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CONVEX DUALITY FOR STOCHASTIC SINGULAR
CONTROL PROBLEMS

BY PETER BANK! AND HELENA KAUPPILA
Technische Universitdt Berlin and Columbia University

We develop a general theory of convex duality for certain singular control
problems, taking the abstract results by Kramkov and Schachermayer [Ann.
Appl. Probab. 9 (1999) 904-950] for optimal expected utility from nonnega-
tive random variables to the level of optimal expected utility from increasing,
adapted controls. The main contributions are the formulation of a suitable du-
ality framework, the identification of the problem’s dual functional as well as
the full duality for the primal and dual value functions and their optimizers.
The scope of our results is illustrated by an irreversible investment problem
and the Hindy—Huang—Kreps utility maximization problem for incomplete
financial markets.

1. Introduction. A typical stochastic optimal control problem is formulated
by specifying how the dynamics of a given system can be influenced by a con-
troller to optimize some performance criterion. In classical stochastic control the
controller directly affects the coefficients which govern the system’s dynamics, but
has no direct influence on the system’s state itself. In singular control problems,
the controller can, by contrast, directly change the state of the controlled system at
any time in a fully scalable way, from infinitesimal to large jumps.

Ever since the seminal work on such singular problems by Bene§, Shepp and
Witsenhausen [6], the most commonly used approach is to consider Markovian
systems and use dynamic programming to derive and then solve the problem’s
Hamilton—Jacobi—Bellman equation which comes in the form of a free-boundary
value problem. Alternatively, one can resort to versions of Pontryagin’s maximum
principle as first discussed for stochastic singular control by Cadenillas and Hauss-
mann [9]. In either case, the derived mathematical concepts do not immediately
solve the problem, but merely help to describe some of the solution’s properties.
A key challenge is then to work out this description as neatly as possible. Clearly,
this task is made easier when, as we shall assume, control can only be exerted in
one direction. Problems of this type include the monotone follower of, for example,
Karatzas and Shreve [17], some irreversible investment problems as discussed in
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Section 4.1, but also optimal investment and consumption problems with so-called
Hindy—Huang—Kreps utilities which we cover in Section 4.2.

All of these problems can be cast as maximization problems for functionals U
of the form

U(C)=E /0 U.(C)dpr,

where C is from the class ¥ of nonnegative, nondecreasing, left-continuous,
adapted controls, U;(C;) describes the predictable utility obtained at time ¢ > 0
from the cumulative control C; and where the optional random measure wu de-
scribes the weights assigned to utilities at different times.

It is the purpose of this paper to develop a theory of convex duality for singular
control problems with target functionals of the above type. Indeed, under natural
assumptions on U and w, our first main Theorem 3.1 establishes the Legendre—
Fenchel duality of the functional U. For this, we introduce the class Z of optional
projections of nonnegative, right-continuous, nonincreasing processes as dual vari-
ables with the pairing

(C,D)=F D,dc,
[0,00)

and we show that the Legendre—Fenchel transform

V(D)= sup {U(C)—(C,D)}
U(C)<o0

coincides with the functional

o0
V(D)= inf E[ ViG)du,.
8€9(D) 0

where Z(D) is a certain class of optional processes associated with D € & and
where V; denotes the classical Legendre—Fenchel transform of U;. Moreover, we
show that the minimizer for V(D) < oo can be constructed in terms of a certain en-

velope process of the form D= ELSZ U'(CP)du|.Z1)>0 with CP € € which
is characterized uniquely by

D, < D, for all > 0,

113

with “="holding true whenever CP is increasing. We thus obtain a full character-
ization of the maximizers for

o0 o0
U(C) — (C. D) =Ef Un(Co)dpe — Ef D, dC,,
0 0

a general form, for instance, of irreversible investment problems as described in
Section 4.1.
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For the treatment of constrained problems such as the Hindy—Huang—Kreps op-
timal investment and consumption problem of Section 4.2 we formulate the ab-
stract utility maximization problem with value function

u(x)= sup U(C),
Ce%(x)
where, for x > 0, controls are constrained to lie in ¥’ (x) C ¥ This is assumed to be
a convex class of feasible controls for which a polar relation with sets Z(y) C &,
y > 0, can be established. This leads to the dual problems with value
v(y) = Dé%f(y) V(D)
for y > 0.

The celebrated papers by Kramkov and Schachermayer [21, 22] develop con-
vex duality for similarly abstract utility maximization problems where utility is
obtained at a single point in time, which in our notation amounts to the choice of
w1 as a Dirac measure at some point 7" > 0. This leads to the obvious challenge
to develop a similar convex duality theory for our singular framework. This chal-
lenge is taken up by our second main result, Theorem 3.2. While our proof of this
result follows to some extent the very useful blue-print laid out by Kramkov and
Schachermayer [21], there are a number of novel obstacles to overcome along the
way. These are a consequence of our central constraint of nondecreasing adapted
controls which in the setting of Kramkov and Schachermayer corresponds to the
considerably simpler restriction to nonnegative .%7-measurable random variables.
This also distinguishes our work from Karatzas and Zitkovié [18] and also [24]
who consider utility from consumption at nonnegative rates, that is, without the
monotonicity constraint of our singular control set.

Specifically, a first key difference is in the structure of the Legendre—Fenchel
transform of the utility functional under consideration: For Kramkov and Schacher-
mayer’s C — EU7 (Cr) the dual functional is simply D +— EVy (D7) whereas the
dual V of our functional U involves an infimum. As a consequence, the connection
between the dual value V(D) and the dual variable D is not as straight forward as
in Kramkov and Schachermayer [21] but has to be described by our envelope pro-
cess D. Also, the process CP which is conjugate to D in the Legendre—Fenchel
duality cannot be directly written in terms of D, by contrast to Kramkov and
Schachermayer [21] where one merely has to invert U’T (C? ) = Dy. In addition,
the dual problem is not strictly convex anymore, a property which is needed for
some of the arguments in Kramkov and Schachermayer [21]. As a remedy, we
introduce a subclass of Z(y) which is sufficiently large to include the solutions
to the dual problem, but small enough to ensure strict convexity of V on this sub-
class. This allows us to establish the continuous dependence of certain solutions
to the dual problem on the Lagrange parameter y. The final challenge is then to
show that the corresponding candidate solutions for the primal problem are indeed
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feasible for the larger class of all dual variables Z(y). Here, we have to resort
to the general Legendre—Fenchel duality between U and V developed in our first
main result. Finally, the notion of reasonable asymptotic elasticity identified by
Kramkov and Schachermayer [21] as a key assumption for general well-posedness
of utility maximization problems has to be adapted to account for the possibly
very different utility functions U; at different time points ¢ > 0. In fact, in line
with, for example, Bouchard and Pham [8] and Zitkovié [27] we do allow for
time- and scenario-dependent utility functions and a stochastic clock which allows
us to include the finite time horizon case in the infinite time horizon formulation
in a simple manner; see the end of Section 4.2.

The paper is organized as follows. In Section 2, we introduce the class of con-
trols % and the space of dual variables & along with the assumptions and definition
of our utility functional U and its dual V. Section 3 is devoted to the presentation
of our main duality results, Theorems 3.1 and 3.2. Section 4 illustrates these find-
ings by a general irreversible investment problem and by the optimal consumption
problem of Hindy, Huang, and Kreps. Section 5 contains the proofs our main the-
orems. Appendix A gives the construction of our envelope process D. Appendix B
discusses Zitkovié’s [28] notion of convex compactness in the new context of our
class of controls % and provides a minimax theorem compatible with this general-
ized notion of compactness.

2. Controls and their performance measure. We start by describing the
control set ¢ and its dual & as well as our target utility functional U along with a
dual functional V. As usual, we let (2, %, I, P) denote throughout a filtered prob-
ability space describing a controller’s beliefs P about future events .% along with
his information flow F = (.%;);>0, a complete, right-continuous filtration where
Fo is generated by the P-null sets.

2.1. Controls and their duals. The set of conceivable controls will be given
by the class ¥ of predictable processes C : Q2 x [0, c0] — [0, c0] with non-
decreasing, left-continuous paths starting from Co = 0. As usual exercising control
incurs costs which will be described by dual variables. A convenient set of such
dual variables will turn out to be the class & of all processes D : 2 x [0, oo] —
[0, oo] with Dy, = 0 which are optional projections D = D of some nonnegative,
right-continuous process D with nonincreasing paths. Indeed, for any C € ¢ and
D € & we can define the pairing

(1) (C,D)=E D;dC; € [0, o0].

[0,00)
Observe that in the above integral we assume that dC does not charge the interval
(inf{r > 0 : C; = oo}, oo] and the integration with respect to dC is carried out
taking into account a point mass of size Cq4 £ lim, 10C at 0; we also let 0- 00 20
should an integrand be zero where the integrator puts an infinite point mass.
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Finally, we note that 4 can be endowed with the metric which for two .% ®
A([0, co])-measurable processes C I c? assigns the distance

2) distg(C!, C?) éE/OOO|h(c}) —h(C?)|dps,

where 4 is any homeomorphism [—oo, co] — [0, 1] and where w is any finite
atomless measure with full support on [0, 00) such as the one introduced in As-
sumption 2.1 below. For a metric on &, we choose

3) distz(D',D*)2  sup  E|r(D}) —h(D?)|.

stopping times 7'

With respect to these metrics the pairing (1) is lower-semicontinuous in each of its
factors; see Lemma B.1.

2.2. Utilities and their conjugates. The performance of controls will be mea-
sured by the utilities they provide at each time, weighted with the controller’s time
preferences.

ASSUMPTION 2.1. The controller’s time preferences are described by an op-
tional random measure u on [0, co) without atoms, full support and finite expected
total mass Eu ([0, 00)) < o0.

The controller’s utility is specified by a mapping

U:Qx]0,00) x[0,00) — [0, 00),
((U, tv C) = Ul‘(w’ C)

with the following properties:

1. For any (w,t) € Q2 x [0, 00), U;(w, -) is continuous, strictly concave and
strictly increasing from U;(w, 0) = 0 to U;(w, 00) £ lim 4o U (0, ¢) € [0, o<].
Moreover, U; (w, -) is continuously differentiable and satisfies the Inada conditions

U/(w,0) 21imU/(w,c) =00 and U, (w,o0) = lim U](w, ¢) = 0.
cl0 ctoo
2. For any ¢ > 0, (w, t) = U;(w, c) is predictable with

o0
E/ Ui(c)duy < o0.
0

3. The asymptotic elasticity of U is uniformly less than one in the sense
that there is a constant y € (0,1) and a predictable process C¥ > 0 with
Efooo U,(C))du; < oo such that for any (w, ) € Q x [0, 00) we have

cUl(w, ¢)

0.9 y <1 for all ¢ > C) (w).

“)
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A control will provide an expected utility of the form
0
) UO2E [ UCduelo, ol Ce?.
0

Note that in our setting, contrary to what is more commonly assumed, utility
U;(Cy) at each time ¢ > 0 is obtained from the cumulative control C; rather than the
current control rate. This turns the optimization problem to be introduced shortly
into a singular stochastic control problem. We refer to the illustrations of Section 4
for the motivation and scope of such utility functionals.

REMARK 2.2. Let us briefly comment on our preference Assumption 2.1:

1. The controller’s time preferences include the usual exponential discounting
w(dt) £ e dt for some 8 > 0. For such atomless measures of time preference,
it clearly makes no difference whether we evaluate our utility function U of (5)
with left- or with right-continuous controls C. This is not the case any more if
we allow for point masses of u at certain stopping times 7 when it may make
sense to exercise some “precautionary” control right before 7 and, as a reaction
to new information revealed at time 7', to exercise some further control at this
time. In other words, in such a situation, controls which are neither left- nor right-
continuous would be appropriate. On a technical level, u has to be atomless for
our construction of certain envelopes of stochastic processes in Lemma A.1 below.
These envelopes are a key tool in our approach, but their construction in a setting
where 1 has atoms is technically challenging and beyond the scope of this paper.

2. The first item concerning U requires that time- and scenario-wise this is a
standard utility function, except for the requirement that utility at zero vanishes.
In fact, this comes without loss of generality if E fooo |U;(0)| duy < oo since then
we can pass to U £ U — U(0) without changing the utility maximization prob-
lem for (5). The cases of log-utility or power utilities with negative exponent are
not covered by this assumption. Observe, though, that because controls are non-
decreasing the behavior of U; around 0 is only important initially.

3. The predictability requirement in the second item is essentially without loss
of generality since we could work with the predictable projection of any non-
predictable field (U (c), ¢ € [0, 00)) (see [20]) without changing (5). This holds
because controls are predictable and because time preferences are optional ran-
dom measures without atoms.

4. It is well known from the work of Kramkov and Schachermayer [21] that
asymptotic elasticity less than one is necessary to avoid ill-posed utility maxi-
mization problems. Their Lemma 6.3 shows that for any (w, t) €  x [0, 00), con-
dition (4) is equivalent to

(6) Ui (w, rc) < AV U (w, ©) forallA > 1 and all ¢ > C,y(a)).

5. Our results will also allow us to treat the case of a possibly finite time horizon
given by some stopping time; see Remark 4.1 below.
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One of the main results in this paper is the convex duality for the functional
U of (5) which will be established in Theorem 3.1 below. For this, we need to
introduce a dual functional V on Z. This functional will be specified in terms of
the classical Legendre—Fenchel transform V of U:

(7 Vi(w,d) & sup {U(w,c)—cd},  d>0.

0<c<oo

It is well known that under the conditions in Assumption 2.1, V;(w, -) is a strictly
convex and decreasing function on (0, 0co) with

Vi (®,0) £1lim V; (0, d) = Uy (w, 00),
d|0
Vi(w, 00) = lim Vi(w,d) = U;(w,0) = 0.
dtoo
Moreover, V;(w, -) is continuously differentiable on (0, co) and satisfies the Inada

conditions

V/(0,0) £1imV/(w,d) = —oc and V/(w,00) £ lim V/(w,d) =0.
dlo dtoo

The asymptotic elasticity conditions (4) and (6) can be cast in terms of V as
(8) 1 =y)(=V'(d)d <yV(d) forall0 <d < 8

and

) V((I—E)d)<(1—8)%‘/(d) forall0<e <1,0<d <§8”

with the same y € (0, 1) as before and 87 £ U’(C?); see Lemma 6.3 in Kramkov
and Schachermayer [21]. Finally, along with U also V is predictable and we have
the following conjugacy relations:

1. In addition to (7), we also have
(10) Ui(w,c) = inf {Vi(w,d)+cd}, c>0.
0<d<oo
2. The supremum in (7) is attained at ¢ = —V/(w, d).
3. The infimum in (10) is attained at d = U/ (w, ¢).

In fact, the identities in items 2 and 3 are equivalent.
Now we can introduce the dual functional

o0
(D V(D)% inf B[ Vi(8)du €[0,00l, De,
seg(D) Jo
with
. o0
(12) .@(D)é{SZOOptionalzo(f 5dM>SD},

where we used the notation ° X for the optional projection of any . ® #([0, oc])-
measurable process X > 0.



492 P. BANK AND H. KAUPPILA
3. Main results.

3.1. Legendre—Fenchel duality for utility functionals. For the statement of our
duality theorem for U and V of (5) and (11), we have to introduce for any dual
process D € 7 a special envelope process D of the form

o 00 v .
(13) D= (/ U'(cP) du> for some CP € &
t t>0

which satisfies P-almost surely

(14) l3t <Dy for any ¢ > 0, with “=""if dCtD > 0.

Here, we follow the convention that, for C € €, we write dC; > 0 iff ¢ is a point of
increase for C in the sense that C; < Cy4; for any s > 0. We refer to Lemma A.1
for existence and uniqueness up to indistinguishability of such an envelope pro-
cess.

Observe that on {D < oo}, D has a compensator with paths that are absolutely
continuous with respect to w. We choose

(15) D2 _u'(ch
to denote the corresponding density which is then uniquely determined up to in-

distinguishability because so is the process C D ¢ % with (13) and (14). Observe,
that, conversely, we can then write

CP =-v'(-D)
by the conjugacy relations between U and V recalled above.
We now can state our first main result as follows:
THEOREM 3.1. Under Assumption 2.1, the following assertions hold:

1. The functionals U of (5) and V of (11) are conjugate to each other in the
sense that we have

(16) U(C) = o int [V(D)+(C,D)}  foranyCe¥€

and

(17) V(D)= sup {U(C)—(C,D)}  forany D e 2.
U(C)<oo

2. If finite, the infimum in (16) is attained for precisely those D € 9 whose
(joint) envelope process D with (13) and (14) is given by

(18) D=-U'C).
3. If finite, the supremum in (17) is attained exactly for
(19) C=—V'(-D)e%,

where D is the envelope process of D characterized by (13) and (14) with D & D.
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3.2. Convex duality for an abstract utility maximization problem. Let us now
formulate an abstract utility maximization problem in a similar way as in the ap-
proach for utility from terminal wealth by Kramkov and Schachermayer [21]. To
this end, we consider € (1) C € and Z(1) C £ which are polar with respect to
each other in the sense that:

1. For any C € ¥, we have C € € (1) iff (C, D) <1 forany D € 2(1).
2. Forany D € &, we have D € 2(1) iff (C, D) <1 for any C € ¥(1).

To avoid trivialities, we also assume:

3. €(1) D {1} where 1 € € denotes the control with 1o(w) =0 and 1,(w) = 1,
t € (0,00], we Q.

4. P(1) # {0} where 0 € Z is the trivial cost process given by 0,(w) £0, t €
[0, 00], w € Q.

The set % (1) will play the role of the budget set for wealth x = 1 and Z(1)
can be viewed as a set of state price deflators D € & (induced, e.g., by a financial
market model) for which, in particular, EDy = (1, D) <y = 1.

To formulate the abstract utility maximization problem and its dual, let us put

€ (x) 2 x€ () forx >0 and 2(y) £y2(1) for y > 0.

It is clear that €' (x) and Z(y) inherit the polar relation from %¢’(1) and Z(1) for
any x,y > (0. By this relation it is also obvious that these sets are convex and
solid [e.g., with C € €' (x), any C € € with C < C is also contained in € (x)].
Moreover, the lower-semicontinuity of the pairing (C, D), see Lemma B.1, ensures
that €' (x) and Z(y) are closed with respect to convergence in the metrics (2)
and (3), respectively.

Finally, let us introduce the value functions

(20) u(x) = sup U(C), x>0,
Ce%(x)

and

21 £ inf V(D), 0.

(21) v(y) pint (D) y>

THEOREM 3.2. Suppose that Assumption 2.1 holds true and assume that
u(x) < oo for some x > 0. Then we have:

1. The value functions u of (20) and v of (21) are real-valued and conjugate to
each other in the sense that

(22) u(x) = img{v(y) +xy}  foranyx >0
y>

and

(23) v(y) = sup{u(x) — xy} forany y > 0.

x>0
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Moreover, u and v are continuously differentiable on (0, 00) and satisfy the Inada
conditions

(24) u’(0) = oo, u'(00) =0, v (0) = —o0, v/ (c0) =0.

In addition, w and v are, respectively, strictly concave and strictly convex, and
y attains the infimum in (22) iff x attains the supremum in (23) which in turn is
equivalent to both

(25) vx)=y and V(y)=-—x.

2. The infimum in the dual problem (21) is attained for any y > 0. All the min-
imizers D of (21) have the same envelope process D € Z(y) with (13) and (14),
and, for x given by (25),

(26) C* = —V'(—D’) e €(x)

attains the supremum in the primal problem (20).
3. The supremum in the primal problem (20) is attained for any x > 0 at a
unique C* € € (x) and, for y given by (25),

27) DY =-U'(CY)
vields via (13) a DY e 2 (y) which attains the infimum in the dual problem (21).

4. Illustrations. Let us illustrate the usefulness of our Theorems 3.1 and 3.2
by showing how they can be brought to bear on the classical problems of irre-
versible investment and of optimal consumption and investment.

4.1. Irreversible investment. Consider the manager of a firm who can decide at
any point in time ¢ > 0 whether or not to expand the currently installed capacity of
production C;. Assuming that installed capacity cannot be reduced in a profitable
way amounts to the assumption that C € ¢ as introduced in Section 2.1. Let us
suppose that the revenues RtC from the firm’s production are an increasing function
of installed capacity and exhibit decreasing returns to scale. Plainly, it is perfectly
reasonable to assume that revenues also depend on the product’s price fluctuations
and possibly other stochastically evolving market conditions as described by a
random scenario w € 2. It thus makes sense to assume that, at time ¢ > 0, the
revenues from a capacity expansion policy C € ¥ are given as

th(a)) = U (w, Ci(w))

for some function U : 2 x [0, 00) x [0, 00) — [0, c0) as considered in Assump-
tion 2.1. The manager discounts future cash flows at some rate r = (r;);>0, an
optional process with fé |relds < 00, t > 0, which we assume to be such that the
random measure

uidn) 2 e hrsds gy

has finite expected mass Eu (0, o0o0) < oo.
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The expected total discounted revenue is then given by
00 . 00
IE/ e‘fOrsdsR,Cdt:Ej U (CHdu, =0(C),
0 0

exactly as considered in (5). If we now assume that the (discounted) cost of ex-
panding production capacity by one unit at time 7 > 0 is described by a right-
continuous, class (D) supermartingale D; > 0 with Doy = 0 we are led to consider
the manager’s optimization problem:

oo A
(28) Maximize U(C) — IE/ D;dC; subjectto C€%.
0

This kind of singular control problem is of great interest in Economics. We refer
to Alvarez [1] for a more extensive account of the pertaining literature.

Recalling the Doob—Meyer decomposition D = M — A into a uniformly inte-
grable martingale M and a predictable right-continuous, increasing process A with
Ag =0 and Ay, = M, we find that D= %(My — A) is contained in & and we
can write the expected costs of the capacity expansion plan C as

w A A
IE/ D;dC, =(C, D), Ce®?.
0

By Theorem 3.1, the value of problem (28) is thus given by the dual functional
V(Aﬁ) of (17) and, if it is finite, we obtain that the optimal capacity expansion plan
is C with (19). In particular, an explicit solution to (28) can be given whenever
the envelope process D associated with D can be computed explicitly. We refer
to Chiarolla and Ferrari [10], Ferrari [13], Bank and Riedel [5], Bank and Baum-
garten [2] for such examples.

4.2. Hindy—Huang—Kreps utility. Following the seminal work of Merton [23],
the problem of optimal investment and consumption in continuous-time is mostly
studied for utility functions which depend on the current consumption rate. This
modeling approach was shown by Hindy, Huang, and Kreps (see [14—16]) to fail to
exhibit the economically desirable property of intertemporal substitution: In Mer-
ton’s setting, slight shifts in the timing of consumption plans may lead to signifi-
cant changes in the utility associated with these plans. As a remedy, these authors
proposed to consider functionals where utility is obtained from a level of satisfac-
tion, that is, a weighted average of past consumption such as

t t ~
thé[ e~ liPudugl,,  1>0,
0

where C € € describes the cumulative consumption and where the locally
Lebesgue-integrable optional process B > 0 measures the decay rate of satisfac-
tion. The utility functional to be maximized is then

U(C) 2 Ef sz,
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where U : [0,00) — R is a strictly concave and increasing utility function of
class C! satisfying the Inada conditions U’ (0) = o0 and U’ (00) = 0; u, as be-
fore, describes an agent’s time-preferences and could, for instance, be specified as
p(dt) = e~ dt with § > 0.

As usual, the set of consumption plans at the agent’s disposal is determined
by his investment opportunities. Assuming the mild assumption of no free lunch
with vanishing risk we obtain from the celebrated Fundamental Theorem of Asset
Pricing of Delbaen and Schachermayer [11, 12] in great generality that this set can
be described in the form

(29) (g(x):{ée%:IE thC,SxforaHZle},

[0,00)

where x denotes the available initial capital and Z° denotes a nonempty set of local
martingale deflators, that is, of P-supermartingales Z > 0 with Zp =1 such that
for any wealth process V of an admissible investment strategy the process ZV is
a [P-supermartingale.

The agent’s optimization problem is then to

~ ~ OO ~ ~ ~ ~
(30) Maximize U(C) £ IE/ U(YTC) du; subjectto C €€ (x).
0

To transform this into the type of utility maximization treated by our main results
in Section 3, consider the bijection

31) %BC‘HCé(ftefgﬁ"d“dés) et
0 >0
and let
Ui, c) 2 T (e o Pu@dug) (4 1 ¢) e Q x [0, 00) x [0, 00).
Then U is as required by Assumption 2.1 and the utility functional U of (5) satisfies
U(C) =0(0).
Let us also put
€ (1) 2 {C € € : C with (31) is contained in %Z(l)}
and consider its polar
2(1)£{De P:(C,D) < 1forall C € ¢(1)}.

This latter set is different from {0}. Indeed, take any local martingale defla-
tor Z € & and let Z = MA be its multiplicative Doob—Meyer decomposition
into a local martingale M and a predictable decreasing process A > 0 with
Aog = 1. Let (T");=1.2,.. be a localizing sequence of stopping times such that
each of the stopped supermartingales Z7" (and, thus, each of the stopped lo-
cal martingales M T"), n=1,2,..., 1is of class (D). Observe then that D,” £
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4 . . . . .
(MynAp)e™JoPudu Lo, 7n)(2), t > 0, is right-continuous with decreasing paths and
so its optional projection D" = °D" is contained in &. Moreover,

(32  (C,D")=E (Mg Ae™hoPudt)y 4c, = Z,dC, <1

[0,77) [0,T7)
for any C € ¥'(1). Hence, D" € (1) foreachn =1, 2, .... In fact, letting n 1 0o
in (32) we find in conjunction with (29):

¢(1)={Ce%:(C,D)<l1forany D € Z(1)}.

Therefore, ¢’ (1) and Z(1) exhibit the polar relations assumed in the beginning of
Section 3.2.

It thus follows that we have the convex duality results of Theorem 3.2 for
the Hindy—Huang—Kreps-utility maximization problem (30). This generalizes the
treatment of the complete market case in [5] to incomplete market models driven
by general semimartingales and thus also complements the dynamic program-
ming approach for exponential Levy models with constant relative risk aversion of
Benth, Karlsen and Reikvam [7]. In particular, the present paper develops convex
duality for optimal consumption with Hindy—Huang—Kreps preferences at a level
of generality similar to Kramkov and Schachermayer [21] for utility from terminal
wealth and to Karatzas and Zitkovi¢ [18] for utility from the rate of consumption.

REMARK 4.1. It may be worthwhile to observe that our results also cover
the finite time horizon case where u has support [0, T'] for some possibly finite
stopping time 7 > 0. Indeed, in that case we can instead consider ji(dt) £ u(dt) +
l(T,oo)(t)e_’ dt, U;(C) £ Lo, 71U (¢) + 1(1,00) (1)) U*(c), where U* : [0, 00) — R
is any deterministic utility function which has asymptotic elasticity less than one,
satisfies the Inada conditions and is bounded from above. The budget set will be
described by

2(1) 2Dl : D e 2(1)}
and
€(1) 2 {Ce%:(C,D)<1forall De (1))
={C e¥: (Cinr)iz0 € €(1)}.

Then U, ji satisfy Assumption 2.1 if U does. Moreover, (1), Z(1) are polar
to each other as requested in Section 3.2 and the consumption plans C,C € ¢
maximizing

T o | _
Ef UCyduy, respectively IE/ U(Cy)duy
0 0

subject to C € ¢’ (x), respectively, C € % (x) are actually the same up to time T
(when all the optimal C jump to 4-00).
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5. Proofs of the main results.

5.1. Proof of Theorem 3.1. Theorem 3.1 follows readily from Lemmas 5.2
and 5.3 below. These results rely heavily on the following observation.

LEMMA 5.1.  Suppose Assumption 2.1 holds true. For D € 9 let D denote its
envelope with (13) and (14) and, recalling (15), consider 8P e 9(D) of (12) with
(33) cPe_v (P ew.

Then 8P attains the infimum in the definition (11) of V(D) and, if V(D) < oo, sP
is in fact the unique minimizer in 2(D), up to modifications on a P @ w-null set.

PROOF. It is immediate from (14) that indeed 2 e .@(D). Uniqueness of
minimizers for (11) is due to the strict convexity of V. It thus remains to prove
optimality of § D for (11). For this it suffices to show that, forn =1, 2, ...,

(34) E/ Vo (8)du > E/ DYdw  forany 8 € 2(D),

where

(35)  Vuld)= sup {U(c) —cd}=

0<c<n

Un) —nd, 0<d<U'(n),
V(d), d>U'(n).

Indeed, it is readily checked that V,, > 0 is continuously differentiable, decreasing
and convex on (0, oo) with V,, 7 V as n 1 co. Hence, due to monotone integration,
optimality of 8 in (11) will follow by letting 1 1 oo in (34).

To prove this inequality, we first observe that, by definition and convexity of V,,,

U(n) = V,(0) >V, (8P) — v/ (87)8P.

By Assumption 2.1, U (n) is P ® u-integrable. Since V,,, ° and —V, are nonneg-
ative, it thus follows that also
(36) —V!(8P)8P = (CP An)s? e L' (P ® ),
where the identity is due to the definition (33) of C D

Again by convexity of V,,, we have
(B7) V(8 — Vu(8P) =V (8P)(8 — 8P) = (CP An)sP — (CP An)s.
So to obtain (34), we have to show that the integral of the right-hand side of (37)
with respect to P ® i is nonnegative. To this end, note that

o0
E/ DAn)sdu = <CD/\n,0/ 8d,u>§(CD/\n,D>,

where the last estimate is immediate from § € Z(D). When repeating this calcu-
lation for §° instead of § this estimate turns into an identity because of (14) and
{d(CP An)>0}cC{dCP >0}
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In conjunction with (36), it follows that indeed

E/ /\n8du<]Ef D AR)SP du < oo.

This completes our proof. [J

LEMMA 5.2. Suppose Assumption 2.1 holds true. Then the conjugacy re-
lation (16) holds. Moreover, if[U(é) < 00, the infimum in (16) is attained for
D € 2 if and only if its envelope process with (13) and (14) is actually D=
o[y (C)dpu.

PROOF. To prove “<” in (16), take D € Z with V(D) < oo and (é, D) < o0.
By Lemma 5.1, there is §° € 2(D) such that V(D) = E [§° V (§?) d 1. Then

[© olNN ~ o0 ~
E/ caDdM=<c,0/ 5Ddu>§ (C, D) < o0
0 .
Thus, we can integrate the inequality
0<U(C) <V(P)+CsP

with respect to P ® u to deduce that indeed
0<U(C) = E/ U(C)d,u<IE/ v (s?) du+E/ CsPdu

< V(D) + (C, D).

For “>” in (16) we can assume U(C’) = Efooo U(é) du < oo without loss of
generality. Let N (é) and note that because U is concave in ¢ with U (0) =
we have

(38) 0<C8=CUC)<UC)e L' P® ).
Moreover, D £ © [ §du € P satisfies

N o ~ 0 A~ 0 N
V(D)gE/ V(a)dM:Ef U(C)du+E/ Cldu < oo,
0 0 0

From Lemma 5.1, it now follows that in fact V(ﬁ) =E [f;° V(S) du < 0o. We thus
can integrate the identity

UC)=v(@) -Cé
with respect to P ® u to obtain
~ A w A A A ~ A
U(C)=V(D) —E/ Cédu=V(D)—-(C, D).
0

This gives “>" in (16).
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The preceding argument already establishes the “if”-part of the present lemma.
For the “only if”’-part assume that D € & satisfies U(C) =V(D)+ (C D) < oo.
Clearly, we have V(D) < oo then. Thus, by Lemma 5.1, there is 8 € .@(D) with
V(D) =E [° V(8P) du < co. Moreover, the choice of D entails E [;° CsPau <

(é‘ , D) < co. Now, integrating
(39) U(C) <V (8P)+ CsP
with respect to P ® u, we find

(40)  UC) <V(D)+ <c O/OO P du> <V(D)+ (C, D) =U(C) < .

So, equality must hold true in all the above estimates. It follows that equality holds
P ® w-almost everywhere in (39) Wthh readily implies sP=v’ (C ) P® w-almost
everywhere, and, thus, °[*° U’ (C)dp =° [*°8Pdu < D. Moreover, (40) then

also yields (C,° [ U'(C)du) = (C, D), that is, in fact, °[* U'(C)du = D on
the set {dC > 0}. By Lemma 5.1, this identifies ° /> U'(C)du as the envelope
process D of D with (13) and (14). This completes our proof. [l

LEMMA 5.3. Suppose Assumption 2.1 holds. Then the conjugacy relation (17)
holds. Moreover, if V(D) < oo, the supremum in (17) is attained exactly for C =

CP where CP is defined in Lemma 5.1.

PROOF. Let us first apply Lemma 5.1 to obtain that there is § 280 e (D)
with V(D) =E [° V() du.

To see that “>" holds in (17), take C € € with U(C) = Efo UC)du < oo.
Without loss of generality, we can assume V(D) < oo and (C, D) < oc. Then all
terms in the inequality

V() =U(C) -

are P ® p-integrable. Upon integration, we get V(ﬁ) >U(C) — (C, Of_oogd,u).
This implies the desired estimate since °( f Sd n) < D.

For the proof of “<” in (17) consider C = -V (3) € ¢ where § is chosen as
above. If V(D) 00, we consider C"2 C An e {(U<ool,n=1,2,...,in (17)
to deduce

U(c") —(c", D)= E/OOO(U(é An)—(C AU (C An))du

OO A
=E/ Vo) du,
0

where V;, is as in (35). Since V,, /' V, it follows by monotone integration that as
n 1 oo the above expression converges to E fooo V(§)du = V(D) and we obtain

“<”1in (17) in case V(ﬁ) =
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For the remaining case where E fooo V(S) du < 00, let us first show that [U(é )=
E [;°U ) d u < oo. Indeed, by Assumption 2.1 the asymptotic elasticity of U
is uniformly less than one in the sense that cU’(c) < yU(c) for ¢ > C? where
y € [0, 1). Thus, we have

L'PouwsvE)=UC)-CUC)=1-p)UC)=0 on{C>C"}.

Since by assumption Efooo U(C?Y)du < oo, it thus follows that U(é) eL'P®
1), that is, U(C) < oo.
Now, recalling the estimate (38), we deduce from U(C ) < oo that also (C D)
E fo Cdd W < 0o The “<”-claim therefore follows upon integration of V() =
U (C )— C$ with respect to P® . This also establishes the “if’-part of our lemma.
The “only if”-part follows immediately from this and the strict concavity of U on
{U < oo} which implies the uniqueness of the optimizer C. O

5.2. Proof of Theorem 3.2. The proof of Theorem 3.2 is prepared by the fol-
lowing Lemmas 5.4-5.9.

LEMMA 5.4. Under the assumptions of Theorem 3.2, we have

0
(41) v(y)= inf E V() du, y >0,
s€9(y) 0
where
(42) 90m= U 2.
DeZ(y)

Moreover, for any y > 0 with v(y) < oo the infimum in (41) is attained at a unique
8 e Q(y) for which, in addition, Cra_y (87) is contained in €. Finally, v is
strictly convex on {v < 00}.

PROOF. Identity (41) is immediate from (42) and Lemma 5.1.

Now assume v(y) < oo and consider a minimizing sequence 6" € Z(y) for (41).
By Lemma Al.1 of Delbaen and Schachermayer [11], there is a sequence §"
of convex combinations of §",8"%!, ... which converges P ® w-almost every-
where to an optional §” taking values in [0, oc]. In fact, §7 € Z(y) because
DY 29[ 8Ydu € P(y), which holds since by Fatou’s lemma

00 oo
(C,Dy):E/O C(Syd,uglin}linfE/O C8"dpu

w ~
= lirr}linf<C, "f 5" a’,u> <xy

for any C € € (x), x > 0. Here the last inequality follows because 8" € Z(y) by
convexity of this set. Another application of Fatou’s lemma reveals

Ef V(87) du<11m1nfE/ 8” d,u<11m1nfE/ V(") dp =v(y)
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by convexity of V and our choice of (6"),=12,... as a minimizing sequence. This
proves existence of a minimizer for (41). Uniqueness up to a P ® w-null set fol-
lows from the strict convexity of V. In fact, applying Lemma 5.1 for D £ D”
reveals that §7 has a predictable P ® p-modification which is unique up to indis-
tinguishability if we require, in addition, that —V’(8”) € €. Strict convexity of v
on {v < oo} now follows from strict convexity and strict monotonicity of V. [

LEMMA 5.5. Under the assumptions of Theorem 3.2, the primal value func-
tion u of (20) is real-valued and conjugate to the dual value function v of (21) in
the sense that (22) and (23) hold true.

PROOF. The primal value function u is, by assumption, finite at some point
x > 0. Its concavity then yields that it is finite and, thus, continuous on all of
(0, 00). Therefore, by classical duality results (cf., e.g., Theorem 12.2 in Rock-
afellar [25]), (22) follows from (23).

Let us first argue that “>" holds in (23). So take C € ¥’ (x) and D € Z(y). Then
(C, D) <xy and, by equation (16) of Theorem 3.1:

U(C) —xy =V(D) +(C, D) —xy < V(D).

Taking the supremum over C € % (x) and the infimum over D € Z(y) in this
relation yields “>" in (23).

To obtain that also “<” holds in (23), we shall employ the Minimax Theo-
rem B.3 from the Appendix with:

e HEC,2{Ce¥:Co<n)wherene{l,2,...},a convexly compact subset
of the space of left-continuous processes with bounded total variation endowed
with the metric disty of (2); see Lemma B.2.

e %2 9(y) which can be viewed as a convex, closed subset of the space of real-
valued right-continuous optional processes endowed with the metric disty of (3)
because EDg = (1, D) < y by assumption on Z(y) = yZ(1); and with

e H(C, D) £ U(C) — (C, D), which is convex (even linear) in D € & = 2(y)
and concave and upper-semicontinuous in C € o/ = %, because, with respect
to the metric disty, U is continuous on %, by dominated convergence and (-, D)
is lower-semicontinuous due to Lemma B.1.

We thus obtain that, forn =1,2, ...,

43 su inf {UC)—(C,D)}= inf sup{U(C)— (C, D)}.
@3 sup inf (U(C)~(C.D)} = inf | sup {U(C)—(C. D)}

Let us next prove that, as n 1 0o, the left side of (43) converges to

sup {u(x) —xy}.

0<x<oo
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Clearly, with 7(C) £ sup ). 21y (C, D) the limit of left side of (43) can be written
as

sup inf {U(C)—7(C)y}= sup sup {U(C) — xy}
Ce% bounded PEZ(Y) 0<x<oo Ce%(x) bounded

= sup {u(x)—xy},
0<x<oo

where the last identity holds because by monotone convergence U(C) =
lim, U(C A n), C € €, so that the utility of any C can be approximated by the
utility of bounded controls.

Now the proof of the present lemma will be accomplished once we have shown
that, as n 1 oo, the right side of (43) tends to a limit which is not smaller than v(y).
To this end, we first observe that

(44) sup {U(C) — (C, D)}=I[~_7l/oo Vn(—b)du forany D € 2(y),
Ce%, 0

where V,, is given by (35). Indeed, because D > D, we have

U(C) — (C. D) <U(C) - (C, D) =E /0 (U(C) - C(=D))d,

where for C € %, the last integrand is not larger than Vn.(—D). This proves “<”
in (44). For “>" we just need to observe that C £ — V,:(—lu)) =—V/(-D)An €%,
will give equality in both of the preceding estimates. .

Due to (44), we can take D" € Z(y) with 0 < §" & —D" such that
E fooo Va(8™")du converges to the limit of the right side of (43) as n 1 co0. By
Lemma Al.1 in [11], there are 8" € conv{s", 8", ...}, n=1,2, ..., which con-
verge P ® p-almost everywhere to some §* > 0. Because all 8” are contalned in
9(y), so are, by convexity of this set, all the §”. In fact, also §* € Z(y) because
D* £ [ §*du e P(y) as by Fatou’s lemma

o 0 o o
(C,D*)=E C8*dp < liminfE Cs"du
0 n 0

w ~
= lirr}linf<C, "/ 8" d,u> <xy
for any C € € (x).
It follows that for N =1,2, ...,

lim inf sup {U(C
n De‘(y)c.ggn{ (©—={C >}

= limE/
n 0
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00 00 - 00
> liminf E / Vn (") djt = lim inf E / V(") dp = E / Vi (5%) dpe
0 0 0

o0

E * >
vnE ), V@) duzv),

where the first estimate and the convergence follow from V,, > Vy 7V for n >
N 1 o0o. The second estimate is due to the convexity of Vi and the third is due to

Fatou’s lemma. The last estimate is immediate from Lemma 5.1 and §* € & (y).
O

LEMMA 5.6. Under the assumptions of Theorem 3.2, v of (21) is real-valued,
strictly convex and strictly decreasing on (0, 00). Moreover, u of (20) is continu-
ously differentiable on (0, 00) with ' (00) =

PROOF. Let us first show that even
45) lim u(x)/x =0.
x1oo

Indeed, since u takes real values by Lemma 5.5, we can find, for € > 0 and x > 0,
a C%% € € (x) such that u(x) < U(C*?) 4 &. Then, by the equivalent formula-
tion (6) of our asymptotic elasticity condition (4),

U(C*®) <x"U(C**/x)  on{C**=>C"}.

Upon integration with respect to P ® © we thus obtain

u(x)<xVE/ Cxe/x)d,u—i-E/ U(C)du+¢

<x"u(l) + E/ U(CY)du +e,
0

where we used that C*¢/x € € (1). Since y € [0, 1), our claim (45) now follows
upon division by x 1 oo.

In conjunction with (45), the duality between u and v established in Lemma 5.5
yields that v(y) < oo for y > 0. By Lemma 5.1, v is thus strictly convex on (0, 00).
This immediately implies that v is strictly decreasing, by classical convex duality
results (e.g., Rockafellar [25]), strict convexity of v implies the differentiability of
its conjugate u on (0, 00). By concavity and monotonicity, 0 < u’(x) < u(x)/x.
So (45) also yields u'(0c0) =0. [

The following lemma is a minor adaptation of the Lemmas 3.6 and 3.7 in
Kramkov and Schachermayer [21].

LEMMA 5.7. Under the assumptions of Theorem 3.2, the minimizers 8 €
P(y) from Lemma 5.4 depend continuously on y > 0 in the sense that the mapping

0,00) 3y (8%, V(8), =V'(8*)8*) e LOP® ) x L'(P® ) x L' (P @ 1)

is continuous.
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PROOF. That the above mapping is indeed defined on all of (0, co) is due to
the finiteness of v on (0, co) established in Lemma 5.6.

We first prove that 8 — 8¥ in LY(P® ) for any y, — y € (0, 00). If 8 does
not converge to 6~ in this sense then there is &€ > 0 such that

limsupP @ u[|87 — 87| > &,8" +8” < 1/e] > ¢,
n

where we recall that (§77),=1,2,... is bounded in L!(P ® i) because

yeee

o 0.¢]
E/ Sy”du:<1,0/ (Sy"d,u,>§yn—>y>0
0 .

by definition of Z(y"). Observe now that, by strict convexity of V, §" = %(Sy" +
87) satisfies

V() = 5 (V) + V()
and, for some sufficiently small n > 0, also
limsupF @ M[v(an) < %(v(ayn) + V() — n] -
Upon integration with respect to P ® w it follows that

hmsupE/ V(§")du < hmsup E/ V(8) 4+ V(8¥))du —n?

1
= limnsup E(V(y”) +v(y) —n*=v(y) -’

where the last identity is due to the continuity of the convex function v. On the
other hand, by the scaling property and convexity of the sets Z(y) = yZ(1), we
have §" € Z(y v y") and therefore, by Lemma 5.4,

o0
v(y) =limv(y v y") < lirrlllinfE/O V(") dp.

This clearly contradicts the preceding inequality and so we must have indeed that
8 —» 87 inLO(P ® ).

Convergence of V(5”7) > 0 in L'(P ® 1) now follows from convergence in
LO(P ® ) and

IE/ V(&) du=v(y )—>V(y) E/ ) du.

Moreover, L' (P ® w)-convergence of (—V'(87)8¥),—1 2. will follow once we
have established the uniform P ® u-integrability of this sequence. Our uniform
asymptotic elasticity condition (8) gives

(46) (1—p)(=V'(8"))8" <pV(8™)  on{8" <57},
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where y € (0, 1) and 87 £ U’(CY). Moreover, we have, with C¥» £ —V’(§),
that

(47) 0< (=V'(8%))8% = C¥U'(CP) <U(C™") < U(CY)

on {87 > 87} = {C¥ < CV}. In conjunction with the already established L' (P ®
p)-convergence of (V(877)),=12,.. and our assumption that U(C?) is P ® u-
integrable, the combination of the estimates (46) and (47) yields the desired uni-
form integrability. [J

We now can use a variant of the argument in Lemma 3.8 of Kramkov and
Schachermayer [21] to deduce the following lemma.

LEMMA 5.8. Under the assumptions of Theorem 3.2, the dual value function
v is continuously differentiable on (0, co) with

48) V(y=E / V()8 dp, v >0,

and v' (0) = —o0, V/(00) = 0. Moreover, u is strictly increasing and strictly con-
cave on (0, 00) with u/'(0) =

PROOF. We first observe that for y > O and A, | 1,

(49) (= V(8" /an)8™),,_; 5. is uniformly P ® u-integbrale.

Indeed, by employing successively the dual asymptotic elasticity estimates
from (8) and (9) and also the monotonicity of V, we get

0 < — \% (8)%}’/)\ )8)%)’ < 1 (a)hny/)\‘ )
14

< ——V((8* A8V /)

14

< L(i)”v(sw A57)
l—y

An
Y

_ ﬁ(i) v E) v v(sY)

An

on {8*Y /A, < 87}. With C* & —V/(§*Y/A,), the complement of this set is
{8*Y /X, > 87} ={C* < C7} and so, on this set,

0< —V/'(8™ /2y)8*Y = U'(C*)C*hy < U(C*)Ay < U(CY Ay

Hence, to obtain our claim (49) it suffices to observe that on either set we find an
upper bound which is uniformly integrable. This is clear for (U(CY)X,)n=1.2.....
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On the other hand, Lemma 5.7 yields in particular the uniform P ® u-integrability
of (V(8*¥))u=1..... and finally V(87) < U(C?) e L'(P ® ).

We now can argue exactly as in Lemma 3.8 of Kramkov and Schachermayer
[21] and pass to the limit A | 1 in

AYy) — © V(A8Y) — V(8
v(Ay) V(y)SE/ (A87) = V( )du
A—1 0 A—1

by monotone convergence and, by uniform integrability, also in

VO —vO) o /0@ V(M) — V(¥ /n) J
A—1 - A—1

>IE/ V(8% /1) gy L1/ du

A—1
to see, respectively, that (v(Ly) — v(¥))/(A — 1) has a limsup not larger and a
liminf not smaller than the right side of (48). The continuity of this expression
established in Lemma 5.7 in conjunction with the convexity of v then implies our
claim.

The strict monotonicity of u now follows from its strict concavity on (0, 0co)
which, in turn, is equivalent to the differentiability of its convex conjugate v on
(0, 00) by classical duality results; see, for example, Theorem 26.3 in Rockafellar
[25]. These same results also yield the equivalence of v/(c0) = 0 and u/(0) =
and the first of these relations is immediate from the fact that v is strictly convex
and decreasing and bounded from below (by 0). Similarly, classical duality yields
the equivalence of v/(0) = —oo and u’(00) = 0, where the last relation was already
established in Lemma 5.6. [J

LEMMA 5.9.  Under the assumptions of Theorem 3.2, C* =& —V'(8%) with y =
u'(x) and 87 as in Lemma 5.4 is the unique control in € (x) that attains u(x) =

U(C*) for x > 0.

PROOF. Uniqueness of a maximizer C* for u(x) is immediate from the strict
concavity of U. Define DY £ 0[%°8Ydu € 2(y) and observe that due to (16) in
Theorem 3.1 we have for any C € € (x):

U(C) <V(D?)+(C, D*) <V(D*) + xy.

By item 3 of Theorem 3.1 and by (48), we have equalities in both of these estimates
when we consider C £ C* = —V/(8”). It thus suffices to prove that C* € € (x),
that is,

(50) (C*, D) <xy for any D € 2(y).
For this, we first note that, for any such D, we have

(51) D*2eD+(1—¢)D” e 2(y) with V(D) < 00,0 <e < 1.
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Indeed, by monotonicity of V,
o0
V(D) < V((1 — &)D") < E/ V((1 - )8") du
0

so that for (51) it suffices to argue that V ((1 — ¢)4”) is P ® u-integrable. To this
end, we use the asymptotic elasticity condition (9) which, in conjunction with the
monotonicity of V, gives

V((1—e)8”) < V(1 —e)(8* A87))
<(1—e)TTV(E AS) =1 —e)T7V(8") v V(87).

Hence, the integrability claim of (51) follows since V (§7) € L' P® w) by choice
of 8Y and V(87) =U(C?) — CYU’(C?) e L'(P ® ) by assumption on C? .

Because of (51), we can apply Theorem 3.1 part 3 to deduce that there is a
unique C¢ € % such that V(D?) = U(C?) — (C?, D?). Moreover, (17) of Theo-
rem 3.1 gives V(D”) > U(C?) — (C?, D”). Recalling the minimality of V(D”) we
thus obtain

0 <V(D?) = V(D*) <(C%, DY — D¥)=¢(C?, D¥ — D).

Therefore,

1
(52) 0=(C% D)=(C% DY) =5
— &

(c*, D),

where the last estimate is immediate from DY < D?/(1 — ¢). Hence, (50) will
follow from letting € |, 0 in (52) once we have established that

(53) (C*, D) <liminf(C*, D)
el0
and
: £ e\ __
(54) }91&)1(C , D*)=xy.

To obtain this it suffices to consider a sequence ¢, |, 0 and prove

(55) distz (C*", C*) = 0 asn 1 oo

for the metric disty of (2) and

(56) ceny'(Con) o C*U'(CY)=C"8" inL'Peuw).
nToo

Indeed, the lower semi-continuity of the bracket (-, D) with respect to convergence
in disty (Lemma B.1) then yields (53). Similarly (54) follows because (56) yields

o0 o0
(C*, DY) =E / C*8dp = limE f Co U (Co) dpw = lim{C®, D)
0 n 0 n

and because (48) yields that (C*, D) = xy by choice of x and y.
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For (55) we will in fact prove that 8 £ U'(C®") — 8 = U'(C*) in LY(P Q@ ).
If this convergence fails there is € > 0 such that

limsupP ® u[|8 — 87| > ¢] > ¢.
n
Observe now that by strict convexity of V, §" = %(88" +48Y) e 9 (y) satisfies

1
V(") = S (V) + V)
and, for some sufficiently small n > 0, also

limnsupIP’(X)u[ (5" < %(V(8€")+V(5y))—n}>n.

Upon integration with respect to P ® u we obtain the contradiction
o0
v(y) < limsupE/ V(8")dp
n 0
1 o0
< limsup EE/ (V(85) + V(8)) du — n?
n 0

1
=limsup >(V(enD + (1 = &) D*) + V(D”)) — 0’

<V(D”) —n* <v(y),

where the last but one estimate is due to the upper-semicontinuity of the convex
function [0, 1] 2 ¢ — V(¢ D+ (1 — &) D?) at the boundary point 0. Hence, we must
have indeed that 8" — 8Y in LO(P ® ).

In light of (55), the convergence (56) will follow once we have established
the uniform P ® pu-integrability of (C*»U’(C*"))=12.... On {C? < CV}, we
have C*U'(C®") < U(C*®) < U(C?) € L'(P ® ) by assumption on C¥. On
{C > CV} = {6 < §7}, we have C"U’'(C®) = —§nV/(§°) < %V((Ss")
by our asymptotic elasticity assumption. So it suffices to prove the L'(P ® pu)-
convergence of (V(§%")),=12..... Since this sequence is convergent in LO(IP’ QW)
and nonnegative, this amounts to showing

llmE/ V(8 dp = E/ Ndu.

By Fatou’s lemma, we have “>” for liminf,. Recalling E fooo V(éEn)du =
V(e,D + (1 — &,)D?Y), we deduce “<” for the limsup, from the upper-semi-
continuity of the convex function [0, 1] 3 ¢ — V(¢ D+ (1 — &) D”) at the boundary
point 0. [J

We now can finally prove our second main result.
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PROOF OF THEOREM 3.2. For item 1 we note that u and v are real-valued by
Lemmas 5.5 and 5.6, respectively. Their duality is established in Lemma 5.5 and
their differentiability is contained in Lemmas 5.6 and 5.8, respectively. The Inada
conditions (24) can be collected from Lemmas 5.6 and 5.8. The conjugacy relations
between optimizers for u and v follow from the duality of u and v. Strict concavity
of u is similarly a consequence of the differentiability of v; see Theorem 26.3 in
Rockafellar [25].

_Item 3 is just a dual formulation of item 2. For y > 0, Lemma 5.4 yields §” €
P(y) with v(y) = E [§° V(8¥) dv. This readily implies that DY £ © % §Y dy is
contained in 2(y) and attains the infimum in (21). Lemma 5.9 shows that C* £
—V’(8”) attains u(x) = U(C¥). Let now D € Z(y) also attain v(y) = V(D). We
then have

U(C*) =u(x) =v(y) +xy = V(D) +(C*, D),

that is, D attains the infimum (16) for C £ C*. It thus follows by item 2 of Theo-
rem 3.1 that D has an envelope process whose density coincides with —U'(C¥) =
8”. Hence, the envelope process of all the minimizers of (21) is the same process
DY . This completes our proof. [J

APPENDIX A: SOME STOCHASTIC ENVELOPE PROCESSES

The existence of envelope processes D with (13) and (14) for D € Z is key for
our approach. We show below how to obtain such an envelope from a result in Bank
and El Karoui [3]. Uniqueness is established by an optimal stopping argument
which we adopt from Bank and Follmer [4].

LEMMA A.1.  Under Assumption 2.1, any D €  has a unique (up to indis-
tinguishability) envelope process D of the form

%

o0 - v
(57) D=0<f U’(CD)d,u> for some CP € €
t >0

such that P-a.s.
(58) D, <D, forany t >0, with “=" idetD > 0.

PROOF. For existence, we will employ Theorem 2 of [3], which, however,
we cannot directly apply with X £ D because D may not be of class (D). For
this reason, we let $” £ inf{r > 0: D, < n} and consider X" £ °(D ) for n =
1,2,.... Then X" is not only clearly lower-semicontinuous in expectation with
X3, = O but also of class (D). Indeed, because D is the optional projection of
a right-continuous and nonincreasing process D with Do, = 0, we have for any
stopping time 7':

E[|X71x31201] = EDDsr Ly 2] < ELDsw Ly 0]
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This converges to 0 uniformly in T as ¢ 1 0o since D s € LI(P) gbecause ED =
EDgn < n by right-continuity of D) and since P[| X’} | > ¢c] <EDgny7/c <n/c.
Now, let

s |Ul,—1/D, 1<,

,
fr(w, D) I [>0.

Then, by the properties of U:

e | — fi(w,!) is a continuous function, strictly decreasing from 400 to —oo in
[ € (—00, 00) for any (w, t) € Q x [0, 00), and

e (w,t)— fi(w,l) is a predictable P ® u-integrable process on Q2 x [0, co) for
any [ € (—00, 00).

So, by Theorem 2 of [3] and their Remark 2.1, there exists an optional process L"

such that
o
b= [ A swp 22)duu|7s]
N velS,1)

for any stopping time S > 0. Clearly, we may assume that L" = L"*! on (5", c0).
So

N te(S"o0)n=12,...,
LZ‘:
—00, 1 €0, 5],

where §° = inf,, " = inf{r > 0 : D; < oo}, consistently defines an optional pro-
cess L such that

o0
Dg =E[/ ft( sup Lv) dﬂt‘yS]
N velS,t)
for any stopping time S > 0.
Let us next argue that L < 0 up to indistinguishability. Otherwise there exists, by
Meyer’s optional section theorem, a stopping time S such that Lg > 0 on {S < oo}
where the latter set has positive probability. But then we obtain, by definition of f,

o0
0=Ds=E| [ £ sup Lo)du|Fs| < ~LeBlu((s. 00)|7s] <0
S ve[S,t)
on {S < oo}, a contradiction.
It follows that

. |o, r€[0,5%],

cP & 00

t —1/ sup Ly, t € (8%, 00],
s€l0,1)

and D £ ° [eu’ (Cb )du yield processes contained in 6 and 2, respectively,
with the desired properties (57) and (58).
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Let us now prove uniqueness of such a D and take an arbitrary C € % such that
D=°[®U'(C)du € Z satisfies D < D, with “=" on {dC > 0}. We will show
that, for any / > 0, S'2inf{t > 0:C, > I} is the largest stopping time minimizing
E[Ds — [¢°U’(I)d ] over all stopping times S. As a result, the level passage
times for C are uniquely determined and, thus, have to coincide with those of cP,
proving that C =CP, thatis, D=D up to indistinguishability.

For our optimal stopping claim, we first note that 0 < U'(l) < U (l)/l € L'(P®
w) for I > 0 and so the above optimal stopping problem is well-defined. Now take
a stopping time S > 0 and observe that

E[DS - /Soo Ul d,u] > E[/SOO{U/(C‘) —U'0) d,u]

= B[ [1U/©) - U0} du

where the first inequality is due to D > D and the second follows by definition
of S' and monotonicity of ¢ — U’(c). For § = §' the properties of C ensure that
we have equality everywhere in the above estimates and so S solves our optimal
stopping problem. Moreover, the strict monotonicity of ¢ — U’(c¢) and the full
support of p ensure that any stopping time S > S will yield a strict inequality in
the last estimate above. So ' is in fact the largest solution to the stopping problem,
as remained to be shown. [

APPENDIX B: CONVEX COMPACTNESS AND A MINIMAX THEOREM

In this section, we first collect a few properties of subsets of ¢ related to the
pairing (1). In particular, we investigate the induced notion of convex compact-
ness. For the sake of completeness, we also provide a version of the well-known
minimax theorem which is adapted to this generalized notion of compactness.

LEMMA B.1. The pairing (C, D) — (C, D) is lower-semicontinuous with re-
spect to convergence C" — C in the metric disty of (2) for fixed D € & and also
with respect to convergence D" — D in the metric disty of (3) for fixed C € €.

PROOF.  Let us first show lower-semicontinuity with respect to C € ¢ for fixed
D € 9. Let D be a nonnegative process with right-continuous, nonincreasing paths
such that D =°D.

By Fatou’s lemma, we have

liminf(C", D) = liminfE C"|dD|>E liminf C"|dD|.
n n (0,00] (0,00] 7

Without loss of generality, the sequence (C"),=12.... is such that (C", D) con-
verges and such that P-almost surely C;}! — C; for u-almost every ¢ > 0. By
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monotonicity, we then have in fact lim,, C" = C on {AC = 0}. The countable com-
plement of this set is a |d D|-null set P-almost surely if D is continuous and so we
deduce
liminf(C", D) > E CldD|=E DdC = (C, D).
n (0,00] [0,00)

For merely right-continuous Q with nonincreasing paths, we can find contin-
uous, real-valued D™ > 0 with D™ 7 D pointwise as m 1 00. So, applying the
preceding reasoning to D™ and its optional projection D™ £ °D™ < D, we can
conclude

liminf(C", D) > liminf(C",°D™) > (C,°D")=E D"dC
n n [0,00)
form=1,2,.... Since D™ /' D by monotone integration, the claim for D then
follows by monotone integration as we let m 1 oo in the last term of the above
inequality.

For lower-semicontinuity in D for fixed C € ¢, observe that D" — D in the
metric dg implies in particular that D" — D P ® dC-almost everywhere. Hence,
by Fatou’s lemma,

o0 0
liminf(C, D") = liminfE / D"dC>E f DdC = (C, D). 0

Recall from Zitkovi¢ [28], Definition 2.1, that a subset of a topological vector
space is convexly compact if it satisfies the finite intersection property for closed
and convex subsets. Equivalently, a closed and convex subset of a topological vec-
tor space is convexly compact if and only if for every net in this set there exists a
convergent subnet of convex combinations (cf. Proposition 2.4 in [28]).

We use convex compact sets in the Minimax theorem B.3 below. The connection
with our duality framework of Lemma 5.5 is made possible by the following result.

LEMMA B.2. Let & be a convex subset of the consumption space € that is
closed in the topology generated by the metric disty of (2). Then <7 is convexly
compact if and only if the set of random variables {C, : C € &'} is bounded in
probability.

In particular, for any c € [0, 00), {C € € : Coo < c} is a convexly compact sub-

set of the space of left-continuous processes with bounded total variation endowed
with the metric disty.

PROOF. The proof combines well-known techniques from Zitkovié¢ [28] and
Delbaen and Schachermayer [11]. The details of how to modify these techniques
to our space of controls % can be found in Theorem 3.3 in Kauppila [19].

The first step is to show that sets bounded in probability are convexly com-
pact. Lemma A1.1 in [11] illustrates how a (generic) strictly concave functional
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on the space of interest (in our case the space of consumption plans) can be used
to establish convergence of a subsequence of convex combinations. With minor
modifications the technique can be used for nets as well.

The second part is to show that convexly compact sets are bounded in proba-
bility. Theorem 3.1 in Zitkovié [28] proves that closed and convex subsets of L9r
are convexly compact if and only if the set is bounded in probability. The “only
if’-part of this theorem can be adapted to show that convexly compact subsets of
the consumption space are bounded in probability. [

We finish by noting a version of the common minimax theorem which uses
convex compactness and follows with appropriate modifications from the basic
outline of Theorem 3.1 in Simons [26].

THEOREM B.3. Let o/ be a nonempty convex, closed and convexly compact
subset of a topological vector space and let 9B be a nonempty convex subset of
another topological vector space. Let furthermore

H: o x B— (—00, 00),
(A, B) — H(A, B)

be concave and upper-semicontinuous in A € of for B € A fixed, and convex in
B € B for A € o fixed.
Then we have the minimax relation

(59) sup inf H(A, B) = 1nf sup H(A, B).
Acw Be# BEB pcw

PROOF. It is easy to see that “<” holds true in (59). For the proof of “>," we
let o £ infpez sup .., H(A, B) and we will show that

{A e H(A, B) > a}, B e A,

is a collection of closed convex subsets of .27 which satisfies the finite intersection
property. Convex compactness of <7 then implies that

({Ae«:H(A, B)>a}+#2,

Be%#
that is, there is A* € o such that infge» H(A*, B) > « and, thus, “>" must hold
in (59) as claimed.

By upper-semicontinuity and concavity of H in its first variable, each of the level
sets {A € & : H(A, B) > a}, B € A, is closed and convex. To prove the finite
intersection property, consider By, ..., B;, € % and observe that by the Mazur—
Orlicz theorem (Lemma 2.1(b) in [26]) there are weights A, ..., A, > 0 with
Y7 1 A = 1 such that

sup {H(A, B)) A--- AH(A, By)}
Aed/

= sup {MH(A, By) +--- + A, H(A, Bp)}.
Aed/
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By assumption, H(A, -) is convex for any A € o/ and so the preceding identity
entails

sup {H(A, Bi) A--- AH(A, By)} > sup H(A, A By + -+ 4+ A Bn) > a.
Aedd Aed
The finite intersection property thus follows once we have shown that the first
supremum is actually attained. So let

H"(A) £ H(A, B)) A --- AH(A, B,), Aed,

and consider a maximizing sequence Ay, Az, ... € & for sup, ., H"(A). Because
&/ is convexly compact there is a convergent subnet of finite convex combinations,
that is, there is a convergent net (A.).ce of A =3, i A, with ¥ =0forn > N,
and ), ¢ =1 such that, in addition, for any N = 1,2, ... there is an ey € E
with vy =0,n =0, ..., N, for any e > ey; see Zitkovié [28], Definition 2.3. By
concavity of H with respect to its first variable, also H" is concave and so

H"(Ae) = )y H  (An).

The upper-semicontinuity of H in its first variable entails the upper-semicontinuity
of H”. By passing to the limit, this allows us to conclude that Ag 2 limyeg Ap € &
attains sup ., H (A). O

REFERENCES

[1] ALVAREZ, L. H. R. (2011). Optimal capital accumulation under price uncertainty and costly
reversibility. J. Econom. Dynam. Control 35 1769-1788. MR2833253

[2] BANK, P. and BAUMGARTEN, C. (2010). Parameter-dependent optimal stopping problems for
one-dimensional diffusions. Electron. J. Probab. 15 1971-1993. MR2745722

[3] BANK, P. and EL KAROUI, N. (2004). A stochastic representation theorem with applications
to optimization and obstacle problems. Ann. Probab. 32 1030-1067. MR2044673

[4] BANK, P. and FOLLMER, H. (2003). American options, multi-armed bandits, and optimal con-
sumption plans: A unifying view. In Paris-Princeton Lectures on Mathematical Finance,
2002. Lecture Notes in Math. 1814 1-42. Springer, Berlin. MR2021789

[5] BANK, P. and RIEDEL, F. (2001). Optimal consumption choice with intertemporal substitution.
Ann. Appl. Probab. 11 750-788. MR1865023

[6] BENES, V. E., SHEPP, L. A. and WITSENHAUSEN, H. S. (1980/81). Some solvable stochastic
control problems. Stochastics 4 39-83. MR0587428

[71 BENTH, F. E., KARLSEN, K. H. and REIKVAM, K. (2001). Optimal portfolio management
rules in a non-Gaussian market with durability and intertemporal substitution. Finance
Stoch. 5 447-467. MR1861996

[8] BOUCHARD, B. and PHAM, H. (2004). Wealth-path dependent utility maximization in incom-
plete markets. Finance Stoch. 8 579-603. MR2212119

[9] CADENILLAS, A. and HAUSSMANN, U. G. (1994). The stochastic maximum principle for a
singular control problem. Stoch. Stoch. Rep. 49 211-237. MR1785006

[10] CHIAROLLA, M. B. and FERRARI, G. (2014). Identifying the free boundary of a stochastic,

irreversible investment problem via the Bank—EI Karoui representation theorem. SIAM J.
Control Optim. 52 1048-1070. MR3181698


http://www.ams.org/mathscinet-getitem?mr=2833253
http://www.ams.org/mathscinet-getitem?mr=2745722
http://www.ams.org/mathscinet-getitem?mr=2044673
http://www.ams.org/mathscinet-getitem?mr=2021789
http://www.ams.org/mathscinet-getitem?mr=1865023
http://www.ams.org/mathscinet-getitem?mr=0587428
http://www.ams.org/mathscinet-getitem?mr=1861996
http://www.ams.org/mathscinet-getitem?mr=2212119
http://www.ams.org/mathscinet-getitem?mr=1785006
http://www.ams.org/mathscinet-getitem?mr=3181698

516
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]
[24]
[25]
[26]
(27]

(28]

P. BANK AND H. KAUPPILA

DELBAEN, F. and SCHACHERMAYER, W. (1994). A general version of the fundamental theo-
rem of asset pricing. Math. Ann. 300 463-520. MR 1304434

DELBAEN, F. and SCHACHERMAYER, W. (1998). The fundamental theorem of asset pricing
for unbounded stochastic processes. Math. Ann. 312 215-250. MR1671792

FERRARI, G. (2015). On an integral equation for the free-boundary of stochastic, irreversible
investment problems. Ann. Appl. Probab. 25 150-176. MR3297769

HINDY, A. and HUANG, C. (1992). Intertemporal preferences for uncertain consumption:
A continuous time approach. Econometrica 60 781-801. MR1168738

HINDY, A. and HUANG, C. (1993). Optimal consumption and portfolio rules with durability
and local substitution. Econometrica 61 85-121. MR1201704

HINDY, A., HUANG, C. and KREPS, D. (1992). On intertemporal preferences in continuous
time: The case of certainty. J. Math. Econom. 21 401-440. MR1183611

KARATZAS, I. and SHREVE, S. E. (1984). Connections between optimal stopping and singular
stochastic control. I. Monotone follower problems. SIAM J. Control Optim. 22 856-877.
MR0762624

KARATZAS, 1. and ZITKOVIC, G. (2003). Optimal consumption from investment and ran-
dom endowment in incomplete semimartingale markets. Ann. Probab. 31 1821-1858.
MR2016601

KAUPPILA, H. (2010). Convex duality in singular control—optimal consumption choice with
intertemporal substitution and optimal investment in incomplete markets. Ph.D. thesis,
Columbia Univ.

KI11sK1, M. and PERKKIO, A.-P. (2015). Optional and predictable projections of normal inte-
grands and convex-valued processes. Preprint. Available at arXiv:1508.02176.

KRAMKOV, D. and SCHACHERMAYER, W. (1999). The asymptotic elasticity of utility func-
tions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904-950.
MR1722287

KRAMKOV, D. and SCHACHERMAYER, W. (2003). Necessary and sufficient conditions in the
problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13 1504—-1516.
MR2023886

MERTON, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model.
J. Econom. Theory 3 373-413. MR0456373

MosTtovyl, O. (2015). Necessary and sufficient conditions in the problem of optimal invest-
ment with intermediate consumption. Finance Stoch. 19 135-159. MR3292127

ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Mathematical Series, No. 28.
Princeton Univ. Press, Princeton, NJ. MR0274683

SIMONS, S. (1998). Minimax and Monotonicity. Lecture Notes in Math. 1693. Springer, Berlin.
MR1723737

ZITKOVIC, G. (2005). Utility maximization with a stochastic clock and an unbounded random
endowment. Ann. Appl. Probab. 15 748-777. MR2114989

ZITKOVIC, G. (2010). Convex compactness and its applications. Math. Financ. Econ. 3 1-12.
MR2651515

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
TECHNISCHE UNIVERSITAT BERLIN COLUMBIA UNIVERSITY

STRASSE DES 17, JUNI 136 2990 BROADWAY, NEW YORK 10027
10623 BERLIN USA

GERMANY E-MAIL: helena.kauppila@gmail.com
E-MAIL: bank @math.tu-berlin.de


http://www.ams.org/mathscinet-getitem?mr=1304434
http://www.ams.org/mathscinet-getitem?mr=1671792
http://www.ams.org/mathscinet-getitem?mr=3297769
http://www.ams.org/mathscinet-getitem?mr=1168738
http://www.ams.org/mathscinet-getitem?mr=1201704
http://www.ams.org/mathscinet-getitem?mr=1183611
http://www.ams.org/mathscinet-getitem?mr=0762624
http://www.ams.org/mathscinet-getitem?mr=2016601
http://arxiv.org/abs/arXiv:1508.02176
http://www.ams.org/mathscinet-getitem?mr=1722287
http://www.ams.org/mathscinet-getitem?mr=2023886
http://www.ams.org/mathscinet-getitem?mr=0456373
http://www.ams.org/mathscinet-getitem?mr=3292127
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.ams.org/mathscinet-getitem?mr=1723737
http://www.ams.org/mathscinet-getitem?mr=2114989
http://www.ams.org/mathscinet-getitem?mr=2651515
mailto:bank@math.tu-berlin.de
mailto:helena.kauppila@gmail.com

	Introduction
	Controls and their performance measure
	Controls and their duals
	Utilities and their conjugates

	Main results
	Legendre-Fenchel duality for utility functionals
	Convex duality for an abstract utility maximization problem

	Illustrations
	Irreversible investment
	Hindy-Huang-Kreps utility

	Proofs of the main results
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Appendix A: Some stochastic envelope processes
	Appendix B: Convex compactness and a minimax theorem
	References
	Author's Addresses

