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CONVEX DUALITY FOR STOCHASTIC SINGULAR
CONTROL PROBLEMS

BY PETER BANK1 AND HELENA KAUPPILA

Technische Universität Berlin and Columbia University

We develop a general theory of convex duality for certain singular control
problems, taking the abstract results by Kramkov and Schachermayer [Ann.
Appl. Probab. 9 (1999) 904–950] for optimal expected utility from nonnega-
tive random variables to the level of optimal expected utility from increasing,
adapted controls. The main contributions are the formulation of a suitable du-
ality framework, the identification of the problem’s dual functional as well as
the full duality for the primal and dual value functions and their optimizers.
The scope of our results is illustrated by an irreversible investment problem
and the Hindy–Huang–Kreps utility maximization problem for incomplete
financial markets.

1. Introduction. A typical stochastic optimal control problem is formulated
by specifying how the dynamics of a given system can be influenced by a con-
troller to optimize some performance criterion. In classical stochastic control the
controller directly affects the coefficients which govern the system’s dynamics, but
has no direct influence on the system’s state itself. In singular control problems,
the controller can, by contrast, directly change the state of the controlled system at
any time in a fully scalable way, from infinitesimal to large jumps.

Ever since the seminal work on such singular problems by Beneš, Shepp and
Witsenhausen [6], the most commonly used approach is to consider Markovian
systems and use dynamic programming to derive and then solve the problem’s
Hamilton–Jacobi–Bellman equation which comes in the form of a free-boundary
value problem. Alternatively, one can resort to versions of Pontryagin’s maximum
principle as first discussed for stochastic singular control by Cadenillas and Hauss-
mann [9]. In either case, the derived mathematical concepts do not immediately
solve the problem, but merely help to describe some of the solution’s properties.
A key challenge is then to work out this description as neatly as possible. Clearly,
this task is made easier when, as we shall assume, control can only be exerted in
one direction. Problems of this type include the monotone follower of, for example,
Karatzas and Shreve [17], some irreversible investment problems as discussed in
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Section 4.1, but also optimal investment and consumption problems with so-called
Hindy–Huang–Kreps utilities which we cover in Section 4.2.

All of these problems can be cast as maximization problems for functionals U

of the form

U(C) = E

∫ ∞
0

Ut(Ct ) dμt ,

where C is from the class C of nonnegative, nondecreasing, left-continuous,
adapted controls, Ut(Ct ) describes the predictable utility obtained at time t ≥ 0
from the cumulative control Ct and where the optional random measure μ de-
scribes the weights assigned to utilities at different times.

It is the purpose of this paper to develop a theory of convex duality for singular
control problems with target functionals of the above type. Indeed, under natural
assumptions on U and μ, our first main Theorem 3.1 establishes the Legendre–
Fenchel duality of the functional U. For this, we introduce the class D of optional
projections of nonnegative, right-continuous, nonincreasing processes as dual vari-
ables with the pairing

〈C,D〉 = E

∫
[0,∞)

Dt dCt

and we show that the Legendre–Fenchel transform

V(D) = sup
U(C)<∞

{
U(C) − 〈C,D〉}

coincides with the functional

V(D) = inf
δ∈Ḋ(D)

E

∫ ∞
0

Vt(δt ) dμt ,

where Ḋ(D) is a certain class of optional processes associated with D ∈ D and
where Vt denotes the classical Legendre–Fenchel transform of Ut . Moreover, we
show that the minimizer for V(D) < ∞ can be constructed in terms of a certain en-
velope process of the form D̆ = (E[∫ ∞

t U ′(CD)dμ|Ft ])t≥0 with CD ∈ C which
is characterized uniquely by

D̆t ≤ Dt for all t ≥ 0,

with “=” holding true whenever CD is increasing. We thus obtain a full character-
ization of the maximizers for

U(C) − 〈C,D〉 = E

∫ ∞
0

Ut(Ct ) dμt −E

∫ ∞
0

Dt dCt ,

a general form, for instance, of irreversible investment problems as described in
Section 4.1.
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For the treatment of constrained problems such as the Hindy–Huang–Kreps op-
timal investment and consumption problem of Section 4.2 we formulate the ab-
stract utility maximization problem with value function

u(x) = sup
C∈C (x)

U(C),

where, for x > 0, controls are constrained to lie in C (x) ⊂ C . This is assumed to be
a convex class of feasible controls for which a polar relation with sets D(y) ⊂ D ,
y > 0, can be established. This leads to the dual problems with value

v(y) = inf
D∈D(y)

V(D)

for y > 0.
The celebrated papers by Kramkov and Schachermayer [21, 22] develop con-

vex duality for similarly abstract utility maximization problems where utility is
obtained at a single point in time, which in our notation amounts to the choice of
μ as a Dirac measure at some point T > 0. This leads to the obvious challenge
to develop a similar convex duality theory for our singular framework. This chal-
lenge is taken up by our second main result, Theorem 3.2. While our proof of this
result follows to some extent the very useful blue-print laid out by Kramkov and
Schachermayer [21], there are a number of novel obstacles to overcome along the
way. These are a consequence of our central constraint of nondecreasing adapted
controls which in the setting of Kramkov and Schachermayer corresponds to the
considerably simpler restriction to nonnegative FT -measurable random variables.
This also distinguishes our work from Karatzas and Žitković [18] and also [24]
who consider utility from consumption at nonnegative rates, that is, without the
monotonicity constraint of our singular control set.

Specifically, a first key difference is in the structure of the Legendre–Fenchel
transform of the utility functional under consideration: For Kramkov and Schacher-
mayer’s C 
→ EUT (CT ) the dual functional is simply D 
→ EVT (DT ) whereas the
dual V of our functional U involves an infimum. As a consequence, the connection
between the dual value V(D) and the dual variable D is not as straight forward as
in Kramkov and Schachermayer [21] but has to be described by our envelope pro-
cess D̆. Also, the process CD which is conjugate to D in the Legendre–Fenchel
duality cannot be directly written in terms of D, by contrast to Kramkov and
Schachermayer [21] where one merely has to invert U ′

T (CD
T ) = DT . In addition,

the dual problem is not strictly convex anymore, a property which is needed for
some of the arguments in Kramkov and Schachermayer [21]. As a remedy, we
introduce a subclass of D(y) which is sufficiently large to include the solutions
to the dual problem, but small enough to ensure strict convexity of V on this sub-
class. This allows us to establish the continuous dependence of certain solutions
to the dual problem on the Lagrange parameter y. The final challenge is then to
show that the corresponding candidate solutions for the primal problem are indeed
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feasible for the larger class of all dual variables D(y). Here, we have to resort
to the general Legendre–Fenchel duality between U and V developed in our first
main result. Finally, the notion of reasonable asymptotic elasticity identified by
Kramkov and Schachermayer [21] as a key assumption for general well-posedness
of utility maximization problems has to be adapted to account for the possibly
very different utility functions Ut at different time points t ≥ 0. In fact, in line
with, for example, Bouchard and Pham [8] and Žitković [27] we do allow for
time- and scenario-dependent utility functions and a stochastic clock which allows
us to include the finite time horizon case in the infinite time horizon formulation
in a simple manner; see the end of Section 4.2.

The paper is organized as follows. In Section 2, we introduce the class of con-
trols C and the space of dual variables D along with the assumptions and definition
of our utility functional U and its dual V. Section 3 is devoted to the presentation
of our main duality results, Theorems 3.1 and 3.2. Section 4 illustrates these find-
ings by a general irreversible investment problem and by the optimal consumption
problem of Hindy, Huang, and Kreps. Section 5 contains the proofs our main the-
orems. Appendix A gives the construction of our envelope process D̆. Appendix B
discusses Žitković’s [28] notion of convex compactness in the new context of our
class of controls C and provides a minimax theorem compatible with this general-
ized notion of compactness.

2. Controls and their performance measure. We start by describing the
control set C and its dual D as well as our target utility functional U along with a
dual functional V. As usual, we let (�,F ,F,P) denote throughout a filtered prob-
ability space describing a controller’s beliefs P about future events F along with
his information flow F = (Ft )t≥0, a complete, right-continuous filtration where
F0 is generated by the P-null sets.

2.1. Controls and their duals. The set of conceivable controls will be given
by the class C of predictable processes C : � × [0,∞] → [0,∞] with non-
decreasing, left-continuous paths starting from C0 = 0. As usual exercising control
incurs costs which will be described by dual variables. A convenient set of such
dual variables will turn out to be the class D of all processes D : � × [0,∞] →
[0,∞] with D∞ = 0 which are optional projections D = oD̃ of some nonnegative,
right-continuous process D̃ with nonincreasing paths. Indeed, for any C ∈ C and
D ∈ D we can define the pairing

(1) 〈C,D〉 = E

∫
[0,∞)

Dt dCt ∈ [0,∞].
Observe that in the above integral we assume that dC does not charge the interval
(inf{t ≥ 0 : Ct = ∞},∞] and the integration with respect to dC is carried out
taking into account a point mass of size C0+ � limt↓0 Ct at 0; we also let 0 ·∞ � 0
should an integrand be zero where the integrator puts an infinite point mass.
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Finally, we note that C can be endowed with the metric which for two F ⊗
B([0,∞])-measurable processes C1, C2 assigns the distance

(2) distC
(
C1,C2)

� E

∫ ∞
0

∣∣h(
C1

t

) − h
(
C2

t

)∣∣dμt ,

where h is any homeomorphism [−∞,∞] → [0,1] and where μ is any finite
atomless measure with full support on [0,∞) such as the one introduced in As-
sumption 2.1 below. For a metric on D , we choose

(3) distD
(
D1,D2)

� sup
stopping times T

E
∣∣h(

D1
T

) − h
(
D2

T

)∣∣.
With respect to these metrics the pairing (1) is lower-semicontinuous in each of its
factors; see Lemma B.1.

2.2. Utilities and their conjugates. The performance of controls will be mea-
sured by the utilities they provide at each time, weighted with the controller’s time
preferences.

ASSUMPTION 2.1. The controller’s time preferences are described by an op-
tional random measure μ on [0,∞) without atoms, full support and finite expected
total mass Eμ([0,∞)) < ∞.

The controller’s utility is specified by a mapping

U : � × [0,∞) × [0,∞) → [0,∞),

(ω, t, c) 
→ Ut(ω, c)

with the following properties:

1. For any (ω, t) ∈ � × [0,∞), Ut(ω, ·) is continuous, strictly concave and
strictly increasing from Ut(ω,0) = 0 to Ut(ω,∞) � limc↑∞ Ut(ω, c) ∈ [0,∞].
Moreover, Ut(ω, ·) is continuously differentiable and satisfies the Inada conditions

U ′
t (ω,0)� lim

c↓0
U ′

t (ω, c) = ∞ and U ′
t (ω,∞)� lim

c↑∞U ′
t (ω, c) = 0.

2. For any c ≥ 0, (ω, t) 
→ Ut(ω, c) is predictable with

E

∫ ∞
0

Ut(c) dμt < ∞.

3. The asymptotic elasticity of U is uniformly less than one in the sense
that there is a constant γ ∈ (0,1) and a predictable process Cγ ≥ 0 with
E

∫ ∞
0 Ut(C

γ
t ) dμt < ∞ such that for any (ω, t) ∈ � × [0,∞) we have

(4)
cU ′

t (ω, c)

Ut (ω, c)
< γ < 1 for all c > C

γ
t (ω).
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A control will provide an expected utility of the form

(5) U(C)� E

∫ ∞
0

Ut(Ct ) dμt ∈ [0,∞], C ∈ C .

Note that in our setting, contrary to what is more commonly assumed, utility
Ut(Ct ) at each time t ≥ 0 is obtained from the cumulative control Ct rather than the
current control rate. This turns the optimization problem to be introduced shortly
into a singular stochastic control problem. We refer to the illustrations of Section 4
for the motivation and scope of such utility functionals.

REMARK 2.2. Let us briefly comment on our preference Assumption 2.1:

1. The controller’s time preferences include the usual exponential discounting
μ(dt) � e−δt dt for some δ > 0. For such atomless measures of time preference,
it clearly makes no difference whether we evaluate our utility function U of (5)
with left- or with right-continuous controls C. This is not the case any more if
we allow for point masses of μ at certain stopping times T when it may make
sense to exercise some “precautionary” control right before T and, as a reaction
to new information revealed at time T , to exercise some further control at this
time. In other words, in such a situation, controls which are neither left- nor right-
continuous would be appropriate. On a technical level, μ has to be atomless for
our construction of certain envelopes of stochastic processes in Lemma A.1 below.
These envelopes are a key tool in our approach, but their construction in a setting
where μ has atoms is technically challenging and beyond the scope of this paper.

2. The first item concerning U requires that time- and scenario-wise this is a
standard utility function, except for the requirement that utility at zero vanishes.
In fact, this comes without loss of generality if E

∫ ∞
0 |Ut(0)|dμt < ∞ since then

we can pass to Ũ � U − U(0) without changing the utility maximization prob-
lem for (5). The cases of log-utility or power utilities with negative exponent are
not covered by this assumption. Observe, though, that because controls are non-
decreasing the behavior of Ut around 0 is only important initially.

3. The predictability requirement in the second item is essentially without loss
of generality since we could work with the predictable projection of any non-
predictable field (U(c), c ∈ [0,∞)) (see [20]) without changing (5). This holds
because controls are predictable and because time preferences are optional ran-
dom measures without atoms.

4. It is well known from the work of Kramkov and Schachermayer [21] that
asymptotic elasticity less than one is necessary to avoid ill-posed utility maxi-
mization problems. Their Lemma 6.3 shows that for any (ω, t) ∈ �×[0,∞), con-
dition (4) is equivalent to

(6) Ut(ω,λc) < λγ Ut(ω, c) for all λ > 1 and all c > C
γ
t (ω).

5. Our results will also allow us to treat the case of a possibly finite time horizon
given by some stopping time; see Remark 4.1 below.
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One of the main results in this paper is the convex duality for the functional
U of (5) which will be established in Theorem 3.1 below. For this, we need to
introduce a dual functional V on D . This functional will be specified in terms of
the classical Legendre–Fenchel transform V of U :

(7) Vt(ω, d)� sup
0≤c<∞

{
Ut(ω, c) − cd

}
, d > 0.

It is well known that under the conditions in Assumption 2.1, Vt(ω, ·) is a strictly
convex and decreasing function on (0,∞) with

Vt(ω,0) � lim
d↓0

Vt(ω, d) = Ut(ω,∞),

Vt (ω,∞) � lim
d↑∞Vt(ω, d) = Ut(ω,0) = 0.

Moreover, Vt(ω, ·) is continuously differentiable on (0,∞) and satisfies the Inada
conditions

V ′
t (ω,0)� lim

d↓0
V ′

t (ω, d) = −∞ and V ′
t (ω,∞)� lim

d↑∞V ′
t (ω, d) = 0.

The asymptotic elasticity conditions (4) and (6) can be cast in terms of V as

(8) (1 − γ )
(−V ′(d)

)
d ≤ γV (d) for all 0 < d < δγ

and

(9) V
(
(1 − ε)d

)
< (1 − ε)

γ
1−γ V (d) for all 0 < ε < 1,0 < d < δγ

with the same γ ∈ (0,1) as before and δγ � U ′(Cγ ); see Lemma 6.3 in Kramkov
and Schachermayer [21]. Finally, along with U also V is predictable and we have
the following conjugacy relations:

1. In addition to (7), we also have

(10) Ut(ω, c) = inf
0≤d<∞

{
Vt(ω, d) + cd

}
, c > 0.

2. The supremum in (7) is attained at c = −V ′
t (ω, d).

3. The infimum in (10) is attained at d = U ′
t (ω, c).

In fact, the identities in items 2 and 3 are equivalent.
Now we can introduce the dual functional

(11) V(D) � inf
δ∈Ḋ(D)

E

∫ ∞
0

Vt(δt ) dμt ∈ [0,∞], D ∈ D,

with

(12) Ḋ(D) �
{
δ ≥ 0 optional : o

(∫ ∞
·

δ dμ

)
≤ D

}
,

where we used the notation oX for the optional projection of any F ⊗B([0,∞])-
measurable process X ≥ 0.
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3. Main results.

3.1. Legendre–Fenchel duality for utility functionals. For the statement of our
duality theorem for U and V of (5) and (11), we have to introduce for any dual
process D ∈ D a special envelope process D̆ of the form

(13) D̆ = o

(∫ ∞
t

U ′(CD̆)
dμ

)
t≥0

for some CD̆ ∈ C

which satisfies P-almost surely

(14) D̆t ≤ Dt for any t ≥ 0, with “=” if dCD̆
t > 0.

Here, we follow the convention that, for C ∈ C , we write dCt > 0 iff t is a point of
increase for C in the sense that Ct < Cs+t for any s > 0. We refer to Lemma A.1
for existence and uniqueness up to indistinguishability of such an envelope pro-
cess.

Observe that on {D̆ < ∞}, D̆ has a compensator with paths that are absolutely
continuous with respect to μ. We choose

(15) ˙̆
D �−U ′(CD̆)

to denote the corresponding density which is then uniquely determined up to in-
distinguishability because so is the process CD̆ ∈ C with (13) and (14). Observe,
that, conversely, we can then write

CD̆ = −V ′(− ˙̆
D)

by the conjugacy relations between U and V recalled above.
We now can state our first main result as follows:

THEOREM 3.1. Under Assumption 2.1, the following assertions hold:

1. The functionals U of (5) and V of (11) are conjugate to each other in the
sense that we have

(16) U(Ĉ) = inf
V(D)<∞

{
V(D) + 〈Ĉ,D〉} for any Ĉ ∈ C

and

(17) V(D̂) = sup
U(C)<∞

{
U(C) − 〈C, D̂〉} for any D̂ ∈ D .

2. If finite, the infimum in (16) is attained for precisely those D ∈ D whose
(joint) envelope process D̆ with (13) and (14) is given by

(18) ˙̆
D = −U ′(Ĉ).

3. If finite, the supremum in (17) is attained exactly for

(19) Ĉ = −V ′(− ˙̆
D) ∈ C ,

where D̆ is the envelope process of D̂ characterized by (13) and (14) with D � D̂.
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3.2. Convex duality for an abstract utility maximization problem. Let us now
formulate an abstract utility maximization problem in a similar way as in the ap-
proach for utility from terminal wealth by Kramkov and Schachermayer [21]. To
this end, we consider C (1) ⊂ C and D(1) ⊂ D which are polar with respect to
each other in the sense that:

1. For any C ∈ C , we have C ∈ C (1) iff 〈C,D〉 ≤ 1 for any D ∈ D(1).
2. For any D ∈ D , we have D ∈ D(1) iff 〈C,D〉 ≤ 1 for any C ∈ C (1).

To avoid trivialities, we also assume:

3. C (1) ⊃ {1} where 1 ∈ C denotes the control with 10(ω) � 0 and 1t (ω) � 1,
t ∈ (0,∞], ω ∈ �.

4. D(1) �= {0} where 0 ∈ D is the trivial cost process given by 0t (ω) � 0, t ∈
[0,∞], ω ∈ �.

The set C (1) will play the role of the budget set for wealth x = 1 and D(1)

can be viewed as a set of state price deflators D ∈ D (induced, e.g., by a financial
market model) for which, in particular, ED0 = 〈1,D〉 ≤ y = 1.

To formulate the abstract utility maximization problem and its dual, let us put

C (x) � xC (1) for x > 0 and D(y) � yD(1) for y > 0.

It is clear that C (x) and D(y) inherit the polar relation from C (1) and D(1) for
any x, y > 0. By this relation it is also obvious that these sets are convex and
solid [e.g., with C ∈ C (x), any C̃ ∈ C with C̃ ≤ C is also contained in C (x)].
Moreover, the lower-semicontinuity of the pairing 〈C,D〉, see Lemma B.1, ensures
that C (x) and D(y) are closed with respect to convergence in the metrics (2)
and (3), respectively.

Finally, let us introduce the value functions

(20) u(x) � sup
C∈C (x)

U(C), x > 0,

and

(21) v(y) � inf
D∈D(y)

V(D), y > 0.

THEOREM 3.2. Suppose that Assumption 2.1 holds true and assume that
u(x) < ∞ for some x > 0. Then we have:

1. The value functions u of (20) and v of (21) are real-valued and conjugate to
each other in the sense that

(22) u(x) = inf
y>0

{
v(y) + xy

}
for any x > 0

and

(23) v(y) = sup
x>0

{
u(x) − xy

}
for any y > 0.
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Moreover, u and v are continuously differentiable on (0,∞) and satisfy the Inada
conditions

(24) u′(0) = ∞, u′(∞) = 0, v′(0) = −∞, v′(∞) = 0.

In addition, u and v are, respectively, strictly concave and strictly convex, and
y attains the infimum in (22) iff x attains the supremum in (23) which in turn is
equivalent to both

(25) u′(x) = y and v′(y) = −x.

2. The infimum in the dual problem (21) is attained for any y > 0. All the min-
imizers D of (21) have the same envelope process D̆y ∈ D(y) with (13) and (14),
and, for x given by (25),

(26) Cx = −V ′(− ˙̆
Dy) ∈ C (x)

attains the supremum in the primal problem (20).
3. The supremum in the primal problem (20) is attained for any x > 0 at a

unique Cx ∈ C (x) and, for y given by (25),

(27) ˙̆
Dy = −U ′(Cx)

yields via (13) a D̆y ∈ D(y) which attains the infimum in the dual problem (21).

4. Illustrations. Let us illustrate the usefulness of our Theorems 3.1 and 3.2
by showing how they can be brought to bear on the classical problems of irre-
versible investment and of optimal consumption and investment.

4.1. Irreversible investment. Consider the manager of a firm who can decide at
any point in time t ≥ 0 whether or not to expand the currently installed capacity of
production Ct . Assuming that installed capacity cannot be reduced in a profitable
way amounts to the assumption that C ∈ C as introduced in Section 2.1. Let us
suppose that the revenues RC

t from the firm’s production are an increasing function
of installed capacity and exhibit decreasing returns to scale. Plainly, it is perfectly
reasonable to assume that revenues also depend on the product’s price fluctuations
and possibly other stochastically evolving market conditions as described by a
random scenario ω ∈ �. It thus makes sense to assume that, at time t ≥ 0, the
revenues from a capacity expansion policy C ∈ C are given as

RC
t (ω) = Ut

(
ω,Ct(ω)

)
for some function U : � × [0,∞) × [0,∞) → [0,∞) as considered in Assump-
tion 2.1. The manager discounts future cash flows at some rate r = (rt )t≥0, an
optional process with

∫ t
0 |rs |ds < ∞, t ≥ 0, which we assume to be such that the

random measure

μ(dt)� e− ∫ t
0 rs ds dt

has finite expected mass Eμ(0,∞) < ∞.
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The expected total discounted revenue is then given by

E

∫ ∞
0

e− ∫ t
0 rs dsRC

t dt = E

∫ ∞
0

Ut(Ct ) dμt = U(C),

exactly as considered in (5). If we now assume that the (discounted) cost of ex-
panding production capacity by one unit at time t ≥ 0 is described by a right-
continuous, class (D) supermartingale D̂t ≥ 0 with D̂∞ = 0 we are led to consider
the manager’s optimization problem:

(28) Maximize U(C) −E

∫ ∞
0

D̂t dCt subject to C ∈ C .

This kind of singular control problem is of great interest in Economics. We refer
to Alvarez [1] for a more extensive account of the pertaining literature.

Recalling the Doob–Meyer decomposition D̂ = M − A into a uniformly inte-
grable martingale M and a predictable right-continuous, increasing process A with
A0 = 0 and A∞ = M∞, we find that D̂ = o(M∞ − A) is contained in D and we
can write the expected costs of the capacity expansion plan C as

E

∫ ∞
0

D̂t dCt = 〈C, D̂〉, C ∈ C .

By Theorem 3.1, the value of problem (28) is thus given by the dual functional
V(D̂) of (17) and, if it is finite, we obtain that the optimal capacity expansion plan
is Ĉ with (19). In particular, an explicit solution to (28) can be given whenever
the envelope process D̆ associated with D̂ can be computed explicitly. We refer
to Chiarolla and Ferrari [10], Ferrari [13], Bank and Riedel [5], Bank and Baum-
garten [2] for such examples.

4.2. Hindy–Huang–Kreps utility. Following the seminal work of Merton [23],
the problem of optimal investment and consumption in continuous-time is mostly
studied for utility functions which depend on the current consumption rate. This
modeling approach was shown by Hindy, Huang, and Kreps (see [14–16]) to fail to
exhibit the economically desirable property of intertemporal substitution: In Mer-
ton’s setting, slight shifts in the timing of consumption plans may lead to signifi-
cant changes in the utility associated with these plans. As a remedy, these authors
proposed to consider functionals where utility is obtained from a level of satisfac-
tion, that is, a weighted average of past consumption such as

Y C̃
t �

∫ t

0
e− ∫ t

s βu du dC̃s, t ≥ 0,

where C̃ ∈ C describes the cumulative consumption and where the locally
Lebesgue-integrable optional process β ≥ 0 measures the decay rate of satisfac-
tion. The utility functional to be maximized is then

Ũ(C̃) � E

∫ ∞
0

Ũ
(
Y C̃

t

)
dμt ,
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where Ũ : [0,∞) → R is a strictly concave and increasing utility function of
class C1 satisfying the Inada conditions Ũ ′(0) = ∞ and Ũ ′(∞) = 0; μ, as be-
fore, describes an agent’s time-preferences and could, for instance, be specified as
μ(dt) = e−δt dt with δ > 0.

As usual, the set of consumption plans at the agent’s disposal is determined
by his investment opportunities. Assuming the mild assumption of no free lunch
with vanishing risk we obtain from the celebrated Fundamental Theorem of Asset
Pricing of Delbaen and Schachermayer [11, 12] in great generality that this set can
be described in the form

(29) C̃ (x) =
{
C̃ ∈ C : E

∫
[0,∞)

Zt dCt ≤ x for all Z ∈ Z

}
,

where x denotes the available initial capital and Z denotes a nonempty set of local
martingale deflators, that is, of P-supermartingales Z > 0 with Z0 = 1 such that
for any wealth process V of an admissible investment strategy the process ZV is
a P-supermartingale.

The agent’s optimization problem is then to

(30) Maximize Ũ(C̃)� E

∫ ∞
0

Ũ
(
Y C̃

t

)
dμt subject to C̃ ∈ C̃ (x).

To transform this into the type of utility maximization treated by our main results
in Section 3, consider the bijection

(31) C � C̃ 
→ C �
(∫ t

0
e

∫ s
0 βu du dC̃s

)
t≥0

∈ C

and let

Ut(ω, c)� Ũ
(
e− ∫ t

0 βu(ω)duc
)
, (ω, t, c) ∈ � × [0,∞) × [0,∞).

Then U is as required by Assumption 2.1 and the utility functional U of (5) satisfies

U(C) = Ũ(C̃).

Let us also put

C (1) �
{
C ∈ C : C̃ with (31) is contained in C̃ (1)

}
and consider its polar

D(1)�
{
D ∈ D : 〈C,D〉 ≤ 1 for all C ∈ C (1)

}
.

This latter set is different from {0}. Indeed, take any local martingale defla-
tor Z ∈ Z and let Z = MA be its multiplicative Doob–Meyer decomposition
into a local martingale M and a predictable decreasing process A ≥ 0 with
A0 = 1. Let (T n)n=1,2,... be a localizing sequence of stopping times such that
each of the stopped supermartingales ZT n

(and, thus, each of the stopped lo-
cal martingales MT n

), n = 1,2, . . . , is of class (D). Observe then that D̃n
t �
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(MT nAt )e
− ∫ t

0 βu du1[0,T n)(t), t ≥ 0, is right-continuous with decreasing paths and
so its optional projection Dn � oD̃n is contained in D . Moreover,

(32)
〈
C,Dn〉 = E

∫
[0,T n)

o(MT nAe− ∫ .
0 βu du)

t dCt = E

∫
[0,T n)

Zt dC̃t ≤ 1

for any C ∈ C (1). Hence, Dn ∈ D(1) for each n = 1,2, . . . . In fact, letting n ↑ ∞
in (32) we find in conjunction with (29):

C (1) = {
C ∈ C : 〈C,D〉 ≤ 1 for any D ∈ D(1)

}
.

Therefore, C (1) and D(1) exhibit the polar relations assumed in the beginning of
Section 3.2.

It thus follows that we have the convex duality results of Theorem 3.2 for
the Hindy–Huang–Kreps-utility maximization problem (30). This generalizes the
treatment of the complete market case in [5] to incomplete market models driven
by general semimartingales and thus also complements the dynamic program-
ming approach for exponential Levy models with constant relative risk aversion of
Benth, Karlsen and Reikvam [7]. In particular, the present paper develops convex
duality for optimal consumption with Hindy–Huang–Kreps preferences at a level
of generality similar to Kramkov and Schachermayer [21] for utility from terminal
wealth and to Karatzas and Žitković [18] for utility from the rate of consumption.

REMARK 4.1. It may be worthwhile to observe that our results also cover
the finite time horizon case where μ has support [0, T ] for some possibly finite
stopping time T > 0. Indeed, in that case we can instead consider μ̄(dt)� μ(dt)+
1(T ,∞)(t)e

−t dt , Ūt (c) � 1[0,T ](t)U(c)+1(T ,∞)(t)U
∗(c), where U∗ : [0,∞) →R

is any deterministic utility function which has asymptotic elasticity less than one,
satisfies the Inada conditions and is bounded from above. The budget set will be
described by

D̄(1)�
{
D1[0,T ) : D ∈ D(1)

}
and

C̄ (1) �
{
C ∈ C : 〈C,D〉 ≤ 1 for all D ∈ D̄(1)

}
= {

C ∈ C : (Ct∧T )t≥0 ∈ C (1)
}
.

Then Ū , μ̄ satisfy Assumption 2.1 if U does. Moreover, C̄ (1), D̄(1) are polar
to each other as requested in Section 3.2 and the consumption plans C, C̄ ∈ C
maximizing

E

∫ T

0
U(Ct) dμt , respectively E

∫ ∞
0

Ū (C̄t ) dμt

subject to C ∈ C (x), respectively, C̄ ∈ C̄ (x) are actually the same up to time T

(when all the optimal C̄ jump to +∞).
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5. Proofs of the main results.

5.1. Proof of Theorem 3.1. Theorem 3.1 follows readily from Lemmas 5.2
and 5.3 below. These results rely heavily on the following observation.

LEMMA 5.1. Suppose Assumption 2.1 holds true. For D ∈ D let D̆ denote its
envelope with (13) and (14) and, recalling (15), consider δD ∈ Ḋ(D) of (12) with

(33) CD � −V ′(δD) ∈ C .

Then δD attains the infimum in the definition (11) of V(D) and, if V(D) < ∞, δD

is in fact the unique minimizer in Ḋ(D), up to modifications on a P⊗ μ-null set.

PROOF. It is immediate from (14) that indeed δD ∈ Ḋ(D). Uniqueness of
minimizers for (11) is due to the strict convexity of V . It thus remains to prove
optimality of δD for (11). For this it suffices to show that, for n = 1,2, . . . ,

(34) E

∫ ∞
0

Vn(δ) dμ ≥ E

∫ ∞
0

Vn

(
δD)

dμ for any δ ∈ Ḋ(D),

where

(35) Vn(d) � sup
0≤c≤n

{
U(c) − cd

} =
{
U(n) − nd, 0 ≤ d ≤ U ′(n),

V (d), d ≥ U ′(n).

Indeed, it is readily checked that Vn ≥ 0 is continuously differentiable, decreasing
and convex on (0,∞) with Vn ↗ V as n ↑ ∞. Hence, due to monotone integration,
optimality of δD in (11) will follow by letting n ↑ ∞ in (34).

To prove this inequality, we first observe that, by definition and convexity of Vn,

U(n) = Vn(0) ≥ Vn

(
δD) − V ′

n

(
δD)

δD.

By Assumption 2.1, U(n) is P⊗ μ-integrable. Since Vn, δD and −V ′
n are nonneg-

ative, it thus follows that also

(36) −V ′
n

(
δD)

δD = (
CD ∧ n

)
δD ∈ L1(P⊗ μ),

where the identity is due to the definition (33) of CD .
Again by convexity of Vn, we have

(37) Vn(δ) − Vn

(
δD) ≥ V ′

n

(
δD)(

δ − δD) = (
CD ∧ n

)
δD − (

CD ∧ n
)
δ.

So to obtain (34), we have to show that the integral of the right-hand side of (37)
with respect to P⊗ μ is nonnegative. To this end, note that

E

∫ ∞
0

(
CD ∧ n

)
δ dμ =

〈
CD ∧ n, o

∫ ∞
·

δ dμ

〉
≤ 〈

CD ∧ n,D
〉
,

where the last estimate is immediate from δ ∈ Ḋ(D). When repeating this calcu-
lation for δD instead of δ this estimate turns into an identity because of (14) and
{d(CD ∧ n) > 0} ⊂ {dCD > 0}.
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In conjunction with (36), it follows that indeed

E

∫ ∞
0

(
CD ∧ n

)
δ dμ ≤ E

∫ ∞
0

(
CD ∧ n

)
δD dμ < ∞.

This completes our proof. �

LEMMA 5.2. Suppose Assumption 2.1 holds true. Then the conjugacy re-
lation (16) holds. Moreover, if U(Ĉ) < ∞, the infimum in (16) is attained for
D ∈ D if and only if its envelope process with (13) and (14) is actually D̆ =
o
∫ ∞
· U ′(Ĉ) dμ.

PROOF. To prove “≤” in (16), take D ∈ D with V(D) < ∞ and 〈Ĉ,D〉 < ∞.
By Lemma 5.1, there is δD ∈ Ḋ(D) such that V(D) = E

∫ ∞
0 V (δD)dμ. Then

E

∫ ∞
0

ĈδD dμ =
〈
Ĉ, o

∫ ∞
·

δD dμ

〉
≤ 〈Ĉ,D〉 < ∞.

Thus, we can integrate the inequality

0 ≤ U(Ĉ) ≤ V
(
δD) + ĈδD

with respect to P⊗ μ to deduce that indeed

0 ≤ U(Ĉ) = E

∫ ∞
0

U(Ĉ) dμ ≤ E

∫ ∞
0

V
(
δD)

dμ +E

∫ ∞
0

ĈδD dμ

≤ V(D) + 〈Ĉ,D〉.
For “≥” in (16) we can assume U(Ĉ) = E

∫ ∞
0 U(Ĉ) dμ < ∞ without loss of

generality. Let δ̂ � U ′(Ĉ) and note that because U is concave in c with U(0) = 0
we have

(38) 0 ≤ Ĉδ̂ = ĈU ′(Ĉ) ≤ U(Ĉ) ∈ L1(P⊗ μ).

Moreover, D̂ � o
∫ ∞
· δ̂ dμ ∈ D satisfies

V(D̂) ≤ E

∫ ∞
0

V (δ̂) dμ = E

∫ ∞
0

U(Ĉ) dμ +E

∫ ∞
0

Ĉδ̂ dμ < ∞.

From Lemma 5.1, it now follows that in fact V(D̂) = E
∫ ∞

0 V (δ̂) dμ < ∞. We thus
can integrate the identity

U(Ĉ) = V (δ̂) − Ĉδ̂

with respect to P⊗ μ to obtain

U(Ĉ) =V(D̂) −E

∫ ∞
0

Ĉδ̂ dμ =V(D̂) − 〈Ĉ, D̂〉.
This gives “≥” in (16).
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The preceding argument already establishes the “if”-part of the present lemma.
For the “only if”-part assume that D ∈ D satisfies U(Ĉ) = V(D) + 〈Ĉ,D〉 < ∞.
Clearly, we have V(D) < ∞ then. Thus, by Lemma 5.1, there is δD ∈ Ḋ(D) with
V(D) = E

∫ ∞
0 V (δD)dμ < ∞. Moreover, the choice of D entails E

∫ ∞
0 ĈδD dμ ≤

〈Ĉ,D〉 < ∞. Now, integrating

(39) U(Ĉ) ≤ V
(
δD) + ĈδD

with respect to P⊗ μ, we find

(40) U(Ĉ) ≤V(D) +
〈
Ĉ, o

∫ ∞
·

δD dμ

〉
≤V(D) + 〈Ĉ,D〉 =U(Ĉ) < ∞.

So, equality must hold true in all the above estimates. It follows that equality holds
P⊗μ-almost everywhere in (39) which readily implies δD = U ′(Ĉ) P⊗μ-almost
everywhere, and, thus, o

∫ ∞
· U ′(Ĉ) dμ = o

∫ ∞
· δD dμ ≤ D. Moreover, (40) then

also yields 〈Ĉ, o
∫ ∞
· U ′(Ĉ) dμ〉 = 〈Ĉ,D〉, that is, in fact, o

∫ ∞
· U ′(Ĉ) dμ = D on

the set {dĈ > 0}. By Lemma 5.1, this identifies o
∫ ∞
· U ′(Ĉ) dμ as the envelope

process D̆ of D with (13) and (14). This completes our proof. �

LEMMA 5.3. Suppose Assumption 2.1 holds. Then the conjugacy relation (17)
holds. Moreover, if V(D̂) < ∞, the supremum in (17) is attained exactly for Ĉ �
CD̂ where CD̂ is defined in Lemma 5.1.

PROOF. Let us first apply Lemma 5.1 to obtain that there is δ̂ � δD̂ ∈ Ḋ(D̂)

with V(D̂) = E
∫ ∞

0 V (δ̂) dμ.
To see that “≥” holds in (17), take C ∈ C with U(C) = E

∫ ∞
0 U(C)dμ < ∞.

Without loss of generality, we can assume V(D̂) < ∞ and 〈C, D̂〉 < ∞. Then all
terms in the inequality

V (δ̂) ≥ U(C) − Cδ̂

are P ⊗ μ-integrable. Upon integration, we get V(D̂) ≥ U(C) − 〈C, o
∫ ∞
· δ̂ dμ〉.

This implies the desired estimate since o(
∫ ∞
· δ̂ dμ) ≤ D̂.

For the proof of “≤” in (17) consider Ĉ � −V ′(δ̂) ∈ C where δ̂ is chosen as
above. If V(D̂) = ∞, we consider Cn � Ĉ ∧ n ∈ {U < ∞}, n = 1,2, . . . , in (17)
to deduce

U
(
Cn) − 〈

Cn, D̂
〉 = E

∫ ∞
0

(
U(Ĉ ∧ n) − (Ĉ ∧ n)U ′(Ĉ ∧ n)

)
dμ

= E

∫ ∞
0

Vn(δ̂) dμ,

where Vn is as in (35). Since Vn ↗ V , it follows by monotone integration that as
n ↑ ∞ the above expression converges to E

∫ ∞
0 V (δ̂) dμ ≥ V(D̂) and we obtain

“≤” in (17) in case V(D̂) = ∞.
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For the remaining case where E
∫ ∞

0 V (δ̂) dμ < ∞, let us first show that U(Ĉ) =
E

∫ ∞
0 U(Ĉ) dμ < ∞. Indeed, by Assumption 2.1 the asymptotic elasticity of U

is uniformly less than one in the sense that cU ′(c) < γU(c) for c > Cγ where
γ ∈ [0,1). Thus, we have

L1(P⊗ μ) � V (δ̂) = U(Ĉ) − ĈU ′(Ĉ) ≥ (1 − γ )U(Ĉ) ≥ 0 on
{
Ĉ > Cγ }

.

Since by assumption E
∫ ∞

0 U(Cγ )dμ < ∞, it thus follows that U(Ĉ) ∈ L1(P ⊗
μ), that is, U(Ĉ) < ∞.

Now, recalling the estimate (38), we deduce from U(Ĉ) < ∞ that also 〈Ĉ, D̂〉 =
E

∫ ∞
0 Ĉδ̂ dμ < ∞. The “≤”-claim therefore follows upon integration of V (δ̂) =

U(Ĉ)− Ĉδ̂ with respect to P⊗μ. This also establishes the “if”-part of our lemma.
The “only if”-part follows immediately from this and the strict concavity of U on
{U < ∞} which implies the uniqueness of the optimizer Ĉ. �

5.2. Proof of Theorem 3.2. The proof of Theorem 3.2 is prepared by the fol-
lowing Lemmas 5.4–5.9.

LEMMA 5.4. Under the assumptions of Theorem 3.2, we have

(41) v(y) = inf
δ∈Ḋ(y)

E

∫ ∞
0

V (δ) dμ, y > 0,

where

(42) Ḋ(y) �
⋃

D∈D(y)

Ḋ(D).

Moreover, for any y > 0 with v(y) < ∞, the infimum in (41) is attained at a unique
δy ∈ Ḋ(y) for which, in addition, Ĉy � −V ′(δy) is contained in C . Finally, v is
strictly convex on {v < ∞}.

PROOF. Identity (41) is immediate from (42) and Lemma 5.1.
Now assume v(y) < ∞ and consider a minimizing sequence δn ∈ Ḋ(y) for (41).

By Lemma A1.1 of Delbaen and Schachermayer [11], there is a sequence δ̃n

of convex combinations of δn, δn+1, . . . which converges P ⊗ μ-almost every-
where to an optional δy taking values in [0,∞]. In fact, δy ∈ Ḋ(y) because
Dy � o

∫ ∞
· δy dμ ∈ D(y), which holds since by Fatou’s lemma

〈
C,Dy 〉 = E

∫ ∞
0

Cδy dμ ≤ lim inf
n

E

∫ ∞
0

Cδ̃n dμ

= lim inf
n

〈
C, o

∫ ∞
·

δ̃n dμ

〉
≤ xy

for any C ∈ C (x), x > 0. Here the last inequality follows because δ̃n ∈ Ḋ(y) by
convexity of this set. Another application of Fatou’s lemma reveals

E

∫ ∞
0

V
(
δy)

dμ ≤ lim inf
n

E

∫ ∞
0

V
(
δ̃n)

dμ ≤ lim inf
n

E

∫ ∞
0

V
(
δn)

dμ = v(y)
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by convexity of V and our choice of (δn)n=1,2,... as a minimizing sequence. This
proves existence of a minimizer for (41). Uniqueness up to a P ⊗ μ-null set fol-
lows from the strict convexity of V . In fact, applying Lemma 5.1 for D � Dy

reveals that δy has a predictable P ⊗ μ-modification which is unique up to indis-
tinguishability if we require, in addition, that −V ′(δy) ∈ C . Strict convexity of v
on {v < ∞} now follows from strict convexity and strict monotonicity of V . �

LEMMA 5.5. Under the assumptions of Theorem 3.2, the primal value func-
tion u of (20) is real-valued and conjugate to the dual value function v of (21) in
the sense that (22) and (23) hold true.

PROOF. The primal value function u is, by assumption, finite at some point
x > 0. Its concavity then yields that it is finite and, thus, continuous on all of
(0,∞). Therefore, by classical duality results (cf., e.g., Theorem 12.2 in Rock-
afellar [25]), (22) follows from (23).

Let us first argue that “≥” holds in (23). So take C ∈ C (x) and D ∈ D(y). Then
〈C,D〉 ≤ xy and, by equation (16) of Theorem 3.1:

U(C) − xy ≤V(D) + 〈C,D〉 − xy ≤V(D).

Taking the supremum over C ∈ C (x) and the infimum over D ∈ D(y) in this
relation yields “≥” in (23).

To obtain that also “≤” holds in (23), we shall employ the Minimax Theo-
rem B.3 from the Appendix with:

• A � Cn � {C ∈ C : C∞ ≤ n} where n ∈ {1,2, . . . }, a convexly compact subset
of the space of left-continuous processes with bounded total variation endowed
with the metric distC of (2); see Lemma B.2.

• B � D(y) which can be viewed as a convex, closed subset of the space of real-
valued right-continuous optional processes endowed with the metric distD of (3)
because ED0 = 〈1,D〉 ≤ y by assumption on D(y) = yD(1); and with

• H(C,D) � U(C) − 〈C,D〉, which is convex (even linear) in D ∈ B = D(y)

and concave and upper-semicontinuous in C ∈ A = Cn, because, with respect
to the metric distC , U is continuous on Cn by dominated convergence and 〈·,D〉
is lower-semicontinuous due to Lemma B.1.

We thus obtain that, for n = 1,2, . . . ,

sup
C∈Cn

inf
D∈D(y)

{
U(C) − 〈C,D〉} = inf

D∈D(y)
sup

C∈Cn

{
U(C) − 〈C,D〉}.(43)

Let us next prove that, as n ↑ ∞, the left side of (43) converges to

sup
0≤x<∞

{
u(x) − xy

}
.
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Clearly, with π(C)� supD∈D(1)〈C,D〉 the limit of left side of (43) can be written
as

sup
C∈C bounded

inf
D∈D(y)

{
U(C) − π(C)y

} = sup
0≤x<∞

sup
C∈C (x) bounded

{
U(C) − xy

}
= sup

0≤x<∞
{
u(x) − xy

}
,

where the last identity holds because by monotone convergence U(C) =
limnU(C ∧ n), C ∈ C , so that the utility of any C can be approximated by the
utility of bounded controls.

Now the proof of the present lemma will be accomplished once we have shown
that, as n ↑ ∞, the right side of (43) tends to a limit which is not smaller than v(y).
To this end, we first observe that

(44) sup
C∈Cn

{
U(C) − 〈C,D〉} = E

∫ ∞
0

Vn(− ˙̆
D)dμ for any D ∈ D(y),

where Vn is given by (35). Indeed, because D ≥ D̆, we have

U(C) − 〈C,D〉 ≤U(C) − 〈C, D̆〉 = E

∫ ∞
0

(
U(C) − C(− ˙̆

D)
)
dμ,

where for C ∈ Cn the last integrand is not larger than Vn(− ˙̆
D). This proves “≤”

in (44). For “≥” we just need to observe that C �−V ′
n(− ˙̆

D) = −V ′(− ˙̆
D)∧n ∈ Cn

will give equality in both of the preceding estimates.

Due to (44), we can take Dn ∈ D(y) with 0 ≤ δn � − ˙̆
Dn such that

E
∫ ∞

0 Vn(δ
n) dμ converges to the limit of the right side of (43) as n ↑ ∞. By

Lemma A1.1 in [11], there are δ̃n ∈ conv{δn, δn+1, . . . }, n = 1,2, . . . , which con-
verge P ⊗ μ-almost everywhere to some δ∗ ≥ 0. Because all δn are contained in
Ḋ(y), so are, by convexity of this set, all the δ̃n. In fact, also δ∗ ∈ Ḋ(y) because
D∗ � o

∫ ∞
· δ∗ dμ ∈ D(y) as by Fatou’s lemma

〈
C,D∗〉 = E

∫ ∞
0

Cδ∗ dμ ≤ lim inf
n

E

∫ ∞
0

Cδ̃n dμ

= lim inf
n

〈
C, o

∫ ∞
·

δ̃n dμ

〉
≤ xy

for any C ∈ C (x).
It follows that for N = 1,2, . . . ,

lim
n

inf
D∈D(y)

sup
C∈Cn

{
U(C) − 〈C,D〉}

= lim
n

E

∫ ∞
0

Vn

(
δn)

dμ
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≥ lim inf
n

E

∫ ∞
0

VN

(
δn)

dμ ≥ lim inf
n

E

∫ ∞
0

VN

(
δ̃n)

dμ ≥ E

∫ ∞
0

VN

(
δ∗)

dμ

−→
N↑∞E

∫ ∞
0

V
(
δ∗)

dμ ≥ v(y),

where the first estimate and the convergence follow from Vn ≥ VN ↗ V for n ≥
N ↑ ∞. The second estimate is due to the convexity of VN and the third is due to
Fatou’s lemma. The last estimate is immediate from Lemma 5.1 and δ∗ ∈ Ḋ(y).

�

LEMMA 5.6. Under the assumptions of Theorem 3.2, v of (21) is real-valued,
strictly convex and strictly decreasing on (0,∞). Moreover, u of (20) is continu-
ously differentiable on (0,∞) with u′(∞) = 0.

PROOF. Let us first show that even

(45) lim
x↑∞ u(x)/x = 0.

Indeed, since u takes real values by Lemma 5.5, we can find, for ε > 0 and x > 0,
a Cx,ε ∈ C (x) such that u(x) ≤ U(Cx,ε) + ε. Then, by the equivalent formula-
tion (6) of our asymptotic elasticity condition (4),

U
(
Cx,ε) ≤ xγ U

(
Cx,ε/x

)
on

{
Cx,ε ≥ Cγ }

.

Upon integration with respect to P⊗ μ we thus obtain

u(x) ≤ xγ
E

∫ ∞
0

U
(
Cx,ε/x

)
dμ +E

∫ ∞
0

U
(
Cγ )

dμ + ε

≤ xγ u(1) +E

∫ ∞
0

U
(
Cγ )

dμ + ε,

where we used that Cx,ε/x ∈ C (1). Since γ ∈ [0,1), our claim (45) now follows
upon division by x ↑ ∞.

In conjunction with (45), the duality between u and v established in Lemma 5.5
yields that v(y) < ∞ for y > 0. By Lemma 5.1, v is thus strictly convex on (0,∞).
This immediately implies that v is strictly decreasing, by classical convex duality
results (e.g., Rockafellar [25]), strict convexity of v implies the differentiability of
its conjugate u on (0,∞). By concavity and monotonicity, 0 ≤ u′(x) ≤ u(x)/x.
So (45) also yields u′(∞) = 0. �

The following lemma is a minor adaptation of the Lemmas 3.6 and 3.7 in
Kramkov and Schachermayer [21].

LEMMA 5.7. Under the assumptions of Theorem 3.2, the minimizers δy ∈
Ḋ(y) from Lemma 5.4 depend continuously on y > 0 in the sense that the mapping

(0,∞) � y 
→ (
δy,V

(
δy)

,−V ′(δy)
δy) ∈ L0(P⊗ μ) × L1(P⊗ μ) × L1(P⊗ μ)

is continuous.
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PROOF. That the above mapping is indeed defined on all of (0,∞) is due to
the finiteness of v on (0,∞) established in Lemma 5.6.

We first prove that δyn → δy in L0(P⊗μ) for any yn → y ∈ (0,∞). If δyn does
not converge to δy in this sense then there is ε > 0 such that

lim sup
n

P⊗ μ
[∣∣δyn − δy

∣∣ > ε, δyn + δy < 1/ε
]
> ε,

where we recall that (δyn)n=1,2,... is bounded in L1(P⊗ μ) because

E

∫ ∞
0

δyn dμ =
〈
1, o

∫ ∞
·

δyn dμ

〉
≤ yn → y > 0

by definition of Ḋ(yn). Observe now that, by strict convexity of V , δn � 1
2(δyn +

δy) satisfies

V
(
δn) ≤ 1

2

(
V

(
δyn

) + V
(
δy))

and, for some sufficiently small η > 0, also

lim sup
n

P⊗ μ

[
V

(
δn) ≤ 1

2

(
V

(
δyn

) + V
(
δy)) − η

]
> η.

Upon integration with respect to P⊗ μ it follows that

lim sup
n

E

∫ ∞
0

V
(
δn)

dμ ≤ lim sup
n

1

2
E

∫ ∞
0

(
V

(
δyn

) + V
(
δy))

dμ − η2

= lim sup
n

1

2

(
v
(
yn) + v(y)

) − η2 = v(y) − η2,

where the last identity is due to the continuity of the convex function v. On the
other hand, by the scaling property and convexity of the sets D(y) = yD(1), we
have δn ∈ Ḋ(y ∨ yn) and therefore, by Lemma 5.4,

v(y) = lim
n

v
(
y ∨ yn) ≤ lim inf

n
E

∫ ∞
0

V
(
δn)

dμ.

This clearly contradicts the preceding inequality and so we must have indeed that
δyn → δy in L0(P⊗ μ).

Convergence of V (δyn) ≥ 0 in L1(P ⊗ μ) now follows from convergence in
L0(P⊗ μ) and

E

∫ ∞
0

V
(
δyn

)
dμ = v

(
yn)−→

n↑∞ v(y) = E

∫ ∞
0

V
(
δy)

dμ.

Moreover, L1(P ⊗ μ)-convergence of (−V ′(δyn)δyn)n=1,2,... will follow once we
have established the uniform P ⊗ μ-integrability of this sequence. Our uniform
asymptotic elasticity condition (8) gives

(46) (1 − γ )
(−V ′(δyn

))
δyn ≤ γV

(
δyn

)
on

{
δyn < δγ }

,
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where γ ∈ (0,1) and δγ � U ′(Cγ ). Moreover, we have, with Cyn � −V ′(δyn),
that

(47) 0 ≤ (−V ′(δyn
))

δyn = CynU ′(Cyn
) ≤ U

(
Cyn

) ≤ U
(
Cγ )

on {δyn ≥ δγ } = {Cyn ≤ Cγ }. In conjunction with the already established L1(P⊗
μ)-convergence of (V (δyn))n=1,2,... and our assumption that U(Cγ ) is P ⊗ μ-
integrable, the combination of the estimates (46) and (47) yields the desired uni-
form integrability. �

We now can use a variant of the argument in Lemma 3.8 of Kramkov and
Schachermayer [21] to deduce the following lemma.

LEMMA 5.8. Under the assumptions of Theorem 3.2, the dual value function
v is continuously differentiable on (0,∞) with

(48) v′(y)y = E

∫ ∞
0

V ′(δy)
δy dμ, y > 0,

and v′(0) = −∞, v′(∞) = 0. Moreover, u is strictly increasing and strictly con-
cave on (0,∞) with u′(0) = ∞.

PROOF. We first observe that for y > 0 and λn ↓ 1,

(49)
(−V ′(δλny/λn

)
δλny)

n=1,2,... is uniformly P⊗ μ-integbrale.

Indeed, by employing successively the dual asymptotic elasticity estimates
from (8) and (9) and also the monotonicity of V , we get

0 ≤ −V ′(δλny/λn

)
δλny ≤ γ

1 − γ
V

(
δλny/λn

)

≤ γ

1 − γ
V

((
δλny ∧ δγ )

/λn

)

≤ γ

1 − γ

(
1

λn

) γ
1−γ

V
(
δλny ∧ δγ )

= γ

1 − γ

(
1

λn

) γ
1−γ (

V
(
δλny) ∨ V

(
δγ ))

on {δλny/λn ≤ δγ }. With Cλn � −V ′(δλny/λn), the complement of this set is
{δλny/λn > δγ } = {Cλn < Cγ } and so, on this set,

0 ≤ −V ′(δλny/λn

)
δλny = U ′(Cλn

)
Cλnλn ≤ U

(
Cλn

)
λn ≤ U

(
Cγ )

λn.

Hence, to obtain our claim (49) it suffices to observe that on either set we find an
upper bound which is uniformly integrable. This is clear for (U(Cγ )λn)n=1,2,....
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On the other hand, Lemma 5.7 yields in particular the uniform P⊗ μ-integrability
of (V (δλny))n=1,2,... and finally V (δγ ) ≤ U(Cγ ) ∈ L1(P⊗ μ).

We now can argue exactly as in Lemma 3.8 of Kramkov and Schachermayer
[21] and pass to the limit λ ↓ 1 in

v(λy) − v(y)

λ − 1
≤ E

∫ ∞
0

V (λδy) − V (δy)

λ − 1
dμ

by monotone convergence and, by uniform integrability, also in

v(λy) − v(y)

λ − 1
≥ E

∫ ∞
0

V (δλy) − V (δλy/λ)

λ − 1
dμ

≥ E

∫ ∞
0

V ′(δλy/λ
)
δλy 1 − 1/λ

λ − 1
dμ

to see, respectively, that (v(λy) − v(y))/(λ − 1) has a lim sup not larger and a
lim inf not smaller than the right side of (48). The continuity of this expression
established in Lemma 5.7 in conjunction with the convexity of v then implies our
claim.

The strict monotonicity of u now follows from its strict concavity on (0,∞)

which, in turn, is equivalent to the differentiability of its convex conjugate v on
(0,∞) by classical duality results; see, for example, Theorem 26.3 in Rockafellar
[25]. These same results also yield the equivalence of v′(∞) = 0 and u′(0) = ∞,
and the first of these relations is immediate from the fact that v is strictly convex
and decreasing and bounded from below (by 0). Similarly, classical duality yields
the equivalence of v′(0) = −∞ and u′(∞) = 0, where the last relation was already
established in Lemma 5.6. �

LEMMA 5.9. Under the assumptions of Theorem 3.2, Cx �−V ′(δy) with y =
u′(x) and δy as in Lemma 5.4 is the unique control in C (x) that attains u(x) =
U(Cx) for x > 0.

PROOF. Uniqueness of a maximizer Cx for u(x) is immediate from the strict
concavity of U . Define Dy � o

∫ ∞
· δy dμ ∈ D(y) and observe that due to (16) in

Theorem 3.1 we have for any C ∈ C (x):

U(C) ≤V
(
Dy) + 〈

C,Dy 〉 ≤V
(
Dy) + xy.

By item 3 of Theorem 3.1 and by (48), we have equalities in both of these estimates
when we consider C � Cx = −V ′(δy). It thus suffices to prove that Cx ∈ C (x),
that is,

(50)
〈
Cx,D

〉 ≤ xy for any D ∈ D(y).

For this, we first note that, for any such D, we have

(51) Dε � εD + (1 − ε)Dy ∈ D(y) with V
(
Dε) < ∞,0 < ε < 1.
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Indeed, by monotonicity of V,

V
(
Dε) ≤V

(
(1 − ε)Dy) ≤ E

∫ ∞
0

V
(
(1 − ε)δy)

dμ

so that for (51) it suffices to argue that V ((1 − ε)δy) is P ⊗ μ-integrable. To this
end, we use the asymptotic elasticity condition (9) which, in conjunction with the
monotonicity of V , gives

V
(
(1 − ε)δy) ≤ V

(
(1 − ε)

(
δy ∧ δγ ))

≤ (1 − ε)
γ

1−γ V
(
δy ∧ δγ ) = (1 − ε)

γ
1−γ V

(
δy) ∨ V

(
δγ )

.

Hence, the integrability claim of (51) follows since V (δy) ∈ L1(P⊗ μ) by choice
of δy and V (δγ ) = U(Cγ ) − Cγ U ′(Cγ ) ∈ L1(P⊗ μ) by assumption on Cγ .

Because of (51), we can apply Theorem 3.1 part 3 to deduce that there is a
unique Cε ∈ C such that V(Dε) = U(Cε) − 〈Cε,Dε〉. Moreover, (17) of Theo-
rem 3.1 gives V(Dy) ≥U(Cε)−〈Cε,Dy〉. Recalling the minimality of V(Dy) we
thus obtain

0 ≤V
(
Dε) −V

(
Dy) ≤ 〈

Cε,Dy − Dε〉 = ε
〈
Cε,Dy − D

〉
.

Therefore,

(52) 0 ≤ 〈
Cε,D

〉 ≤ 〈
Cε,Dy 〉 ≤ 1

1 − ε

〈
Cε,Dε〉,

where the last estimate is immediate from Dy ≤ Dε/(1 − ε). Hence, (50) will
follow from letting ε ↓ 0 in (52) once we have established that

(53)
〈
Cx,D

〉 ≤ lim inf
ε↓0

〈
Cε,D

〉
and

(54) lim
ε↓0

〈
Cε,Dε〉 = xy.

To obtain this it suffices to consider a sequence εn ↓ 0 and prove

(55) distC
(
Cεn,Cx) → 0 as n ↑ ∞

for the metric distC of (2) and

(56) CεnU ′(Cεn
)−→

n↑∞ CxU ′(Cx) = Cxδy in L1(P⊗ μ).

Indeed, the lower semi-continuity of the bracket 〈·,D〉 with respect to convergence
in distC (Lemma B.1) then yields (53). Similarly (54) follows because (56) yields

〈
Cx,Dy 〉 = E

∫ ∞
0

Cxδydμ = lim
n

E

∫ ∞
0

CεnU ′(Cεn
)
dμ = lim

n

〈
Cεn,Dεn

〉
and because (48) yields that 〈Cx,Dy〉 = xy by choice of x and y.
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For (55) we will in fact prove that δεn � U ′(Cεn) → δy = U ′(Cx) in L0(P⊗μ).
If this convergence fails there is ε > 0 such that

lim sup
n

P⊗ μ
[∣∣δεn − δy

∣∣ > ε
]
> ε.

Observe now that by strict convexity of V , δn � 1
2(δεn + δy) ∈ Ḋ(y) satisfies

V
(
δn) ≤ 1

2

(
V

(
δεn

) + V
(
δy))

and, for some sufficiently small η > 0, also

lim sup
n

P⊗ μ

[
V

(
δn) ≤ 1

2

(
V

(
δεn

) + V
(
δy)) − η

]
> η.

Upon integration with respect to P⊗ μ we obtain the contradiction

v(y) ≤ lim sup
n

E

∫ ∞
0

V
(
δn)

dμ

≤ lim sup
n

1

2
E

∫ ∞
0

(
V

(
δεn

) + V
(
δy))

dμ − η2

= lim sup
n

1

2

(
V

(
εnD + (1 − εn)D

y) +V
(
Dy)) − η2

≤ V
(
Dy) − η2 < v(y),

where the last but one estimate is due to the upper-semicontinuity of the convex
function [0,1] � ε 
→V(εD+ (1−ε)Dy) at the boundary point 0. Hence, we must
have indeed that δyn → δy in L0(P⊗ μ).

In light of (55), the convergence (56) will follow once we have established
the uniform P ⊗ μ-integrability of (CεnU ′(Cεn))n=1,2,.... On {Cεn ≤ Cγ }, we
have CεnU ′(Cεn) ≤ U(Cεn) ≤ U(Cγ ) ∈ L1(P ⊗ μ) by assumption on Cγ . On
{Cεn > Cγ } = {δεn < δγ }, we have CεnU ′(Cεn) = −δεnV ′(δεn) ≤ γ

1−γ
V (δεn)

by our asymptotic elasticity assumption. So it suffices to prove the L1(P ⊗ μ)-
convergence of (V (δεn))n=1,2,.... Since this sequence is convergent in L0(P ⊗ μ)

and nonnegative, this amounts to showing

lim
n

E

∫ ∞
0

V
(
δεn

)
dμ = E

∫ ∞
0

V
(
δy)

dμ.

By Fatou’s lemma, we have “≥” for lim infn. Recalling E
∫ ∞

0 V (δεn) dμ =
V(εnD + (1 − εn)D

y), we deduce “≤” for the lim supn from the upper-semi-
continuity of the convex function [0,1] � ε 
→V(εD+ (1−ε)Dy) at the boundary
point 0. �

We now can finally prove our second main result.
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PROOF OF THEOREM 3.2. For item 1 we note that u and v are real-valued by
Lemmas 5.5 and 5.6, respectively. Their duality is established in Lemma 5.5 and
their differentiability is contained in Lemmas 5.6 and 5.8, respectively. The Inada
conditions (24) can be collected from Lemmas 5.6 and 5.8. The conjugacy relations
between optimizers for u and v follow from the duality of u and v. Strict concavity
of u is similarly a consequence of the differentiability of v; see Theorem 26.3 in
Rockafellar [25].

Item 3 is just a dual formulation of item 2. For y > 0, Lemma 5.4 yields δy ∈
Ḋ(y) with v(y) = E

∫ ∞
0 V (δy) dμ. This readily implies that D̆y � o

∫ ∞
· δy dμ is

contained in D(y) and attains the infimum in (21). Lemma 5.9 shows that Cx �
−V ′(δy) attains u(x) = U(Cx). Let now D̃ ∈ D(y) also attain v(y) = V(D̃). We
then have

U
(
Cx) = u(x) = v(y) + xy ≥V(D̃) + 〈

Cx, D̃
〉
,

that is, D̃ attains the infimum (16) for Ĉ � Cx . It thus follows by item 2 of Theo-
rem 3.1 that D̃ has an envelope process whose density coincides with −U ′(Cx) =
δy . Hence, the envelope process of all the minimizers of (21) is the same process
D̆y . This completes our proof. �

APPENDIX A: SOME STOCHASTIC ENVELOPE PROCESSES

The existence of envelope processes D̆ with (13) and (14) for D ∈ D is key for
our approach. We show below how to obtain such an envelope from a result in Bank
and El Karoui [3]. Uniqueness is established by an optimal stopping argument
which we adopt from Bank and Föllmer [4].

LEMMA A.1. Under Assumption 2.1, any D ∈ D has a unique (up to indis-
tinguishability) envelope process D̆ of the form

(57) D̆ = o

(∫ ∞
t

U ′(CD̆)
dμ

)
t≥0

for some CD̆ ∈ C

such that P-a.s.

(58) D̆t ≤ Dt for any t ≥ 0, with “=” if dCD̆
t > 0.

PROOF. For existence, we will employ Theorem 2 of [3], which, however,
we cannot directly apply with X � D because D may not be of class (D). For
this reason, we let Sn � inf{t ≥ 0 : Dt ≤ n} and consider Xn � o(D.∨Sn) for n =
1,2, . . . . Then Xn is not only clearly lower-semicontinuous in expectation with
Xn∞ = 0 but also of class (D). Indeed, because D is the optional projection of
a right-continuous and nonincreasing process D̃ with D̃∞ = 0, we have for any
stopping time T :

E
[∣∣Xn

T

∣∣1{|Xn
T |≥c}

] = E[D̃Sn∨T 1{|Xn
T |≥c}] ≤ E[D̃Sn1{|Xn

T |≥c}].
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This converges to 0 uniformly in T as c ↑ ∞ since D̃Sn ∈ L1(P) (because ED̃Sn =
EDSn ≤ n by right-continuity of D) and since P[|Xn

T | ≥ c] ≤ ED̃Sn∨T /c ≤ n/c.
Now, let

ft (ω, l) �
{
U ′

t (ω,−1/l), l < 0,

−l, l ≥ 0.

Then, by the properties of U :

• l 
→ ft (ω, l) is a continuous function, strictly decreasing from +∞ to −∞ in
l ∈ (−∞,∞) for any (ω, t) ∈ � × [0,∞), and

• (ω, t) 
→ ft (ω, l) is a predictable P ⊗ μ-integrable process on � × [0,∞) for
any l ∈ (−∞,∞).

So, by Theorem 2 of [3] and their Remark 2.1, there exists an optional process Ln

such that

Xn
S = E

[∫ ∞
S

ft

(
sup

v∈[S,t)

Ln
v

)
dμt

∣∣∣FS

]

for any stopping time S ≥ 0. Clearly, we may assume that Ln = Ln+1 on (Sn,∞).
So

Lt �
{
Ln

t , t ∈ (
Sn,∞)

, n = 1,2, . . . ,

−∞, t ∈ [
0, S∞]

,

where S∞ = infn Sn = inf{t ≥ 0 : Dt < ∞}, consistently defines an optional pro-
cess L such that

DS = E

[∫ ∞
S

ft

(
sup

v∈[S,t)

Lv

)
dμt

∣∣∣FS

]

for any stopping time S ≥ 0.
Let us next argue that L ≤ 0 up to indistinguishability. Otherwise there exists, by

Meyer’s optional section theorem, a stopping time S such that LS > 0 on {S < ∞}
where the latter set has positive probability. But then we obtain, by definition of f ,

0 ≤ DS = E

[∫ ∞
S

ft

(
sup

v∈[S,t)

Lv

)
dμt

∣∣∣FS

]
≤ −LSE

[
μ

([S,∞)
)|FS

]
< 0

on {S < ∞}, a contradiction.
It follows that

CD̆
t �

⎧⎨
⎩

0, t ∈ [
0, S∞]

,

−1/ sup
s∈[0,t)

Ls, t ∈ (S∞,∞],

and D̆ � o
∫ ∞
· U ′(CD̆) dμ yield processes contained in C and D , respectively,

with the desired properties (57) and (58).
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Let us now prove uniqueness of such a D̆ and take an arbitrary C̃ ∈ C such that
D̃ = o

∫ ∞
· U ′(C̃) dμ ∈ D satisfies D̃ ≤ D, with “=” on {dC̃ > 0}. We will show

that, for any l > 0, S̃l � inf{t ≥ 0 : C̃t > l} is the largest stopping time minimizing
E[DS − ∫ ∞

S U ′(l) dμ] over all stopping times S. As a result, the level passage

times for C̃ are uniquely determined and, thus, have to coincide with those of CD̆ ,
proving that C̃ = CD̆ , that is, D̃ = D̆ up to indistinguishability.

For our optimal stopping claim, we first note that 0 ≤ U ′(l) ≤ U(l)/ l ∈ L1(P⊗
μ) for l > 0 and so the above optimal stopping problem is well-defined. Now take
a stopping time S ≥ 0 and observe that

E

[
DS −

∫ ∞
S

U ′(l) dμ

]
≥ E

[∫ ∞
S

{
U ′(C̃) − U ′(l)

}
dμ

]

≥ E

[∫ ∞
S̃l

{
U ′(C̃) − U ′(l)

}
dμ

]
,

where the first inequality is due to D ≥ D̃ and the second follows by definition
of S̃l and monotonicity of c 
→ U ′(c). For S = S̃l the properties of C̃ ensure that
we have equality everywhere in the above estimates and so S̃l solves our optimal
stopping problem. Moreover, the strict monotonicity of c 
→ U ′(c) and the full
support of μ ensure that any stopping time S > S̃l will yield a strict inequality in
the last estimate above. So S̃l is in fact the largest solution to the stopping problem,
as remained to be shown. �

APPENDIX B: CONVEX COMPACTNESS AND A MINIMAX THEOREM

In this section, we first collect a few properties of subsets of C related to the
pairing (1). In particular, we investigate the induced notion of convex compact-
ness. For the sake of completeness, we also provide a version of the well-known
minimax theorem which is adapted to this generalized notion of compactness.

LEMMA B.1. The pairing (C,D) 
→ 〈C,D〉 is lower-semicontinuous with re-
spect to convergence Cn → C in the metric distC of (2) for fixed D ∈ D and also
with respect to convergence Dn → D in the metric distD of (3) for fixed C ∈ C .

PROOF. Let us first show lower-semicontinuity with respect to C ∈ C for fixed
D ∈ D . Let D̃ be a nonnegative process with right-continuous, nonincreasing paths
such that D = oD̃.

By Fatou’s lemma, we have

lim inf
n

〈
Cn,D

〉 = lim inf
n

E

∫
(0,∞]

Cn|dD̃| ≥ E

∫
(0,∞]

lim inf
n

Cn|dD̃|.
Without loss of generality, the sequence (Cn)n=1,2,... is such that 〈Cn,D〉 con-
verges and such that P-almost surely Cn

t → Ct for μ-almost every t ≥ 0. By
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monotonicity, we then have in fact limn Cn = C on {�C = 0}. The countable com-
plement of this set is a |dD̃|-null set P-almost surely if D̃ is continuous and so we
deduce

lim inf
n

〈
Cn,D

〉 ≥ E

∫
(0,∞]

C|dD̃| = E

∫
[0,∞)

D̃ dC = 〈C,D〉.

For merely right-continuous D̃ with nonincreasing paths, we can find contin-
uous, real-valued D̃m ≥ 0 with D̃m ↗ D̃ pointwise as m ↑ ∞. So, applying the
preceding reasoning to D̃m and its optional projection Dm � oD̃m ≤ D, we can
conclude

lim inf
n

〈
Cn,D

〉 ≥ lim inf
n

〈
Cn, oD̃m〉 ≥ 〈

C, oD̃m〉 = E

∫
[0,∞)

Dm dC

for m = 1,2, . . . . Since Dm ↗ D by monotone integration, the claim for D then
follows by monotone integration as we let m ↑ ∞ in the last term of the above
inequality.

For lower-semicontinuity in D for fixed C ∈ C , observe that Dn → D in the
metric dD implies in particular that Dn → D P⊗ dC-almost everywhere. Hence,
by Fatou’s lemma,

lim inf
n

〈
C,Dn〉 = lim inf

n
E

∫ ∞
0

Dn dC ≥ E

∫ ∞
0

D dC = 〈C,D〉. �

Recall from Žitković [28], Definition 2.1, that a subset of a topological vector
space is convexly compact if it satisfies the finite intersection property for closed
and convex subsets. Equivalently, a closed and convex subset of a topological vec-
tor space is convexly compact if and only if for every net in this set there exists a
convergent subnet of convex combinations (cf. Proposition 2.4 in [28]).

We use convex compact sets in the Minimax theorem B.3 below. The connection
with our duality framework of Lemma 5.5 is made possible by the following result.

LEMMA B.2. Let A be a convex subset of the consumption space C that is
closed in the topology generated by the metric distC of (2). Then A is convexly
compact if and only if the set of random variables {C∞ : C ∈ A } is bounded in
probability.

In particular, for any c ∈ [0,∞), {C ∈ C : C∞ ≤ c} is a convexly compact sub-
set of the space of left-continuous processes with bounded total variation endowed
with the metric distC .

PROOF. The proof combines well-known techniques from Žitković [28] and
Delbaen and Schachermayer [11]. The details of how to modify these techniques
to our space of controls C can be found in Theorem 3.3 in Kauppila [19].

The first step is to show that sets bounded in probability are convexly com-
pact. Lemma A1.1 in [11] illustrates how a (generic) strictly concave functional
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on the space of interest (in our case the space of consumption plans) can be used
to establish convergence of a subsequence of convex combinations. With minor
modifications the technique can be used for nets as well.

The second part is to show that convexly compact sets are bounded in proba-
bility. Theorem 3.1 in Žitković [28] proves that closed and convex subsets of L0+
are convexly compact if and only if the set is bounded in probability. The “only
if”-part of this theorem can be adapted to show that convexly compact subsets of
the consumption space are bounded in probability. �

We finish by noting a version of the common minimax theorem which uses
convex compactness and follows with appropriate modifications from the basic
outline of Theorem 3.1 in Simons [26].

THEOREM B.3. Let A be a nonempty convex, closed and convexly compact
subset of a topological vector space and let B be a nonempty convex subset of
another topological vector space. Let furthermore

H : A × B → (−∞,∞),

(A,B) 
→ H(A,B)

be concave and upper-semicontinuous in A ∈ A for B ∈ B fixed, and convex in
B ∈ B for A ∈ A fixed.

Then we have the minimax relation

(59) sup
A∈A

inf
B∈B

H(A,B) = inf
B∈B

sup
A∈A

H(A,B).

PROOF. It is easy to see that “≤” holds true in (59). For the proof of “≥,” we
let α � infB∈B supA∈A H(A,B) and we will show that{

A ∈ A :H(A,B) ≥ α
}
, B ∈ B,

is a collection of closed convex subsets of A which satisfies the finite intersection
property. Convex compactness of A then implies that⋂

B∈B

{
A ∈ A :H(A,B) ≥ α

} �= ∅,

that is, there is A∗ ∈ A such that infB∈B H(A∗,B) ≥ α and, thus, “≥” must hold
in (59) as claimed.

By upper-semicontinuity and concavity of H in its first variable, each of the level
sets {A ∈ A : H(A,B) ≥ α}, B ∈ B, is closed and convex. To prove the finite
intersection property, consider B1, . . . ,Bm ∈ B and observe that by the Mazur–
Orlicz theorem (Lemma 2.1(b) in [26]) there are weights λ1, . . . , λm ≥ 0 with∑m

i=1 λi = 1 such that

sup
A∈A

{
H(A,B1) ∧ · · · ∧H(A,Bm)

}
= sup

A∈A

{
λ1H(A,B1) + · · · + λmH(A,Bm)

}
.



CONVEX DUALITY FOR SINGULAR CONTROL 515

By assumption, H(A, ·) is convex for any A ∈ A and so the preceding identity
entails

sup
A∈A

{
H(A,B1) ∧ · · · ∧H(A,Bm)

} ≥ sup
A∈A

H(A,λ1B1 + · · · + λmBm) ≥ α.

The finite intersection property thus follows once we have shown that the first
supremum is actually attained. So let

H
∧(A) �H(A,B1) ∧ · · · ∧H(A,Bm), A ∈ A ,

and consider a maximizing sequence A1,A2, . . . ∈ A for supA∈A H
∧(A). Because

A is convexly compact there is a convergent subnet of finite convex combinations,
that is, there is a convergent net (Ae)e∈E of Ae = ∑

n γ e
nAn with γ e

n = 0 for n ≥ Ne

and
∑

n γ e
n = 1 such that, in addition, for any N = 1,2, . . . there is an eN ∈ E

with γ e
n = 0, n = 0, . . . ,N , for any e � eN ; see Žitković [28], Definition 2.3. By

concavity of H with respect to its first variable, also H
∧ is concave and so

H
∧(Ae) ≥ ∑

n

γ e
nH

∧(An).

The upper-semicontinuity of H in its first variable entails the upper-semicontinuity
of H∧. By passing to the limit, this allows us to conclude that A0 � lime∈E Ae ∈ A
attains supA∈A H

∧(A). �
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[18] KARATZAS, I. and ŽITKOVIĆ, G. (2003). Optimal consumption from investment and ran-
dom endowment in incomplete semimartingale markets. Ann. Probab. 31 1821–1858.
MR2016601

[19] KAUPPILA, H. (2010). Convex duality in singular control—optimal consumption choice with
intertemporal substitution and optimal investment in incomplete markets. Ph.D. thesis,
Columbia Univ.

[20] KIISKI, M. and PERKKIÖ, A.-P. (2015). Optional and predictable projections of normal inte-
grands and convex-valued processes. Preprint. Available at arXiv:1508.02176.

[21] KRAMKOV, D. and SCHACHERMAYER, W. (1999). The asymptotic elasticity of utility func-
tions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904–950.
MR1722287

[22] KRAMKOV, D. and SCHACHERMAYER, W. (2003). Necessary and sufficient conditions in the
problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13 1504–1516.
MR2023886

[23] MERTON, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model.
J. Econom. Theory 3 373–413. MR0456373

[24] MOSTOVYI, O. (2015). Necessary and sufficient conditions in the problem of optimal invest-
ment with intermediate consumption. Finance Stoch. 19 135–159. MR3292127

[25] ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Mathematical Series, No. 28.
Princeton Univ. Press, Princeton, NJ. MR0274683

[26] SIMONS, S. (1998). Minimax and Monotonicity. Lecture Notes in Math. 1693. Springer, Berlin.
MR1723737
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