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NONASYMPTOTIC CONVERGENCE ANALYSIS FOR THE
UNADJUSTED LANGEVIN ALGORITHM1

BY ALAIN DURMUS AND ÉRIC MOULINES

LTCI, Telecom ParisTech & CNRS and Ecole Polytechnique

In this paper, we study a method to sample from a target distribution
π over Rd having a positive density with respect to the Lebesgue measure,
known up to a normalisation factor. This method is based on the Euler dis-
cretization of the overdamped Langevin stochastic differential equation as-
sociated with π . For both constant and decreasing step sizes in the Euler
discretization, we obtain nonasymptotic bounds for the convergence to the
target distribution π in total variation distance. A particular attention is paid
to the dependency on the dimension d, to demonstrate the applicability of
this method in the high-dimensional setting. These bounds improve and ex-
tend the results of Dalalyan [J. R. Stat. Soc. Ser. B. Stat. Methodol. (2017) 79
651–676].

1. Introduction. Sampling distributions over high-dimensional state-spaces
is a problem which has recently attracted a lot of research efforts in computa-
tional statistics and machine learning (see [11] and [1] for details); applications
include Bayesian nonparametrics, Bayesian inverse problems and aggregation of
estimators. All these problems boil down to sample a target distribution π having
a density w.r.t. the Lebesgue measure on R

d , known up to a normalisation factor
x �→ e−U(x)/

∫
Rd e−U(y) dy where U is continuously differentiable. We consider a

sampling method based on the Euler discretization of the overdamped Langevin
stochastic differential equation (SDE):

(1) dYt = −∇U(Yt)dt + √
2 dBd

t ,

where (Bd
t )t≥0 is a d-dimensional Brownian motion. It is well known that the

Markov semigroup associated with the Langevin diffusion (Yt )t≥0 is reversible
w.r.t. π . Under suitable conditions, the convergence to π takes place at geometric
rate. Precise quantitative estimates of the rate of convergence with explicit depen-
dency on the dimension d of the state space have been recently obtained using
either functional inequalities such as Poincaré and log-Sobolev inequalities (see
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[3, 4, 9]) or by coupling techniques (see [15]). The Euler–Maruyama discretiza-
tion scheme associated to the Langevin diffusion yields the discrete-time Markov
chain given by

(2) Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1,

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian d-dimensional random
vectors and (γk)k≥1 is a sequence of step sizes, which can either be held con-
stant or be chosen to decrease to 0. The idea of using the Markov chain (Xk)k≥0 to
sample approximately from the target π has been first introduced in the physics lit-
erature by [34] and popularized in the computational statistics community by [17]
and [18]. It has been studied in depth by [35], which proposed to use a Metropolis–
Hastings step at each iteration to enforce reversibility w.r.t. π leading to the
Metropolis Adjusted Langevin Algorithm (MALA). They coin the term unadjusted
Langevin algorithm (ULA) when the Metropolis–Hastings step is skipped.

The purpose of this paper is to study the convergence of the ULA algorithm.
The emphasis is put on nonasymptotic computable bounds; we pay a particu-
lar attention to the way these bounds scale with the dimension d and constants
characterizing the smoothness and curvature of the potential U . Our study covers
both constant and decreasing step sizes and we analyse both the “finite horizon”
(where the total number of simulations is specified before running the algorithm)
and “any-time” settings (where the algorithm can be stopped after any iteration).

When the step size γk = γ is constant, under appropriate conditions (see [35]),
the Markov chain (Xn)n≥0 is V -uniformly geometrically ergodic with a stationary
distribution πγ . With few exceptions, the stationary distribution πγ is different
from the target π . If the step size γ is small enough, then the stationary distribution
of this chain is in some sense close to π . We provide nonasymptotic bounds of the
V -total variation distance between πγ and π , with explicit dependence on the step
size γ and the dimension d . Our results complete and extend the recent works by
[13] and [12].

When (γk)k≥1 decreases to zero, then (Xk)k≥0 is a nonhomogeneous Markov
chain. If in addition

∑∞
k=1 γk = ∞, we show that the marginal distribution of this

nonhomogeneous chain converges, under some mild additional conditions, to the
target distribution π , and provide explicit bounds for the convergence. Compared
to the related works [23–25] and [26], we establish not only the weak convergence
of the weighted empirical measure of the path to the target distribution but a much
stronger convergence in total variation, similar to [12], where the strongly log-
concave case is considered.

The paper is organized as follows. In Section 2, the main convergence results
are stated under abstract assumptions. We then specialize in Section 3 these results
to different classes of densities. The proofs are gathered in Section 4. Some gen-
eral convergence results for diffusions based on reflection coupling, which are of
independent interest, are stated in Section 5.
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Notation and conventions. B(Rd) denotes the Borel σ -field of R
d and

F(Rd) the set of all Borel measurable functions on R
d . For f ∈ F(Rd) set

‖f ‖∞ = supx∈Rd |f (x)|. Denote by M(Rd) the space of finite signed measure
on (Rd,B(Rd)) and M0(R

d) = {μ ∈ M(Rd)|μ(Rd) = 0}. For μ ∈ M(Rd) and
f ∈ F(Rd) a μ-integrable function, denote by μ(f ) the integral of f w.r.t. μ.
Let V : Rd → [1,∞) be a measurable function. For f ∈ F(Rd), the V -norm of f

is given by ‖f ‖V = supx∈Rd |f (x)|/V (x). For μ ∈ M(Rd), the V -total variation
distance of μ is defined as

‖μ‖V = sup
f ∈F(Rd ),‖f ‖V ≤1

∣∣∣∣∫
Rd

f (x)dμ(x)

∣∣∣∣.
If V ≡ 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.

For p ≥ 1, denote by Lp(π) the set of measurable functions such that π(|f |p) <

∞. For f ∈ L2(π), the variance of f under π is denoted by Varπ {f }. For all
functions f such that f log(f ) ∈ L1(π), the entropy of f with respect to π is
defined by

Entπ(f ) =
∫
Rd

f (x) log
(
f (x)

)
dπ(x).

Let μ and ν be two probability measures on R
d . If μ � ν, we denote by dμ/dν

the Radon–Nikodym derivative of μ w.r.t. ν. Denote for all x, y ∈ R
d by 〈x, y〉

the scalar product of x and y and ‖x‖ the Euclidean norm of x. For k ≥ 0, denote
by Ck(Rd), the set of k-times continuously differentiable functions f : Rd → R.
For f ∈ C2(Rd), denote by ∇f the gradient of f and �f the Laplacian of f . For
all x ∈ R

d and M > 0, we denote by B(x,M), the ball centered at x of radius M .
Denote for K ≥ 0, the oscillation of a function f ∈ C0(Rd) in the ball B(0,K)

by oscK(f ) = supB(0,K)(f ) − infB(0,K)(f ). Denote the oscillation of a bounded
function f ∈ C0(Rd) on R

d by oscRd (f ) = supRd (f ) − infRd (f ). In the sequel,
we take the convention that

∑n
p = 0 and

∏n
p = 1, for n,p ∈ N, n < p.

2. General conditions for the convergence of ULA. In this section, we de-
rive a bound on the convergence of the ULA to the target distribution π when the
Langevin diffusion is geometrically ergodic and the Markov kernel associated with
the EM discretization satisfies a Foster–Lyapunov drift inequality.

Consider the following assumption on the potential U :

L1. The function U is continuously differentiable on R
d and gradient Lips-

chitz, that is, there exists L ≥ 0 such that for all x, y ∈ R
d ,∥∥∇U(x) − ∇U(y)

∥∥ ≤ L‖x − y‖.

Under L1, by [20], Theorems 2.4–3.1, for every initial point x ∈ R
d , there ex-

ists a unique strong solution (Yt (x))t≥0 to the Langevin SDE (1). Define for all
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t ≥ 0, x ∈ R
d and A ∈ B(Rd), Pt(x,A) = P(Yt (x) ∈ A). The semigroup (Pt )t≥0 is

reversible w.r.t. π , and hence admits π as its (unique) invariant distribution. In this
section, we consider the case where (Pt )t≥0 is geometrically ergodic, that is, there
exists κ ∈ [0,1) such that for any initial distribution μ0 and t > 0,

(3) ‖μ0Pt − π‖TV ≤ C(μ0)κ
t ,

for some constant C(μ0) ∈ [0,+∞]. Denote by A L the generator associated with
the semigroup (Pt )t≥0, given for all f ∈ C2(Rd) by

A Lf = −〈∇U,∇f 〉 + �f.

A twice continuously differentiable function V : Rd → [1,∞) is a Lyapunov func-
tion for the generator A L if there exist θ > 0, β ≥ 0 and E ⊂ B such that

(4) A LV ≤ −θV + β1E .

By [35], Theorem 2.2, if E in (4) is a nonempty compact set, then the Langevin
diffusion is geometrically ergodic.

Consider now the EM discretization of the diffusion (2). Let (γk)k≥1 be a se-
quence of positive and nonincreasing step sizes and for 0 ≤ n ≤ p, denote by

(5) 
n,p =
p∑

k=n

γk, 
n = 
1,n.

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈R
d by

Rγ (x,A) =
∫

A
(4πγ )−d/2 exp

(−(4γ )−1∥∥y − x + γ∇U(x)
∥∥2)

dy.

The discretized Langevin diffusion (Xn)n≥0 given in (2) is a time-inhomogeneous
Markov chain, for p ≥ n ≥ 1 and f ∈ F+(Rd), EFn[f (Xp)] = Q

n,p
γ f (Xn) where

Fn = σ(X�,0 ≤ � ≤ n) and

Qn,p
γ = Rγn · · ·Rγp, Qn

γ = Q1,n
γ ,

with the convention that for n,p ≥ 0, n < p, Q
p,n
γ is the identity operator. Under

L1, the Markov kernel Rγ is strongly Feller, irreducible and strongly aperiodic.
We will say that a function V : Rd → [1,∞) satisfies a Foster–Lyapunov drift
condition for Rγ if there exist constants γ̄ > 0, λ ∈ [0,1) and c > 0 such that, for
all γ ∈ (0, γ̄ ],
(6) Rγ V ≤ λγ V + γ c.

The particular form of (6) reflects how the mixing rate of the Markov chain de-
pends upon the step size γ > 0. If γ = 0, then R0(x,A) = δx(A) for x ∈ R

d and
A ∈ B(Rd). A Markov chain with transition kernel R0 is not mixing. Intuitively,
as γ gets larger, then it is expected that the mixing of Rγ increases. If for some
γ > 0, Rγ satisfies (6), then Rγ admits a unique stationary distribution πγ . We use
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(6) to control quantitatively the moments of the time-inhomogeneous chain. The
types of bounds which are needed, are summarized in the following elementary
lemma.

LEMMA 1. Let γ̄ > 0. Assume that for all x ∈R
d and γ ∈ (0, γ̄ ], (6) holds for

some constants λ ∈ (0,1) and c > 0. Let (γk)k≥1 be a sequence of nonincreasing
step sizes such that γk ∈ (0, γ̄ ] for all k ∈ N

∗. Then for all n ≥ 0 and x ∈ R
d ,

Qn
γ V (x) ≤ F(λ,
n, c, γ1,V (x)) where

(7) F(λ, a, c, γ,w) = λaw + c
(−λγ log(λ)

)−1
.

PROOF. The proof is postponed to Section 4.1. �

Note that Lemma 1 implies that supk≥0{Qk
γ V (x)} ≤ G(λ, c, γ1,V (x)) where

(8) G(λ, c, γ,w) = w + c
(−λγ log(λ)

)−1
.

We give below the main ingredients which are needed to obtain a quantitative
bound for ‖δxQ

p
γ − π‖TV for all x ∈ R

d . This quantity is decomposed as follows:
for all 0 ≤ n < p,∥∥δxQ

p
γ − π

∥∥
TV

(9)
≤ ∥∥δxQ

n
γ Qn+1,p

γ − δxQ
n
γ P
n+1,p

∥∥
TV + ∥∥δxQ

n
γ P
n+1,p

− π
∥∥

TV.

To control the first term on the right-hand side, we use a method introduced in [13]
and elaborated in [12]. The second term is bounded using the convergence of the
semigroup to π ; see (3).

PROPOSITION 2. Assume that L1 and (3) hold. Let (γk)k≥0 be a sequence of
nonnegative step sizes. Then for all x ∈ R

d , n ≥ 0, p ≥ 1, n < p,∥∥δxQ
p
γ − π

∥∥
TV

(10)

≤ 2−1/2L

(p−1∑
k=n

{(
γ 3
k+1/3

)
A(γ, x) + dγ 2

k+1
})1/2

+ C
(
δxQ

n
γ

)
κ
n+1,p ,

where κ,C(δxQ
n
γ ) are defined in (3) and

(11) A(γ, x) = sup
k≥0

∫
Rd

∥∥∇U(z)
∥∥2

Qk
γ (y,dz).

PROOF. The proof follows the same lines as [12], Lemma 2, but is given for
completeness. For 0 ≤ s ≤ t , let C([s, t],Rd) be the space of continuous func-
tions on [s, t] taking values in R

d . For all y ∈ R
d , denote by μ

y
n,p and μ̄

y
n,p

the laws on C([
n,
p],Rd) of the Langevin diffusion (Yt (y))
n≤t≤
p and of the
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continuously-interpolated Euler discretization (Ȳt (y))
n≤t≤
p , both started at y at
time 
n. Denote by (Yt (y), Y t (y))t≥
n the unique strong solution started at (y, y)

at time t = 
n of the time-inhomogeneous diffusion defined for t ≥ 
n, by{
dYt = −∇U(Yt)dt + √

2 dBd
t ,

dȲt = −∇U(Ȳ , t)dt + √
2 dBd

t ,
(12)

where for any continuous function w : R+ →R
d and t ≥ 
n

(13) ∇U(w, t) =
∞∑

k=n

∇U(w
k
)1[
k,
k+1)(t).

Girsanov’s theorem ([21], Theorem 5.1, Corollary 5.16, Chapter 3) shows that
μ

y
n,p and μ̄

y
n,p are mutually absolutely continuous and in addition, μ̄

y
n,p-almost

surely

dμ
y
n,p

dμ̄
y
n,p

= exp
(

1

2

∫ 
p


n

〈∇U
(
Ȳs(y)

) − ∇U
(
Ȳ (y), s

)
,dȲs(y)

〉
(14)

− 1

4

∫ 
p


n

{∥∥∇U
(
Ȳs(y)

)∥∥2 − ∥∥∇U
(
Ȳ (y), s

)∥∥2}
ds

)
.

Under L1, (14) implies for all y ∈ R
d

KL
(
μy

n,p|μ̄y
n,p

) ≤ 4−1
∫ 
p


n

E
[∥∥∇U

(
Ȳs(y)

) − ∇U
(
Ȳ (y), s

)∥∥2]
ds

≤ 4−1
p−1∑
k=n

∫ 
k+1


k

E
[∥∥∇U

(
Ȳs(y)

) − ∇U
(
Ȳ
k

(y)
)∥∥2]

ds(15)

≤ 4−1L2
p−1∑
k=n

{(
γ 3
k+1/3

) ∫
Rd

∥∥∇U(z)
∥∥2

Qn+1,k
γ (y,dz) + dγ 2

k+1

}
.

By the Pinsker inequality, ‖δyQ
n+1,p
γ − δyP
n+1,p

‖TV ≤ √
2{KL(μ

y
n,p|μ̄y

n,p)}1/2.
The proof is complete by combining this inequality, (15) and (3) in (9). �

In the sequel, depending on the conditions on the potential U and the techniques
of proof, for any given x ∈ R

d , C(δxQ
n
γ ) can have two kinds of upper bounds,

either of the form − log(γn)W(x), or exp(a
n)W(x), for some function W : Rd →
R and a > 0. In both cases, as shown in Proposition 3, it is possible to choose n as
a function of p, so that limp→+∞ ‖δxQ

p
γ −π‖TV = 0 under appropriate conditions

on the sequence of step sizes (γk)k≥1.

PROPOSITION 3. Assume that L1 and (3) hold. Let (γk)k≥1 be a nonin-
creasing sequence satisfying limk→+∞ 
k = +∞ and limk→∞ γk = 0. Then
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limn→∞ ‖δxQ
n
γ − π‖TV = 0 for any x ∈ R

d for which one of the two following
conditions holds:

(i) A(γ, x) < ∞ and lim supn→+∞ C(δxQ
n
γ )/(− log(γn)) < +∞, where

A(γ, x) is defined in (11).
(ii)

∑∞
k=1 γ 2

k < +∞, A(γ, x) < ∞ and lim supn→+∞ log{C(δxQ
n
γ )}/
n <

+∞.

PROOF. 1. There exists p0 ≥ 1 such that for all p ≥ p0, κγp > γp and κ
p ≤
γ1. Therefore, we can define for all p ≥ p0,

(16) n(p)
def= min

{
k ∈ {0, . . . , p − 1}|κ
k+1,p > γk+1

}
and n(p) ≥ 1. We first show that lim infp→∞ n(p) = ∞. The proof goes by con-
tradiction. If lim infp→∞ n(p) < ∞, we could extract a bounded subsequence
(n(pk))k≥1. For such sequence, (γn(pk)+1)k≥1 is bounded away from 0, but
limk→+∞ κ
n(pk)+1,pk = 0 which yields to a contradiction. The definition of n(p)

implies that κ
n(p),p ≤ γn(p), showing that

lim sup
p→+∞

C
(
δxQ

n(p)
γ

)
κ
n(p),p

≤ lim sup
p→+∞

C(δxQ
n(p)
γ )

− log(γn(p))
lim sup
p→+∞

{
γn(p)

(− log(γn(p))
)} = 0.

On the other hand, since (γk)k≥1 is nonincreasing, for any � ≥ 2,
p∑

k=n(p)+1

γ �
k ≤ γ �−1

n(p)+1
n(p)+1,p ≤ γ �−1
n(p)+1 log(γn(p)+1)/ log(κ).

The proof follows from (10) using limp→∞ γn(p) = 0.
2. For all p ≥ 1, define n(p) = max(0, �log(
p)�). Note that since

limk→+∞ 
k = +∞, we have limp→+∞ n(p) = +∞. Using
∑+∞

k=1 γ 2
k < +∞ and

(γk)k≥1 is a nonincreasing sequence, we get for all � ≥ 2

lim
p→+∞

p∑
k=n(p)

γ �
k = 0,

which shows that the first term in the right-hand side of (10) goes to 0 as p goes
to infinity. As for the second term, since lim supn→+∞ log{C(δxQ

n
γ )}/
n < +∞,

we get using that (γk)k≥1 is nonincreasing and n(p) ≤ log(
p),

C
(
δxQ

n(p)
γ

)
κ
n(p),p

≤ exp
(
log(κ)
p + [{

log
(
C

(
δxQ

n(p)
γ

))
/
n(p)

}
+ − log(κ)

]

n(p)

)
≤ exp

(
log(κ)
p +

[
sup
k≥1

{
log

(
C

(
δxQ

k
γ

))
/
k

}
+ − log(κ)

]
γ1 log(
p)

)
.
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Using κ < 1 and limk→+∞ 
k = +∞, we have limp→+∞ C(δxQ
n(p)
γ )κ
n(p),p = 0,

which concludes the proof. �

Using (10), we can also assess the convergence of the algorithm for constant
step sizes γk = γ for all k ≥ 1. Two different kinds of results can be derived. First,
for a given precision ε > 0, we can try to optimize the step size γ to minimize the
number of iterations p required to achieve ‖δxQ

p
γ −π‖TV ≤ ε. Second, if the total

number of iterations is fixed p ≥ 1, we may determine the step size γ > 0 which
minimizes ‖δxQ

p
γ − π‖TV.

LEMMA 4. Assume that (10) holds. Assume that there exists γ̄ > 0 such that
C̄(x) = supγ∈(0,γ̄ ] supn≥1 C(δxR

n
γ ) < +∞ and supγ∈(0,γ̄ ] A(γ, x) ≤ Ā(x), where

C(δxR
n
γ ) and A(γ, x) are defined in (3) and (11), respectively. Then for all ε > 0,

we get ‖δxR
p
γ − π‖TV ≤ ε if

(17) p > T γ −1 and γ ≤ −d +
√

d2 + (2/3)Ā(x)ε2(L2T )−1

2Ā(x)/3
∧ γ̄ ,

where

T = (
log

{
C̄(x)

} − log(ε/2)
)
/
(− log(κ)

)
.

PROOF. For p > T γ −1, set n = p − �T γ −1�. Then using the stated expres-
sions of γ and T in (10) completes the proof. �

Note that an upper bound for γ defined in (17) is ε2(L2T d)−1. The dependency
of T on the dimension d will be addressed in Section 3.

LEMMA 5. Assume that L1 and (3) hold. In addition, assume that there ex-
ist γ̄ > 0 and n ∈ N, n > 0, such that C̄n(x) = supγ∈(0,γ̄ ] C(δxR

n
γ ) < +∞ and

supγ∈(0,γ̄ ] A(γ, x) ≤ Ā(x). For all p > n and all x ∈ R
d , if γ = log(p − n){(p −

n)(− log(κ))}−1 ≤ γ̄ , then∥∥δxR
p
γ − π

∥∥
TV ≤ (p − n)−1/2{

C̄n(x)(p − n)−1/2

+ log(p − n)
(
d + Ā(x) log(p − n)(p − n)−1)1/2}

.

PROOF. The proof is a straightforward calculation using (10). �

To get quantitative bounds for the total variation distance ‖δxQ
p
γ − π‖TV, it is

therefore required to get bounds on κ , A(γ, x) and to control C(δxQ
n
γ ). We will

consider in the sequel two different approaches to get (3), one based on functional
inequalities, the other on coupling techniques. We will consider also increasingly
stringent assumptions for the potential U . Whereas we will always obtain the same
type of exponential bounds, the dependency of the constants on the dimension
will be markedly different. In the worst case, the dependency is exponential. It is
polynomial when U is convex.
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3. Practical conditions for geometric ergodicity of the Langevin diffusion
and their consequences for ULA.

3.1. Superexponential densities. Assume first that the potential is superexpo-
nential outside a ball. This is a rather weak assumption (we do not assume convex-
ity here).

H1. The potential U is twice continuously differentiable and there exist ρ > 0,
α ∈ (1,2] and Mρ ≥ 0 such that for all x ∈ R

d , ‖x−x�‖ ≥ Mρ , 〈∇U(x), x−x�〉 ≥
ρ‖x − x�‖α .

The price to pay will be constants which are exponential in the dimension. Un-
der H1, the potential U is unbounded off compact set. Since U is continuous, it
has a global minimizer x�, which is a point at which ∇U(x�) = 0. Without loss of
generality, it is assumed that U(x�) = 0.

LEMMA 6. Assume L1 and H1. Then, for all x ∈R
d ,

(18) U(x) ≥ ρ
∥∥x − x�

∥∥α
/(α + 1) − aα with aα = ρMα

ρ /(α + 1) + M2
ρL/2.

PROOF. The elementary proof is postponed to Section 4.2. �

Following [35], Theorem 2.3, we first establish a drift condition for the diffu-
sion.

PROPOSITION 7. Assume L1 and H1. For any ς ∈ (0,1), the drift con-
dition (4) is satisfied with the Lyapunov function Vς(x) = exp(ςU(x)), θς =
ςdL, Eς = B(x�,Kς), Kς = max({2dL/(ρ(1 − ς))}1/(2(α−1)),Mρ) and βς =
ςdL sup{y∈Eς }{Vς(y)}. Moreover, there exist constants Cς < ∞ and υς > 0 such

that for all t ∈ R+ and probability measures μ0 and ν0 on (Rd,B(Rd)), satisfying
μ0(Vς) + ν0(Vς) < +∞,

‖μ0Pt − ν0Pt‖Vς ≤ Cςe−υς t‖μ0 − ν0‖Vς , ‖μ0Pt − π‖Vς ≤ Cςe−υς tμ0(Vς).

PROOF. The proof, adapted from [35], Theorem 2.3, and [31], Theorem 6.1,
is postponed to Section 4.3. �

Under H1, explicit expressions for Cς and υς have been developed in the liter-
ature but these estimates are in general very conservative. We now turn to establish
(6) for the Euler discretization.

PROPOSITION 8. Assume L1 and H1. Let γ̄ ∈ (0,L−1). For all γ ∈ (0, γ̄ ]
and x ∈ R

d , Rγ satisfies the drift condition (6) with V (x) = exp(U(x)/2),
K = max(Mρ, (8 log(λ)/ρ2)1/(2(α−1))), c = −2 log(λ)λ−γ̄ sup{y∈B(x�,K)} V (y)

and λ = e−dL/{2(1−Lγ̄ )}.
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PROOF. The proof is postponed to Section 4.4. �

THEOREM 9. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing sequence
with γ1 < γ̄ , γ̄ ∈ (0,L−1). Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d , (10)
holds with log(κ) = −υ1/2 and

A(γ, x) ≤ L2
(

α + 1

ρ

[
aα + 4(2 − α)(α + 1)

αρ

+ 2 log
{
G

(
λ, c, γ1,V (x)

)}])2/α

,(19)

C
(
δxQ

n
γ

) ≤ C1/2F
(
λ,
1,n, c, γ1,V (x)

)
,

where C1/2, υ1/2 are given by Proposition 7, F by (7), V , λ, c in Proposition 8, G

by (8), aα in (18).

PROOF. The proof is postponed to Section 4.5. �

Equation (19) implies that for all x ∈ R
d , we have supn≥0 C(δxQ

n
γ ) ≤

G(λ, c, γ1,V (x)), so Proposition 3(i) shows that limp→+∞ ‖δxQ
p
γ − π‖TV = 0

for all x ∈ R
d provided that limk→+∞ γk = 0 and limk→+∞ 
k = +∞. In addi-

tion, for the case of constant step size γk = γ for all k ≥ 1, Lemmas 4 and 5 can
be applied.

Let V : Rd → R, defined for all x ∈ R
d by V (x) = exp(U(x)/2). By Corol-

lary 7, (Pt )t≥0 is a contraction operator on the space of finite signed measure
μ ∈ M0, μ(V 1/2) < +∞, endowed with the norm ‖ · ‖V 1/2 . It is therefore pos-
sible to control ‖δxQ

p
γ − π‖V 1/2 . To simplify the notation, we limit our discussion

to constant step sizes.

THEOREM 10. Assume L1 and H1. Then, for all p ≥ 1, x ∈ R
d and γ ∈

(0,L−1), we have

(20)
∥∥δxR

p
γ − π

∥∥
V 1/2 ≤ C1/4κ

γpV 1/2(x) + B
(
γ,V (x)

)
,

where log(κ) = −υ1/4, C1/4, υ1/4, θ1/2, β1/2 are defined in Proposition 7, V,λ, c

in Proposition 8, G in (8) and

B2(γ, v) = L2 max
(
1,C2

1/4
)
(1 + γ )(1 − κ)−2(

2G(λ, c, γ, v) + β1/2/θ1/2
)

× (
γ d + 3−1γ 2‖∇U‖2

V 1/2G(λ, c, γ, v)
)
.

Moreover, Rγ has a unique invariant distribution πγ and

‖π − πγ ‖V 1/2 ≤ B(γ,1).
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PROOF. The proof of (20) is postponed to Section 4.6. The bound for
‖π − πγ ‖V 1/2 is an easy consequence of (20): by Proposition 13 and [30], The-
orem 16.0.1, Rγ is V 1/2-uniformly ergodic: limp→+∞ ‖δxR

p
γ − πγ ‖V 1/2 = 0 for

all x ∈ R
d . Finally, (20) shows that for all x ∈ R

d ,

‖π − πγ ‖V 1/2 ≤ lim
p→+∞

{∥∥δxR
p
γ − π

∥∥
V 1/2 + ∥∥δxR

p
γ − πγ

∥∥
V 1/2

} ≤ B
(
γ,V (x)

)
.

Taking the minimum over x ∈ R
d completes the proof. �

Note that Theorem 10 implies that there exists a constant C ≥ 0 which does not
depend on γ such that ‖π − πγ ‖V 1/2 ≤ Cγ 1/2.

REMARK 11. It is shown in [37], Theorem 4, that for φ ∈ C∞(Rd) with poly-
nomial growth, πγ (φ) − π(φ) = b(φ)γ + O(γ 2), for some constant b(φ) ∈ R,
provided that U ∈ C∞(Rd) satisfies L1 and H1. Our result does not match this
bound since B(γ,1) = O(γ 1/2). However, the bound B(γ,1) is uniform over the
class of measurable functions φ satisfying for all x ∈ R

d , |φ(x)| ≤ V 1/2(x). Ob-
taining such uniform bounds in total variation is important in Bayesian inference,
for example, to compute high posterior density credible regions. Our result also
strengthens and completes [29], Corollary 7.5, which states that under H1 with
α = 2, for any measurable functions φ :Rd →R satisfying for all x, y ∈ R

d ,∣∣φ(x) − φ(y)
∣∣ ≤ C‖x − y‖{

1 + ‖x‖k + ‖y‖k},
for some C ≥ 0, k ≥ 1, |πγ (φ) − π(φ)| ≤ Cγ χ for some constants C ≥ 0 and
χ ∈ (0,1/2), which does not depend on φ.

The bounds in Theorems 9 and 10 depend upon the constants appearing in
Corollary 7 which are computable but are known to be pessimistic in general; see
[36]. More explicit rates of convergence for the semigroup can be obtained using
Poincaré inequality; see [3, 9] and [4], Chapter 4, and the references therein. The
probability measure π is said to satisfy a Poincaré inequality with the constant CP
if, for every locally Lipschitz function h,

(21) Varπ {h} ≤ CP

∫
Rd

∥∥∇h(x)
∥∥2

π(dx).

This inequality implies by [9], Theorem 2.1, that for all t ≥ 0 and any initial dis-
tribution μ0, such that μ0 � π ,

(22) ‖μ0Pt − π‖TV ≤ exp(−t/CP)
(
Varπ {dμ0/dπ})1/2

.

[2], Theorem 1.4, shows that if the Lyapunov condition (4) is satisfied, then the
Poincaré inequality (21) holds with an explicit constant. Denote by

(23) Dn(γ )
def=

(
4π

{
n∏

k=1

(1 − Lγk)

}2 n∑
i=1

γi(1 − Lγi)
−1

)−d/2

.
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THEOREM 12. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing sequence.
Then for all n ≥ 1 and x ∈ R

d , equation (3) holds with

log(κ) = (−θ−1
1/2

{
1 + (

4β1/2K
2
1/2/π2)

eoscK1/2 (U)})−1
,

C
(
δxQ

n
γ

) ≤ (α + 1)d(2π)(d+1)/2(d − 1)!
ρd�((d + 1)/2)

Dn(γ )eaα eU(x),

where � is the Gamma function and the constants β1/2, θ1/2,K1/2, aα are given in
Proposition 7 and (18), respectively.

PROOF. The proof is postponed to Section 4.7. �

Note that for all x ∈ R
d , C(δxQ

n
γ ) satisfies the conditions of Proposition 3(ii).

Therefore, using in addition the bound on A(γ, x) for all x ∈ R
d and γ ∈ (0,L−1)

given in Theorem 9, we get limk→+∞ ‖δxQ
p
γ − π‖TV = 0 if limn→+∞ 
n = +∞

and limn→+∞
∑n

k=1 γ 2
k < +∞.

3.2. Log-concave densities. We now consider the following additional as-
sumption.

H2. U is convex and admits a minimizer x� for U . Moreover, there exist η > 0
and Mη ≥ 0 such that for all x ∈ R

d , ‖x − x�‖ ≥ Mη,

(24) U(x) − U
(
x�) ≥ η

∥∥x − x�
∥∥.

It is shown in [2], Lemma 2.2, that if U satisfies L1 and is convex, then (24)
holds for some constants η,Mη which depend in an intricate way on U . Since
the constants η,Mη appear explicitly in the bounds we derive, we must assume
that these constants are explicitly computable. We still assume in this section that
U(x�) = 0. Define the function Wc :Rd → [1,+∞) for all x ∈ R

d by

(25) Wc(x) = exp
(
(η/4)

(∥∥x − x�
∥∥2 + 1

)1/2)
.

We now derive a drift inequality for Rγ under H2.

PROPOSITION 13. Assume L1 and H2. Let γ̄ ∈ (0,L−1]. Then for all γ ∈
(0, γ̄ ], Wc satisfies (6) with λ = e−2−4η2(21/2−1), Rc = max(1,2d/η,Mη),

(26) c = {
(η/4)

(
d + (ηγ̄ /4)

) − log(λ)
}
eη(R2

c +1)1/2/4+(ηγ̄ /4)(d+(ηγ̄ /4)).

PROOF. The proof is postponed to Section 4.8 �
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COROLLARY 14. Assume L1 and H2. Let (γk)k≥1 be a nonincreasing se-
quence with γ1 ≤ γ̄ , γ̄ ∈ (0,L−1]. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d ,

(27) A(γ, x) = L2(
4η−1[

1 + log
{
G

(
λ, c, γ1,Wc(x)

)}])2
,

where A(γ, x) is defined by (11) and G, Wc, λ, c, are given in (8), (25), Proposi-
tion 13, respectively.

PROOF. The proof is postponed to Section 4.9. �

If U is convex, [5], Theorem 1.2, shows that π satisfies a Poincaré inequality
with a constant depending only on the variance of π .

THEOREM 15. Assume L1 and H2. Let (γk)k≥1 be a nonincreasing sequence
with γ1 ≤ γ̄ , γ̄ ∈ (0,L−1]. Then, for all n ≥ 0, p ≥ 1, n < p and x ∈ R

d , (10)
holds with A(γ, x) given in (27),

log(κ) =
(
−432

∫
Rd

∥∥∥∥x −
∫
Rd

yπ(dy)

∥∥∥∥2
π(dx)

)−1
,(28a)

C
(
δxQ

n
γ

) =
(

(2π)(d+1)/2(d − 1)!
ηd�((d + 1)/2)

+ πd/2Md
η

�(d/2 + 1)

)
Dn(γ ) exp

(
U(x)

)
,

(28b)

where Dn(γ ) is given in (23).

PROOF. The proof is postponed to Section 4.10. �

For all x ∈R
d , C(δxQ

n
γ ) satisfies the conditions of Proposition 3(ii). Therefore,

if limn→+∞ 
n = +∞ and limn→+∞
∑n

k=1 γ 2
k < +∞, we get limk→+∞ ‖δxQ

p
γ −

π‖TV = 0.
There are two difficulties when applying Theorem 15. First, the Poincaré con-

stant (28a) is in closed form but is not computable, although it can be bounded by
a O(d−2). Second, the bound of Varπ {dδxQ

n
γ /dπ} is likely to be suboptimal. To

circumvent these two issues, we now give new quantitative results on the conver-
gence of (Pt )t≥0 to π in total variation. Instead of using functional inequality, we
use in the proof the coupling by reflection, introduced in [27]. Define the function
ω : (0,1) ×R

∗+ →R+ for all ε ∈ (0,1) and R ≥ 0, by

(29) ω(ε,R) = R2/
{
2�−1(1 − ε/2)

}2
,

where � is the cumulative distribution function of the standard Gaussian distribu-
tion and �−1 is the associated quantile function. Before stating the theorem, we
first show that (4) holds and provide explicit expressions for the constants which
come into play. These constants will be used to obtain the explicit convergence
rate of the semigroup (Pt )t≥0 to π which is derived in Theorem 17.
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PROPOSITION 16. Assume L1 and H2. Then Wc satisfies the drift condition
(4) with θ = η2/8, E = B(x�,K), K = max(1,Mη,4d/η) and

β = (η/4)
(
(η/4)K + d

)
max

{
1,

(
K2 + 1

)−1/2 exp
(
η
(
K2 + 1

)1/2
/4

)}
.

PROOF. The proof is adapted from [2], Corollary 1.6, and is postponed to
Section 4.11. �

THEOREM 17. Assume L1 and H2. Then for all x ∈ R
d , ‖δxPt − π‖TV ≤

2�(x)e−θt/4 + 4�t , where

log(�) = − log(2)(θ/4)
(30a)

× [
log

{
θ−1β

(
3 + 4e4−1θω(2−1,(8/η) log(4θ−1β)))} + log(2)

]−1
,

�(x) = (1/2)
(
Wc(x) + θ−1β

) + 2θ−1βe4−1θω(2−1,(8/η) log(4θ−1β)),(30b)

the function Wc is defined in (25), the constants θ,β in Proposition 16.

PROOF. The proof is postponed to Section 5.1. �

Note that the bound that we obtain is a little different from (3). The initial con-
dition is isolated on purpose to get a better bound. A consequence of this result is
the following bound on the convergence of the sequence (δxQ

n
γ )n≥0 to π .

COROLLARY 18. Assume L1 and H2. Let (γk)k≥0 be a sequence of nonnega-
tive step sizes. Then for all x ∈ R

d , n ≥ 0, p ≥ 1, n < p,

∥∥δxQ
p
γ − π

∥∥
TV ≤ 2−1/2L

(p−1∑
k=n

{(
γ 3
k+1/3

)
A(γ, x) + dγ 2

k+1
})1/2

+ 2�
(
δxQ

n
γ

)
e−θ
n+1,p/4 + 4�
n+1,p ,

where A(γ, x), � are given by (27) and (30a), respectively, and

�
(
δxQ

n
γ

) = (1/2)
(
F

(
λ,
n, γ1, c,Wc(x)

) + θ−1β
)

(31)
+ 2θ−1βe4−1θω(2−1,(8/η) log(4θ−1β)),

the functions F and Wc are defined in (7) and (25), the constants λ, c, θ,β in
Proposition 13 and Proposition 16 respectively.

PROOF. By Theorem 17, Proposition 13 and Lemma 1, we have for all x ∈ R
d ,∥∥δxQ

n
γ P
n+1,p

− π
∥∥

TV ≤ �
(
δxQ

n
γ

)
e−θ
n+1,p/4 + 2�
n+1,p .

Finally, the proof follows the same line as the one of Proposition 2. �
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Contrary to (28b), (31) is uniformly bounded in n. By Corollary 18 and (27), we
can apply Proposition 3(i), which implies the convergence to 0 of ‖δxQ

p
γ − π‖TV

as p goes to infinity, if limk→+∞ γk = 0 and limk→+∞ 
k = +∞. Since log(β)

in Proposition 16 is of order d , we get that the rate of convergence log(�) is of
order d−2 as d goes to infinity [note indeed that the leading term when d is large
is θω(2−1, (8/η) log(4θ−1β)) which is of order d2]. In the case of constant step
sizes γk = γ for all k ≥ 0, we adapt Lemma 4 to the bound given by Corollary 18.

COROLLARY 19. Assume L1 and H2. Let (γk)k≥0 be a sequence of nonneg-
ative step sizes. Then for all ε > 0, we get ‖δxR

p
γ − π‖TV ≤ ε if p and γ satisfy

(17) with

T = max
{
4θ−1 log

(
8ε−1�̃(x)

)
, log

(
16ε−1)

/
(− log(�)

)}
,

�̃(x) = (1/2)
(
G

(
λ,γ1, c,Wc(x)

) + θ−1β
) + 2θ−1βe4−1θω(2−1,(8/η) log(4θ−1β)),

where A(γ, x), � are given by (27), (30a), respectively, the functions G and Wc
are defined in (8) and (25), the constants λ, c, θ,β in Proposition 13 and Proposi-
tion 16, respectively.

PROOF. The proof follows the same line as the one of Lemma 4 using Corol-
lary 18 and that supn≥0 �(δQn

γ ) < �̃(x) for all x ∈ R
d . �

In particular, with the notation of Corollary 19, since max(log(β), log(c)) and
−(log(�))−1 are of order d and d2 as d goes to infinity, respectively, T is of
order d2. Therefore, γ defined by (17) is of order d−3 which implies a number of
iteration p of order d5 to get ‖δxQ

p
γ − π‖TV ≤ ε for ε > 0; see also Table 1.

Corollary 19 can be compared with the results which establishes the dependency
on the dimension for two kinds of Metropolis–Hastings algorithms to sample from
a log-concave density: the random walk Metropolis algorithm (RWM) and the hit-
and-run algorithm. It has been shown in [28], Theorem 2.1, that for ε > 0, the hit-
and-run and the RWM reach a ball centered at π , of radius ε for the total variation
distance, in a number of iteration p of order d4 as d goes to infinity. It should be
stressed that [28], Theorem 2.1, does not assume any kind of smoothness about
the density π contrary to Theorem 17. However, this result assumes that the target

TABLE 1
For constant step sizes, dependency of γ and p in d , ε and parameters of U to get

‖δxR
p
γ − π‖TV ≤ ε using Corollary 19

d ε L

γ O(d−3) O(ε2/ log(ε−1)) O(L−2)

p O(d5) O(ε−2 log2(ε−1)) O(L2)



1566 A. DURMUS AND É. MOULINES

distribution is near-isotropic, that is, there exists C ≥ 0 which does not depend on
the dimension such that for all x ∈ R

d ,

C−1‖x‖2 ≤
∫
Rd

〈x, y〉2π(dy) ≤ C‖x‖2.

Note that this condition implies that the variance of π is upper bounded by Cd .
To conclude our study on convex potential, we also mention [8] which stud-

ies the sampling of the uniform distribution over a convex subset K ⊂ R
d us-

ing coupling techniques. Let C > 0. A convex set K ⊂ R
d is C-well rounded if

B(0,1) ⊂ K ⊂ B(0,Cd). [8] shows that a number of iteration of order d9 as d

goes to infinity is sufficient to sample uniformly over any C-well rounded convex
set. Comparison with our result is difficult since we assume that π is positive on
R

d , continuously differentiable, while [8] studies the case of uniform distributions
over a convex body. An adaptation of our result to noncontinuously differentiable
potentials will appear in a forthcoming paper [14].

3.3. Strongly log-concave densities. More precise bounds can be obtained in
the case where U is assumed to be strongly convex outside some ball; this assump-
tion has been considered by [15] for convergence in the Wasserstein distance; see
also [6].

H3 (Ms). U is convex and there exist Ms ≥ 0 and m > 0, such that for all
x, y ∈R

d satisfying ‖x − y‖ ≥ Ms,〈∇U(x) − ∇U(y), x − y
〉 ≥ m‖x − y‖2.

We will see in the sequel that under this assumption the convergence rate in (3)
does not depend on the dimension d but only on the constants m and Ms.

PROPOSITION 20. Assume L1 and H3(Ms). Let γ̄ ∈ (0,2mL−2). For all γ ∈
(0, γ̄ ], V (x) = ‖x − x�‖2 satisfies (6) with λ = e−2m+γ̄ L2

and c = 2(d + mM2
s ).

PROOF. The proof is postponed to Section 4.12. �

THEOREM 21. Assume L1 and H3(Ms). Let (γk)k≥1 be a nonincreasing se-
quence with γ1 ≤ γ̄ , γ̄ ∈ (0,2mL−2). Then, for all n ≥ 0, p ≥ 1, n < p, and
x ∈ R

d , (10) holds with

log(κ) = −(m/2) log(2)

× [
log

{(
1 + emω(2−1,max(1,Ms))/4)(

1 + max(1,Ms)
)} + log(2)

]−1
,

C
(
δxQ

n
γ

) ≤ 3 + (
d/m + M2

s
)1/2 + F 1/2(

λ,
1,n, c, γ1,
∥∥x − x�

∥∥2)
,

A(γ, x) ≤ L2G
(
λ, c, γ1,

∥∥x − x�
∥∥2)

,
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TABLE 2
For constant step sizes, dependency of γ and p in d , ε and parameters of U to get

‖δxQ
p
γ − π‖TV ≤ ε using Theorem 21

d ε L m Ms

γ O(d−1) O(ε2/ log(ε−1)) O(L−2) O(m) O(M−4
s )

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2) O(m−2) O(M8
s )

where F,G,ω are defined by (7), (8), (29), respectively, and λ, c are given in
Proposition 20.

PROOF. The proof is postponed to Section 5.1. �

Note that the conditions of Proposition 3(i) are fulfilled. For constant step sizes
γk = γ for all k ≥ 1, Lemmas 4 and 5 can be applied. We give in Table 2 the
dependency of the step size γ > 0 and the minimum number of iterations p ≥
0, provided in Lemma 4, on the dimension d and the other constants related to
U , to get ‖δxQ

p
γ − π‖TV ≤ ε, for a target precision ε > 0. We can see that the

dependency on the dimension is milder than for the convex case. The number of
iteration requires to reach a target precision ε is just of order O(d log(d)).

Consider the case where π is the d-dimensional standard Gaussian distribution.
Then for all p ∈ N, γ ∈ (0,1) and x ∈ R

d , δxR
p
γ is the d-dimensional Gaussian

distribution with mean (1 − γ )px and covariance matrix σγ Id , with σγ = (1 −
(1 − γ )2(p+1))(1 − γ /2)−1. Therefore, using the Pinsker inequality, we get∥∥δxR

p
γ − π

∥∥2
TV ≤ 2 KL

(
δxR

p
γ |π)

≤ d
[
log(σγ ) − 1 + σ−1

γ

{
1 + (1 − γ )2p‖x‖2d−1}]

.

Using the inequalities for all t ∈ (0,1), (1 − t)−1 ≤ 1 + t (1 − t)−2 and for all
s ∈ (0,1/2), − log(1 − s) ≤ s + 2s2, we have∥∥δxR

p
γ − π

∥∥2
TV ≤ d

{
γ 2/2 + (1 − γ )2(p+1)(1 − γ /2)

(
1 − (1 − γ )2(p+1))−2}

+ σ−1
γ (1 − γ )2p‖x‖2.

This inequality implies that in order to have ‖δxRγ − π‖TV ≤ ε for ε > 0, the
step size γ has to be of order d−1/2 and p of order d1/2 log(d). Therefore, the
dependency on the dimension reported in Table 2 does not match this particular
example. However, it does not imply that this dependency can be improved.

3.4. Bounded perturbation of strongly log-concave densities. We now con-
sider the case where U is a bounded perturbation of a strongly convex potential.
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H4. The potential U may be expressed as U = U1 + U2, where:

(a) U1 : Rd → R satisfies H3(0) (i.e., is strongly convex) and there exists L1 ≥
0 such that for all x, y ∈R

d ,∥∥∇U1(x) − ∇U1(y)
∥∥ ≤ L1‖x − y‖.

(b) U2 :Rd →R is continuously differentiable and ‖U2‖∞ +‖∇U2‖∞ < +∞.

The probability measure π is said to satisfy a log-Sobolev inequality with con-
stant CLS > 0 if for all locally Lipschitz function h :Rd →R, we have

Entπ
(
h2) ≤ 2CLS

∫
‖∇h‖2 dπ.

Then [9], Theorem 2.7, shows that for all t ≥ 0 and any probability measure μ0 �
π satisfying dμ0/dπ log(dμ0/dπ) ∈ L1(π), we have

(32) ‖μ0Pt − π‖TV ≤ e−t/CLS

{
2Entπ

(
dμ0

dπ

)}1/2
.

Under H4, [4], Corollary 5.7.2, and the Holley–Stroock perturbation principle
[19], page 1184, π satisfies a log-Sobolev inequality with a constant which only
depends on the strong convexity constant m of U1 and oscRd (U2). Define

(33) � = 2mL1

m + L1
.

Denote by x�
1 the minimizer of U1.

PROPOSITION 22. Assume H4. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m + L1). Then, for all p ≥ 1 and x ∈ R

d ,∫
Rd

∥∥y − x�
1
∥∥2

Qp
γ (x,dy) ≤

p∏
k=1

(1 − �γk/2)
∥∥x − x�

1
∥∥2

+ 2�−1(
2d + (

γ1 + 2�−1)‖∇U2‖2∞
)
.

PROOF. The proof is postponed to Section 4.13. �

THEOREM 23. Assume L1 and H4. Let (γk)k∈N∗ be a nonincreasing sequence
with γ1 ≤ 2/(m + L1). Then, for all n,p ≥ 1, n < p, and x ∈ R

d , (10) holds with
− log(κ) = m exp{−oscRd (U2)} and

C2(
δxQ

n
γ

) ≤ L1e−�
n/2∥∥x − x�
1
∥∥2 + L1γn

(
γn + 2�−1)‖∇U2‖2∞ + 2oscRd (U2)

+ 2L1�
−1(1 − �γn)

(
2d + (

γ1 + 2�−1)‖∇U2‖2∞
)

− d
(
1 + log(2γnm) − 2L1γn

)
,

A(γ, x) ≤ 2L2
1
{∥∥x�

1 − x�
∥∥2 + 2�−1(

2d + (
γ1 + 2�−1)‖∇U2‖2∞

)}
+ 2‖∇U2‖2∞,
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where � is defined in (33).

PROOF. The proof is postponed to Section 4.14. �

Note that supn≥1{C(δxQ
n
γ )/(− log(γn))} < +∞, therefore, Proposition 3(i)

can be applied and limp→+∞ ‖δγ Q
p
γ − π‖TV = 0 if limk→+∞ γk = 0 and

limk→+∞ 
k = +∞.

4. Proofs.

4.1. Proof of Lemma 1. By a straightforward induction, we get for all n ≥ 0
and x ∈R

d

(34) Qn
γ V (x) ≤ λ
nV (x) + c

n∑
i=1

γiλ

i+1,n .

Note that for all n ≥ 1, we have since (γk)k≥1 is nonincreasing and for all t ≥ 0,
λt = 1 + ∫ t

0 λs log(λ)ds,

n∑
i=1

γiλ

i+1,n

≤
n∑

i=1

γi

n∏
j=i+1

(
1 + λγ1 log(λ)γj

)

≤ (−λγ1 log(λ)
)−1

n∑
i=1

γi

{
n∏

j=i+1

(
1 + λγ1 log(λ)γj

) −
n∏

j=i

(
1 + λγ1 log(λ)γj

)}

≤ (−λγ1 log(λ)
)−1

.

The proof is then completed using this inequality in (34).

4.2. Proof of Lemma 6. By L1, H1, the Cauchy–Schwarz inequality and
∇U(x�) = 0, for all x ∈ R

d , ‖x‖ ≥ Mρ , we have

U(x) − U
(
x�) =

∫ 1

0

〈∇U
(
x� + t

(
x − x�)), x − x�〉 dt

≥
∫ Mρ

‖x−x�‖

0

〈∇U
(
x� + t

(
x − x�)), x − x�〉 dt

+
∫ 1

Mρ
‖x−x�‖

〈∇U
(
x� + t

(
x − x�)), t(x − x�)〉 dt

≥ −M2
ρL/2 + ρ

∥∥x − x�
∥∥α

(α + 1)−1{
1 − (

Mρ/
∥∥x − x�

∥∥)α+1}
.
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On the other hand using again L1, the Cauchy–Schwarz inequality and ∇U(x�) =
0, for all x ∈ B(x�,Mρ),

U(x) − U
(
x�) =

∫ 1

0

〈∇U
(
x� + t

(
x − x�)), x − x�〉 dt ≥ −M2

ρL/2,

which completes the proof.

4.3. Proof of Proposition 7. For all x ∈R
d , we have

A LVς(x) = ς(1 − ς)
{−∥∥∇U(x)

∥∥2 + (1 − ς)−1�U(x)
}
Vς(x).

If α > 1, by the Cauchy–Schwarz inequality, under L1–H1 for all x ∈ R
d ,

�U(x) ≤ dL and ‖∇U(x)‖ ≥ ρ‖x − x�‖α−1 for ‖x − x�‖ ≥ Mρ . Then, for all
x /∈ Eς ,

A LVς(x) ≤ ς(1 − ς)
{−ρ

∥∥x − x�
∥∥2(α−1) + (1 − ς)−1dL

}
Vς(x) ≤ −ςdLVς(x),

and sup{x∈Eς } A LVς(x) ≤ ςdL sup{y∈Eς }{Vς(y)}.

4.4. Proof of Proposition 8. By H1, for all x /∈ B(x�,Mρ),

(35)
∥∥∇U(x)

∥∥ ≥ ρ
∥∥x − x�

∥∥α−1
.

Since under L1, for all x, y ∈ R
d , U(y) ≤ U(x) + 〈∇U(x), y − x〉 + (L/2)‖y −

x‖2, we have for all γ ∈ (0, γ̄ ) and x ∈ R
d

Rγ V (x)/V (x)

= (4πγ )−d/2
∫
Rd

exp
({

U(y) − U(x)
}
/2 − (4γ )−1∥∥y − x + γ∇U(x)

∥∥2)
dy

≤ (4πγ )−d/2
∫
Rd

exp
(−4−1γ

∥∥∇U(x)
∥∥2 − (4γ )−1(1 − γL)‖y − x‖2)

dy

≤ (1 − γL)−d/2 exp
(−4−1γ

∥∥∇U(x)
∥∥2)

,

where we used in the last line that γ < L−1. Since log(1 − Lγ ) = −L
∫ γ

0 (1 −
Lt)−1 dt , for all γ ∈ (0, γ̄ ], log(1−Lγ ) ≥ −Lγ (1−Lγ̄ )−1. Using this inequality
we get

(36) Rγ V (x)/V (x) ≤ λ−γ exp
(−4−1γ

∥∥∇U(x)
∥∥2)

.

By (35), for all x ∈R
d , ‖x − x�‖ ≥ K , we have

(37) Rγ V (x) ≤ λγ V (x).

Also by (36) and since for all t ≥ 0, et − 1 ≤ tet , we get for all x ∈R
d

Rγ V (x) − λγ V (x) ≤ λγ (
λ−2γ − 1

)
V (x) ≤ −2γ log(λ)λ−γ̄ V (x).

The proof is completed combining the last inequality and (37).
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4.5. Proof of Theorem 9. We first bound A(γ, x) for all x ∈ R
d . Let x ∈ R

d .
By L1, we have Ex[‖∇U(Xk)‖2] ≤ L2

Ex[‖Xk −x�‖2]. Consider now the function
φα : R+ → R+ defined for all t ≥ 0 by φα(t) = exp(Aα(t + Bα)α/2) where Aα =
ρ/(2(α + 1)) and Bα = {(2 − α)/(αAα)}2/α . Since φα is convex and invertible on
R+, we get using the Jensen inequality and Lemma 6 for all k ≥ 0

Ex

[∥∥Xk − x�
∥∥2] ≤ φ−1

α

(
Ex

[
φα

(∥∥Xk − x�
∥∥2)]) ≤ φ−1

α

(
eaα/2+B

α/2
α Ex

[
V (Xk)

])
,

where V (x) = exp(U(x)/2). Using that for all t ≥ 0, φ−1
α (t) ≤ (A−1

α log(t))2/α

and Lemma 1, we get

sup
k≥0

Ex

[∥∥Xk − x�
∥∥2] ≤ (

A−1
α

[
aα/2 + Bα/2

α + log
{
G

(
λ, c(γ1),V (x)

)}])2/α
.

Equation (19) follows from Proposition 7, Proposition 8 and Lemma 1.

4.6. Proof of Theorem 10.

LEMMA 24. Let μ and ν be two probability measures on (Rd,B(Rd)) and
V : Rd → [1,∞) be a measurable function. Then

‖μ − ν‖V ≤ √
2
{
ν
(
V 2) + μ

(
V 2)}1/2 KL1/2(μ|ν).

PROOF. Without losing any generality, we assume that μ � ν. For all t ∈
[0,1], t log(t) − t + 1 = ∫ 1

t (u − t)u−1 du ≥ 2−1(1 − t)2, and on [1,+∞), t �→
2(1 + t)(t log(t) − t + 1) − (1 − t)2 is nonincreasing. Therefore, for all t ≥ 0,

(38) |1 − t | ≤ (
2(1 + t)

(
t log(t) − t + 1

))1/2
.

Then we have

‖μ − ν‖V = sup
f ∈F(Rd ),‖f ‖V ≤1

∣∣∣∣∫
Rd

f (x)dμ(x) −
∫
Rd

f (x)dν(x)

∣∣∣∣
= sup

f ∈F(Rd ),‖f ‖V ≤1

∣∣∣∣∫
Rd

f (x)

{
dμ

dν
− 1

}
dν(x)

∣∣∣∣
≤

∫
Rd

V (x)

∣∣∣∣dμ

dν
− 1

∣∣∣∣ dν(x).

Using (38) and the Cauchy–Schwarz inequality in the previous inequality com-
pletes the proof. �

PROOF OF THEOREM 10. First note that by the triangle inequality and Propo-
sition 7, for all p ≥ 1,

(39)
∥∥π − δxQ

p
γ

∥∥
V 1/2 ≤ C1/4κ

pγ V 1/2(x) + ∥∥δxP
p − δxQ
p
γ

∥∥
V 1/2 .
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We now bound the second term of the right-hand side. Let kγ = �γ −1� and qγ and
rγ be respectively the quotient and the remainder of the Euclidean division of p by
kγ . The triangle inequality implies ‖δxP
p − δxQ

p
γ ‖V 1/2 ≤ A + B with

A = ∥∥δxQ
(qγ −1)kγ
γ P
(qγ −1)kγ ,p

− δxQ
(qγ −1)kγ
γ Q

(qγ −1)kγ +1,p
γ

∥∥
V 1/2,

B =
qγ∑
i=1

∥∥δxQ
(i−1)kγ
γ P
(i−1)kγ +1,p

− δxQ
ikγ
γ P
ikγ +1,p

∥∥
V 1/2 .

It follows from Corollary 7 and kγ ≥ γ −1 that

(40) B ≤
qγ∑
i=1

C1/4κ
qγ −i

∥∥δxQ
(i−1)kγ
γ P
(i−1)kγ +1,ikγ

− δxQ
ikγ
γ

∥∥
V 1/2 .

We now bound each term of the sum in the right-hand side. For all initial distri-
bution ν0 on (Rd,B(Rd)) and i, j ≥ 1, i < j , it follows from Lemma 24, [22],
Theorem 4.1, Chapter 2, and (15):∥∥ν0Q

i,j
γ − ν0P
i,j

∥∥2
V 1/2

≤ 2
(
ν0Q

i,j
γ (V ) + ν0P
i,j

(V )
)

KL
(
ν0Q

i,j
γ |ν0P
i,j

)
≤ 2L2(

ν0Q
i,j
γ (V ) + ν0P
i,j

(V )
)

× (j − i)
(
γ 2d + (

γ 3/3
)

sup
k∈{i,...,j}

ν0Q
i,k−1
γ

(‖∇U‖2))
.

Proposition 7 implies by the proof of [31], Theorem 6.1, that for all y ∈ R
d and

t ≥ 0: PtV (y) ≤ V (y)+β1/2/θ1/2. Then, using Proposition 8, Lemma 1 and kγ ≥
γ −1 in (40), we get

sup
i∈{1,...,qγ }

∥∥δxQ
(i−1)kγ
γ P
(i−1)kγ +1,ikγ

− δxQ
ikγ
γ

∥∥2
V 1/2

≤ 2−1(1 + γ )L2{
2G

(
λ, c,V (x)

) + β1/2/θ1/2
}

× {
γ d + 3−1γ 2‖∇U‖2

V 1/2G
(
λ, c,V (x)

)}
.

Finally, A can be bounded along the same lines. �

4.7. Proof of Theorem 12. Denote for γ > 0, rγ :Rd ×R
d →R

d the transition
density of Rγ defined for x, y ∈ R

d by

(41) rγ (x, y) = (4πγ )−1 exp
(−(4γ )−1∥∥y − x + γ∇U(x)

∥∥2)
.
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For all n ≥ 1, denote by qn
γ :Rd ×R

d →R
d the transition density associated with

Qn
γ defined by induction by: for all x, y ∈R

d ,

q1
γ (x, y) = rγ1(x, y),

(42)
qn+1
γ (x, y) =

∫
Rd

qn
γ (x, z)rγn+1(z, y)dz for n ≥ 1.

LEMMA 25. Assume L1. Let (γk)k≥1 be a nonincreasing sequence with γ1 <

L. Then for all n ≥ 1 and x, y ∈ R
d ,

qn
γ (x, y) ≤ exp(2−1(U(x) − U(y)) − (2σγ,n)

−1‖y − x‖2)

(2πσγ,n

∏n
i=1(1 − Lγi))d/2 ,

where σγ,n = ∑n
i=1 2γi(1 − Lγi)

−1.

PROOF. Under L1, we have for all x, y ∈ R
d , U(y) ≤ U(x) + 〈∇U(x), y −

x〉 + (L/2)‖y − x‖2, which implies that for all γ ∈ (0,L−1)

rγ (x, y) ≤ (4πγ )−d/2 exp
(
2−1(

U(x) − U(y)
)

(43)
− (1 − Lγ )(4γ )−1‖y − x‖2)

.

Then the proof of the claimed inequality is by induction. By (43), the inequality
holds for n = 1. Now assume that it holds for n ≥ 1. By induction hypothesis and
(43) applied for γ = γn+1, we have

qn+1
γ (x, y)

≤ (4πγn+1)
−d/2

{
2πσγ,n

n∏
i=1

(1 − Lγi)

}−d/2

exp
(
2−1(

U(x) − U(y)
))

×
∫
Rd

exp
(−(2σγ,n)

−1‖z − x‖2 − (1 − Lγn+1)(4γn+1)
−1‖z − y‖2)

dz

≤ (4πγn+1)
−d/2

{
2πσγ,n

n∏
i=1

(1 − Lγi)

}−d/2

× (
σ−1

γ,n + (1 − Lγn+1)/(2γn+1)
)−d/2

× (2π)d/2 exp
(
2−1(

U(x) − U(y)
) − (2σγ,n+1)

−1‖y − x‖2)
.

Rearranging terms in the last inequality completes the proof. �

LEMMA 26. Assume L1 and H1. Then
∫
Rd e−U(y) dy ≤ ϑU where

(44) ϑU
def= eaα

(2π)(d+1)/2(d − 1)!
ηd�((d + 1)/2)

,

and aα is given in (18).
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PROOF. By Lemma 6, for all x ∈ R
d , U(x) ≥ ρ‖x − x�‖/(α + 1)− aα . Using

the spherical coordinates we get∫
Rd

e−U(y) dy ≤ eaα
{
(2π)(d+1)/2/�

(
(d + 1)/2

)} ∫ +∞
0

e−ρt/(α+1)td−1 dt.

Then the proof is completed by a straightforward calculation. �

COROLLARY 27. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing se-
quence with γ1 < L. Then for all n ≥ 1 and x ∈ R

d ,

Varπ

{dδxQ
n
γ

dπ

}
≤ (

ϑU exp
(
U(x)

))(
4π

{
n∏

k=1

(1 − Lγk)

}2 n∑
i=1

γi

1 − Lγi

)−d/2

,

where ϑU is given by (44).

PROOF OF THEOREM 12. We bound the two terms of the right-hand side of
(10). The first term is dealt with the same reasoning as for the proof of Theo-
rem 9. Regarding the second term, by [2], Theorem 1.4, π satisfies a Poincaré
inequality with constant log−1(κ). Then, the claimed bound follows from (22) and
Lemma 27. �

4.8. Proof of Proposition 13. Set χ = η/4 and for all x ∈ R
d , φ(x) = (‖x −

x�‖2 + 1)1/2. Since φ is 1-Lipschitz, we have by the log-Sobolev inequality [7],
Theorem 5.5, for all x ∈R

d ,

(45) Rγ Wc(x) ≤ eχRγ φ(x)+χ2γ ≤ eχ
√

‖x−γ∇U(x)−x�‖2+2γ d+1+χ2γ .

Under L1 since U is convex and x� is a minimizer of U , [33], Theorem 2.1.5,
equation (2.1.7), shows that for all x ∈ R

d ,〈∇U(x), x − x�〉 ≥ (2L)−1∥∥∇U(x)
∥∥2 + η

∥∥x − x�
∥∥1{‖x−x�‖≥Mη},

which implies that for all x ∈ R
d and γ ∈ (0,L−1], we have

(46)
∥∥x − γ∇U(x) − x�

∥∥2 ≤ ∥∥x − x�
∥∥2 − 2γ η

∥∥x − x�
∥∥1{‖x−x�‖≥Mη}.

Using this inequality and for all u ∈ [0,1], (1 − u)1/2 − 1 ≤ −u/2, we have for all
x ∈ R

d , satisfying ‖x − x�‖ ≥ Rc = max(1,2dη−1,Mη),(∥∥x − γ∇U(x) − x�
∥∥2 + 2γ d + 1

)1/2 − φ(x)

≤ φ(x)
{(

1 − 2γφ−2(x)
(
η
∥∥x − x�

∥∥ − d
))1/2 − 1

}
≤ −γφ−1(x)

(
η
∥∥x − x�

∥∥ − d
) ≤ −(ηγ /2)

∥∥x − x�
∥∥φ−1(x) ≤ −2−3/2ηγ.

Combining this inequality and (45), we get for all x ∈ R
d , ‖x − x�‖ ≥ Rc

Rγ Wc(x)/Wc(x) ≤ eγχ(χ−2−3/2η) = λγ .
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By (46) and the inequality for all a, b ≥ 0,
√

a + 1 + b − √
1 + b ≤ a/2, we get

for all x ∈ R
d √∥∥x − γ∇U(x) − x�

∥∥2 + 2γ d + 1 − φ(x) ≤ γ d.

Then using this inequality in (45), we have, for all x ∈ R
d ,

Rγ Wc(x) ≤ λγ Wc(x) + (
eχγ (d+χ) − λγ )

eη(R2
c +1)1/2/41B(x�,Rc)(x).

Using the inequality for all t ≥ 0, et − 1 ≤ tet completes the proof.

4.9. Proof of Corollary 14. We preface the proof by a lemma.

LEMMA 28. Assume L1 and that U is convex. Let (γk)k∈N∗ be a nonincreas-
ing sequence with γ1 ≤ L−1. For all n ≥ 0 and x ∈R

d ,∫
Rd

∥∥y − x�
∥∥2

Qn
γ (x,dy) ≤ {

4η−1[
1 + log

{
G

(
λ, c, γ1,Wc(x)

)}]}2
,

where Wc, λ, c are given in (25) and Proposition 13, respectively.

PROOF. Let n ≥ 0 and x ∈ R
d . Consider the function φ : R → R defined by

for all t ∈ R, φ(t) = exp{(η/4)(t + (4/η)2)1/2}. Since this function is convex on
R+, we have by the Jensen inequality and the inequality for all t ≥ 0, φ(t) ≤
e1+(η/4)(t+1)1/2

φ

(∫
Rd

∥∥y − x�
∥∥2

Qn
γ (x,dy)

)
≤ e1Qn

γ Wc(x).

The proof is then completed using Proposition 13, Lemma 1 and that φ is one-to-
one with for all t ≥ 1, φ−1(t) ≤ (4η−1 log(t))2. �

PROOF OF COROLLARY 14. Using ∇U(x�) = 0, L1 and Lemma 28, we have
for all k ≥ 0∫

Rd

∥∥∇U(y)
∥∥2

Qk
γ (x,dy) ≤ L2(

4η−1{
1 + log

{
G

(
λ, c, γ1,Wc(x)

)}})2
. �

4.10. Proof of Theorem 15. We preface the proof by a lemma.

LEMMA 29. Assume L1 and that U is convex. Then

(47)
∫
Rd

e−U(y) dy ≤
(

(2π)(d+1)/2(d − 1)!
ηd�((d + 1)/2)

+ πd/2Md
η

�(d/2 + 1)

)
.

PROOF. By (24) and U(x�) = 0, we have∫
Rd

e−U(y) dy ≤
∫
Rd

e−η‖y−x�‖ dy +
∫
Rd

1{‖y−x�‖≤Mη} dy.
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Then the proof is completed using the spherical coordinates. �

PROOF OF THEOREM 15. By [5], Theorem 1.2, π satisfies a Poincaré in-
equality with constant log−1(κ). Therefore, the second term in (10) is dealt as in
the proof of Theorem 12 using (22), Lemma 29 and Lemma 26. �

4.11. Proof of Proposition 16. For all x ∈ R
d , we have

A LWc(x) = ηWc(x)

4(‖x − x�‖2 + 1)1/2

{
(η/4)

(∥∥x − x�
∥∥2 + 1

)−1/2∥∥x − x�
∥∥2

− 〈∇U(x), x − x�〉 − (∥∥x − x�
∥∥2 + 1

)−1∥∥x − x�
∥∥2 + d

}
.

By (24), 〈∇U(x), x−x�〉 ≥ η‖x−x�‖ for all x ∈ R
d , ‖x−x�‖ ≥ Mη. Then, for all

x, ‖x − x�‖ ≥ K = max(Mη,4d/η,1), A LWc(x) ≤ −(η2/8)Wc(x). In addition,
since U is convex and ∇U(x�) = 0, for all x ∈ R

d , 〈∇U(x), x − x�〉 ≥ 0 and we
get sup{x∈E} A LWc(x) ≤ β .

4.12. Proof of Proposition 20. Under L1, using that ∇U(x�) = 0, we get for
all x ∈ R

d∫
Rd

∥∥y − x�
∥∥2

Rγ (x,dy)

= ∥∥x − x� + γ
(∇U

(
x�) − ∇U(x)

)∥∥2 + 2γ d(48)

≤ (
1 + (Lγ )2)∥∥x − x�

∥∥2 − 2γ
〈∇U(x) − ∇U

(
x�), x − x�〉 + 2γ d.

Then for all x ∈ R
d , ‖x − x�‖ ≥ Ms, we get using for all t ≥ 0, 1 − t ≤ e−t ,∫
Rd

∥∥y − x�
∥∥2

Rγ (x,dy) ≤ λγ
∥∥x − x�

∥∥2 + 2γ d.

Using again (48) and [33], Theorem 2.1.5, equation (2.1.7), it yields for all x ∈ R
d ,

‖x − x�‖ ≤ Ms, ∫
Rd

∥∥y − x�
∥∥2

Rγ (x,dy) ≤ γ c,

which completes the proof.

4.13. Proof of Proposition 22. We preface the proof by a lemma.

LEMMA 30. Assume H4. Then, for all x ∈R
d ,∥∥x − γ∇U(x) − x�

1
∥∥2 ≤ (1 − �γ/2)

∥∥x − x�
1
∥∥2 + γ

(
γ + 2�−1)‖∇U2‖2∞.
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PROOF. Using that for all y, z ∈ R
d , ‖y + z‖2 ≤ (1 + �γ/2)‖y‖2 + (1 +

2(�γ )−1)‖z‖2, we get under H4(b)∥∥x − γ∇U(x) − x�
1
∥∥2 ≤ (1 + �γ/2)

∥∥x − γ∇U1(x) − x�
1
∥∥2

(49)
+ γ

(
γ + 2�−1)‖∇U2‖2∞.

By [33], Theorem 2.1.12, Theorem 2.1.9, H4(b) implies that for all x, y ∈ R
d

〈∇U1(y) − ∇U1(x), y − x
〉 ≥ (�/2)‖y − x‖2 + 1

m + L1

∥∥∇U1(y) − ∇U1(x)
∥∥2

.

Using this inequality and ∇U1(x
�
1) = 0 in (49) completes the proof. �

PROOF OF PROPOSITION 22. For any γ ∈ (0,2/(m + L1)), we have for all
x ∈ R

d ∫
Rd

∥∥y − x�
1
∥∥2

Rγ (x,dy)

= ∥∥x − γ∇U(x) − x�
1
∥∥2 + 2γ d

≤ (1 − �γ/2)
∥∥x − x�

1
∥∥2 + γ

{(
γ + 2�−1)‖∇U2‖2∞ + 2d

}
,

where we have used Lemma 30 for the last inequality. Since γ1 ≤ 2/(m + L1) and
(γk)k≥1 is nonincreasing, by a straightforward induction, for p ≥ 1 and x ∈ R

d ,∫
Rd

∥∥y − x�
1
∥∥2

Qp
γ (x,dy)

≤
p∏

k=1

(1 − �γk/2)
∥∥x − x�

1
∥∥2(50)

+ ((
γ1 + 2�−1)‖∇U2‖2∞ + 2d

) p∑
i=n

p∏
k=i+1

(1 − �γk/2)γi.

Consider the second term in the right-hand side of (50). Since γ1 ≤ 2/(m + L1),
m ≤ L1 and (γk)k≥1 is nonincreasing, maxk≥1 γk ≤ �−1 and, therefore,

p∑
i=n

p∏
k=i+1

(1 − �γk/2)γi

≤ �−1
p∑

i=n

{ p∏
k=i+1

(1 − �γk/2) −
p∏

k=i

(1 − �γk/2)

}
≤ 2�−1.

�

4.14. Proof of Theorem 23. We preface the proof of the theorem by a prelim-
inary lemma.
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LEMMA 31. Assume H4. Let γ ∈ (0,2/(m + L1)), then for all x ∈ R
d ,

Entπ

(
dδxRγ

dπ

)
≤ (L1/2)

{
(1 − �γ/2)

∥∥x − x�
1
∥∥2 + γ

(
γ + 2�−1)‖∇U2‖2∞

}
+ oscRd (U2) − (d/2)

(
1 + log(2γm) − 2L1γ

)
.

PROOF. Let γ ∈ (0,2/(m + L1)) and rγ be the transition density of Rγ given
by (41). Under H4(a) by [33], Theorems 2.1.8–2.1.9, we have for all x ∈ R

d ,
U1(x) ≤ U1(x

�
1) + (L1/2)‖x − x�

1‖2. Therefore we have, for all x ∈ R
d ,

Entπ

(
dδxRγ

dπ

)
=

∫
Rd

log
(
rγ (x, y)/π(y)

)
rγ (x, y)dx

(51)
≤ Rγ ψ(x) − (d/2)

(
1 + log(4πγ )

)
,

where ψ :Rd →R is the function defined for all y ∈ R
d by

ψ(y) = U2(y) + U1
(
x�

1
) + (L1/2)

∥∥y − x�
1
∥∥2 + log

(∫
Rd

e−U(z) dz

)
.

By H4(b) and Lemma 30, we get for all x ∈ R
d

Rγ ψ(x) ≤ (L1/2)
∥∥x − γ∇U(x) − x�

1
∥∥2 + log

(∫
Rd

e−U1(z)+U1(x
�
1) dz

)
+ oscRd (U2) + dL1γ

≤ (L1/2)
{
(1 − �γ/2)

∥∥x − x�
1
∥∥2 + γ

(
γ + 2�−1)‖∇U2‖2∞

}
+ oscRd (U2) + dL1γ.

Plugging this bound in (51) gives the desired result. �

PROOF OF THEOREM 23. We first deal with the second term in the right-hand
side of (10). Under H4, [4], Corollary 5.7.2, and the Holley–Stroock perturbation
principle ([19], page 1184) show that π satisfies a log-Sobolev inequality with
constant CLS = − log−1(κ). So by (32) we have∥∥δxQ

n
γ Pt − π

∥∥
TV ≤ κt

{
2 Entπ

(dδxQ
n
γ

dπ

)}1/2
.

We now bound Entπ(dδxQ
n
γ /dπ) which will imply the upper bound of C(δxQ

n
γ ).

We proceed by induction. For n = 1, it is Lemma 31. For n ≥ 2, by (42) and the
Jensen inequality applied to the convex function t �→ t log(t), we have, for all
x ∈ R

d and n ≥ 1,

Entπ
(
dδxQ

n
γ /dπ

)
=

∫
Rd

log
{
π−1(y)

∫
Rd

qn−1
γ (x, z)rγn(z, y)dz

}∫
Rd

qn−1
γ (x, z)rγn(z, y)dz dy(52)

≤
∫
Rd

∫
Rd

log
{
rγn(z, y)π−1(y)

}
qn−1
γ (x, z)rγn(z, y)dz dy.
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Using Fubini’s theorem, Lemma 31, Proposition 22 and the inequality t ≥ 0, 1 −
t ≤ e−t in (52) implies the bound of C(δxQ

n
γ ).

Finally, A(γ, x) is bounded using the inequality for all y, z ∈ R
d , ‖y + z‖2 ≤

2(‖y‖2 + ‖z‖2), H4 and Proposition 22. �

5. Quantitative convergence bounds in total variation for diffusions. In
this part, we derived quantitative convergence results in total variation norm for
d-dimensional SDEs of the form

(53) dXt = b(Xt )dt + dBd
t ,

started at X0, where (Bd
t )t≥0 is a d-dimensional standard Brownian motion and

b : Rd →R
d satisfies the following assumptions:

G1. b is Lipschitz and for all x, y ∈ R
d , 〈b(x) − b(y), x − y〉 ≤ 0.

Under G1, [20], Theorems 2.4–3.1–6.1, Chapter IV, imply that there exists a
unique solution (Xt )t≥0 to (53) for all initial point x ∈ R

d , which is strongly
Markovian. Denote by (Pt )t≥0 the transition semigroup associated with (53). To
derive explicit bound for ‖Pt (x, ·) − Pt (y, ·)‖TV, we use the coupling by reflec-
tion, introduced in [27] to show convergence in total variation norm for solution of
SDE, and recently used by [15] to obtain exponential convergence in the Wasser-
stein distance of order 1. This coupling is defined as (see [10], Example 3.7) the
unique strong Markovian process (Xt ,Yt )t≥0 on R

2d , solving the SDE

(54)

{
dXt = b(Xt )dt + dBd

t ,

dYt = b(Yt )dt + (
Id−2ete

T
t

)
dBd

t ,
where et = e(Xt − Yt )

with e(z) = z/‖z‖ for z �= 0 and e(0) = 0 otherwise. Define the coupling time

(55) τc = inf{s ≥ 0|Xs �= Ys}.
By construction Xt = Yt for t ≥ τc. We denote in the sequel by P̃(x,y) and Ẽ(x,y)

the probability and the expectation associated with the SDE (54) started at (x, y) ∈
R

2d on the canonical space of continuous function from R+ to R
2d . We denote by

(F̃t )t≥0 the canonical filtration. Since B̄d
t = ∫ t

0 (Id−2ese
T
s )dBd

s is a d-dimensional
Brownian motion, the marginal processes (Xt )t≥0 and (Yt )t≥0 are under P̃(x,y)

weak solutions to (53) started at x and y, respectively. The results in [27] are
derived under less stringent conditions than G1 but do not provide quantitative
estimates.

PROPOSITION 32 ([27], Example 5). Assume G1 and let (Xt ,Yt )t≥0 be the
solution of (54). Then for all t ≥ 0 and x, y ∈ R

d , we have

P̃(x,y)(τc > t) = P̃(x,y)(Xt �= Yt ) ≤ 2
(
�

{(
2t1/2)−1‖x − y‖} − 1/2

)
.
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PROOF. For t < τc, Xt − Yt is the solution of the SDE

d{Xt − Yt } = {
b(Xt ) − b(Yt )

}
dt + 2et dB1

t ,

where B1
t = ∫ t

0 1{s<τc}eT
s dBd

s . Using Itô’s formula and G1, we have for all t < τc,

‖Xt − Yt‖ = ‖x − y‖ +
∫ t

0

〈
b(Xs) − b(Ys), es

〉
ds + 2B1

t ≤ ‖x − y‖ + 2B1
t .

Therefore, for all x, y ∈R
d and t ≥ 0, we get

P̃(x,y)(τc > t) ≤ P̃(x,y)

(
min

0≤s≤t
B1

s ≥ ‖x − y‖/2
)

= P̃(x,y)

(
max

0≤s≤t
B1

s ≤ ‖x − y‖/2
)

= P̃(x,y)

(∣∣B1
t

∣∣ ≤ ‖x − y‖/2
)
,

where we have used the reflection principle in the last identity. �

Define for R > 0 the set �R = {x, y ∈ R
d |‖x − y‖ ≤ R}. Proposition 32 and

Lindvall’s inequality give that, for all ε ∈ (0,1) and t ≥ ω(ε,R),

(56) sup
(x,y)∈�R

∥∥Pt (x, ·) − Pt (y, ·)∥∥TV ≤ 2(1 − ε),

where ω is defined in (29). To obtain quantitative exponential bounds in total vari-
ation for any x, y ∈ R

d , it is required to control some exponential moments of the
successive return times to �R . This is first achieved by using a drift condition for
the generator A associated with the SDE (53) defined for all f ∈ C2(Rd) by

A f = 〈b,∇f 〉 + (1/2)�f.

Consider the following assumption:

G 2. (i) There exist a twice continuously differentiable function V : Rd �→
[1,∞) and constants θ > 0, β ≥ 0 such that

(57) A V ≤ −θV + β.

(ii) There exists δ > 0 and R > 0 such that � ⊂ �R where

(58) � = {
(x, y) ∈ R

2d |V (x) + V (y) ≤ 2θ−1β + δ
}
.

For t > 0, and G a closed subset of R2d , define by TG,t
1 the first return time to

G delayed by t :

TG,t
1 = inf

{
s ≥ t |(Xs,Ys) ∈ G

}
.

For j ≥ 2, define recursively the j th return time to G delayed by t by

(59) TG,t
j = inf

{
s ≥ TG,t

j−1 + t |(Xs,Ys) ∈ G
} = TG,t

j−1 + TG,t
1 ◦ STG,t

j−1
,

where S is the shift operator on the canonical space. By [16], Proposition 1.5
Chapter 2, the sequence (TG,t

j )j≥1 is a sequence of stopping time with respect

to (F̃t )t≥0.
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PROPOSITION 33. Assume G1 and G2. For all x, y ∈ R
d , ε ∈ (0,1) and j ≥

1, we have

Ẽ(x,y)

[
eθ̃T�,ω(ε,R)

j
] ≤ {

K(ε)
}j−1{

(1/2)
(
V (x) + V (y)

) + eθ̃ω(ε,R)θ̃−1β
}
,

θ̃ = θ2δ(2β + θδ)−1,(60)

K(ε) = θ̃−1β
(
1 + eθ̃ω(ε,R)) + δ/2,

where ω is defined in (29).

PROOF. For notational simplicity, set Tj = T�,ω(ε,R)
j . Note that for all x, y ∈

R
d ,

A V (x) + A V (y) ≤ −θ̃
(
V (x) + V (y)

) + 2β1�(x, y).

Then by the Dynkin formula (see, e.g., [32], equation (8)) the process

t �→ (1/2)eθ̃ (T1∧t){V (XT1∧t ) + V (YT1∧t )
}
, t ≥ ω(ε,R),

is a positive supermartingale. Using the optional stopping theorem and the Markov
property, we have, using that for all t ≥ 0 Ẽ(x,y)[eθ̃ tV (Xt)] ≤ V (x) + βθ̃−1eθ̃ t ,

Ẽ(x,y)

[
eθ̃T1

] ≤ (1/2)
(
V (x) + V (y)

) + eθ̃ω(ε,R)θ̃−1β.

The result then follows from this inequality and the strong Markov property. �

THEOREM 34. Assume G1 and G2. Then for all ε ∈ (0,1), t ≥ 0 and x, y ∈
R

d ,∥∥Pt (x, ·) − Pt (y, ·)∥∥TV ≤ e−θ̃ t/2{
(1/2)

(
V (x) + V (y)

) + eθ̃ω(ε,R)θ̃−1β
} + 2κt ,

where ω is defined in (29), θ̃ ,K(ε) in (60) and

log(κ) = (θ̃/2) log(1 − ε)
{
log

(
K(ε)

) − log(1 − ε)
}−1

.

PROOF. Let x, y ∈R
d and t ≥ 0. For all � ≥ 1 and ε ∈ (0,1),

(61) P̃(x,y)(τc > t) ≤ P̃(x,y)(τc > t,T� ≤ t) + P̃(x,y)(T� > t),

where T� = T�,ω(ε,R)
� . We now bound the two terms in the right-hand side of

this equation. For the first term, since � ⊂ �R, by (56), we have conditioning
successively on F̃Tj

, for j = �, . . . ,1, and using the strong Markov property,

(62) P̃(x,y)(τc > t,T� ≤ t) ≤ (1 − ε)�.
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For the second term, using Proposition 33 and the Markov inequality, we get

P̃(x,y)(T� > t)

≤ P̃(x,y)(T1 > t/2) + P̃(x,y)(T� − T1 > t/2)

≤ e−θ̃ t/2{
(1/2)

(
V (x) + V (y)

) + eθ̃ω(ε,R)θ̃−1β
} + e−θ̃ t/2{

K(ε)
}�−1

.

The proof is completed combining this inequality and (62) in (61) and taking � =
�2−1θ̃ t/(log(K(ε)) − log(1 − ε))�. �

More precise bounds can be obtained under more stringent assumption on the
drift b; see [6] and [15].

G3. There exist M̃s ≥ 1 and m̃s > 0, such that for all x, y ∈ R
d , ‖x−y‖ ≥ M̃s,〈

b(x) − b(y), x − y
〉 ≤ −m̃s‖x − y‖2.

PROPOSITION 35. Assume G1 and G3.

(a) For all x, y ∈ R
d and ε ∈ (0,1),

Ẽ(x,y)

[
exp

(
m̃s

2

(
τc ∧ T

�
M̃s

,ω(ε,M̃s)

1

))]
≤ 1 + ‖x − y‖ + (1 + M̃s)e

m̃sω(ε,M̃s)/2.

(b) For all x, y ∈ R
d , ε ∈ (0,1) and j ≥ 1,

Ẽ(x,y)

[
exp

(
(m̃s/2)

(
τc ∧ T

�
M̃s

,ω(ε,M̃s)

j

))]
≤ {

D(ε)
}j−1{

1 + ‖x − y‖ + (1 + M̃s)e
m̃sω(ε,M̃s)/2}

,(63)

D(ε) = (
1 + em̃sω(ε,M̃s)/2)

(1 + M̃s),

where ω is given in (29).

PROOF. In the proof we set Tj = T
�

M̃s
,ω(ε,M̃s)

j .

1. Consider the sequence of increasing stopping time

τk = inf
{
t > 0|‖Xt − Yt‖ /∈ [

k−1, k
]}

, k ≥ 1,

and set ζk = τk ∧ T1. We derive a bound on Ẽ(x,y)[exp{(m̃s/2)ζk}] independent
on k. Since limk→+∞ ↑ τk = τc almost surely, the monotone convergence theo-
rem implies that the same bound holds for Ẽ(x,y)[exp{(m̃s/2)(τc ∧ T1)}]. Set now
Ws(x, y) = 1 + ‖x − y‖. Since Ws ≥ 1 and τc < ∞ a.s. by Proposition 32, it suf-
fices to give a bound on Ẽ(x,y)[exp{(m̃s/2)ζk}Ws(Xζk

,Yζk
)]. By Itô’s formula, we
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have for all v, t ≤ τc, v ≤ t ,

em̃st/2Ws(Xt ,Yt ) = em̃sv/2Ws(Xv,Yv) + (m̃s/2)

∫ t

v
em̃su/2Ws(Xu,Yu)du

(64)

+
∫ t

v
em̃su/2〈

b(Xu) − b(Yu), eu

〉
du + 2

∫ t

v
em̃su/2 dB1

u.

Using G3(b), we have for all k ≥ 1 and ts = ω(ε, M̃s) ≤ v ≤ t

e(m̃s/2)(ζk∧t)Ws(Xζk∧t ,Yζk∧t ) ≤ e(m̃s/2)(ζk∧v)Ws(Xζk∧v,Yζk∧v)

+ 2
∫ ζk∧t

ζk∧v
em̃su/2 dB1

u.

So the process {
exp

(
(m̃s/2)(ζk ∧ t)

)
Ws(Xζk∧t ,Yζk∧t )

}
t≥ts

is a positive supermartingale and by the optional stopping theorem, we get

(65) Ẽ(x,y)

[
e(m̃s/2)ζk Ws(Xζk

,Yζk
)
] ≤ Ẽ(x,y)

[
e(m̃s/2)(τk∧ts)Ws(Xτk∧ts,Yτk∧ts)

]
,

where we used that ζk ∧ ts = τk ∧ ts. By (64), G1 and G3, we have

Ẽ(x,y)

[
e(m̃s/2)(τk∧ts)Ws(Xτk∧ts,Yτk∧ts)

] ≤ Ws(x, y) + (1 + M̃s)e
m̃sts/2,

and (65) becomes

Ẽ(x,y)

[
e(m̃s/2)ζk Ws(Xζk

,Yζk
)
] ≤ Ws(x, y) + (1 + M̃s)e

m̃sts/2.

2. The proof is by induction. The case j = 1 has been established above. Now
let j ≥ 2. Since on the event {τc > Tj−1}, we have

τc ∧ Tj = Tj−1 + (τc ∧ T1) ◦ STj−1,

where S is the shift operator, we have conditioning on F̃Tj−1 , using the strong
Markov property, Proposition 32 and the first part,

Ẽ(x,y)

[
1{τc>Tj−1}e(m̃s/2)(τc∧Tj )] ≤ D(ε)Ẽ(x,y)

[
1{τc>Tj−1}e(m̃s/2)Tj−1

]
.

Then the proof follows since D(ε) ≥ 1. �

THEOREM 36. Assume G1 and G3. Then for all ε ∈ (0,1), t ≥ 0 and
x, y ∈ R

d ,∥∥Pt (x, ·) − Pt (y, ·)∥∥TV ≤ {
(1 − ε)−1 + 1 + ‖x − y‖}

κt ,

log(κ) = (m̃s/2) log(1 − ε)
(
log

(
D(ε)

) − log(1 − ε)
)−1

,

where D(ε) is defined in (63).
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PROOF. The proof is along the same lines as Theorem 34. Set Tj =
T

�
M̃s

,ω(ε,M̃s)

j for j ≥ 1. Let x, y ∈ R
d and t ≥ 0. For all � ≥ 1 and ε ∈ (0,1),

(66) P̃(x,y)(τc > t) ≤ P̃(x,y)(τc > t,T� ≤ t) + P̃(x,y)(T� ∧ τc > t).

For the first term, by (56) we have conditioning successively on F̃Tj
, for j =

�, . . . ,1, and using the strong Markov property,

(67) P̃(x,y)(τc > t,T� ≤ t) ≤ (1 − ε)�.

For the second term, using Proposition 35(b) and the Markov inequality, we get

(68) P̃(x,y)(T� ∧ τc > t) ≤ e− m̃st
2

{
D(ε)

}�−1{
1 + ‖x − y‖ + (1 + M̃s)e

m̃sω(ε,M̃s)
2

}
.

Taking � = �(m̃st/2)/(log(D(ε)) − log(1 − ε))� and combining (67)–(68) in (66)
completes the proof. �

5.1. Proof of Theorem 17 and Theorem 21. Recall that (Pt )t≥0 is the Markov
semigroup of the Langevin equation associated with U and let A L be the corre-
sponding generator. Since (Pt )t≥0 is reversible with respect to π , we deduce from
Theorem 34 and Theorem 36 quantitative bounds for the exponential convergence
of (Pt )t≥0 to π in total variation noting that if (Yt )t≥0 is a solution of (1), then
(Yt/2)t≥0 is a weak solution of the rescaled Langevin diffusion:

(69) dỸt = −(1/2)∇U(Ỹt )dt + dBd
t .

PROOF OF THEOREM 17. Since the generator associated with the SDE (69)
is (1/2)A L, Proposition 16 shows that (57) holds for Wc with constants θ/2 and
β/2. Using that for all a1, a2 ∈ R, e(a1+a2)/2 ≤ (1/2)(ea1 + ea2), G2(ii) holds for
δ = 2θ−1β and R = (8/η) log(4θ−1β). By Theorem 34 with ε = 1/2, we get for
all x, y ∈ R

d and t ≥ 0,∥∥Pt(x, ·) − Pt(y, ·)∥∥TV

≤ 2�t + e−θt/4{
(1/2)

(
Wc(x)(70)

+ Wc(y)
) + 2θ−1βe4θ−1ω(2−1,(8/η) log(4θ−1β))},(71)

where � is defined in (30a). By [32], Theorem 4.3(ii), (57) implies that∫
Rd Wc(y)π(dy) ≤ βθ−1. The proof is then concluded using this bound, (70) and

that π is invariant for (Pt )t≥0. �

PROOF OF THEOREM 21. By applying Theorem 36 with ε = 1/2, the triangle
inequality and using that π is invariant for (Pt )t≥0, we have∥∥Pt(x, ·) − π

∥∥
TV ≤

{
3 + ‖x − x�‖ +

∫
Rd

‖y − x�‖dπ(y)

}
κt .
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It remains to show that
∫
Rd ‖y − x�‖dπ(y) ≤ (d/m + M2

s )1/2. For this we es-
tablish a drift inequality for the generator A L of the Langevin SDE associated
with U . Consider the function Ws(x) = ‖x − x�‖2. For all x ∈ R

d we have, using
∇U(x�) = 0,

A LWs(x) ≤ 2
(
d − 〈∇U(x) − ∇U

(
x�), x − x�〉).

Therefore, by G3, for all x ∈ R
d , ‖x − x�‖ ≥ Ms, we get

A LWs(x) ≤ −2mWs(x) + 2d,

and for all x ∈ R
d ,

A LWs(x) ≤ −2mWs(x) + 2
(
d + mM2

s
)
.

By [32], Theorem 4.3(ii), we get
∫
Rd Ws(y)dπ(y) ≤ d/m + M2

s . The bound on
C(δxQ

n
γ ) is a consequence of the Cauchy–Schwarz inequality, Proposition 20 and

Lemma 1. The bound for A(γ, x) similarly follows from L1, Proposition 20 and
Lemma 1. �
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