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FINITE-LENGTH ANALYSIS ON TAIL PROBABILITY FOR
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and National University of Singapore‡

Using terminologies of information geometry, we derive upper and lower
bounds of the tail probability of the sample mean for the Markov chain with
finite state space. Employing these bounds, we obtain upper and lower bounds
of the minimum error probability of the type-2 error under the exponential
constraint for the error probability of the type-1 error in a simple hypothe-
sis testing for a finite-length Markov chain, which yields the Hoeffding-type
bound. For these derivations, we derive upper and lower bounds of cumulant
generating function for Markov chain with finite state space. As a byproduct,
we obtain another simple proof of central limit theorem for Markov chain
with finite state space.

1. Introduction. Since the notion of a Markov chain provides a natural model
for (joint) probability distributions with stochastic correlation, we focus on the
Markov chain with finite state space. Under this model, we often focus on the sam-
ple mean of n samples, and discuss the cumulant generating function and the tail
probability. Many existing studies investigated their asymptotic behaviors [7, 9–
11, 14–16, 28, 31, 33, 34, 40]. For example, the papers [16, 28, 31, 34, 40, 53]
showed the central limit theorem, that is, they proved that the difference between
the sample mean and the expectation asymptotically obeys the Gaussian distribu-
tion. Donsker and Varadhan [11] did some pioneering works on the large deviation
theory of the Markov chain, which influenced later works in this field. Nowadays,
it is known that the exponential decaying rate of the Markov chain is characterized
by the Legendre transform of the asymptotic cumulant generating function (see
Dembo and Zeitouni [10]). Further, other existing studies [45, 46] investigated the
simple hypothesis testing for Markov chains. They derived the Hoeffding bound
[26] for two Markov chains, that is, the exponentially decreasing rate of the type-2
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error probability under the exponential constraint for the type-1 error probability.
In the independently and identically distributed (i.i.d.) case, by extending Stein’s
lemma, Strassen [52] derived the asymptotic expansion of the exponential decreas-
ing rate of the type-2 error probability up to the order

√
n, under the constant

constraint for the type-1 error probability, whose quantum extension was recently
done by the papers in [38, 54].

Indeed, it is not difficult to give a bound when it is not so tight or its computation
is not so easy. Here, we should mention a proper requirement for a better finite-
length bound as follows:

(1) Asymptotic tightness. For example, in the case of the tail probability, the
bound can recover one of the following in the limit n → ∞;

(T1) Central limit theorem [28, 34, 40];
(T2) Moderate deviation [9, 34];
(T3) Large deviation [10, 11, 33, 34].

(2) Computability. The bound should have less computational complexity, for
example, O(1), O(n) or O(n logn). For example, we call the bound O(1)-
computable when its computation complexity is O(1).

In the i.i.d. case, it is known that the Markov inequality derives an upper bound
of the tail probability that attains the asymptotic tightness in the sense of (T2)
and (T3) and is called Chernoff bound [10, 39]. Also, the paper [33] derived a
finite-length upper bound of the tail probability in the sense of (T3) for the Markov
chain case by another method. However, even in the i.i.d. case, there is no O(1)-
computable finite-length lower bound that attains the asymptotic tightness in the
sense of (T2) nor (T3).

The Berry–Esseen theorem gives upper and lower O(1)-computable bounds
of the tail probability that attain the asymptotic tightness in the sense of (T1) in
the i.i.d. case (see, e.g., [13]). The paper [25], Theorem 2, extended the Berry–
Esseen theorem to the Markov chain case, and gave similar upper and lower O(1)-
computable bounds for Markov chains. Also, the paper [53] generalized the Berry–
Esseen theorem to a general setting including the Markov chain case.

In the case of simple hypothesis testing, the three kinds of asymptotic tightness
are characterized as follows:

(H1) Constant constraint for the type-1 error probability ε = const.
(H2) Moderate deviation type constraint for the type-1 error probability ε =

e−n1−2t r with t ∈ (0, 1
2).

(H3) Large deviation type constraint for the type-1 error probability ε = e−nr

(Hoeffding bound [45, 46]).

In the i.i.d. case (including the quantum case), the paper [54] derived lower and
upper O(1)-computable finite-length bounds for the type-2 error probability that
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attain the asymptotic tightness in the sense of (H1). Also, it is not difficult to de-
rive an upper O(1)-computable finite-length bound for the type-2 error probability
that attains the asymptotic tightness in the sense of (H2) nor (H3). However, no
study addressed a lower O(1)-computable finite-length bound for the type-2 error
probability that attains the asymptotic tightness in the sense of (H2) nor (H3) even
in the i.i.d. case.

This paper derives the finite-length bounds for the above topics satisfying the
above requirement. First, we derive upper and lower bounds of the cumulant gener-
ating function when n observations are given. We show that these limits recover the
asymptotic cumulant generating function [10]. Using our evaluation of the cumu-
lant generating function, we also derive upper and lower O(1)-computable bounds
of the tail probability that attains the asymptotic tightness in the sense of (T2) and
(T3) in the Markov chain case as well as in the i.i.d. case. Our analysis covers the
sample mean of two-input functions like g(Xk+1,Xk) as well as the simple sample
mean

∑n
i=1

Xi

n
. As a byproduct, employing the evaluation of the cumulant gener-

ating function, we simply reproduce the central limit theorem [28, 34, 40]. Indeed,
since we address a general function g(Xk+1,Xk), our evaluations can be applied
to the sample mean of the hidden Markov random variables.

For simple hypothesis testing, this paper derives the lower and upper O(1)-
computable bounds of the type-2 error probability under the same constraint with
finite observations whose limits recover the asymptotic bound (H3) [45, 46] and
the asymptotic bound (H2). For describing these finite-length bounds, we employ
the notation given by the transition matrix version of information geometry, that
is, the relative entropy (Kullback–Leibler divergence), the relative Rényi entropy,
exponential family, natural parameter and expectation parameter [24, 44, 45]. Fur-
ther, employing the Markov version of the Berry–Esseen theorem [25], Theorem 2,
we also obtain another type O(1)-computable finite-length bound, which derives
the asymptotic bound (H1) as a generalization of the result by Strassen [52].

Indeed, there are two ways to define a transition matrix version of exponen-
tial family. We employ the definition by [24, 44, 45], which is different from the
definition by [5, 6, 12, 27, 35, 50, 51]. The exponential family to be used plays
an essential role in our derivation. That is, the exponential family enables us to
discuss simple hypothesis testing and the parameter estimation [24] in a unified
manner. The obtained bounds are used for the evaluations of several information
theoretical problems [21].

As another significance of the obtained result, we point out an interesting ap-
plication of the simple hypothesis testing to topics in information theory, channel
coding, data compression and secure random number generation, etc. For example,
the optimal performance of channel coding is evaluated by using the combination
of the first and second kinds of error probabilities of simple hypothesis testing [19,
43, 48], which yields the second-order analysis [18, 48]. Its history is reviewed in
the recent review paper [17]. Similar evaluations are available for other topics in
information theory. Hence, applying the obtained evaluation for Markovian chain,
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we can discuss channel coding, data compression and secure random number gen-
eration for the Markovian case [20–23]. This kind of application yields the finite
block-length evaluation, which gives the evaluation of the optimal performance of
real finite block-length codes.

The remainder of this paper is organized as follows. Section 2 gives the brief
summary of obtained results. In Section 3, we review an exponential family of
transition matrices [24, 44, 45] in the one-parameter case. In Section 4, we char-
acterize Legendre transform of the potential function. In Section 6, we give useful
upper and lower bounds of the cumulant generating function. In Section 7, we give
a simple alternative proof of the central limit theorem for the Markov chain case.
In Section 8, we also give useful upper and lower bounds of the tail probability
with finite observation, which produces the large deviation bound of the tail prob-
ability. In Section 9, using these bounds, we derive upper and lower bounds of the
type-2 error probability of simple hypothesis testing, which yields the Hoeffding
type bounds.

2. Summary of results. Here, we prepare notation and definitions. For
a given transition matrix W over X , we define W×n(xn, xn−1, . . . , x1|x̄) :=
W(xn|xn−1)W(xn−1|xn−2) · · ·W(x1|x̄) and Wn(x|x̄) = ∑

xn−1,...,x1
W×n(x,

xn−1, . . . , x1|x̄). For a given distribution P on X and a transition matrix V from
X to Y , we define V × P(y, x) := V (y|x)P (x). and V P(y) :=∑

x V × P(y, x).
A nonnegative matrix W is called irreducible when for each x, x̄ ∈ X , there

exists a natural number n such that Wn(x|x̄) > 0 [41]. An irreducible matrix W is
called ergodic when there are no input x̄ and no integer n′ such that Wn(x̄|x̄) = 0
unless n is divisible by n′ [41]. It is known that the output distribution of WnP

converges to the stationary distribution of W for a given ergodic transition matrix
W [30, 41].

2.1. Cumulant generating function. Assume that n + 1 random variables
X1, . . . ,Xn+1 obey the Markov process with the transition matrix W(x|x̄). In
this paper, for a two-input function g(x, x̄) and the Markovian sequence Xn+1 :=
(Xn+1, . . . ,X1), we focus on the random variable gn(Xn+1) :=∑n

i=1 g(Xi+1,Xi).
This is because a two-input function g(x, x̄) is closely related to an exponential
family of transition matrices. Indeed, the simple sample mean can be treated in the
formulation by choosing g(x, x̄) as x or x̄. Here, when we choose a general func-
tion g(x), gn(Xn+1) =∑n

i=1 g(Xi+1) is the sample mean of the hidden Markov
random variable. So, our results can be applied to the hidden Markov random case.

We denote the Perron–Frobenius eigenvalue of W(x|x̄)eθg(x,x̄) by λθ and define
the potential function φ(θ) := logλθ . Then we focus on the cumulant generating
function φn(θ) := log E[eθgn(Xn+1)], where E denotes the expectation. We will de-
fine functions δ(θ) and δ(θ) in Section 6 so that δ(θ) → 0 and δ(θ) → 0 as θ → 0.
Then we will evaluate φn(θ) as

nφ(θ) + δ(θ) ≤ φn(θ) ≤ nφ(θ) + δ(θ).(2.1)
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2.2. Tail probability. Given an irreducible and ergodic transition matrix W ,
we will evaluate the tail probability of the random variable gn(Xn+1) by us-
ing the one-parameter exponential family Wθ given in [24], Section 3, and the
relative entropies D(Wθ‖Wθ̄) and D1+s(Wθ‖Wθ̄) defined in Section 3 as fol-
lows. Now, we focus on the asymptotic expectation of the sample mean E[g] :=
limn→∞ 1

n
E[gn(Xn+1)]. For any a > E[g], we will show

− logP
{
gn(Xn+1)≥ na

}≥ nD(W
φ′−1(a)

‖W0) − δ(θ),(2.2)

where φ′−1
(a) is the inverse function of φ′(θ) = dφ

dθ
(θ), that is, dφ

dθ
(φ′−1

(a)) = a.
Conversely, we will show

− logP
{
gn(Xn+1)≥ na

}
≤ inf

s>0
θ>φ′−1(a)

nD1+s(Wθ‖W0) + 1

s

[
δ
(
(1 + s)θ

)− δ(θ)
]

(2.3)

− 1 + s

s
log
(
1 − e

−nD(W
φ′−1(a)

‖Wθ)+δ(φ′−1
(a))−δ(θ))

.

Similarly, for a < E[g], we will show

− logP
{
gn(Xn+1)≤ na

}≥ nD(W
φ′−1(a)

‖W0) − δ(θ).(2.4)

Conversely, we will show

− logP
{
gn(Xn+1)≤ na

}
≤ inf

s>0
θ<φ′−1(a)

nD1+s(Wθ‖W0) + 1

s

[
δ
(
(1 + s)θ

)− δ(θ)
]

(2.5)

− 1 + s

s
log
(
1 − e

−nD(W
φ′−1(a)

‖Wθ)+δ(φ′−1
(a))−δ(θ))

.

2.3. Simple hypothesis testing. Now, we consider the hypothesis testing with
the two hypotheses W×n

0 ×P0 and W×n
1 ×P1. Usually, the null hypothesis is writ-

ten with the parameter 0, and the alternative one is with 1. However, this paper em-
ploys the opposite parameterization because of the following reason. Although the
main results of this paper are upper and lower bounds of type-2 error probability by
using several functions, the constructions of these functions are closely related to
the parameterization of the null and alternative hypotheses. If we parametrize them
in the conventional way, the forms of these functions become more complicated so
that many important formulas could not be written in one line. To avoid these kinds
of troubles, we employ the parametrization opposite to the conventional case.

Then we consider the minimum type-2 error probability

βε

(
W×n

1 × P1‖W×n
0 × P0

)
(2.6)

:= min
S⊂X n+1

{
1 − W×n

0 × P0(S)|W×n
1 × P1(S) ≤ ε

}
.
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Using the one-parameter exponential family Wθ of transition matrices with the
generator g(x, x̄) := log W1(x|x̄)

W0(x|x̄)
and the cumulant generating function φ(θ) de-

fined by g(x, x̄), we will show that

sup
0≤θ≤1

n(−θr − φ(θ)) − δ(θ)

1 − θ

≤ − logβe−nr

(
W×n

1 × P1‖W×n
0 × P0

)
(2.7)

≤ inf
s>0,θ∈(θ̂(r),1)

nD1+s(Wθ‖W0) + 1

s

(
δ
(
(1 + s)θ

)− (1 + s)δ(θ)
)

− 1 + s

s
log
(
1 − 2e

−nD(W
θ̂(r)

‖Wθ)−δ(θ)+ (1−θ)δ(θ̂(r))

1−θ̂ (r)
)
,

where the functions θ̂ (r) is given in Section 4. We will also asymptotically char-
acterize βε(W

×n
1 × P1‖W×n

0 × P0) with a fixed ε.

3. Geometric structure for transition matrices. In this section, we review
the definition and the properties of the one-parameter exponential family of transi-
tion matrices [44, 45] by following the logical order of [24], Section 4, although a
large part of results for exponential family of transition matrices were obtained by
Nagaoka [44] and Nakagawa and Kanaya [45]. This is because the logical order of
[24], Section 4, is more suitable for the context of this paper. These relations are
explained in [24], Remarks 3.5, 4.12, and 4.14. Note that the definition of expo-
nential family in this paper is different from that by the papers [5, 6, 12, 27, 35,
50, 51] as explained in [24], Remark 4.13.

3.1. Preparations. For the definition and the properties of the one-parameter
exponential family of transition matrices, we prepare the following things.

LEMMA 3.1 ([24], Lemma 3.1). Consider an irreducible and ergodic transi-
tion matrix W over X and a real-valued function g on X × X . Then we define
the support X 2

W := {(x, x̄) ∈ X 2|W(x|x̄) > 0}. Define φ(θ) as the logarithm of the
Perron–Frobenius eigenvalue of the matrix:

W̃θ (x|x̄) := W(x|x̄)eθg(x,x̄).(3.1)

Then the function φ(θ) is convex. Further, the following conditions are equivalent:

(1) No real-valued function f on X satisfies that g(x, x̄) = f (x) − f (x̄) + c for
any (x, x̄) ∈ X 2

W with a constant c ∈ R.

(2) The function φ(θ) is strictly convex, that is, d2φ

dθ2 (θ) > 0 for any θ .

(3) d2φ

dθ2 (θ)|θ=0 > 0.
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Using Lemma 3.1, given two distinct ergodic transition matrices W and V with
the same support, we define the relative entropy and the relative Rényi entropies.
For this purpose, we denote the logarithm of the Perron–Frobenius eigenvalue of
the matrix W(x|x̄)1+sV (x|x̄)−s by ϕ(1 + s). Then we define

D(W‖V ) := dϕ

ds
(1), D1+s(W‖V ) := ϕ(1 + s)

s
.(3.2)

Note that the limit lims→0 D1+s(W‖V ) equals D(W‖V ). Since W and V are

distinct, the function log W(x|x̄)
V (x|x̄)

satisfies the condition for the function g in
Lemma 3.1. Hence, the function s �→ sD1+s(W‖V ) is strictly convex, which im-
plies that sD1+s(W‖V ) < (1 − s

s̄
)0 + s

s̄
s̄D1+s̄ (W‖V ) for 0 < s < s̄. Since a simi-

lar relation holds for 0 > s > s̄, the relative Rényi entropy D1+s(W‖V ) is strictly
monotone increasing with respect to s.

3.2. Exponential family. Now, we focus on a transition matrix W(x|x̄) from X
to X and a real-valued function g on X ×X satisfying the condition in Lemma 3.1.
In the following, we assume that the function g satisfies condition in Lemma 3.1.
Then we will define the matrix Wθ(x|x̄) from X to X for θ by following steps
below. For this purpose, we define the matrix W̃θ (x|x̄) from X to X by

W̃θ (x|x̄) := W(x|x̄)eθg(x,x̄).(3.3)

Using the Perron–Frobenius eigenvalue λθ of W̃θ , we define the potential function

φ(θ) := logλθ .(3.4)

Due to Lemma 3.1, the second derivative d2φ

dθ2 is strictly positive. Hence, the po-
tential function φ(θ) is strictly convex. In the following, using the strictly convex
function φ(θ), we define a one-parameter exponential family for transition matri-
ces.

Note that, since the value
∑

x W̃θ (x|x̄) generally depends on x̄, we cannot make
a transition matrix by simply multiplying a constant with the matrix W̃θ . To make
a transition matrix from the matrix W̃θ , we recall that a nonnegative matrix V from
X to X is a transition matrix if and only if the vector (1, . . . ,1)T is an eigenvector
of the transpose V T . In order to resolve this problem, we focus on the structure of
the matrix W̃θ . We denote the Perron–Frobenius eigenvectors of W̃θ and its trans-
pose W̃T

θ by P̃θ and P̂θ . Since the irreducibility of W guarantees the irreducibility
of P̃ T

θ , the relation P̂θ (x) > 0 holds. According to [24, 34, 44, 45],3 we define the
matrix Wθ(x|x̄) as

Wθ(x|x̄) := λ−1
θ P̂θ (x)W̃θ (x|x̄)P̂θ (x̄)−1.(3.5)

3The Appendix of [24] explains detailed relation the papers [24, 34, 44, 45] for an exponential
family of transition matrices.
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The matrix Wθ(x|x̄) is a transition matrix because vector (1, . . . ,1)T is an eigen-
vector of the transpose WT

θ . In the following, we call the family of transition ma-
trices E := {Wθ } an exponential family of transition matrices with the generator g.

Using the potential function φ(θ), we explain several concepts for transition
matrices based on Lemma 3.1, formally. We call the parameter θ the natural pa-
rameter, and the parameter η(θ) := φ′(θ) = dφ

dθ
(θ) the expectation parameter. For

η, we define the inverse function φ′−1
(η) of φ′ as

φ′(φ′−1
(η)
)= η.(3.6)

Then we define the Fisher information for the natural parameter by the second

derivative d2φ

dθ2 (θ). The Fisher information for the expectation parameter is given

as d2φ

dθ2 (θ)−1.

LEMMA 3.2 ([24], Lemma 4.4). The relative entropy and the relative Rényi
entropies between two transition matrices Wθ and Wθ̄ are characterized as

D(Wθ‖Wθ̄) = (θ − θ̄ )
dφ

dθ
(θ) − φ(θ) + φ(θ̄),(3.7)

D1+s(Wθ‖Wθ̄) = φ((1 + s)θ − sθ̄) − (1 + s)φ(θ) + sφ(θ̄)

s
.(3.8)

In the following, EW denotes the expectation with respect to the joint distribu-
tion when the conditional distribution is given by the transition matrix W and the
input distribution is given by the stationary distribution of W . Then, for a generator
g and a real number a, we define the mixture subfamily Mg,a as

Mg,a := {
W |EWg

(
X,X′)= a

}
.(3.9)

A transition matrix version of the Pythagorean theorem [3] holds as follows.

THEOREM 3.3 ([45], Lemma 5, [24], Corollary 4.8). For a transition ma-
trix V , a generator g, and a real number a, we define

V ∗ := argmin
W∈Mg,a

D(W‖V ).(3.10)

(1) Any transition matrix W ∈ Mg,a satisfies

D(W‖V ) = D
(
W‖V ∗)+ D

(
V ∗‖V ).(3.11)

(2) The transition matrix V ∗ is the intersection of the set Mg,a and the expo-
nential family generated by g containing V .

Due to Lemma 3.2, the Fisher information d2φ

dθ2 (θ0) can be characterized by the
limits of the relative entropy and relative Rényi entropy as follows.
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LEMMA 3.4. Under the limit δ → 0, we have

lim
δ→0

1

δ2 D(Wθ0+δ‖Wθ0) = lim
δ→0

1

δ2 D(Wθ0‖Wθ0+δ) = 1

2

d2φ

dθ2 (θ0),(3.12)

lim
δ→0

1

δ2 D1+s(Wθ0+δ‖Wθ0) = lim
δ→0

1

δ2 D1+s(Wθ0‖Wθ0+δ)

(3.13)

= 1 + s

2

d2φ

dθ2 (θ0).

4. Relation with Legendre transform. Given two irreducible and ergodic
transition matrices W and V , we choose the exponential family Wθ with the gen-
erator g(x, x̄) := logV (x|x̄)− logW(x|x̄) so that W0 = W and W1 = V . In fact, an
arbitrary exponential family Wθ can be written as the above form by choosing two
irreducible and ergodic transition matrices as W := W0 and V := W1. The Legen-
dre transform supθ≥0[θa −φ(θ)] of the convex function φ can be characterized as
follows.

LEMMA 4.1. When a > −D(W‖V ),

inf
s>0

θ>φ′−1(a)

D1+s(Wθ‖W0) = inf
s>0

θ>φ′−1(a)

φ((1 + s)θ) − (1 + s)φ(θ)

s

= φ′−1
(a)a − φ

(
φ′−1

(a)
)

(4.1)

= sup
θ≥0

[
θa − φ(θ)

]= D(W
φ′−1(a)

‖W0).

Similarly, when a < −D(W‖V ),

inf
s>0

θ<φ′−1(a)

φ((1 + s)θ) − (1 + s)φ(θ)

s
= φ′−1

(a)a − φ
(
φ′−1

(a)
)

= sup
θ≤0

[
θa − φ(θ)

]= D(W
φ′−1(a)

‖W0).

PROOF. Since the function θ �→ φ(θ) is convex, the function
s �→ φ((1+s)θ)−(1+s)φ(θ)

s
is monotone increasing due to Lemma C.1. Hence,

infs>0
φ((1+s)θ)−(1+s)φ(θ)

s
= θ

dφ
dθ

(θ) − φ(θ) for θ > φ′−1
(a). Thus,

inf
s>0

θ>φ′−1(a)

φ((1 + s)θ) − (1 + s)φ(θ)

s
= inf

θ>φ′−1(a)

θ
dφ

dθ
(θ) − φ(θ).

Since the function θ �→ φ(θ) is convex, the function θ �→ θ
dφ
dθ

(θ)−φ(θ) is mono-
tone increasing for θ ≥ 0. Therefore,

inf
θ>φ′−1(a)

θ
dφ

dθ
(θ) − φ(θ) = φ′−1

(a)a − φ
(
φ′−1

(a)
)= sup

θ≥0

[
θa − φ(θ)

]
,
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where the second equation follows from the convexity of φ(θ). The final equation
in (4.1) is shown by D(W

φ′−1(a)
‖W0) = φ′−1

(a)a − φ(φ′−1
(a)). �

Now, for an arbitrary convex function φ and r > 0, we define the function
θ̂ (r) = θ̂ [φ](r) as the smaller solution of the equation

(θ − 1)
dφ

dθ
(θ) − φ(θ) = D(Wθ‖W1) = r(4.2)

with respect to θ . Hence, due to the convexity of φ, we have

inf
s>0,θ∈(0,θ̂ (r))

D1+s(Wθ‖W0)

= inf
s>0,θ∈(0,θ̂ (r))

1

s

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ)
]

= inf
s>0

1

s

[
φ
(
(1 + s)θ̂(r)

)− (1 + s)φ
(
θ̂ (r)

)]= θ̂ (r)
dφ

dθ

(
θ̂ (r)

)− φ
(
θ̂ (r)

)
(4.3)

= −θ̂ (r)
r + φ(θ̂(r))

1 − θ̂ (r)
− φ

(
θ̂ (r)

)= −θ̂ (r)r − φ(θ̂(r))

1 − θ̂ (r)

(a)= sup
0≤θ<1

−θr − φ(θ)

1 − θ
= sup

0≤θ<1

θ(−r + D1−θ (W0‖W1))

1 − θ
,

which implies the following lemma. Here, (a) can be derived as follows. Due to
Lemma C.1, the maximum can be attained when (4.2) holds, that is, θ = θ̂ (r).
Hence, we have (a).

LEMMA 4.2. When 0 ≤ r ≤ D(W0‖W1),

sup
0≤θ≤1

−θr − φ(θ)

1 − θ
= sup

0≤θ≤1

θ(−r + D1−θ (W0‖W1))

1 − θ

= inf
s>0,θ∈(0,θ̂ (r))

D1+s(Wθ‖W0) = D(W
θ̂(r)

‖W0)

= min
W :D(W‖W1)≤r

D(W‖W0).

Here, when φ(θ)
1−θ

is regarded as a function of δ := −θ
1−θ

, that is, is described

as f (δ), sup0≤θ≤1
−θr−φ(θ)

1−θ
is given as the Legendre transform of f , i.e.,

sup0≤θ≤1 δr − f (δ).

PROOF OF LEMMA 4.2. The first and second equations follow from (4.3). The
third equation follows from (4.3) and the relation D(W

θ̂(r)
‖W0) = θ̂ (r)

dφ
dθ

(θ̂ (r))−
φ(θ̂(r)). Now, we show the final equation. We choose W satisfying that D(W‖
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W1) ≤ r . We also choose a such that W ∈ Mg,a , which is defined in Theorem 3.3.
Then we denote the intersection of the set Mg,a and the exponential family {Wθ }
by Wθ̄ . Theorem 3.3 implies that D(Wθ̄‖W1) ≤ r and D(Wθ̄‖W0) ≤ D(W‖W0).
Thus, we obtain

min
W :D(W‖W1)≤r

D(W‖W0) = min
θ :D(Wθ‖W1)≤r

D(Wθ‖W0).(4.4)

Due to the condition 0 ≤ r ≤ D(W1‖W0), the above value equals D(W
θ̂(r)

‖W0).
�

5. Information processing inequality. Now, we introduce a condition for a
transition matrix as follows. A transition matrix W on X ×Y is called nonhidden
for X when WX(x|x′) :=∑

y∈Y W(x,y|x′, y′) does not depend on y′ ∈ Y . When
the Markov chain for X and Y generated by W and W satisfies the above condition,
the sequence for X is also a Markov chain, not a hidden Markov chain. This is the
reason of the name of “nonhidden.” As a transition matrix version of information
processing inequality, we have the following theorem.

THEOREM 5.1. When two transition matrices W and V on X × Y are non-
hidden for X , the following hold for s ∈ (−1,0) ∪ (0,∞):

D(W‖V ) ≥ D(WX‖VX), D1+s(W‖V ) ≥ D1+s(WX‖VX).(5.1)

PROOF. For s > 0, let λ and b = (bx,y) be the Perron–Frobenius eigenvalue
and eigenvector of the matrix W(x,y|x′, y′)1+sV (x, y|x′, y′)−s . Since the reverse
Hölder inequality implies∑

y

W
(
x, y|x′, y′)1+s

V
(
x, y|x′, y′)−s

≥
(∑

y

W
(
x, y|x′, y′)(1+s)/(1+s)

)1+s(∑
y

V
(
x, y|x′, y′)−s/(−s)

)−s

= WX

(
x|x′)1+s

VX

(
x|x′)−s

,

the number cx =∑
y bx,y satisfies

λcx =∑
y

λbx,y =∑
y

∑
x′,y′

W
(
x, y|x′, y′)1+s

V
(
x, y|x′, y′)−s

bx′,y′

≥ ∑
x′,y′

WX

(
x|x′)1+s

VX

(
x|x′)−s

bx′,y′ =∑
x′

WX

(
x|x′)1+s

VX

(
x|x′)−s

cx′,

which implies that maxx

∑
x′ WX(x|x′)1+sVX(x|x′)−scx′

cx
≤ λ. Due to the Collatz–

Wielandt formula, λ is larger than the Perron–Frobenius eigenvalue of the matrix
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WX(x|x′)1+sVX(x|x′)−s . Hence, we obtain the second inequality of (5.1) with
s > 0.

When s ∈ (−1,0), replacing the role of the reverse Hölder inequality by the

Hölder inequality, we can show that minx

∑
x′ WX(x|x′)1+sVX(x|x′)−scx′

cx
≥ λ. Due to

the Perron–Frobenius theorem, λ is smaller than the Perron–Frobenius eigenvalue
of the matrix WX(x|x′)1+sVX(x|x′)−s . Hence, we obtain the second inequality
of (5.1) with s ∈ (−1,0). Taking the limit s → 0, we obtain the first inequality
of (5.1). �

Theorem 5.1 can be regarded as a part of information processing inequality as
follows. In the case of the information processing inequality between two distribu-
tions P and P ′, we compare the relative entropy between P and P ′ and the relative
entropy between V P and V P ′ for a given transition matrix V . Since the relative
entropy between P and P ′ equals the relative entropy between V ×P and V ×P ′,
it is enough to compare the relative entropy between V × P and V × P ′ and the
relative entropy between V P and V P ′. The difference between these relative en-
tropies can be characterized as existence or nonexistence of the marginalization
for the input system. Therefore, the information processing inequality can be re-
duced to the information processing inequality with respect to the marginalization.
As the inequalities in Theorem 5.1 give the relations among the relative entropies
before/after the marginalization, they can be regarded as an information process-
ing inequality. Therefore, it can be expected that Theorem 5.1 will play roles of
information processing inequality in information theory.

6. Cumulant generating function. In the following, we consider the Markov
chain Xn+1 = (X1, . . . ,Xn,Xn+1) generated by the transition matrix W0 and
an arbitrary initial distribution P0. That is, the random variable Xn+1 is subject
to the distribution W×n

0 × P0. We consider the random variable g̃n(Xn+1) :=∑n
i=1 g(Xi+1,Xi) + h(X1) for a function h on R. Then we define the cumulant

generating function

φn(θ) := log E0
[
eθg̃n(Xn+1)],(6.1)

where E0 denotes the expectation under the distribution W×n
0 × P0.

LEMMA 6.1. Let vθ be the eigenvector of W̃T
θ with respect to the Perron–

Frobenius eigenvalue λθ such that minx vθ (x) = 1. Let wθ(x) := P0(x)eθh(x).
Then we have

nφ(θ) + δ(θ) ≤ φn(θ) ≤ nφ(θ) + δ(θ),(6.2)

where

δ(θ) := log〈vθ |wθ 〉, δ(θ) := log〈vθ |wθ 〉 − log max
x

vθ (x).(6.3)
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REMARK 6.2. The recent paper [42], Lemma 24,4 showed a related evaluation
as

nφ(θ) − (1 + 2θ) logη ≤ φn(θ) ≤ nφ(θ) + (1 + 2θ) logη,(6.4)

where η is a constant, which is independent of θ . In fact, to apply this kind evalua-
tion to our proof of our Lemma 7.1, the error term needs to go to zero when θ goes
to zero. However, their evaluation (6.4) does not satisfy this requirement because
the error term (1 + 2θ) logη does not go to zero while our evaluation satisfies
this requirement as Lemma 6.4. This comparison shows that in our evaluation,
Lemma 6.1 is tighter than their evaluation (6.4) in this sense.

PROOF OF LEMMA 6.1. Let u be the vector such that u(x) = 1 for every
x ∈ X . From the definition of φn(θ), we have the following sequence of calcula-
tions:

eφn(θ) = ∑
xn,...,x1

P(x1)

n∏
i=1

W(xi+1|xi)e
θ
∑n

i=1 g(xi+1,xi )+h(x1)

= 〈
u|W̃n

θ wθ

〉≤ 〈vθ |W̃n
θ wθ

〉= 〈(
W̃T

θ

)n
vθ |wθ

〉= λn
θ 〈vθ |wθ 〉 = enφ(θ)〈vθ |wθ 〉,

which implies the right-hand side inequality of (6.2). On the other hand, we have
the following sequence of calculations:

eφn(θ) = 〈
u|W̃n

θ wθ

〉≥ 1

maxx vθ (x)

〈
vθ |W̃n

θ wθ

〉

= 1

maxx vθ (x)

〈(
W̃T

θ

)n
vθ |wθ

〉= λn
θ

〈vθ |wθ 〉
maxx vθ (x)

= enφ(θ) 〈vθ |wθ 〉
maxx vθ (x)

,

which implies the left-hand side inequality of (6.2). �

By taking the limit in (6.2) of Lemma 6.1, we have the following.

COROLLARY 6.3 ([10], Theorem 3.1.1). For θ ∈ R, we have

lim
n→∞

1

n
φn(θ) = φ(θ).(6.5)

LEMMA 6.4.

lim
θ→0

δ(θ) = 0, lim
θ→0

δ(θ) = 0.(6.6)

4After the submission of the preliminary conference version [57] of this paper in April 2014,
a related paper was posted in arXiv in September 2014 [42].
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PROOF. From the construction of vθ and wθ , the vectors vθ and wθ are con-
tinuous for θ . Hence,

lim
θ→0

〈vθ |wθ 〉 = 〈u|w0〉 =∑
x

P (x) = 1,(6.7)

which implies the first equation of (6.6). Similarly,

lim
θ→0

max
x

vθ (x) = max
x

u(x) = 1.(6.8)

Combining (6.7) and (6.8), we obtain the second equation of (6.6). �

Using these relations, we can show the following lemma.

LEMMA 6.5. For any initial distributions P0 and P1, we have

lim
n→∞

1

n
D
(
W×n

0 × P0‖W×n
1 × P1

)= D(W0‖W1),(6.9)

lim
n→∞

1

n
D1+s

(
W×n

0 × P0‖W×n
1 × P1

)= D1+s(W0‖W1).(6.10)

PROOF. Now, we choose the functions g(x, x̄) := log W1(x|x̄)
W0(x|x̄)

and h(x̄) :=
log P1(x̄)

P0(x̄)
. Under these choices,

D1+s

(
W×n

0 × P0‖W×n
1 × P1

)= φn(−s)

s
, D1+s(W0‖W1) = φ(−s)

s
.(6.11)

Hence, combining (6.2) ad (6.11), we obtain (6.10).
Since the relative Rényi entropy D1+s(W

×n
0 × P0‖W×n

1 × P1) is monotone in-
creasing with respect to s and lims→0 D1+s(W

×n
0 × P0‖W×n

1 × P1) = D(W×n
0 ×

P0‖W×n
1 × P1), we have

D1−δ(W0‖W1) = lim
n→∞

1

n
D1−δ

(
W×n

0 × P0‖W×n
1 × P1

)

≤ lim
n→∞

1

n
D
(
W×n

0 × P0‖W×n
1 × P1

)

≤ lim
n→∞

1

n
D1+δ

(
W×n

0 × P0‖W×n
1 × P1

)
= D1+δ(W0‖W1)

for δ > 0. Since lims→0 D1+s(W0‖W1) = D(W0‖W1), we obtain (6.9). �
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7. Asymptotic variance. First, we prepare the following lemma.

LEMMA 7.1 ([36]). The cumulant generating function of the random variable√
n(

g̃n(Xn+1)
n

− η(0)) converges as follows:

log E0

[
exp

[
δ
√

n

(
g̃n(Xn+1)

n
− η(0)

)]]
(7.1)

= φn

(
δ√
n

)
− δ

√
nη(0) → δ2 1

2

d2φ

dθ2 (0).

PROOF. Using (6.2) and (6.6), we have

lim
n→∞φn

(
δ√
n

)
− δ

√
nη(0) ≤ lim

n→∞nφ

(
δ√
n

)
− δ

√
nη(0) + δ

(
δ√
n

)

= lim
n→∞ δ2

φ( δ√
n
) − ( δ√

n
)
dφ
dθ

(0)

( δ√
n
)2

= δ2

2

d2φ

dθ2 (0).

Similarly, the opposite inequality can be shown by (6.2) and (6.6). Hence, we
obtain the desired relation. �

The right-hand side of (7.1) is the cumulant generating function of Gaussian

distribution with the variance d2φ

dθ2 (0) and average 0. Since the limit of cumulant
generating function uniquely decides the limit of the distribution function [49],
Lemma 7.1 reproduces the central limit theorem as a corollary.

COROLLARY 7.2 ([4, 28, 34, 36, 40]). The limiting distribution of
√

n ×
(
g̃n(Xn+1)

n
− η(0)) is characterized as

lim
n→∞W×n

0 × P0
{
g̃n(Xn+1)− nη(0) ≤ √

nδ
}= 


(
δ√

d2φ

dθ2 (0)

)
,(7.2)

where 
(y) := ∫ y
−∞ e

− x2
2√

2π
dx.

The above corollary can be regarded as the Markov version of the central limit
theorem. As the refinement of the above argument, the paper [25], Theorem 2,
showed the Markov version of the Berry–Esseen theorem as follows.

REMARK 7.3. Our derivation of Corollary 7.2 is much simpler than existing
derivations [4, 28, 34, 40] because it employs only our evaluation of the cumulant
generating function. For example, the paper [4], Theorem 4, showed the Markov
version of the central limit theorem by using a martingale stopping technique.



826 S. WATANABE AND M. HAYASHI

Only Lalley [36] employ the same method as our paper for Corollary 7.2. Lalley
[36] also showed the same statement as Lemma 7.1 in his proof in Theorem 1 of
his paper. To show this statement, he showed a statement for an expansion of the
Perron eigenvalue φn(

δ√
n
). He employed regular perturbation theory of operators

on the infinite dimensional space [29], Chapter 7, #1, Chapter 4, #3, and Chapter 3,
#5. Our proof is based only on more elementary mathematics. Hence, our proof is
more helpful for readers who are not familiar to such an advanced mathematics.

PROPOSITION 7.4 ([25], Theorem 2). For a given constant δ > 0, there exists
a constant C such that∣∣∣∣W×n

0 × P0
{
g̃n(Xn+1)− nη(0) ≤ √

nδ
}− 


(
δ√
V

)∣∣∣∣≤ C√
n
,(7.3)

where V is the asymptotic variance.

For the calculation of C, see [25], Theorem 2. Since Corollary 7.2 shows that

the asymptotic variance is d2φ

dθ2 (0), we can replace V by d2φ

dθ2 (0) in the above propo-

sition. The paper [24], Lemma 5.3, also gives another expression of d2φ

dθ2 (0) as
follows.

PROPOSITION 7.5. The second derivative d2φ

dθ2 (0) is calculated as

d2φ

dθ2 (0) = V0
[
g
(
X,X′)]+ 2

∑
x,x̄

W(x|x̄)g(x, x̄)
dP̃θ (x̄)

dθ

∣∣∣∣
θ=0

,(7.4)

where V0 denotes the variance when X,X′ obeys the joint distribution W0 × P̃0.

In this paper, we give another expression of d2φ

dθ2 (0), which is easier to compute
in some case than the second derivative of φ(θ) at θ = 0 and (7.4). To describe
it, we define the matrices Ax,x̄ := P̃0(x), Wx,x̄ := W(x|x̄), and the fundamental
matrix Z := (I −(W −A))−1 [30], whose existence is guaranteed by the following
lemma.

PROPOSITION 7.6 ([30], Theorem 4.3.1). For a transition matrix W , the ma-
trix Z = (I − (W − A))−1 exists and

Z = I +
∞∑

n=1

(
Wn − A

)= ∞∑
n=0

(W − A)n.(7.5)

We also have (W − A)n = Wn − A for every n.

This proposition can be shown by the fact that limn→∞ Wn = A. Then we give

another expression of d2φ

dθ2 (0) as follows.
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THEOREM 7.7.

d2φ

dθ2 (0) = V0
[
g
(
X,X′)]

+ 2
∑
x,x̄

(∑
x̄o

g(x, x̄o)W(x|x̄o)

)
(Z − A)x,x̄(7.6)

×
(∑

xo

g(x̄, xo)P̃0(xo)W(x̄|xo)

)
.

The proof of Theorem 7.7 is given in Appendix B. Combining (7.4), we obtain

dP̃θ (x̄)

dθ

∣∣∣∣
θ=0

=∑
x

(∑
x̄o

g(x, x̄o)P̃0(x̄o)W(x|x̄o)

)
(Z − A)x,x̄ .(7.7)

REMARK 7.8. Many existing papers considered the case when g(x, x̄) is x

or x̄. In the above case, the literatures [16, 28, 31, 40] showed the central limit
theorem by using the asymptotic variance. The literature [28, 40] did not give any
expression of the asymptotic variance without the infinite sum. The papers [16,
31] showed another expression by using the spectral measure under a more gen-
eral setting while it is hard to calculate the spectral measure in general even in
the finite state case. The literature [32], Lemma 1.5 of Chapter 1, also derived an-
other closed form for asymptotic variance by using spectral measure. The paper
[16] also showed that the variance can be expressed by the sum of covariance be-
tween X1 and Xi , which is also not computable even in the finite state case. In the
above case, the paper [34] showed the central limit theorem and the asymptotic
variance equals the second derivative of the limit limn→∞ φn(θ)

n
. However, it did

not give a concrete form of the limit. In this limited case, the literature [30, 47,
56], second equation on page 199, showed that the asymptotic variance is given
as the right-hand side of (7.6), and the paper [55] gave another expression for the
asymptotic variance. When we apply the result by [30, 47, 56], second equation on
page 199, to the transition matrix P(g(Xn+1,Xn) = x|g(Xn,Xn−1) = x̄), we can
derive a formula for the asymptotic variance as follows. First, we define two matri-
ces Â(x1,x2),(x̄3,x̄4) := W(x̄3|x̄4)P̃0(x̄4), Ŵ(x1,x2),(x̄3,x̄4) := W(x1|x2)W(x̄3|x̄4)δx2,x̄3

from X 2 to X 2. Then we define another matrix Ẑ := (I − (Ŵ − Â))−1. Applying
their formula to our case, we have

d2φ

dθ2 (0) = V0
[
g
(
X,X′)]

+ 2
∑

x1,x2,x̄3,x̄4

(∑
x̄1,x̄2

g(x1, x2)W(x1|x2)W(x̄1|x̄2)

)
δx2,x̄1(7.8)

× (Ẑ − Â)(x1,x2),(x̄3,x̄4)g(x̄3, x̄4)W(x̄3|x̄4)P̃0(x̄4).
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The number of terms of our formula (7.6) is smaller than that of the above formula.
Hence, our formula (7.6) is useful for practical calculation.

8. Tail probability. Combining Proposition A.1, Lemma 4.1 and (6.2), we
can derive the following lower bound on the exponent by using the function
φ′−1

(a), δ(θ), δ(θ) and φ(θ) defined in (3.6), (6.3), (6.3) and (3.4).

THEOREM 8.1. For any a > η(0) = E0[g], we have

− logW×n
0 × P0

{
g̃n(Xn+1)≥ na

}
≥ sup

θ≥0

[
nθa − nφ(θ) − δ(θ)

]
(8.1)

= nφ′−1
(a)a − nφ

(
φ′−1

(a)
)− δ

(
φ′−1

(a)
)

= nD(W
φ′−1(a)

‖W0) − δ
(
φ′−1

(a)
)
.

Similarly, for a < η(0) = E0[g], we have

− logW×n
0 × P0

{
g̃n(Xn+1)≤ na

} ≥ sup
θ≤0

[
nθa − nφ(θ) − δ(θ)

]

= nφ′−1
(a)a − nφ

(
φ′−1

(a)
)− δ

(
φ′−1

(a)
)

= nD(W
φ′−1(a)

‖W0) − δ
(
φ′−1

(a)
)
.

Combining Theorem A.2 and (6.2) of Lemma 6.1, we can derive the following
converse bound.

THEOREM 8.2. For any a > η(0) = E0[g], we have

− logW×n
0 × P0

{
g̃n(Xn+1)≥ na

}
(a)≤ inf

s>0
θ∈R,θ̄≤0

[
nφ
(
(1 + s)θ

)− n(1 + s)φ(θ) + δ
(
(1 + s)θ

)− δ(θ)

− (1 + s) log
(
1 − e−n[θ̄a−φ(θ+θ̄ )+φ(θ)+δ(θ+θ̄ )−δ(θ)])]/s

(b)≤ inf
s>0

θ>φ′−1(a)

[
nφ
(
(1 + s)θ

)− n(1 + s)φ(θ) + δ
(
(1 + s)θ

)− δ(θ)(8.2)

− (1 + s) log
(
1 − en[(θ−φ′−1

(a))a+φ(φ′−1
(a))−φ(θ)+δ(φ′−1

(a))−δ(θ)])]/s
(c)= inf

s>0
θ>φ′−1(a)

nD1+s(Wθ‖W0) + 1

s

[
δ
(
(1 + s)θ

)− δ(θ)
]

− 1 + s

s
log
(
1 − e

−nD(W
φ′−1(a)

‖Wθ)+δ(φ′−1
(a))−δ(θ))

.
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Similarly, for any a < η(0) = E0[g], we have

− logW×n
0 × P0

{
g̃n(Xn+1)≤ na

}
≤ inf

s>0
θ∈R,θ̄≥0

[
nφ
(
(1 + s)θ

)− n(1 + s)φ(θ) + δ
(
(1 + s)θ

)− δ(θ)

− (1 + s) log
(
1 − e−n[θ̄a−φ(θ+θ̄ )+φ(θ)+δ(θ+θ̄ )−δ(θ)])]/s

≤ inf
s>0

θ<φ′−1(a)

[
nφ
(
(1 + s)θ

)− (n − 1)(1 + s)φ(θ) + δ
(
(1 + s)θ

)− δ(θ)

− (1 + s) log
(
1 − en[(θ−φ′−1

(a))a+φ(φ′−1
(a))−φ(θ)+δ(φ′−1

(a))−δ(θ)])]/s
= inf

s>0
θ<φ′−1(a)

nD1+s(Wθ‖W0) + 1

s

[
δ
(
(1 + s)θ

)− δ(θ)
]

− 1 + s

s
log
(
1 − e

−nD(W
φ′−1(a)

‖Wθ)+δ(φ′−1
(a))−δ(θ))

.

PROOF. (a) Follows from the combination of (a) of Theorem A.2 and (6.2) of
Lemma 6.1. (b) and (c) can be shown by the same way as (b) and (c) of Theo-
rem A.2. �

Due to the expressions in Theorems 8.1 and 8.2, the above upper and lower
bounds are O(1)-computable. These also attain the asymptotic tightness in the
sense of (T2) and (T3) as shown in the following corollaries. Indeed, the paper
[33] also derived the lower bound of − logW×n

0 × P0{g̃n(Xn+1) ≥ na} in a more
general setting including infinite state spaces and the continuous case. Since the
finite-length bound in the paper [33] contains so many parameters, it is difficult
to characterize the difference between their lower bound and the leading term of
the true value, that is, nD(W

φ′−1(a)
‖W0). They showed only that the difference is

sublinear for n. In contrast, the difference in our lower bound is clearly shown to
be the constant δ(φ′−1

(a)) in (8.1) of Theorem 8.1. So, our bound can be applied
to the moderate deviation as in Corollary 8.4. However, it is not clear whether their
bound can be applied to it. Hence, our lower bound is better than theirs.

From Lemma 4.1 and Theorems 8.1 and 8.2, we can derive the large deviation
evaluation.

COROLLARY 8.3 ([11], [10], Theorem 3.1.2). For arbitrary δ > 0, we have

lim
n→∞−1

n
logW×n

0 × P0
{
g̃n(Xn+1)− nη(0) ≥ δn

}
= sup

θ≥0

[
φ′−1(

η(0) + δ
)− φ(θ)

]
,



830 S. WATANABE AND M. HAYASHI

lim
n→∞−1

n
logW×n

0 × P0
{
g̃n(Xn+1)− nη(0) ≤ −δn

}
= sup

θ≤0

[
φ′−1(

η(0) − δ
)− φ(θ)

]
.

From Theorems 8.1 and 8.2, we can derive the moderate deviation evaluation.

COROLLARY 8.4. For arbitrary t ∈ (0,1/2) and δ > 0, we have

lim
n→∞− 1

n1−2t
logW×n

0 × P0
{
g̃n(Xn+1)− nη(0) ≥ n1−t δ

}= δ2

2d2φ

dθ2 (0)
,(8.3)

lim
n→∞− 1

n1−2t
logW×n

0 × P0
{
g̃n(Xn+1)− nη(0) ≤ −n1−t δ

}= δ2

2d2φ

dθ2 (0)
.(8.4)

PROOF. We only prove (8.3). To show the inequality ≥ in (8.3), we employ

(8.1). That is, we substitute an := η(0) + δ
nt into a in (8.3). Since dφ′−1

(η)
dη

=
1

φ′′(φ′−1(η))
, we have φ′−1

(an) = δ
d2φ

dθ2 (0)nt
+ o( 1

nt ) → 0. Thus, Relation (6.6) im-

plies δ(φ′−1
(an))) → 0. Hence, relation (3.12) yields that

1

n1−2t

(
nD(W

φ′−1(an)
‖W0) − δ

(
φ′−1

(an)
))→ δ2

2d2φ

dθ2 (0)
.(8.5)

Applying (8.5) to (8.1), we obtain the part “≥” in (8.3).
To show the inequality ≤ in (8.3), we employ the final term of (8.2). That is, we

substitute an := η(0) + δ
nt and θn := φ′−1

(an) + ξ
nt

d2φ

dθ2 (0)−1 into a and θ in the

final term of (8.2). Then, we have θn = δ+ξ

d2φ

dθ2 (0)nt
+ o( 1

nt ) → 0. Thus, relation (6.6)

implies that 1
s
[δ((1 + s)θn) − δ(θn)] → 0 and δ(φ′−1

(an)) − δ(θn) → 0. We also
have nD(W

φ′−1(an)
‖Wθn) → ∞. Hence, (3.13) yields that

lim
n→∞

1

n1−2t

[
inf
s>0

θ>φ′−1(an)

nD1+s(Wθ‖W0) + 1

s

[
δ
(
(1 + s)θ

)− δ(θ)
]

− 1 + s

s
log
(
1 − e

−nD(W
φ′−1(an)

‖Wθ)+δ(φ′−1
(an))−δ(θ))]

≤ lim
n→∞

1

n1−2t

[
nD1+s(Wθn‖W0) + 1

s

[
δ
(
(1 + s)θn

)− δ(θn)
]

(8.6)

− 1 + s

s
log
(
1 − e

−nD(W
φ′−1(an)

‖Wθn)+δ(φ′−1
(an))−δ(θn))]

= lim
n→∞

n

n1−2t
D1+s(Wθn‖W0) = (δ + ξ)2

2d2φ

dθ2 (0)
(1 + s).
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Finally, we take the limits ξ → 0 and s → 0. Then, applying (8.6) to (8.2), we
obtain the part “≥” in (8.3). �

9. Simple hypothesis testing. Next, we consider the binary simple hypothe-
sis testing. To formulate the binary simple hypothesis testing, we consider the case
that the null and alternative hypotheses are P1 and P0. For theoretical simplicity,
we often focus on randomized tests, which is the generalization of the conven-
tional test. Although the conventional test is given as a {0,1}-valued function of
the observed data, a randomized test is given as a [0,1]-valued function T (x) of
the observed data x. When we observe T (x) = t , we support the null hypothesis
P1 with probability t and support the alternative hypothesis P0 with probability
1 − t . Then the type-1 and type-2 error probabilities are given as EP1[1 − T ] and
EP0[T ], where EPi

denotes the expectation under the distribution Pi . When we
choose the random variable T to be the test function with support S, the random
variable T realizes the test whose rejection region S.

Then we consider the following value:

βε(P1‖P0) := min
T

{
EP0[T ]|EP1[1 − T ] ≤ ε

}
(9.1)

= min
T

{
EP0[T ]|EP1[1 − T ] = ε

}
.

Since we allow randomized tests, the optimum test T is realized with the condition
EP1[1 − T ] = ε.

Now, we consider the hypothesis testing with the two hypotheses W×n
0 × P0

and W×n
1 × P1. Then we choose the functions g(x, x̄) := log W1(x|x̄)

W0(x|x̄)
and h(x̄) :=

log P1(x̄)
P0(x̄)

, which implies that φ(1) = 0. Under these choices, we can evaluate the

minimum type-2 error probability in the following way by using the functions θ̂ (r),
δ(θ), δ(θ) and φ(θ) defined in (4.2), (6.3), (6.3) and (3.4) as well as the relative
entropies D(W

θ̂(r)
‖Wθ) and D1+s(Wθ‖W0).

THEOREM 9.1. The minimum type-2 error probability βe−nr (W×n
1 × P1‖

W×n
0 × P0) defined in (2.6) satisfies

sup
0≤θ≤1

n(−θr − φ(θ)) − δ(θ)

1 − θ

≤ − logβe−nr

(
W×n

1 × P1‖W×n
0 × P0

)
(a)≤ inf

θ̄≥0,s>0,θ∈(0,1)

1

s

[
n
(
φ
(
(1 + s)θ

)− (1 + s)φ(θ)
)

+ (δ((1 + s)θ
)− (1 + s)δ(θ)

)
− (1 + s) log

(
1 − 2e

n
−(1+θ̄ )φ(θ)+φ((1+θ̄ )θ−θ̄ )−θ̄ r

1+θ̄
+−(1+θ̄ )δ(θ)+δ((1+θ̄ )θ−θ̄ )

1+θ̄
)]
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(b)≤ inf
s>0,θ∈(θ̂(r),1)

1

s

[
n
(
φ
(
(1 + s)θ

)− (1 + s)φ(θ)
)

+ (δ((1 + s)θ
)− (1 + s)δ(θ)

)
− (1 + s) log

(
1 − 2e

n(−φ(θ)+φ(θ̂(r))+(θ−θ̂ (r))
dφ
dθ

(θ̂(r)))−δ(θ)+ (1−θ)δ(θ̂(r))

1−θ̂ (r)
)]

(c)= inf
s>0,θ∈(θ̂(r),1)

nD1+s(Wθ‖W0) + 1

s

(
δ
(
(1 + s)θ

)− (1 + s)δ(θ)
)

− 1 + s

s
log
(
1 − 2e

−nD(W
θ̂(r)

‖Wθ)−δ(θ)+ (1−θ)δ(θ̂(r))

1−θ̂ (r)
)
.

PROOF. The inequality (a) can be shown by combining (A.9) and (6.2). To

show (b) and (c), we restrict θ in [θ̂ (r),1] and choose θ̄ to be θ−θ̂ (r)
1−θ

≥ 0 similar
to the proof of (A.10). Then

−(1 + θ̄ )δ(θ) + δ((1 + θ̄ )θ − θ̄ )

1 + θ̄
= −δ(θ) + δ(θ̂(r))

1 + θ̄

= −δ(θ) + (1 − θ)δ(θ̂(r))

1 − θ̂ (r)
.

As is shown in the proof of (A.10), we have

−(1 + θ̄ )φ(θ) + φ((1 + θ̄ )θ − θ̄ ) − θ̄ r

1 + θ̄

= −φ(θ) + φ
(
θ̂ (r)

)+ (
θ − θ̂ (r)

)dφ

dθ

(
θ̂ (r)

)
= D(W

θ̂(r)
‖Wθ).

Hence, we obtain (b) and (c). �

Due to the expressions in Theorem 9.1, the above upper and lower bounds
are O(1)-computable. These also attain the asymptotic tightness in the sense of
(H2) and (H3) as follows. From Lemma 4.2 and Theorem 9.1, we can recover the
Hoeffding-type evaluation as follows.

COROLLARY 9.2 ([46], Theorem 2, [45], Theorem 1).

lim
n→∞−1

n
logβe−nr

(
W×n

1 × P1‖W×n
0 × P0

)

= sup
0≤θ≤1

−θr − φ(θ)

1 − θ
= sup

0≤θ≤1

θ(−r + D1−θ (W0‖W1))

1 − θ
(9.2)
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= inf
s>0,θ∈(0,θ̂ (r))

D1+s(Wθ‖W0) = D(W
θ̂(r)

‖W0)

= min
W :D(W‖W1)≤r

D(W‖W0).

REMARK 9.3. Natarajan [46], Theorem 2, showed that the exponent (9.2)
equals minW :D(W‖W1)≤r D(W‖W0). Nakagawa and Kanaya [45], Theorem 1,
showed that the exponent (9.2) equals D(W

θ̂(r)
‖W0). They did not consider other

expressions in (9.2).

From Theorem 9.1, we obtain the following moderate deviation type evaluation.

COROLLARY 9.4. For t ∈ (0, 1
2), we have

lim
n→∞− 1

n1−2t
logβ

e−nD(W0‖W1)+n1−t δ

(
W×n

1 × P1‖W×n
0 × P0

)= δ2

2d2φ

dθ2 (0)
.(9.3)

That is,

− logβ
e−n1−2t r

(
W×n

0 × P0‖W×n
1 × P1

)
(9.4)

= D(W0‖W1)n −
√

2
d2φ

dθ2 (0)rn1−t + o
(
n1−t ).

PROOF. First, we show (9.3) in the same way as the proof of (8.3). (4.1) im-
plies

sup
0≤θ≤1

n(−θr − φ(θ)) − δ(θ)

1 − θ
≥ n(−φ′−1

(−r)r − φ(φ′−1
(−r))) − δ(φ′−1

(−r))

1 − φ′−1(−r)

= nD(W
φ′−1(−r)

‖W0) − δ(φ′−1
(−r))

1 − φ′−1(−r)
.

Now, we choose rn := D(W0‖W1)+δn−t . Then we have φ′−1
(−rn) = δ

2 d2φ

dθ2 (0)nt
+

o( 1
nt ) → 0. Thus,

nD(W
φ′−1(−rn)

‖W0) − δ(φ′−1
(−rn))

1 − φ′−1(−rn)
→ δ2

2d2φ

dθ2 (0)
.(9.5)

Applying (9.5) to Theorem 9.1, we obtain the part “≥” in (9.3).

Next, we choose θn := φ′−1
(an) + ξ

nt
d2φ

dθ2 (0)−1. Then, applying the right-hand
side of (c) of Theorem 9.1, we obtain the part “≤” in (9.3) as the same way as the
proof of the part “≤” in (8.3).
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Solving δ2

2 d2φ

dθ2 (0)
= rδ2, we have δ =

√
2d2φ

dθ2 (0)r . Hence, we have (9.4) from

(9.3). �

We also have another type evaluation for the type-2 error probability.

LEMMA 9.5. When we choose g(x, x̄) = log W1(x|x̄)
W0(x|x̄)

and ĝ(x) = log P1(x)
P0(x)

, we
have

sup
a

{
a|W×n

1 × P1
{
gn(Xn+1)< a

}≤ ε
}

≤ − logβε

(
W×n

1 × P1‖W×n
0 × P0

)
(9.6)

≤ inf
δ>0,a

{
a − log δ|W×n

1 × P1
{
gn(Xn+1)< a

}≥ ε + δ
}
.

Lemma 9.5 can be shown by substituting W×n
i × Pi into Pi (i = 0,1) in

Lemma A.3 in Appendix A.
Combining (7.3) and (9.6), we can derive lower and upper O(1)-computable

bounds for βε(W
×n
1 ×P1‖W×n

0 ×P0). Applying Corollary 7.2 to the random vari-

able log
Wn

1 ×P1(X
n+1)

Wn
0 ×P0(X

n+1)
in Lemma 9.5, we obtain the Stein–Strassen-type evaluation.

That is, these bounds attain the asymptotic tightness in the sense of (H1).

THEOREM 9.6.

− logβε

(
W×n

1 × P1‖W×n
0 × P0

)

= nD(W1‖W0) + √
n

√
d2φ

dθ2 (1)
−1(ε) + o(
√

n).

10. Conclusion. We have derived upper and lower O(1)-computable bounds
of the cumulant generating function of the Markov chain by using the convex
function φ(θ). Using these bounds, we have given a simple alternative proof of
the central limit theorem of the sample mean in the Markovian chain. Also, using
these bounds, we have derived upper and lower O(1)-computable bounds of the
tail probability of the sample mean, which attains the asymptotic tightness in the
sense of (T2) and (T3). Using the above upper and lower bounds, we have derived
upper and lower O(1)-computable bounds of the minimum error probability of the
type-2 error under the constraint for the error probability of the type-1 error, which
attains the asymptotic tightness in the sense of (H2) and (H3). These bounds have
not been derived even in the independently and identically distributed case. We
have also derived other upper and lower O(1)-computable bounds that attains the
asymptotic tightness in the sense of (H1).
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However, in this paper, we have assumed a finite state space. Indeed, the ex-
isting papers [1, 2, 37] reported several difficulties to evaluate the tail probability
of the sample mean in the continuous probability space even with the discrete
time Markov chain. Also, the existing papers [7, 14, 15] reported several exam-
ples, in which, the central limit theorem does not hold even on countable state
space with the discrete time Markov chain. So, it is remained as a challenging
problem to extend the obtained results to such general cases. In this generaliza-
tion, to avoid such counterexamples, we need to find suitable conditions for such
extension. Therefore, we can expect that this extension enables us to handle sev-
eral Gaussian Markovian chains with discrete time in a simple way. Further, the
obtained bounds are useful for several topics in information theory [21].

APPENDIX A: EXPONENTIAL FAMILY OF DISTRIBUTIONS

In this Appendix, we discuss several formulas in an exponential family of distri-
butions {Pθ } with single observation when Pθ(x) := P(x)eθx−φ(θ) with cumulant
generating function φ(θ) := log

∑
x P (x)[eθx].

The exponential families of transition matrices contain exponential families of
distributions by considering the family of transition matrices Wθ(x|x̄) := Pθ(x)

from the family of distributions Pθ . Hence, the definitions and the notation given
in Section 3 are applied to the exponential family of distributions {Pθ } in the fol-
lowing.

A.1. Tail probability. First, we define the relative entropy and the relative
Rényi entropy between two distributions P and P̄ are given as

D(P‖P̄ ) :=∑
x

P (x) log
P(x)

P̄ (x)
,(A.1)

D1+s(P‖P̄ ) := 1

s
log
∑
x

P (x)1+s P̄ (x)−s .(A.2)

Using the cumulant generating function φ(θ), we investigate the lower bound on
the tail probability as follows. The following lower bound on the tail probability is
nothing but Cramér’s theorem in the large deviation theory [10].

PROPOSITION A.1. For any a > E[X], we have

− logP0{X ≥ a} ≥ sup
θ≥0

[
θa − φ(θ)

]= φ′−1
(a)a − φ

(
φ′−1

(a)
)

= D(P
φ′−1(a)

‖P0).

Similarly, for a < E[X], we have

− logP0{X ≤ a} ≥ sup
θ≤0

[
θa − φ(θ)

]= φ′−1
(a)a − φ

(
φ′−1

(a)
)

= D(P
φ′−1(a)

‖P0).
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By using the monotonicity of the Rényi relative entropy [8], we can derive the
following converse bound.

THEOREM A.2. For any a > E[X], we have

− logP {X ≥ a}
(a)≤ inf

s>0
θ∈R,θ̄≤0

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ)

− (1 + s) log
(
1 − e−[θ̄a−φ(θ+θ̄ )+φ(θ)])]/s

(b)≤ inf
s>0

θ>φ′−1(a)

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ)

− (1 + s) log
(
1 − e(θ−φ′−1

(a))a+φ(φ′−1
(a))−φ(θ))]/s

(c)= inf
s>0

θ>φ′−1(a)

D1+s(Pθ‖P0)

− 1 + s

s
log
(
1 − e

−D(P
φ′−1(a)

‖Pθ ))
.

Similarly, for any a < E[X], we have

− logP {X ≤ a}
(d)≤ inf

s>0
θ∈R,θ̄≥0

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ)

− (1 + s) log
(
1 − e−[θ̄a−φ(θ+θ̄ )+φ(θ)])]/s

(e)≤ inf
s>0

θ<φ′−1(a)

[
φ
(
(1 + s)θ

)

− (1 + s)φ(θ) − (1 + s) log
(
1 − e(θ−φ′−1

(a))a+φ(φ′−1
(a))−φ(θ))]/s

(f)= inf
s>0

θ<φ′−1(a)

D1+s(Pθ‖P0) − 1 + s

s
log
(
1 − e

−D(P
φ′−1(a)

‖Pθ ))
.

PROOF. We only show (a)–(c). We can show (d)–(f) almost in a similar man-
ner. For arbitrary θ ∈ R, we set α := P {X ≥ a} and β := Pθ {X ≥ a}. Then, by the
monotonicity of the Rényi relative entropy [8], we have

D1+s(Pθ‖P) ≥ 1

s
log
[
β1+sα−s + (1 − β)1+s(1 − α)−s]≥ 1

s
logβ1+sα−s .
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Thus, we have

− logα ≤ φ((1 + s)θ) − (1 + s)φ(θ) − (1 + s) logβ

s
.

Now, for any θ̄ ≤ 0, we have

1 − β = Pθ {X < a} ≤∑
x

Pθ (x)eθ̄(x−a)

=∑
x

P (x)e(θ+θ̄ )x−θ̄a−φ(θ) = e−[θ̄a−φ(θ+θ̄ )+φ(θ)].

Thus, − logα ≤ f (s, θ, θ̄), where f (s, θ, θ̄) is the function inside of the right-hand
side of (a). Hence, we have (a).

Restricting the range of θ as θ > φ′−1
(a), we have infs>0,θ∈R,θ̄≥0 f (s, θ, θ̄) ≤

inf
s>0,θ>φ′−1(a),θ̄≥0 f (s, θ, θ̄). This restriction yields

sup
θ̄≤0

[
θ̄a − φ(θ + θ̄ ) + φ(θ)

]= (
φ′−1

(a) − θ
)
a − φ

(
φ′−1

(a)
)+ φ(θ),

which is achieved by θ̄ = φ′−1
(a) − θ . Thus, since inf

s>0,θ>φ′−1(a),θ̄≥0 f (s, θ, θ̄)

equals the right-hand side of (b), we have (b). Furthermore, (c) can be obtained
from the relations (A.1) and (A.2). �

A.2. Simple hypothesis testing. For simple hypothesis testing, we have the
following lemma for the null and alternative hypotheses are P0 and P1. In fact,
when two distributions P and Q are given on the probability space X , the one-
parametric exponential family Pθ generated by the random variable Y := log Q(X)

P (X)
satisfies that P0 = P and P1 = Q. Hence, the above case covers the most general
setting for the binary hypothesis testing.

LEMMA A.3.

sup
a

{
a
∣∣∣P1

{
log

P1(x)

P0(x)
< a

}
≤ ε

}
≤ − logβε(P1‖P0)

≤ inf
δ>0,a

{
a − log δ

∣∣∣P1

{
log

P1(x)

P0(x)
< a

}
≥ ε + δ

}
.

PROOF. Let Sa be the set {log P1(x)
P0(x)

< a} = {P1(x) < eaP0(x)} and Ta be the
test function with the support Sa . When EP1[Ta] ≤ ε,

e−a ≥ e−aP1

{
log

P1(x)

P0(x)
≥ a

}
≥ P0

{
log

P1(x)

P0(x)
≥ a

}
(A.3)

= EP0[1 − Ta] ≥ βε(P1‖P0).
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Taking the logarithm, we have

a ≤ − logβε(P1‖P0).(A.4)

Taking the supremum for a, we obtain the first inequality.
Assume that P1{log P1(x)

P0(x)
< a} ≥ ε + δ. We have

ε + eaEP0[1 − T ] = EP1[T ] + eaEP0[1 − T ]
(A.5)

≥ EP1[Ta] + eaEP0[1 − Ta] ≥ ε + δ.

Thus,

EP0[1 − T ] ≥ e−aδ.(A.6)

Taking the minimum for T , we have βε(P1‖P0) ≥ e−aδ, which implies that

− logβε(P1‖P0) ≤ a − log δ.(A.7)

Taking the infimum for a, δ > 0, we obtain the second inequality. �

Here, we employ θ̂ (r) = θ̂ [φ](r) defined at (4.2) for a convex function φ. Then,
modifying Proposition A.1, we have the following lemma.

LEMMA A.4. We have

− logP1
{
Y ≤ η

(
θ̂ (r)

)}≥ D(P
θ̂(r)

‖P1) = r,

− logP0
{
Y ≥ η

(
θ̂ (r)

)}≥ D(P
θ̂(r)

‖P0).

Choosing the rejection region {Y ≤ η(θ̂(r))}, we have

− logβe−r (P1‖P0) ≥ sup
0≤θ≤1

−θr − φ(θ)

1 − θ
.(A.8)

As the opposite inequality, we have the following lemma.

LEMMA A.5.

− logβe−r (P1‖P0)

≤ inf
θ̄≥0,s>0,θ∈(0,1)

1

s

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ)(A.9)

− (1 + s) log
(
1 − 2e

−(1+θ̄ )φ(θ)+φ((1+θ̄ )θ−θ̄ )−θ̄ r

1+θ̄
)]

≤ inf
s>0,θ∈(θ̂(r),1)

1

s

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ)(A.10)

− (1 + s) log
(
1 − 2e−φ(θ)+φ(θ̂(r))+(θ−θ̂ (r))

dφ
dθ

(θ̂(r)))]
= inf

s>0,θ∈(θ̂(r),1)

D1+s(Pθ‖P0) − 1 + s

s
log
(
1 − 2e

−D(P
θ̂(r)

‖Pθ ))
.(A.11)
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PROOF. We choose the rejection region S as P1(S) ≤ e−r . The monotonicity
of relative Rényi entropy [8] implies that

D1+s(Pθ‖P0) ≥ 1

s
log
[
Pθ(S)1+sP0(S)−s + (1 − Pθ(S)

)1+s(1 − P0(S)
)−s]

≥ 1

s
log
[(

1 − Pθ(S)
)1+s(1 − P0(S)

)−s]

= − log
(
1 − P0(S)

)+ 1 + s

s
log
(
1 − Pθ(S)

)
for s > 0. Hence, we have

− log
(
1 − P0(S)

) ≤ D1+s(Pθ‖P0) − 1 + s

s
log
(
1 − Pθ(S)

)
(A.12)

= 1

s

[
φ
(
(1 + s)θ

)− (1 + s)φ(θ) − (1 + s) log
(
1 − Pθ(S)

)]
.

Next, we focus on the inequality

(
1 − Pθ(S)

)+ eγ P1(S) ≥ Pθ

{
log

P1(x)

Pθ (x)
≥ −γ

}
+ eγ P1

{
log

P1(x)

Pθ (x)
< −γ

}
,

which implies that

(
1 − Pθ(S)

)+ eγ P1(S) ≥ Pθ

{
log

P1(x)

Pθ (x)
≥ −γ

}
.

Hence,

Pθ

{
log

P1(x)

Pθ (x)
< −γ

}
+ eγ−r ≥ Pθ(S).

For any θ̄ ≥ 0, we have

Pθ

{
log

P1(x)

Pθ (x)
< −γ

}
≤∑

x

Pθ (x)1+θ̄ P1(x)−θ̄ e−θ̄γ

= e−(1+θ̄ )φ(θ)+φ((1+θ̄ )θ−θ̄ )−θ̄γ .

Note that φ(1) = 0. Choosing γ so that −(1 + θ̄ )φ(θ) + φ((1 + θ̄ )θ − θ̄ ) − θ̄γ =
γ − r , that is, γ = −(1+θ̄ )φ(θ)+φ((1+θ̄ )θ−θ̄ )+r

1+θ̄
, we have

Pθ(S) ≤ 2e
−(1+θ̄ )φ(θ)+φ((1+θ̄ )θ−θ̄ )−θ̄ r

1+θ̄ .(A.13)

Combining (A.12) and (A.13), we obtain (A.9).
In the following, we restrict θ in [θ̂ (r),1]. Then we can choose θ̄ to be

θ−θ̂ (r)
1−θ

≥ 0. Thus, using (4.2) that is, the relation (θ̂(r)−1)
dφ
dθ

(θ̂ (r))−φ(θ̂(r)) = r ,
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we have

−(1 + θ̄ )φ(θ) + φ((1 + θ̄ )θ − θ̄ ) − θ̄ r

1 + θ̄

= −φ(θ) + φ(θ̂(r)) − θ̄ r

1 + θ̄

= −φ(θ) + (1 − θ)φ(θ̂(r)) − (θ − θ̂ (r))r

1 − θ̂ (r)

= −φ(θ) + (1 − θ)φ(θ̂(r)) − (θ − θ̂ (r))((θ̂(r) − 1)
dφ
dθ

(θ̂ (r)) − φ(θ̂(r)))

1 − θ̂ (r)

= −φ(θ) + φ
(
θ̂ (r)

)+ (θ − θ̂ (r)
)dφ

dθ

(
θ̂ (r)

)= D(P
θ̂(r)

‖Pθ).

Hence, we obtain (A.10) and (A.11). �

APPENDIX B: PROOF THEOREM 7.7

First, we prepare the following lemma and corollary, which will be used later.

LEMMA B.1 (Cesáro summability). Suppose that a sequence of matrices
{βn}∞n=1 satisfies βn → β . Then we have limn→∞ 1

n

∑n
k=1 βk = β .

COROLLARY B.2. Suppose that limn→∞
∑n−1

k=0 αk = α. Then we have
limn→∞

∑n−1
k=0

n−k
n

αk = α.

PROOF. Apply Lemma B.1 to the sequence βn =∑n−1
k=0 αk . �

Now we assume that Xn+1 obeys the stationary Markov process generated by
the transition matrix W0, and denote the variance by V. As is shown in [24],
Lemma 6.2, g(Xn+1) :=∑n

i=1 g(Xi+1,Xi) satisfies

lim
n→∞ V

[
gn(Xn+1)√

n

]
= d2φ

dθ2 (0).

Hence, it is enough for Lemma 7.7 to show that

lim
n→∞ V

[
gn(Xn+1)√

n

]
= V

[
g
(
X,X′)]+ 2�gT∗ (Z − A)�g∗,(B.1)

where �g∗ := [∑x W(x|x̄)g(x, x̄)]x̄ , and �g∗ := [∑x̄ W(x|x̄)P̃0(x̄)g(x, x̄)]x .
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From Proposition 7.6, Z =∑∞
n=0(W − A)n exists. Thus, Corollary B.2 yields

that Z = limn→∞
∑n−1

d=0
n−d

n
(W − A)d , which implies

Z − I = lim
n→∞

n−1∑
d=1

n − d

n
(W − A)d = lim

n→∞
n−1∑
d=1

n − d

n

(
Wd − A

)
,(B.2)

where the last equality follows from the relation (W − A)n = Wn − A given in
Proposition 7.6. By elementary calculation, we have

1

n − 1
V

[
n∑

k=2

g(Xk,Xk−1)

]

= 1

n − 1
E

[(
n∑

k=2

(
g(Xk,Xk−1) − E

[
g
(
X,X′)]))

×
(

n∑
�=2

(
g(X�,X�−1) − E

[
g
(
X,X′)]))](B.3)

= 1

n − 1

n∑
k=2

n∑
�=2

{
E
[
g(Xk,Xk−1)g(X�,X�−1)

]− E
[
g
(
X,X′)]2}

=
{

1

n − 1

n∑
k=2

n∑
�=2

E
[
g(Xk,Xk−1)g(X�,X�−1)

]}− (n − 1)E
[
g
(
X,X′)]2.

Since

Pr{Xk = xk,Xk−1 = xk−1,X� = x�,X�−1 = x�−1}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(xk|xk−1)W
(k−1−�)(xk−1|x�)W(x�|x�−1)P̃ (x�−1), if k > � + 1,

W(xk|xk−1)δxk−1x�
W(x�|x�−1)P̃ (x�−1), if k = � + 1,

W(xk|xk−1)P̃ (xk−1)δxkx�
δxk−1x�−1, if k = �,

W(x�|x�−1)δx�−1xk
W(xk|xk−1)P̃ (xk−1), if � = k + 1,

W
(
x�

∣∣x�−1
)
W(�−1−k)(x�−1

∣∣xk

)
W(xk|xk−1)P̃ (xk−1), if � > k + 1

and �gT∗ A�g∗ = E[g(X,X′)]2, we have

n∑
k=2

n∑
�=2

E
[
g(Xk,Xk−1)g(X�,X�−1)

]

= (n − 1)E
[
g
(
X,X′)2]+ 2(n − 2)�gT∗ (I − A)�g∗ + 2(n − 2)E

[
g
(
X,X′)]2

+ 2
∑

k>�−1

�gT∗
(
Wk+1−� − A

)�g∗ + (n − 2)(n − 3)E
[
g
(
X,X′)]2.
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Thus, we can rewrite the first term of (B.3) as

the right-hand side of (B.3) :
= V

[
g
(
X,X′)]+ 2

n − 1

{
(n − 2)�gT∗ (I − A)�g∗

+ ∑
k>�+1

�gT∗
(
W(k−1−�) − A

)�g∗
}

= V
[
g
(
X,X′)]+ 2(n − 2)

n − 1
�gT∗ (I − A)�g∗

+ 2(n − 2)

n − 1

n−3∑
d=1

n − 2 − d

n − 2
�gT∗
(
Wd − A

)�g∗

→ V
[
g
(
X,X′)]+ 2�gT∗ (I − A)�g∗ + 2�gT∗ (Z − I )�g∗

= V
[
g
(
X,X′)]+ 2�gT∗ (Z − A)�g∗,

where we used (B.2) with replacing n by n − 3, and took the limit n → ∞. Com-
bining with (B.3), we obtain (B.1).

APPENDIX C: A LEMMA FOR CONVEX FUNCTION

In this Appendix, we give a lemma for a convex function, which is employed in
this paper.

LEMMA C.1. When f is convex the function x �→ f (x)
x

with x ∈ (0,∞) has
the minimum when f ′(x)x − f (x) = 0. In particular, when f (0) = 0, the function
x �→ f (x)

x
is monotone increasing for x ≥ 0.

PROOF. We have

d

dx

f (x)

x
= f ′(x)x − f (x)

x2 .

Since

d

dx
f ′(x)x − f (x) = f ′′(x)x ≥ 0,

we find that the minimum is realized when f ′(x)x − f (x). �
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