Ca . . . cancellation of sell volume

Pa . . . sell limit order not placed in the spread.

In the sequel, we specify how different order types change the state of the book.

2.1.1. Active orders and price dynamics. We assume that market order arrivals
(Events Mb/a) and placements of limit orders in the spread (Events Lb/a) lead
to price changes. In fact, a market order that does not lead to a price change is
equivalent to a cancellation at the top of the book. We refer to these order types as
active orders.
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FIG. 1. Ask–side volume function at time τ̃ n
i − (left) and τ̃ n

i (right) of the visible (dark coloured)
and shadow book (light coloured) when a market order arrives at τ̃ n

i .

ASSUMPTION 2.2. Active orders arrive according to a Poisson process Ñn

with intensity μn. The corresponding jump times (τ̃ n
i )∞i=1 will be called active

order times.

In our model market, orders match precisely against the volume at the top
of the book. In other words, a market order arriving at time τ̃ n

i is good for
vn
r (τ̃ n

i −,Rn(τ̃ n
i −)) · �xn shares. We further assume that limit orders placed

into the spread are placed at the first best price increment and that their sizes
are determined by the shadow book. Specifically, a limit order placed into the
spread at time τ̃ n

j is placed at the price level Rn(τ̃ n
j −) − �xn and its size

is vn
r (τ̃ n

j −,Rn(τ̃ n
j −) − �xn) · �xn. If another limit order placement occurs at

the next active order time τ̃ n
j+1, then the order is placed at Rn(τ̃ n

j −) − 2�xn

and its size is vn
r (τ̃ n

j+1−,Rn(τ̃ n
j −) − 2�xn) · �xn. In between two active or-

ders, cancellations and placements may occur in the shadow book so typically
vn
r (τ̃ n

j+1−,Rn(τ̃ n
j −)−2�xn) 
= vn

r (τ̃ n
j −,Rn(τ̃ n

j −)−2�xn); cf. Section 2.1.2 and
Figures 1 and 2.

We allow the probabilities of price changes to depend on standing volumes. To
this end, we fix smooth nonnegative functions ϕr : R→R and put

Y
r,n
t := 〈

vn
r (t, ·), ϕr(· − Rn(t)

)〉
(r = a, b).

FIG. 2. Ask–side volume function at time τ̃ n
i+1− (left) and τ̃ n

i+1 (right) of the visible and shadow
book when a spread placement occurs at τ̃ n

i+1.
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We interpret Y
r,n
t as a measure for the volume standing at the top of the book or

the total bid (r = b) or ask (r = a) side volume, depending on the choice of ϕr .
The price dynamics is now defined as

(1) dRn(t) = �xnξn
r,Ñn(t)

dÑn(t),

where the random variables ξn
r,Ñn(t)

take values in {0,−1,+1}. Their distribution
will depend on the bid and ask price and on the state of the volumes placed. Hence,
the model considered is not of zero-intelligence type. More precisely, we work
under the following assumption.

ASSUMPTION 2.3. Let (Fn
t ) denote the filtration generated by the nth model

[the precise definition is given in (9) below]. For r = a, b, there exist functions
bn
r ∈ C1(R4) and σn

r ∈ C1(R4;R2×1) such that

EFn
t−∨σ(Ñn(t))

[
ξn
r,Ñn(t)

] = 1√
n
bn
r

(
Bn

t−,An
t−, Y

b,n
t− , Y

a,n
t−

)
,(2)

CovFn
t−∨σ(Ñn(t))

[(
ξn
b,Ñn(t)

ξn
a,Ñn(t)

)]
=

(
σn

b

σn
a

)
·
(
σn

b

σn
a

)� (
Bn

t−,An
t−, Y

b,n
t− , Y

a,n
t−

)
,(3)

for any t > 0, and (bn
r , σ n

r ) converges to (br , σr) in C(R4) × C(R4;R2×1)

(uniformly) such that the matrix (
σb
σa

) is invertible and (br , σr) ∈ C1(R4) ×
C1(R4;R2×1) and the limiting objects are uniformly bounded.

LEMMA 2.4. The sequence of price processes (An,Bn) is C-tight.

PROOF. Immediately by Theorem C.1 and Lemma C.2 as price increments are
bounded by �xn. �

It is clearly desirable to avoid crossing of bid and ask prices. One possibility
is to introduce a reflection term and to scale the prices such that they converge to
reflected Brownian motion in the limit as in [18]. Another is to consider short time
scales as illustrated by the following example.

EXAMPLE 2.5. Let us assume that

PFn
t−∨σ(Ñn(t))

[
ξn
b/a,Ñn(t)

= ±1
] = gn

r

(±1,Bn
t−,An

t−, Y
b,n
t− , Y

a,n
t−

)
for smooth functions gn

r (±1, ·) that satisfy for any (y1, y2, y3, y4) ∈ R
4,

gn
b

(+1, y1, y2, y3, y4) = gn
a

(−1, y1, y2, y3, y4)
= 0 if y2 − y1 < ε for some ε > 0
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and

gn
r

(+1, y1, y2, y3, y4) − gn
r

(−1, y1, y2, y3, y4) = 1√
n
bn
r

(
y1, y2, y3, y4)

.

Then Assumption 2.3 is satisfied up to some stopping time. If we further assume
that ξn

b,Ñn(t)
· ξn

a,Ñn(t)
= 0, then at most one price moves at any active order time.

Notice that the above example makes sense for short times. The next example
avoids this limitation.

EXAMPLE 2.6. For simplicity, we give an example where price dynamics do
not depend on Y . It is, however, simple to extend the example. Let ζ n

l,i , l = 1,2,
i ∈ N, be the increments (indexed by i) of two independent Donsker-type ap-
proximations of two independent geometrical Brownian motions denoted by Sl

t ,
l = 1,2, both of which are constructed such that positivity of the cumulative sum
of (ζ n

l,i)i∈N is ensured for any n—for instance, by reflection. We may suppose that
ζ n
l,i takes values in {0,±1}. Define ξn

b,i := ζ n
1,i and ξn

2,i := ζ n
1,i + ζ n

2,l . Hence, ξn
r,i

take values in {0,±1,±2}—an inconsequential violation of the assumption that
−1 ≤ ξ ≤ 1. In the limit, we have Bt = S1

t and At = S1
t + S2

t ≥ Bt .

2.1.2. Passive orders and volume changes. Limit order placements outside the
spread and cancellations of standing volume do not change prices. We refer to these
order types as passive orders. In our model, cancellations (Events Cb/a) occur for
random proportions of the standing volume while limit order placements outside
the spread (Events Pb/a) occur for random volumes at random price levels.

ASSUMPTION 2.7. Passive orders arrive according to independent Poisson
processes Nn

b and Nn
a that are independent of Ñn with intensities λn

b and λn
a at

the bid and ask side of the book, respectively. The corresponding jump times
(τn

b/a,i)
∞
i=1 will be called passive order times.

The submission and cancellation price levels are chosen relative to the best
prices. Specifically, we assume that the distances to the best prices are chosen
according to a sequence of i.i.d. random variables (πi)

∞
i=0 where each πi is of the

form

(4) πi = (
π

Cb

i , π
Ca

i , π
Pb

i , π
Pa

i , π
Nb

i , π
Na

i

)
.

The entries take values in an interval [−M,M], for some M > 0; positive values
indicate changes in the visible book while negative values indicate changes in the
shadow book. Superscripts indicate event types and “N” stands for “noise”. For
instance, π

Ca

i ∈ [0,�xn) means that if the ith event is a passive order, then it trig-
gers a ask-side cancellation at the top of the visible book while π

Ca

i ∈ [−�xn,0)
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corresponds to an ask-side cancellation one tick below the best ask, that is, a can-
cellation in the shadow book. The precise meaning of the entries will become clear
in (6) below.

For r = a, b, passive order sizes are described by a sequence of i.i.d. random
variables (ωi)

∞
i=0 where each ωi is of the form

(5) ωi = (
ω

Cb

i ,ω
Ca

i ,ω
Pb

i ,ω
Pa

i ,ω
Nb

i ,ω
Na

i

)
.

The random variables ω
Pr

i take values in [0,∞); they describe the sizes of order

placements. Likewise, the random variables ω
Cr

i take values in [0,1] and describe

the proportions of cancellations. We notice that ω
Cr

i = 1 corresponds to a wipe-out
of the orders at the corresponding price level that is, in principle, not forbidden.
The resulting dynamics of the buy and sell side volume density functions satisfies

(6)

dvn
r (t, ·) =

[
1
In(Rn(τ̃ n

Ñn(t−)
)+π

Pr
Nn

r (t)
)
(·)ωPr

Nn
r (t−)

�vn

�xn

− 1
In(Rn(τ̃ n

Ñn(t−)
)+π

Cr
Nn

r (t)
)
(·)ωCr

Nn
r (t−)v

n
r

(
τn
r,Nn

r (t−), ·
)�vn

�xn

]
,

where �vn is a scaling parameter that measures the impact of an individual order
on the state of the book and In(y) is the subinterval corresponding to tick-size
�xn that y belongs to, that is,

(7) 1In(y)(x) := ∑
j∈Z

1[xn
j ,xn

j+1[(y)1[xn
j ,xn

j+1[(x).

The specific structure of the dependence of the volume density functions on the
bid and ask price as well as the random submission price levels reflects the fact
that submission and cancellation price levels are chosen relative to the best bid/ask
price.

REMARK 2.8. In real-world markets, only one event (market order arrival,
cancellation, placement) happens at a time. Within our framework, this corre-
sponds to the special case where only one of the four random variables ωCb/a ,ωPb/a

is different from zero. Our mathematical framework is flexible enough to allow for
such a dependence structure.

Within the framework described thus far, (random) fluctuations in limiting
volumes will originate entirely from fluctuations in prices through the price-
dependent order arrival and cancellation dynamics.4 Our mathematical framework
is flexible enough to also allow fluctuations in volumes to originate directly from

4Loosely speaking, the scaling of price is of CLT-type while the scaling of placements and cancel-
lations is of LLN-type.
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order placements if we allow for a second type of placements that are correlated on
a “common factor” rather than the price process. In the simplest case, the “com-
mon factor” dynamics is specified by sequences of i.i.d. random variables (̃ξr,i)

∞
i=0

(r = a, b). For the scaling limit, it will be important that this common factor
changes at the same rate as prices do. To simplify the analysis, we assume that
it actually stays constant between two active order times and specify our volume
dynamics as

dvn
r (t, ·) =

[
1
In(Rn(τ̃ n

Ñn(t−)
)+π

Pr
Nn

r (t)
)
(·)ωPr

Nn
r (t−)

�vn

�xn

− 1
In(Rn(τ̃ n

Ñn(t−)
)+π

Cr
Nn

r (t)
)
(·)ωCr

Nn
r (t−)v

n
r

(
τn
r,Nn

r (t−), ·
)�vn

�xn

+ 1
In(Rn(τ̃ n

Ñn(t−)
)+π

Nr
Nn

r (t)
)
(·)ωNr

Nn
r (t−)ξ̃r,Ñn(t−)

√
�vn

]
dNn

r (t).

(8)

We notice that the common factor is modulated by the nonnegative i.i.d. noise
variables ω

Nr

i that change between two consecutive passive orders. We motivate
the particular choice of the noise terms after the main result is formulated, below
Corollary 2.11.

We assume that the following condition holds.

ASSUMPTION 2.9.

• The random variables (πT
i )T=Cr ,Pr ,Nr ,r=a,b, i ∈N, are i.i.d. with Lipschitz con-

tinuous densities f T on some compact interval [−M,M] and independent of
the Poisson processes.

• The variables (ωT
i )T=Cr ,Pr ,Nr ,r=a,b, i ∈N, are i.i.d., independent of the Poisson

processes and have a finite fourth moment.
• The variables ξ̃r,i are i.i.d., independent of all other random variables and take

the values ±1 with equal probability.

For future use, we also introduce the filtration Fn generated by the nth model.
More precisely, we set

(9)

Fn
t := σ

((
Ñn

s

)
0≤s≤t ,

(
ξn
a,k

)Ñn(t)
k=1 ,

(
ξn
b,k

)Ñn(t)
k=1 ,

(
Nn

a (s)
)
0≤s≤t ,

(
Nn

b (s)
)
0≤s≤t ,(

ω
Ca

k ,ω
Pa

k ,ω
Na

k

)Nn
a (t)

k=1 ,
(
ω

Cb

k ,ω
Pb

k ,ω
Nb

k

)Nn
b (t)

k=1 ,
(
π

Ca

k , π
Pa

k , π
Na

k

)Nn
a (t)

k=1 ,(
π

Cb

k , π
Pb

k , π
Nb

k

)Nn
b (t)

k=1 ,
(̃
ξn
b,k

)Ñn
a (t)

k=1 ,
(̃
ξn
a,k

)Ñn
b (t)

k=1

)
.

2.2. The main result. We prove below that our LOB model converges to a
continuous time limit if the order arrival rates tend to infinity and the impact of
an individual order arrival on the book as well as the tick size tends to zero in a
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particular way. In order to make the convergence concept precise, and to state the
main result, we need to introduce further notation. For m ∈ (−∞,∞), we denote
by (Hm,‖ · ‖m) the space of Bessel potentials equipped with the usual Sobolev
norm and inner product. Set

E ′ = ⋃
m

H−m ⊃ · · · ⊃ H−1 ⊃ L2 ⊃ H 1 ⊃ · · · ⊃ ⋂
m

Hm = E .

It is well known that H 0 = L2 and that E is a complete separable metric space.
Sobolev’s embedding theorem indicates that each element of E is an infinitely
differentiable function. In what follows, denote the dual between E ′ and E by 〈·, ·〉,
which is consistent with the inner product of H 0 = L2.

The convergence concept we use is weak convergence in the Skorokhod space
D := D([0,∞);R2 ×H−1 ×H−1) of all càdlàg functions on [0,∞) taking values
in the space R2 ×H−1 ×H−1. The space D is equipped with the usual Skorokhod
metric (see Jacod and Shiryaev [17]).

We are now ready to state the main result of this paper. The main assumptions
and the assertions of the theorem are discussed below. The proof is carried out in
the subsequent sections.

THEOREM 2.10. Let Assumptions 2.1–2.9 be satisfied and assume that the
scaling parameters λn

b/a (arrival rate of passive orders), μn (arrival rate of active
orders), �vn (order sizes) and �xn (tick size) satisfy the following conditions:

λn
b/a = n2; μn = n; �vn = n−2; �xn = n−1/2.

Then there are three independent Wiener processes W̃ , Wa and Wb (W̃ being two-
dimensional) such that the sequence (An,Bn, vn

a , vn
b ) of stochastic processes con-

verges in distribution in D([0,∞);R2 × H−1 × H−1) to (A,B, va, vb). Here,
(A,B) is a two-dimensional diffusion process satisfying the SDE:

dAt = ba

(
Bt,At , Y

b
t , Y a

t

)
dt + σa

(
Bt,At , Y

b
t , Y a

t

)
dW̃t ; A0 = a0;

dBt = bb

(
Bt,At , Y

b
t , Y a

t

)
dt + σb

(
Bt,At , Y

b
t , Y a

t

)
dW̃t ; B0 = b0;

with σa = (σ 11, σ 12), σb = (σ 21, σ 22), Ya
t = 〈va(t, ·), ϕa(· − At)〉 and Yb

t =
〈vb(t, ·), ϕb(· − Bt)〉, respectively. Moreover, the volume density processes satisfy
the infinite-dimensional SDE

vb(t, ·) = vb,0(·) +
∫ t

0

(
E

[
ω

Pb

1

]
f Pb (· − Bs) − E

[
ω

Cb

1

]
f Cb (· − Bs)vb(s, ·))ds

+ √
2E

[
ω

Nb

1

] ∫ t

0
f Nb (· − Bs)dWb(s), t ≥ 0;

va(t, ·) = va,0(·) +
∫ t

0

(
E

[
ω

Pa

1

]
f Pa (· − As) − E

[
ω

Ca

1

]
f Ca (· − As)va(s, ·))ds

+ √
2E

[
ω

Na

1

] ∫ t

0
f Na (· − As)dWa(s), t ≥ 0.
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If ω
Nr

1 = 0 (no common factor), then the volume density functions are absolutely
continuous in time.

For any T ∈ (0,∞), existence and uniqueness of an adapted solution to the
above coupled SDE system in L2(�;C([0, T ];R2)) × L2(�;C([0, T ];L2(R;
R

2))) is obvious; see [7] for a general theory on stochastic equations in infinite
dimensions. If the model parameters are sufficiently smooth, then the density func-
tions are smooth as well. The following corollary is a consequence of the Itô–
Kunita formula.

COROLLARY 2.11. If vr,0 and the densities f T belong to Hm with m > 3,
then vr(t) take values in Hm, and hence by embedding, in C2(R). Then the rela-
tive volume processes ub(t, x) = vb(t,Bt + x), ua(t, x) = va(t,At + x) satisfy the
nonlocal stochastic partial differential equations

dua(t, x) = [
E

[
ω

Pa

1

]
f Pa (x) − E

[
ω

Ca

1

]
f Ca (x)ua(t, x)

+ Dua(t, x)ba

(
Bt,At ,

〈
ub(t), ϕ

b〉
,
〈
ua(t), ϕ

a 〉)]
dt

+ 1

2
tr

{
σaσ

�
a

(
Bt,At ,

〈
ub(t), ϕ

b〉
,
〈
ua(t), ϕ

a 〉)
D2ua(t, x)

}
dt

+ √
2E

[
ω

Na

1

]
f Na (x) dWa(t)

+ Dua(t, x)σa

(
Bt,At ,

〈
ub(t), ϕ

b〉
,
〈
ua(t), ϕ

a 〉)
dW̃(s), t ≥ 0;

ua(0, x) = va,0(x + a0);
dub(t, x) = [

E
[
ω

Pb

1

]
f Pb (x) − E

[
ω

Cb

1

]
f Cb (x)ub(t, x)

+ Dub(t, x)bb

(
Bt,At ,

〈
ub(t), ϕ

b〉
,
〈
ua(t), ϕ

a 〉)]
dt

+ 1

2
tr

{
σbσ

�
b

(
Bt,At ,

〈
ub(t), ϕ

b〉
,
〈
ua(t), ϕ

a 〉)
D2ua(t, x)

}
dt

+ √
2E

[
ω

Nb

1

]
f Nb (x) dWb(t)

+ Dub(t, x)σb

(
Bt,At ,

〈
ub(t), ϕ

b〉
,
〈
ua(t), ϕ

a 〉)
dW̃(s), t ≥ 0;

ub(0, x) = vb,0(x + b0)

which are coupled with the SDE for the price system given in Theorem 2.10.

Some comments on our scaling assumptions are in order. The assumption that
market orders match precisely against the standing volume at the top of the book
and that market orders of smaller size are viewed as cancellation is made for math-
ematical convenience. There is some empirical evidence, though, that this assump-
tion is not too restrictive. In an empirical study the authors of [9] found that in their
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FIG. 3. Average percentage of spread placement per second (left) and empirical lifetime distribu-
tion of spread placements for APPL (right).

data sample around 85% of the sell market orders that lead to price changes match
exactly the size of the volume standing at the best bid price.

The assumptions that market orders and limit order placements in the spread
occur at the same rate and that the liquidity at the top of the book is an indicator
for volumes placed in the spread are key to our analysis. They await empirical
verification.5

The assumption that μn

λn → 0 has also been made in [13, 14]. It states that pas-
sive events happen much more frequently than active ones. There is strong em-
pirical evidence supporting the assumption that spread placements. For instance,
Figure 3(left) shows the intra-day evolution of the proportion of spread placements
among all orders for all NASDAQ traded stocks for the month of March 2016. The
proportions of spread placements is particularly low for very liquid stocks such
as APPL, MSFT or BAC; see [14] and references therein. Moreover, it is well
known that many spread placements have very short lifetimes. As an example,
Figure 3(right) displays the cumulative distribution function of the time to cancel-
lation of spread placements for APPL (consolidated NASDAQ data; March 2016).
As we can see, more than 60% of all spread placements are cancelled after less
than 5 milli-seconds.6 Of course, our model can not reasonably account for such
ping-orders.

The scaling assumptions μn ∼ (�xn)−1 as in [13, 14], respectively, our as-
sumption

√
μn ∼ (�xn)−1 are standard to obtain an ODE, respectively, diffusion

5To the best of our knowledge, spread placement dynamics have not yet been extensively inves-
tigated in the financial econometrics literature. In any case, the assumption that market orders and
limit order placements in the spread occur at the same rate implies that orders that are placed in the
spread and almost immediately canceled (“ping orders”) are not allowed in our model as they do not
really provide liquidity.

6We thank Michael Noé for the data analysis and Nikolaus Hautsch for data provision.
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approximations of the price process. The assumption λn
r ∼ �vn is as in [13, 14]. It

guarantees that the order of magnitude of aggregate placements and cancellations
over a given period of time does not change with the model index n. Furthermore,
from the proof of Lemma 3.11 we see that our proof requires μn ∼ λn(�xn)2.
This is again the same condition as in [13, 14] taking into account that the differ-
ent scaling of the tick size (with our choice of rates, �pn = �xn = n−1 in [13,
14]). Altogether, this explains the absolutely continuous part of the limiting vol-
ume process; it describes the expected volume placement and cancellation activity;
see [13, 14] for details. Summarizing, the absolutely continuous part requires the
scaling conditions

μn ∼ �xn, λn
r ∼ �vn, μn ∼ λn

r

(
�xn)2

.

The specific choice μn ∼ n,λn
r ∼ n2 and �xn ∼ n−1/2 was made for notational

convenience.
The diffusion part of the limiting volume density function is a direct conse-

quence of the noise term ξ̃ n
r,i in (8) that does not change in-between price changes.

The intuition is that in between two consecutive price changes a law of large num-
bers applies to the volume density function whose increment can hence be approx-
imated by its expected value plus a random term of order

√
�vn that translates

into a Brownian motion as n → ∞. If the scaling constant
√

�vn is replaced by a
smaller one, then the dynamics of the limiting volume density function will take
the form of an (infinite-dimensional) ODE in a random environment generated by
the price process. The SPDE dynamics of the volume process in relative coordi-
nates is a direct consequence of the diffusive limiting price process and does not
depend on the scaling of the noise terms.

The requirement of a single common factor driving the noise along all pas-
sive events can easily be relaxed. Indeed, suppose that we have finitely or in-
finitely many factors with weights depending on the location of the passive event.
This would result in limiting dynamics of the same form as above, except that
the single driving Brownian motions were to be replaced by sums of the form∑

i e
i
a/b(·) dWi

a/b(s). As long as the (coloured) noise
∑

i e
i
a/b(x) dWi

a/b(s) exists
in a suitable space of square integrable smooth functions (in x), the analysis should
essentially stay the same.

2.3. Outline of the proof. The proof of Theorem 2.10 is carried out in the
following sections. The main challenge is convergence, especially tightness of the
volume densities. Since the price process is C-tight by construction tightness of the
volume process implies tightness of the price-volume process, and hence existence
of an accumulation point.

We split the dynamics of the volume density functions into the three processes
V n,i

r (t, ·) (i = 1,2,3) that we are going to handle separately, before finally pasting
them back together to obtain the limiting dynamics. From equation (8), we iden-
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tify the following three processes which drive the evolution of the volume density
function (r = a, b):

V n,1
r (t, x) =

Nn
r (t)∑

i=1

1
In(Rn(τ̃ n

Ñn(τn
r,i

)
)+π

Pr
i )

(x)ω
Pr

i

�vn

�xn
,(10a)

V n,2
r (t, x) =

Nn
r (t)∑

i=1

1
In(Rn(τ̃ n

Ñn(τn
r,i

)
)+π

Cr
i )

(x)ω
Cr

i

�vn

�xn
,(10b)

V n,3
r (t, x) =

Nn
r (t)∑

i=1

1
In(Rn(τ̃ n

Ñn(τn
r,i

)
)+π

Nr
i )

(x)ω
Nr

i ξ̃r,Ñn(τn
r,i )+1

√
�vn,(10c)

corresponding to the volume changes due to incoming order placements (V n,1
r ),

the proportional cancellations of standing volume (V n,2
r ) and aggregated random

fluctuations (V 3,n
r ). In the limit the increasing functions (in time) V n,1

r and V n,2
r

will translate into the integrals w.r.t. the functions f Pr and f Cr . The process V n,3
r

will contribute the martingale part. 7

Unfortunately, these processes are not convenient for characterizing the limit
process. They are not Markov chains, and V n,3

r is not a martingale. The “Markovi-
zation” is achieved by registering changes to the order book only along active
order times and by considering the process as if these times were deterministic.
More precisely, we define time-changes together with their inverses by

(11)

ηn
u :=τ̃ n�nu�, u ∈ [0,∞);

ηn
u := inf

{
t : t > 0, ηn

t > u
} − 1

n
, u ∈ [0,∞),

and introduce the following processes:

A
n
(u) := An

0 + �xn
�nu�∑
i=1

ξn
a,i ,(12a)

B
n
(u) := Bn

0 + �xn
�nu�∑
i=1

ξn
b,i ,(12b)

V
n,1
r (u, x) :=

Nn
r (τ̃ n�nu�)∑
i=1

ω
Pr

i 1
In(R̄n(ηn

τn
r,i

)+π
Pr
i )

(x)
�vn

�xn
,(12c)

V
n,2
r (u, x) :=

Nn
r (τ̃ n�nu�)∑
i=1

ω
Cr

i 1
In(R̄n(ηn

τn
r,i

)+π
Cr
i )

(x)
�vn

�xn
,(12d)

7Note that V
n,3
b itself is not a martingale (in the filtration Fn generated by the full model), as the

fluctuations ξ̃ are constant between two active order times.
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V
n,3
r (u, x) :=

Nn
r (τ̃ n�nu�)∑
i=1

ω
Nr

i 1
In(R̄n(ηn

τn
r,i

)+π
Nr
i )

(x)̃ξr,Ñn(τn
r,i )+1

√
�vn,(12e)

vn
r (u, x) := vn

r (0, x) + V
n,1
r (u, x) + V

n,3
r (u, x)(12f)

−
Nn

r (τ̃ n�nu�)∑
i=1

ω
Cr

i 1
In(R̄n(ηn

τn
r,i

)+π
Cr
i )

(x)vn
r

(
τn
r,i , x

)�vn

�xn
.

In a first step, we prove in Section 3.1 tightness of each of the processes V
n,i

r

and of vn
r in the distributional sense indicated above. For this part, we heavily

rely on Mitoma’s theorem (Theorem C.3) together with Kurtz’s criterion (Theo-
rem C.1). Extending the tightness result from vn

r to vn
r requires C-tightness of vn

r .
Hence, in Section 3.2, we first characterize the limit vr of vn

r , depending on the
yet unknown limiting price process (A,B). Convergence of the placement term is
standard; convergence of the martingale term follows from a general result on the
convergence of stochastic process limits, given in Appendix A. The challenge is
to prove convergence of aggregate cancellations.8 In Section 3.3, we extend our
tightness result to the process

v̂n
r := v̄n

r ◦ ηn

that accounts for the random event times. As a byproduct, we obtain that the limits
of all the processes vn

r , v̂n
r and vn

r coincide. More precisely, we first use C-tightness
of the sequence vn

r to establish the joint convergence (vn
r , η

n)
n→∞−−−→ (vr , id) (in a

weak sense). By Lemma C.5, this implies that

lim
n→∞ v̂n

r = lim
n→∞vn

r ◦ (
ηn) = vr .

Subsequently, we prove the tightness of vn
r and further verify that v̂n

r − vn
r con-

verges to 0 in an L2(�;L2(R))-sense (this is where we need v̂n
r ), thereby implying

that

lim
n→∞vn

r = lim
n→∞ v̂n

r = vr .

At this stage, we have only treated the convergence of each of the individual se-
quences of processes (An,Bn, vn

b ) and (An,Bn, vn
a ) to some limiting processes.

However, as all these limiting processes are actually continuous, joint tightness
and, finally, joint weak convergence of (An,Bn, vn

b , vn
a ) follows by Corollary C.4.

The last step, performed in Section 4 is then to characterize the limit of the price
processes, and consequently, of the full model.

3. The scaling limit of the volume density. In this section, we prove weak
convergence in a distributional sense of the volume density function. While we do

8The process V
n,2
r only describes the proportionality of cancellation but not the actual volumes.
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not yet know at this point whether there is a unique accumulation point of the se-
quence of processes (An,Bn), we do know that there are such accumulation points
and all these points are processes, which are continuous in time; see Lemma 2.4.
By choosing a proper sub-sequence, we can, therefore, assume that (An,Bn) does
converge to a continuous limiting process (A,B), and we will often do so in this
section.

Throughout, we use the symbol C for deterministic constants which may change
from occurrence to occurrence.

3.1. Tightness of the auxiliary process vn
r . We first prove tightness of the pro-

cesses vn
r . The arguments are the same for the bid and ask side of the book. We

shall therefore drop the index indicating of the bid/ask side and write Rn or R̄n for
the price process in what follows. Further, where appropriate we drop the index n

and denote the random location of any activity in the book simply by π or πi and
its size by ω or ωi , disregarding the type (placement, cancellation, noise).

We start with an elementary auxiliary lemma on the distribution of a Poisson
process as seen from a second, independent Poisson process. The lemma will be
key to compute the distribution of passive order arrivals between two consecutive
active order times.

LEMMA 3.1. Let N1 and N2 be two independent Poisson processes with in-
tensities λ1 and λ2, respectively. Moreover, let Ti , i = 1, . . . , denote the jump times
of the Poisson process N1. For any α = 1,2, . . . , the random variable N2(Tα) has
a negative binomial (NB) distribution with parameters r = α and p = λ2

λ1+λ2
, that

is, we have

P
(
N2(Tα) = l

) =
(
l + α − 1

α − 1

)(
λ2

λ1 + λ2

)l( λ1

λ1 + λ2

)α

, l = 0,1, . . . .

In particular, the moment-generating function reads

EetN2(Tα) =
(

1 − p

1 − pet

)α

for t < − logp,

and

E

[
k−1∏
i=0

(
N2(Tα) − i

)] =
(

k−1∏
i=0

(α + i)

)
λk

2

λk
1

, k = 1, . . . ,4.

In what follows, we denote by Fn
the filtration generated by the processes

V
n,1/2/3
r and vn

r (r = a, b).

In the next two lemmas, we provide Lp estimates for the processes V
n,1/2

and

V
n,3

, respectively. The arguments for V
n,1

and V
n,2

are the same. The arguments

for V
n,3

are similar. However, since the scaling for V
n,3

is much smaller we need
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to take advantage of the martingale-difference structure in order to avoid mixed
terms.

LEMMA 3.2. There is a constant C > 0 (independent of n, s, t) such that for
any 0 < s ≤ t we have

EFn
s

[∥∥V n,1/2
(t, ·) − V

n,1/2
(s, ·)∥∥2

L2

] ≤ C

(
(t − s)2 + |t − s|

n

)
,

sup
x∈R

EFn
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)2] ≤ C

(
(t − s)2 + |t − s|

n

)
,

EFn
s

[∥∥V n,1/2
(t, ·) − V

n,1/2
(s, ·)∥∥4

L4

]
≤ C

(
(t − s)4 + |t − s|3

n
+ |t − s|2

n2 + |t − s|
n3

)
,

sup
x∈R

EFn
s

[(
V

n,1/2
(t, x) − V

n,1/2
(s, x)

)4]
≤ C

(
(t − s)4 + |t − s|3

n
+ |t − s|2

n2 + |t − s|
n3

)
.

PROOF. We drop the superscripts. Without any loss of generality, we can
choose s = 0. Let α := �nt� and consider

E
[
V (t, x)2] = E

[(
N(τ̃α)∑
i=1

1I (R̄(ητi
)+πi)

(x)ωi

)2](
�v

�x

)2
.

Using the fact that the random variables ωi are i.i.d. and independent of the Poisson
processes, we get

E
[
V (t, x)2] = E

[
N(τ̃α)∑

i<j ;i,j=1

2EFτi
∨σ(πi,ωi ,Rητi

)

[
ωj 1I (R̄(ητj

)+πj )(x)
]

× ωi1I (R̄(ητi
)+πi)

(x)

+
N(τ̃α)∑
i=1

E
[
ω2

i

]
1I (R̄(ητi

)+πi)
(x)

](
�v

�x

)2
.

As the random variable π has a density f with support in [−M,M], for any de-
terministic y we can bound

(13)
E

[
1I (y+πi)(x)

] = ∑
j∈Z

1[xj ,xj+1[(x)

∫ xj+1−y

xj−y
f (z) dz

≤ ‖f ‖L∞�x1[y−M−�x,y+M+�x](x).
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Conditioning on the σ -algebra generated by all sources of randomness except
(πi)i∈N, these bounds enable us to estimate

E
[
V (t, x)2]

≤ E

[
2E[ω1]2‖f ‖2

L∞�x2
N(τ̃α)∑

i<j ;i,j=1

1[R̄(ητi
)−M−�x,R̄(ητi

)+M+�x](x)

+ E
[
ω2

1
]‖f ‖L∞�x

N(τ̃α)∑
i=1

1[R̄(ητi
)−M−�x,R̄(ητi

)+M+�x](x)

](
�v

�x

)2
.

At this stage, we can easily bound V both in L2(R) and as a supremum in x. More
precisely, we have

E
[∥∥V (t)

∥∥2
L2

] + sup
x∈R

E
[
V (t, x)2]

≤ (
4(M + �x) + 1

)(
E[ω1]2‖f ‖2

L∞�x2E
[
N(τ̃α)

(
N(τ̃α) − 1

)]
+ E

[
ω2

1
]‖f ‖L∞�xE

[
N(τ̃α)

])(�v

�x

)2
.

Finally, inserting the moment formulas given in Lemma 3.1 and applying the trivial
estimate α = �nt� ≤ nt together with Assumption 2.9, we arrive at

E
[∥∥V (t)

∥∥2
L2

] + sup
x∈R

E
[
V (t, x)2] ≤ Cn−7/2

{
n−1/2nt(1 + nt)

n4

n2 + nt
n2

n

}

= C
(
t2 + (

n−1 + n−3/2)
t
) ≤ C

(
t2 + t

n

)
.

The estimate for the fourth moment follows analogously and is therefore
skipped. �

LEMMA 3.3. There is a constant C (independent of n, s, t) such that, for every
0 < s ≤ t ,

EFn
s

[
sup

s≤u≤t

∥∥V n,3
(u) − V

n,3
(s)

∥∥2
L2

]
(14)

+ sup
x∈R

EFn
s

[
sup

s≤u≤t

∣∣V n,3
(u, x) − V

n,3
(s, x)

∣∣2]
≤ C|t − s|,

EFn
s

[
sup

s≤u≤t

∥∥V n,3
(u) − V

n,3
(s)

∥∥4
L4

]
(15)

+ sup
x∈R

EFn
s

[
sup

s≤u≤t

∣∣V n,3
(u, x) − V

n,3
(s, x)

∣∣4]
≤ C

(
(t − s)2 + |t − s|

n

)
.

PROOF. Again, we restrict ourselves to proving the case s = 0 and drop all
superscripts from the notation. Rewriting V in a form more clearly expressing its
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martingale structure, we consider

V (t) =
N(τ̃α)∑
i=1

1I (R̄(ηn
τn
i
)+πi)

(x)ωi ξ̃Ñ(τi )

√
�v

=
α−1∑
j=0

N(τ̃j+1)∑
i=N(τ̃j )+1

1I (R̄(j/n)+πi)
(x)ωi ξ̃j

√
�v,

where we again use the short-hand notation α = �tn�. Using Doob’s inequality
and the fact that E[̃ξi ξ̃j ] = δij with ξ̃2

i = 1, we have

E
[

sup
0≤u≤t

∣∣V (u, x)
∣∣2]

≤ 4E
[∣∣V (t, x)

∣∣2]

= 4�vE

[(
α−1∑
j=0

ξ̃j

N(τ̃j+1)∑
i=N(τ̃j )+1

1I (R̄(j/n)+πi)
(x)ωi

)2]

= 4�vE

[
α−1∑
j=0

( N(τ̃j+1)∑
i=N(τ̃j )+1

1I (R̄(j/n)+πi)
(x)ωi

)2]
.

Next, we estimate the contribution of the random locations π as in (13). We have

E
[

sup
0≤u≤t

∥∥V (u)
∥∥2
L2

]

≤ 4�vE

[
α−1∑
j=0

{ N(τ̃j+1)∑
i 
=i′=N(τ̃j )+1

ωiωi′
∫
R

1I (R̄(j/n)+πi)
(x)1I (R̄(j/n)+πi′ )(x) dx

}]

+
N(τ̃j+1)∑

i=N(τ̃j )+1

ω2
i

∫
R

1I (R̄(j/n)+πi)
(x) dx]

≤ 4�vE

[
α−1∑
j=0

{ N(τ̃j+1)∑
i 
=i′=N(τ̃j )+1

E[ω1]2‖f ‖2
L∞�x2(2M)

+
N(τ̃j+1)∑

i=N(τ̃j )+1

E
[
ω2

1
]‖f ‖L∞�x(2M)

}]
,

and similarly,

sup
x∈R

E
[

sup
0≤u≤t

∣∣V (u, x)
∣∣2]

≤ 4�vE

[
α−1∑
j=0

{ N(τ̃j+1)∑
i 
=i′=N(τ̃j )+1

E[ω1]2‖f ‖2
L∞�x2

+
N(τ̃j+1)∑

i=N(τ̃j )+1

E
[
ω2

1
]‖f ‖L∞�x

}]
.
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Since the distribution of the increments N(τ̃j+1) − N(τ̃j ) does not depend on j ,
we see that

E
[

sup
0≤u≤t

∥∥V (u)
∥∥2
L2

]
+ sup

x∈R
E

[
sup

0≤u≤t

∣∣V (u, x)
∣∣2]

≤ C�vE
[
α

{
E[ω1]2‖f ‖2

L∞(�x)2N(τ̃1)
(
N(τ̃1) − 1

)
+ E

[
ω2

1
]‖f ‖L∞�xN(τ̃1)

}]
.

Again appealing to Lemma 3.1 (with α = 1) together with Assumption 2.9, we
obtain

E
[

sup
0≤u≤t

∥∥V (u)
∥∥2
L2

]
+ sup

x∈R
E

[
sup

0≤u≤t

∣∣V (u, x)
∣∣2]

≤ C
1

n2 nt

{
2

n

n4

n2 + 1√
n

n2

n

}
= Ct{2 + 1/

√
n} ≤ Ct.

As in the proof of Lemma 3.2, the estimate for the fourth moment follows by the
similar arguments. �

At this stage, we can patch together the estimates in Lemmas 3.2 and 3.3 to
obtain a similar one for the process vn. The proof is based on an event-by-event
decomposition of the limit order book dynamics. More precisely, in terms of the
increments (again, we drop indices indicating the order book side)

h
n,1
i (x) := ωP

i 1In(R̄n(ηn
τn
i
)+πP

i )(x)
�vn

�xn
,

h
n,2
i (x) := ωC

i 1In(R̄n(ηn
τn
i
)+πC

i )(x)
�vn

�xn
,

h
n,3
i (x) := 1In(R̄n(ηn

τn
i
)+πN

i )(x)ωN
i ξ̃a,Ñn(τn

i )+1

√
�vn

of the processes V
n,j

(j = 1,2,3) one has the following generic decomposition:

(16)

vn(t, x) =
Nn(τ̃ n�nt�)∏

i=1

(
1 − h

n,2
i (x)

)
vn(0, x)

+
Nn

a/b(τ̃
n�nt�)∏

i=1

(
1 − h

n,2
i (x)

)

×
[Nn(τ̃ n�nt�)∑

i=1

1∏i
m=1(1 − h

n,2
m (x))

(
h

n,1
i (x) + h

n,3
i (x)

)]
.
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LEMMA 3.4. There exists a sequence of nonnegative adapted process Cn
t and

a deterministic constant C such that, for p ∈ {2,4},
EFn

s

[
sup

s≤r≤t

∥∥vn(r) − vn(s)
∥∥p
Lp

]
≤ Cn

s

(
(t − s)p + (t − s)

)
,

E
[
sup
r≤t

∥∥vn(r)
∥∥p
Lp

]
≤ C

(
tp + t + 1

)
,

sup
x∈R

E
[
sup
r≤t

∣∣vn(r, x)
∣∣p]

≤ C
(
tp + t + 1

)
with

(17)
Cn

s ≤ C
(∥∥vn(s)

∥∥4
L4 + ∥∥vn(s)

∥∥2
L2 + 1

)
,

sup
n

E
[

sup
0≤s≤t

Cn
s

]
≤ C

(
t4 + t + 1

)
.

PROOF. We may again drop the dependence on n from the notation and
w.l.o.g. assume s = 0. Note that 0 ≤ 1 − h2

i (x) ≤ 1 and∣∣∣∣∣
N(τ̃�nt�)∏

i=1

(
1 − h2

i (x)
) − 1

∣∣∣∣∣ ≤
N(τ̃�nt�)∑

i=1

h2
i (x) = V

2
(t, x).

Hence, (16) together with Lemma 3.2 and 3.3 implies that, for p ∈ {2,4},
E

[∣∣v(t, x) − v(0, x)
∣∣p]

= E

[∣∣∣∣∣
(N(τ̃�nt�)∏

i=1

(
1 − h2

i

) − 1

)
v(0, x)(18)

+
N(τ̃�nt�)∏

i=1

(
1 − h2

i

)(N(τ̃�nt�)∑
i=1

1∏i
m=1(1 − h2

i )

(
h1

i + h3
i

))∣∣∣∣∣
p]

≤ C
{∣∣v(0, x)

∣∣p sup
x∈R

E
[(

V
2
(t, x)

)p]
(19)

+ E
[∣∣V 1

(t, x)
∣∣p + sup

0≤s≤t

∣∣V 3
(s, x)

∣∣p]}
.

It follows for p ∈ {2,4} that

E
[

sup
0≤u≤t

∥∥v(u) − v(0)
∥∥p
Lp

]
≤ C

(∥∥v(0)
∥∥p
Lp + 1

)(
tp + t

)
.

For a general s ∈ [0, t], this proves the estimate for a Fn

s -measurable random vari-
able Cn

s that depends in an affine way on ‖v(s)‖p
Lp + ‖v(s)‖2

L2 . Note, however,
that it follows in a similar way that for p ∈ {2,4}

sup
n∈N+

(
E

[
sup

0≤s≤t

∥∥vn(s)
∥∥p
Lp

]
+ sup

x∈R
E

[
sup

0≤s≤t

∣∣vn(s, x)
∣∣p])

< C
(
t4 + t + 1

)
,
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so that we can, indeed, find a deterministic constant C which is independent of s,
t and n and bounds E[sup0≤s≤t C

n
s ] ≤ C(t4 + t + 1). �

REMARK 3.5. Using the same arguments as in the above proof, we obtain for
p ∈ {2,4} and k = 0,1,2, . . . ,

E
[

sup
i∈[Nn(τ̃ n

k ),Nn(τ̃ n
k+1)]∩N+

∥∥vn(τa,i) − vn(
ηn

k

)∥∥p
Lp

]
≤ C

t + tp

n
,

where the constant C is independent of n, k and t .

We are now ready to state and prove the main result of this section.

PROPOSITION 3.6. The processes vn
r and V

n,i

r (r = a, b; i = 1,2,3) are tight
as processes with paths in D([0,∞);H−1).

PROOF. Let Xn ∈ {vn
r ,V

n,1
r , V

n,2
r , V

n,3
r }.

By Mitoma’s theorem (see Theorem C.3), we need to prove tightness of the
processes 〈Xn,φ〉 for any test function φ ∈ E ⊂ L2(R), for which we, in turn, will
appeal to Kurtz’s criterion (see Theorem C.1). Hence, we need to estimate

EFn
s

[∣∣〈Xn(t) − Xn(s),φ
〉∣∣2]

.

As Xn takes values in L2, the bracket 〈Xn,φ〉 is equal to the L2 inner product
〈Xn,φ〉L2 . By Lemmas 3.2, 3.3 and 3.4, for each T > 0 and 0 ≤ s < t ≤ T ,

EFn
s

[〈
Xn(t) − Xn(s),φ

〉2] ≤ EFn
s

[∥∥Xn(t) − Xn(s)
∥∥2
L2

]‖φ‖2
L2

≤ Cn
s

[
(t − s)2 + (t − s)

]‖φ‖2
L2

for some sequence of adapted processes Cn
t with

sup
n

E
[

sup
0≤τ≤T

Cn
τ

]
< ∞.

Hence, the second condition of Theorem C.1 follows with γn(δ) = supτ∈[0,T ] Cn
τ ×

(δ2 + δ). The first condition, tightness of the sequence of random variables
〈Xn(t), φ〉 for each rational t , follows from uniform boundedness of the sequence
of random variables 〈Xn(t), φ〉 in L2(�,F,P ).

Furthermore, again by Lemmas 3.2, 3.3 and 3.4,

sup
n

E
[

sup
t∈[0,T ]

∥∥Xn(t)
∥∥2
L2

]
≤ C

(
T + T 2)

,

for some constant C that is independent of n and T . As a result, it follows from
the Markov inequality that

sup
n

P
(

sup
t∈[0,T ]

∥∥Xn(t)
∥∥2
L2 > N

)
≤ C(T + T 2)

N
→ 0 as N → ∞.
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Thus, by Mitoma’s theorem Xn is tight as sequences of processes with paths in
D([0,∞);H−1). �

REMARK 3.7. The preceding proof almost gives us tightness in D([0,∞);
L2(R)) for L2(R) equipped with the weak topology. Note, however, that L2(R) is
not a metric space when equipped with the weak topology. Hence, we cannot use
Kurtz’s criterion as it does not apply to nonmetric state spaces.

3.2. Characterization of the limit of vn
r . In this section, we characterize the

limit of the sequence vn
r . Again, we drop indices where appropriate. We start with

establishing joint convergence in distribution of bid/ask prices along with the ag-
gregate fluctuations of standing volumes on one side of the book.

PROPOSITION 3.8. For r = a, b, (A
n
,B

n
,V

n,3
r ) ⇒ (A,B,V

3
r ), with (A,B)

being a two-dimensional continuous process, and for any choice φ1, . . . , φl ∈ E the
l-dimensional process (〈V 3

r , φ1〉, . . . , 〈V 3
r , φl〉) is a martingale w.r.t. the filtration

generated by the process (A,B,V
3
r ) with quadratic covariation

[〈
V 3

r , φi

〉
,
〈
V 3

r , φj

〉]
t =

∫ t

0
σ(φi)(Rs)σ (φj )(Rs) ds, t ≥ 0,1 ≤ i, j ≤ l,

σ (φ)(y) := √
2E

[
ωN

1
] ∫

R

f Nr (x − y)φ(x) dx.

PROOF. Combining Proposition 3.6, Corollary C.4 and C-tightness of the

price process (Lemma 2.4), we conclude that (A
n
,B

n
,V

n,3
) is tight as a sequence

of processes with sample paths in D([0,∞);R2 × H−1) and that (A
n
,B

n
) con-

verges in distribution to a two-dimensional continuous process (A,B) along a sub-
sequence.

Since the sequence of price processes is C-tight and converges to (A,B) it is

sufficient to characterize the weak accumulation point V
3
. To this end, we assume

w.l.o.g. that E[ωN
1 ] > 0. We now proceed in several steps:

(i) First, we define, for any φ ∈ E ,

Y
n

t (φ) = 〈
φ,V

n,3
(t)

〉
, t ∈ [0,∞),

and denote by Gn the filtration generated by the processes (A
n

t ,B
n

t ,V
n,3

(t)).
Note that the sequence (A

n
,B

n
,Y

n
(φ)) converges in distribution to (A,B, Ȳ (φ))

where Ȳ (φ) := 〈φ,V
3〉 as a sequence of processes whose sample paths belong to

D(0,∞;R3).
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We are now going to use Lemma A.2 to verify the claimed form of the quadratic
variation. For simplicity, we start with the special case l = 1. For this, we assume
that φ ≥ 0; otherwise, we make the decomposition φ = φ+ − φ− and consider φ+
and φ−, respectively, just noting that both φ+ and φ− belong to H 1. Let

an
0 (φ)(R) :=

(∑
j

∫ xn
j+1

xn
j

f (x − R)dx

∫ xn
j+1

xn
j

φ(x) dx

)2(
�xn)−2

E
[
ωN

1
]2

,

an
1 (φ)(R) := ∑

j

∫ xn
j+1

xn
j

f (x − R)dx

∣∣∣∣∫ xn
j+1

xn
j

φ(x) dx

∣∣∣∣2(
�xn)−2

E
[(

ωN
1

)2]
,

σ n(φ)(R) :=
(

2an
0 (φ)(R) + 1

n
an

1 (φ)(R)

)1/2
.

Note that for any deterministic y and any random variable π with density f , (7)
implies

E

[∫
1In(y+π)(x)φ(x) dx

]
= ∑

j

∫
1[xn

j ,xn
j+1[(y + z)f (z) dz

∫
1xn

j ,xn
j+1[(x)φ(x) dx

= ∑
j

∫
1[xn

j ,xn
j+1[(x)f (x − y)dx

∫
1[xn

j ,xn
j+1[(x)φ(x) dx.

Since the number of passive order arrivals (Nn
τ̃n
k
−Nn

τ̃n
k−1

) on [ k−1
n

, k
n
) follows a neg-

ative binomial distribution NB(1, λn

λn+μn ) (see Lemma 3.1), we have [using (12e)]:

EGn
k−1
n

[∣∣Yn
k
n
(φ) − Y

n
k−1
n

(φ)
∣∣2]

= �vn

{
E

[(
Nn

τ̃n
k

− Nn
τ̃n
k−1

)(
Nn

τ̃n
k

− Nn
τ̃n
k−1

− 1
)]

×
(∑

j

∫ xn
j+1

xn
j

f
(
x − R̄n

k−1
n

)
dx

∫ xn
j+1

xn
j

φ(x) dx

)2
E

[
ωN

1
]2

+ E
[(

Nn
τ̃n
k

− Nn
τ̃n
k−1

)]∑
j

∫ xn
j+1

xn
j

f
(
x − R̄n

k−1
n

)
dx

×
∣∣∣∣∫ xn

j+1

xn
j

φ(x) dx

∣∣∣∣2E[(
ωN

1
)2]}

(20)

= �vn(
�xn)2{

E
[(

Nn
τ̃n
k

− Nn
τ̃n
k−1

)(
Nn

τ̃n
k

− Nn
τ̃n
k−1

− 1
)]

an
0 (φ)

(
R̄n

k−1
n

)
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+ E
[(

Nn
τ̃n
k

− Nn
τ̃n
k−1

)]
an

1 (φ)
(
R̄n

k−1
n

)}
= 1

n3

(
2n2an

0 (φ) + nan
1 (φ)

)(
R̄n

k−1
n

)
= 1

n

(
σn(φ)

(
R̄n

k−1
n

))2
.

Set

σ(φ)(R) = √
2

∫
R

f (x − R)φ(x) dxE
[
ωN

1
]
, t ∈ [0,∞).

Note that σ ≥ 0 since φ is nonnegative.
(ii) We claim that σn(φ) → σ uniformly. First, note that ‖an

1 (φ)‖L∞ ≤
‖φ‖2∞E[ωN

1 ]. Hence, 1
n
an

1 (φ) → 0 uniformly, and we may ignore the second term
in the definition of σn. Further note that∣∣∣∣∑

j

∫ xn
j+1

xn
j

f (x − R)dx

∫ xn
j+1

xn
j

φ(x) dx
1

�xn
−

∫
R

f (x − R)φ(x) dx

∣∣∣∣
≤ ∑

j

∫ xn
j+1

xn
j

f (x − R)

∣∣∣∣ 1

�xn

∫ xn
j+1

xn
j

φ(y) dy − φ(x)

∣∣∣∣dx.

By the mean value theorem, there exists y ∈ [xn
j , xn

j+1] with 1
�xn

∫ xn
j+1

xn
j

φ(y) dy =
φ′(y). For x < y, |x − y| ≤ �xn, we have

∣∣φ(x) − φ(y)
∣∣ =

∫
R

1[x,y](z)φ′(z) dz ≤ √
�xn‖φ‖H 1 .

Therefore, ∥∥σn(φ) − σ(φ)
∥∥
L∞ ≤ √

2E
[
ωN

1
]√

�xn‖φ‖H 1 + o(1),

and we have established uniform convergence of σn(φ) to σ(φ).
(iii) We need to verify the conditions of Lemma A.2 outlined in Assump-

tion A.1, that is,

sup
n

∥∥σn
∥∥
L∞ < ∞,(A.1)

E

�nt�+1∑
k=1

∣∣Yn
k
n
(φ) − Y

n
k−1
n

(φ)
∣∣4 → 0,(A.2)

sup
n

E
[

sup
k≤�nt�

∣∣Yn

k/n − Y
n

(k−1)/n

∣∣] < ∞.(A.3)
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Note that (31) follows immediately from boundedness of f Nr and of φ. (33) is a
direct consequence of Lemma 3.3. As for (32),

EGn
k−1
n

[∣∣Yn
k
n
(φ) − Y

n
k
n
(φ)

∣∣4] ≤ C
(
�vn)2(

�xn)4
E

[∣∣Nn
τ̃n
k

− Nn
τ̃n
k−1

∣∣4]
≤ C

1

n6

[
n4 + n

]
≤ C

1

n2 ,

where C is a positive constant which is independent of n and may vary from line
to line. Thus, for any t ∈ (0,∞),

E

�nt�+1∑
k=1

∣∣Yn
k
n
(φ) − Y

n
k−1
n

(φ)
∣∣4 ≤ C(nt + 1)

1

n2 → 0 as n → ∞.

(iv) The previous arguments easily extend to the finite dimensional case. For
each l ∈ N

+ and any family of nonnegative functions φ1, . . . , φl , the process
(Y

n
(φ1), . . . , Y

n
(φl)) converges jointly to (Y (φ1), . . . , Y (φl)) in distribution.We

compute for i, j = 1, . . . , l,

EGn
k−1
n

[(
Y

n
k
n
(φj ) − Y

n
k−1
n

(φj )
)(

Y
n
k
n
(φi) − Y

n
k−1
n

(φi)
)]

= (σn(φj + φi))
2 − (σn(φj − φi))

2

4n

(
R̄n

k−1
n

)
= 1

n
σn(φj )σ

n(φi)
(
R̄n

k−1
n

)
.

Since E is dense in H 1, this completes the proof. �

The previous proposition characterizes the quadratic variation of the limiting
volume density processes. Next, we are going to study the limiting dynamics of
aggregate order placements and cancellations, disregarding the random fluctua-
tions. As we expect order placements and cancellations to contribute to the drift
part of the limiting model, we find it helpful to rewrite their dynamics in the form
of an integral in time. That is, if we write

V
n,2

(t, x) =
∫ �nt�

n

0
gn(s, x) ds,

V
n,1

(t, x) =
∫ �nt�

n

0
g̃n(s, x) ds,
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it is clear that we can identify the limiting drift term by studying the limits of gn

and g̃n. Comparing with (12), we have

gn(t, x) :=
∞∑

k=1

Nn(τ̃ n
k )∑

i=Nn(τ̃ n
k−1)+1

1In(πC
i +R̄n

k−1
n

)(x)ωC
i 1[ k

n
, k+1

n
)
(t)

�vn

�xn
n,

g̃n(t, x) :=
∞∑

k=1

Nn(τ̃ n
k )∑

i=Nn(τ̃ n
k−1)+1

1(πP
i +R̄n

k−1
n

)(x)ωP
i 1[ k

n
, k+1

n
)
(t)

�vn

�xn
n.

With regards to aggregate cancellations, gn only captures the proportionality of
cancellations in terms of present volume. Therefore, we need to introduce another
term gn describing the actual cancellations, that is,

vn(t, x) − v(0, x) − V
n,1

(t, x) − V
n,3

(t, x) =
∫ �nt�

n

0
gn(s, x) ds.

Clearly, gn is given by

gn(t, x) :=
∞∑

k=1

Nn(τ̃ n
k )∑

i=Nn(τ̃ n
k−1)+1

1In(πC
i +R̄n

k−1
n

)(x)ωC
i vn(

τn
i−1, x

)
1[ k

n
, k+1

n
)
(t)

�vn

�xn
n.

We will analyze the impact of order cancellations in the limit in two steps: first
we show that we can replace gn by the (much simpler) expression gnvn in the
limit (see Lemma 3.10). Then we characterize the limit of the latter term in the
appropriate sense (see Lemma 3.11, where we also characterize the limiting object
of the order placements).

REMARK 3.9. From the proof of Lemma 3.2, it follows that, for p ∈ {2,4},
E

[∥∥gn(t)
∥∥p
Lp

] + sup
x∈R

EFn
s
E

[∣∣gn(t, x)
∣∣p] ≤ C,

which implies that

sup
x∈R

E

∫ t

0

∣∣gn(s, x)
∣∣p ds + E

∫
R

∫ t

0

∣∣gn(s, x)
∣∣p ds dx ≤ Ct,

with the constants C being independent of n and t .

LEMMA 3.10. For any t > 0, we have

lim
n→∞E

[∫
R

∫ �nt�
n

0

∣∣gn(s, x) − gn(s, x)vn(s, x)
∣∣2 ds dx

]
= 0.(21)
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PROOF. Using Fubini’s theorem and Remark 3.5 we have

E

∫
R

∫ �nt�
n

0

∣∣gn(s, x) − gn(s, x)vn(s, x)
∣∣2 ds dx

=
∫ �nt�

n

0
E

∫
R

∣∣∣∣∣ ∑
k∈N+

Nn(τ̃ n
k )∑

i=Nn(τ̃ n
k−1)+1

1In(πC
i +R̄ k

n
)(x)

× ωC
i

(
vn(

τn
i−1, x

) − vn(s, x)
)
1[ k

n
, k+1

n
)
(s)

�vn

�xnn−1

∣∣∣∣∣
2

dx ds

≤
∫ �nt�

n

0

∑
k∈N+∪{0}

1[ k
n
, k+1

n
)
(s)

(
E

∫
R

∣∣gn(s, x)
∣∣4 dx

)1/2

×
(
E sup

i∈[Nn(τ̃ n
k−1),N

n(τ̃ n
k )]∩N+

∥∥vn(τi) − vn(
τ̃ n
k−1

)∥∥4
L4

)1/2
ds

≤ C
1√
n

∫ �nt�
n

0

(
E

∫
R

∣∣gn(s, x)
∣∣4 dx

)1/2
ds

≤ C
1√
n

(
E

∫ �nt�
n

0

∫
R

∣∣gn(s, x)
∣∣4 dx

)1/2
,

which by Remark 3.9 converges to zero as n tends to infinity. �

We can now analyze the limiting objects obtained from order placements and
cancellations. The proof of Lemma 3.11 is technical and rather long and hence
postponed to Appendix B.

LEMMA 3.11. For any t = �nt�
n

with n ∈ N,

∀α ∈ {0,1} : lim
n→∞ sup

x∈R
E

[∣∣∣∣∫ t

0

(
gn(s, x) − E

[
ωC

1
]
f C(x − Rs)

)
× (

1 − α + αvn(s, x)
)
ds

∣∣∣∣2]
= 0,

(22)

lim
n→∞ sup

x∈R
E

[∣∣∣∣∫ t

0

(
g̃n(s, x) − E

[
ωP

1
]
f P(x − Rs)

)
ds

∣∣∣∣2]
= 0.(23)

Combining the characterization of the limit of the fluctuation part of vn
r obtained

in Proposition 3.8 with the characterization of the limits of order cancellations and
placements obtained in Lemma 3.11 together with Lemma 3.10, we are in the
position to study the limit of vn itself.
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THEOREM 3.12. Suppose that (along a properly chosen subsequence) (A
n
,

B
n
,V

n,3
r , vn

r ) ⇒ (A,B,V 3
r , vr), where (A,B) is the (not yet identified) limit of

(An,Bn) (along the chosen subsequence) and V 3
r the limit obtained in Proposi-

tion 3.8. Then

vr(t, ·) = vr(0, ·) +
∫ t

0

(
E

[
ωP

1
]
f P(· − Rs) − E

[
ωC

1
]
f C(· − Rs)vr(s, ·))ds

+ V 3
r (t, ·), t ≥ 0,

and V 3
r remains a martingale under the filtration generated by (A,B, vr,V

3
r ).

PROOF. First, note that the vr is already measurable w.r.t. R and V 3
r , hence

the filtration does not change when vr is added and V 3
r trivially stays a martingale.

The sequence of price processes is C-tight and converges in distribution to some

limit (A,B) along a subsequence. The processes V
n,3
r and vn

r are tight, due to
Proposition 3.6 and V

n,3
r is even C-tight, due to Proposition 3.8. Hence, the se-

quence (A
n
,B

n
,V

n,3
r , vn

r ) is tight as a sequence of processes with sample paths in
D(0,∞;R2 ×H−1 ×H−1). In order to identify the limit of vn

r as a function of the
(existing, yet still to be identified) limit of the price process, we use the additive
decomposition

(24)
vn

r (t, x) − vn
r (0, x)

= V
n,1
r (t, x) + Ṽ n,2

r (t, x) + V
n,3

(t, x), (t, x) ∈ [0,∞) ×R,

where

Ṽ n,2
r (t, x) :=

∫ [nt]
n

0
gn(s, x) ds.

In view of Skorohod’s lemma (see Lemma C.6), we may w.l.o.g. assume that all
processes are defined on a common probability space (�,F,P) such that, for some

process vr to be determined, the sequence (A
n
,B

n
,V

n,3
r , vn

r ) converges almost
surely to some limit (A,B,V 3

r , vr) as a sequence of processes with sample paths
in D(0,∞;R2 × H−1 × H−1). In particular, and this will be used below, as a
sequence in R

2 × H−1 × H−1,

lim
n→∞

(
A

n
,B

n
,V

n,3
r , vn

r

) = (
A,B,V 3

r , vr

)
P⊗ dt-a.e.

Indeed, taking vn
r , for example, the sample paths are cádlág, and hence they have

at most countably many discontinuities. For almost all ω ∈ �, the convergence
limn→∞ ‖vn

r (t, ·) − vr(t, ·)‖2
H−1 = 0 at each point of continuity can be derived in

a similar way to [17], Proposition VI.1.17. Then dominated convergence yields

lim
n→∞E

∫ T

0

∥∥vn
r (t, ·) − vr(t, ·)

∥∥2
H−1 ∧ 1dt = 0 for all T > 0.

This allows us to choose a subsequence that is converging a.e. in H−1.
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Operating in the probability space (�,F,P), the decomposition (24) of the
volume process shows that we need to identify the limit of Ṽ n,2 in order to
identify that of vn

a . For this, we first show that it is enough to identify weak
limits in the Hilbert space L2(� × [0, T ] × R) for arbitrary T > 0. In fact, by
Lemma 3.4 the sequence vn

r is uniformly bounded in L2(� × [0, T ] × R). By

Lemma 3.2 and Lemma 3.3 the same applies to V
n,1

and V
n,3

. Hence, the se-

quence (vn,V
n,1

,V
n,3

) has a weak accumulation point in L2(�×[0, T ]×R). By
the Banach–Saks theorem, the weak accumulation point is a strong limit in Ce-
saro sense of a subsequence. Since L2(� × [0, T ] × R) ⊂ L2(� × [0, T ];H−1),
this shows that the weak limit coincides with (vr ,V

1,V 3) as a weak limit in
L2(� × [0, T ] ×R). As a result, it is enough to identify the weak limit K of Ṽ n,2

r

in L2(� × [0, T ] ×R). By Lemma 3.10 and 3.11, this is equivalent to identifying
the weak limit of the process

(t, x) �→
∫ t

0
E

[
ωC

1
]
f C(x − Rs)v

n
r (s, x) ds.

In order to identify K , we test against test functions ψ ∈ L∞(� × [0, T ])
and φ ∈ L2(R). Weak convergence of vn and Ṽ n,2 in L2(� × [0, T ] × R) yields
that

E

∫ T

0

∫
R

ψ(t)K(t, x)φ(x) dx dt

= lim
n→∞E

∫ T

0
ψ(t)

〈
Ṽ n,2

r (t), φ
〉
dt

= lim
n→∞E

∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)φ(x) dx ds dt

(by Lemma 3.10)

= lim
n→∞E

∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

gn(s, x)vn
r (s, x)φ(x) dx ds dt

(by Lemma 3.11)

= E
[
ωC

r,1
]

lim
n→∞E

∫ T

0
ψ(t)

∫ [nt]
n

0

∫
R

f C(x − Rs)v
n
r (s, x)φ(x) dx ds dt

= E
[
ωC

r,1
]

lim
n→∞E

∫ T

0

∫
R

f C(x − Rs)v
n
r (s, x)φ(x) dx

× EF�ns�/n

[∫ T

�ns�/n
ψ(t) dt

]
ds

(by the weak convergence in Hilbert space)
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= E
[
ωC

r,1
]
E

∫ T

0

∫
R

f C(x − Rs)vr(s, x)φ(x) dxEF s

[∫ T

s
ψ(t) dt

]
ds

= E
[
ωC

r,1
]
E

∫ T

0
ψ(t)

∫ t

0

∫
R

f C(x − Rs)vr(s, x)φ(x) dx ds dt,

where F t denotes the filtration generated by all the processes A
n
, B

n
, A, B , vn

r

and vr . Since φ ∈ L2 and ψ ∈ L∞(� × [0, T ]) are arbitrary, we get

K(t, x) = E
[
ωC

1
] ∫ t

0
f C(x − Rs)vr(s, x) ds

for almost every (t,ω, x) ∈ [0, T ] × � ×R. Hence, the limit vr satisfies

vr(t, ·) = vr(0, ·) +
∫ t

0

(
E

[
ω

Pr

1

]
f Pr (· − Rs) − E

[
ω

Cr

1

]
f Cr (· − Rs)vr(s, ·))ds

+ V 3
r (t, ·), t ≥ 0. �

3.3. The limit of the volume density. With tightness of the sequence of aux-
iliary processes vn

r established in Proposition 3.6, we can now turn to the actual
volume densities vn

r . To this end, we introduce the processes

v̂n
r (u) := vn

r ◦ ηn
u, V̂ n,i

r (u) := V
n,i

r ◦ ηn
u (r = a, b; i = 1,2,3),

where the time-change ηn
u was defined in (11). In view of Kurtz’s [21] strong ap-

proximation result for Poisson processes by Brownian motion, for any T > 0

lim
n→∞ sup

0≤t≤T

∣∣ηn
t − t

∣∣ = 0 P-a.s.

As a result, Lemma C.5 and Theorem 3.12 imply that the limit of (An,Bn, v̂n
r )

coincides with that of (A
n
,B

n
, vn

r ), namely (A,B, vr) of Theorem 3.12.
Let δvn

r := vn
r − v̂n

r and δV n,i
r := V n,i

r − V̂ n,i
r (i = 1,2,3). Our goal is to prove

that δvn
r converges weakly to 0 as n → ∞. We shall then deduce that convergence

of v̂n implies convergence of vn. The first step is to establish moment estimates
for the processes V n,i (i = 1,2,3) similar to Lemmas 3.3 and 3.4. Analogous to
Proposition 3.6 these estimates indicate tightness of vn

r , and thus the tightness of
(An,Bn, vn

r ). The rather technical proof is deferred to Appendix B.

LEMMA 3.13. For r = a, b and i = 1,2,3, it holds that

EFn
s

[ 3∑
i=1

∥∥V n,i
r (t) − V n,i

r (s)
∥∥2
L2

]
≤ Cn

s

[
(t − s) + (t − s)2]

, 0 ≤ s ≤ t < ∞,

EFn
s

[∥∥vn
r (t) − vn

r (s)
∥∥2
L2

] ≤ Cn
s

[
(t − s) + (t − s)2]

, 0 ≤ s ≤ t < ∞,

with supn E[sups∈[0,t] Cn
s ] ≤ C(t2 + t), t ∈ [0,∞), where the constant C is inde-

pendent of n, s and t .
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Furthermore, we will show that δvn
r (t) converges point-wise to 0 in an L2-sense

for which we need some elementary results on Poisson processes.

LEMMA 3.14. Let N1 and N2 be two independent Poisson processes with
intensities λ1 and λ2, respectively. Moreover, let Ti , i = 1, . . . , denote the jump
times of the Poisson process N1. Then we have

E
[
N2(t) − N2(TN1(t))

] = λ2

λ1

(
1 − e−λ1t

)
,

E
[(

N2(t) − N2(TN1(t))
)(

N2(t) − N2(TN1(t)) − 1
)] = 4

λ2
2

λ2
1

(
1 − (1 + tλ1)e

−λ1t
)
.

PROOF. Notice that conditional on N1(t) = l, the relative difference (t −Tl)/t

has a beta distribution with parameters 1 and l, as this is the distribution of the
differences in the order statistics of l random variables distributed uniformly on
[0,1]. Hence, elementary calculations give

E
[
N2(t) − N2(Tl)|N1(t) = l

] =
∞∑

k=0

k

∫ 1

0
e−λ2tx

(λ2tx)k

k!
1 − x)l−1

B(1, l)
dx = λ2t

1 + l

and

E
[(

N2(t) − N2(Tl)
)(

N2(t) − N2(Tl) − 1
)|N1(t) = l

]
=

∞∑
k=0

k(k − 1)

∫ 1

0
e−λ2tx

(λ2tx)k

k!
1 − x)l−1

B(1, l)
dx

= 2λ2
2t

2

2 + 3l + l2 .

Multiplying these terms with P(N1(t) = l) = e−λ1t (λ1t)
l

l! and summing over l gives
the formulas from above. �

LEMMA 3.15. Let u = u(t) = u(t, x) denote any of the processes δvn
r , δV n,i

r ,
i = 1,2,3. Moreover, assume that the sequence vn

r (0) is uniformly bounded in L2.
Then there is a constant C independent of n or t such that

E
[∥∥u(t)

∥∥2
L2

] ≤ C
1

n

(
1 + t + t2)

, ∀t ∈ [0,∞).

PROOF. Let us first consider u = δV n,i
r for some i = 1,2,3, r = a, b. Note

that for some random variables ωi and πi we have for some scaling constant ε

(either equal to �v/�x or equal to
√

�v)

u(t, x)2 =
(

N(t)∑
i=N(τ̃Ñ(t))

1I (Rn(τ̃ n
Ñ(t)

)+πi)(x)ωi

)2

ε2,
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as ξ̃r,i is constant in i and ξ̃2
r,i = 1. Letting G denote the σ -algebra generated by all

sources of randomness except (ωi)i∈N+ , we have

E
[
u(t, x)2]

= E

[{
N(t)∑

i 
=i′=N(τ̃Ñ(t))

EG[ωiωi′ ]1I (Rn(τ̃ n
Ñ(t)

)+πi)(x)1I (Rn(τ̃ n
Ñ(t)

)+πi′ )(x)

+
N(t)∑

i=N(τ̃Ñ(t))

EG
[
ω2

i

]
1I (Rn(τ̃ n

Ñ(t)
)+πi)(x)

}]
ε2

= E

[{
N(t)∑

i 
=i′=N(τ̃Ñ(t))

1I (Rn(τ̃ n
Ñ(t)

)+πi)(x)1I (Rn(τ̃ n
Ñ(t)

)+πi′ )(x)E[ω1]2

+
N(t)∑

i=N(τ̃Ñ(t))

1I (Rn(τ̃ n
Ñ(t)

)+πi)(x)E
[
ω2

1
]}]

ε2.

Furthermore, conditioning on the σ -algebra generated by all sources of random-
ness except for (πi)i∈N+ , we can bound in a similar way to (13)

E
[
u(t, x)2]

≤ E
[
E[ω1]2‖f ‖2

L∞�x2(
N(t) − N(τ̃Ñ(t))

)(
N(t) − N(τ̃Ñ(t)) − 1

)
× 1[R(τ̃Ñ(t))−M,R(τ̃Ñ(t))+M](x)

+ E
[
ω2

1
]‖f ‖2

L∞�x
(
N(t) − N(τ̃Ñ(t))

)
1[R(τ̃Ñ(t))−M,R(τ̃Ñ(t))+M](x)

]
ε2.

Hence, plugging in Lemma 3.14, we obtain

E
[∥∥u(t)

∥∥2
L2

] ≤ C
(
�x2E

[(
N(t) − N(τ̃Ñ(t))

)(
N(t) − N(τ̃Ñ(t)) − 1

)]
+ �xE

[(
N(t) − N(τ̃Ñ(t))

)])
ε2

= C

(
�x24

λ2

μ2

[
1 − (1 + tμ)e−μt ] + �x

λ

μ

[
1 − e−μt ])ε2

≤ C

(
1

n

n4

n2 + 1√
n

n2

n

)
ε2

= C(n + √
n)ε2.

Now we recall that ε2 = �v2

�x2 = n−3 in case i = 1,2 and ε2 = �v = n−2 in case
i = 3.

The proof for the estimate of δvn
r works in precisely the same way as the proof

of Lemma 3.4, taking into account the appropriate estimates for δV n,i
r derived

above. �
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Combining these lemmas with the results in Theorem 3.12, we can now prove
convergence of the volume densities. We denote by (A,B) an accumulation point
of the sequence of price processes. Ex post, we shall see that the limit is unique,
and hence we do not actually need to work with such a subsequence.

THEOREM 3.16. The sequence of processes (An,Bn, vn
a , vn

b ) is tight. Given
a subsequence such that (An,Bn, vn

a , vn
b ) ⇒ (A,B, va, vb) for some volume pro-

cesses va and vb. Then

vr(t, ·) = vr,0(·) +
∫ t

0

(
E

[
ω

Pr

1

]
f Pr (· − Rs) − E

[
ω

Cr

1

]
f Cr (· − Rs)vr(s, ·))ds

(25)
+ V 3

r (t, ·), t ≥ 0.

V 3
a and V 3

b are martingales w.r.t. the filtration generated by (A,B, va, vb), and
their quadratic covariance diagonalizes. More precisely, given test functions
φ1

a, . . . , φ
l
a, φ

1
b, . . . , φ

k
b ∈ E , then for any 1 ≤ i ≤ l, 1 ≤ j ≤ k we have[〈

φi
a,V

3
a

〉
,
〈
φ

j
b ,V 3

b

〉]
t = 0, t ≥ 0.

PROOF. Recall that(
An,Bn, v̂n

a

)
(u) = (

A
n
,B

n
, vn

a

) ◦ ηn
u.

Since the time change process converges almost surely to the identity uniformly
on compact time intervals, it follows from Lemma C.5 and Theorem 3.12 that
(An,Bn, v̂n

a ) ⇒ (A,B, va). On the other hand, in a similar way to Proposi-
tion 3.6 we derive from Lemma 3.13 the tightness of (An,Bn, vn

a ). Addition-
ally, Lemma 3.15 implies that the limit of (An,Bn, vn

a ) coincides with that of
(An,Bn, v̂n

a ), namely (A,B, va). This implies the C-tightness of (An,Bn, vn
a ) and

thus the tightness of (An,Bn, vn
a , vn

b ) by Corollary C.4. Finally, we verify that
(An,Bn, vn

a , vn
b ) ⇒ (A,B, va, vb) as in Theorem 3.12, that is, by once more refer-

ring to Lemma A.2. The diagonalization of the quadratic covariation in the limit is
clear as the quadratic covariation is diagonal at each level n. �

4. Characterization of the limit price process—proof of the main theo-
rem. So far, we have shown that the sequence of processes (Bn,An, vn

a , vn
b ) is

C-tight. As Y r,n is a continuous function of vr,n together with Rn, it follows that
(Bn,An, vn

a , vn
b , Y a,n, Y b,n) is tight, as well. As a result, any accumulation point

(Y r) of (Y r,n) is of the form

(26) Y r
t = 〈

vr(t, ·), ϕr(· − Rt)
〉
,

where (A,B) is a weak accumulation point of the sequence of price processes. In
this section, we first characterize the process (A,B); then we characterize the full
limiting dynamics and prove convergence to a unique limit.
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4.1. Convergence of the limiting price process. In order to characterize the
limiting price dynamics notice that the price processes satisfy

R
n

t = Rn
0 + �xn

�nt�∑
i=1

ξn
r,i

= Rn
0 +

∫ t

0
br

(
B

n

s ,A
n

s , Y
b,n

s , Y
a,n

s

)
ds + Mn

r (t) + Sn
r (t),

(27)

with

Mn
r (t) := �xn

�nt�∑
i=1

(
ξn
r,i − EFn

i−1
n

ξn
r,i

)
,

Sn
r (t) :=

∫ t

0
bn
r

(
B

n

s−,A
n

s−, Y
b,n

s− , Y
a,n

s−
)
ds −

∫ t

0
br

(
B

n

s ,A
n

s , Y
b,n

s , Y
a,n

s

)
ds.

Denoting Z
n

s := (B
n

s ,A
n

s , Y
b,n

s , Y
a,n

s ), we have

E
[∣∣Sn

r (t)
∣∣2] ≤ CE

[∣∣∣∣∫ t

0

(
bn
r

(
Z

n

s−
) − br

(
Z

n

s−
))

ds

∣∣∣∣2]

+ CE

[∣∣∣∣∫ t

0

(
br

(
Z

n

s−
) − br

(
Z

n

s

))
ds

∣∣∣∣2]
+ o(1)

≤ C
∥∥bn

r − br

∥∥2
L∞ + o(1),

where in view of the fact br ∈ C(R4;R) and the continuity of limit process
(B,A,Y b,Y a), we apply dominated convergence theorem to the second term on
the right-hand side of the first inequality. In view of Assumption 2.3, this implies
limn→∞ E|Sn

r (t)|2 = 0 for any t > 0. By Lemma A.2, the martingale Mn
r con-

verges in distribution to a martingale Mr (r = a, b) with quadratic covariation

[(
Mb,Ma)]

t =

⎛⎜⎜⎜⎝
∫ t

0

∣∣σb

(
Bs,As,Y

b
s , Y a

s

)∣∣2 ds

∫ t

0
σaσ

�
b

(
Bs,As,Y

b
s , Y a

s

)
ds∫ t

0
σaσ

�
b

(
Bs,As,Y

b
s , Y a

s

)
ds

∫ t

0

∣∣σa

(
Bs,As,Y

b
s , Y a

s

)∣∣2 ds

⎞⎟⎟⎟⎠ ,

(28)
t ≥ 0.

Indeed, condition (31) of the lemma is true by Assumption 2.3, whereas condition
(32) is clear from the scaling �xn = 1/

√
n. Finally, (33) is trivial as the jumps are

even uniformly bounded.
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Since we have joint tightness of the drift and the martingale part in (27), we
conclude that the limiting price process must be of the form

At = A0 +
∫ t

0
ba

(
Bs,As,Y

b
s , Y a

s

)
ds + Ma

t ,

Bt = B0 +
∫ t

0
bb

(
Bs,As,Y

b
s , Y a

s

)
ds + Mb

t , t ≥ 0.

(29)

4.2. Characterization of the limiting dynamics. It remains to characterize the
full limiting dynamics. As the respective bounded variation parts have already been
determined, we need to prove that the martingale parts can be represented in terms
of four independent Brownian motions. To this end, we fix finitely many test func-
tion φ1

a, . . . , φ
m
a ,φ1

b, . . . , φ
l
b, and consider the vector of processes(

B
n
,A

n
,
〈
vn

a,φ
1
a

〉
, . . . ,

〈
vn

a,φ
m
a

〉
,
〈
vn

b,φ
1
b

〉
, . . . ,

〈
vn

b,φ
�
b

〉)
along with a weak accumulation point(

B,A,
〈
va,φ

1
a

〉
, . . . ,

〈
va,φ

m
a

〉
,
〈
vb,φ

1
b

〉
, . . . ,

〈
vb,φ

�
b

〉)
.

Since Y
b,n

and Y
a,n

are obtained by integrating the volume densities against test
functions, there is no loss in generality in not including them in the above vector.
There is also no loss in generality in assuming that all test functions are strictly
positive.

Let Zi
r denote the martingale part of the process 〈vr ,φ

i
r〉. From Proposition 3.8,

Theorem 3.16 and the independence of the Poisson processes Nn and Ñn
r (r =

a, b) we conclude that for r, r̃ ∈ {a, b},

(30)

[
Zi

r,Z
j
r

]
t =

∫ t

0
σ

(
φi

r

)
(Rs)σ

(
φj

r

)
(Rs) ds,

[
Zi

a,Z
j
b

]
t = 0,

[
Zi

r,M
r̃]

t = 0, t ≥ 0.

The covariance structure of the martingale parts is as in Corollary A.3 with
Ft being the matrix with rows σa(Bt ,At , Y

b
t , Y a

t ) and σb(Bt ,At , Y
b
t , Y a

t ), σ i
t :=

σ(φi
a)(At ), and τ l

t := σ(φl
b)(Bt ). Since the test functions are strictly positive, we

conclude from that corollary that there exist independent Wiener processes W̃ , Wa

and Wb (W̃ being two-dimensional) such that the weak accumulation point has the
same distribution as the the system of coupled SDEs

dAt = ba

(
Bt,At , Y

b
t , Y a

t

)
dt + σa

(
Bt,At , Y

b
t , Y a

t

)
dW̃t ; A0 = a0;

dBt = bb

(
Bt,At , Y

b
t , Y a

t

)
dt + σb

(
Bt,At , Y

b
t , Y a

t

)
dW̃t ; B0 = b0;

vb(t, ·) = vb,0(·) +
∫ t

0

(
E

[
ω

Pb

1

]
f Pb (· − Bs) − E

[
ω

Cb

1

]
f Cb (· − Bs)vb(s, ·))ds

+ √
2E

[
ω

Nb

1

] ∫ t

0
f Nb (· − Bs)dWb(s), t ≥ 0;
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va(t, ·) = va,0(·) +
∫ t

0

(
E

[
ω

Pa

1

]
f Pa (· − As) − E

[
ω

Ca

1

]
f Ca (· − As)va(s, ·))ds

+ √
2E

[
ω

Na

1

] ∫ t

0
f Na (· − As)dWa(s), t ≥ 0

upon integration of the volume density functions with our test functions. In partic-
ular, by Corollary A.3 the driving Wiener processes do not depend on the choice
of the test functions.

Standard results on infinite-dimensional stochastic equations [7] guarantee
that the above coupled system does indeed admit a unique adapted solution
(B,A,Y b,Y a, va, vb) in L2(�;C([0, T ];R4 × (L2)2)) for any T > 0. Since two
H−1-valued random variables have the same distribution if the inner products with
respect to any finite collection of test functions have the same distribution, this
shows that (

Bn,An,Y b,n, Y a,n, vn
a , vn

b

) ⇒ (
B,A,Y b,Y a, va, vb

)
and hence completes the proof of our main result.

REMARK 4.1. The “volume at the top” follows a two-dimensional Brownian
motion with drift; for r = a, b,

Y r
t = 〈

vr,0(·), ϕ〉 + ∫ t

0

(
E

[
ω

Pr

1

]〈
f Pr , ϕr 〉 + f r

s

)
ds

+ √
2E

[
ω

Nr

1

] ∫ t

0

〈
f Nr , ϕr 〉dWr(s)

−
∫ t

0

〈
vr(s, ·),Dϕr(· − Rs)σr

(
Bt,At , Y

b
t , Y a

t

)
dW̃(s)

〉
, t ≥ 0,

where

f r
t :=

〈
vr(t, ·), 1

2
tr

{
σrσ

′
r

(
Bt,At , Y

b
t , Y a

t

)
D2ϕr(· − Rt)

}
− br

(
Bt,At , Y

b
t , Y a

t

)
Dϕr(· − Rt)

〉
− E

[
ω

Cr

1

]〈
f Cr (·)vr(t, ·), ϕr 〉.

APPENDIX A: A RESULT ON THE CHARACTERIZATION OF
STOCHASTIC PROCESS LIMITS

In this appendix, we establish a result on the characterization of stochastic pro-
cess limits in terms of Brownian integrals. Specifically, we assume that we are
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given a sequence of stochastic processes (Xn,Zn) (piece-wise constant with jump
times k/n) with

Zn
t :=

�nt�∑
k=1

�Zn
k ,

such that

EBn
k/n

[
�Zn

k

] = 0,

EBn
k/n

[
�Zn

k

(
�Zn

k

)�] = 1

n
σnσ

�
n

(
Xn

k/n,
k

n

)
,

where Bn
k/n := σ(Xn

0 , . . . ,Xn
k/n,�Zn

1 , . . . ,�Zn
k−1) and the processes may be

multi-dimensional.

ASSUMPTION A.1. Let σ be a continuous function and assume that the fol-
lowing assumptions hold (for any fixed t > 0 where appropriate):

‖σn − σ‖L∞ n→∞−−−→ 0, ‖σ‖L∞ < ∞,(31)

E

[�nt�∑
k=1

∣∣�Zn
k

∣∣4]
n→∞−−−→ 0,(32)

sup
n∈N

E
[

sup
k≤�nt�

∣∣�Zn
k

∣∣] < ∞.(33)

Notice that (31) directly implies

(34) E

[
1

n

∣∣∣∣∣
�nt�∑
k=1

σnσ
�
n

(
Xn

k/n,
k

n

)
−

�nt�∑
k=1

σσ�
(
Xn

k/n,
k

n

)∣∣∣∣∣
]

n→∞−−−→ 0.

LEMMA A.2. Suppose that (Xn) is C-tight and that there are stochastic pro-
cesses X and Z defined on some probability space such that (Xn,Zn) ⇒ (X,Z).
If Assumption A.1 is satisfied, then Z has quadratic variation

[Z]t =
∫ t

0
σ(Xs, s)σ (Xs, s)

� ds, t ≥ 0.

Moreover, Z is a martingale w.r.t. the filtration generated by X and Z.

PROOF. By (33), the martingales Zn satisfy the condition of Jacod and
Shiryaev [17], Corollary VI.6.30. Therefore, we have that both Zn and their
quadratic covariation processes [Zn] converge weakly and that the limit of [Zn]
is the quadratic covariation of the limiting process Z of the sequence Zn. Symbol-
ically, (

Zn,
[
Zn]) n→∞===⇒ (

Z, [Z]).
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By C-tightness of Xn, we may add Xn to the convergence and obtain(
Xn,Zn,

[
Zn]) n→∞===⇒ (

X,Z, [Z]).
Hence, we are left with identifying

[Z]t = lim
n→∞

�nt�∑
k=1

�Zn
k

(
�Zn

k

)�
.

To this end, by Skorokhod’s lemma, we may assume (changing probability
spaces as needed) that (Xn,Zn, [Zn]) → (X,Z, [Z]) a.s. Note that

E

[∣∣∣∣[Zn]
t −

∫ t

0

(
σσ�)

(Xs, s) ds

∣∣∣∣]

≤ E

[∣∣∣∣∣
�nt�∑
k=1

�Zn
k

(
�Zn

k

)� − 1

n

�nt�∑
k=1

σσ�
(
Xk/n,

k

n

)∣∣∣∣∣
]

+ E

[∣∣∣∣∣1

n

�nt�∑
k=1

σσ�
(
Xk/n,

k

n

)
−

∫ t

0
σσ�(Xs, s) ds

∣∣∣∣∣
]
.

Convergence of the second term to 0 follows immediately from dominated con-
vergence using continuity of σ and (31). We continue to further split up the first
term:

E

[∣∣∣∣∣
�nt�∑
k=1

�Zn
k

(
�Zn

k

)� − 1

n

�nt�∑
k=1

σσ�
(
Xk/n,

k

n

)∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
�nt�∑
k=1

�Zn
k

(
�Zn

k

)� − 1

n

�nt�∑
k=1

σnσ
�
n

(
Xn

k/n,
k

n

)∣∣∣∣∣
]

+ E

[∣∣∣∣∣1

n

�nt�∑
k=1

σnσ
�
n

(
Xn

k/n,
k

n

)
− 1

n

�nt�∑
k=1

σσ�
(
Xn

k/n,
k

n

)∣∣∣∣∣
]

+ E

[∣∣∣∣∣1

n

�nt�∑
k=1

σσ�
(
Xn

k/n,
k

n

)
− 1

n

�nt�∑
k=1

σσ�
(
Xk/n,

k

n

)∣∣∣∣∣
]

=: I + II + III.

Regarding I, note that the sequence of random variables

Cn
k := �Zn

k

(
�Zn

k

)� − 1

n
σnσ

�
n

(
Xn

k/n,
k

n

)
satisfy E[Cn

k ] = 0 and cov(Cn
k ,Cn

l ) = 0 if k 
= l. Moreover, since Cn
k is obtained

from �Zn
k (�Zn

k )� by subtracting a conditional expectation, the fourth moment of
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�Zn
k is an upper bound of the variance of Cn

k where

cov
(
Cn

k ,Cn
l

) := E
[〈
Cn

k ,Cn
l

〉]
, var

[
Cn

k

] := E
[〈
Cn

k ,Cn
k

〉]
for the standard inner product on the space of matrices. Hence, by Jensen’s in-
equality and (32),

I ≤
√√√√√E

[∣∣∣∣∣
�nt�∑
k=1

Cn
k

∣∣∣∣∣
2]

=
√√√√√�nt�∑

k=1

var
[
Cn

k

] ≤
√√√√√�nt�∑

k=1

E
[∣∣�Zn

k

∣∣4] n→∞−−−→ 0.

II converges to 0 by (34). For III, note that the integrand converges a.s. by the
convergence of Xn to X, and convergence of the expectation follows by dominated
convergence.

Finally, note that if (X,Z, [Z]) = (X,Z,
∫ ·

0 σσ�(Xs, s) ds) in law, then we re-
ally must have [Z] = ∫ ·

0 σσ�(Xs, s) ds as random variables, that is, the proposed
equality actually also holds on the original probability space before applying Sko-
rokhod’s lemma.

We are left to prove that the limiting process Z is a (local) martingale w.r.t.
the filtration generated by (X,Z). Note that this will follow by a combination of
[17], Propositions IX.1.10 and IX.1.12, if we can show uniform integrability of
the family (Zn

t )n∈N+;t∈[0,T ] of random variables for arbitrary intervals [0, T ]. This
follows from (31) as

sup
n

sup
t∈[0,T ]

E
[∣∣Zn

t

∣∣2] ≤ sup
n

�nT �∑
k=1

E
[∣∣�Zn

k

∣∣2] ≤ sup
n

1

n

�nT �∑
k=1

‖σn‖2
L∞

≤
(
sup
n

‖σn‖2
L∞

)
T < ∞. �

The preceding lemma suggests that Z can be represented as a Brownian inte-
gral. As the quadratic variation of a martingale does not determine its distribution
in general, we now prove that we can find indeed a multi-dimensional Brownian
motion W such that

Zt = Z0 +
∫ t

0
σ(Xs, s) dWs.

While probably standard, we have not been able to find a reference for this state-
ment directly applicable to our situation. Therefore, we give a formal proof of the
special case needed for the representation step in the main theorem.

COROLLARY A.3. Let Z = (ZA,ZB,ZC) be a continuous local martingale
taking values in R

d+n+m such that the differential quadratic covariation satisfies

d[Z]t =
⎛⎝At 0 0

0 Bt 0
0 0 Ct

⎞⎠ dt,
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where At = FtF
�
t for a d × d-dimensional invertible process F and where

B
i,j
t = σ i

t σ
j
t , i, j = 1, . . . , n,

C
l,k
t = τ l

t τ
k
t , l, k = 1, . . . ,m,

for processes σ, τ taking values in R
n
>0 and R

m
>0, respectively. Then we can find a

(d + 2)-dimensional standard Brownian motion (W,U,V ) such that

ZA
t = ZA

0 +
∫ t

0
Fs dWs,

ZB
t = ZB

0 +
∫ t

0
diag

(
σ 1

s , . . . , σ n
s

)
dUs,

ZC
t = ZC

0 +
∫ t

0
diag

(
τ 1
s , . . . , τm

s

)
dVs.

The proof of Corollary A.3 builds on the following multi-variate extension of
Lévy’s characterization of Brownian motion. The result appears to be standard; we
provide a proof (taken from [27]) for completeness.

THEOREM A.4. Let X be an l-dimensional continuous local martingale with
quadratic covariation 〈X〉t = �t and X0 = 0. Suppose that � is deterministic,
�0 = 0 and for any a ∈ R

d we have t �→ a��ta is continuous and increasing.
Then for any 0 ≤ s < t the increment Xt −Xs is independent of Fs and distributed
according to N (0,�t − �s).

PROOF. Choose a ∈ R
d and set Y = aTX, so that [Y ]t = aT�ta. The process

Mt = f
(
Yt , [Y ]t ) ≡ exp

(
iYt + 1

2
[Y ]t

)
= exp

(
iaTXt + 1

2
aT�ta

)
is bounded by |Mt | ≤ exp(aT�ta/2). Applying Itô’s lemma for continuous semi-
martingales to f gives

dMt = f1
(
Yt , [Y ]t )dYt + f2

(
Yt , [Y ]t )d[Y ]t + 1

2
f11

(
Yt , [Y ]t )d[Y ]t

= iMt dYt .

As a bounded local martingale on [0, T ], M is a (true) martingale. So,

E
[
exp

(
iaT(Xt − Xs)

) | Fs

] = E
[
Mt exp

(−iaTXs − aT�ta/2
) | Fs

]
= Ms exp

(−iaTXs − aT�ta/2
)

= exp
(
aT(�s − �t)a/2

)
.
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This is the characteristic function of the multivariate normal, independently of Fs ,
with mean zero and covariance matrix �t − �s , as required. �

PROOF OF COROLLARY A.3. Define processes W , Ũ , Ṽ taking values in R
d ,

R
n, Rm, respectively, by

Wt :=
∫ t

0
F−1

s dZA
s ,

Ũt :=
∫ t

0
diag

((
σ 1

s

)−1
, . . . ,

(
σn

s

)−1)
dZB

s ,

Ṽt :=
∫ t

0
diag

((
τ 1
s

)−1
, . . . ,

(
τm
s

)−1)
dZC

s .

We compute the quadratic covariation of the joint process (W, Ũ, Ṽ ). For any
1 ≤ i, j ≤ d , we have

d
[
Wi,Wj ]

t =
d∑

ν,μ=1

(
F−1

t

)i,ν(
F−1

t

)j,μ
d
〈
Zi,Zj 〉

t

=
d∑

ν,μ=1

(
F−1

t

)i,ν
A

i,j
t

(
F−1

t

)j,μ
dt = δi,j dt.

On the other hand, using the structure of Bt and Ct , respectively, we obtain for any
1 ≤ i, j ≤ n and 1 ≤ l, k ≤ m,

d
[
Ũ i, Ũ j ]

t = d
[
Ṽ l, Ṽ k]

t = dt.

The cross terms [Wi, Ũ j ], [Wi, Ṽ l], [Ũ j , Ṽ l] vanish. Hence, the quadratic covari-
ation of the process (W, Ũ, Ṽ ) is the deterministic matrix-valued process

�t = t

⎛⎝Id 0 0
0 En 0
0 0 Em

⎞⎠ ,

where Ek denotes the k × k matrix with all entries equal to 1. As one can im-
mediately see that t �→ a��ta is continuous and increasing for any a ∈ R

d+n+m,
Theorem A.4 implies that (W, Ũ, Ṽ ) is a Gaussian process with increments dis-
tributed according to N (0,�t − �s).

The special structure of the matrices �t implies that W is a d-dimensional stan-
dard Brownian motion, whereas all the components of Ũ and Ṽ are, respectively,
identical one-dimensional Brownian motions. Hence, we may choose U := Ũ1,
V := Ṽ 1, and obtain the conclusion. �

REMARK A.5. The conditions of Corollary A.3 can clearly be relaxed. For
instance, it is enough that for any time t at least one of the nonnegative processes
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σ 1, . . . , σ n is strictly positive. On the other hand, if all of them vanish identically,
then we may not be able to find a suitable Brownian motion on the same probability
space. In the nonregular case, we therefore need to weaken the statement to an
equality in distribution, and use techniques similar to [22] to derive the result.

APPENDIX B: TECHNICAL PROOFS

PROOF OF LEMMA 3.11. We prove (22); the second assertion follows simi-
larly. Without any loss of generality, we assume E[ωC

1 ] = 1. For each s ∈ ( 1
n
, t)

with n ∈ N
+, we choose kn

s ∈ Z such that s ∈ [ kn
s +1
n

,
kn
s +2
n

). For s ∈ (0, 1
n
), put

kn
s = 0. For notational simplicity, we set ṽn(s, x) = 1 − α + αvn(s, x), with

α ∈ {1,0}. Then

sup
x∈R

E

∣∣∣∣∫ t

0

(
gn(s, x) − E

[
ωC

1
]
f C(x − Rs)

)
ṽn(s, x) ds

∣∣∣∣2

≤ 2 sup
x∈R

E

∣∣∣∣∫ t

0

(
f C(

x − R̄n
kn
s
n

) − f C(x − Rs)
)
ṽn(s, x) ds

∣∣∣∣2

+ 2 sup
x∈R

E

∣∣∣∣∫ t

0

(
gn(s, x) − f C(

x − R̄n
kn
s
n

))
ṽn(s, x) ds

∣∣∣∣2
:= 2(�1 + �2).

Since f C is Lipschitz continuous and vanishes outside a compact interval there
exists a constant C < ∞ such that

�1 = sup
x∈R

E

∣∣∣∣∫ t

0

(
f C(

x − R̄n
kn
s
n

) − f C(x − Rs)
)
ṽn(s, x) ds

∣∣∣∣2
≤ C sup

x∈R
E

∫ t

0

∣∣ṽn(s, x)
∣∣2 dsE

∫ t

0

∣∣Rs − R̄n
kn
s
n

∣∣2 ∧ 1ds.

Hence, by Lemma 3.4, �1 → 0 as n → ∞ by dominated convergence, due to the
a.s. continuity A. Using independence of cancellation price levels and volumes, a
direct computation yields

�2 = sup
x∈R

E

∣∣∣∣∫ t

0

(
gn(s, x) − f C(

x − R̄n
kn
s
n

))
ṽn(s, x) ds

∣∣∣∣2

= sup
x∈R

E

∣∣∣∣∣
∫ t

0

( Nn(τ̃ n
kn
s +1

)∑
i=Nn(τ̃ n

kn
s
)+1

∑
j∈Z

1[xn
j ,xn

j+1)

(
πC

i + R̄n
kn
s
n

)
ωC

i 1[xn
j ,xn

j+1)
(x)

�vnn

�xn

− f C(
x − R̄n

kn
s
n

))
ṽn(s, x) ds

∣∣∣∣∣
2
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≤ 3 sup
x∈R

E

∣∣∣∣∣
∫ t

0

Nn(τ̃ n
kn
s +1

)∑
i=Nn(τ̃ n

kn
s
)+1

∑
j∈Z

(
1[xn

j ,xn
j+1)

(
πC

i + R̄n
kn
s
n

)
ωC

i

−
∫
[xn

j ,xn
j+1)

f C(
y − R̄n

kn
s
n

)
dy

)
1[xn

j ,xn
j+1)

(x)
�vnṽn(s, x)n

�xn
ds

∣∣∣∣∣
2

+ 3 sup
x∈R

E

∣∣∣∣∣
∫ t

0

Nn(τ̃ n
kn
s +1

)∑
i=Nn(τ̃ n

kn
s
)+1

(∑
j∈Z

1

�xn

∫
[xn

j ,xn
j+1)

f C(
y − R̄n

kn
s
n

)
dy1[xn

j ,xn
j+1)

(x)

− f C(
x − R̄n

kn
s
n

))
n�vnṽn(s, x) ds

∣∣∣∣∣
2

+ 3 sup
x∈R

E

∣∣∣∣∫ t

0

((
Nn(

τ̃ n
kn
s +1

) − Nn(
τ̃ n
kn
s

))
n�vn − 1

)
f C(

x − R̄n
kn
s
n

)
ṽn(s, x) ds

∣∣∣∣2
:= 3(γ0 + γ1 + γ2).

To estimate γ0 we use again independence of involved random variables, the fact
that

EFn
kn
s
n

[
1[xn

j ,xn
j+1)

(
πC

i + R̄n
kn
s
n

)
ωC

i

] =
∫
[xn

j ,xn
j+1)

f C(
y + R̄n

kn
s
n

)
dy

along with Lemmas 3.1 and 3.4 and the properties of the scaling constants to con-
clude that

γ0 ≤ Ct2 sup
x∈R

E sup
s∈[0,t]

∣∣ṽn(s, x)
∣∣2 λn

μn

(
n�vn

�xn

)2∥∥f C∥∥
L∞�xn

≤ Ct2(
t2 + t + 1

)
�xn −→ 0, as n → ∞.

To estimate γ1, we first deduce from Lipschitz continuity of f C for x ∈
[xn

j , xn
j+1) that

1

�xn

∫
[xn

j ,xn
j+1)

∣∣f C(
y − R̄n

kn
s
n

) − f C(
x − R̄n

kn
s
n

)∣∣dy ≤ L
1

�xn

∫
[xn

j ,xn
j+1)

∣∣�xn
∣∣dy

= L�xn.

Thus, using again Lemmas 3.1 and 3.4, the properties of the scaling constants and
the fact that f C vanishes outside a compact interval we find a constant C < ∞
such that

γ1 ≤ Ct2n−1 sup
x∈R

E sup
s∈[0,t]

∣∣ṽn(s, x)
∣∣2

≤ Ct2(
t2 + t + 1

)
n−1 −→ 0 as n → ∞.
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In view of Lemma 3.1, boundedness of f C and independence of involved ran-
dom variables, we have

γ2 = sup
x∈R

E

∣∣∣∣∫ t

0

((
Nn(

τ̃ n
kn
s +1

) − Nn(
τ̃ n
kn
s

))
n�vn − 1

)
f C(

x − R̄n
kn
s
n

)
ṽn(s, x) ds

∣∣∣∣2

≤ 2 sup
x∈R

E

∣∣∣∣∣
�nt�∑
l=1

((
Nn(

τ̃ n
l

) − Nn(
τ̃ n
l−1

))
n�vn − 1

)
f C(

x − R̄n
l−1
n

)
ṽn

(
l − 1

n
,x

)
1

n

∣∣∣∣∣
2

+ 2 sup
x∈R

E

∣∣∣∣∫ 1
n

0
f C(

x − R̄n
0
)
ṽn(0, x) ds

∣∣∣∣2

≤ 2
(
�vn)2

E sup
x∈R

�nt�∑
l=1

∣∣∣∣(Nn(
τ̃ n
l

) − Nn(
τ̃ n
l−1

) − E
[
Nn(

τ̃ n
l

) − Nn(
τ̃ n
l−1

)])

× f C(
x − R̄n

l−1
n

)
ṽn

(
l − 1

n
,x

)∣∣∣∣2 + C/n

≤ C

n

(
1 + t sup

x∈R
E sup

s∈[0,t]
∣∣ṽn(s, x)

∣∣2)
−→ 0, as n → ∞. �

PROOF OF LEMMA 3.13. Without any loss of generality, we take s = 0 and
drop the index r . First, we have

E
∥∥V n,1(t)

∥∥2
L2

=
(

�vn

�xn

)2 ∫
R

E

∣∣∣∣∣
Nn(t)∑
i=1

∑
j∈Z

ωP
i 1[xn

j ,xn
j+1)

(x)1[xn
j ,xn

j+1)

(
Rn(

τ̃ n
Ñn(τn

a,i )

) + πP
i

)∣∣∣∣∣
2

dx

=
(

�vn

�xn

)2 ∫
R

∞∑
l=1

(λnt)l

l! e−λnt

× ENn(t)=l

[
l∑

i>i′;i,i′=1

2
(∑

j∈Z
ωP

i 1[xn
j ,xn

j+1)
(x)

× 1[xn
j ,xn

j+1)

(
Rn(

τ̃ n
Ñn(τn

a,i )

) + πP
i

))
×

(∑
j∈Z

ωP
i′1[xn

j ,xn
j+1)

(x)1[xn
j ,xn

j+1)

(
Rn(

τ̃ n
Ñn(τn

a,i′ )
) + πP

i′
))

+
l∑

i=1

∑
j∈Z

E
∣∣ωP

i

∣∣21[xn
j ,xn

j+1)
(x)1[xn

j ,xn
j+1)

(
Rn(

τ̃ n
Ñn(τn

a,i )

) + πP
i

)]
dx(35)



2800 C. BAYER, U. HORST AND J. QIU

≤ C

(
�vn

�xn

)2 ∫
R

∞∑
l=1

(λnt)l

l! e−λnt

× ENn(t)=l

[
l∑

i<i′;i,i′=1

2
(
EωP

1
)21[−M+Rn(τ̃ n

Ñn(τn
a,i

)
),M+Rn(τ̃ n

Ñn(τn
a,i

)
)](x)

× ∥∥f P∥∥2
L∞

(
�xn)2

+ E
∣∣ωP

1
∣∣2 l∑

i=1

1[−M+Rnτ̃n
Ñn(τn

a,i
)
),M+Rn(τ̃ n

Ñn(τn
a,i

)
))(x)

∥∥f Pa
∥∥
L∞�xn

]
dx

≤ C

(
�vn

�xn

)2 ∞∑
l=1

(λnt)l

l! e−λnt [l(l − 1)
∥∥f P∥∥2

L∞
(
�xn)2 + l

∥∥f P∥∥
L∞�xn]

≤ C

(
�vn

�xn

)2[(
λnt�xn)2 + λnt�xn]

≤ C
(
t2 + t

)
,

and similarly, we have E‖V n,2(t)‖2
L2 ≤ C(t2 + t), where the constants C are in-

dependent of n. Taking the supremum norm ‖ · ‖L∞ instead, we obtain

sup
x∈R

EFn
s

∣∣V n,1(t) − V n,1(s)
∣∣2 + sup

x∈R
EFn

s

∣∣V n,2(t) − V n,2(s)
∣∣2

≤ C
[
t − s + (t − s)2]

, 0 ≤ s ≤ t < ∞.

On the other hand,

E sup
s∈[0,t]

∥∥V n,3
a (s)

∥∥2
L2

= E sup
s∈[0,t]

∥∥∥∥∥
Nn(s)∑
i=1

∑
j∈Z

1[xn
j ,xn

j+1)
(·)

× 1[xn
j ,xn

j+1)

(
Rn(

τ̃ n
Ñn(τn

a,i )

) + πP
i

)̃
ξa,Ñn(τn

a,i )+1

√
�vn

∥∥∥∥∥
2

L2

= E sup
s∈[0,t]

∥∥∥∥∥
Ñn(s)∑
k=1

Nn(τ̃ n
k )∑

i=Nn(τ̃ n
k−1)+1

∑
j∈Z

1[xn
j ,xn

j+1)

(
πP

i + Rn(
τ̃ n
k−1

))
× 1[xn

j ,xn
j+1)

(·)̃ξa,k

√
�vn

+
Nn(s)∑

i=Nn(τ̃ n
Ñn(s)

)+1

∑
j∈Z

1[xn
j ,xn

j+1)

(
πP

i + Rn(
τ̃ n
Ñn(s)

))
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× 1[xn
j ,xn

j+1)
(·)̃ξa,Ñn(s)+1

√
�vn

∥∥∥∥∥
2

L2

≤ C�vnE

[
Ñn(t)∑
k=1

∥∥∥∥∥
Nn(τ̃ n

k )∑
i=Nn(τ̃ n

k−1)+1

∑
j∈Z

1[xn
j ,xn

j+1)

(
πP

i + Rn(
τ̃ n
k−1

))
1[xn

j ,xn
j+1)

(·)
∥∥∥∥∥

2

L2

+
∥∥∥∥∥

Nn(t)∑
i=Nn(τ̃ n

Ñn(t)
)+1

∑
j∈Z

1[xn
j ,xn

j+1)

(
πP

i + Rn(
τ̃ n
Ñn(t)

))
1[xn

j ,xn
j+1)

(·)
∥∥∥∥∥

2

L2

]

= C�vn
∞∑
l=0

(μnt)l

l! e−μnt

× EÑn(t)=l

[
l∑

k=1

∥∥∥∥∥∑
j∈Z

Nn(τ̃ n
k )∑

i=Nn(τ̃ n
k−1)+1

1[xn
j ,xn

j+1)

(
πP

i + Rn(
τ̃ n
k−1

))

× 1[xn
j ,xn

j+1)
(·)

∥∥∥∥∥
2

L2

+
∥∥∥∥∥

Nn(t)∑
i=Nn(τ̃ n

l )+1

∑
j∈Z

1[xn
j ,xn

j+1)

(
πP

i + Rn(
τ̃ n
l

))
1[xn

j ,xn
j+1)

∥∥∥∥∥
2

L2

]

≤ C�vn
∞∑
l=0

(μnt)l

l! e−μnt

× EÑn(t)=l

[
l∑

k=1

(
Nn(

τ̃ n
k

) − Nn(
τ̃ n
k−1

))(
Nn(

τ̃ n
k

) − Nn(
τ̃ n
k−1

) − 1
)

× ∥∥f P∥∥2
L∞

(
�xn)2‖1[−M+Rn(τ̃ n

l ),M+Rn(τ̃ n
l ))‖2

L2

+
l∑

k=1

(
Nn(

τ̃ n
k

) − Nn(
τ̃ n
k−1

))∥∥f P∥∥
L∞�xn‖1[−M+Rn(τ̃ n

l ),M+Rn(τ̃ n
l )]‖2

L2

+ (
Nn(t) − Nn(

τ̃ n
l

))(
Nn(t) − Nn(

τ̃ n
l

) − 1
)∥∥f P∥∥2

L∞
(
�xn)2

× ‖1[−M+Rn(τ̃ n
l ),M+Rn(τ̃ n

l )]‖2
L2

+ (
Nn(t) − Nn(

τ̃ n
l

))∥∥f P∥∥
L∞�xn‖1[−M+Rn(τ̃ n

l ),M+Rn(τ̃ n
l )]‖2

L2

]

≤ C�vn
∞∑
l=0

(μnt)l

l! e−μntEÑn(t)=l

[
l∑

k=1

(
Nn(

τ̃ n
k

) − Nn(
τ̃ n
k−1

))
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× (
Nn(

τ̃ n
k

) − Nn(
τ̃ n
k−1

) − 1
)(

�xn)2

+
l∑

k=1

(
Nn(

τ̃ n
k

) − Nn(
τ̃ n
k−1

)) + (
Nn(t) − Nn(

τ̃ n
l

))(
Nn(t) − Nn(

τ̃ n
l

) − 1
)

× (
�xn)2 + (

Nn(t) − Nn(
τ̃ n
l

))]

= C�vn
∞∑
l=0

(μnt)l

l! e−μnt

× E
[
lNn(

β(1, l)
)(

Nn(
β(1, l)

) − 1
)(

�xn)2 + lNn(
β(1, l)

)
+ Nn(

β(1, l)
)(

�xn)2 + Nn(
β(1, l)

)]
= C�vn

∞∑
l=0

(μnt)l

l! e−μnt
∞∑

m=0

[
lm(m − 1)

(
�xn)2 + m2(

�xn)2 + (l + 1)m
]

×
∫ 1

0

(λntz)m

m! e−λntz (1 − z)l−1

B(1, l)
dz

≤ Ct�vn

[
(λn�xn)2

μn
+ λn

]
≤ Ct,

with the constant C independent of n and t .
The estimate of vn

a/b follows precisely in the same way as the proof of
Lemma 3.4, taking into account the appropriate estimates for V

n,i
a/b derived above.

�

APPENDIX C: CLASSICAL TIGHTNESS RESULTS

For the convenience of the reader, we recall some classical results on tightness
which the derivations of Section 3 are based on. We first note that though the fol-
lowing theorems and lemmas may be originally established on finite time intervals,
we state them on the half-line [0,∞) since there is no essential difficulty to make
such extensions in the spirit of Jacod and Shiryaev [17].

The first result is a sufficient condition for tightness in the Skorokhod space
D([0,∞);E) for a complete separable metric state space (E,ρ) due to Aldous
and Kurtz. We take it from [30], Theorem 6.8.

THEOREM C.1. Let Xn be a sequence of processes taking values in D([0,∞);
E) such that the family (Xn(t))n∈N+ of random variables is tight (in E) for any
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rational t . Moreover, assume that for each N ∈ N
+, there is a number p > 0 and

processes (γn(δ))δ∈[0,∞), n ∈ N
+, such that

E
[
ρ

(
Xn(t + δ),Xn(t)

)p|Fn
t

] ≤ E
[
γn(δ)|Fn

t

]
, ∀t, t + δ ∈ [0,N],

lim
δ→0

lim sup
n→∞

E
[
γn(δ)

] = 0,

where the filtration Fn is generated by Xn. Then (Xn)n∈N+ is tight in D([0,

∞);E).

PROOF. See [30], Theorem 6.8. Note that Walsh assumes one joint filtration
Ft , whereas we allow for filtrations depending on n. This difference is, however,
inconsequential, for example, by choosing Xn to be defined on a common proba-
bility space in an independent way and then choosing Ft to be the filtration gener-
ated by all the filtrations Fn

t . �

The following lemma on C-tightness is borrowed from [17], Proposition 3.26,
page 351.

LEMMA C.2. For a sequence Xn with paths in D([0,∞);Rd) (d ∈ N
+), it is

C-tight if and only if it is tight and for all N ∈N
+, ε > 0, there holds

lim
n→∞P

n
(

sup
t≤N

∣∣�Xn
t

∣∣ > ε
)

= 0.

The main theoretical tool in this paper is Mitoma’s theorem, on basis of [30],
Theorem 6.13, Lemma 6.14, Corollary 6.16, note on page 365, which relates tight-
ness of distribution-valued processes to real-valued processes obtained by apply-
ing test-functions. We specialize the general formulation given in [30] so that the
theorem can be directly applied to our setting.

THEOREM C.3 (Mitoma’s theorem). For any positive integer d , let Xn :=
(Xn

1 , . . . ,Xn
d) be a sequence of processes with sample paths lying in D([0,∞);

(E ′)d). The sequence Xn is tight as processes with paths in D([0,∞); (E ′)d), if and
only if for any φ1, . . . , φd ∈ E we have tightness of the sequence of D([0,∞);R)-
valued processes

∑d
i=1〈Xn

i ,φi〉. If, furthermore, for any ε,N ∈ (0,∞) there ex-
ists Ñ ∈ (0,∞) such that supn P(supt∈[0,N]

∑d
i=1 ‖Xn

i (t)‖L2 > Ñ) < ε, then Xn is
tight as a sequence of processes with paths in D([0,∞); (H−1)d).

Here, we choose H−1 for convenience. Indeed, in view of the arguments in [30],
page 335, Example 1a, we can replace the space H−1 by H−m for any m > 1/2.
On the other hand, an immediate application of Theorem C.3 is the following
corollary, which states that joint tightness of a pair of sequences of stochastic pro-
cesses follows from individual tightness assuming that at least one of the involved
sequences is C-tight, that is, all its accumulation points are continuous processes.
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COROLLARY C.4. Let Yn and Zn be sequences of stochastic processes taking
values in (E ′)d and (E ′)l , respectively, with d, l ∈ N

+. If Yn is C-tight with paths
in D([0,∞); (E ′)d) and Zn is tight with paths in D([0,∞); (E ′)l), then the pair
of processes (Y n,Zn) is tight with paths in D([0,∞); (E ′)d+l).

PROOF. We fist note that for the finite-dimensional case where (E ′)d and (E ′)l
are replaced by Euclidean spaces, Corollary C.4 coincides with [17], Cor. VI.3.33.
Obviously the C-tightness of Yn with paths in D([0,∞); (E ′)d) implies that of∑d

i=1〈Yn
i , φi〉 with paths in D([0,∞);R) for any φ1, . . . , φd ∈ E . As Theorem C.3

allows us to prove the tightness of distribution-valued processes by verifying that
of the real-valued processes obtained by applying test-functions, there follows the
tightness of pair of processes (Y n,Zn) with paths in D([0,∞); (E ′)d+l). �

We remark that the method of proof for the finite-dimensional case (see [17],
page 353, Corollary VI.3.33) cannot directly be applied to Corollary C.4, as the
compactness of the unit ball is key to their proof of the finite-dimensional case.
On the other hand, if we replace (E ′)d for Yn by R

m × (E ′)d with m ∈ N
+, then

Corollary C.4 still holds, since the finite-dimensional space is isomorphic as well
as homeomorphic to some subspace of E ′.

We also use a lemma of Billingsley about weak limits under time-changes.

LEMMA C.5. Let Xn be a sequence of processes taking values in D([0,∞);
E) for some separable metric space E and let �n be a sequence of nonde-
creasing processes with paths in D([0,∞); [0,∞)). Assume that (Xn,�n) con-
verge weakly to a pair of processes (X,�) ∈ D([0,∞);E × [0,∞)) such that
X ∈ C([0,∞);E) with probability 1. Then

Xn ◦ �n ⇒ X ◦ �.

PROOF. The proof in Billingsley ([3], page 151, for the special case E = R)
can be immediately adapted to this more general setting. �

Finally, we recall Skorokhod’s lemma [3], Theorem 6.7 on page 70.

LEMMA C.6. Let μn ⇒ μ be a weakly converging sequence of probability
measures on a metric space such that the support of μ is separable. Then there
is a probability space (�,F,P ) and a sequence of random variables Xn with
distribution μn together with a random variable X with distribution μ such that

∀ω ∈ � : lim
n→∞Xn(ω) = X(ω).
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