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LOOKING FOR VERTEX NUMBER ONE

BY ALAN FRIEZE1 AND WESLEY PEGDEN2

Carnegie Mellon University

Given an instance of the preferential attachment graph Gn = ([n],En),
we would like to find vertex 1, using only “local” information about the
graph; that is, by exploring the neighborhoods of small sets of vertices. Borgs
et al. gave an algorithm which runs in time O(log4 n), which is local in the
sense that at each step, it needs only to search the neighborhood of a set of
vertices of size O(log4 n). We give an algorithm to find vertex 1, which w.h.p.
runs in time O(ω logn) and which is local in the strongest sense of operating
only on neighborhoods of single vertices. Here ω = ω(n) is any function that
goes to infinity with n.

1. Introduction. The preferential attachment graph Gn was first discussed
by Barabási and Albert [2] and then rigorously analysed by Bollobás, Riordan,
Spencer and Tusnády [4]. It is perhaps the simplest model of a natural process that
produces a graph with a power law degree sequence.

The preferential attachment graph can be viewed as a sequence of random
graphs G1,G2, . . . ,Gn where Gt+1 is obtained from Gt as follows: Given Gt ,
we add vertex t + 1 and m random edges {ei = (t + 1, ui) : 1 ≤ i ≤ m} incident
with vertex t + 1. Here the constant m is a parameter of the model. The vertices ui

are not chosen uniformly from Vt , instead they are chosen with probabilities pro-
portional to their degrees. This tends to generate some very high degree vertices,
compared with what one would expect in Erdős–Rényi models with the same edge-
density. We refer to u1, u2, . . . , um as the left choices of vertex t + 1. We also say
that t + 1 is a right neighbor of ui for i = 1,2, . . . ,m.

We consider the problem of searching through the preferential attachment graph
looking for vertex number 1, using only local information. This was addressed by
Borgs, Brautbar, Chayes, Khanna and Lucier [5] in the context of the preferential
attachment graph Gn = (Vn,En). Here Vn = [n] = {1,2, . . . , n}. They present the
following local algorithm that searches for vertex 1, in a graph which may be too
large to hold in memory in its entirety.

1: Initialize a list L to contain an arbitrary node u in the graph.
2: while L does not contain node 1 do
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3: Add a node of maximum degree in N(L) to L od;
4: return L.

Here for vertex set L, we let N(L) = {w /∈ L : ∃v ∈ L s.t. {v,w} ∈ En}.
They show that w.h.p. the algorithm succeeds in reaching vertex 1 in O(log4 n)

steps. (We assume that an algorithm can recognize vertex 1 when it is reached.)
In [5], they also show how a local algorithm to find vertex 1 can be used to give
local algorithms for some other problems. We also note that Brautbar and Kearns
[6] considered local algorithms in a more general context. There the algorithm is
allowed to jump to random vertices as well as crawl around the graph in the search
for vertices of high degree and high clustering coefficient.

We should note that, as the maximum degree in Gn is n1/2−o(1) w.h.p., one
cannot hope to have a polylog(n) time algorithm if we have to check the degrees of
the neighbors as we progress. Thus the algorithm above operates on the assumption
that we can find the highest-degree neighbor of a vertex in O(1) time. This would
be the case, for example, if the neighborhood of a vertex is stored as a linked-
list which is sorted by degrees. In the same situation, we can also determine the K

highest degree neighbors of a vertex in constant time for any constant K , and in the
present manuscript we assume such a constant-time step is possible. In particular,
in this setting, each of steps 2–7 of the following Degree Climbing Algorithm takes
constant time.

We let dn(v) denote the degree of vertex v ∈ Vn.
Algorithm DCA:
The algorithm generates a sequence of vertices v1, v2, . . . , until vertex 1 is

reached.

Step 1 Carry out a random walk on G until it is mixed; that is, until the variation
distance between the current vertex and the steady state is o(1). We let v1 be the
terminal vertex of the walk. (See Remark 1.1 for comments on this step.)

Step 2 t ← 1.
Step 3 repeat
Step 4 Let Ct = {w1,w2, . . . ,wm/2} be the m/2 neighbors of vt of largest de-

gree.
(In the case of ties for the m/2th largest degree, vertices will be placed randomly

in Ct in order to make |Ct | = m/2. Also m is large here and we could replace m/2
by �m/2� if m is odd without affecting the analysis by very much.)

Step 5 Choose vt+1 randomly from Ct .
Step 6 t ← t + 1.
Step 7 until dn(vt ) ≥ n1/2

log1/100 n
(SUCCESS) or t > 2ω log4/3 n (FAILURE),

where ω → ∞ is arbitrary.
Step 8 Assuming SUCCESS, starting from vT , where T is the value of t at this

point, do a random walk on the vertices of degree at least n1/2

log1/20 n
until vertex 1 is

reached.
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REMARK 1.1. It is known that w.h.p. the mixing time of a random walk on
Gn is O(logn), see Mihail, Papadimitriou and Saberi [10]. So we can assume that
the distribution of v1 is close to the steady state πv = dn(v)

2mn
.

Note that Algorithm DCA is a local algorithm in a strong sense: the algorithm
only requires access to the current vertex and its neighborhood. (Unlike the al-
gorithm from [5], it does not need access to the neighborhood of the entire set
Pt = {v1, . . . , vt } of vertices visited so far.) Our main result is the following theo-
rem.

THEOREM 1.2. If m is sufficiently large then w.h.p. Algorithm DCA finds
vertex 1 in Gn in O(ω logn) time.

DCA is thus currently the fastest as well as the “most local” algorithm to find
vertex 1. We conjecture that the factor ω in the running time is unnecessary.

CONJECTURE 1.3. Algorithm finds vertex 1 in Gn in O(logn) time, w.h.p.

We note that w.h.p. the diameter of Gn is ∼ logn
log logn

and so we cannot expect to
improve the execution time much below O(logn).

The bulk of our proof consists of showing that the execution of Steps 2–7 re-
quires only time O(ω logn) w.h.p. for any ω = ω(n) → ∞. This analysis requires
a careful accounting of conditional probabilities. This is facilitated by the condi-
tional model of the preferential attachment graph due to Bollobás and Riordan [3].
One contribution of our paper is to recast their model in terms of sums of indepen-
dent copies of the rate one exponential random variables; this will be essential to
our analysis.

Outline of the paper. In Section 2, we reformulate the construction of Bollobás
and Riordan [3] in terms of sums of independent copies of the exponential random
variable of rate one.

Section 3 is the heart of the paper. The aim is to show that if vt is not too small,
then the ratio vt+1/vt is bounded above by 3/4 in expectation. We deduce from
this that w.h.p. the main loop, Steps 2–7, only takes O(ω logn) rounds. The idea is
to determine a degree bound � such that many of vt ’s left neighbors have degree
at least �, while only few of vt ’s right neighbors have degree at least �. In this
way, vt+1 is likely to be significantly smaller than vt .

Once we find a vertex vT of high enough degree, then we know that w.h.p. vT is
not very large and lies in a small connected subgraph of vertices of high degree that
contains vertex one. Then a simple argument based on the worst-case covertime of
a graph suffices to show that only o(logn) more steps are required.
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Our proofs will use various parameters. For convenience, we collect here in ta-
ble form a dictionary of some notations, giving a brief (and imprecise) description
of the role each plays in our proof, for later reference.

Definition Role in proof
ω := O(log logn) An arbitrarily chosen slowly growing function.
λ0 := 1

log40/m n
A (usually valid) lower bound on random variables ηi

(cf. Section 2.1).
n1 := log1/100 n W.h.p. the main loop never visits v ≤ n1.
Pt := {v1, . . . , vt } The set of vertices visited up to time t .
� := (log logn)10 Vertices v > �vt will not be important in the search for vt+1.
L := m1/5 A large constant, significantly smaller than m.

Notation: We write An ∼ Bn if An = (1 + o(1))Bn as n → ∞. We write α � β

in place of α ≤ o(1) + (1 + o(1))β .

2. Preliminaries.

2.1. A different model of the preferential attachment graph. Bollobás and Ri-
ordan [3] gave an ingenious construction equivalent to the preferential attach-
ment graph model. We choose x1, x2, . . . , x2mn independently and uniformly from
[0,1]. We then let {
i, ri} = {x2i−1, x2i} where 
i < ri for i = 1,2, . . . ,mn. We
then sort the ri in increasing order R1 < R2 < · · · < Rmn and let R0 = 0. We then
let

Wj = Rmj and wj = Wj − Wj−1 and Ij = (Wj−1,Wj ]
for j = 1,2, . . . , n. Given this we can define Gn as follows: It has vertex set Vn =
[n] and an edge {x, y}, x ≤ y for each pair 
i, ri , where 
i ∈ Ix and ri ∈ Iy .

We recast the construction of Bollobás and Riordan as follows: we can generate
the sequence R1,R2, . . . ,Rmn by letting

(1) Ri =
(

ϒi

ϒmn+1

)1/2
,

where ϒ0 = 0 and

ϒN = ξ1 + ξ2 + · · · + ξN for N ≥ 1

and where ξ1, ξ2, . . . , ξmn+1 are independent exponential rate one random vari-
ables, that is, Pr(ξi ≥ x) = e−x for all i. This is because r2

1 , r2
2 , . . . , r2

mn are in-
dependent and uniform in [0,1] (as they are each chosen as the maximum of two
uniform points) and the order statistics of N independent uniform [0,1] random
variables can be expressed as the ratios ϒi/ϒN+1 for 1 ≤ i ≤ N .

We refer to the distribution of ϒN as ERL(N), as it is known in the literature as
the Erlang distribution.
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2.2. Important properties. The advantage of our modification of the variant of
the Bollobàs and Riordan construction is that if we define

ηi := ξ(i−1)m+1 + ξ(i−1)m+2 + · · · + ξim,

then ηi is closely related to the size of Ii . It can then be used to estimate the degree
of vertex i. This will simplify the analysis since ηi is simply a sum of exponentials.

In this section, we make this claim (along with other more obscure asymptotic
properties of this model) precise. In particular, we let E denote the event that the
following properties hold for Gn. In the Appendix, we prove that Gn has all these
properties w.h.p.

(P1) For ϒk,
 = ϒk − ϒ
, we have

ϒk,
 ∈ (k − 
)

[
1 ± Lθ

1/2
k,


3(k − 
)1/2

]

for (k, 
) = (mn + 1,0) or

k − 


m
∈ {ω,ω + 1, . . . , n} and

k − l ≥

⎧⎪⎪⎨
⎪⎪⎩

1, l = 0,

log2 n, k ≥ log30 n, l > 0,

log1/300 n, 0 < l < k < log30 n.

Here, where n0 = λ2
0n

ω log2 n
, λ0 = 1

log20/m n
,

θk,
 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log k, ω ≤ l < k ≤ log30 n,

k1/2, ω ≤ k ≤ n2/5, l = 0,

(k − 
)1/2, log30 n < k ≤ n2/5,

(k − 
)3/2 logn

n1/2 , n2/5 < k ≤ n0,

n

ω3/2 log2 n
, n0 < k.

Similarly define

θk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k1/2, k ≤ n2/5,

k3/2 logn

n1/2 , n2/5 < k ≤ n0,

n

ω3/2 log2 n
, n0 < k.

(P2) Wi ∈ ( i
n
)1/2[1 ± Lθ

1/2
i

i1/2 ] ∼ ( i
n
)1/2 for ω ≤ i ≤ n.

(P3) wi ∈ ηi

2m(in)1/2 [1 ± 2Lθ
1/2
i

m1/2i1/2 ] ∼ ηi

2m(in)1/2 for ω ≤ i ≤ n.
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(P4) λ0 ≤ ηi ≤ 40m log logn for i ∈ [log30 n].
(P5) ηi ≤ logn for i ∈ [n].
Some properties give asymptotics for intermediate quantities in the Bol-

lobas/Riordan model [e.g., (P2), (P3)], while the rest give worst-case bounds on
parameters in various ranges for i. The very technical (P1) is just giving constraints
on the gaps between the points ϒk in the Bollobas/Riordan model.

2.3. Inequalities. We will use the following inequalities from Hoeffding [9] at
several points in the paper. Let Z = Z1 +Z2 +· · ·+ZN be the sum of independent
[0,1] random variables and suppose that μ = E(Z). Then if α > 1 we have

Pr
(
Z ≥ (1 + α)μ

) ≤ exp
{
− α2μ

2 + α/3

}
≤

⎧⎪⎪⎨
⎪⎪⎩

exp
{
−α2μ

3

}
, α ≤ 1,

exp
{
−αμ

3

}
, α > 1,

(2)

Pr(Z ≥ βμ) ≤ e−μ

(
e

β

)βμ

, β > 1,(3)

Pr
(
Z ≤ (1 − α)μ

) ≤ exp
{
−α2μ

2

}
, 0 ≤ α ≤ 1.(4)

Our main use for these inequalities is to get a bound on vertex degrees, see Sec-
tion 2.4.

In addition to these concentration inequalities, we use various inequalities
bounding the tails of the random variable η. We note that the probability den-
sity φ(x) of the sum η of m independent exponential rate one random variables is
given by

φ(x) := xm−1e−x

(m − 1)! ,
that is,

(5) Pr(a ≤ η ≤ b) =
∫ b

a
φ(y) dy.

The equation (5) is a standard result, which can be verified by induction on m (e.g.,
see Exercise 4.14.10 of Grimmett and Stirzaker [8]). Although we will frequently
need to bound the probability (5), this integral cannot be evaluated exactly in gen-
eral, and thus we will often use simple bounds on φ(η). We summarise what we
need in the following lemma.

LEMMA 2.1. (a)

(6) Pr(η ≤ xm) ≤ m
(
xe1−x)m for x ≤ 1 − 1

m
.
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(b)

(7) Pr(η ≤ x) ≤ (
1 − e−x)m ≤ xm.

(c)

Pr(η ≥ βm) ≤
(

eβ

eβ

)m

≤ e−3m/10 for β ≥ 2.

(d)

Pr
(
η ≥ (1 + α)m

) ≤ e−α2m/3 for 0 < α < 1.

(e)

Pr
(
η ≤ (1 − α)m

) ≤ e−α2m/2 for 0 < α < 1.

PROOF. (a) φ(η) is maximized at η = m − 1. Taking φ(mx) (x ≤ 1 − 1/m)

as an upper bound on φ(y) for y ∈ [0,mx] and m! ≥ (m/e)m in (5) gives us (6).
(b) Writing η = ξ1 + ξ2 + · · · + ξm we have Pr(η ≤ x) ≤ ∏m

i=1 Pr(ξi ≤ x).
(c) If η = ξ1 + ξ2 + · · · + ξN , then with λ = (β − 1)/β ,

Pr(η ≥ βm) = Pr
(
eλη ≥ eλβm) ≤ e−λβmE

(
eλη) = e−λβm

m∏
i=1

E
(
eλξi

)
(8)

= e−λβm(1 − λ)−m = (
βe−(β−1))m.

(d) Putting β = 1 + α into (8) we see that

Pr
(
η ≥ (1 + α)m

) ≤ (
(1 + α)e−α)m ≤ e−α2m/3.

(e) With λ = α/(1 − α) we now have

Pr
(
η ≤ (1 − α)m

) = Pr
(
e−λη ≥ e−λ(1−α)m) ≤ eλ(1−α)mE

(
e−λη)

= eλ(1−α)m
m∏

i=1

E
(
e−λξi

)

= eλ(1−α)m(1 + λ)−m = (
(1 − α)eα)m ≤ e−α2m/2. �

2.4. Properties of the degree sequence. We will use the following properties
of the degree sequence throughout: let

ζ(i) =
(

n

i

)1/2(
1 −

(
i

n

)1/2
− 5L log logn

ω3/4 logn

)
,(9)

ζ+(i) =
(

n

i

)1/2(
1 −

(
i

n

)1/2
+ 5L log logn

ω3/4 logn

)
.(10)
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Note that

ζ(i) ∼ ζ+(i) if i ≤ n

(
1 − 2 log logn

logn

)
,(11)

ζ(i) ∼
(

n

i

)1/2
if i = o(n).(12)

Also, let d̄n(i) denote the expected value of dn(i) in Gn.

LEMMA 2.2. (a) If E occurs then d̄n − m ∈ [ηiζ(i), ηiζ
+(i)].

(b) Pr(dn(i) − m ≤ (1 − α)ηiζ(i)) ≤ e−α2ηiζ(i)/2 for 0 ≤ α ≤ 1.
(c) Pr(dn(i) − m ≥ (1 + α)ηiζ

+(i)) ≤ e−α2ηiζ
+(i)/3 for 0 ≤ α ≤ 1.

(d) Pr(dn(i) − m ≥ βηiζ
+(i)) ≤ (e/β)βηiζ

+(i) for β ≥ 2.
(e) W.h.p. ηi ≥ λ0 and ω ≤ i ≤ n1/2 implies that dn(i) ∼ ηi(

n
i
)1/2.

(f) W.h.p. ω ≤ i ≤ log30 n implies that dn(i) ∼ ηi(
n
i
)1/2.

(g) W.h.p. ω ≤ i ≤ n1/2 implies dn(i)� max{1, ηi}(n
i
)1/2.

(h) W.h.p. n1/2 ≤ i ≤ n implies dn(i) ≤ n1/3.
(i) W.h.p. 1 ≤ i ≤ log1/49 n implies that dn(i) ≥ n1/2

log1/20 n
.

(j) W.h.p. dn(i) ≥ n

log1/20 n
implies i ≤ log1/9 n.

PROOF. We defer the proof, which is straightforward but tedious, to the Ap-
pendix. �

REMARK 2.3. We will for the rest of the paper condition on the occurrence
of E . All probabilities include this conditioning. We will omit the conditioning in
the text in order to simplify expressions.

3. Analysis of the main loop. Since the variation distance after Step 1 is o(1),
it suffices to prove Theorem 1.2 under the assumption that we begin Step 2, with
v1 chosen randomly, exactly according to the stationary distribution.

The main loop consists of Steps 2–7. Let v0 = 1 and v1, v2, . . . , vs for s ≥ 1 be
the sequence of vertices followed by the algorithm up to time s. Let ρt = vt+1/vt ,
and define T1, T2 by

T1 = min
{
t : vt ≤ log30 n

}
and T2 = T1 + 30ω log4/3 logn and

(13)
T0 = min{2ω log4/3 n,T2}.

We will prove, see Lemma 3.2, that

(14) E(ρt ) ≤ 3

4
for 1 ≤ t ≤ T0.
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Recalling that T is the time when Step 8 begins, we note that if T < t ≤ T0 then this
statement is meaningless. So, we will keep to the following notational convention:
if Xt is some quantity that depends on t ≤ T and t > T then Xt = XT .

Now, roughly speaking, if r = 2 log4/3 n and μ is the number of steps in the
main loop, then we would hope to have

Pr(μ ≥ r) ≤ Pr
(
ρ0ρ1 · · ·ρr ≥ 1

n

)
≤ nE(ρ0ρ1 · · ·ρr) ≤ 1

n

and so w.h.p. the algorithm will complete the main loop within 2 log4/3 n steps.
Unfortunately, we cannot justify the last inequality, seeing as the ρt are not in-
dependent. That is, we cannot replace E(ρ0ρ1 · · ·ρr) by

∏r
i=0 E(ρi). We proceed

instead as in the next lemma.

LEMMA 3.1. Assuming (14) we have the w.h.p. DCA completes the main loop
in at most T0 steps with SUCCESS.

PROOF. We let s0 denote the number of vertices visited by the main loop, and
then define Zs = ρ0ρ1 · · ·ρs for s ≤ s0, and Zs = ρ0ρ1 · · ·ρs0(

3
4)s−s0 for s > s0.

Suppose first that T1 > ω log4/3 n. Now (14) and Jensen’s inequality implies that
for s ≥ 1,

E
(
log(Zs)

) =
min(s,s0)∑

i=0

E
(
log(ρi)

) +
s∑

min(s,s0)+1

log
3

4
(15)

≤
min(s,s0)∑

i=0

log E(ρi) +
s∑

min(s,s0)+1

log
3

4
≤ s log(3/4).

Now

(16) log(Zs) ≥ (s − s0) log(3/4) − logn ≥ s log(3/4) − logn

since ρ1ρ2 · · ·ρs0 ≥ 1/n.
Now let

α = Pr
(
log(Zs) ≤ (1 − β)s log(3/4)

)
,

where α,β are to be determined. Then, (15), (16) imply that

(1 − α)(1 − β)s log(3/4) + α
(
s log(3/4) − logn

)
(17)

≤ E
(
log(Zs)

) ≤ s log(3/4).

Equation (17) then implies that

(18) α ≥ βs log(4/3)

βs log(4/3) + logn
.



LOOKING FOR VERTEX NUMBER ONE 591

Now putting s = ω log4/3 n and β = 1/2 we see that (18) becomes

α ≥ 1 − 2

ω + 2
= 1 − o(1).

So w.h.p. after at most ω log4/3 n steps, we will have exited the main loop with
SUCCESS.

Suppose now that T1 ≤ ω log4/3 n. Using the argument that gave us (18), we
obtain

T − T1 ≤ ω log4/3 log30 n w.h.p. �

To prove Lemma 3.2, we will use a method of deferred decisions, exposing
various parameters of Gn as we proceed. At time t , we will consider all random
variables in the model from Section 2.1 as being exposed if they have affected
the algorithm’s trajectory thus far, and condition on their particular evaluation. To
reduce the conditioning necessary, we will actually analyze a modified algorithm,
NARROW-DCA(τ ), and then later show that the trajectory of NARROW-DCA(τ ) is
the same as that of the DCA algorithm, w.h.p., when identical sources of random-
ness are used.

NARROW-DCA(τ ) is the same as the DCA algorithm, except that for the first τ

rounds of the algorithm, a modified version of Step 4 is used:
Modified Step 4. Let

Ct = {w1,w2, . . . ,wm/2}
be the m/2 neighbors of vt of largest degree from {1, . . . ,�vt } where � :=
(log logn)10.

For rounds τ + 1, τ + 2, . . . , the behavior of NARROW-DCA(τ ) is the same as
for DCA.

Notice that NARROW-DCA “cheats” by using the indices of the vertices, which
we do not actually expect to be able to use. Nevertheless, we will see later that
w.h.p., for τ = 2ω log4/3 n, the path of this algorithm is the same as for the DCA
algorithm, justifying its role in our analysis.

3.1. Analyzing one step. Our analysis of one step of the main loop consists of
the following lemma.

LEMMA 3.2. Let ρt be the ratio of vt+1/vt which appears in a run of the
algorithm NARROW-DCA(t). Then for all t ≤ T0 [see (13)], we have that

(19) E(ρt ) ≤ 3

4
and Pr(ρt ≥ �) ≤ 1

log2 n
.
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The first statement ensures that NARROW-DCA(t) makes progress in expecta-
tion in the t th jump. The second part of this statement implies by induction that for
any t ≤ ω logn, the behavior of NARROW-DCA(t) is identical to the behavior of
the DCA algorithm for the first t steps. Thus together these statements give (14).

To prove Lemma 3.2, we will prove a stronger statement which is conditioned
on the history of the algorithm at time t . The history Ht of the process at the end
of step t consists of

(H1) The sequence v1, v2, . . . , vt .
(H2) The left-choices λ(vs,1), λ(vs,2), . . . , λ(vs,m),1 ≤ s < t and the corre-

sponding left neighbors NL(vs) = {u1,s , u2,s, . . . , um,s}. These are the m 
i’s that
correspond to the m ri’s associated with vs as defined at the beginning of Sec-
tion 2.1.

(H3) The lists u′
1,s, u

′
2,s, . . . , u

′
r,s of all vertices u′

k,s which have the property
that (i) vs ∈ NL(u′

k,s) and (ii) u′
k,s ≤ �vs for 1 ≤ s < t . (It is important to notice

that s < t here.)
(H4) The values ηvi

and the intervals Ivi
for i = 1,2, . . . , t .

(H5) The values ηw and the intervals Iw and the degrees deg(w), for w ∈⋃t
i=1 N(vi).

Here,

N(v) = NL(v) ∪ NR(v) where NR(v) = {
w ≤ �v : v ∈ NL(w)

}
.

We note that at any step t , and for a fixed random sequence used in the
NARROW-DCA(t) algorithm, Ht contains all random variables which have de-
termined the behavior of the algorithm so far, in the sense that if we modify any
random variables from the random graph model described in Section 2.1 while
preserving all values in the history, then the trajectory of the algorithm will not
change. We write Ht to refer to a particular evaluation of the history (so that we
will be conditioning on events of the form Ht = Ht ).

Structure of the proof. The essential structure of our proof of Lemma 3.2 is as
follows:

Part 1 We will define the notion of a typical history Ht .
Part 2 We will prove that for t ≤ T0 and any typical history Ht , random vari-

ables ηv which are not explicitly exposed in Ht are essentially unconditioned by
the event Ht = Ht (Lemma 3.3).

Part 3 We will prove by induction that Ht is typical w.h.p., for t ≤ T0.
Part 4 We will use Parts 2 and 3 to prove that for t ≤ T0,

(20) E(ρt |Ht) ≤ 2

3
+ 21ηvt

mL
+ L3

m2 and Pr(ρt ≥ �|Ht) ≤ 1

log2 n

by using nearly unconditioned distributions of random variables which are not
revealed in Ht to estimate the probabilities of various events. Here E(ρt |Ht) is
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short for E(ρt |Ht = Ht). [Note that ηvt in (20) is simply a real number determined
by Ht .] In this context, we always work under the assumption that Ht is typical.

Part 5 We will also prove for t ≤ T0 that

(21) E(ηvt+1) ≤ 4m.

Now the expected value statement in (19) follows from (21) and the first part
of (20), by removing the conditioning on Ht .

Part 1. Let Pt denote the sequence of vertices v1, v2, . . . , vt determined by the
history Ht . We now define the notion of a typical history Ht . For this purpose, we
consider the reordered values 0 ≤ λ

(t)
1 < λ

(t)
2 < · · · < λ

(t)
N(t) where

�
(t)
0 = {

λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
N(t)

} = {
λ(vs, i) : 1 ≤ s ≤ t,1 ≤ i ≤ m

}
.

Given this we define v = v
(t)
j to be the index such that λ

(t)
j ∈ Iv and then let

V
(t)
L = {

v
(t)
j : 1 ≤ j ≤ N(t)

}
.

We also define

V
(t)
R = {

v : v ∈ NR(Pt)
}
.

Now let us reorder

V (t) = {
x

(t)
1 < x

(t)
2 < · · · < x

(t)
M(t)

} = V
(t)
L ∪ V

(t)
R .

We define the extreme points x
(t)
0 = 0 and x

(t)
M(t)+1 = n + 1 and define

X
(t)
j = [

x
(t)
j−1 + 1, x

(t)
j − 1

]
and X(t) =

M(t)+1⋃
j=1

X
(t)
j = [n] \ V (t) and

N
(t)
j = ∣∣X(t)

j

∣∣,
U

(t)
j = [W

x
(t)
j−1+1

,W
x

(t)
j −1

] and U(t) =
N⋃

j=1

U
(t)
j and

L
(t)
j = ∣∣U(t)

j

∣∣.
A typical history Ht, t ≤ T0 is now one with the following properties:

(S1) There do not exist s1, s2 ≤ t such that either (i) s1 ≤ t − 2 and vs1 and
vs2 are neighbors or (ii) s1 ≤ t − 3 and there exists a vertex w such that w ∈
N(vs1) ∩ N(vs2). (We say that the path is self-avoiding.)

(S2) The points of �(t) are well-separated, in the following sense:

(22)
∣∣x(t)

j − x
(t)
j−1

∣∣ ≥
{

log2 n, x
(t)
j−1 ≥ log30 n,

log1/400 n, otherwise.
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We observe that

(T1) If Ht is typical then vj+1 is chosen from X(j) for all j < t .

(T2) Each U
(t)
j is the union of intervals Iv, v ∈ X

(t)
j .

Part 2. We prove the following lemma.

LEMMA 3.3. For any vertex v ∈ X(t), any interval R ⊆ R, and any typical
history Ht , we have that v /∈ Pt ∪ N(Pt) implies

(23) Pr(ηv ∈ R|Ht) ∼ Pr
(
ERL(m) ∈ R

)
.

The following lemma is the starting point for the proof of Lemma 3.3.

LEMMA 3.4. Let j ∈ [M(t) + 1], let Ht be any typical history, and let X′ be
the value of X

(t)
j in Ht . Then the distribution of the random variables ηv, v ∈ X′

conditioned on Ht = Ht is equivalent to the distribution of the random variables
ηv , v ∈ X′ conditioned only on the relationship

∑
v∈X′ ηv = A2

1 −A2
0, where A1,A0

are the values of W
x

(t)
j −1

and W
x

(t)
j−1+1

, respectively, in Ht .

PROOF. Suppose we fix everything except for ηv, v ∈ X′. By everything we
mean every other ηw and all of the λ(v, i) and the random bits we use to make our
choices in Step 5 of DCA; we let Ht be the corresponding history. Suppose now
that we replace ηv, v ∈ X′ with η′

v, v ∈ X′ without changing the sum
∑

v∈X′ ηv .
Then W

x
(t)
j−1+1

remains the same, as it depends only on ηv for v /∈ X′, and thus

W
x

(t)
j −1

remains the same as well, since the difference A2
1 − A2

0 is unchanged.

In particular, this implies that Ht remains a valid history. We confirm this by
induction. Suppose that Hs, s < t remains valid. We first note that because the
λ(vs, i) are unchanged, none of vs ’s left neighbors are in X

(t)
j . Also, NR(vs) and

the vertex degrees for w ∈ NR(vs) will not be affected by the change, even if
vs < minX

(t)
j . So Hs+1 will be unchanged, completing the induction. �

We are now ready to prove Lemma 3.3.

PROOF OF LEMMA 3.3. Suppose that v ∈ X′ = X
(t)
j , then M = N

(t)
j ≥ ζn →

∞. We now use Lemma 3.4 to write

Pr(ηv ≤ x|Ht) = Pr
(
ηv ≤ x

∣∣∣ ∑
w∈X′

ηw = A2
1 − A2

0

)
,

where A1 and A0 are the values of W
x

(t)
j −1

and W
x

(t)
j−1)+1

, respectively, in Ht , so

that A1 − A0 is the value of L
(t)
j in Ht .
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Now from (P1) we have that A := A2
1 − A2

2 ∈ [(1 − ε)mM, (1 + ε)mM] for
M = |X′| w.h.p., for any ε > 0. Thus we fix any μ ∈ [(1 − ε)mM, (1 + ε)mM]
and show that

Pr
(
ηv ≤ x

∣∣∣ ∑
w∈X′

ηw = μ

)
= (

1 + O(ε)
)

Pr
(
ERL(m) ≤ x

)
.

The lemma follows since ε is arbitrary.
We write

Pr
(
ηv ≤ x

∣∣∣ ∑
w∈X′

ηw = μ

)

=
∫ x

η=0

ηm−1e−η

(m − 1)! · (μ − η)(M−1)m−1e−(μ−η)

((M − 1)m − 1)! · (Mm − 1)!
μMm−1e−μ

dη

=
∫ x

η=0

ηm−1e−η

(m − 1)! · (1 − η
μ
)(M−1)m−1eη ∏m

i=1(Mm − i)

μm
dη

=
∫ x

η=0

ηm−1e−η

(m − 1)! · exp
{
η − (

(M − 1)m − 1
)( η

μ
+ O

(
η2

μ2

))}

×
(

1 + O

(
m

M

))
dη

= (
1 + O(ε)

) ∫ x

η=0

ηm−1e−η

(m − 1)! dη.

Here we used that Ht typical implies that M ≥ log1/400 n → ∞. �

Part 3. In the next section, we will need a lower bound on vt+1. Let

φv =

⎧⎪⎪⎨
⎪⎪⎩

1

log3 n
, v ≥ log30 n,

1

(log logn)3 , v < log30 n.

LEMMA 3.5. W.h.p. ρt ≥ φvt for 1 ≤ t ≤ T0.

PROOF. The values of λ(vt , i), i = 1,2, . . . ,m are unconditioned by Ht ,
see (H2). It then follows from (P2) that if vt ≥ log30 n then

(24) Pr(vt+1 ≤ φvt vt |Ht)�m
Wφvt

Wvt

�mφ1/2
vt

= m

log3/2 n
.

There are O(ω logn) choices for t and so this deals with vt ≥ log30 n.
Now there are O(log logn) choices of t ∈ [T1, T0] for which vt ≤ log30 n. In

this case, we can replace the RHS of (24) by 1/(log logn)3/2. �
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We will also need to bound the size of NR(vt ) for all t .

LEMMA 3.6. W.h.p., for all t ≤ T0,

∣∣NR(vt )
∣∣ ≤

{
log3 n, vt ≥ log30 n,

(log logn)20, vt ≤ log30 n.

PROOF. The size of NR(v), v = vt is stochastically bounded by Bin(�v,ηv/

v). This is because if w ∈ NR(v) then w ≤ �v. Also, for any such w, the prob-
ability that it has v as a left neighbor is at most mwv/Ww � ηv/(vw)1/2 ≤ ηv/v.
This uses property (S1) to see that the values of λ(w, i), i = 1,2, . . . ,m are un-
conditioned by Ht . Thus, if θv = log3 n if v ≥ log30 n and equal to (log logn)20

otherwise,

(25) Pr
(∣∣NR(v)

∣∣ ≥ θv|Ht

) ≤
(
�v

θv

)(
ηv

v

)θv ≤
(

e�ηv

θv

)θv

.

If v ≥ log30 n then the RHS of (25) is at most (e/ logn)log3 n which is clearly small
enough to handle T possible values for t . If v < log30 n then the RHS of (25) is at
most (40e/(log logn)9)(log logn)20

which is small enough to handle O(ω log logn)

possible values for t such that v < log30 n. �

Continuing Part 3, we now show that the DCA walk doesn’t contain cycles.

LEMMA 3.7. W.h.p. the path Pt , t ≤ T0 is self avoiding.

PROOF. We proceed by induction and assume that the claim of the lemma is
valid up to time t − 1. Now consider the choice of vt .

Case 1: There is an edge vsvt where s ≤ t − 2:
(a): vt ∈ NL(vs) ∩ NL(vt−1).
We bound the probability of this (conditional on E,Ht ) asymptotically by

(26)
∑

s∈[t−2]

∑
v∈NL(vs)

mwv

Wvt−1

�
∑

s∈[t−2]

∑
v∈NL(vs)

ηv

2(vvt−1)1/2 .

Here, and throughout the proof of Case 1, v denotes a possibility for vt and
mwv/Wvt−1 bounds the probability that vt−1 chooses v. Remember that these
choices are still uniform, given the history.

We split the sum in (26) as∑
s∈[t−2]

vs>log30 n

∑
v∈NL(vs)

ηv

2(vvt−1)1/2 + ∑
s∈[t−2]

vs≤log30 n

∑
v∈NL(vs)

ηv

2(vvt−1)1/2 .
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Consider the first sum. There are less than t choices for s; m choices for v and
ηv ≤ logn. Now v ∈ NL(vs) and Lemma 3.5 implies that v ≥ log27 n. So we can
bound the first sum by

(# of s) · (# of v) · (maxηv) · 1

v1/2 ≤ T0 · m · logn · 1

log27/2 n
= o

(
1

log11 n

)
.

Summing this estimate over t ≤ T0 gives o(1).
For the second sum, we bound the number of choices of s by O(ω log logn)

and ηv by O(log logn), since v ≤ vs . We use the fact (see Section 3.2) that vt−1 ≥
log1/100 n. So we can therefore bound the second sum by

(# of s) · (# of v) · (maxηv) · 1

v
1/2
t−1

≤b ω log logn · m · log logn · 1

log1/200 n

= o

(
1

log1/300 n

)
.

[We use A ≤b B in place of A = O(B).]
There are O(ω log logn) choices for T0 ≥ t > s ≥ T1 and so we can sum this

estimate over choices of t .
(b): vt ∈ NL(vs) ∩ NR(vt−1).
Using vt ∈ NR(vt−1), we bound the probability of this asymptotically by∑

s∈[t−2]
vs>log30 n

∑
v∈NL(vs)

ηvt−1

2(vvt−1)1/2 + ∑
s∈[t−2]

vs≤log30 n

∑
v∈NL(vs)

ηvt−1

2(vvt−1)1/2 .

For the first sum, we use the argument of Case (a) without any change, except
for bounding ηvt−1 by logn as opposed to bounding ηv by the same. This gives a
bound

(# of s) · (# of v) · (maxηvt−1) · 1

v1/2 ≤b T0 · m · logn · 1

log27/2 n
= o

(
1

log11 n

)
.

This is small enough to inflate by the number of choices for t .
For the second sum, we split into two cases: (i) vt−1 ≥ log30 n and (ii) vt−1 <

log30 n. This enables us to control ηvt−1 . For the first case, we obtain

(# of s) ·(# of v) ·(maxηvt−1) ·
1

v
1/2
t−1

≤ ω log logn ·m · logn · 1

log15 n
= o

(
1

log13 n

)
.

The RHS is small enough to handle the O(ω logn) choices for t .
For the second case, we obtain

(# of s) · (# of v) · (maxηvt−1) · 1

v
1/2
t−1

≤ ω log logn · m · log logn · 1

log1/200 n

= o

(
1

log1/300 n

)
.
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The RHS is small enough to handle the O(ω log logn) choices for t .
(c): vt ∈ NR(vs) ∩ NL(vt−1).
Using vt ∈ NL(vt−1), we bound the probability of this asymptotically by∑

s∈[t−2]
vs>log29 n

∑
v∈NR(vs)

ηv

2(vvt−1)1/2 + ∑
s∈[t−2]

vs≤log29 n

∑
v∈NR(vs)

ηv

2(vvt−1)1/2 .

For the first sum, we use v ≥ vs and the argument of Case (a) without change, but
notice we split over vs > log29 n or not here. This gives a bound of

(# of s) · (# of v) · (maxηv) · 1

v1/2 ≤ T0 · m · logn · 1

log29/2 n
= o

(
1

log12 n

)
.

For the second sum, we use v ≤ �vs to bound v by log30 n. We also use
Lemma 3.6 to bound the number of choices of v by (log logn)20. This gives a
bound of

(# of s) · (# of v) · (maxηv) · 1

v
1/2
t−1

≤b ω log logn · (log logn)20 · log logn · 1

log1/200 n

= o

(
1

log1/300 n

)
.

(d): vt ∈ NR(vs) ∩ NR(vt−1).
Using vt ∈ NR(vt−1), we bound the probability of this asymptotically by∑

s∈[t−2]
vs>log30 n

∑
v∈NR(vs)

ηvt−1

2(vvt−1)1/2 + ∑
s∈[t−2]

vs≤log30 n

∑
v∈NR(vs)

ηvt−1

2(vvt−1)1/2 .

For the first sum, we use v ≥ vs and Lemma 3.6 to bound the number of choices
for v and then we have a bound of

(# of s) · (# of v) · (maxηvt−1) · 1

v1/2 ≤ T0 · log3 n · logn · 1

log15 n
= o

(
1

log9 n

)
.

For the second sum, we split into two cases: (i) vt−1 ≥ log30 n and (ii) vt−1 <

log30 n. This enables us to control ηvt−1 . We also use Lemma 3.6 to bound the
number of choices for v in each case. Thus in the first case, we have the bound

(# of s) · (# of v) · (maxηvt−1) · 1

v
1/2
t−1

≤b ω log logn · log3 n · logn · 1

log15 n

= o

(
1

log10 n

)
.



LOOKING FOR VERTEX NUMBER ONE 599

In the second case, we have

(# of s) · (# of v) · (maxηvt−1) · 1

v
1/2
t−1

≤b ω log logn · (log logn)20 · log logn · 1

log1/200 n

= o

(
1

log1/300 n

)
.

Case 2: There is a path vs, v, vt where s < t .
The calculations that we have done for Case 1 carry through unchanged. We

just replace vt−1 by vt throughout the calculation and treat v as an arbitrary vertex
as opposed to a choice of vt . �

The x
(t)
j are separated. We now prove that w.h.p. points λi are well-separated.

Let

J1 = {
j : vj ≥ log30 n

}
.

LEMMA 3.8. Equation (22) holds w.h.p. for all t ≤ T0.

PROOF. We consider cases.
Case 1: x

(t)
j−1, x

(t)
j ∈ V

(t)
R .

For this, we write

ζv,w =
{

log2 n, min{v,w} ≥ log30 n,

log1/300 n, otherwise,

Pr
(∃1 ≤ s ≤ t, v ∈ NR(vs),w ∈ NR(vt ) : |v − w| ≤ ζv,w|E,Ht

)
�

∑
1≤s≤t≤T0

∑
v∈NR(vs),w∈NR(vt )

|v−w|≤ζv,w

ηvs ηvt

(vsvtvw)1/2

≤ ∑
1≤s≤t≤T0

∑
v∈NR(vs)

ζv,wηvsηvt

(v − ζv,w)(vsvt )1/2(27)

≤ 2
∑

1≤s≤t≤T0

ζ ∗
s,tηvs ηvt |NR(vs)|

(vsvt )1/2 .(28)

Here ζ ∗
s,t will be a bound on the possible value of ζv,w in (27).

Case 1a: max{vs, vt } ≥ log29 n:
In this case ζ ∗

s,t ≤ log2 n and we can bound the summand of (28) by

ζ ∗
s,t · log2 n · log3 n · 1

log29/2 n
= 1

log15/2 n
.
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Multiplying by a bound T 2
0 on the number of summands gives a bound of o(1).

Here, and in the next case, we use Lemma 3.6 to bound |NR(vs)|.
Case 1b: max{vs, vt } < log29 n:
Here we have max{v,w} ≤ � log29 n ≤ log30 n. In this case, we can bound the

summand of (28) by

log1/300 n · (40m log logn)2 · (log logn)20 · 1

log1/100 n
= o

(
(log logn)5

log1/200

)
.

We only have to inflate this by (T0 − T1)
2 = O((ω log logn)2). This completes the

case where x
(t)
j−1, x

(t)
j ∈ R(t).

Case 2: x
(t)
j−1, x

(t)
j ∈ V

(t)
L :

We first show that the gaps λj − λj−1 are large. Define

β1 = log15/2 n

n1/2 and β2 = log1/300 n

n1/2

and

εj =
{
β1, λj = λ(vt , i), vt ∈ J1,

β2, otherwise,

and

σ1 = 1

log15/2 n
and σ2 = 1

log1/200 n
.

We drop the superscript t for the rest of the lemma.

CLAIM 3.9.

Pr(∃λj ∈ �0 : λj−1 > λj − εj |Ht) = o(1).

PROOF. This follows from the fact that

Pr(∃j : λj−1 > λj − εj )

≤ o(1) + (
1 + o(1)

)(
m2T 2

1 σ1 + m2(T0 − T1)
(
T1σ1 + (T0 − T1)σ2

))
.

We have fewer than m2T 2
1 choices for s = τ(j − 1), t = τ(j) ∈ J1. Assume first

that s < t . Given such a choice, we have that w.h.p. Wvt � log15 n/n1/2 by (P2).
Now λj will have been chosen uniformly from 0 to ≈Wvt and so the probability
it lies in [λj−1, λj−1 + εj ] is at most ≈β1/Wvs , which explains the term m2T 2

1 σ1.
If s > t then we repeat the above argument with [λj−1, λj−1 + ε1] replaced by
[λj − ε1, λj ].

The term m2(T0 − T1)T1σ1 arises in the same way with j − 1 ∈ J1, j /∈ J1 or
vice-versa.
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The term m2(T0 − T1)
2σ2 arises from the case where j − 1, j /∈ J1. Here

we can only assume that Wj � log1/200 n/n1/2. This follows from (P2), (P4)
and Lemma 2.2 and the fact that we exit the main loop with SUCCESS when
we see a vertex of degree at least n1/2/ log1/100 n. Assuming that s < t we
see that the probability that λj lies in [λj−1, λj−1 + ε2] is at most β2/Wvt ∼
β2/(log1/200 n/n1/2) = o(1). �

Given the Claim and (P4), (P5) we have that w.h.p.

(29) W
v

(t)
j −1

− W
v

(t)
j−1+1

≥

⎧⎪⎪⎨
⎪⎪⎩

β1 − logn

n1/2 ≥ 1

2
β1, j ∈ J1,

β2 − 40m log logn

n1/2 ≥ 1

2
β2, j /∈ J1.

Now,

W
v

(t)
j −1

− W
v

(t)
j−1+1

=
(

ϒm(τ(j)−1)

ϒmn+1

)1/2
−

(
ϒm(τ(j−1)+1)

ϒmn+1

)1/2

= ϒm(τ(j)−1) − ϒm(τ(j−1)+1)

ϒ
1/2
mn+1(ϒ

1/2
m(τ(j)−1) + ϒ

1/2
m(τ(j−1)+1))

.

Or, ∑
u∈X

(t)
j

ηu = (W
v

(t)
j −1

− W
v

(t)
j−1+1

)ϒ
1/2
mn+1

(
ϒ

1/2
m(τ(j)−1) + ϒ

1/2
m(τ(j−1)+1)

)

≥
{
β1n

1/2, j ∈ J1,

β2n
1/2, j /∈ J1.

It follows that w.h.p.

∣∣x(t)
j−1 − x

(t)
j

∣∣ = ∣∣X(t)
j

∣∣ ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1n
1/2

logn
, j ∈ J1,

β2n
1/2

40m log logn
, j /∈ J1.

Case 3: x
(t)
j ∈ V

(t)
L , x

(t)
j−1 ∈ V

(t)
R :

Let θv = β1, v ≥ log30 n and θv = β2 otherwise. We write

Pr
(∃s < t, v, k : v ∈ NR(vs), λ(vt , k) ∈ Iv ± θv|E,Ht

)
≤ ∑

s,t,v,k

ηvs

(vvs)1/2 · wv + 2θv

Wvt

(30)

�
∑

s,t,v,k

(
ηvsηv

v(vsvt )1/2 + 2n1/2θvηvs

v(vsvt )1/2

)
.
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We bound the sum in the RHS of (30) as follows: If max{v, vs} ≥ log30 n then we
bound the first sum by

(#s, t, k) · log2 n ·
n∑

v=1

1

v
· 1

log15 n
≤b

(
ω2 log2 n

) · log2 n · logn · 1

log15 n
= o(1).

We bound the second sum by

(#s, t, k) · 2 log15/2 n · logn ·
n∑

v=1

1

v
· 1

log15 n

≤ (
ω2 log2 n

) · log15/2 n · logn · logn · 1

log15 n
= o(1).

When max{v, vs, vt } < log30 n we bound the first sum by

(#s, t, k) · (40 log logn)2 ·
log30 n∑
v=1

1

v
· 1

log1/200 n
(31)

≤b (ω log logn)2 · (log logn)2 · log logn · 1

log1/200 n
= o(1).

We bound the second sum by

(#s, t, k) · log1/300 n · 40 log logn ·
log30 n∑
v=1

1

v
· 1

log1/200 n
(32)

≤b (ω log logn)2 · log1/300 n · log logn · 1

log1/200 n
= o(1).

Finally, if max{v, vs} < log30 n ≤ log30 n then we have to replace (#s, t, k) in
(31), (32) by O(ω2 logn log logn). But this is compensated by a factor 1/v

1/2
t ≤

1/ log15 n.
It follows that (29) holds w.h.p. and the proof continues as for Case 2. �

Part 4. We now assume t ≤ T0. We begin by showing that DCA only uncovers
a small part of the distribution of the η’s.

Let �t = Pt ∪ N(Pt) and

St,j = ∑
v∈�t

wv.

LEMMA 3.10. W.h.p., St,j = o(Wj ) for log1/100 n ≤ j and 1 ≤ t ≤ T0.
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PROOF. Assume first that j ≥ log30 n. It follows from (P2), (P3), (P5) and
Lemma 3.6 that w.h.p.

St,j ≤ T0 × maxηvs

n1/2 × (
m + max

∣∣NR(vs)
∣∣) � T0 logn(m + log3 n)

2mn1/2

= O

(
ω log5 n

n1/2

)
,

Wj ≥ (
1 − o(1)

)(j

n

)1/2
= �

(
log10 n

n1/2

)
.

This completes this case. Now assume that j ≤ log30 n. (P2), (P3), (P4) and
Lemma 3.6 imply that w.h.p.

St,j � 40m log logn × ω log4/3 logn

2mn1/2 × (
m + (log logn)20) � Wj ∼

(
j

n

)1/2

for log1/100 n ≤ j ≤ log30 n. �

Dealing with left neighbors. The calculation of the ratio ρt takes contributions
from two cases: where vt+1 is a left neighbor of vt , and where vt+1 is a right
neighbor of vt .

LEMMA 3.11.

E(ρt1vt+1<vt |Ht) ≤ 2

3
.

PROOF. Let D denote the (m/2)th largest degree of a vertex in NR(vt ). We
write

E(ρt1vt+1<vt |Ht) = ∑
d

E(ρt1vt+1<vt |Ht |D = d)Pr(D = d)

≤ ∑
d

E
(

ζd

vt

)
Pr(D = d)

= E
(

ζD

vt

)
,

where ζd is the index of the smallest degree left neighbor of vt that has degree at
least d . We let ζd = 0 if there are no such left neighbors. We now couple ζ with a
random variable that is independent of the algorithm and can be used in its place.

Going back to Section 2.1 let us associate 
k for k ≥ ω with an index μk chosen
uniformly from [�k/m�]. In this way, vertex i ≥ ω is associated with m uniformly
chosen vertices ai,1, ai,2, . . . , ai,m in [i − 1]. Furthermore, we can couple these
choices so that if NL(i) = {bi,1, bi,2, . . . , bi,m} then we have (i) Pr(bi,j ≤ ai,j ) ≥
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1 − o(1) and (ii) bi,j ≤ 2ai,j for all i, j . This because Pr(bi,j ≤ k) ∼ Wk/Wi ∼
(k/i)1/2 [giving (i)] and (k/i)1/2 ≥ k/i and (1 − o(1))(k/i)1/2 ≥ k/2i [giving
(ii)].

So now let μ be the index of the uniform choice associated with the largest
degree left neighbor of vt that has degree at least D. Thus

E
(

ζD

vt

)
� E

(
μ

vt

)
= 1

2
+ o(1) ≤ 2

3
. �

Dealing with right neighbors. It will be more difficult to consider the contri-
bution of right neighbors. In preparation, for λ0 ≤ γ ≤ 1 − 1/m we define

�i
γ := m + γmζ(i),

where ζ(i), ζ+(i) are defined in (9), (10) respectively. We note that ηiζ(i) is a
lower bound for the expected degree of vertex i, i ≥ ω, see Lemma 2.2(a). Note
also that ηiζ

+(i) is an upper bound for the expected degree of vertex i, i ≥ ω.
The parameter �i

γ is a degree threshold. For a suitable parameter γ , we wish it
to be the case that there should be many left neighbor but few right neighbor which
have degree greater than �i

γ . We define

γ ∗
i = max

{
γ : ∣∣{j ∈ NL(i) : dn(j) ≥ �i

γ

}∣∣ ≥ m/2
}
.

�
vt

γ ∗
vt

is a lower bound on the degree needed for vertex j > vt to be considered by

DCA as the next vertex; thus we proceed by analyzing the distribution of γ ∗
vt

. We
first derive upper bounds for Pr(γ ∗

vt
≤ γ |Ht).

LEMMA 3.12. There exists c1 > 0 such that

Pr
(
γ ∗
vt

≤ γ |Ht

)
�

(
γ 1/2e1−γ 1/2)c1m

2 + me−c1γ
1/2m, 0 ≤ γ ≤ 1

8
,(33)

Pr
(
γ ∗
vt

≤ γ |Ht

)
�

(
γ 1/2e1−γ 1/2)c1m

2 + me−c1/γ
1/2

, 0 ≤ γ ≤ 1

8
,(34)

Pr
(
γ ∗
vt

≤ 5

4

∣∣∣Ht

)
� e−c1m,(35)

Pr
(
γ ∗
vt

≥ γ |Ht

)
� γ −c1m, γ ≥ 105.(36)

PROOF. For j < vt , we define events Aj = {ηj ≤ γ 1/2m} and Dj = {dn(j) ≤
�vt

γ }. We need to estimate Pr(
⋂

j∈S Dj ) for subsets S ⊆ NL(vt ) of size m/2. We
write

(37)
⋂
j∈S

Dj ⊆ ⋂
j∈S

(
Aj ∪ (Āj ∩Dj )

) ⊆ ⋂
j∈S

Aj ∪ ⋃
j∈S

(Āj ∩Dj ).
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Now, using inequality (6) and equation (23), we see that if 0 ≤ γ ≤ 1/8 then for
j < vt ,

(38) Pr
(
ηj ≤ γ 1/2m|Ht

)
�m

(
γ 1/2e1−γ 1/2)m

.

The RHS of (38) includes a factor of 1 + o(1) due to conditioning on E,Ht .
So,

(39) Pr
(⋂

j∈S

Aj

∣∣∣Ht

)
�

(
m

(
γ 1/2e1−γ 1/2)m)|S|

.

Furthermore, because j ∈ NL(vt ) implies that i ≥ j and hence ζ(vt ) ≤ ζ(j),

Pr
((

dn(j) ≤ �i
γ

) ∧ Āj |Ht

)
≤ Pr

(
dn(j) − m ≤ γmζ(j)|Ht

)
Pr

(
ηj > γ 1/2m|Ht

)
(40)

� exp
{
−(1 − γ 1/2)2

2
γ 1/2mζ(j)

}
.

Explanation of (40): We remark first that the conditioning on E,Ht only adds a
(1 + o(1)) factor to the upper bound on our probability estimate. We now apply
Lemma 2.2(b) with 1 − α = γ and ηj ≥ γ 1/2m.

From (37) [summing over all m/2 subsets of NL(vt )] and (40) [summing over
NL(vt )] we obtain

Pr
(
γ ∗
vt

≤ γ |Ht

)
= Pr

(∣∣{j ∈ NL(vt ) : dn(j) ≤ �i
γ

}∣∣ ≥ m/2 | Ht

)
(41)

� 2m((
m

(
γ 1/2e1−γ 1/2)m))m/2 + m exp

{
−(1 − γ 1/2)2

2
γ 1/2mζ(vt )

}
.

We observe that j ∈ NL(vt ) implies that dn(j) ≥ m + 1. So,

(42) m + 1 < �i
γ implies ζ(vt ) >

1

mγ
.

Using (42) in (41) verifies (34), after bounding 2m((m(γ 1/2e1−γ 1/2
)m))m/2 by

(γ 1/2e1−γ 1/2
)c1m

2
.

From (37) and (40),

Pr
(
γ ∗
vt

≤ γ |Ht

)
�

(
m

(
γ 1/2e1−γ 1/2)m)m/2(43)

+ Pr(A1|Ht) + Pr(Ā1|Ht)
−1m exp

{
−(1 − γ 1/2)2

2
γ 1/2mζ

(
9n

10

)}
.
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Here

A1 =
{∣∣∣∣NL(vt ) ∩

[
9n

10

]∣∣∣∣ ≥ m

4

}
.

Explanation of (43): The first term is from (39). If Ā1 holds then vt has at least
one left neighbor j ≤ 9n/10. The final term comes from using (40) and ζ(j) ≥
ζ(9n/10). The factor Pr(Ā1)

−1 handles the conditioning on Ā1. The factor m is
the union bound for choices of j .

Now |NL(vt ) ∩ [9n
10 ]| is dominated by the binomial Bin(m,n/10) and so

Pr(A1|Ht) ≤ e−d1m. Now ζ(9n/10) ≥ 1/20 and plugging these facts into (43)
yields (33). Here we have absorbed the e−d1m term into me−c1γ

1/2m and we will
do so again below.

We continue with the proof of (35). For j ∈ NL(vt ), we observe that if dn(j) ≤
�vt

γ and γ ≤ 5
4 then

dn(j) − m ≤ 5m

4
ζ(vt ).

We now estimate the probability that a uniform random choice of j ∈ NL(vt ) (for
fixed Ht , which determines vt ) has certain properties.

We first observe that

(44) Pr
(
j ≥ 3i

5

∣∣∣Ht

)
�

(
1 − W3i/5

Wvt

)
∼

(
1 −

(
3

5

)1/2)
<

2

5
.

[For this we used (P2).]
Now (6) implies that

(45) Pr(ηj ≤ 0.99m|Ht) ≤ e−d2m.

Moreover, for ηj > 0.99m and j < 3vt/5, we have

ζ(j)

ζ(vt )
=

(
vt

j

)1/2( 1 − (
j
n
)1/2 − ε

1 − (vt

n
)1/2 − ε

)
≥

(
vt

j

)1/2
,

where

(46) ε = 5L log logn

ω3/4 logn
.

Thus we have

E
(
dn(j) − m|Ht

) ≥ ηj ζ(j) � 0.99m

(
5

3

)1/2
ζ(vt ).

Now 0.99 × (5/3)1/2 = 1.278 . . . > 1.01 × 5/4 and so

Pr
(
dn(j) − m ≤ 5ζ(vt )

4

∣∣∣Ht

)
≤ Pr

(
dn(j) − m ≤ ζ(j)ηj

1.01

∣∣∣Ht

)
(47)

≤ e−d3ηj ζ(j) ≤ e−d4m
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using Lemma 2.2(b). It follows from (44) and (45) and (47) that

Pr
(
γ ∗
vt

<
5

4

∣∣∣Ht

)
≤ Pr

(
Bin

(
m,e−d2m + e−d4m + 2

5

)
≥ m

2

)
≤ e−d3m.

This completes the proof of (35).
To deal with (36) we observe that if dn(j) ≥ �vt

γ and γ ≥ 105 then

j ∈ NL(vt ) and j ≤ vt

γ 1/2 or ηj ≥ γ 1/2m

(
j

vt

)1/2
≥ γ 1/4m or

dn(j) − m ≥ γ 3/4ηj ζ(j).

But

(48) Pr
(
j ∈ NL(vt ) and j ≤ vt

γ 1/2

∣∣∣Ht

)
�

Wvt/γ 1/2

Wvt

� 1

γ 1/4 .

And, using (P3) and γ ≥ 105,

Pr
(
ηj ≥ γ 1/4m|Ht

)
�

vt∑
l=2vt /γ

wl

Wvt

∫ ∞
ηl=γ 1/4m

ηm
l e−ηl

(m − 1)! dηl

�
vt∑

l=2vt /γ

e−γ 1/4m

2(vt l)1/2(49)

� e−γ 1/4m.

Lastly, using (44), (45) and Lemma 2.2(d) and ζ+(j) � ζ(j) for j ≤ 3n/5 we have

(50) Pr
(
dn(j) − m ≥ γ 3/4ηj ζ(j)|Ht

) ≤ 2

5
+ e−d2m + e−γ 3/4η ≤ 0.41.

It follows from (48), (49) and (50) that

Pr
(
γ ∗
vt

≥ γ |Ht

)
� Pr

(
Bin

(
m,

(
1 + o(1)

)( 1

γ 1/4 + e−γ 1/4m + 0.41
))

≥ m

2

)

� e−d3m.

This completes the proof of the lemma. �

COROLLARY 3.13. W.h.p. γ ∗
vs

≥ 1/(log logn)2 for s = 1,2, . . . , T =
O(logn).

PROOF. The value of γ ∗
vs

is determined when vs is first visited and in this case
we can apply Lemma 3.12. In which case the result follows directly from (34). �
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We now have a handle on the distribution of γ ∗
vt

. We now put bounds on the
expected number of j > vt that can be considered to be a candidate for vt+1,
conditioned on the value of γ ∗

vt
. In particular, we let

Dvt
γ = {

j > vt : dn(j) ≥ �vt
γ

}
.

We will bound the size of Di
γ by dividing Di

γ into many parts bounding each part;
in particular, κ ∈ N we let

(51) J i,κ
γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
i,

i

γ 2

]
∩ Di

γ , κ = 0,[
i

γ 2

(
1 + κ − 1

L

)
,

i

γ 2

(
1 + κ

L

)]
∩ Di

γ , 1 ≤ κ ≤ 2nγ 2L

i
.

Note that J i,0
γ = ∅ if γ ≥ 1.

Finally, we let

ri,κ
γ := ∣∣J i,κ

γ

∣∣ and ri
γ := ∑

κ≥0

ri,κ
γ and

(52)

si
γ := ∑

κ≥0

∑
j∈J

i,κ
γ

j ≤ i

γ 2

∑
κ≥0

(
1 + κ + 1

L

)
ri,κ
γ .

REMARK 3.14. We have that E( 2
m

1
vt

svt
γ |Ht) is an upper bound on the expec-

tation of the ratio ρt = vt+1
vt

, conditioned on the event that vt+1 > vt , since each

right neighbor whose index is included in the sum svt
γ has probability of at most 2

m
of being chosen by the algorithm.

LEMMA 3.15. If vt ≤ n(1 − 3L3

m
), then

E
(
rvt
γ |Ht

) ≤ ηvt

γL

(
Lmax

{
0, (1 − γ )

} + 7 + 10Le−c2γL)
,(53)

E
(

svt
γ

vt

∣∣∣Ht

)
≤ ηvt

γ 3L

(
Lmax

{
0, (1 − γ )

} + 13 + 100Le−c2γL)
.(54)

Moreover,

If vt ≤ n/5 and κ ≥ (log logn)4 and γ ≥ 1/(log logn)2 then
(55)

Pr
(
rvt ,κ
γ > 0

) ≤ 1

log2 n
.

Note that (55) implies the second inequality in (19).

PROOF OF LEMMA 3.15. Recall from Lemma 3.10 that w.h.p.,

(56) ST,j = o(Wj ) for j ≥ log1/100 n.
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We write

E
(
rvt ,κ
γ |Ht

)

�
∑

j∈J
vt ,κ
γ

mwvt

Wj − St,j

∫ ∞
ηj=0

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj(57)

� ηvt

∑
j∈J

vt ,κ
γ

1

2(vt j)1/2

∫ ∞
ηj=0

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj .(58)

Explanation of (57) and (58): We sum over the relevant j and fix ηj . We multiply
by the density of ηj and integrate. Using (56), we see that

mwvt

Wj − St,j

∼ mwvt

Wj

∼ ηvt

2(vt j)1/2 .

This is asymptotically equal to the expected number of times j chooses vt as a
neighbor.

Thus,

(59) E
(
rvt ,κ
γ |Ht

)
�

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2 Ij ,

where

Ij =
∫ ∞
ηj=0

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj ≤ 1.

If m is large, then

(60) E
(
rvt ,0
γ |Ht

)
�

⎧⎪⎪⎨
⎪⎪⎩

0, γ ≥ 1,∑
j∈J

vt
0 (γ )

ηvt

2(vt j)1/2 � ηvt

1 − γ

γ
, γ < 1.

Continuing, for κ ≥ 1, we write

(61) Ij � A1 + A2 + A3,

where

A1 =
∫ (1−1/L)γm

ηj=0

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |ηj

)
dηj ,

A2 =
∫ (1+1/L)m

ηj=(1−1/L)m

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |ηj

)
dηj ,

A3 =
∫ ∞
ηj=(1+1/L)m

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |ηj

)
dηj
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and then write rvt ,κ
γ = rvt ,κ,1

γ + rvt ,κ,2
γ + rvt ,κ,3

γ . Here rvt ,κ,l
γ is equal to the RHS

of (59) with Ij replaced by Al . The implicit (1 + o(1)) factor in (61) arises from
replacing Pr(dn(j) ≥ �vt

γ |ηj ,Ht) by Pr(dn(j) ≥ �vt
γ |ηj ) in the integrals, that is,

ignoring the conditioning due to Ht . Since j > vt , the only effect of Ht is on
Wj through wvt . Here we have that w.h.p. Wj ∼ (vt

n
)1/2 and wvt ∼ ηvt

2m(vtn)1/2 =
O(

logn

2m(vtn)1/2 ) = o(Wvt ).
Case 1: n1 ≤ vt < n/5:
Note that in this case

(62) ζ(vt ) ≥ 1

2

(
n

vt

)1/2
≥ 1.

In the following, we use Lemma 2.1 to estimate the integrals over ηj . We observe
that

E
(
rvt ,κ,1
γ |Ht

)

�
∑

j∈J
vt ,κ
γ

ηvt

2(vt j)1/2

∫ (1− 1
L

)m

ηj=0

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj

�
∑

j∈J
vt ,κ
γ

ηvt

2(vt j)1/2(63)

×
∫ (1− 1

L
)m

ηj=0

ηm−1
j e−ηj

(m − 1)!

×
({

1, 1 ≤ κ ≤ 10L,(
e(L/κ)1/2)d0γmζ(vt ), κ > 10L

)
dηj .

Explanation of (63): We remark first that the conditioning on Ht only adds a (1 +
o(1)) factor to the upper bound on our probability estimate. We will use Lemma 2.2
to bound the probability that degrees are large. Now with our bound on vt and
within the range of integration, the ratio of �vt

γ − m to the mean of dn(j) − m is

�vt
γ − m

ζ+(j)
= γm( n

vt
)1/2(1 − (vt

n
)1/2 − o(1))

ηj (
n
j
)1/2(1 − (

j
n
)1/2 + o(1))

� γm

ηj

(
j

vt

)1/2

(64)

≥ L

L − 1

(
1 + κ − 1

L

)1/2
≥

(
κ

L

)1/2
when κ ≥ 10L.

We then use (11) and Lemma 2.2(d) with β = (κ/L)1/2.
Continuing, we observe that

(65)
(

1 + κ

L

)1/2
−

(
1 + κ − 1

L

)1/2
≤ 1

2L
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and so

E
(
rvt ,κ,1
γ |Ht

) ≤ ηvt e
−m/(2L2)

γ vt
1/2

(((
1 + κ + 1

L

)
vt

)1/2
−

((
1 + κ − 1

L

)
vt

)1/2)

×
({

1, 1 ≤ κ ≤ 10L,(
e(L/κ)1/2)d0γmζ(vt ), κ > 10L

)
(66)

≤ ηvt e
−m/(2L2)

γL
·
({

1, 1 ≤ κ ≤ 10L,(
e(L/κ)1/2)d0γmζ(vt ), κ > 10L

)
.

Continuing, it follows from (65) that

∑
j∈J

vt ,κ
γ

1

j1/2 ≤ vt
1/2

γL
,(67)

E
(
rvt ,κ,2
γ |Ht

)

≤ ∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2

∫ (1+1/L)m

ηj=(1−1/L)m

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj

≤ ∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, κ ≤ 3,

exp
{
−d1γmζ(vt )

L2

}
, 4 ≤ κ ≤ 10L,(

e(L/κ)1/2)d0γmζ(vt ), κ > 10L

(68)

≤ ηvt

γL
×

⎧⎪⎪⎨
⎪⎪⎩

1, 1 ≤ κ ≤ 3,

e−d1γmζ(vt )/L
2
, 4 ≤ κ ≤ 10L,(

e(L/κ)1/2)d0γmζ(vt ), κ > 10L,

(69)

where we have used (67).
Explanation for (68): We proceed in a similar manner to (64) and use

�vt
γ − m

ζ+(j)
= γm( n

vt
)1/2(1 − (vt

n
)1/2 − o(1))

ηj (
n
j
)1/2(1 − (

j
n
)1/2 + ε)

≥ 1 + 1

L

if κ ≥ 4, ηj ≥
(

1 − 1

L

)
m.

Then we use Lemma 2.2(c), (d).
Continuing,

E
(
rvt ,κ,3
γ |Ht

)
(70)

≤ ∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2

∫ ∞
ηj=(1+1/L)m

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj .
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We bound the integral in (70) by something independent of j and then as above,
there is a factor ηvt /γL arising from the sum over j .

For all 1 ≤ κ ≤ 80L + 1, we simply use the bound

(71)
∫ ∞
ηj=m(1+ 1

L
)

ηm−1
j e−ηj

(m − 1)! dηj ≤ exp
{
−d2m

L2

}
.

For κ ≥ 80L + 2, we split the integral from (70) into pieces Bκ
1 ,Bκ

2 (whose defi-
nition depends on κ), which we will bound individually.

In particular, we use

Bκ
1 =

∫ ∞
ηj=m(1+ κ−1

L
)1/4

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj

≤
∫ ∞
ηj=m(1+ κ−1

L
)1/4

ηm−1
j e−ηj

(m − 1)! dηj(72)

≤ e−d3m(κ/L)1/4

and

Bκ
2 =

∫ m(1+ κ−1
L

)1/4

ηj=m(1+ 1
L

)

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |Ht, ηj

)
dηj

(73)

≤ Pr
(
dn(j) ≥ �vt

γ |Ht, ηj ≤ m

(
1 + κ − 1

L

)1/4)
≤

(
eL1/4

κ1/4

)d4γmζ(vt )

to bound the integral in (70) by Bκ
1 + Bκ

2 for all κ ≥ 80L + 2.

Therefore, gathering the many terms together [and using that κ ≤ 2nLγ 2

vt
from

(51)] and relying on m large to allow crude upper bounding, we see that

γL

ηvt

E
(
rvt
γ |Ht

)

� Lmax
{
0, (1 − γ )

} [from (60)] + 10Le−m/(2L2) [from (66)]
+ 10Le−d1γmζ(vt )/L

2 [from (69)]
(74)

+ (
2 + e−m/(2L2)) 2nLγ 2/i∑

κ=10L

(
eL1/2

κ1/2

)d0γmζ(vt ) [from (66) and (69)]

+ 6 [from (69)] + 100L exp
{
−d2m

L2

}
[from (71)]

+
2nLγ 2/i∑
κ=80L+2

(
e−d3m(κ/L)1/4 +

(
eL1/4

κ1/4

)d4γmζ(vt )
)

[from (72) and (73)].
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We first observe that if n
vt

< 10
γ 2 then the summations κ = 10L, . . . ,2nLγ 2/vt etc.

above are empty. For larger n/vt we can therefore assume that γm(n/vt )
1/2 ≥ m

which implies [see (62)] that γmζ(vt ) ≥ m/2 and then we can assume that

(75)
2nLγ 2/vt∑
κ=10L

(
eL1/2

κ1/2

)d0γmζ(vt ) ≤ 1

1000
and

2nLγ 2/vt∑
κ=80L+1

(
eL1/4

κ1/4

)d4γmζ(vt ) ≤ 1

1000
.

Plugging these estimates into (74) and making some simplifications, we ob-
tain (53).

Going back to (52), we have

γ 3L

ηvt

E
(2svt

γ

mi

∣∣∣Ht

)

≤ Lmax
{
0, (1 − γ )

}
+ 200Le−m/(2L2) + 100Le−d1γmζ(vt )/L

2

+ (
2 + e−m/(2L2)) 2nLγ 2/vt∑

κ=10L

2κ

L

(
eL1/2

κ1/2

)d0γmζ(vt )

+ 12 + 104L exp
{
−d2m

L2

}

+
2nLγ 2/vt∑
κ=80L+2

2κ

L

(
e−d3m(κ/L)1/4 +

(
eL1/4

κ1/4

)d4γmζ(vt )
)
.

Making similar estimates to what we did for (75) gives us (54).
We obtain (55) from (P5), (66), (69), (72) and (73). Indeed, if J vt ,κ

γ �= ∅ then

from its definition we must have vt ≤ 2Lγ 2n
κ−1 . Together with vt ≤ n/5 we obtain

that ζ(vt ) ≥ κ1/2

2L1/2γ
. Thus, in this case,

(76)
(

eL1/2

κ1/2

)d0γmζ(vt ) ≤
(

eL1/2

(log logn)2

)d0m(log logn)2/2L1/2

= o

(
1

log10 n

)
.

This deals with the probabilities in (66) and (69). For (69) we rely m large to show
that e−d3m(κ/L)1/4 = o(1/ log10 n). Equation (72) is dealt with in a similar manner
to (66). Here we have ( eL1/4

κ1/4 )d4γmζ(vt ) which is the square root of (76).

Case 2: n/5 ≤ vt ≤ n(1 − 3L3

m
):

The upper bound on vt implies that

mζ(vt ) ≥ L3.
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Using the same definitions of rvt ,κ,l
γ , l = 1,2,3 as above:∑

κ≥1

E
(
rvt ,κ,1
γ |Ht

)

≤ ∑
κ≥1

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2

∫ (1− 1
L

)m

ηj=0

ηm−1
j e−ηj

(m − 1)! dηj

≤ ∑
κ≥1

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2 e−m/(2L2) from Lemma 2.1(e)

≤ ηvt

γ

(
n

vt

)1/2
e−m/(2L2)

≤ 51/2ηvt

γ
e−m/(2L2),

∑
κ≥1

E
(
rvt ,κ,2
γ |Ht

)

�
∑
κ≥1

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2

∫ (1+1/L)m

ηj=(1−1/L)m

ηm−1
j e−ηj

(m − 1)! Pr
(
dn(j) ≥ �vt

γ |ηj

)
dηj

�
∑
κ≥1

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2

×
∫ (1+1/L)m

ηj=(1−1/L)m

ηm−1
j e−ηj

(m − 1)! ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, κ ≤ 3,

exp
{
−d5γmζ(vt )

L2

}
, 4 ≤ κ ≤ 10L,(

e(L/κ)1/2)d6γmζ(vt ), κ > 10L

≤ ∑
κ≥1

ηvt

γL

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, κ ≤ 3,

4e−d5γL, 4 ≤ κ ≤ 10L,(
eL1/2

κ1/2

)d6γL3

, κ > 10L,

∑
κ≥1

E
(
rvt ,κ,3
γ |Ht

)

≤ ∑
κ≥1

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2

∫ ∞
ηj=(1+1/L)m

ηm−1
j e−ηj

(m − 1)!

≤ ∑
κ≥1

∑
j∈J

vt ,κ
γ

ηvt

2(vt j)1/2 e−m/(3L2) from Lemma 2.1(d)
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≤ ηvt

γ
e−m/(3L2)

(
n

vt

)1/2

≤ 51/2ηvt

γ
e−m/(3L2).

The above upper bounds are small enough to give the lemma in this case, without
trouble. �

We are now in a position to prove (20). We confirmed the second part of the
statement (20) above, using (55), so only the first part remains. The first part fol-
lows immediately from Lemma 3.11 and the following, by addition:

LEMMA 3.16.

E(ρt1vt+1≥vt |Ht) ≤ 21ηvt

mL
+ L3

m2 .

PROOF. We consider cases.
Case 1: n1 ≤ vt ≤ n(1 − 3L3

m
): Then,

E(ρt1vt+1≥vt |Ht) ≤ I1 + I2 + I3 + I4,

where

I1 =
∫ 5/4

γ=1/8
E

(
ρt1vt+1≥vt |γ ∗

vt
= γ

)
d Pr

(
γ ∗
vt

≤ γ
)

≤
∫ 5/4

γ=1/8

(
2 × 83

mL
× ηvt ×

(
7L

8
+ 13 + 100Le−c2γL

))
d Pr

(
γ ∗
vt

≤ γ
)

by Remark 3.14, Lemma 3.15(77)

≤ 1000ηvt

m

∫ 5/4

γ=1/8
d Pr

(
γ ∗
vt

≤ γ
)

≤ ηvt e
−c1m from (35),

I2 =
∫ 10,000

γ=5/4

(
2

mγ 3L
× ηvt × (

13 + 100Le−c2γL))
d Pr

(
γ ∗
vt

≤ γ
)

(78)

≤ 20ηvt

mL
,

I3 =
∫ ∞
γ=10,000

(
2

mγ 3L
× ηvt × (

13 + 100Le−c2γL))
d Pr

(
γ ∗
vt

≤ γ
)

≤ 27ηvt

1015Lm

∫ ∞
γ=100

γ −cm dγ from (36)(79)
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= 27ηvt

1015Lm
× 1

102(cm−1)(cm − 1)
,

I4 =
∫ 1/8

γ=0
E

(
ρt1vt+1≥vt |γ ∗

vt
= γ

)
d Pr

(
γ ∗
vt

≤ γ
)

(80)
≤ e−d0m

1/2
.

To obtain the term e−d0m
1/2

in (80) we use (33) and (34) to obtain

max
{
γ ∈ [0,1/8] : γ −2 Pr

(
γ ∗ ≤ γ

)}
≤ max

{
γ ∈ [0,1/8] : (

γ 1/2−4/(c1m
2)e1−γ 1/2)c1m

2}
+ max

{
γ ∈ [0,1/8] : mγ −2 min

{
e−c1mγ 1/2

, e−c1/γ
1/2}}

≤ (
84/(c1m

2)−1/2e1−1/81/2)c1m
2 + m2e−c1m

1/2
.

The first case of the lemma now follows from (77), (78), (79) and (80).
Case 2: vt > n(1 − 3L3

m
):

We observe first that n ≤ vt (1 + 4L3

m
). Then we let Z = dn(vt ) − m be the num-

ber of right neighbors of vt . Furthermore,

E(Z|Ht) �
n∑

j=vt+1

wi

Wj

�
vt (1+ 4L3

m
)∑

j=vt+1

ηvt

2(vt j)1/2

(81)

� ηvt

((
1 + 4L3

m

)1/2
− 1

)
≤ ηvt

4L3

m
.

Case 2a: ηvt ≥ 1/L1/2.
We use (81) and Lemma 2.2(d) to prove

(82) Pr
(
Z ≥ ηvt

L

∣∣∣Ht

)
≤ e−d1ηvt L ≤ e−d1L

1/2
.

Then we can write

E(ρt1vt+1≥vt |Ht) ≤
(

1 + 4L3

m

)
× e−d1L

1/2 + 2ηvt

Lm
≤ 3ηvt

Lm
.

Explanation: ρt will be at most (1 + 4L3

m
) if the unlikely event in (82) occurs.

Failing this, the chance that ρt > 1 is at most 2Z
m

≤ 2ηvt

Lm
.

Case 2b: ηvt < 1/L1/2.
It follows from (81) that E(Z|Ht) � 4L5/2/m. It then follows from Lem-

ma 2.2(d) that

Pr
(
Z ≥ L3

3m

∣∣∣Ht

)
≤ e−d2L

1/2
.
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We then have

E(ρt1vt+1≥vt |Ht) ≤
(

1 + 4L3

m

)
× e−d2L

1/2 + 2L3

3m2 ≤ L3

3m2 . �

Part 5. We now prove (21). To do this, we will obtain a recurrence for
E(ηvt+1 |Ht), and, at the end, obtain the bound 4m by averaging over the possi-
ble histories Ht .

We begin by writing

(83) E(ηvt+1 |Ht) = E(ηvt+11vt+1<vt |Ht) + E(ηvt+11vt+1>vt |Ht).

We consider each term in (83) separately. For the first term, since

ηvt+11vt+1<vt ≤ max
{
ηl : 1 ≤ l < vt , l ∈ NL(vt )

}
1vt+1<vt

≤ max
{
ηl : 1 ≤ l < vt , l ∈ NL(vt )

}
,

we have that

E(ηvt+11vt+1<vt |Ht)

≤ E
(
max

{
ηl : 1 ≤ l < vt , l ∈ NL(vt )

}|Ht

)
=

∫ ∞
η=0

Pr
(
max

{
ηl : 1 ≤ l < vt , l ∈ NL(vt )

} ≥ η|Ht

)
dη

=
∫ ∞
η=0

Pr
(∃1 ≤ l < vt , l ∈ NL(vt ) : ηl ≥ η|Ht

)
dη

≤
∫ ∞
η=0

vt−1∑
l=1

Pr
(
l ∈ NL(vt ) and ηl ≥ η|Ht

)
dη

�
∫ ∞
η=0

vt−1∑
l=1

wl

Wvt

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! dηl dη(84)

�
vt−1∑
l=1

∫ ∞
η=0

∫ ∞
ηl=η

ηl

2m(lvt )1/2

ηm−1
l e−ηl

(m − 1)! dηl dη

� 2m + (
1 + o(1)

) ∫ ∞
η=2m

∫ ∞
ηl=η

ηm
l e−ηl

(m − 1)! dηl dη

� 2m +
∫ ∞
η=2m

4e−3η/10 dη from Lemma 2.1(c)

� 2m + 20e−3m/5

≤ 3m.

We now bound the second term of (83). We consider two cases, according to
properties of the history Ht (which determines vt and ηvt ).
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Case 1: Ht is such that vt ≤ (1 − 1
ω1/2 )n.

In this case, we have that

E(ηvt+11vt+1>vt |Ht)

≤ E
(
max

{
ηl : vt < l ≤ n, vt+1 ∈ NL(l), dn(l) ≥ �

vt

γ ∗
vt

}
1vt+1>vt |Ht

)
≤ E

(
max

{
ηl : vt < l ≤ n, vt+1 ∈ NL(l), dn(l) ≥ �

vt

γ ∗
vt

}|Ht

)
.

So we have that

E(ηvt+11vt+1>vt |Ht)

≤ E
(
max

{
ηl : vt < l ≤ n, vt+1 ∈ NL(l), dn(l) ≥ �

vt

γ ∗
vt

}|Ht

)
=

∫ ∞
η=0

Pr
(
max

{
ηl : vt < l ≤ n, vt ∈ NL(l), dn(l) ≥ �

vt

γ ∗
vt

} ≥ η|Ht

)
dη

(85)
=

∫ ∞
η=0

Pr
(∃vt < l ≤ n, vt ∈ NL(l) : ηl ≥ η, dn(l) ≥ �

vt

γ ∗
vt
|Ht

)
dη

≤
n∑

l=vt+1

∫ ∞
η=0

Pr
((

vt ∈ NL(l)
) ∧ (ηl ≥ η) ∧ (

dn(l) ≥ �
vt

γ ∗
vt

)|Ht, ηl

)
dη

�
n∑

l=vt+1

ηvt

2(lvt )1/2

∫ ∞
η=0

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) ≥ �

vt

γ ∗
vt
|Ht, ηl

)
dηldη.

Recall that in the final two lines, vt and ηvt are not random variables, but are the
actual values of these random variables in the history Ht , so this is a deterministic
upper bound on E(ηvt+11vt+1>vt |Ht).

We split the sum in the RHS of (85) into E1 + E2 + E3 + E4 according to the
ranges of l and η, and bound each separately. The first part consists of

E1 =
n∑

l=vt+1

ηvt 1l≤4m2vt /(γ ∗
vt

)2

2(lvt )1/2

×
∫ 2m

η=0

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) ≥ �

vt

γ ∗
vt
|Ht, ηl

)
dηl dη.

Even though vt and ηvt are constants (determined by Ht ), we caution that γ ∗
vt

and so also E1 are random variables.
Observe that we have that∫ ∞

ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) ≥ �

vt

γ ∗
vt
|Ht, ηl

)
dηl ≤

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! dηl ≤ 1,

which allows us to write

(86) E11γ ∗
vt

≤5/4 ≤ 1γ ∗
vt

≤5/4

n∑
l=vt+1

2mηvt 1l≤4m2vt /(γ ∗
vt

)2

2(lvt )1/2 ≤ 5m2ηvt

γ ∗
vt

1γ ∗
vt

≤5/4.
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We will use this expression when we take the expectation over γ ∗
vt

≤ 5/4.
We also have that

(87)
∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
((

dn(l) ≥ �
vt

γ ∗
) ∧ (

γ ∗
vt

> 5/4
)|Ht, ηl

)
dηl ≤ I1 + I2 + I3,

where

I1 =
∫ 7m/8

ηl=η

ηm−1
l e−ηl

(m − 1)! dηl ≤ m

(
7

8
e1/8

)m

≤ e−d0m from Lemma 2.1(a),

I2 =
∫ ∞
ηl=9m/8

ηm−1
l e−ηl

(m − 1)! dηl ≤ e−d1m from Lemma 2.1(d),

I3 =
∫ 9m/8

ηl=7m/8

ηm−1
l e−ηl

(m − 1)! Pr
((

dn(l) − m ≥ γ ∗
vt

mζ(vt )
)

(88)

∧ (
γ ∗
vt

> 5/4
)|Ht, ηl

)
dηl

≤
∫ 9m/8

ηl=7m/8

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) − m ≥ 5

4
mζ(vt )

∣∣∣Ht, ηl

)
dηl.

We bound I3 with two subcases:
Subcase 1a: ζ(l) > 0.

I3 ≤
∫ 9m/8

ηl=7m/8

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) − m ≥ 10ζ(vt )

9ζ(l)
ηlζ(l)

∣∣∣Ht, ηl

)
dηl

[
since m ≥ 8

9
ηl

]

≤
∫ 9m/8

ηl=7m/8

ηm−1
l e−ηl

(m − 1)!

⎧⎪⎪⎨
⎪⎪⎩

exp
{
−(10ζ(vt ) − 9ζ(l))2ηl

81ζ(l)

}
, 10ζ(vt ) ≤ 18ζ(l),

exp
{
−(10ζ(vt ) − 9ζ(l))ηl

27

}
, 10ζ(vt ) > 18ζ(l)

(89) [
from (2) and 
 ≥ vt + 1

]

≤
∫ 9m/8

ηl=7m/8

ηm−1
l e−ηl

(m − 1)!

⎧⎪⎪⎨
⎪⎪⎩

exp
{
−7mζ(vt )

648

}
, 10ζ(vt ) ≤ 18ζ(l),

exp
{
−7mζ(vt )

216

}
, 10ζ(vt ) > 18ζ(l)

≤ e−mζ(vt )/100.

Subcase 1b: ζ(l) ≤ 0.
In this case, we go back to (89) and use ζ+(l) in place of ζ(l), see (10).

(90) I3 ≤
∫ 9m/8

ηl=7m/8

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) − m ≥ 10ζ(vt )

9ζ+(l)
ηlζ

+(l)
∣∣∣Ht, ηl

)
dηl.
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For ε as in (46), we see that ζ(l) ≤ 0 implies that l ≥ n(1 − ε)2. In which case

(91) ζ+(l) ≤ 2ε

1 − ε
≤ 3ε.

On the other hand, vt ≤ 1 − 1
ω1/2 implies that

(92) ζ(vt ) ≥ 1

ω1/2 − 2ε ≥ 1

2ω1/2 .

Comparing (91) and (92), we see that ζ(vt ) � ζ+(l). From this and (3) with β =
10ζ(vt )
9ζ+(l)

≥ 1
6εω1/2 we deduce that

Pr
(
dn(l) − m ≥ 10ζ(vt )

9ζ+(l)
ηlζ

+(l)
∣∣∣Ht, ηl

)
≤ (

6εω1/2)10ηlζ(vt )

≤ (
6εω1/2)35mζ(vt )/36

.

Plugging this estimate into (90) we obtain something stronger than (90), finishing
Subcase 1b and giving that I3 ≤ e−mζ(vt )/100 in all cases.

Having bounded the three terms in (87), we then have that

E11γ ∗
vt

>5/4 ≤
n∑

l=vt+1

ηvt 1l≤4m2vt /(γ ∗
vt

)2

(lvt )1/2

(
e−d2m + e−mζ(vt )/100)

≤ ηvt

(
e−d2m

5m

γ ∗
vt

+ e−mζ(vt )/100

vt
1/2

n∑
l=vt+1

1

l1/2

)

≤ ηvt

(
4me−d2m + e−mζ(vt )/100 · (n + 1)1/2 − (vt + 1)1/2

vt
1/2

)
(93)

≤ ηvt

(
4me−d2m + 2ζ(vt )e

−mζ(vt )/100)
≤ ηvt

(
4me−d2m + 200

m

)
.

It follows from (86) and (93) that

E1 ≤ ηvt

(
5m2

γ ∗
vt

1γ ∗
vt

≤5/4 +
(

4me−d2m + 200

m

))
.

We continue with the other parts of the RHS of (85):

E2 =
n∑

l=vt+1

ηvt 1l≤4m2vt /(γ ∗
vt

)2

2(lvt )1/2

×
∫ ∞
η=2m

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) ≥ �

vt

γ ∗ |Ht, ηl

)
dηl dη
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≤
4m2vt /(γ

∗
vt

)2∑
l=vt+1

ηvt

2(lvt )1/2

∫ ∞
η=2m

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! dηl dη

≤
4m2vt /(γ

∗
vt

)2∑
l=vt+1

ηvt

2(lvt )1/2

∫ ∞
η=2m

(
eη/m

eη/m

)m

dη from Lemma 2.1(c)(94)

≤
4m2vt /(γ

∗
vt

)2∑
l=vt+1

ηvt

2(lvt )1/2 × m

∫ ∞
x=2

e−3mx/10 dx

=
4m2vt /(γ

∗
vt

)2∑
l=vt+1

10ηvt e
−3m/5

6(lvt )1/2

≤ e−d3mηvt

γ ∗
vt

.

Note that we absorbed an O(m) factor into the expression in (95). This is valid
because m is large. We continue to do this where possible:

E3 =
n∑

l=vt+1

ηvt 1l>4m2vt /(γ ∗
vt

)2

2(lvt )1/2

×
∫ γ ∗

vt
(l/vt )

1/2

η=0

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) ≥ �

vt

γ ∗
vt
|Ht

)
dηl dη

≤
n∑

l=4m2vt /(γ ∗
vt

)2

ηvt

2(lvt )1/2

∫ γ ∗
vt

(l/vt )
1/2

η=0

∫ ∞
ηl=γ ∗

vt
(l/vt )1/2

ηm−1
l e−ηl

(m − 1)! dηl dη

≤
n∑

l=4m2vt /(γ ∗
vt

)2

ηvt

2(lvt )1/2

×
∫ γ ∗

vt
(l/vt )

1/2

η=0
exp

{
−3γ ∗

vt
(l/vt )

1/2

10

}
dη from Lemma 2.1(c)

≤
n∑

l=4m2vt /(γ ∗
vt

)2

ηvt

2(lvt )1/2 exp
{
−3γ ∗

vt
(l/vt )

1/2

10

}

≤ ηvt γ
∗
vt

vt

∫ n

x=4m2vt /(γ ∗
vt

)2
exp

{
−3γ ∗

vt
(x/vt )

1/2

10

}
dx

≤ ηvt γ
∗
vt

vt

× 8vt

(γ ∗
vt

)2

∫ ∞
y=m

ye−3y/5 dy
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= ηvt e
−d4m

γ ∗
vt

,

E4 =
n∑

l=i

ηvt 1l>4m2vt /(γ ∗
vt

)2

2(lvt )1/2

×
∫ ∞
η=γ ∗

vt
(l/vt )1/2

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! Pr
(
dn(l) ≥ �

vt

γ ∗
vt
|Ht, ηl

)
dηl dη

≤
n∑

l=4m2vt /(γ ∗
vt

)2

ηvt

2(lvt )1/2

∫ ∞
η=γ ∗

vt
(l/vt )1/2

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! dηl dη

≤
n∑

l=4m2vt /(γ ∗
vt

)2

ηvt

2(lvt )1/2

∫ ∞
η=γ ∗

vt
(l/vt )1/2

e−3η/10 dη

≤
n∑

l=4m2vt /(γ ∗
vt

)2

5ηvt

3(lvt )1/2 exp
{
−3γ ∗

vt
(l/vt )

1/2

10

}

≤ 2ηvt

i1/2

∫ ∞
x=4m2vt /(γ ∗

vt
)2

x−1/2 exp
{
−3γ ∗

vt
(x/j)1/2

10

}
dx

= 4ηvt

γ ∗
vt

∫ ∞
y=2m

e−3y/10 dy

≤ ηvt e
−d5m

γ ∗
vt

.

Thus,

E(ηvt+11vt+1>vt |Ht)

≤ E1 + E2 + E3 + E4

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
5m2

γ ∗
vt

+ e−d6m

γ ∗
vt

)
ηvt ≤ 7m2

γ ∗
vt

ηvt , γ ∗
vt

≤ 5/4,

(
e−d7m

γ ∗
vt

+ 200

m

)
ηvt , γ ∗

vt
> 5/4.

We now integrate with respect to the value of γ ∗
vt

. [Note that γ ∗
vt

is actually a
discrete random variable, so that Pr(γ ∗

vt
≤ γ |Ht) is discontinuous, but one can

view this as a Riemann–Stieltjes integral. We write Pr†(γ ∗
vt

≤ γ ) below in place
of Pr(γ ∗

vt
≤ γ |Ht).] Using Lemma 3.12, we see that if m is large then integrating
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over γ ,

E(ηvt+11vt+1>vt |Ht)

≤ ηvt

(∫ 5/4

γ=0

7m2

γ
d Pr†(

γ ∗
vt

≤ γ
)

+
∫ ∞
γ=5/4

e−d7m

γ
d Pr†(

γ ∗
vt

≤ γ
) + 200

m

)

≤ ηvt

(∫ 5/4

γ=0

7m2

γ
d Pr†(

γ ∗
vt

≤ γ
) + e−d8m + 200

m

)

= ηvt

(∫ 1/m

γ=0

7m2

γ
d Pr†(

γ ∗
vt

≤ γ
)

+
∫ 5/4

γ=1/m1/2

7m2

γ
d Pr†(

γ ∗
vt

≤ γ
) + e−d8m + 200

m

)

≤ ηvt

([
7m2

γ
Pr†(

γ ∗
vt

≤ γ
)]1/m

0
+

∫ 1/m1/2

γ=0

7m2

γ 2 Pr†(
γ ∗
vt

≤ γ
)
dγ

(95)

+
∫ 5/4

γ=1/m

7m2

γ
d Pr†(

γ ∗
vt

≤ γ
) + e−d8m + 200

m

)

≤ ηvt

(
e−d9m

1/2 +
∫ 1/m

γ=0

7m2

γ 2 Pr†(
γ ∗
vt

≤ γ
)
dγ

+
∫ 5/4

γ=1/m

7m3

γ
d Pr†(

γ ∗
vt

≤ γ
) + e−d8m + 200

m

)
from (34)

≤ ηvt

(
e−d9m

1/2 + e−d10m
1/2 + 7m4 Pr†

(
1

m
≤ γ ∗

vt
≤ 5/4

)

+ e−d8m + 200

m

)

≤ ηvt

(
e−d9m

1/4 + e−d10m
1/2 + 7m4e−c1m + e−d8m + 200

m

)
from (35)

≤ ηvt

(
e−d12m

1/4 + 200

m

)
.

Combining (84) and (95) via (83), we have that

E(ηvt+1 |Ht) ≤ 3m +
(
e−cm1/4 + 200

m

)
ηvt .(96)

This completes Case 1. Case 2 is much shorter.
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Case 2: Ht is such that vt > (1 − 1
ω1/2 )n.

E(ηvt+1 |Ht)�
n∑

l=vt+1

ηvt

2(lvt )1/2

∫ ∞
η=0

∫ ∞
ηl=η

ηm−1
l e−ηl

(m − 1)! dηl dη

∼
n∑

l=vt+1

ηvt

2(lvt )1/2

∫ ∞
η=0

e−η
m∑

i=1

ηm−i

(m − i)! dη

∼
n∑

l=vt+1

mηvt

2(lvt )1/2

� mηvt

(n + 1)1/2 − (vt + 1)1/2

(vt + 1)1/2

≤ mηvt

ω1/2 .

This completes Case 2. In particular, for sufficiently large n we see that for any
typical Ht (i.e., in both Cases 1 and 2), the bound from (96) is valid. Putting

Et = E ∩ {Ht is typical}
we deduce from (96) that

E(ηvt+1 |Et ) ≤ 3m +
(
e−cm1/4 + 200

m

)
E(ηvt |Et )(97)

� 3m +
(
e−cm1/4 + 200

m

)
E(ηvt |Et−1).(98)

We obtain (98) from (97) because Et ⊆ Et−1 and so

E(ηvt |Et−1) ≥ E(ηvt |Et )Pr(Et |Et−1) ∼ E(ηvt |Et ).

Because m is large, (21) will follow by induction once we have shown that

(99) E(ηv1) ≤ 3m.

Here we will use the assumption that v1 is chosen exactly according to the station-
ary distribution for a simple random walk on Gn. In particular, we have

Pr(ηv1 ≥ η) ≤ E

(
n∑

i=1

dn(i)

2mn
1ηv1≥η

)
,

and Lemma 2.2 implies that if η ≥ 2m

E
((

dn(i) − m
)
1ηv1≥η

)
�

(
n

i

)1/2 ∫ ∞
η=2m

ηme−η

(m − 1)! dη �
(

n

i

)1/2
× 4me−η/2.

Furthermore,

E(m1ηvt ≥η) = mPr(ηv1 ≥ η) ≤ 5me−η/2.
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So, if η ≥ 2m, then

Pr(ηv1 ≥ η)� 9e−η/2

2n1/2

n∑
i=1

1

i1/2 ≤ 10e−η/2.

Therefore,

E(ηv1) ≤ 2m +
∫ ∞
η=2m

Pr(ηv1 ≥ η)dη ≤ 2m + 10
∫ ∞
η=2m

e−η/2 dη

and (99) follows.

3.2. Exiting the main loop with SUCCESS. In summary, it follows that w.h.p.
DCA reaches Step 7 in O(ω logn) time. Also, at this time vT ≤ log1/49 n. This
follows from Lemma 2.2(g), (h) and (P4). Furthermore, this justifies using n1 as a
lower bound on vertices visited during the main loop. The random walk of Step 8
will w.h.p. take place on [log1/9 n]. This follows from Lemma 2.2(j). Vertex 1 will
be in the same component as vt in the subgraph of Gn induced by vertices of
degree at least n1/2

log1/20 n
. This is because there is a path from vT to vertex 1 through

vertices in [vT ] only and furthermore it follows from Lemma 2.2(i) that w.h.p.
every vertex on this path has degree at least n1/2

log1/20 n
. The expected time to visit

all vertices of a graph with ν vertices is O(ν3); see, for example, Aleliunas, Karp,
Lipton, Lovász and Rackoff [1]. Consequently, vertex 1 will be reached in a further
O((log1/9 n)3) = o(logn) steps w.h.p., completing the proof of Theorem 1.2. �

4. Concluding remarks. We have described an algorithm that finds a distin-
guished vertex quickly and which is local in a strong sense. There are some natural
questions that are left unanswered:

• Can the running time be improved from O(ω logn) to O(logn)?
• Can we get polylog expected running time for DCA if m = 2?
• Can we extend the analysis to other more general models of web graphs, for

example, Cooper and Frieze [7]. In this case, we would not be able to use the
model described in Section 2.

As a final observation, the algorithm DCA could be used to find the vertex of
largest degree: if we replace Step 8 by “Do the random walk for logn steps and
output the vertex of largest degree encountered” then w.h.p. this will produce a
vertex of highest degree. This is because logn will be enough time to visit all
vertices v ≤ log1/39 n, where the maximum degree vertex lies.

APPENDIX A: PROOFS OF PROPERTIES (P1)–(P5)

In this section we give proofs of (P1)–(P5), which we list here for convenience.
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(P1) For ϒk,
 = ϒk − ϒ
, we have

(100) ϒk,
 ∈ (k − 
)

[
1 ± Lθ

1/2
k,


3(k − 
)1/2

]

for (k, 
) = (mn + 1,0) or

k − 


m
∈ {ω,ω + 1, . . . , n} and k − l ≥

⎧⎪⎪⎨
⎪⎪⎩

1, l = 0,

log2 n, k ≥ log30 n, l > 0,

log1/300 n, 0 < l < k < log30 n.

Here n0 = λ2
0n

ω log2 n
, λ0 = 1

log20/m n
,

θk,
 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log k, ω ≤ l < k ≤ log30 n, l > 1,

k1/2, ω ≤ k ≤ n2/5, l = 0,

(k − 
)1/2, log30 n < k ≤ n2/5,

(k − 
)3/2 logn

n1/2 , n2/5 < k ≤ n0,

n

ω3/2 log2 n
, n0 < k.

(P2) Wi ∈ ( i
n
)1/2[1 ± Lθ

1/2
i

i1/2 ] ∼ ( i
n
)1/2 for ω ≤ i ≤ n.

(P3) wi ∼ ηi

2m(in)1/2 for ω ≤ i ≤ n.

(P4) λ0 ≤ ηi ≤ 40m log logn for i ∈ [log30 n].
(P5) ηi ≤ logn for i ∈ [n].

Proof of (P1). Applying Lemma 2.1(d), (e) to (1) for i ≥ 1 we see that

Pr
(¬(P1)

)
≤ 2

n∑
k=ω

exp
{
−L2θk,0

27

}
+ 2

n∑
k−
=log1/300 n

exp
{
−L2θk,


27

}

+ 2 exp
{
−L2θmn+1,0

27

}

= 2
n2/5∑
k=ω

exp
{
−L2k1/2

27

}
+ 2

n0∑
k=n2/5+1

exp
{
−L2k3/2 logn

27n1/2

}

+ 2
n+1∑

k=n0+1

exp
{
− L2n

27ω3/2 log2 n

}
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+ 2
log30 n∑

k−
=log1/300 n

exp
{
−L2 log k

27

}
+ 2

n2/5∑
k−
=log30 n

exp
{
−L2(k − 
)1/2

27

}

+ 2
n0∑

k−
=n2/5+1

exp
{
−L2(k − 
)3/2 logn

27n1/2

}

+ 2
n∑

k−
=n0+1

exp
{
− L2n

27ω3/2 log2 n

}

= o(1).

Proof of (P2). For this we use

Wi =
(

ϒmi

ϒmn+1

)1/2
.

Then,

Wi /∈
(

i

n

)1/2[
1 ± Lθ

1/2
i

i1/2

]

implies that either

ϒmn+1 /∈ (mn + 1)

[
1 ± Lθ

1/2
i

3(mn + 1)1/2

]
or ϒmi /∈ mi

[
1 ± Lθ

1/2
i

3i1/2

]
.

These events are ruled out w.h.p. by (P1).

Proof of (P3). We use (1 + x)1/2 ≤ 1 + x
2 for 0 ≤ |x| ≤ 1. Then,

wi =
(

ϒmi

ϒmn+1

)1/2
−

(
ϒm(i−1)

ϒmn+1

)1/2

=
(

ϒm(i−1)

ϒmn+1

)1/2((
1 + ηi

ϒm(i−1)

)1/2
− 1

)

≤
(m(i − 1)(1 + Lθ

1/2
i

3m1/2(i−1)1/2 ))
1/2

((mn + 1)(1 − Lθ
1/2
i

3(mn+1)1/2 ))1/2

ηi

2m(i − 1)(1 − Lθ
1/2
i

3m1/2(i−1)1/2 )

≤ ηi

2m(in)1/2

(
1 + 2Lθ

1/2
i

m1/2i1/2

)
.

A similar calculation gives

wi ≥ ηi

2m(in)1/2

(
1 − 2Lθ

1/2
i

m1/2i1/2

)
.
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Proof of (P4). The upper bound follows from Lemma 2.1(c). For the lower
bound, we observe by (7) that the expected number of i ≤ log30 n with ηi ≤ λ0 is
at most log30 n × λm

0 = o(1).

Proof of (P5). This follows from Lemma 2.1(c).

APPENDIX B: PROOF OF LEMMA 2.2

We restate the lemma for convenience.

LEMMA B.1.

(a) If E occurs then d̄n − m ∈ [ηiζ(i), ηiζ
+(i)].

(b) Pr(dn(i) − m ≤ (1 − α)mζ(j)) ≤ e−α2ηiζ(i)/2 for 0 ≤ α ≤ 1.
(c) Pr(dn(i) − m ≥ (1 + α)mζ+(j)) ≤ e−α2ηiζ

+(i)/3 for 0 ≤ α ≤ 1.
(d) Pr(dn(i) − m ≥ βmζ+(j)) ≤ (e/β)βηiζ

+(i) for β ≥ 2.
(e) W.h.p. ηi ≥ λ0 and ω ≤ i ≤ n1/2 implies that dn(i) ∼ ηi(

n
i
)1/2.

(f) W.h.p. ω ≤ i ≤ log30 n implies that dn(i) ∼ ηi(
n
i
)1/2.

(g) W.h.p. ω ≤ i ≤ n1/2 implies that dn(i)� max{1, ηi}(n
i
)1/2.

(h) W.h.p. n1/2 ≤ i ≤ n implies dn(i) ≤ n1/3.
(i) W.h.p. 1 ≤ i ≤ log1/49 n implies that dn(i) ≥ n1/2

log1/20 n
.

(j) W.h.p. dn(i) ≥ n

log1/20 n
implies i ≤ log1/9 n.

PROOF. (a) Suppose that we fix the values for W1,W2, . . . ,Wn. Then the de-
gree dn(i) of vertex i can be expressed

dn(i) = m +
n∑

j=i

m∑
k=1

ζj,k,

where the ζj,k are independent Bernouilli random variables such that

Pr(ζj,k = 1) ∈
[

wi

Wj

,
wi

Wj−1

]
.

So, putting

d̄n(i) = E
(
dn(i)

)
we have

mwi

n∑
j=i

1

Wj

≤ d̄n(i) − m ≤ mwi

n∑
j=i−1

1

Wj

.

Now assuming that (P2), we have for ω ≤ i ≤ n,

n∑
j=i

1

Wj

≥
n∑

j=i

(
n

j

)1/2(
1 − 2Lθ

1/2
j

j1/2

)
.
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But
n∑

j=ω

θ
1/2
j

j
≤

n2/5∑
j=ω

1

j3/4 +
n0∑

j=n2/5+1

log1/2 n

n1/4j1/4 +
n∑

j=n0+1

n1/2

jω3/4 logn

≤ 4n1/10 + 4n1/2

3ω3/4 logn
+ 3n1/2 log logn

ω3/4 logn

≤ 4n1/2 log logn

ω3/4 logn
.

It follows that

d̄n(i) ≥ m + mwin
1/2

(
2
(
n1/2 − (i + 1)1/2) − 9Ln1/2 log logn

ω3/4 logn

)

≥ m + ηi

(
n

i

)1/2(
1 −

(
i

n

)1/2
− 1

n1/2i1/2 − 9L log logn

2ω3/4 logn

)
,

after using (P3).
A similar calculation gives a similar upper bound for d̄n(i) and this proves that

i ≥ ω implies that d̄n(i) ∈ m + ηi

(
n

i

)1/2[
1 −

(
i

n

)1/2
± 5L log logn

ω3/4 logn

]
.

It follows from (2) and (4) that

Pr
(
dn(i) − m ≤ (1 − α)ηiζ(i)|ηi

) ≤ exp
{
− L2ηin

1/2

4i1/2ω1/2

}
,

Pr
(
dn(i) − m ≥ (1 + α)ηiζ(i)|ηi

) ≤ exp
{
− L2ηin

1/2

4i1/2ω1/2

}
.

(a) For ηi ≥ λ0 and ω ≤ i ≤ n0 we have

exp
{
− L2ηin

1/2

4i1/2ω1/2

}
≤ e−L2 logn/4.

(b) This follows from (a) and (4).
(c) This follows from (a) and (2).
(d) This follows from (a) and (3).
(e) This follows from (a), (b), (c) and (12).
(f) This follows from (e) and (P4).
(g) This follows from (c) and (12).
(h) The degree of i ≥ n1/2 is stochastically dominated by the degree of n1/2.

Also, the probability that dn(n
1/2) exceeds the stated upper bound is o(1/n). So

(h) follows from (g).
(i) For ω ≤ i ≤ log1/49 n, this follows from (f) and (P4). For 1 ≤ i < ω we can

use (b) with ηi ≥ λ0 and α = n−1/10.
(j) This follows from (e), (f) and (g) and (P4). �
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