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ONE-DIMENSIONAL LONG-RANGE DIFFUSION LIMITED
AGGREGATION II: THE TRANSIENT CASE

BY GIDEON AMIR1, OMER ANGEL2 AND GADY KOZMA1

Bar Ilan University, University of British Columbia and The Weizmann
Institute of Science

We examine diffusion-limited aggregation for a one-dimensional random
walk with long jumps. We achieve upper and lower bounds on the growth rate
of the aggregate as a function of the number of moments a single step of the
walk has. In this paper, we handle the case of transient walks.

1. Introduction. Diffusion-limited aggregation (DLA for short) is a random
growth model constructed as follows. Start with a single particle in space. Each
subsequent particle performs a random walk “from infinity”, until it hits any pre-
vious particle. It is then frozen and added to the aggregate at the last site it visited
before hitting the aggregate. Precise definitions are included below. It is used to
model diverse processes such as fluid-fluid displacement, discharge patterns and
growth of bacterial colonies. See [13] for a physical point of view and many appli-
cations. We refer the reader to part I of this project [2] for a history of the subject,
and to part III [1] for some additional results.

The topic of these papers is one-dimensional long-range DLA. The following
theorem was stated in part I (precise definitions are included in Section 2).

THEOREM 1. Let R be a symmetric random walk with step distribution sat-
isfying P(|R1 − R0| = k) = (c + o(1))k−1−α . Let Dn be the diameter of the n

particle aggregate. Then almost surely:

(i) If α > 3, then n − 1 ≤ Dn ≤ Cn + o(n), where C is a constant depending
only on the random walk.

(ii) If 2 < α ≤ 3, then Dn = nβ+o(1), where β = 2
α−1 .

(iii) If 1 < α < 2, then Dn = n2+o(1).
(iv) If 1

3 < α < 1, then

nβ+o(1) ≤ Dn ≤ nβ ′+o(1),

where β = max(2, α−1) and β ′ = 2
α(2−α)

.
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FIG. 1. If the random walk R has α finite moments, then the diameter of the resulting n-particle
aggregate grows as nβ .

(v) If 0 < α < 1
3 , then Dn = nβ+o(1), where β = α−1.

See Figure 1 for the various regimes described in Theorem 1. In the regime
α ∈ (1

3 ,1), our results do not allow us to determine precisely the rate of growth, but
we conjecture that the lower bound gives the correct behaviour, and have therefore
indicated it in the figure in red. Part I focused mainly on the recurrent case, namely
α > 1. In this paper, we focus on the transient case, namely α < 1/3 and α ∈
[1/3,1).

The most interesting feature of the graph is of course the phase transitions: at
3, 2 and in at least one unknown point in [1

3 ,1], probably at 1
2 . We discussed the

phase transitions at 3 and 2 in the Introduction of part I quite thoroughly, so we will
not repeat this here. Let us reiterate one point already made in part I nonetheless:
it seems as if there is no change in the behaviour when passing from the recur-
rent regime to the transient regime (at α = 1). If our conjecture is correct, then
the growth of the aggregate is uniformly n2+o(1) throughout the interval [1

2 ,2]
and one cannot tell from the aggregate the difference between recurrent and tran-
sient random walks. Note that these are not even quite the same processes on both
sides—in the transient case one needs to condition on the particles hitting the ag-
gregate, which makes the “gluing measure” quite different. Even if our conjecture
is false, our upper bound still shows that the transition is smooth, hence the phase
transition at α = 1, if it exists at all, is very tame.

1.1. Proof ideas. The key is that the growth of the aggregate does not come
by gradual accretion but rather by isolated large jumps (in fact this holds for all
α < 3; see part I for details). Hence, to understand the behaviour of An one needs
to consider events whose probability is of the order of 1/n—about one such event
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will happen in the construction of An, and this one rare event will dominate the
growth of the aggregate.

We will show below that the probability that the aggregate An grows by at least
m in one step is approximately

nm−α

CapAn

,

where CapAn is the capacity of the aggregate with respect to our random walk
(see Section 1.3 for precise definitions). The reason that the capacity appears is
that in order to define what it means for a particle to perform “a random walk from
infinity” we have to condition on the particle hitting the set. This conditioning
gives the factor of the capacity in the denominator, and is also the reason that the
transient case 0 < α < 1 is more difficult than the recurrent case discussed in part I.
Understanding the capacity requires more detailed knowledge about the structure
of the aggregate.

If the single largest jump gives the diameter, then diamAn � m for the m that
corresponds to probability 1

n
. Solving nm−α/CapAn = 1/n gives

diamAn �
(

n2

CapAn

)1/α

so an upper bound for the capacity gives a lower bound for the diameter and
vice versa. There are two simple upper bounds for the capacity of a general fi-
nite set. The first is CapAn ≤ n which gives diamAn � n1/α . The second bound
is CapAn ≤ c(diamAn)

1−α (see Lemma 8) which gives diamAn � n2. This gives
the lower bounds for α < 1 in Theorem 1.

To test how good these two lower bounds are, consider a discrete, self-similar
Cantor set. It turns out that up to constants, such a Cantor set has maximal possible
capacity with respect to its diameter and number of particles (see Theorem 9 on
p. 1898). This is surprising when one compares this to the structure of the harmonic
measure on the fractal which is complicated and involves various exponents which,
generally speaking, are not known. See Carleson [5] and Makarov [12] for analysis
of Cantor-like sets, and the beautiful general results of Makarov [11] and Jones and
Wolff [9]. See also [4].

Now, if the aggregate were to behave similarly, then it would have nearly max-
imal possible capacity which would lead to the minimal possible diameter. This
would imply that the third phase transition is at 1

2 . If, on the other hand, the aggre-
gate has a dense core with a few additional far away particles which do not affect
the capacity significantly, we would get a much lower capacity, and hence higher
diameter. In that case, the third phase transition could even be at 1.

One regime where we can make this “Cantor set versus heavy core” dichotomy
precise, and so derive matching upper bounds on the diameter, is when the walk
has less than 1

3 moments. In this regime, the walk makes enormous jumps—by
time n of the aggregation we expect a jump of size at least n3, so a particle will
be glued at large distance from the rest of the aggregate. Assume such a jump has
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happened, and call the position of the resulting particle b1. Let b2 be the position
of the first particle that gets glued to {b1}, that is, the position of the first particle
that was added to the aggregate when attempting to jump to b1. Continuing this
way, we identify a subset B in the aggregate consisting of b1 and its descendants.
A calculation then shows that the subset B grows very similarly to a DLA—the
effect of the rest of the aggregate is only a time-change which does not affect the
actual shape too much.

Since such large jumps occur at many scales, we think of DLA as a stochastic
Cantor set, where remote parts are identically distributed (though not identical, as
in the usual Cantor set). The crux of the argument is in making this precise and
proving this. We show that the probability that the existing part A \ B affects the
growth of the subset B or vice versa at all is quite small. This is not true for α > 1

3 .
For such α, the amount of interaction between the two parts, while small, is not
zero, and we do not know how to control it.

1.2. What should you read? This paper is more technical than part I, with a
particular emphasis on the case of α < 1

3 . If you are only interested in a tasting
of the ideas used, your best option is probably to switch to part I and read Sec-
tion 3 there which handles one particular recurrent random walk whose analysis is
simpler and more geometric than other cases.

In Section 2, we derive a general formula for the gluing measure in the transient
case. Section 3 then discusses the lower bound Dn ≥ nβ+o(1) which holds for all
0 < α < 1. Finally, Section 4 gives the proof for the case of α < 1

3 . This paper is
best read sequentially as each section depends on all previous ones.

Finally, note that there is a part III [1] which discusses the infinite aggregate
A∞ = ⋃∞

n=1 An.

1.3. Notation. For a subset A ⊂ Z, we denote by diamA the diameter of A,
namely max(A) − min(A). If x ∈ Z, we will denote by ρ(x,A) the point-to-set
distance, namely miny∈A |x − y|.

Throughout this paper, we denote by R = (0 = R0,R1, . . . ) a random walk
on Z. We denote by px,y = p0,y−x the probability that R, when starting from
x will go to y in the first step. For a given random walk R and set A, let TA be the
hitting time of A, defined as

TA = inf{n > 0 s.t. Rn ∈ A}.
Note that TA > 0 even if the random walk starts in A. Denote by EA(x) the escape
probability from A, that is, Px(TA = ∞) (where Px denotes the law of the random
walk started at x). Denote by E∗

A(x) the escape probability for the reversed random
walk (we will usually consider symmetric random walks, in which case EA = E∗

A).
Define the capacity of a set by

CapA = ∑
a∈A

E∗
A(a).

See Section 3.1 for a detailed discussion of the capacity.
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Denote by G(x,y) the Green function of R defined by

G(x,y) =
∞∑

n=0

Px(Rn = y)

Since G is translation invariant, we will often abbreviate G(x,0) as G(x) and then
G(x,y) = G(x − y). It turns out that regular behaviour of the Green function is
the most important property for our analysis.

By C and c, we denote constants which depend only on the law of the walk
R but not on the other parameters involved. The same holds for constants hidden
within the notation O and o. In particular, we will usually not use them again the
way they were used in Theorem 1, that is, as random constants. Generally C and
c might take different values at different places, even within the same formula.
Normally, C will pertain to constants which are “big enough” and c to constants
which are “small enough”. By X ≈ Y , we mean cX < Y < CX. We abuse notation
by declaring that |0|γ = 1 for any γ (e.g., in the next section p0,x ≈ |x|−1−α means
at 0 that p0,0 ≈ 1). By X � Y , we mean that X = o(Y ). �x
 will denote the integer
value of x. By � and �, we do not mean anything in particular; these are only used
for the heuristic discussion in the Introduction.

2. Limits of gluing measure. The random walks we consider will usually
satisfy the following.

DEFINITION. We say that a symmetric random walk is an α-walk (α < 1) if
p0,x ≈ |x|−1−α .

(As usual ≈ means “bounded between two constants”.) For such walks, the
Green function has the following behaviour.

LEMMA 2. Let R be an α-walk. Then its corresponding Green function satis-
fies

(1) G(x) ≈ |x|α−1.

PROOF. We base our proof on a result of Bass and Levin [3]. Let us recall
the statement of Theorem 1.1 ibid. Bass and Levin do not assume that the walk is
translation invariant, and their result holds in any dimension, though we specialise
to d = 1. Given numbers wxy satisfying wxy ≈ |x −y|−1−α and wxy = wyx , define
a Markov chain R by its transition probabilities

Px(R1 = y) = wxy∑
z wxz

.

We may therefore take wxy = px,y . A minor inconvenience is that Bass and Levin
assume that wxx = 0. Let us therefore assume it for our walk R for a while, and
remove this assumption in the end. Their results then state that

(2) Px(Rn = y) ≈ min
(
n−1/α, n|x − y|−1−α)



LONG-RANGE DLA II 1891

with the exception that the lower bound does not hold for n = 1 and x = y (again,
because wxx = 0).

Summing (2) over n immediately gives (1). Thus, we need only remove the
restriction px,x = 0. But this only changes G by a constant, that is, if for some R

we have px,x > 0 then we can define a walk R′ using

P
(
R′

1 = x
) =

⎧⎨⎩
p0,x

1 − px,x

, x �= 0,

0, x = 0.

and get that the corresponding Green function, G′, satisfies that G′(x) = G(x)/

px,x . This completes the proof. �

Let us remark that the results of Bass and Levin are not restricted to the transient
case; they hold also for the recurrent case. However, it is not as straightforward to
get information on the harmonic potential from the estimate of the heat kernel, as
it is for the Green function in the transient case.

While on this topic, we might remark that a number of results in the nonre-
versible settings are known. The results of Williamson [15] are quite general, es-
sentially requiring only that the walk R is in the domain of attraction of an α-stable
process, but they are restricted to 1

2 < α < 1. Le Gall and Rosen have some results
for general α (see [10], Proposition 5.2).

Let A ⊂ Z be some set. For a point x /∈ A, we are interested in the event
{RTA−1 = x}, that is the event that x is the last point visited before hitting A,
and so is glued. Since the random walks we are interested in are transient we must
condition on TA < ∞. Define

μy(x, a) = Py(RTA
= a,RTA−1 = x | TA < ∞).

We are interested in the limit

μ(x, a) = μ(x, a;A) = lim
y→∞μy(a, x),

if it exists, as well as its integrated version

μ(x) = μ(x;A) = ∑
a∈A

μ(x, a).

The existence of these limits is strongly related to the existence of the harmonic
measure from infinity:

m(a) = lim|x|→∞Px(RTA
= a | TA < ∞).

When μ(x, a) exists, one gets that m(a) = ∑
x μ(x, a) (see Lemma 5 below).

It is possible that the harmonic measure does not exist. An example can be con-
structed by examining a random walk supported on a very sparse set, for example,
let P(R1 = 22n

) ≈ 1/n2 and 0 otherwise. As this is somewhat off-topic we will not
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provide a proof that this is indeed an example. Instead, the following theorem char-
acterises walks for which the harmonic measure exists, and relates the harmonic
measure to the escape probabilities.

THEOREM 3. The following are equivalent for a transient irreducible random
walk on Z:

(i) For any finite A, the harmonic measure exists and equals the normalised
escape probabilities, that is, m(a) = E∗(a)

Cap(A)
.

(ii) The harmonic measure exists for some finite A with |A| > 1.
(iii) For any a, the Green function satisfies lim|x|→∞ G(x+a)

G(x)
= 1.

When the conditions of this theorem hold, we say that R has a harmonic mea-
sure.

Recall that the escape probabilities are denoted by EA(x) = Px(TA = ∞), and
that this definition is nontrivial also for starting points in A. Recall also that
E∗

A(a) is the analogous probability for the reversed random walk (for symmet-
ric random walk the two are the same). The capacity of a set A is defined as
Cap(A) = ∑

a∈A E∗
A(a).

Note that the result is stated also for asymmetric walks even though we are
mostly interested in the symmetric case. Further, it can be easily generalised to the
case of Zd—the only difference being that in Clause (ii) we must require that A is
not a subset of any affine subspace of Rd .

Part of the proof ((iii) =⇒ (i)) follows the proof of P26.2 of [14] which does the
same for random walks in Z

3.

PROOF OF THEOREM 3. Let � be the A-indexed matrix, with �(a,b) =
Pa(RTA

= b). Let G(x −·) be the row vector {G(x −a)}a∈A. We use the following
identity for the unnormalised hitting measure HA(x, a) = Px(RTA

= a).

PROPOSITION 4.

HA(x, a) = ∑
z∈A

G(x − z)(I − �)(z, a).

A proof can be found in [14], P25.1. For the reader’s convenience, let us indicate
a simple probabilistic argument (Spitzer’s proof is more analytic in nature). Exam-
ine the random walk restricted to A: The probability to hit A at a is the expected
number of times a is visited minus the number of visits that are not the first visit
to A. The former is G(x,a); the latter can be partitioned according to the location
of z: the previous visit to A.

(iii) =⇒ (i): By Proposition 4 and our assumption (iii),

lim|x|→∞
HA(x, a)

G(x)
= lim|x|→∞

∑
z∈A

G(x − z)

G(x)
(I − �)(z, a)

(iii)= ∑
z∈A

(I − �)(z, a).
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The sum of column a in I − � is E∗
A(a), so

lim|x|→∞
HA(x, a)

G(x)
= E∗

A(a) ∀a ∈ A.

Summing over a gives

(3) Px(TA < ∞) = G(x) · Cap(A) · (
1 + o(1)

)
,

which gives the required:

m(a) = lim|x|→∞Px(RTA
= a | TA < ∞) = lim|x|→∞

H(x, a)

Px(TA < ∞)

= lim|x|→∞
H(x, a)

G(x)Cap(A)(1 + o(1))
= E∗

A(a)

Cap(A)
.

Since (i)⇒(ii) is obvious, it remains to show that (ii) implies (iii). For any fi-
nite A, I − � is strictly diagonally dominant and, therefore, invertible (by the
Levy–Desplanques theorem, see, e.g., [8], Theorem 6.1.10). Thus, if the harmonic
measure exists (which means, by definition, that lim|x|→∞ Px(RTA

= a | TA < ∞)

exists), then

lim|x|→∞
G(x − a)

Px(TA < ∞)
= lim|x|→∞

∑
z∈A

HA(x, z)

Px(TA < ∞)
(I − �)−1(z, a)

= ∑
z∈A

m(z)(I − �)−1(z, a)

and in particular the limit on the left-hand side exists. Hence, also the limit of
G(x − a)/G(x − b) exists, for all a, b ∈ A.

Assume without loss of generality that 0, b ∈ A and then the limit of G(x −
b)/G(x) exists. Since the limit is the same for positive and negative x, and since
0 < G(x) ≤ G(0) is bounded, the limit must be 1—if it were smaller than 1 then
G would diverge exponentially in the direction of b while if it were larger than 1
then G would diverge exponentially in the other direction.

Clearly, G(x−b)
G(x)

→ 1 implies that G(x−kb)
G(x)

→ 1 for any k. To show that
G(x+a)
G(x)

→ 1 for general a, we need irreducibility for the first time. Let T be the first
time at which RT ≡ a (mod b), and note that T is a.s. finite. Fix ε > 0 and let N =
N(a, ε) be such that P(|RT − a| > N) < ε. Take M = M(a, ε,N) large enough
that whenever |kb| ≤ N + a and |x| > M we have G(x + kb) > (1 − ε)G(x).

By the Markov property at T , for |x| > M .

G(x + a) = ∑
y≡a modb

P(RT = y)G(x + a − y)

≥ ∑
|y−a|<N
y≡a modb

P(RT = y)(1 − ε)G(x)

≥ (1 − ε)2G(x).
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Since ε was arbitrary, lim infx G(x + a)/G(x) ≥ 1. Since the same holds for −a,
this completes the proof. �

We now come to the key connection between escape probabilities and the DLA
gluing measure.

LEMMA 5. If the harmonic measure for a transient random walk R exists,
then the limit μ = limy μy exists and

(4) μ(x, a) = px,aE
∗
A(x)

Cap(A)
.

We remind the reader that px,a is the probability of making a single step from
x to a.

PROOF. Define F(z) = Pz(Tx < TA) to be the probability that x is hit from z

before A (and in particular Tx < ∞). Start a random walk at y. One can partition
visits to x according to the previous visited site of A ∪ {x} to get

G(y,x) = G(y − x) = F(y) + G(y − x)F (x) + ∑
a∈A

G(y − a)F (a).

On the other hand, the expected number of visits to x before visiting A is given by
F(y)

1−F(x)
. Let Mx,a be the event that the random walk hits A by a step from x to a,

then

Py(Mx,a) = F(y)px,a

1 − F(x)

= px,a ·
(
G(y − x) − 1

1 − F(x)

∑
a∈A

G(y − a)F (a)

)
.

Using (3) to approximate Py(TA < ∞) = G(y)Cap(A)(1 + o(1)) and condition
(iii) of Theorem 3 to eliminate the ratio of Green function values as y → ∞ one
finds

Py(Mx,a | TA < ∞) = px,a

Cap(A)
·
(

1 − 1

1 − F(x)

∑
a∈A

F(a)

)(
1 + o(1)

)
(here o(1) is as |y| → ∞).

Next, we relate this to the reversed escape probability from x. Run a reversed
random walk from x. Paths that hit A at a can be broken into some number of loops
where the walk returns to x followed by a path from x to a that avoids A ∪ {x}.
The reverse of a loop rooted at x is just a loop; the reverse of the last segment is
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one of the terms contributing to F(a). Thus, we have

P
∗
x(hit A at a) = F(a)

1 − F(x)
.

Summing over a ∈ A gives the probability of hitting A and so

Py(Mx,a | TA < ∞) = px,a

Cap(A)
E∗

A(x)
(
1 + o(1)

)
. �

We are finally ready to give the formal definition of the DLA process for tran-
sient random walks.

DEFINITION 1. Let R be a transient random walk with harmonic measure on
Z. The DLA process with respect to R is a Markov chain of random sets A1 =
{0},A2, . . . such that for any finite A ⊂ Z, and x ∈ Z \ A and any n > 0,

P
(
An+1 = A ∪ {x} | An = A

) = ∑
a∈A

μ(x, a;A),

where μ is defined by (4). We denote Dn = diamAn and Fn the minimal σ -field
generated by A1, . . . ,An.

3. Inequalities. Recall the gluing formula (4). It turns out that the most cru-
cial term for understanding the DLA growth is the capacity Cap(A) appearing in
the denominator. In Section 3.1, we will prove estimates for the capacity of any
finite set in Z. In Section 3.3, we will use these estimates to get first bounds on the
diameter of the aggregates. Henceforth, all walks are assumed to be symmetric,
and we will not remind this fact again.

3.1. General inequalities for capacity. Before embarking on estimates of the
capacity of our aggregate, let us recall some general facts about this notion. The
capacity of a set can be defined in two equivalent ways. The first [which we used
to prove (4)] is as the sum of the escape probabilities. The second is a variational
definition:

(5) Cap(A) = sup
ψ∈P(A)

1

‖ψ ∗ G‖∞
,

where P(A) is the set of all probability measures on A (or simply all ψ : A →
[0,1] with

∑
ψ(a) = 1), G is the Green function of the walk and ψ ∗ G denotes

the usual convolution on Z, that is,

(ψ ∗ G)(x) := ∑
y

G(x − y)ψ(y).

See [14], P25.10, for the equivalence of the two definitions (formulated slightly
differently). There is a unique measure ψ0 satisfying the supremum which is called
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the equilibrium charge. It satisfies that ψ0 ∗ G is in fact constant over A and is
characterised by this fact. In fact, the equilibrium charge is the normalised escape
probabilities, namely

ψ0(x) = Px(TA = ∞)∑
a∈A Pa(TA = ∞)

.

See [14], Chapter 25, for an overview and proof of the equivalence of the two
definitions of ψ0. We start with an application of capacity to show that starting far
from a set suffices for a good probability of avoiding it.

LEMMA 6. Let R be an α-walk. For any λ > 0,

inf
{
EA(x) : ρ(x,A) > λdiamA and x > max(A)

}
> 0.

PROOF. By translation invariance and since EA(x) is monotone in A, we may
assume A = [−k,0] for some k (and then diamA = k). Define

ϕ(λ) = inf
k,w>λk

{
E[−k,0](w)

}
.

We will first prove ϕ(λ0) > 0 for some λ0 large enough. Let ψ be the equilibrium
charge of [−k,0], and let p = ψ ∗ G. By [14], T25.1

1 − E[−k,0](w) = p(w)

p(0)
∀w /∈ [−k,0].

(Note that p(·) is constant on [−k,0], so 0 is not singled out here.) Let us first
assume that w ≥ λ0k for some λ0 sufficiently large. Then we can write (using
G(x) ≈ |x|α−1, Lemma 2)

p(w) =
k∑

i=0

ψ(−i)G(w + i) ≤ C

k∑
i=0

ψ(−i)(λ0k)α−1

≤ Cλα−1
0

k∑
i=0

ψ(−i)(1 + i)α−1 ≤ Cλα−1
0

k∑
i=0

ψ(−i)G(i)

= Cλα−1
0 p(0)

and we see that for λ0 sufficiently large, independent of k, E[−k,0](w) ≥ 1
2 , and so

ϕ(λ0) ≥ 1
2 .

Next, fix some λ > 0. Let w > λk, and let I be the reflection of [−k,0] about w,
that is, the interval [2w,2w + k]. By symmetry, we have

Pw(T[−k,0] < TI ) ≤ 1

2
.
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However, after TI (if it is finite), the probability to escape to infinity is at least
ϕ(2λ). Thus, we get

ϕ(λ) ≥ 1

2
ϕ(2λ).

Since ϕ(λ0) > 0 and ϕ is increasing, this implies ϕ(λ) > 0 for all λ > 0. �

LEMMA 7. For an α-walk R, the capacity of any finite set A satisfies

Cap(A) ≥ c|A|1−α.

If moreover A ⊂ dZ, then

Cap(A) ≥ c min
{|A|, (

d|A|)1−α}
.

PROOF. We use the variational definition of the capacity. Examine the uniform
probability measure ψu. We get

Cap(A) ≥ ‖ψu ∗ G‖−1∞ .

By G(x) ≈ |x|α−1 (Lemma 2), we get

(ψu ∗ G)(x) = ∑
y

G(x − y)ψ(y) ≤ ∑
y

(
C|x − y|α−1) · 1

|A|

≤ 1

|A|
|A|∑
i=1

(
Ciα−1) ≤ C|A|α−1

and the first claim is proved. If A is contained in an arithmetic progression, the
same argument gives

(ψu ∗ G)(x) ≤ C|A|−1 + C
(
d|A|)α−1

,

where the first term comes from the contribution of y = x. �

LEMMA 8. For an α-walk R, the capacity of any finite set A satisfies

Cap(A) ≤ C(diamA)1−α.

PROOF. It follows directly from the variational definition (5) that Cap(A) is
increasing in A (see [14], P25.11 (b), for a different but equally simple argument).
Filling in the holes in A and translating to 0 we get Cap(A) ≤ Cap([0,diamA]).
To estimate the capacity of an interval, we use the definition of capacity as a sum
of escape probabilities and write

Cap
([0, n]) ≤ 2

n/2∑
i=0

P0
(|R1| > i

)
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that is, we bound the escape probability simply by the probability to exit the set in
the first step. Since R is an α-walk, this implies

Cap
([0, n]) ≤ C

∑
i−α ≤ Cn1−α. �

To demonstrate that the combination of these two bounds is sharp, let us prove
the result promised in the Introduction concerning the capacity of the Cantor set.
While this is a bit of a digression, some of our results indicate that the DLA ag-
gregate is self-similar, and is built up of several copies of smaller aggregates, well
separated in Z. Thus, the following serves as further indication that the capacity of
our aggregate An is indeed roughly min{n, (diamAn)

1−α}, and consequently the
diameter grows as nmin{2,1/α}+o(1) also for α ∈ [1/3,1].

THEOREM 9. Let An be the discrete Cantor set:

An := {
i = 0, . . . ,3n − 1 : ∀j = 0, . . . , n − 1

⌊
i/3j⌋ �≡ 1 mod 3

}
.

Let R be an α-walk. Then

CapAn ≥ c min
{
2n,3n(1−α)}/n.

Further, if α �= − log3 2 + 1 then the estimate may be slightly improved to

CapAn ≥ c(α)min
{
2n,3n(1−α)}.

Note that by Lemma 8, CapAn ≤ C3n(1−α) and since |An| = 2n we have
CapAn ≤ 2n. Hence (for α-walks), the theorem is precise up to at most the loga-
rithmic factor n.

PROOF. Let ψ be the equilibrium charge over An. Then

1

CapAn

= (ψ ∗ G)(x) ∀x ∈ An

and, therefore,

1

CapAn

= 2−n
∑

x∈An

(ψ ∗ G)(x) = 2−n
∑

x∈An

∑
y∈An

ψ(y)G(x − y)

= 2−n
∑

y∈An

ψ(y)
∑

x∈An

G(x − y)(6)

≤ C2−n
∑

y∈An

ψ(y)
∑

x∈An

|x − y|α−1,
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where in the last inequality we used Lemma 2. Now for every y ∈ An it is easy to
calculate ∑

x∈An

|x − y|α−1 = 1 +
n−1∑
k=0

∑
x:3k≤|x−y|≤3k+1

|x − y|α−1

≤ 1 +
n−1∑
k=0

3k(α−1)#
{
x : |x − y| ≤ 3k+1}

(7)

≤ 1 + C

n−1∑
k=0

3k(α−1)2k

≤ Cnmax
(
2n3n(α−1),1

)
.

Further, if α �= − log3 2 + 1 then the last inequality may be strengthened and we
get

(8)
∑

x∈An

|x − y|α−1 ≤ C(α)max
(
2n3n(α−1),1

) ∀y ∈ An.

Plugging (7) and (8) into (6) gives the two parts of the theorem, respectively (re-
member that

∑
ψ(y) = 1). �

Monotonicity of the capacity implies that adding a point to a set will increase its
capacity. The next lemma gives a nice formula for the exact increment in capacity.
Recall that for a set A and point x, EA(x) is the escape probability starting at x.
We also define E′

A(x) = EA∪{x}(x), that is, the probability that x is also avoided
by the random walk. Compare to analogous formulas in continuous settings [6, 7].

LEMMA 10. Let A be a set with finite capacity with respect to a transient
symmetric random walk, let x be a point outside A, and let A′ = A ∪ {x}. Then

Cap
(
A′) − Cap(A) = EA(x)E′

A(x)

and in particular, Cap(A′) − Cap(A) ∈ [E′
A(x)2,EA(x)2].

PROOF. From the representation of the capacity as a sum of escape probabil-
ities, we have Cap(A′) − Cap(A) = E′

A(x) − ∑
a∈A(EA(a) − EA′(a)). Since the

event of escaping from A′ is contained in the event of escaping from A, for a ∈ A

we have

EA(a) − EA′(a) = Pa(Tx < ∞, TA = ∞).

Random walk paths that escape from A and hit x, a.s. visit x only finitely many
times. Breaking each path at the last visit to x, we have

EA(a) − EA′(a) = ∑
γ :a→x

outside A

P(γ )Px(TA′ = ∞) = E′
A(x)

∑
γ :a→x

outside A

P(γ ),
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where P(γ ) denotes the probability that the random walk follows the path γ until
its end. By reversing each path γ ,

EA(a) − EA′(a) = E′
A(x)Px(R hits A at a),

since the sum is just the probability that the walk starting at x hits A at a. Summing
over a ∈ A,

Cap
(
A′) − Cap(A) = E′

A(x) − E′
A(x)Px(TA < ∞) = E′

A(x)EA(x). �

3.2. Capacity and DLA.

LEMMA 11. Let R be an α-walk. Let An be a corresponding DLA process.
Then there exists some δ > 0 such that

P
(
Cap(An+1) − Cap(An) > δ | Fn

) ≥ cn

Cap(An)1/(1−α)
.

Here, c and δ may depend on the walk, but not on n.

PROOF. Since An is an arbitrary set of n elements, let us denote it by A and its
capacity by κ . For some δ to be determined, let Sδ = A∪{x : EA(x)E′

A(x) ≤ δ} be
the union of A and the set of points whose addition to A will increase the capacity
by less than δ. The first step is to show that Sδ is small, in the sense that at most
half the points in any interval of length at least λκ1/(1−α) are in Sδ , where λ is
some constant to be determined. The scale κ1/(1−α) is chosen so that the capacity
of the whole interval is comparable to κ .

To see this, observe first that EA(x)E′
A(x) is decreasing in A. Let D =

{k1, . . . , k|D|} be an arbitrary subset of Sδ . Then

Cap(D) ≤ Cap(A ∪ D)

= Cap(A) +
|D|∑
i=1

Cap
(
A ∪ {k1, . . . , ki}) − Cap

(
A ∪ {k1, . . . , ki−1})(9)

= κ +
|D|∑
i=1

EA∪{k1,...,ki−1}(ki)EA∪{k1,...,ki}(ki) ≤ κ + |D|δ

Fix d = κα/(1−α). For an interval I of length λκ1/(1−α), we apply this to D =
I ∩ (dZ)∩Sδ . Since |D| ≤ |I |/d = λκ , we find from (9) that Cap(D) ≤ (1+ δλ)κ .

On the other hand, from Lemma 7 we have

(1 + δλ)κ ≥ Cap(D) ≥ c1 min
{|D|, (

d|D|)1−α}
.

Assume |D| > |I |/2d = λκ/2, then we have either 1 + δλ > c1λ/2, or else
1 + δλ > c1(λ/2)1−α . Neither of these hold for λ large enough and δ small
enough, giving a contradiction. Since there is nothing special about points that
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are 0 (mod d), we find that Sδ contains at most half of every congruency class
in I , and thus at most half of I . At this point, we fix the values of λ and δ to satisfy
the requirement just stated, and from now on we treat them as constants and will
hide them inside c-s.

To complete the proof, note using the gluing formula (4) that

P
(
Cap(An+1) − Cap(An) > δ | Fn

)
= ∑

x /∈Sδ

P
(
An+1 = An ∪ {x})

(4)= ∑
x /∈Sδ

∑
a∈An

px,aEAn(x)

CapAn

≥ ∑
a∈An

∑
x /∈Sδ

c|x − a|−α−1δ

κ

(where in the last inequality we used that for x /∈ Sδ we also have EA(x) > δ). For
every a ∈ A, we estimate its contribution to the sum by applying the above with
I = [a, a + λκ1/(1−α)]. We get∑

x /∈Sδ

|x − a|−α−1 ≥ ∑
x∈I\Sδ

c|I |−α−1 ≥ |I |
2

· c|I |−α−1 = cκ−α/(1−α).

Returning the term cδ/κ and summing over the n elements of A gives the claim.
�

With this result in place, we are ready to prove our first nontrivial bound on the
capacity of the DLA generated by an α-walk.

LEMMA 12. Let R be an α-walk, and (An) the associated DLA. Then almost
surely there exists some c such that

Cap(An) > cn
2−2α
2−α

for all large enough n. Consequently, this bound holds a.s. for all n with a ran-
dom c.

PROOF. The key is that as long as the capacity is small, the probability that it
grows is not too small. Let Xn be the events

Xn := {
Cap(An) < n

2−2α
2−α

} ∩ {
Cap(An+1) − Cap(An) ≤ δ

}
,

where δ is from Lemma 11. We can bound P(Xn|Fn) by 0 if Cap(An) is large, and
so using Lemma 11 we have

(10) P(Xn |Fn) < 1 − cn

n2/(2−α)
= 1 − c2n

− α
2−α .
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Since Cap(An) is increasing in n, it suffices to prove the claim for n = 2k . Let
Bk be the (bad) event that too many Xn-s happened between 2k and 2k+1 namely

Bk :=
{

#
{
n : 2k ≤ n < 2k+1 and Xn occurs

} ≥ 2k

(
1 − 1

2
c22−(k+1) α

2−α

)}
.

By (10), the Xn are stochastically dominated by independet events, and hence the
probability of Bk may be estimated by standard inequalities for such sums. We get

P(Bk) ≤ exp
(−c2k−(k+1) α

2−α
) ≤ exp

(−c2k 2−2α
2−α

)
.

Therefore,
∑

P(Bk) converges and a.s. only a finite number of the Bk occur. The
lemma will follow once we show that for some c > 0 sufficiently small ¬Bk im-
plies Cap(A2k+1) ≥ c2k(2−2α)/(2−α).

If for any 2k ≤ n < 2k+1, we have Cap(An) ≥ n(2−2α)/(2−α) then

Cap(A2k+1) > Cap(An) ≥ (
2k) 2−2α

2−α = c
(
2k+1) 2−2α

2−α .

Otherwise, ¬Bk implies that

Cap(An+1) − Cap(An) > δ for at least c2k 2−2α
2−α n-s.

This of course implies

Cap(A2k+1) ≥ cδ2k 2−2α
2−α

which was to be proved. �

3.3. From capacity to diameter. We will now use the various estimates on
the escape probabilities and capacity of An proved in the previous section to get
bounds on the the diameter of An. This section is analogous to Section 3 in part I.

THEOREM 13. For an α-walk R, one has

diam(An) ≥
(

n2

CapAn

)1/α

infinitely often

and

diam(An) ≥
(

cn2

(log logn)CapAn

)1/α

for all n sufficiently large

both with probability 1.

PROOF. Fix some m, D and set A with |A| = m, and examine the growth
probability P(diamAm+1 > D | Am = A). If diamA > D, then this probability is
simply 1. Otherwise, suppose that x was glued to some a ∈ A. If |x−a| > 2D, then
diamAm+1 > D (in fact this even implies that diamAm+1 ≥ 2D) but it also implies
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that d(x,A) > D ≥ diamA. Thus, we can use Lemma 6 to estimate EA(x) > c.
We get

P(diamAm+1 > D | Am = A)

≥ ∑
a∈A,

x:|x−a|>2D

μ(x, a)
(4)= ∑

a∈A

∑
x:|x−a|>2D

EA(x)px,a

Cap(A)
(11)

≥ ∑
a∈A

cP(|R1| > 2D)

Cap(A)
≥ cmD−α

Cap(A)
.

Applying this for Dm = (4m2/CapAm)1/α , we get as a corollary that the events
diamAm+1 > Dm stochastically dominate a sequence of independent Bernoulli
trials with probability c/m. By the Borel–Cantelli lemma, a.s. infinitely often
diamAm+1 > Dm > ( m2

CapAm
)1/α .

For the second part of the theorem, we apply (11) with

Dm =
(

c2m
2

(log logm)CapAm

)1/α

.

For some c2 sufficiently small, we get that the events diamAm+1 > Dm dominate
a sequence of independent Bernoulli trials with common probability (4 log logm)/

m. Thus,

P

(
∃m ∈

[
1

2
n,n

)
s.t. diamAm+1 > Dm

)

≥ 1 −
n−1∏

m=n/2

(
1 − 4 log logm

m

)

≥ 1 −
(

1 − 4 log logn

n

)n/2
≥ 1 − c

log2 n
.

Existence of such m implies that diamAn ≥ Dm ≥ 1
4Dn. By Borel–Cantelli, this

a.s. holds for n = 2k for all large enough k. Moving from n = 2k to general n only
loses a constant (again by the monotonicity of the capacity and diameter), and the
second claim of the theorem is proved. �

COROLLARY 14. For an α-walk R (as in Theorem 13), we have

diam(An) ≥ c max
(
n1/α, n2)

infinitely often, and

diam(An) ≥ max
((

n

log logn

)1/α

,
n2

log logn

)
for all n sufficiently large.
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PROOF. The lower bound n1/α follows from using Theorem 13 with the triv-
ial bound CapAn ≤ n. The lower bound n2 follows from applying the bound
CapAn ≤ C(diamAn)

1−α (Lemma 8) and moving terms around. �

We now turn to our current best upper bound for the diameter for α ∈ (1/3,1).
The following is a companion to Theorem 13, with reversed direction for the in-
equalities.

THEOREM 15. For any symmetric random walk R with P0(|R1| > x) ≤ Cx−α

(and in particular any α-walk), one has a.s.

diam(An) = o

(
n(logn)1+ε max

m<n

m

CapAm

)1/α

.

PROOF. As in the proof of Theorem 13, let m, D be integers and A a set of
size m. Condition on Am = A and assume Am+1 was constructed by gluing some
x at some a ∈ A. Then clearly diamAm+1 − diamAm ≤ |x − a|. Hence, we can
write

P(diamAm+1 − diamAm > D | Am = A)

≤ ∑
a∈A|x−a|>D

μ(x, a)(12)

= ∑
a∈A|x−a|>D

EA(x)px,a

CapA
≤ ∑

a∈A

P0(|R1| > D)

CapA
≤ CmD−α

CapA
.

Here, we do not need Lemma 6 or some analog of it, because we simply estimate
EA(x) ≤ 1.

Denote therefore Dm,k = (2−knm/CapAm)1/α and examine the event

Lm,k := {diamAm+1 − diamAm > Dm,k}.
By (12), we have that P(Lm,k|Am) ≤ C2k/n. In other words, Lm,k (for each fixed
k and m = 1, . . . , n) are stochastically dominated by i.i.d. Bernoulli trials with
probabilities C2k/n so we expect at most C2k such events. Standard estimates for
Bernoulli trials give

(13) P
(
at least λ2k Lm,k occurred

) ≤ C

(
n⌈

λ2k
⌉)(

C2k

n

)�λ2k�
≤

(
C

λ

)�λ2k�

which holds for all λ > 0 and all k.
Let Gn be the event that for all k, no more than λ2k of the Lm,k occur. Notice that

when λ2k < 1 this means no Lm,k occur, and since Lm,k is increasing in k, no Lm,k′
occur for any k′ < k either. By (13), if λ is sufficiently large then P(Gn) > 1−C/λ,
since it suffices to check the events for k with λ2k ≥ 1/2.
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For any given m, if k is maximal so that diamAm+1 − diamAm ≤ Dm,k−1, then
Lm,k occurs, and so

diamAm+1 − diamAm ≤ ∑
k

1Lm,k
Dm,k−1.

Assuming Gn, we can sum over m to get

diamAn − diamAn/2 =
n−1∑

m=n/2

diamAm+1 − diamAm

≤
n∑

m=n/2

∑
k

1Lm,k
Dm,k−1

≤ ∑
k:2kλ≥1

λ2k max
m<n

Dm,k−1(14)

= λ

(
nmax

m<n

m

CapAm

)1/α ∑
k:2kλ≥1

2k(1−1/α)

≤ C

(
λnmax

m<n

m

CapAm

)1/α

.

Now fix λ = c1(logn)1+ε for some constant c1 sufficiently small. Applying that
P(Gc

n) ≤ C/λ for n = 2l , we see that G2l happens for all l > l0 so we get

diamA2l ≤ diamA2l0 +
l∑

i=l0

C

(
c12i(log 2i)1+ε max

m<2i

m

CapAm

)1/α

Passing from n = 2l to general n only costs a constant and we get

diamAn ≤ diamA2l0 + C

(
c1n(logn)1+ε max

m<n

m

CapAm

)1/α

.

Since c1 is arbitrary, the claim follows. �

COROLLARY 16. Let R be an α-walk. Then

diamAn ≤ n2/α(2−α)+o(1).

PROOF. By Lemma 12, we have

CapAn > cn(2−2α)/(2−α)

for some random c, with probability 1. Using this in Theorem 15 gives

diamAn ≤
(
n(logn)1+ε max

m<n
Cmα/(2−α)

)1/α = n2/α(2−α)+o(1). �
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4. Less than 1
3 moments. In this section, we will handle the case of α < 1

3 . As
already explained, we need to give an estimate for the capacity. This is Theorem 17
below—the α < 1

3 clause of Theorem 1 is then an immediate corollary of it and of
Theorem 15.

THEOREM 17. Let R be a random walk satisfying P(R1 = x) ≈ x−1−α for
α ∈ (0, 1

3). Then the DLA generated by R a.s. satisfies Cap(An) = n1−o(1).

To aid in reading the proof of the theorem, we supply here a road map. The road
map is mostly intended to be read while and after reading the proof proper, but
some readers might find it useful even before starting out. Let us reiterate a point
made already in the Introduction: the proof hinges around the fact that far away
branches of the aggregate are approximately independent. The notions we will
introduce (continuous time, SDLA) are meant to make this fact more tractable.

PROOF ROADMAP. In Section 4.1, we introduce continuous time: rather than
bringing particles from infinity one by one we let each existing particle in the
aggregate “activate” at rate 1 and send a random walker. If that walker avoids the
existing aggregate, its first step is added to the aggregate. This is a time-change of
DLA, and we define τ(m) to be the first time when the continuous-time version
has m particles.

Next, we introduce a carefully chosen parameter D (see the definition (17) be-
low, the actual value is approximately n1/α). We also introduce a new process, also
in continuous time, called split DLA, or SDLA for short. This process starts like a
usual DLA, but at the qth time a jump larger than D occurs, the particle is rather
placed in a new aggregate which from that point on evolves completely indepen-
dently of the existing aggregate. The original is denoted Ŝ

q
t and the split S

q
t .

Next, we show two estimates on how many large jumps occur. The first
(Lemma 22) shows that with probability at least 1

2 , the first large jump happened
after the aggregate already has at least n/ logn particles. The other direction is
trickier: we show (Lemma 19) that with high probability either at least logn large
jumps occurred before the aggregate grew to size n/2, or the capacity is large.
Here, large means ≥ cn/M where M is another carefully chosen parameter (see
Section 4.3, eventually we will show that M = no(1)).

The main calculation (and where the condition α < 1
3 appears) is in Section 4.5.

We define T
q
t , respectively, T̂

q
t to be the union of all the paths of all the random

walkers used to define S
q
t , respectively, Ŝ

q
t . We then show (Lemma 24) that with

high probability T ∩ Ŝ = T̂ ∩ S = ∅. The proof revolves around the realization
that Ŝ, T and the large jump itself are independent, and hence this is asking about
the intersection of a set with a random translation of another set. With appropriate
estimates for the sizes of S and T , the lemma follows. An easier version of the
same calculation shows (Section 4.6) that the capacity of S ∪ Ŝ is very close to the
sum of the capacities of the two sets.
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The reason that the condition T ∩ Ŝ = ∅ is important is discussed in Section 4.7.
We show there that it is possible to couple DLA and SDLA so that the different
S

q
t are independent up to the first time a large jump occurs from them, and such

that whenever T
q
t ∩ Ŝ

q
t = T̂

q
t ∩ S

q
t = ∅ then At = S

q
t ∪ Ŝ

q
t (where At is the DLA

process).
We now have all the ingredients for the proof. We put them together in

Lemma 31 which claims, roughly, that with high probability:

(15) Cap(An) ≥ c min
{

n

M
, (logn)Med

(
Cap(An/ logn)

)}
,

where Med(·) is the median of the variable. The proof is a combination of all the
above. With high probability, there were at least logn large jumps (or the capac-
ity is at least cn/M , which explains the first term in the minimum above). Since
(again with high probability) all T and S do not intersect, these can be coupled to
logn independent DLAs. Each one succeeds with probability at least 1

2 to reach
n/ logn particles and has (again with constant probability) capacity comparable to
its median. Because of independence, with high probability at least c logn of these
S

q
t are “good”. Finally, the capacity summation formula shows that the capacity of

At is at least roughly
∑

Cap(S
q
t ) where the sum is over the good values of q .

The theorem follows from (15) quite easily: after all, if we lose only a constant
whenever inducing from n/ logn to n, then we should lose no(1) overall. This has
to be done carefully, controlling M and Med(Cap(At )) simultaneously, but even-
tually is quite simple and is done in Lemma 32. �

4.1. Continuous time Let us introduce continuous time. This is not strictly
needed for our analysis, but does simplify some of the proofs. DLA in continuous
time is defined as follows. We start with A1 = {0}. Given the aggregate At , each
point a ∈ At becomes active with rate 1. When a point a is activated, we start a
random walk (Ri) from R0 = a. If R avoids At , then R1 is added to At . The whole
step is instantaneous (the speed of R is infinite, if you like). If (Ri) hits At then A

remains unchanged. Let

τ(m) := inf
{
t : |At | ≥ m

}
(normally we use τ(m) for integer m and then we could have defined it as the
first time when |At | = m. But we will need occasionally τ(n/ logn) and we pre-
fer not to be forced to put integer values). It is easy to conclude from the gluing
formula (4) that the sequence (Aτ(m))m of sets visited by the process At is the
DLA process—indeed, once one conditions on an addition of a particle at time t ,
the probability that some a ∈ A was the one activated is exactly EAt (a)/Cap(At )

while the probability that the first step was to x (conditioned on the random walk
from a escaping to infinity) is exactly px,aEAt (x)/EAt (a), so one recovers the
gluing formula.
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From now on, we shall simply refer to the DLA in continuous time as DLA.
We will also abbreviate τ = τ(n) as n will be fixed for long parts of the analysis.
Since new points are added at rate Cap(At ) ∈ [1, |At |], it is clear that |At | grows
at most exponentially fast and so the process is well defined for all t . In light of
Theorem 17, this is not too far from the truth.

4.2. Split DLA. The core of the argument is in introducing a process that al-
lows us to analyse the dependency between distant parts of the aggregate. We will
call this process split DLA (SDLA). This process is similar to DLA but contains
two components that grow independently. In fact, SDLA is not a single process,
but a family of processes, though the dependence on the parameters (n, D and q)
will be implicit.

We will construct a coupling of DLA and SDLA for all values of q , which is
then shown to have useful properties, while keeping the two aggregates equal up
to time τ(n) for most values of q (SDLA is also constructed in continuous time).
In fact, we believe that w.h.p. the two processes are equal up to time τ(n) for all
values of q , though proving that is not needed for our argument.

SDLA is defined in terms of two parameters. A carefully selected D defined
below in equation (17) (depending implicitly on n), and an integer q ∈ N. The
SDLA consists of two sets St and Ŝt . Initially, we have S1 = ∅ and Ŝ1 = {0}.
The SDLA dynamics are very similar to DLA. Each of St and Ŝt evolves as an
independent DLA in continuous time, with a small exception: Each time a random
walk is started at a point of Ŝ, there is some probability that the first step |R1 −a| of
the random walk is large, namely greater than D. On the qth time that this happens,
we add R1 to St (which up to that time has been empty), and we do not add it to Ŝt .
This is done whether or not the random walk later hits Ŝt or not. Similarly, “the
qth time” counts initial steps greater than D irrespectively of whether a point was
added to Ŝ or not. The birth of S is the only exception to the rule that S and Ŝ

evolve as independent DLAs in continuous time, so Ŝ is just a DLA with one
particle lost at some point, and S is just an empty set that at some point sprouts a
particle out of thin air and then evolves like a DLA.

While normally we keep the dependence on q implicit, we will need it at some
points. We will use S

q
t and Ŝ

q
t to denote the two parts of the SDLA when we wish

to make this dependence explicit. The dependence on D and n is always implicit.
When a random walk used in the DLA begins with a large jump, we say that a split
occurs. We denote the time of the qth split by

βq = inf
{
t : Sq

t �= ∅
}
.

This is the birth time of the q-SDLA. The birth point, that is, the first point in
Sq will be denoted by bq . We will also care about the first time at which a split
occurs starting from a point a ∈ S

q
t , and denote this by ζq . Finally, to consider the

time at which the parts of the SDLA reach certain sizes, we use τq(m) and τ̂q(m).



LONG-RANGE DLA II 1909

We shall also consider the time at which the total size of the SDLA is m, denoted
σ(m).

In the next few sections, we will investigate SDLA as an independent object. We
will only return to the coupling of DLA and SDLA in Section 4.7. Nevertheless,
we might as well explain it roughly at this point, to give the reader some perspec-
tive. The coupling is very natural. Before the qth split of the DLA, we use the same
activation times for the DLA and for the Ŝ part of the SDLA, and the same ran-
dom walks. They evolve the same. After the qth split, as long as At = Ŝt ∪ St and
Ŝt ∩ St = ∅ we again use the same activation times and the same random walks.
Now there is no deterministic guarantee that they evolve the same, but we will see
that, for α < 1

3 they indeed do, with high probability. Once one of these conditions
is violated, we simply let them evolve independently (the exact condition for “sep-
aration” of the DLA and SDLA is a little different, see Lemma 29 below, but the
above serves as a good approximation).

4.3. Splitting estimates. We now choose the parameter D for the SDLA. De-
fine

Mn := Med

(
n∑

i=1

1

Cap(Aτ(i))
; 5

6

)
, M := Mn/ logn,

where Med(X;p) is the “p-Median” (quantile) of the variable X, that is,

(16) Med(X;p) = sup
{
t : P(X < t) < p

}
.

Note that points are added to A at rate Cap(A), so
∑n

i=1
1

Cap(Aτ(i))
is an estimate

for τ(n). With this M , define

(17) D :=
(

6C1nM

logn

)1/α

,

where C1 is such that the random walk jump distribution satisfies P(|X| > t) <

C1t
−α for all t .

Note that Cap(A) ≤ |A|, and therefore M ≥ ∑n/ logn
1 i−1 ≥ c logn. It follows

that

(18) D ≥ cn1/α.

We show below that this is not far from the truth: M = no(1). The purpose of this
definition of D is to have both lower and upper bounds on the occurrence of such
large jumps and in this way to control the branching of the SDLA.

LEMMA 18. For n sufficiently large, the probability that a DLA splits before
(continuous) time min(2M,τ(n/ logn)) is at most 1

3 .
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LEMMA 19. There exists a c2 > 0 so that

P
(
A splits < logn times by τ(n/2) and Cap(Aτ ) < c2n/M

) ≤ Cn−c.

Since the splits of DLA and SDLA are the same, up to the qth split, these lem-
mas give information also on SDLA. We will use them mainly for DLA, though.

We will see that τ(n/ logn) is typically less than 2M . Thus, we argue that A is
likely to accumulate n/ logn points without splitting, but very likely to split many
times before accumulating n/2 points, unless it has large capacity.

PROOF OF LEMMA 18. Given At , the rate at which splits occur is the prob-
ability of a large random walk jump times |At |, namely |At |P(|X| > D) ≤ |At | ·
C1D

−α . Using the definition of D (17), as long as |A| < n/ logn the rate of splits
is at most 1

6M
. Therefore, the number of splits up to time min(2M,τ(n/ logn)) is

stochastically dominated by a Poisson process with rate 1
6M

and time interval 2M .
It follows that the expected number of splits by time min(2M,τ(n/ logn)) is at
most 1

3 . �

PROOF OF LEMMA 19. The probability of a large random walk jump is at
least cD−α , so the splitting rate is at least

|At |cD−α = c(logn)|At |
nM

.

The rate at which new points are added to At is Cap(At ). Thus, the probability that
a split occurs before a point is added to At is at least

c(logn)|At |
nM Cap(At )

.

With this c, fix c2 = c/20. If |At | ≥ n/4 and Cap(At ) < c2n/M then the probabil-
ity of a new split is at least 5(logn)/n.

Let Xk be the indicator of the event that a split occurs in the interval (τ (k), τ (k+
1)], or Cap(Aτ(k)) ≥ c2n/M . Then for k ∈ [1

4n, 1
2n], the Xk’s stochastically domi-

nate i.i.d. Bernoulli random variables with mean 5(logn)/n, and so

P

(n/2∑
n/4

Xk < logn

)
< Ce−c logn = Cn−c.

However, if
∑n/2

n/4 Xk ≥ logn then either logn splits occur or else at some time
Cap(At ) exceeded c2n/M . In the latter case, monotonicity of the capacity implies
Cap(Aτ ) > c2n/M . �
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4.4. Growth estimates. We shall need the following estimates for the growth
rate of the DLA and SDLA.

LEMMA 20.

P

(
τ(n/ logn) > 2M and

n/ logn∑
k=1

1

Cap(Aτ(k))
≤ M

)
< Cn−c.

Since by definition
∑ 1

Cap(Aτ(k))
is quite likely to be less than M , it follows that

τ(n/ logn) is usually less than 2M . Before we start with the proof of Lemma 20,
let us note the following.

LEMMA 21. Let X1, . . . ,XN be independent Poisson clocks (not necessarily
with the same rates). Let T be the first time one of them activated, and let E be
the event that the first to activate was X1. Then T conditioned on E has the same
distribution as T .

The proof of Lemma 21 is a straightforward calculation, and we omit the details.

PROOF OF LEMMA 20. Points are added to At at rate Cap(At ). Let Xm =
τ(m + 1) − τ(m) be the time it takes to add the m + 1st point. Let Qm =
Cap(Aτ(m)) be the rate at which it is added, and F the sigma-field generated by all
Qm’s. Examine one Xm conditioned on F . The conditioning gives us the capacity
of Am as well as that of Am+1 which gives some information on the point that was
activated to increase Am. Nevertheless, by Lemma 21 this information is irrele-
vant and we get that Xm conditioned on F is an exponential random variable with
mean 1/Qm. Clearly, conditioning on F makes the different Xm-s independent.
Thus, their sum can be analysed by standard techniques as follows.

We have that, for c sufficiently small

E
(
ecXm | F) = Qm

Qm − c
≤ eC/Qm.

Since Qm ≥ c, it follows that

E
(
ec(Xm−1/Qm) | F) ≤ eC/Q2

m.

By Lemma 7, we have Qm = Cap(Aτm) ≥ cm1−α , so
∑

m
C

Q2
m

< C, and so

E exp
(
c

∑
m<n/ logn

(
Xm − 1

Qm

))
≤ C

(note that we integrated F away). Since τ(n/ logn) = ∑
m<n/ logn Xm, we find

P

(
τ(n/ logn) > M + ∑ 1

Qm

)
≤ Ce−cM < Cn−c

(using M > c logn). The claim follows. �
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LEMMA 22. With probability at least 1
2 − Cn−c, one has that

τ(n/ logn) ≤ min{2M,β1},
where β1 is the time of the first split.

PROOF. By Lemma 20 and the definition of M ,

P
(
τ(n/ logn) ≤ 2M

) ≥ 5

6
− Cn−c.

By Lemma 18,

P
(
β1 ≥ min

{
2M,τ(n/ logn)

}) ≥ 2

3
.

When both events happen (which happens with probability ≥ 1
2 − Cn−c), we get

the required inequality. �

Recall that for some fixed q , σ(m) is the (continuous) time that the size of the
SDLA (namely |St | + |Ŝt |) first reaches m.

LEMMA 23. Fix q ∈ N, and consider the event B that σ(n) − σ(n/2) < 2M

and Cap(Sσ(n)) + Cap(Ŝσ (n)) < n/5M . Then P(B) < Ce−cn.

PROOF. Note that Cap(St ) [resp., Cap(Ŝt )] is the rate at which points are
added to St (resp., Ŝt ). Consider the process Nt that counts points being added to St

or Ŝt starting at time σ(n/2), stopped at the first time t when Cap(St )+Cap(Ŝt ) >
n

5M
. Then Nt is stochastically dominated by a Poisson process with intensity n

5M
.

Up to this stopping time, we have Nt = |Sσ(n/2)+t | + |Ŝσ (n/2)+t | − n/2.
Thus, the number of points added within time 2M and before the stopping time

is dominated by a Poi(2M · n
5M

) variable. The probability that this exceeds n/2
is exponentially small. However, if N2M < n/2 then either σ(n) − σ(n/2) > 2M

or else Cap(St ) + Cap(Ŝt ) exceeds n
5M

before time σ(n). The claim follows by
monotonicity of capacity. �

4.5. Interaction probabilities. We now analyse the probability of an interac-
tion between Sq and Ŝq . The bounds we get will imply that for any given q , the
law of the DLA At is close to the law of St ∪ Ŝt . Fix some q ∈ N, and consider the
SDLA. The set St ∪ Ŝt evolves very similarly to a DLA. The difference is that if a
random walk from St hits Ŝt or vice versa, then a point may be added to the SDLA
but not to the DLA. Thus, we need to bound the probability of such an intersection
happening.

We shall be interested in the union of all random walk trajectories that originate
from a point of Sq or Ŝq up to time t . More precisely, T

q
t is the union of all trajec-

tories of random walks that started from points of Sq up to time t and escaped (i.e.,
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led to the addition of a point to Sq ). Similarly, T̂
q
t is the union of all trajectories of

random walks that started from points of Ŝq up to time t and escaped. However,
the walk at time βq is treated differently. Even though it starts at a point of Ŝq ,
its first step is to bq ∈ Sq , and we include this walk minus its starting point in T q

and not in T̂ q . Note that paths in both T q and T̂ q include their starting points, so
Sq ⊂ T q and Ŝq ⊂ T̂ q .

Our goal in this section is the following.

LEMMA 24. Let σ := σ(n). For any q ∈ N,

P
(
T q

σ ∩ Ŝq
σ �= ∅

) ≤ Cn−c and P
(
T̂ q

σ ∩ Sq
σ �=∅

) ≤ Cn−c.

We first argue that after a large jump the walk is unlikely to hit any given point.

LEMMA 25. Consider an α-walk R started at a, and a point z, and let the first
jump of the random walk be from a to R1. Then Pa(R hits z, |R1 −a| > L) ≤ C/L.
Consequently, for any fixed set S, the probability of making a jump of size at least
L and hitting S is at most C|S|/L.

PROOF. With R1 = a +X, we use that Green’s function satisfies G(z−R1) ≈
|z − R1|α−1 (Lemma 2) to get

Pa

(|R1 − a| > L,R hits z
) ≤ C

∑
|X|>L

|X|−α−1|z − a − X|α−1.

In this last sum, terms with |z − a − X| ≤ L are bounded by

L∑
−L

L−α−1|i|α−1 ≤ C/L.

Terms with |z−a −X| > L are bounded by
∑

|X|>L |X|−α−1Lα−1 ≤ C/L as well.
�

Recall that bq is the birth point, the first point in Sq . By A − x we denote the
translation of a set A by x.

LEMMA 26. Let T be either T
q
τq(n) − bq or T̂

q
τ̂ q (n) for some q ∈ N, and let I

be any interval of length L ≥ D. Then

E|T ∩ I | ≤ CnLα.

Roughly, this is so since we are considering n random walks, and each of those
visits Lα points in I . This is somewhat complicated by the fact that there are also
random walks that do not escape Sq but still visit I .
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PROOF. We may assume (by increasing C if necessary) that L is sufficiently
large. We consider only the case of T q , the case of T̂ q is proved identically. The
process of adding a single point to Sq involves starting a random walk from a
point of Sq and, if said random walk hits Sq , trying again until such a random
walk escapes to infinity. We show the stronger fact, that the expected number of
points in I visited by these random walks that were involved in adding a single
point to Sq is at most CLα .

Examine the random walk at some time when it is in I . The random walks we
are dealing with have probability at least cL−α to make a step bigger than 2L. By
Lemma 6, once this happens the walk has probability bigger than some c to never
hit I again, hence it has probability at least cL−α to make a large step and then
never hit I again.

Next, apply the previous lemma. We get that (again, after the initial step bigger
than 2L) the probability that the random walk hits Sq is at most C|Sq |/L. Since
|Sq | ≤ n and since L ≥ D ≥ cn1/α [by (18)] we get that C|Sq |/L ≤ CLα−1 �
L−α (here we only need α < 1

2 ). Hence, we get, for L sufficiently large, that with
probability at least cL−α the random walk makes a step bigger than 2L and after
that disappears to infinity, never returning to either I or Sq . This, of course, adds
a point to Sq .

Since all these calculations were independent of the past, we get that the number
of points visited in I before adding a single point to Sq is stochastically dominated
by a geometric random variable with expectation CLα , proving the lemma. �

LEMMA 27. Let T be either T
q
τq − bq or T̂

q
τ̂ q for some q ∈ N. Fix any x ∈ Z,

and let ν be an independent random walk step conditioned on |ν| ≥ D. Then

P(x − ν ∈ T ) ≤ CnDα−1 ≤ Cn2−1/α.

PROOF. Let Ik = [2kD,2k+1D). Then we can write

P(x − ν ∈ T ) = ∑
k≥0

P(ν ∈ Ik, x − ν ∈ T ) + ∑
k≥0

P(−ν ∈ Ik, x − ν ∈ T ).

Since P(ν = y) ≤ CDαy−α−1 (the Dα comes from the conditioning of ν to be
large), we have for y ∈ Ik that P(ν = y) ≤ C2−(α+1)kD−1. Thus,

P(ν ∈ Ik, x − ν ∈ T ) = ∑
y∈Ik

P(ν = y)P(x − y ∈ T )

≤ C2−(α+1)kD−1
∑
y∈Ik

P(x − y ∈ T )

= C2−(α+1)kD−1
E

∣∣T ∩ (x − Ik)
∣∣

By Lemma 26 ≤ C2−(α+1)kD−1n|Ik|α = C2−knDα−1.
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The same bound holds for −ν ∈ Ik . Summing over k now gives P(x − ν ∈ T ) ≤
CnDα−1. The last claim holds since D > cn1/α (18). �

We remark that this last lemma is the most important point in the proof where
we need a pointwise estimate on P(ν = y) and cannot do with an estimate on
P(ν > y).

PROOF OF LEMMA 24. We prove only the first bound, as the second is proved
identically.

Let ν be the jump of the walk the creates Sq , that is, the qth large jump. Let a

be the point of Ŝq from which the jump occurred (so bq = a + ν). The first key
observation is that ν is independent of Ŝq , and only affects Sq by a translation, so
it is independent also of Sq − ν.

We have that S
q
t − a − ν and Ŝ

q
t are also independent for any t . Note that

for the stopping time σ , the independence fails, since their sizes are now linked.
To overcome this, we consider intersections among the larger sets Ŝ

q
τ̂ q and T

q
τq .

For those we have that Ŝ
q
τ̂ q , T

q
τq − a − ν and ν are jointly independent, with Ŝ

q
τ̂ q

being some set of size n and ν being a random walk step, conditioned to be large.
Moreover, a depends only on Ŝ

q
τ̂ q .

Denote S = Ŝ
q
τ̂ q and T = T

q
τq −a −ν, so we are interested in the probability that

S − a − ν intersects T . Condition on a,S, and consider any s ∈ S. By Lemma 27,
we have that P(s − a − ν ∈ T ) ≤ Cn2−1/α . Since |S| = n, it follows that P(S −
a − ν ∩ T �= ∅) ≤ Cn3−1/α . Since this bound is uniform in S and a, and since
α < 1/3, this completes the proof. �

The last part of this proof is the only place where α < 1
3 is crucial to our proof.

It is also used in the next lemma, though a weaker statement which should hold for
α < 1

2 would suffice there. However, Lemma 24 fails for α ∈ [1
3 , 1

2 ], as we expect
there to be intersections. Using a weaker form of this lemma will probably require
significant modification of our argument.

4.6. Bounds on capacity influence. Let us extend the definition of the Green’s
function to sets A,B ⊂ Z by

G(A,B) = ∑
a∈A
b∈B

G(a, b).

The reason for this is the easy bound Cap(A∪B) ≥ Cap(A)+Cap(B)−G(A,B),
which holds since the capacity is the sum of the escape probabilities. With this in
mind, we prove the following.
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LEMMA 28. For any q ∈ N, we have EG(S
q
τ , Ŝ

q
τ ) ≤ C.

PROOF. Since τq, τ̂q ≥ τ , it is enough to prove that EG(S
q
τq , Ŝ

q
τ̂q

) ≤ C, that is,
allow each of the two sets to continue to grow to size n.

As before, let ν be the size of the qth large jump that gave rise to Sq . Denote
A = Ŝ

q
τ̂q

and B = S
q
τq − ν, and note that A,B are sets of size n and ν a random

walk step conditioned to be large, independent of A,B (the independence claim is
as in the previous lemma). Conditioning on A,B , we get

EG
(
S

q
τq , Ŝ

q
τ̂ q

) = ∑
x∈A
y∈B

EG
(
x − (y + ν)

)
,

where the expectations are only over ν. Recall that G(x) ≈ |x|α−1 by Lemma 2
and that P(ν = z) < C/D for all z. Therefore, for any x we have

EG(x − ν) ≤ ∑
y:|x−y|≤D

C|x − y|α−1 · P(ν = y) + CDα−1
P

(|ν − x| > D
)

≤ C

D

D∑
i=1

iα−1 + CDα−1 ≤ CDα−1 (18)≤ Cn1−1/α.

Summing over the sets A and B gives

EG
(
Sq

τq
, Ŝ

q
τ̂q

) ≤ Cn3−1/α ≤ C. �

4.7. Coupling DLA and SDLA. We now have in place all the necessary esti-
mates about DLA and SDLA. In order to put them to use, we need to describe
a coupling between the processes. More precisely, we construct the DLA as well
as all q-SDLAs (for all q ∈ N) in the same probability space. This coupling will
satisfy the following two properties, which we formulate as lemmas.

LEMMA 29. If for some q and t , we have T
q
t ∩ Ŝ

q
t = T̂

q
t ∩ S

q
t = ∅, then

At = S
q
t ∪ Ŝ

q
t (as a disjoint union).

Recall that T q is the union of all walks used to create Sq as defined in the
beginning of Section 4.5. Recall also that βq is the time the qth split occurs (i.e.,
that Sq is created), that bq is the first point in Sq , and and that ζq is the first time a
split occurs from a point of Sq .

LEMMA 30. The processes ({Sq
t+βq

}−bq : t ≤ ζq −βq), that is, Sq killed at its
first split, form an i.i.d. sequence. Each has the law of DLA killed once a random
walk begins with a large jump.
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Thus, we have on the one hand that the Sq parts of the SDLAs for different q

are independent until they first split, and on the other hand they are all part of the
large DLA process to the extent possible.

The coupling is constructed as follows. Start with the DLA process At . For any
q ∈ N, the q-SDLA has Ŝ

q
t = At until the qth time a random walk starts with a

large jump, at which time S
q
t becomes nonempty. As long as At is the disjoint

union of S
q
t and Ŝ

q
t , there is a natural way to continue the coupling: the same

points are activated in both processes and the same random walks used from active
points. As long as T

q
t ∩ Ŝ

q
t = T̂

q
t ∩ S

q
t = ∅, points are added to At if and only if

they are also added to one of S
q
t or Ŝ

q
t .

This guarantees that Lemma 29 holds, regardless of how Sq and Ŝq evolve once
there is some interaction between them. In order to achieve the independence prop-
erty of Lemma 30, we say that once T

q
t ∩ Ŝ

q
t �= ∅ or T̂

q
t ∩ S

q
t �= ∅, the q-SDLA

continues its evolution independently of the DLA and all other q ′-SDLAs (we are
only interested in the Sq part, but for concreteness, let us say that the Ŝq part also
continues independently). Lemma 30 now holds since the point activation and as-
sociated random walks used to generate Sq over the time interval [βq, ζq] are all
independent and disjoint of those used for any other q .

To convince oneself that the activations and random walks are really disjoint,
colour At as follows: the first point is coloured 0, and whenever a point a is acti-
vated and the random walk adds a new point b to the DLA, b inherits a’s colour,
except when a split occurs, in which case, if this is the qth split, b gets coloured by
q (the “colours” are elements of {0,1,2, . . . }). It is easy to check that Sq is exactly
the points that have colour q until one of the two events happen:

• either T q ∩ Ŝq �= ∅ happened, which is one of the two “bad” events of
Lemma 29, so after that Sq becomes independent of everything else,

• or ζq occurs, in which case a split happens from Sq and Sq now corresponds to
two colours in A.

This shows that the portions of Sq during [βq, ζq] are independent, since their
randomness either comes from differently coloured points, or from a completely
independent source.

Now that Lemmas 29 and 30 are proved, we have all the necessary pieces.

4.8. The grand assembly. We are now ready to put together all the parts of
the argument, and prove Theorem 17. The next lemma is the core of the proof.
It uses everything we learned so far, and the theorem follows from it by a simple
induction. Recall that Med(·; 1

6) is the 1
6 -quantile defined in (16).

LEMMA 31. For some c3, with probability at least 1 − Cn−c,

Cap(An) ≥ min
{
c3n

M
,

logn

5
Med

(
Cap(An/ logn); 1

6

)}
.
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PROOF. We may assume n is sufficiently large, as for small n the lemma is
true trivially if the C in the probability estimate 1 − Cn−c is made large enough.
For every q ∈ N, let (Sq, Ŝq) be a q-SDLA process, and assume that they are
all coupled to our DLA as in the previous section. With high probability the (bad)
event of Lemma 19 does not occur for the DLA and the (bad) events of Lemmas 23
and 24 do not occur for any q ≤ logn. Here and below, “with high probability”
means with probability at least 1 − Cn−c. To spare the reader some page flipping,
here is a short reminder of these lemmas (up to the aforementioned bad events):

Lemma 19: Either the DLA splits logn times or it has large capacity.
Lemma 23: Either the SDLA satisfies σ(n) − σ(n/2) ≥ 2M or it has large ca-
pacity.
Lemma 24: T ∩ Ŝ = T̂ ∩ S = ∅.

Thus, we suppose from here on that this is the case. Recall that τ is the stopping
time when the DLA reaches size n and σ is the analogous quantity for the q-
SDLA. From Lemma 29, we now see that σ(m) = τ(m) for any m ≤ n and for any
q ≤ logn.

If for some q ≤ logn, we have Cap(Sσ )+ Cap(Ŝσ ) ≥ n/5M then at least one of
them has capacity at least n/10M . Since Aτ = Sσ ∪ Ŝσ (again using Lemma 29)
by the monotonicity of capacity, we get Cap(Aτ ) ≥ n/10M and we are done as
long as c3 ≤ 1

10 . Thus, suppose this too is not the case, and so, since the bad event
of Lemma 23 did not occur, we get τ(n)− τ(n/2) ≥ 2M . By making c3 < c2 (with
c2 taken from Lemma 19), we may similarly assume (this time using Lemma 19)
that A splits at least logn times by time τ(n/2).

Call a split Sq good if the following both hold:

(i) its capacity is typical: Cap(S
q
τq(n/ logn)) ≥ Med(Cap(Aτ(n/ logn)); 1

6), and
(ii) it grows fast enough: τq(n/ logn) < min{βq + 2M,ζq}, that is, Sq reaches

size n/ logn both before splitting (ζq ) and within 2M of becoming nonempty (βq ).

Since this only depends on the process Sq until it splits, the events that Sq are good
are i.i.d. (by Lemma 30). By the definition of Med, the probability of clause (i)
holding for any q is at least 5

6 . On the other hand, Lemma 22 gives that clause (ii)
holds with probability at least 1

2 − Cn−c. Hence, each Sq is good with probability
at least 1

3 − Cn−c. Thus (for n large enough), the probability that at least 1
4 logn

of the Sq for q ≤ logn are good is at least 1 −Ce−c logn = 1 −Cn−c. Assume this
is the case.

To summarise our current assumptions, either Cap(Aτ ) >
c3n
M

, or else there are
at least 1

4 logn good branches Sq with q < logn, each of which started before time
τ(n/2) and accumulated n/ logn points without splitting and within time 2M .
Since also τ(n) − τ(n/2) ≥ 2M , these points are all present in Aτ and separate
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from those of other good branches. Moreover, the first n/ logn points in each of
these branches have a typically large capacity.

Let G = {q < logn : Sq is good}, so that Aτ contains
⋃

q∈G S
q
τq(n/ logn). This

implies the capacity bound

Cap(Aτ ) ≥ ∑
q∈G

Cap
(
S

q
τq(n/ logn)

) − C
∑
q∈G

G
(
Sq

τ , Ŝq
τ

)
.

(In fact, it suffices to subtract the Green’s function between S
q
τq(n/ logn) and the

union of that set for other good q’s, which is smaller.) Now, for each good Sq we
have Cap(S

q
τq(n/ logn)) ≥ Med(Cap(Aτ(n/ logn)); 1

6), and each term in the second
sum has bounded expectation (by Lemma 28). It follows that

E

∑
q∈G

G
(
Sq

τ , Ŝq
τ

) ≤ E

logn∑
q=1

G
(
Sq

τ , Ŝq
τ

) ≤ C logn

and so this sum exceeds nc only with probability Cn−c logn. If it does not then
because Cap(Aτ(n/ logn)) ≥ c(n/ logn)1−α (Lemma 7),

Cap(Aτ ) ≥ logn

4
Med

(
Cap(Aτ(n/ logn)); 1

6

)
− Cnc ≥

≥ logn

5
Med

(
Cap(Aτ(n/ logn)); 1

6

)
(for c small and n large). This completes the proof. �

LEMMA 32. Mn = no(1), and Med(CapAτ (n); 1
6) = n1−o(1).

PROOF. We now no longer need the SDLA process, so to keep notation clear,
denote Qn = Cap(Aτ(n)). All we need about these random variables is that Q1 ≥ c,
Qn+1 ≥ Qn, that Mn is (by definition) the 5

6 -median of
∑n Q−1

i , and that with high
probability

(19) Qn ≥ min
{

c3n

Mn/ logn

,
logn

5
Med

(
Qn/ logn; 1

6

)}
.

In particular, for some �0, (19) holds simultaneously for all n = 2�, � ≥ �0 with
probability at least 5

6 . Call the event that this happens G.
Fix ε > 0, and make �0 larger if needed, so (log 2�0)ε > max{2/c3ε,10}. (This

can only increase G.) We now pick some K = K(�0) sufficiently large such that
for all n ≤ 2�0

(20) Mn ≤ Knε and Qn ≥ n1−ε

Kε
.



1920 G. AMIR, O. ANGEL AND G. KOZMA

We now prove by induction that on the event G, (20) holds for all n [the left clause
in (20) is just an inequality of numbers so we just show that it holds—the right
clause is an event, and we show that it follows from G].

To see this, consider some n > 2�0 , and let n′ = 2� ≤ n be the largest power of 2
below n. We first show the right clause in (20). Since Qn is monotone, applying
(19) with n′ (which we are allowed, because we assume the event G happened) we
get either

(21) Qn ≥ c3n
′

Mn′/ logn′
or Qn ≥ logn′

5
Med

(
Qn′/ logn′ ; 1

6

)
.

Under the induction hypothesis (20) for n′/ logn′, the former case implies

Qn ≥ c3n
′

Mn′/ logn′
≥ c3n

′

K(n′/ logn′)ε
≥ c3

2K
n1−ε(logn′)ε.

By our assumption that (log 2�0)ε > 2/c3ε, this case yields Qn > n1−ε/(Kε), as
needed. For the latter case in (21) note that because P(G) > 5

6 , the induction hy-
pothesis implies that Med(Qm; 1

6) ≥ m1−ε/(Kε) for all m < n and in particular
for n′/ logn′ so we get

Qn ≥ logn′

5
Med

(
Qn′/ logn′ ; 1

6

)
≥ logn′

5

(n′/ logn′)1−ε

Kε

≥ 1

10Kε
n1−ε(logn′)ε.

By our assumption that (log 2�0)ε > 10, this case too yields Qn > n1−ε/(Kε).

It remains to bound Mn. This is easy, since on the event G we have Qi ≥ i1−ε

Kε
for all i ≤ n. On this event,

n∑
i=1

Q−1
i ≤ Kε

n∑
i=1

iε−1 ≤ Knε

Since G has probability bigger than 5
6 , we get that the 5

6 -median of the sum, namely
Mn is at most Knε . This completes the induction and shows that under G, (20)
holds for all n. Since ε was arbitrary, the lemma is proved. �

PROOF OF THEOREM 17. By monotonicity, we may consider only n = 2�. We
plug the estimates of Lemma 32 back into Lemma 31 and get that P(Cap(An) >

n1−o(1)) > 1 − Cn−c. By Borel–Cantelli, this event holds for all but finitely many
such n. �

REMARK. The approach could also give improved bounds for some α >
1
3 . In fact, the condition required for the argument to apply is roughly that
n2(diamAn)

α−1 � 1 (recall the proof of Lemma 24). This means that if diamAn �
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n2/(1−α) then our argument will go through, leading to a contradiction as the ca-
pacity grows linearly while the diameter is still large. In short, for α ∈ (1

3 ,1) it is
possible to show that diamAn ≤ n2/(1−α)+o(1) using essentially the same argument
as we use for α < 1

3 . This estimate is better than our stated upper bound in the in-
terval [1

3 , 1
2(3 − √

5)] (approximately 0.38). We chose not to show this estimate,
as we do not believe it contributes additional understanding to the problem. We
remark, though, that adding this extra result would remove the discontinuity in the
graph of our upper bound, making it continuous (but not monotone).
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