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DEGREE SEQUENCE OF RANDOM PERMUTATION GRAPHS
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University of Pennsylvania and Columbia University

In this paper, we study the asymptotics of the degree sequence of per-
mutation graphs associated with a sequence of random permutations. The
limiting finite-dimensional distributions of the degree proportions are estab-
lished using results from graph and permutation limit theories. In particu-
lar, we show that for a uniform random permutation, the joint distribution
of the degree proportions of the vertices labeled �nr1�, �nr2�, . . . , �nrs� in
the associated permutation graph converges to independent random variables
D(r1),D(r2), . . . ,D(rs), where D(ri) ∼ Unif(ri ,1 − ri ), for ri ∈ [0,1] and
i ∈ {1,2, . . . , s}. Moreover, the degree proportion of the mid-vertex (the ver-
tex labeled n/2) has a central limit theorem, and the minimum degree con-
verges to a Rayleigh distribution after an appropriate scaling. Finally, the
asymptotic finite-dimensional distributions of the permutation graph associ-
ated with a Mallows random permutation is determined, and interesting phase
transitions are observed. Our results extend to other nonuniform measures on
permutations as well.

1. Introduction. Let [n] := {1,2, . . . , n}, and Sn denote the set of all permu-
tations of [n] := {1,2, . . . , n}. For any permutation πn ∈ Sn associate a permu-
tation graph Gπn = (V (Gπn),E(Gπn)), where V (Gπn) = [n] and there exists an
edge (i, j) if (i − j)(πn(i) − πn(j)) < 0, that is, whenever i, j determines an in-
version in the permutation πn. The permutation graphs associated with πn and
π−1

n are isomorphic, and the adjacency matrix Qn = ((qn(i, j))) associated with
the permutation graph Gπn is

qn(i, j) :=
{

1, if (i − j)
(
πn(i) − πn(j)

)
< 0,

0, otherwise.

For the permutation graph Gπn denote by dn(i) := ∑n
j=1 qn(i, j) the degree of

the vertex labeled i ∈ [n]. Note that dn(i) counts the number of j ∈ [n] such that
i, j is an inversion in the permutation πn, and 1

2
∑n

i=1 dn(i) = |E(Gπn)|, is the
number of inversions in πn. Thus, the degree sequence of a permutation graph is
the building block of the number of inversions, which has found versatile applica-
tions in integer sorting [30] and combinatorial searching [31], and has been widely
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studied for random permutations [18, 22, 30]. Other applications of permutation
graphs are discussed later in Section 1.2.

In this paper, using results from the emerging literature on graph and permu-
tation limit theories [26, 37], we study the asymptotic distribution of the degree
sequence of random permutation graphs.

1.1. Summary of results. Given a sequence {πn}n≥1, with πn ∈ Sn, of random
permutations, the permutation process is the stochastic process on (0,1] defined
by 1

(1.1) πn(t) := πn(�nt�)
n

.

Recall that dn(i) := ∑n
j=1 qn(i, j) is the degree of the vertex labeled i ∈ [n] in

the permutation graph Gπn . The quantity dn(i)/n will be referred to as the degree
proportion of the vertex i ∈ [n]. The degree process is a stochastic process on (0,1]
obtained from the degree proportion

(1.2) dn(t) := dn(�nt�)
n

.

The following is an informal summary of the results obtained in the paper. The
formal statements are given in Section 3.

(1) We show that the finite-dimensional convergence of the permutation pro-
cess πn(·), associated with a sequence {πn}n≥1 of random permutations, implies
the convergence in distribution of permutation sequence {πn}n≥1 in the sense of
Hoppen et al. [26], and the finite-dimensional convergence of the degree process
dn(·) (Theorem 3.1).

(2) As a consequence of the above, we derive the finite-dimensional conver-
gence of the degree process of a uniformly random permutation graph, that is,
the permutation graph associated with a permutation chosen uniformly at random
from Sn (Corollary 3.3). Figure 1 shows the degree proportion of the vertices in
the permutation graph associated with a uniformly random permutation of length
n = 105.

(3) It follows from Corollary 3.3 that the degree proportion of the mid-vertex,
that is, the vertex labeled �n/2�, converges to 1/2 in probability (This is illus-
trated in the fan-like structure in Figure 1 around the point 1/2.) We show that
dn(�n/2�)/n has a CLT around 1/2 after an appropriate rescaling (Theorem 3.4).

1Throughout the paper, πn will be used interchangeably to denote both the permutation and the
permutation process depending on the context. In particular, for a ∈ [n] πn(a) will denote the image
of a under the permutation πn. On the other hand, for t ∈ [0,1] πn(t) = πn(�nt�)/n will denote the
permutation process evaluated at t . Similarly, dn will be used to denote both the degree of a vertex
and the degree process.
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FIG. 1. Degree proportion of the labeled vertices of the permutation graph associated with a ran-
dom permutation of length n = 105.

(4) In Theorem 3.5, we derive the asymptotics of the minimum degree δ(Gπn)

in a uniformly random permutation graph Gπn . We show that δ(Gπn)/
√

n con-
verges to a Rayleigh distribution with parameter 1√

2
.

(5) Finally, we derive sufficient conditions for verifying whether the finite-
dimensional distributions of a permutation process converge. These conditions can
be easily verified for many nonuniform (exponential) measures on permutations.
These conditions together with the recent work of Starr [47], can be used to ex-
plicitly determine the limiting distribution of the degree process for a Mallows
random permutation, for all β ∈R (Theorem 3.6). For each a ∈ (0,1], the limiting
density of dn(�na�)/n has a interesting phase transition depending on the value
of β: there exists a critical value βc(a) such that for β ∈ [0, βc(a)] the limiting
density is a continuous function supported on [a,1 − a]. However, for β > βc(a)

the density breaks into two piecewise continuous parts.

1.2. Related work. Permutation statistics such as the number of inversions,
the number of descents, and the length of the longest increasing subsequence are
encoded in the permutation graph. For example, the number of edges |E(Gπn)| in
the permutation graph is the number of inversions in the permutation πn. Similarly,
the number of edges (i, i + 1) ∈ E(Gπn), for i ∈ [n], is the number of descents in
πn. The largest clique in a permutation graph corresponds to the longest decreasing
subsequence in the permutation. Similarly, an increasing subsequence in a permu-
tation corresponds to an independent set of the same size in the corresponding
permutation graph.
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Central limit theorems for the number of inversions and the number of descents
in a uniform random permutation have been extensively studied (the interested
reader may refer to Knuth [30] and Fulman [22] and the references therein for
further details). Asymptotics for the maximum clique and the independent set in
the permutation graph associated with a uniform random permutation follow from
the seminal work of Baik et al. [4] on the length of the longest increasing subse-
quence. Recently, Mueller and Starr [42] and later Bhatnagar and Peled [6] studied
the length of the longest increasing subsequence in a Mallows random permuta-
tion.

Acan and Pittel [1] studied when σ(n,m), a permutation chosen uniformly at
random among all permutations of [n] with m inversions, is indecomposable (refer
to [8, 21] and the references therein for more on indecomposable permutations).
The probability p(n,m) that σ(n,m) is indecomposable, is same as the probabil-
ity that the random permutation graph Gσ(n,m) is connected. Acan and Pittel [1]
showed that p(n,m) has a phase transition from 0 to 1 at mn := (6/π2)n logn.
They also studied the behavior of Gσ(n,m) at the threshold.

Permutation graphs were introduced by Pnueli et al. [44] and Even et al. [19],
and have found applications in many applied problems, such as VLSI channel
routing, scheduling, memory allocation [25], and genome rearrangement [3, 5].
In applications, the following pictorial description of permutation graphs is often
useful: For πn ∈ Sn and a ∈ [n], denote by �n(a) the line segment with endpoints
(a,0) and (πn(a),1). The endpoints of these segments lie on the two parallel lines
y = 0 and y = 1, and two segments have a nonempty intersection if and only if they
correspond to an inversion in the permutation. The permutation graph Gπn is the
intersection graph2 of the segments {�n(a)}na=1. This representation of permutation
graphs are useful in wire-routing problems in very large-scale integrated (VLSI)
circuits [45]. For example, to represent the wiring between two circuit modules, an
intersection between two line-segments denotes that the corresponding wires will
cross each other in a planar layout. Note that the degree of a node in a permutation
graph denotes how many times the segment intersects with other segments, and
thus, determines the wire-routing complexity.

The limit theory of geometric intersection graphs was initiated by Diaconis et
al. [16, 17]. Using the framework of graph limit theory introduced by Borgs et al.
[10, 11, 37], they characterized the limits of interval graphs (intersection graph of
a family of intervals on the real line), threshold graphs,3 and permutation graphs.
As a consequence, the asymptotic empirical degree proportion, that is, the degree

2The intersection graph of a family of sets {S1, S2, . . . , Sn} is the graph obtained by creating one
vertex vi for each set Si , and connecting two vertices vi , vj by an edge whenever Si ∩ Sj 	= ∅.

3A graph G = (V (G),E(G)) is a threshold graph if there is a real number t , and weight function
w : V (G) → R such that (u, v) ∈ E(G) if and only if w(u) + w(v) > t . Threshold graphs are a
special case of interval graphs.



DEGREE SEQUENCE OF RANDOM PERMUTATION GRAPHS 443

proportion of a uniformly random vertex, can be derived (see Section 2.5). How-
ever, the results of Diaconis et al. [16, 17] say nothing about the degrees of specific
vertices, and hence the degree process. In general, deriving the limiting distribu-
tion of the degree sequence in labeled geometric intersection graphs is a more
delicate question. In this paper, we explore some elegant connections between the
graph and permutation limit theories, and used them to derive new results on the
asymptotic distribution of the degree sequence in random permutation graphs.

1.3. Organization. The rest of the paper is organized as follows: Section 2
contains preliminaries about weak convergence of measures and the basics of
graph and permutation limit theories and their connections. The results are for-
mally stated in Section 3. The proof of Theorem 3.1 and the connections between
the permutation process and the degree process are discussed in Section 4. The
degree process for the uniformly random permutation and the CLT for the mid-
vertex are proved in Section 5. The conditions needed to verify the convergence
of the permutation process are discussed in Section 6. These conditions are also
verified for a general class of exponential measures on permutations. Applications
of these results to derive the limiting degree process of a Mallows random per-
mutation are in Section 7. The limiting distribution of the minimum degree of the
permutation graph associated with a uniformly random permutation is proved in
Section 8. Appendix A discusses weak convergence of random probability mea-
sures, and Appendix B proves the asymptotics of the empirical degree proportion
of random permutation graphs.

2. Graph and permutation limit theories. In this section, we discuss the ba-
sic definitions regarding the convergence of graph and permutation sequences and
their connections. We begin by recalling preliminaries about weak convergence of
probability measures.

2.1. Preliminaries. Let B([0,1]2) be the Borel sigma-algebra of [0,1]2, and
P([0,1]2) be the space of all probability measures on ([0,1],B([0,1]2)). The
law and the distribution function of a random variable Z ∼ μ ∈ P([0,1]2) will be
denoted by L (Z) and Fμ, respectively.

The space P([0,1]2) equipped with the Lévy–Prokhorov metric [7] is a Polish
space, which induces the topology of weak convergence: a sequence of measures
μn ∈ P([0,1]2) converges weakly to a measure μ ∈ M (denoted by μn → μ), if

(2.1) μn(f ) :=
∫
[0,1]2

f dμn →
∫
[0,1]2

f dμ := μ(f ),

for all continuous function f : [0,1]2 → R. A random measure is a probability
measure on (P([0,1]2),B(P([0,1]2))), where B(P([0,1]2)) is the Borel sigma-
algebra of space P([0,1]2) equipped with the Lévy–Prokhorov metric. The space
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P([0,1]2) is compact, and, hence, the collection of all probability measures on
P([0,1]2) is tight.

A sequence {μn}n≥1 of random measures in P([0,1]2), converges weakly in dis-

tribution to a random measure μ (denoted by μn
D→ μ) if for any continuous map

ω : P([0,1]2) �→ R, Eω(μn) → Eω(μ). A simple sufficient criterion for weak
convergence in distribution is

(2.2) μn(f )
D→ μ(f )

for any continuous function f : [0,1]2 → R (refer to Proposition A.1 in Ap-
pendix A for the proof).

Let {Zn(t)}t∈(0,1] be a sequence of stochastic processes with the sample paths
Zn(·) ∈ [0,1], for all n ≥ 1 [this includes the degree process (1.2) and the permuta-
tion process (1.1)]. To define convergence of such stochastic processes, equip the
space [0,1](0,1] with the product topology. It follows from Proposition A.1 that
{Zn(t)}t∈(0,1] converges in law/distribution to a process {Z(t)}t∈(0,1] [denoted by
Zn(·) w⇒ Z(·)] if for any fixed s ≥ 1 and 0 < t1 < t2 < · · · < ts ≤ 1,

(2.3)
(
Zn(t1),Zn(t2), . . . ,Zn(ts)

) D→ (
Z(t1),Z(t2), . . . ,Z(ts)

)
.

In this paper, the limiting process Z(·) will often have mutually independent finite-
dimensional marginals. In this case, the sample paths Z(·) are nonmeasurable
almost surely. For this reason, we consider [0,1](0,1) equipped with the product
topology, instead of nicer spaces such as the space of continuous functions C(0,1],
or the space of cadlag functions D(0,1].

Finally, recall that the Kolmogorov–Smirnov distance between μ,ν ∈ P([0,

1]2) is defined as

‖μ − ν‖KS := sup
0≤x,y≤1

∣∣Fμ(x, y) − Fν(x, y)
∣∣.

Convergence in Kolmogorov–Smirnov distance implies weak convergence, but the
converse does not hold in general. On P([0,1]2) however these two notions turn
out to be equivalent, as shown in [26].

2.2. Graph limit theory. The theory of graph limits was developed by Lovász
and coauthors [10, 11, 37], and has received phenomenal attention over the last
few years. Here we mention the basic definitions about the convergence of graph
sequences. If F and G are two graphs, then define the homomorphism density of
F into G by

t (F,G) := |hom(F,G)|
|V (G)||V (F)| ,

where |hom(F,G)| denotes the number of homomorphisms of F into G. In fact,
t (F,G) is the probability that a random mapping φ : V (F) → V (G) defines a
graph homomorphism.
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Let W be the space of all measurable functions from [0,1]2 into [0,1] that
satisfy W(x,y) = W(y,x), for all x, y. For a simple graph H with V (H) =
{1,2, . . . , |V (H)|}, let

t (H,W) =
∫
[0,1]|V (H)|

∏
(i,j)∈E(H)

W(xi, xj )dx1 dx2 · · · dx|V (H)|.

DEFINITION 2.1 [10, 11, 37]. A sequence of graphs {Gn}n≥1 is said to con-
verge to W if for every finite simple graph H ,

(2.4) lim
n→∞ t (H,Gn) = t (H,W).

Moreover, in light of equation (2.3), a sequence of random graphs {Gn}n≥1 is said
to converge in distribution to a random graphon W , if for any s ≥ 1 and all finite
collection {H1,H2, . . . ,Hs} of finite simple graphs,{

t (H1,Gn), . . . , t (Hs,Gn)
} D→ {

t (H1,W), . . . , t (Hs,W)
}
.(2.5)

The limit objects, that is, the elements of W , are called graph limits or graphons.
A finite simple graph G on [n] can also be represented as a graphon in a natural
way: Define f G(x, y) = 1{(�nx�, �ny�) ∈ E(G)}, that is, partition [0,1]2 into n2

squares of side length 1/n, and let f G(x, y) = 1 in the (i, j)th square if (i, j) ∈
E(G), and 0 otherwise. Observe that t (H,f G) = t (H,G) for every simple graph
H and therefore the constant sequence G converges to the graph limit f G.

The notion of convergence in terms of subgraph densities outlined above can be
captured by the cut-distance defined as

d�(f, g) := sup
S,T ⊂[0,1]

∣∣∣∣∫
S×T

[
f (x, y) − g(x, y)

]
dx dy

∣∣∣∣,
for f,g ∈ W . Define an equivalence relation on W as follows: f ∼ g when-
ever f (x, y) = gσ (x, y) := g(σx,σy), for some measure preserving bijection
σ : [0,1] �→ [0,1]. The orbit of g ∈ W is the set of all functions gσ , as σ varies
over all measure preserving bijections from [0,1] �→ [0,1]. Denote by g̃ the clo-
sure of the orbit of g in (W , d�). The space {g̃ : g ∈ W } of closed equivalence
classes is denoted by W̃ and is associated with the following natural metric:

δ�(f̃ , g̃) := inf
σ

d�(f, gσ ) = inf
σ

d�(fσ , g) = inf
σ1,σ2

d(fσ1, gσ2).

The space (W̃ , δ�) is compact [10], and the metric δ� is commonly referred to as
the cut-metric.

The main result in graph limit theory is that a sequence of graphs {Gn}n≥1 con-
verges to a limit W ∈ W in the sense defined in (2.4) if and only if δ�(f̃ Gn, W̃ ) →
0 [10], Theorem 3.8. More generally, a sequence {W̃n}n≥1 converges to W̃ ∈ W̃ if
and only if δ�(W̃n, W̃ ) → 0.
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2.3. Permutation limits. Hoppen et al. [26, 27] developed a theory of permu-
tation limits, which is analogous to the theory of graph limits. For πn ∈ Sn and
σ ∈ Sa , σ is a sub-permutation of πn if there exists 1 ≤ i1 < · · · < ia ≤ n such
that such that σ(x) < σ(y) if and only if πn(ix) < πn(iy). For example, 132 is a
sub-permutation of 7,126,354 induced by i1 = 3, i2 = 4, i3 = 6.4 The density of a
permutation σ ∈ Sa in a permutation πn ∈ Sn is

ρ(σ,πn) =

⎧⎪⎪⎨⎪⎪⎩
(
n

a

)−1∣∣{σ ∈ Sa : σ is sub-permutation of πn}
∣∣, if a ≤ n

0, if a > n.

Let M ⊂ P([0,1]2) be the set of all probability measures with uniform
marginals on ([0,1],B[0,1]2). For a ≥ 1 and ν ∈ M, sample a independent
points (x1, y1), (x2, y2), . . . , (xa, ya) in [0,1]2 randomly from the measure ν. Let
σx and σy be the permutations of order a such that xσx(1) < xσx(2) < · · · < xσx(a)

and yσy(1) < yσy(2) < · · · < yσy(a), respectively (since the marginals of ν are uni-
form, ties do not occur with probability 1). Define σ−1

y ◦ σx as the ν-random per-
mutation of order a, which gives by the relative order of the vertical coordinates
of the points (x1, y1), (x2, y2), . . . , (xa, ya) with respect to their horizontal coor-
dinates [26], Definition 1.4. Denote by ρ(σ, ν) the probability that a ν-random
permutation of order a is σ .

DEFINITION 2.2. An infinite sequence {πn}n≥1 of permutations is said to con-
verge to a measure ν ∈M if

(2.6) lim
n→∞ρ(σ,πn) = ρ(σ, ν),

for every finite permutation σ . Moreover, a sequence of random permutations
{πn}n≥1 converges in distribution to random measure ν ∈ M if(

ρ(σ1, πn), ρ(σ2, πn), . . . , ρ(σs,πn)
) D→ (

ρ(σ1, ν), ρ(σ2, ν), . . . , ρ(σs, ν)
)
,

for all s ≥ 1 and all collections of finite permutations {σ1, σ2, . . . , σs}.

Drawing parallel from graph limit theory, the permutation limit objects, that is,
the elements of M are referred to as permutons. Any permutation πn ∈ Sn can
be represented as probability measure with uniform marginals in a natural way.
Define νπn ∈ M as follows:

(2.7) dνπn := fn(x, y)dx dy,

4Sub-permutations are often referred to as patterns and their combinatorial properties are well
studied (the interested reader may refer to Bona [9], the recent paper of Janson et al. [29] and the
references therein).
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where fn(x, y) = n111{(x, y) : πn(�nx�) = �ny�}. As in graph limit theory, νπn has
the following interpretation: partition [0,1]2 into n2 squares of side length 1/n,
and define fn(x, y) = n for all (x, y) in the (i, j)th square if πn(i) = j and 0
otherwise. The measure νπn will be referred to as the permuton associated with
πn.

The space M is a closed subset of P([0,1]2), and, hence, Polish and com-
pact. The convergence defined in Definition 2.2 can be metrized by embedding
all finite permutations in M [as in (2.7)], equipped with any metric which in-
duces the topology of weak convergence. Analogous to graph limit theory, Hop-
pen et al. ([26], Lemma 5.3) showed that a sequence of (random) permutations
πn convergences in distribution to a permuton ν [in the sense of (2.2)] if and
only if the corresponding sequence of measures νπn converges weakly in distri-
bution to ν. More generally, any sequence of (random) measures {νn}n≥1 in M
converges weakly in distribution to a (possibly random) measure ν if and only if

(ρ(σ1, νn), ρ(σ2, νn), . . . , ρ(σs, νn))
D→ (ρ(σ1, ν), ρ(σ2, ν), . . . , ρ(σs, ν)), for all

s ≥ 1 and all collections of finite permutations {σ1, σ2, . . . , σs}.
2.4. Limit of permutation graphs. Diaconis et al. [16, 17] studied the limits of

threshold graphs and interval graphs. Their methods also apply to other geomet-
ric intersection graphs, which include permutation graphs [17]. However, instead
of describing the limit object as symmetric function from [0,1]2 to [0,1], they
represented the graph limit as a measure on [0,1]2 with uniform marginals.

For every measure ν on [0,1]2 with uniform marginals, Diaconis et al. [16, 17]
defined a unique graph limit object W̃ν ∈ W̃ by specifying t (F,Wν) for all graphs
F as follows:

t (F,Wν) := E
∏

(i,j)∈E(F)

K(Xi,Xj )

(2.8)
=

∫
[0,1]2|V (F)|

∏
(i,j)∈E(F)

K(xi, xj )dν(x1)dν(x2) · · · dν(x|V (F)|),

where X1,X2, . . . ,Xn are independent and identically distributed from ν and K :
[0,1]2 ×[0,1]2 → [0,1] is given by K((a1, b1), (a2, b2)) = 1{(a1 −a2)(b1 −b2) <

0}.
In the graph limit literature it is usually convenient to represent a graphon by

a functional W : [0,1]2 → [0,1]. However, Diaconis et al. [17] described per-
mutation graph limits in terms of a permuton ν. Thus, every probability measure
ν on [0,1]2 defines a graph limit Wν by (2.8). Diaconis et al. [17] showed that
every permutation graph limit may be represented in terms of a measure ν on
([0,1]2,B([0,1]2)) via (2.8) with the two marginal distributions of ν both being
uniform on [0,1].

Glebov et al. [23] pointed out that if {πn}n≥1 is a convergent sequence of permu-
tations (as in Definition 2.2), then the sequence of permutation graphs {Gπn}n≥1 is
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also convergent. Therefore, each permuton ν can be associated with an equivalence
class W̃ν ∈ W̃ . However, the map ν → W̃ν is not one-to-one, and convergence of a
sequence of permutation graphs {Gπn}n≥1 does not necessarily imply convergence
of the permutons associated with the sequence {πn}n≥1:

REMARK 2.1. Suppose ν ∈ M be a permuton which is not exchangeable, that
is, if (X,Y ) has distribution ν then (Y,X) has distribution μ 	= ν. Let {πn}n≥1 be
a sequence of permutations such the associated permutons converge to ν. Then
{π−1

n }n≥1 converge to μ 	= ν. However, since the graphs Gπn and G
π−1

n
are iso-

morphic, W̃ν are W̃μ are identical. Thus, if {σn}n≥1 is a sequence of permutations
defined by σn = πn for n odd, and σn = π−1

n for n even, then the sequence of
graphs {Gσn}n≥1 converges to W̃ν = W̃μ. However, the sequence of permutons as-
sociated with {σn}n≥1 converges to ν along the odd subsequence, and μ along the
even subsequence.

For other interesting connections between graph and permutation limit theories,
refer to recent papers by Král’ and Pikhurko [33], Glebov et al. [23, 24].

2.5. Empirical distribution of the degree proportion. Given a sequence of per-
mutation graphs (Gπn)n≥1, the empirical distribution of the degree proportion, that
is, the degree proportion of uniformly randomly chosen vertex in Gπn is

(2.9) κ(Gπn) := 1

n

n∑
i=1

δdn(i)
n

.

Diaconis et al. [17] pointed out that if Gπn converges to a graphon Wν , then κ(Gπn)

converges weakly to the distribution of the random variable

(2.10) W1(X) :=
∫
[0,1]2

K(X, z)dν(z),

where X = (X1, Y1) is a random element in [0,1]2 with distribution ν, and
K((x1, y1), (x2, y2)) = 1{(x1 − x2)(y1 − y2) < 0}.

The following proposition is immediate from the above discussion. We include
a proof in Appendix B.1 for the sake of completeness.

PROPOSITION 2.1. Let {πn}n≥1 be a sequence of permutations such that the
corresponding permuton sequence {νπn}≥1 converges to a permuton ν. Then the
empirical distribution of the degree proportion (2.9)

(2.11) κ(Gπn) := 1

n

n∑
i=1

δdn(i)
n

D→ X1 + Y1 − 2Fν(X1, Y1),

where (X1, Y1) ∼ ν and Fν is the distribution function of ν.
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FIG. 2. The empirical distribution of the degree proportion of the permutation graph associated
with a random permutation of length n = 105. The blue curve represents the density of the limiting
distribution f (z) = − log |2z − 1|.

The following corollary is an application of the above result for the uniform
random permutation. The proof is given in Appendix B.2 (see also Figure 2).

COROLLARY 2.2. Let πn ∈ Sn be a uniformly random permutation and Gπn

the associated permutation graph. Then the empirical distribution of the degree
proportion

(2.12) κ(Gπn)
D→ Z := (1 − U)V + U(1 − V ),

where U,V are independent Unif(0,1). Equivalently, Z has the same distribu-
tion as Unif(V ,1 − V ), where V ∼ Unif(0,1), and has a density with respect to
Lebesgue measure given by fZ(z) = − log |1 − 2z|, for 0 ≤ z ≤ 1.

3. Statement of the results. In this section, we formally state the results ob-
tained in the paper. In Section 3.1, we discuss the general result which relates the
convergence of the permutation process with the convergence of the degree pro-
cess. The application of this general result for the uniform random permutation,
and the asymptotics of the mid-vertex and the minimum degree are given in Sec-
tion 3.2. The degree process of the Mallows random permutation is discussed in
Section 3.3.

3.1. Convergence of the degree process. Given a sequence {πn}n≥1 of random
permutations, the convergence of the associated permuton sequence {νπn}n≥1 is
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not enough for the degree sequence to converge (see Example 4.1 in Section 4).
Therefore, the convergence of the degree sequence does not follow from the re-
sults of Diaconis et al. [17], unlike the empirical distribution of the degree propor-
tion (Proposition 2.1). Thus, additional assumptions are needed on the permutation
process to ensure the convergence of the degree process, which makes the problem
more challenging.

The following theorem shows that the convergence of the permutation process
(1.1) implies that both the corresponding permutons and the degree process con-
verge. To the best of our knowledge, this connection between the convergence of
the permutation process and permutons is new, and might be of independent inter-
est. In fact, under regularity conditions (discussed in Section 6) the two notions of
convergence are equivalent.

THEOREM 3.1. Let πn ∈ Sn be a sequence of random permutations such that

πn(·) w⇒ Z(·),(3.1)

where Z(·) is a stochastic process in (0,1]. Then there exists a (random) measure

μ ∈ M such that the permuton νπn

D→ μ, and the degree process

(3.2) dn(·) w⇒ D(·),
where

D(t) = t + Z(t) − 2Fμ

(
t,Z(t)

)
,

and Fμ is the distribution function of the measure μ.

The above theorem, which is proved in Section 4.2.1, will be used to determine
the limiting degree process for various random permutations. Note that the limit-
ing measure μ might be random. In that case, the finite-dimensional distributions
degree process can be dependent (see Example 4.2). However, for most of the
examples considered in this paper the limiting measure is nonrandom, and the cor-
responding degree process has independent finite-dimensional distributions. This
is summarized in the following corollary and proved in Section 4.2.2.

COROLLARY 3.2. Suppose the permutation process πn(·) w⇒ Z(·), and the
finite-dimensional marginals of Z(·) are independent. Then the following hold:

• νπn converges to a nonrandom measure μ ∈ M with law L (X,Y ) ∼ μ defined
as follows:

X ∼ Unif[0,1], and L (Y |X = x) ∼ L
(
Z(x)

)
.

• The finite-dimensional distributions of the limiting degree process D(·) [defined
in (3.2)] are independent.
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The above results imply that in order to determine the convergence of the de-
gree process, it suffices to verify the convergence of the permutation process. This
requires the permutation process to have some regularity, which is formalized in
Section 6. The regularity conditions ensure that the finite-dimensional distributions
of the permutation process are “equicontinuous”, which can be verified easily for
exponential models on permutations, like the Mallow’s model [38] and Spearman’s
rank correlation models [14].

3.2. Uniform random permutation. A uniformly random permutation graph
Gπn is the permutation graph associated with a uniformly random permutation
πn ∈ Sn. In this section we state the results on the asymptotic degree proportion of
a uniformly random permutation graph. To this end, we need some notation. For
a, b ∈ [0,1], denote by [a, b] the interval [a ∧ b, a ∨ b], where a ∧ b := min{a, b}
and a ∨ b := max{a, b}, and let Unif(a, b) denote the uniform distribution over
[a, b].

3.2.1. Convergence of the degree process. The convergence of the finite-
dimensional distributions of the degree process for a uniformly random permu-
tation graph is an easy consequence Theorem 3.1 (see Section 5.1 for the proof).

COROLLARY 3.3. Let πn ∈ Sn be a uniform random permutation, and Gπn

the associated permutation graph. Then the degree process (1.2),

dn(t)
w⇒ D(·),

where D(r) ∼ Unif(r,1 − r), and the coordinates of D(·) are mutually indepen-
dent.

Figure 1 shows the degree proportion of the labeled vertices in the permutation
graph associated with a random permutation of length n = 105. The symmetry in
the figure around the mid-vertex, that is the vertex labeled n/2, is because the dis-
tribution of dn(i) and dn(n+1− i) are the same for every i ∈ [n]. This is confirmed
by the above corollary, which shows that for r ∈ [0,1], the degree proportion of the
vertices labeled �nr� and �n(1−r)� both converge to the uniform distribution over
the interval [r,1 − r]. The shrinking length of this interval as r approaches 1/2,
explains the fan-like structure in Figure 1. Moreover, when r = 1/2, this implies
that dn(�n/2�)/n converges in probability to 1/2, as can be seen from Figure 1.

3.2.2. CLT of the mid-vertex. It follows from Corollary 3.3 that the degree
proportion of the mid-vertex, that is, the vertex labeled �n/2�, converges to 1/2
in probability. Therefore, it is reasonable to expect a central limit theorem for
dn(�n/2�)/n around 1/2 after an appropriate rescaling. This is detailed in the fol-
lowing theorem and illustrated in Figure 3. The proof is given in Section 5.2.2.
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FIG. 3. The sampling distribution of the degree of the mid-vertex (the vertex labeled n/2), for the
permutation graph associated with a uniform random permutation of length n = 104, repeated over
105 samples. The red curve is the density of the limiting distribution given by Theorem 3.4.

THEOREM 3.4. Let πn ∈ Sn be a uniform random permutation, and Gπn the
associated permutation graph. Then

(3.3)
√

n

(
dn(�n/2�)

n
− 1

2

)
D→ N

(
0,U(1 − U)

)
,

where U ∼ Unif[0,1].
3.2.3. Asymptotics for the minimum degree. In this section, we obtain the

limiting distribution of the minimum degree of a uniformly random permutation
graph. The proof is given in Section 8.

THEOREM 3.5. Let δ(Gπn) be the minimum degree of a uniformly random
permutation graph Gπn . Then

δ(Gπn)√
n

D→ �,

where � is the Rayleigh distribution with parameter 1√
2
, that is, P(� > γ ) = e−γ 2

for all γ > 0.

The degree proportion of a uniformly random permutation graph has different
variability depending on the label of the vertex, as shown in Corollary 2.2 and the
above theorem: the minimum degree scales as

√
n, whereas the degree of a typical

vertex scales as n (Proposition 2.1).
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3.3. Mallows random permutation. The Mallows model [38] is a popular non-
uniform model on permutations. For β ∈ R, denote by πn ∼ Mβ,n the Mallows
random permutation over Sn with probability mass function

(3.4) mβ,n(σ ) := e−β· λ(σ)
n∑

σ∈Sn
e−β· λ(σ)

n

,

where λ(σ) = |{(i, j) : (i − j)(πn(i) − πn(j)) < 0}| is the number of inversions
of the permutation σ . The uniform random permutation corresponds to the case
β = 0. Diaconis and Ram [18] studied a Markov chain on Sn for which the Mal-
lows model gives the limiting distribution. Tail bounds for the displacement of an
element in a Mallows permutation was studied by Braverman and Mossel [12]. Re-
cently, Mueller and Starr [42] and later Bhatnagar and Peled [6] studied the length
of the longest increasing subsequence in a Mallows permutation.

Recently, permutation modeling has found applications in statistics and machine
learning. Consistent estimation of parameters in exponential models on permuta-
tions has been studied by Mukherjee [43]. Location and scale mixtures of Mal-
lows model have been considered in [2, 35]. A generalized version of Mallows
model was studied in [13, 41], which was extended to infinite permutations in [39,
40]. Huang et al. [28] and Kondor et al. [32] study inference on permutations via
Fourier analysis of representation of finite groups with the focus of reducing com-
putational complexity. Modeling of partially ranked data using Mallows models
and its extensions were considered in [36].

Starr [47] derived the limit of empirical permutation measure associated with
a sequence of Mallows random permutations. Using this and Theorem 3.1, we
compute the limiting density of the degree proportion in a Mallows random per-
mutation. The limiting density exhibits interesting phase transitions depending on
the value of β . This is summarized in the following theorem and proved later in
Section 7.

THEOREM 3.6. Fix β ∈R. Let πn ∼ Mβ,n be a Mallows random permutation
with parameter β , and Gπn the associated permutation graph. Then the degree
process (1.2)

dn(·) w⇒ Dβ(·),
where the coordinates of Dβ(·) are mutually independent, and the distribution of
Dβ(a) is defined as follows: Let

(3.5) R(a,β) = 4(eβ − eaβ)(eaβ − 1)

(eβ − 1)2 , and ac(β) = 1

2
− log cosh(β/2)

β
,

and the function ha,β : [0,1] → R
+ ∪ {0},

(3.6) ha,β(z) = βe
1
2 β(a−z)

(1 − e−β)(eβ(a+z) − eβR(a,β))
1
2

.
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Then:

1. if a /∈ [ac(β),1 − ac(β)], Dβ(a) has density

(3.7) ga,β(z) = ha,β(z), z ∈ [a,1 − a];
2. if a ∈ (ac(β),1 − ac(β)), Dβ(a) has density

(3.8) ga,β(z) =
⎧⎪⎨⎪⎩

ha,β(z), for z ∈ [a,1 − a],
2ha,β(z), for z ∈

[
1 − a + 1

β
logR(a,β), a ∧ 1 − a

)
.

The above theorem gives the limiting distribution of the degree process of
the permutation graph Gπn associated with a Mallows random permutation πn ∼
Mβ,n. For β ∈ R fixed, the limiting distribution of dn(�na�)/n has a phase transi-
tion depending on the value of a ∈ [0,1]. There exist two critical points ac(β) and
1 − ac(β), such that for a /∈ [ac(β),1 − ac(β)], the limiting density of Dβ(a) is a
continuous function supported on [a,1 − a]. However, if a is in the critical inter-
val (ac(β),1 − ac(β)), the density of Dβ(a) breaks into two piecewise continuous
parts on the intervals[

1 − a + 1

β
logR(a,β), a ∧ 1 − a

)
, and (a ∧ 1 − a, a ∨ 1 − a],

with a discontinuity at the point a ∧ 1 − a. The plots of the limiting density of
Dβ(a) are shown in Figure 4 and Figure 5, for β = 2 and a = 0.1 and a = 0.55.
The changes in the support of Dβ(a) for values of a in the critical interval are
depicted in Figure 6.

The critical curves β �→ ac(β) and β �→ 1 − ac(β) are shown in Figure 7. For
a fixed β0 ∈ R the critical interval (ac(β0),1 − ac(β0)) is the interval between the

FIG. 4. Density of Dβ(a) for β = 2 and a = 0.1. For β = 2, ac(β) = 0.28311. Since
0.1 /∈ (0.28311,0.71689), the density of D2(0.1) is a continuous function supported on [0.1,0.9].
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FIG. 5. Density of Dβ(a) for β = 2 and a = 0.55. For β = 2, ac(β) = 0.28311. As
0.55 ∈ (0.28311,0.71689), the density of D2(0.55) is a piecewise continuous function with the pieces
supported on [0.38,0.45) and [0.45,0.55], with a discontinuity at 1 − a = 0.45.

two curves intercepted by the vertical line at β0. Note that for β = 0, the ac(β) =
1 − ac(β) = 1/2, that is, the critical interval is empty. Therefore, for a uniform
random permutation, the limiting density has no phase transition, as elaborated in
Corollary 3.3.

FIG. 6. The support of Dβ(a), for β = 2 and a ∈ [0,1]: The points of tangency of the curve

b = 1 − a + 1
β logR(a,β) with the two straight lines b = a and b = 1 − a are colored green. The

corresponding red points on the x-axis are the critical points ac(β) and 1 − ac(β). For a fixed
a ∈ [0,1], the support of Dβ(a) is the interval intercepted by the vertical line at a either between the
two straight lines [if a /∈ (ac(β),1 − ac(β)), e.g., when a = a1], or between the curve and one of the
two straight lines [if a ∈ (ac(β),1 − ac(β)), e.g., when a = a2].
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FIG. 7. The critical transition curves ac(β) and 1 − ac(β) for β ∈ [−10,10]. For a fixed β0 ∈ R,
the critical interval (ac(β0),1 − ac(β0)) is the interval between the two curves intercepted by the
vertical line at β0.

The phase transition in the density of Dβ(a) can be reinterpreted by fixing a ∈
[0,1] and varying β: Theorem 3.6 shows that for a fixed a ∈ [0,1], there exists
a critical point βc(a) [obtained by solving for β in ac(β) = a] such that for β ∈
[0, βc(a)], the density of Dβ(a) is a continuous function supported on [a,1 − a].
However, for β > βc(a) the density of Dβ(a) breaks into two piecewise continuous
parts with a discontinuity at the point a ∧ 1 − a. If β = 1/T denotes the inverse
temperature, then this phenomenon is the effect of replica symmetry breaking in
statistical physics as one moves from the high temperature to the low temperature
regime.

4. Limiting degree proportion of random permutations. In this section, we
derive the limiting degree process for a general sequence of random permutations
(proofs of Theorem 3.1 and Corollary 3.2). We begin with a simple example which
shows that the convergence of the permuton sequence does not necessarily imply
the convergence of the degree process.

EXAMPLE 4.1. Let en be the identity permutation on Sn and σn the permuta-
tion that takes 1 to n and n to 1, and keeps all the remaining indices fixed. If πn is
a sequence of permutations such that πn = en for n even, and πn = σn for n odd,
then the permuton νπn converges to the limiting measure which is uniform on the
diagonal of the unit square (since πn(i) = i for all i ∈ [n]/{1, n}). However, for
t = 1 the degree process dn(1) converges to 0 along n even, and to 1 along n odd.

The rest of the section is organized as follows: In Section 4.1, we show that
the convergence of the finite-dimensional distributions of the permutation process
(1.1) implies the convergence of the associated permutons. This is then used to
show the convergence of the degree process (proofs of Theorem 3.1 and Corol-
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lary 3.2) in Section 4.2. In Section 4.3, we construct a sequence of random permu-
tations, where the finite-dimensional distributions of the limiting degree process
are dependent.

4.1. Permutation process and permutons. For πn ∈ Sn, define the empirical
permutation measure

(4.1) ν̄πn = 1

n

∑
i∈[n]

δ
( i
n
,
πn(i)

n
)
.

It is easy to check that the permuton νπn associated with the permutation πn satis-

fies ‖νπn − ν̄πn‖KS
P→ 0, and so a sequence of permutations πn ∈ Sn converges to

a permuton ν if and only if ν̄πn converges weakly to ν.
With these definitions, we now show that the convergence of the permutation

process implies the convergence of the permutons.

THEOREM 4.1. Let πn ∈ Sn be a sequence of random permutations such that

πn(·) w⇒ Z(·).(4.2)

Then (ν̄πn,πn(·)) converges jointly weakly in distribution. In particular, there
exists a (possibly random) measure μ ∈ M, such that the permuton sequence
{νπn}n≥1 converges in distribution to μ ∈ M.

PROOF. By Proposition A.1, it suffices to show that the vector(
νπn(f ),πn(s1), . . . , πn(sb)

)
converges in distribution, for any continuous function f : [0,1]2 �→ [0,1] and real
numbers s1, . . . , sb ∈ (0,1]. Therefore, it suffices to show that the limit

(4.3) lim
n→∞E

(
ν̄πn(f )a

b∏
j=1

gj

(
πn(sj )

))
,

exists for all positive integers a, b ≥ 1 and continuous functions g1, g2, . . . , gb :
[0,1] �→ R. (Note that for any random measure μ ∈ P([0,1]2), Eμ(f )a =
E(

∫
f dμ)a is the ath moment of μ(f ).)

For verifying the existence of the limit in (4.3), first note that

E

(
ν̄πn(f )a

b∏
j=1

gj

(
πn(sj )

))

= E

(
1

na

∑
t1,t2,...,ta∈[n]

a∏
i=1

f

(
tj

n
,
πn(tj )

n

) b∏
j=1

gj

(
πn(sj )

))
(4.4)

= E

(
b∏

j=1

gj

(
πn(sj )

) ∫
[0,1]a

a∏
i=1

f
(
xi,πn(xi)

)
dxi

)
+ o(1),

where the last equality follows from the uniform continuity of f .
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Now, by assumption (4.2), for fixed {xi}i∈[a],
b∏

j=1

gj

(
πn(sj )

) a∏
i=1

f
(
xi,πn(xi)

) D→
b∏

j=1

gj

(
Z(sj )

) a∏
i=1

fi

(
xi,Z(xi)

)
.

Therefore, by the dominated convergence theorem

lim
n→∞E

(
b∏

j=1

gj

(
πn(sj )

) a∏
i=1

fi

(
xi,πn(xi)

))
(4.5)

= E

(
b∏

j=1

gj

(
Z(sj )

) a∏
i=1

fi

(
xi,Z(xi)

))
.

The RHS above is measurable in {xi}i∈[a], as it is the limit of measurable functions.
Another application of dominated convergence theorem gives

E

(
ν̄πn(f )a

b∏
j=1

gj

(
πn(sj )

))

=
∫
[0,1]a

E

(
b∏

j=1

gj

(
πn(sj )

) a∏
i=1

f
(
xi,πn(xi)

)) ∏
i∈[a]

dxi + o(1)

=
∫
[0,1]a

E

(
b∏

j=1

gj

(
Z(sj )

) a∏
i=1

f
(
xi,Z(xi)

)) ∏
i∈[a]

dxi + o(1).

This implies (ν̄πn,πn(·)) converges jointly weakly in distribution.
Finally, since ‖νπn − ν̄πn‖KS → 0 in probability, {νπn}n≥1 converges in distri-

bution to the permuton μ ∈ M, since the space M ⊂ P([0,1]2) of measures with
uniform marginals is closed. �

4.2. Proofs of Theorem 3.1 and Corollary 3.2. Theorem 4.1 can now be used
to prove the convergence of the degree process. To this end, we need the follow-
ing definitions: For πn ∈ Sn, define the random variable an(i) := ∑i−1

j=1 qn(i, j),
for i ∈ [n]. Note that an(i) ∈ [0, i − 1] represents the number of edges in Gπn

connecting the vertex i to vertices j ∈ [i − 1]. The quantity an(i) will be referred
to as the backward-degree of the vertex i. Similarly, one can define the forward-
degree of the vertex i as bn(i) := ∑n

j=i+1 qn(i, j). Note that bn(i) ∈ [0, n − i]
and dn(i) = an(i) + bn(i), where dn(i) is the degree of the vertex i. The de-
gree process dn(t) = dn(�nt�)/n = an(t) + bn(t), where an(t) = an(�nt�)/n and
bn(t) = bn(�nt�)/n, are the backward-degree process and the forward-degree pro-
cess, respectively. Note that

∑n
i=1 an(i) = ∑n

i=1 bn(i) is the number of inversions
of πn.
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4.2.1. Proof of Theorem 3.1. By Theorem 4.1, we have

(
ν̄πn, πn(·)) D→ (

μ,Z(.)
)
,

where μ ∈ M is a random measure such that ν̄πn

D→ μ, and Z(·) is a stochastic
process on (0,1] such that πn(·) w⇒ Z(·). Thus, fixing k ≥ 1 and 0 < t1 < t2 <

· · · < tk ≤ 1 we have

(
ν̄πn, πn(t1), . . . , πn(tk)

) D→ (
μ,Z(t1), . . . ,Z(tk)

)
.

Applying Skorohod’s representation theorem on the separable metric space M ×
[0,1]k (see Billingsley [7], Theorem 6.7), without loss of generality assume that
the above convergence happens almost surely.

Now for any t ∈ (0,1],

an(t) = 1

n

�nt�∑
a=1

111
{
πn(a) > πn

(�nt�)}
= ν̄πn

([
0, �nt�/n

] × (
πn(t),1

]) = ν̄πn

([0, t] × (
πn(t),1

]) + o(1)(4.6)

= t − Fνπn

(
t, πn(t)

) + o(1),

where the last step uses ‖ν̄πn − νπn‖KS = o(1). By a similar argument,

bn(t) = πn(t) − Fνπn

(
t, πn(t)

) + o(1).(4.7)

Combining (4.6) and (4.7), for any 1 ≤ i ≤ k we have

dn(ti) = an(ti) + bn(ti) = ti + πn(ti) − 2Fνπn

(
ti , πn(ti)

) + o(1)

= ti + πn(ti) − 2Fμ

(
ti , πn(ti)

) + ‖νπn − μ‖KS + o(1)

a.s.→ ti + Z(ti) − 2Fμ

(
ti ,Z(ti)

)
,

where the last step uses ‖νπn − μ‖KS
a.s.→ 0 (see Hoppen et al. [26], Lemma 2.1),

and the fact that the function Fμ is continuous in each coordinate when the other
coordinate is held fixed. Indeed, this follows from the observation that any μ ∈M
has continuous marginals. Thus, we have(

dn(t1), . . . , dn(tk)
)

(4.8)
a.s.→ (

t1 + Z(t1) − 2Fμ

(
t1,Z(t1)

)
, . . . , tk + Z(tk) − 2Fμ

(
tk,Z(tk)

))
,

from which finite-dimensional convergence of dn(·) follows.
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4.2.2. Proof of Corollary 3.2. For the first part, by Proposition A.1 it suffices
to check that for every continuous function f : [0,1]2 �→ [0,1] we have

ν̄πn(f )
D→ f (X,Y ),

where (X,Y ) is as defined in the statement of the corollary. Since νπn(f ) is a
bounded random variable, it suffices to check that for every positive integer a ≥ 1,

lim
n→∞Eν̄πn(f )a = Ef (X,Y )a.

To this effect, using (4.4) and (4.12) it follows

Ef (X,Y )a =
∫
[0,1]a

E

(
a∏

j=1

f
(
xj ,Z(xj )

)) a∏
j=1

dxj .

The RHS above equals to (
∫ 1

0 Ef (x,Z(x))dx)a , under the assumption of indepen-
dence. Therefore, ν̄πn(f ) converges in probability to the nonrandom quantity∫ 1

0
Ef

(
x,Z(x)

)
dx = Eμf (X,Y ),

thus completing the proof of the first part.
The independence of the finite-dimensional marginals of Z(·), implies the same

for the degree process D(·) by (3.2).

4.3. A dependent degree process. Even though Theorem 3.1 allows for μ to
be random, in most examples in this paper μ turns out to be nonrandom and the
corresponding degree process has independent finite-dimensional distributions. In
this section, we construct a sequence of random permutations where the limiting
permuton is random and the finite-dimensional distributions of the degree process
are not independent:

EXAMPLE 4.2. Suppose Wn is a uniform random variable on [n] := {1,2, . . . ,

n}, and πn ∈ Sn defined by

(4.9) πn(i) := (i + Wn − 1 mod n) + 1.

Note that πn is a cyclic shift of the identity permutation, where the length of the
shift is chosen uniformly random.

PROPOSITION 4.2. Let {πn}n≥1 be the sequence of random permutations as
defined in (4.9). Then the degree process

dn(t)
w⇒ D(t) := W · 111{W + t < 1} + (1 − W) · 111{W + t ≥ 1},(4.10)

where W ∼ Unif[0,1].



DEGREE SEQUENCE OF RANDOM PERMUTATION GRAPHS 461

PROOF. We will first show that the permutation process πn(·) converges
weakly in distribution. For s ≥ 1 and let g1, g2, . . . , gb be continuous functions
on [0,1]. Then, it is easy to see that, for s1, s2, . . . , sb ∈ (0,1]

E

b∏
j=1

gj

(
πn(sj )

) →
∫ 1

0

b∏
j=1

gj (sj + u mod 1)du,

where x mod 1 denotes the fractional part of x, for x ∈ R. Hence, πn(·) w⇒ Z(·),
where Z(·) is a stochastic process defined by

Z(t) = W + t mod 1, with W ∼ Unif[0,1].(4.11)

This implies, by Theorem 3.1, that νπn

D→ μ, for some random measure μ ∈ M.
Moreover, by (4.12), for any a ≥ 1, and continuous function f : [0,1]2 → [0,1]
and positive integer a,

E
(
μ(f )a

) =
∫
[0,1]a

E

(
a∏

i=1

f
(
xi,Z(xi)

)) ∏
i∈[a]

dxi

=
∫
[0,1]a

a∏
i=1

f (xi,ω + xi mod 1)
∏

i∈[a]
dxi dω

(4.12)

=
∫ 1

0

(∫ 1

0
f (x, x + ω mod 1)dx

)a

dω

=
∫ 1

0

(
κw(f )a

)
dω,

where κs is the joint law of (V , s + V mod 1), where V ∼ Unif[0,1], for s ∈
[0,1]. Therefore, limiting random measure μ ∼ κW , with W ∼ [0,1].

To compute the limit of the degree process, we compute the distribution function
of κs . In this case, with U ∼ Unif[0,1] and 0 ≤ a, b ≤ 1

Fκs (a, b) = P(U ≤ a,U + s mod 1 ≤ b)

= P(U ≤ a,U + s ≤ b) + P(U ≤ a,1 ≤ U + s ≤ b + 1)(4.13)

= min(a, b − s)+ + min(a + s − 1, b)+,

which implies

FκW

(
t,Z(t)

)
= min

(
t, (W + t mod 1) − W

)
+ + min(t + W − 1,W + t mod 1)+(4.14)

= t · 111{W + t < 1} + (t + W − 1)111{W + t ≥ 1}.
Therefore, by Theorem (3.1) dn(·) w⇒ D(·) where: W ∼ U [0,1], and

D(t) := t + (W + t mod 1) − 2FκW
(t,W + t mod 1)

(4.15)
= W · 111{W + t < 1} + (1 − W) · 111{W + t ≥ 1}.
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In this case, the finite-dimensional distributions of the permutation process (4.11)
and the degree process (4.15) are not independent, and the limiting permuton is
random. �

5. Uniformly random permutation graph. This section is organized as fol-
lows: In Section 5.1, we derive the finite-dimensional convergence of the degree
process of a uniformly random permutation graph, as a direct consequence of The-
orem 3.1. The CLT of the degree proportion of the mid-vertex (Theorem 3.4) is
proved in Section 5.2.

5.1. Proof of Corollary 3.3. For a uniformly random permutation, the per-
mutation process πn(·) w⇒ Z(·), where Z(t) is independent Unif[0,1], for all
t ∈ [0,1]. Then by Corollary 3.2, the permuton νπn converges to the Lebsegue mea-
sure on [0,1]2. Therefore, for a ∈ [0,1], by Theorem 3.1 the finite-dimensional
distributions of the degree process converges to the finite-dimensional distribu-
tions of the process {D(a)}a∈[0,1], where D(a) is independent for every a ∈ [0,1]
and

D(a) = a + Ua − 2aUa = (1 − a)Ua + a(1 − Ua) ∼ Unif(a,1 − a),

where {Ua}a∈[0,1] are independent Unif(0,1), for every a ∈ [0,1].
5.2. CLT for the mid-vertex. In this section, we prove the CLT of the degree

proportion of the mid-vertex dn(�n/2�)/n (Theorem 3.4). We begin with a techni-
cal estimate about the hypergeometric distribution (Section 5.2.1). Using this, the
proof of Theorem 3.4 is given in Section 5.2.2.

5.2.1. A hypergeometric estimate. Recall the hypergeometric distribution:
A nonnegative integer valued random variable X is said to follow the hyperge-
ometric distribution with parameters (N,M, r) if

P(X = x) =
(M

x

)(N−M
r−x

)(N
r

) for x ∈ [
max{0, r + M − N},min{M,r}],

where N ≥ max{M,r}.
Recall the forward and backward degree proportions an(i) and bn(i) defined in

Section 3, respectively. Note that (i − 1) − an(i) + bn(i) = πn(i) − 1, thus giving
the simple relation bn(i) − an(i) = πn(i) − i. Using this relation, the following
proposition gives a concentration result for dn(i) around its conditional mean given
πn(i).

PROPOSITION 5.1. The conditional distribution of an(i)|{πn(i) = j} is hy-
pergeometric with parameters (n − 1, i − 1, n − j). Consequently, for R > 0

P
(∣∣dn(i) − mn(i, j)

∣∣ > R|πn(i) = j
) ≤ 2e−R2

2n ,

where mn(i, j) := (i−1)(n−πn(i))−(πn(i)−1)(n−i)
n−1 .
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PROOF. Given πn(i) = j and an(i) = a, bn(i) = a + j − i =: b. Hence, to
count the number of permutations with πn(i) = j and an(i) = a, it suffices to
choose a indices less than i and b indices greater than i, which are inverted with
i, and then arranging them in (j − 1)!(n − j)! ways. This gives

P
(
an(i) = a|πn(i) = j

) = 1

(n − 1)!
(
i − 1

a

)(
n − i

b

)
(j − 1)!(n − j)!

= (i − 1)!(j − 1)!(n − i)!(n − j)!
a!(i − 1 − a)!b!(n − i − b)!(n − 1)!

=
(i−1

a

)((n−1)−(i−1)
(n−j)−a

)
(n−1
n−j

) ,

and so an(i)|πn(i) = j follows the hypergeometric distribution with aforemen-
tioned parameters.

Therefore, E(dn(i)|πn(i) = j) = E(an(i)|πn(i) = j) + E(bn(i)|πn(i) = j) =
(i−1)(n−j)+(j−1)(n−i)

n−1 . To prove the second conclusion note that∣∣∣∣dn(i) − (i − 1)(n − j) + (j − 1)(n − i)

n − 1

∣∣∣∣ > R

⇔
∣∣∣∣an(i) − (i − 1)(n − j)

n − 1

∣∣∣∣ >
R

2
.

An application of the bound in [46] now gives the desired conclusion. �

5.2.2. Proof of Theorem 3.4. Let Zn = √
n(

dn(�n/2�)
n

− 1
2) and mn(j) =

(�n/2�−1)(n−j)
n−1 . Now, fixing δ > 0,

P(Zn ≤ x)

= 1

n

n∑
j=1

P
(
Zn ≤ x|πn

(�n/2�) = j
)

= 1

n

∑
nδ≤j≤n(1−δ)

P
(
Zn ≤ x|πn

(�n/2�) = j
) + O(δ)(5.1)

= 1

n

∑
nδ≤j≤n(1−δ)

P

(
an(�n/2�) − mn(j)

n
1
2

≤ λn(x, j)
∣∣∣πn

(�n/2�) = j

)
+ O(δ),

where λn(x, j) satisfies limn→∞ maxnδ≤j≤n(1−δ) |λn(x, j) − x/2| = 0, for all
x ∈ R.
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By Proposition 5.1,

σ 2
n

(�n/2�), j ) := Var
(
an

(�n/2�)|πn

(�n/2�) = j
)

(5.2)

= (�n/2� − 1)(j − 1)(n − �n/2�)(n − j)

(n − 1)2(n − 2)
≥ C(δ)n,

for some C(δ) > 0, and for all j ∈ [nδ,n(1− δ)]. Using the Berry–Esseen theorem
for hypergeometric distribution [34], Theorem 2.2, there exists a universal constant
C such that with C′(δ) := C/

√
C(δ) < ∞,∣∣∣∣P(

an(�n/2�) − μn(j)

n
1
2

≤ λn(x, j)
∣∣∣πn(i) = j

)
− �

(√
n · λn(x, j)

σn(�n/2�, j)

)∣∣∣∣
(5.3)

≤ C′(δ)
n

1
2

.

Finally, note that

max
nδ≤j≤n(1−δ)

∣∣∣∣σ 2
n (�n/2�, j)

n
− j (n − j)

4n2

∣∣∣∣ = o(1),

where the o(1) term goes to zero as n → ∞. Moreover, since the function � is
uniformly continuous on R,

max
nδ≤j≤n(1−δ)

∣∣∣∣�(√
n · λn(x, j)

σn(�n/2�, j)

)
− �

(
x√

(j/n)(1 − j/n)

)∣∣∣∣ = o(1).(5.4)

Combining (5.1), (5.3) and (5.4), we have

P(Zn ≤ x) = 1

n

∑
nδ≤j≤n(1−δ)

�

(
x√

(j/n)(1 − j/n)

)
+ o(1) + O(δ).

On taking limits as n → ∞ followed by δ → 0, we have

lim
n→∞P(Zn ≤ x) =

∫ 1

0
�

(
x√

u(1 − u)

)
du,

which completes the proof of the theorem.

6. Convergence of the permutation process. The convergence of the permu-
tation process requires some regularity assumptions. In this section, we introduce
the notion of equicontinuity for a sequence of random permutations, and verify
this for most standard exponential models on permutations.
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6.1. Equicontinuous permutations. Let F be a family of functions from [0,1]
to R. The family F is equicontinuous at a point x0 ∈ [0,1] if for every ε > 0, there
exists a δ > 0 such that∣∣f (x0) − f (x)

∣∣ < ε for all f ∈ F and all x such that |x − x0| < δ.

The family F is equicontinuous if it is equicontinuous at each point in [0,1].
To introduce the notion of equicontinuous permutations, we need some defini-

tions: For s ≥ 1 fixed, define

(6.1) Pn(s) := {
(j1, j2, . . . , js) ∈ [n]s : ja 	= jb, for a 	= b ∈ [s]}.

For j = (j1, j2, . . . , js) ∈ Pn(s), define the function rπn(·|j) : (0,1]s → [0,1] as
follows:

rπn(x|j) = rπn(x1, x2, . . . , xs |j)
(6.2)

:= P
(
πn

(�nx1�) = j1, . . . , πn

(�nxs�) = js

)
.

DEFINITION 6.1. A sequence {πn}n≥1 of random permutations is said to be
equicontinuous if for all s ≥ 1, the following holds:

lim
δ→0

lim
n→∞ sup

(x,y)∈Bs(δ)
j∈Pn(s)

∣∣∣∣rπn(x|j)
rπn(y|j) − 1

∣∣∣∣ = 0,(6.3)

where Bs(δ) = {x1, . . . , xs, y1, . . . , ys ∈ (0,1] : maxi∈[s] |xi − yi | ≤ δ}.

Informally, the above definition says that a sequence of random permuta-
tions {πn}n≥1 is equicontinuous if for all s ≥ 1, the collection of functions
{rπn(·|j)}j∈Pn(s) is uniformly equicontinuous. Next, we show that if a sequence
of permutons converges and the permutations are equicontinuous, then the permu-
tation process also converges.

PROPOSITION 6.1. Let πn ∈ Sn be a sequence of random equicontinuous per-

mutations such that the permuton sequence νπn

D→ μ. Then the permutation pro-
cess

πn(·) w⇒ Z(·),
where the finite-dimensional distributions of Z(·) are as follows: Let (X1, Y1),
(X2, Y2), . . . , (Xa,Ya) be independent draws from the random measure μ ∈ M.
Then

(6.4) L
(
Z(x1), . . . ,Z(xs)

) ∼ L
(
Y1|X1 = x1, . . . , Ya|Xa = xa

)
,

for 0 < x1 < x2 < · · · < xa ≤ 1.
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PROOF. Let s ≥ 1 and g1, g2, . . . , gs be continuous functions from (0,1] �→
[0,1]. For any sequence πn ∈ Sn of random permutations define function
G

(n)
g1,g2,...,gs : (0,1]a → [0,1] by

(6.5) G(n)
g1,g2,...,gs

(x1, x2, . . . , xs) = E

(
s∏

i=1

gi

(
πn(xi)

))
.

To begin with, we show that the sequence of functions {G(n)
g1,g2,...,gs (·)}n≥1 is uni-

formly equicontinuous on (0,1]s : Indeed, recalling (6.2) we have

sup
x,y∈Bs(δ)

∣∣G(n)
g1,g2,...,gs

(x) − G(n)
g1,g2,...,gs

(y)
∣∣

≤ sup
x,y∈Bs(δ)

∑
j∈Pn(s)

∣∣∣∣∣
s∏

k=1

gk

(
jk

n

)∣∣∣∣∣ · ∣∣rπn(x|j) − rπn(y|j)∣∣
(6.6)

≤ sup
x,y∈Bs(δ)

∑
j∈Pn(s)

∣∣rπn(x|j) − rπn(y|j)∣∣
≤ sup

(x,y)∈Bs(δ)
j∈Pn(s)

∣∣∣∣rπn(x|j)
rπn(y|j) − 1

∣∣∣∣,
which converges to 0 as δ converges to 0, uniformly in n. This proves the equicon-
tinuity of {G(n)

g1,g2,...,gs (·)}n≥1.
Proceeding to prove (6.4), by Proposition A.1 it suffices to prove convergence

of finite-dimensional distributions. Thus, fixing s ≥ 1 and continuous functions
g1, g2, . . . , gs : (0,1] �→ [0,1] and x1, . . . , xs ∈ (0,1] it suffices to show that

lim
n→∞E

s∏
i=1

gi

(
πn(xi)

) = E

(
a∏

i=1

gi(Yi)|X1 = x1, . . . ,Xs = xs

)
.(6.7)

To show this, define a finite collection of random variables {(Uj,n,Vj,n)}sj=1,
where {Uj,n}sj=1 are i.i.d. Unif[0,1] independent of πn, and Vj,n := πn(Uj,n).
Then, as in (4.4) we have

E

s∏
j=1

gj (Uj,n,Vj,n) =
∫
[0,1]s

E

(
s∏

j=1

gj

(
xj ,πn(xj )

)) s∏
j=1

dxj

(6.8)

= E

s∏
j=1

ν̄πn(gj ) + o(1).

Since ν̄πn

D→ μ, the RHS of (6.8) converges to the quantity E
∏s

j=1 μ(gj ) =
E

∏s
j=1 gj (Xj ,Yj ). Thus, the joint law of {(Uj,n,Vj,n)}aj=1 converges to the joint
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law of {(Xj ,Yj )}aj=1. Now, as

(6.9) E

(
s∏

j=1

gj (Vj,n)|U1,n = x1, . . . ,Us,n = xs

)
= E

s∏
j=1

gj

(
πn(xs)

)
,

to prove (6.7) it suffices to show that the corresponding conditional distributions
converge:

L
({Vj,n}sj=1|{Uj,n}sj=1

) D→ L
({Yj }sj=1|{Xj }sj=1

)
.

This follows by the equicontinuity of {G(n)
g1,g2,...,gs }n≥1 and an application of [49],

Theorem 4. �

6.2. Exponential models on permutations. Let θ ∈ R, and Tn : Sn →R be any
function. Suppose πn ∈ Sn is a sequence of random permutations with probability
mass function

(6.10) Qn,θ (σ ) := eθTn(σ )∑
σ∈Sn

eθTn(σ )
.

One of the most common exponential models on permutations, is the Mallows
model, where Tn(σ ) is the number of inversions of σ scaled by n. The limiting
degree process of the Mallows random permutation is explicitly computed in Sec-
tion 7. Here, we determine a simple criterion for the convergence of the degree
process of a sequence of random permutations distributed as (6.10). We begin with
the following technical definition.

DEFINITION 6.2. Fix s ≥ 1 and j ∈ Pn(s) [defined in (6.1)]. For a fixed vector
x = (x1, x2, . . . , xs) ∈ (0,1]s , denote by

�(j,x) = {
πn ∈ Sn : πn

(�nx1�) = j1, . . . , πn

(�nxs�) = js

}
.

For any two fixed vectors x = (x1, x2, . . . , xs) ∈ (0,1]s and y = (y1, y2, . . . , ys) ∈
(0,1]s , define the bijection

�x,y : �(j,x) → �(j,y)

as follows: for each πn ∈ �(j,x), define its image π̃n as

(6.11) π̃n(k) =

⎧⎪⎪⎨⎪⎪⎩
jt = πn

(�nxt�), if k = �nyt� for t ∈ [s],
πn

(�nyt�), if k = �nxt� for t ∈ [s],
πn(k), otherwise.

Informally, �x,y takes a permutation πn and interchanges the coordinates
�nx1�, �nx2�, . . . , �nxs� to the coordinates �ny1�, �ny2�, . . . , �nys� to get π̃n. Us-
ing this bijection it is easy to get a sufficient condition for the convergence of the
permutation process for exponential models.



468 B. B. BHATTACHARYA AND S. MUKHERJEE

COROLLARY 6.2. A sequence of random permutations {πn}n≥1 from (6.10) is
equicontinuous whenever for all s ≥ 1 the following holds:

(6.12) lim
δ→0

lim
n→∞ sup

(x,y)∈B(δ)
j∈Pn(s)

sup
πn∈�(j,x)

∣∣Tn(πn) − Tn

(
�x,y(πn)

)∣∣ = 0,

where �x,y is the bijection defined in (6.11).

PROOF. Fix s ≥ 1, j ∈ Pn(s), and x,y ∈ B(δ). Let π̃n be the image of πn

defined by the bijection �x,y in (6.11). Then using (6.12), for ε > 0 arbitrary there
exists δ = δ(ε) and N = N(ε, δ) such that for all δ < δ(ε) and n ≥ N(ε, δ) we
have

sup
(x,y)∈B(δ)

j∈Pn(s)

sup
πn∈�(j,x)

∣∣Tn(πn) − Tn

(
�x,y(πn)

)∣∣ ≤ ε.

Along with (6.10), for any πn ∈ �(j,x) this gives∣∣∣∣ Qn,θ (πn)

Qn,θ (�x,y(πn))
− 1

∣∣∣∣ = ∣∣eθTn(πn)−θTn(�x,y(πn)) − 1
∣∣ ≤ e|θ |ε − 1,

and so ∣∣∣∣P(πn ∈ �(j,x))

P(πn ∈ �(j,y))
− 1

∣∣∣∣ =
∣∣∣∣
∑

πn∈�(j,x) Qn,θ (πn)∑
π̃n∈�(j,y) Qn,θ (π̃n)

− 1
∣∣∣∣ ≤ e|θ |ε − 1.

The conclusion follows as ε > 0 is arbitrary. �

Consider the following general class of 1-parameter exponential family on the
space of permutations Sn, with probability mass function

(6.13) Qn,f,θ (σ ) = eθ
∑n

i=1 f ( i
n
,
σ(i)
n

)∑
σ∈Sn

eθ
∑n

i=1 f ( i
n
,
σ(i)
n

)
,

where f : [0,1]2 → [0,1] is any continuous function. This is a special case of the
model (6.10) with Tn(σ ) = ∑n

i=1 f ( i
n
, σ(i)

n
). Popular choices of the function f

includes the Spearman’s Rank Correlation Model: f (x, y) = −(x − y)2 and the
Spearman’s Footrule Model: f (x, y) = −|x − y|. These models find applications
in statistics for analyzing ranked data [14, 15]. Feigin and Cohen [20] gave a nice
application of such models for analyzing agreement between several judges in a
contest. For other choices of f and their various properties, refer to Diaconis [14].
Consistent estimation of parameters in such models has been studied recently by
Mukherjee [43].

Using Corollary 6.2, it can easily shown that any sequence of random permuta-
tions {πn}n≥1 distributed as (6.13) is equicontinuous, that is, their corresponding
degree process converges.



DEGREE SEQUENCE OF RANDOM PERMUTATION GRAPHS 469

COROLLARY 6.3. Fix θ ∈ R and f : [0,1]2 → [0,1] be any continuous func-
tion. Let πn ∈ Sn be a sequence of random permutations distributed as (6.13). Then
{πn}n≥1 is equicontinuous and the degree process dn(·) converges.

PROOF. The convergence of the degree process follows from the equiconti-
nuity (Proposition 6.1), as convergence of νπn was already verified in [43], Theo-
rem 1.5. To prove equicontinuity, let Tn(σ ) = ∑n

i=1 f (i/n,σ (i)/n). Fix δ > 0,
s ≥ 1, j = (j1, j2, . . . , js) ∈ Pn(s), and let (x,y) ∈ B(δ). For πn ∈ �(j,x) and
π̃n ∈ �(j,y), and using the bijection (6.11) we get∣∣Tn(πn) − Tn(π̃n)

∣∣ ≤
s∑

t=1

∣∣∣∣f (�nxt�
n

,
πn(�nxt�)

n

)
− f

(�nyt�
n

,
πn(�nxt�)

n

)∣∣∣∣
(6.14)

≤ s sup
|x1−x2|≤δ+ 1

n
,

y∈[0,1]

∣∣f (x1, y) − f (x2, y)
∣∣,

which goes to 0, after taking n → ∞ and δ → 0, by the continuity of f . �

7. Degree process of the mallows random permutation: Proof of Theo-
rem 3.6. Recall the Mallows probability mass function mβ,n(·) from (3.4). Starr
[47] derived the limiting density of the empirical permutation measure associated
with a sequence of Mallows random permutations:

THEOREM 7.1 (Starr [47]). Let πn ∈ Sn be a Mallows random permutation
with parameter β . Then the empirical permutation measure ν̄πn converges weakly
in distribution to a random variable which has density in [0,1]2 given by

mβ(x, y) =
β
2 sinh(

β
2 )

(exp(
β
4 ) cosh(1

2β(x − y)) − exp(−β
4 ) cosh(1

2β(x + y − 1)))2
,(7.1)

and distribution function

Mβ(a, b) = − 1

β
log

(
1 − 2 exp(−1

2β(a + b − 1))(sinh(
aβ
2 ) sinh(

βb
2 ))

sinh(
β
2 )

)
.(7.2)

PROOF. The proof of (7.1) can be found in Starr [47]. The expression for the
distribution function (7.2) follows by directly integrating the density (7.1) mβ (see
also Starr and Walters [48], Theorem 2.4). �

The above theorem together with Theorem 3.1 can be used to derive the limiting
densities of the degree proportions in a Mallows random permutation.

7.1. Proof of Theorem 3.6. The proof of Theorem 3.6 has two parts: to show
the existence of limit of the degree process dn(·) by verifying (6.12) in Corol-
lary 6.2, and the explicit computation of the density of the limiting distribution
using Theorem 7.1.
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7.1.1. Existence of the limit. In this section, we show that the degree process
of a Mallows random permutation converges. In light of Proposition 6.1, it suffices
to verify that the Mallows random permutation is equicontinuous:

LEMMA 7.1. Let β ∈ R and πn ∼ Mβ,n be a sequence Mallows random per-
mutations. Then {πn}n≥1 is equicontinuous.

PROOF. Fix ε > 0 and 1 ≤ i1 < i2 < · · · < is ≤ n. Let x = (x1, x2, . . . , xs) ∈
(0,1]s and y = (y1, y2, . . . , ys) ∈ (0,1]s and consider the bijection (6.11) between
�(i1, i2, . . . , is,x) and �(i1, i2, . . . , is,y). If π̃n denotes the image of πn under this
bijection, then

1

n

∣∣λ(πn) − λ(π̃n)
∣∣ ≤ 1

n

s∑
a=1

∣∣�nxa� − �nya�
∣∣ ≤ sδ + 2s

n
,

which goes to zero after taking limits as n → ∞ and δ → 0. Equicontinuity of
{πn}n≥1 now follows from Corollary 6.2. �

The above result and Proposition 6.1 implies that the permutation process
πn(·) w⇒ Wβ(·), such that for every t ≥ 0, Wβ(t) is independent and distributed
according to conditional law of Q2|Q1 = t , where (Q1,Q2) ∼ Mβ . Since the dis-
tribution of Mβ of (Q1,Q2) has uniform marginals,

(7.3) P
(
Wβ(t) ≤ w

) =
∫ w

0
mβ(t, y)dy,

and Wβ(t) has density mβ(t, ·). Theorem 3.1 then implies that dn(·) w⇒ Dβ(·),
where

Dβ(t) = t + Wβ(t) − 2Mβ

(
t,Wβ(t)

)
,

and Dβ(t) is independent for all t ≥ 0. Therefore, for indices 0 ≤ r1 < r2 < · · · <
rs ≤ 1, (

dn(�nr1�)
n

,
dn(�nr2�)

n
, . . . ,

dn(�nrs�)
n

)
D→ (

Dβ(r1),Dβ(r2), . . .Dβ(rs)
)
,

as desired.

7.1.2. Calculating the limiting density. Fix β ∈ R and a ∈ [0,1] and suppose
W ∼ Wβ(a) be distributed as in (7.3). To find the density of Da,β for a ∈ [0,1],
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we have to find the density of the random variable

Ja,β(W)

:= a + W − 2Mβ(a,W)
(7.4)

= a + W + 2

β
log

(
1 − 2 exp(−1

2β(a + W − 1))(sinh(
βa
2 ) sinh(

βW
2 ))

sinh(
β
2 )

)

= a + W + 2

β
log

(
1 − ϕβ(a)

(
1 − e−βW ))

,

where

ϕβ(a) := e
1
2 (β−βa) csch

(
β

2

)
sinh

(
aβ

2

)
.

We begin by establishing properties of the function Ja,β : R → R defined as
Ja,β(w) = a + w − 2Mβ(a,w), for a ∈ [0,1]. Recall that an interval [a, b] is
always interpreted as [a ∨ b, a ∧ b].

LEMMA 7.2. Let β > 0, a ∈ [0,1], and ac(β) be as defined in Theorem 3.6.
Then for Ja,β as defined above, the following hold:

(a) The function Ja,β is strictly convex in R.
(b) For a ∈ [0, ac(β)] the function Ja,β is strictly increasing and for a ∈ [1 −

ac(β),1], the function Ja,β is strictly decreasing in [0,1].
(c) For a ∈ (ac(β),1 − ac(β)), the function Ja,β has a minimum at z0 ∈ (0,1),

and is strictly decreasing in [0, z0) and strictly increasing in (z0,1].
PROOF. The derivatives of the function Ja,β are

J ′
a,β(z) = d

dz
Ja,β(z) = 1 − 2ϕβ(a)e−βz

1 − ϕβ(a)(1 − e−βz)

and

J ′′
a,β(z) = −2ϕβ(a) · −βe−βz(1 − ϕβ(a)(1 − e−βz)) + βe−2βzϕβ(a)

(1 − ϕβ(a)(1 − e−βz))2

= βe−βz(1 − ϕβ(a))

(1 − ϕβ(a)(1 − e−βz))2 .

Note that ϕa(β) = 1−e−aβ

1−e−β ≤ 1, for all β > 0, and so Ja,β is a convex function.
The convexity of Ja,β implies that J ′

a,β is increasing, and J ′
a,β(z) = 0 has at

most one solution z0 in [0,1]:
z0 := 1

β
log

(
ϕβ(a)

1 − ϕβ(a)

)
∈ (0,1) ⇔ a ∈ [

ac(β),1 − ac(β)
]
,
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where ac(β) is defined in Theorem 3.6. Therefore, for a /∈ [ac(β),1 − ac(β)], the
function Ja,β is strictly monotone: for a ∈ [0, ac(β)] the function Ja,β is strictly
increasing, and for a ∈ [1 − ac(β),1], the function Ja,β is strictly decreasing in
[0,1].

For a ∈ [ac(β),1−ac(β)], the function Ja,β has a minimum at z0, and is strictly
decreasing in [0, z0) and strictly increasing in (z0,1]. �

The above lemma shows that for fixed β , depending on the value of a, the range
of the function Ja,β , and hence the support of Dβ(a), undergoes a phase transition.
Calculating the density of Dβ(a) involves some tedious calculations with Jacobian
transformations. The main steps of the calculations are given below. For β > 0 and
a ∈ [0,1], recall the definition R(a,β) from (3.5) and the function ha,β from (3.6):

ha,β(x) = βe
1
2 β(a−x)

(1 − e−β)

√
eβ(a+x) − eβR(a,β)

(7.5)

= βe
1
2 β(a−x+2)√

4eβ(eβa − 1)(eβa − eβ) + eβ(a+x)(1 − eβ)2
.

Assume that β > 0, and consider the two cases [recall the definition of Ja,β

from (7.4)]:

1. Suppose a /∈ [ac(β),1 − ac(β)]. In this case, Ja,β is monotone in [0,1]
(Lemma 7.2) and the equation Ja,β(z) = w has a unique solution J−1

a,β(w) ∈
[0,1] (Figure 8). Then by the Jacobian transformation and direct calculations,
the density of Ja,β(W) simplifies to

ga,β(w) =
∣∣∣∣ d

dw
J−1

a,β(w)

∣∣∣∣mβ

(
a, J−1

a,β(w)
) = ha,β(w).

The support of Ja,β(W) is [Ja,β(0), Ja,β(1)] = [a,1 − a].
2. Suppose a ∈ [ac(β),1 − ac(β)]. In this case, for w ∈ [0,1] the equation

Ja,β(z) = w has at most two solutions in [0,1] depending on the value of w

(Lemma 7.2).
2.1. w ∈ [Ja,β(0), Ja,β(1)] = [a,1 − a]. This situation is same as the previous

case, that is, Ja,β(z) = w has a unique solution J−1
a,β(w) ∈ [0,1] (Figure 9),

and the density of Ja,β(W) simplifies to

ga,β(w) =
∣∣∣∣ d

dw
J−1

a,β(w)

∣∣∣∣mβ

(
a, J−1

a,β(w)
) = ha,β(w),

for w ∈ [a,1 − a].
2.2. w /∈ [Ja,β(0), Ja,β(1)] = [a,1 − a] (refer to Figure 9). In this case,

Ja,β(z) = w has two solutions given by J−1
a,β,1(w) = − 2

β
logγ1(w) and
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FIG. 8. Plot of Ja,β for β = 2 and a = 0.1. For β = 2, ac(β) = 0.28311. Since
0.1 /∈ (0.28311,0.71689), the function J0.1,2 is monotone with range [0.1,0.9], and for

w ∈ [0.1,0.9] the equation J0.1,2(z) = w has a unique solution J−1
0.1,2(w) ∈ [0,1].

J−1
a,β,2(w) = − 2

β
logγ2(w), where γ1(w) and γ2(w) are roots of the

quadratic

γ e
β
2 (w−a) + 1 = ϕβ(a)

(
1 − γ 2)

⇒ ϕβ(a)γ 2 + γ e
β
2 (w−a) + 1 − ϕβ(a) = 0.

The above quadratic equation is obtained by simplifying the equation
Ja,β(z) = w and substituting γ = e−βz/2. Then by the Jacobian transfor-

FIG. 9. Plot of Ja,β for β = 2 and a = 0.55. For β = 2, ac(β) = 0.28311, and
0.55 ∈ (0.28311,0.71689). Then, the function J0.55,2 is convex with minimum at 0.375. Therefore,

for w ∈ [0.45,0.55] the equation J0.55,2(z) = w has a unique solution J−1
0.55,2(w) ∈ [0,1]. However,

for w ∈ [0.375,0.45], the equation J0.55,2(z) = w has two solutions J−1
0.55,2,1(w) and J−1

0.55,2,2(w).
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mation, the density of Ja,β(Z) is

(7.6) ga,β(w) =
2∑

s=1

∣∣∣∣ d

dw
J−1

a,β,s(w)

∣∣∣∣mβ

(
a, J−1

a,β,s(w)
)
.

Substituting J−1
a,β,1(w), J−1

a,β,2(w), and the density mβ(a, ·) (7.1), and sim-
plifying (7.6) gives ga,β(w) = 2ha,β(w). Since the function Ja,β has a
minimum at z0, and is strictly decreasing in [0, z0) and strictly increasing
in (z0,1], the support of Ja,β(W) is

[
Ja,β(z0), Ja,β(0) ∨ Ja,β(1)

] =
[
1 − a + 1

β
logR(a,β), a ∧ 1 − a

]
.

For β < 0 the result follows from the observation: if πn ∼ Mβ,n, then σn(i) =
πn(n+1− i) is distributed as M−β,n (see [6], Lemma 2.2). Note that every interval
[a, b] should be interpreted as [a ∧ b, a ∨ b].

8. Asymptotics for the minimum degree: Proof of Theorem 3.5. This sec-
tion gives the proof of the limiting Rayleigh distribution of the minimum degree
in a uniformly random permutation graph.

For i ∈ [n] define

(8.1) cn(i) =
⎧⎪⎨⎪⎩

i + πn(i), for 1 ≤ i <
n + 1

2
,

2(n + 1) − i − πn(i), for
n + 1

2
< i ≤ n.

The following lemma shows that the degrees dn(i) can be small (order
√

n) only
if cn(i) is small, which can happen only if i is such that either i or n + 1 − i is
small (order

√
n).

LEMMA 8.1. For any γ ∈ (0,∞):

lim
M→∞ lim

n→∞
n∑

i=1

P
(
dn(i) ≤ γ

√
n, cn(i) > M

√
n
) = 0.

PROOF. By symmetry, it suffices to show that

lim
M→∞ lim

n→∞
∑

1≤i≤ n+1
2

P
(
dn(i) ≤ γ

√
n, i + πn(i) > M

√
n
) = 0,

which follows if we can show the following:

lim
n→∞

∑
n+1

4 ≤i≤ n+1
2

P
(
dn(i) ≤ γ

√
n
) = 0,(8.2)
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lim
M→∞ lim

n→∞
∑

M
√

n
2 ≤i≤ n+1

4

P
(
dn(i) ≤ γ

√
n
) = 0,(8.3)

lim
M→∞ lim

n→∞
∑

1≤i≤M
√

n
2

∑
M

√
n

2 ≤j≤n

P
(
dn(i) ≤ γ

√
n,πn(i) = j

) = 0.(8.4)

Recall by Proposition 5.1, an(i)|{πn(i) = j} is hypergeometric with parameters
(n−1, i −1, n− j). Therefore, since bn(i)|{πn(i) = j} = an(i)+ (j − i), we have

E
(
dn(i)|πn(i) = j

) = E
(
an(i) + bn(i)

) = 2(i − 1)(n − j) + (j − i)(n − 1)

n − 1

= j (n − 2i + 1) + (n + 1)i − 2n

n − 1
.

Therefore, for n+1
4 ≤ i ≤ n+1

2 ,

E
(
dn(i)|πn(i) = j

) − γ
√

n ≥ j

(
n + 1

2(n − 1)

)
+ i

(
n + 1

n − 1

)
− (γ

√
n + 2)

≥ n + 1

8
,

for all n large enough. An application of Proposition 5.1 now gives

P
(
dn(i) ≤ γ

√
n|πn(i) = j

) ≤ 2e− n
128 .

On adding over i and j gives∑
n+1

4 ≤i≤ n+1
2

P
(
dn(i) ≤ γ

√
n, i + πn(i) > M

√
n
) ≤ ∑

n+1
4 ≤i≤ n+1

2

P
(
dn(i) ≤ γ

√
n
)

≤ ne− n
128 ,

from which (8.2) follows.
Proceeding to prove (8.3), for n+1

4 ≤ i ≤ n+1
2 ,

E
(
dn(i)|πn(i) = j

) − γ
√

n ≥j

(
n + 1

2(n − 1)

)
+ i − (γ

√
n + 2) ≥ i + j

2

for all M ≥ 4γ + 8. Lemma 5.1 gives

P
(
dn(i) ≤ γ

√
n|πn(i) = j

) ≤ 2
∑
j≥1

e−(i2+j2)/8,

which on summing over i and j gives∑
M

√
n

2 ≤i≤ n+1
4

P
(
dn(i) ≤ γ

√
n
) ≤ 2

∫ ∞
M/2

e−x2/8 dx

∫ ∞
0

e−y2/8 dy.
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Since the RHS of the above equation goes to 0 on letting M → ∞, (8.3) follows.

Finally, to show (8.4), for 1 ≤ i ≤ M
√

n
2 , and M

√
n

2 ≤ j ≤ n, note that

E
(
dn(i)|πn(i) = j

) − γ
√

n ≥ j/2 − γ
√

n − 2 + i ≥ i + j

4
,

for M ≥ 4γ + 8. Thus by a similar argument as before, we have

lim
n→∞

∑
1≤i≤M

√
n

2

∑
M

√
n

2 ≤j≤n

P
(
dn(i) ≤ γ

√
n,πn(i) = j

)

≤ 2
∫ M/2

0
e−x2/32 dx

∫ ∞
M/2

e−y2/32 dy,

which goes to 0 as M → ∞ as before. This completes the proof of the lemma. �

The following lemma now strengthens the above result to show that dn(i) and
cn(i) are close for those indices i where either i or n + 1 − i is small.

LEMMA 8.2. For any γ > ε > 0:

(a) limn→∞
∑n

i=1 P(dn(i) ≤ γ
√

n, cn(i) > (γ + ε)
√

n) = 0,
(b) limn→∞

∑n
i=1 P(dn(i) > γ

√
n, cn(i) ≤ (γ − ε)

√
n) = 0.

PROOF. We claim that for every fixed M < ∞, ε > 0,

lim
n→∞

∑
1≤i≤n

P
(∣∣dn(i) − cn(i)

∣∣ > ε
√

n, cn(i) ≤ M
√

n
) = 0.(8.5)

Proceeding to complete the proof of the lemma using (8.5), note that

P
(
dn(i) ≤ γ

√
n, cn(i) > (γ + ε)

√
n
)

≤ P
(
dn(i) ≤ γ

√
n, cn(i) > M

√
n
)

+ P
(∣∣dn(i) − cn(i)

∣∣ > ε
√

n, cn(i) ≤ M
√

n
)
.

Summing over i and letting n → ∞ followed by M → ∞, the second term goes
to 0 by (8.5), and the first term goes to 0 by Lemma 8.1. This completes the proof
of part (a). The proof of part (b) follows by similar calculations.

Turning to the proof of (8.5), note that by symmetry it suffices to show that

lim
n→∞

∑
1≤i≤ n+1

2

P
(∣∣dn(i) − cn(i)

∣∣ > ε
√

n, cn(i) ≤ M
√

n
) = 0,

which follows if we can show

lim
n→∞

1

n

∑
1≤i≤M

√
n

∑
1≤j≤M

√
n

P
(∣∣dn(i) − i − j

∣∣ > ε
√

n|πn(i) = j
) = 0.
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To this end, for 1 ≤ i, j ≤ M
√

n,∣∣E(
dn(i)|πn(i) = j

) − i − j
∣∣ =

∣∣∣∣(i − 1)(n − j) + (j − 1)(n − i)

n − 1
− i − j

∣∣∣∣
(8.6)

≤ 2M,

and

Var
(
dn(i)|πn(i) = j

) = (i − 1)(j − 1)(n − i)(n − j)

(n − 1)2(n − 2)
≤ 2M.

Therefore, by Chebyshev’s inequality,

P
(∣∣dn(i) − i − j

∣∣ ≥ ε
√

n|πn(i) = j
) ≤ 4M2

(ε
√

n − 2M)2 .

This readily gives

1

n

∑
1≤i≤M

√
n

∑
1≤j≤M

√
n

P
(∣∣dn(i) − i − j

∣∣ > ε
√

n|πn(i) = j
) ≤ 4M4

(ε
√

n − 2M)2 ,

which goes to 0 on letting n → ∞, for every M < ∞ and ε > 0. �

8.1. Completing the proof of Lemma 3.5. Using the above lemmas, we can
now complete the proof of the theorem. To this end, it suffices to show that for any
γ > 0

lim
n→∞P

(
dn(i) > γ

√
n, for all 1 ≤ i ≤ n

) = e−γ 2/2.(8.7)

Note that

P
(
dn(i) > γ

√
n,1 ≤ i ≤ n

)
≤

n∑
i=1

P
(
dn(i) > γ

√
n, cn(i) ≤ (γ − ε)

√
n
)

+ P
(
cn(i) > (γ − ε)

√
n, i ∈ [n]),

and so by Lemma 8.2

lim sup
n→∞

P
(
dn(i) > γ

√
n,1 ≤ i ≤ n

) ≤ lim sup
n→∞

P
(
cn(i) > (γ − ε)

√
n,1 ≤ i ≤ n

)
.

A similar argument gives

lim sup
n→∞

P
(
cn(i) > γ

√
n,1 ≤ i ≤ n

)
lim sup
n→∞

P
(
dn(i) > (γ − ε)

√
n,1 ≤ i ≤ n

)
,

and so to prove (8.7) and hence the theorem, it suffices to prove the following
lemma.
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LEMMA 8.3. Let cn(·) be as defined in (8.1). Then for any γ > 0,

lim
n→∞P

(
min

1≤i≤n
cn(i) > γ

√
n
)

= e−γ 2
.(8.8)

PROOF. Note that

P

(
min

1≤i≤γ
√

n
cn(i) > γ

√
n
)

= P
(
πn(j) > γ

√
n − j,1 ≤ j ≤ γ

√
n
)

= (n − �γ√
n� + 1)�γ n�

n(n − 1) · · · (n − �γ n� + 1)
(8.9)

= (n − �γ√
n� + 1)�γ n�(n − �γ n�)!

n! .

Moreover,

P

(
min

n+1−γ
√

n≤j≤n
cn(j) > γ

√
n|πn(i),1 ≤ i ≤ γ

√
n
)

= P
(
πn(j) < 2(n + 1) − j − γ

√
n,n + 1 − γ

√
n ≤ j ≤ n|πn(i),

(8.10)
1 ≤ i ≤ γ

√
n
)

≥ (n − 1 − 2�γ√
n�)�γ√

n�(n − 2�γ√
n�)!

(n − �γ√
n�)! ,

where the lower bound uses the following argument: The probability of the event
is minimized when all the πn(i), for i ∈ [�γ√

n�], are at most n + 1 − γ
√

n. This
minimizes the choices of πn(j), for n+1−γ

√
n ≤ j ≤ n. In this case, each πn(j)

has (n − 1 − 2�γ√
n�) choices, and the bound follows.

Denote An,γ = {min1≤i≤γ
√

n cn(i) > γ
√

n}. Now, combining (8.10) and (8.9)
and taking limits as n → ∞ gives the lower bound

P

(
min

1≤i≤n
cn(i) > γ

√
n
)

= E

(
P

(
min

n+1−γ
√

n≤j≤n
cn(j) > γ

√
n|πn(i),1 ≤ i ≤ γ

√
n
)
111{An,γ }

)
(8.11)

≥ (n − �γ√
n� + 1)�γ n�(n − 1 − 2�γ√

n�)�γ√
n�(n − �γ n�)!(n − 2�γ√

n�)!
n!(n − �γ√

n�)!
→ e−γ 2

.

For the upper bound, setting Nn := |{1 ≤ i ≤ γ
√

n : πn(i) ≥ n+ 1−γ
√

n}| and
fixing a large integer M we have

P

(
min

1≤i≤n
cn(i) > γ

√
n
)

≤ P

(
min

1≤i≤n
cn(i) > γ

√
n,Nn ≤ M

)
+ P(Nn > M)

(8.12)

≤ P

(
min

1≤i≤n
cn(i) > γ

√
n,Nn ≤ M

)
+ ENn

M
,
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by Markov’s inequality. Now, since

ENn =
�γ√

n�∑
i=1

�γ√
n�

n
≤ γ 2,

the second term in the RHS of (8.12) to 0 after taking limits as n → ∞ followed by
M → ∞. Again, by a similar argument as the lower bound, on the set {Nn ≤ M}
we have

P

(
min

n+1−γ
√

n≤j≤n
cn(j) > γ

√
n|πn(i),1 ≤ i ≤ γ

√
n
)

= P
(
πn(j) < 2(n + 1) − j − γ

√
n,n + 1 − γ

√
n ≤ j ≤ n|πn(i),

(8.13)
1 ≤ i ≤ γ

√
n
)

≤ (n − 1 − 2�γ√
n� + M)�γ

√
n�(n − 2�γ√

n� + M)!
(n − �γ√

n�)! .

Therefore, using (8.9), (8.12) and (8.13),

P

(
min

1≤i≤n
cn(i) > γ

√
n,Nn ≤ M

)

≤ (n − 1 − 2�γ√
n� + M)�γ

√
n�(n − 2�γ√

n� + M)!
(n − �γ√

n�)! P(An,γ )(8.14)

→ e−γ 2
,

by taking limits as n → ∞ and M → ∞. This completes the proof of the upper
bound, which combined with the lower bound (8.11) gives the result. �

APPENDIX A: WEAK CONVERGENCE IN DISTRIBUTION

Let {μn}n≥1 be a sequence of random measures in P([0,1]2), and let {Zn(·)}n≥1
be a sequence of random functions in [0,1](0,1]. Recall that, equipped with the
Lévy–Prokhorov metric, the space P([0,1]2) is compact. Consider the product
topology on P([0,1]2) × [0,1](0,1]. Now, we have the following proposition:

PROPOSITION A.1. Let {μn,Zn(·)}n≥1 be a random sequence defined in
P([0,1]2) × [0,1](0,1], equipped with the product topology, such that for every
continuous function f : [0,1]2 �→ R, every b ≥ 1 fixed, and reals s1, . . . , sb ∈
(0,1], the sequence (

μn(f ),Zn(s1),Zn(s2), . . . ,Zn(sb)
)

(A.1)

converges in distribution. Then there exists (μ,Z(·)) ∈ P([0,1]2)×[0,1](0,1] such
that (

μn,Zn(·)) D→ (
μ,Z(·)).(A.2)
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PROOF. To begin, note that the space P([0,1]2)×[0,1](0,1] is compact under
product topology, by Tychonoff’s theorem. Hence, the sequence is {μn,Zn(·)}n≥1

is tight in P([0,1]2) × [0,1](0,1], and it suffices to show that all sub-sequential
limits in distribution of {μn,Zn(·)}n≥1 are the same. Assume, on the contrary, that
(μ,Z(·)) and (ν, Y (·)) are two different sub-sequential limits in distribution.

Note that any ν ∈ P([0,1]2) is characterized by {ν(fs)}s≥1 for a countable
collection of continuous functions {fs}s≥1, where fs : [0,1]2 �→ R. Indeed, for
a particular choice take the sequence {fa,b(x, y) = xayb}a,b≥0 which evaluates
the mixed (a, b)th moment

∫
xayb dν of ν, and hence, characterizes the measure ν

(as ν is supported on a bounded set). Thus, there is a one-one correspondence be-
tween ν ∈ P([0,1]2) and the infinite sequence {σ(fs)}s≥1 ∈ [0,1]N. Then endow-
ing [0,1]N with product topology, weak convergence of measures in P([0,1]2)

is equivalent to convergence in product topology of [0,1]N. Thus, we can view
(μn,Zn(·)) ∈ P[0,1]2 × [0,1](0,1] as a random variable in [0,1](0,1]+N. Now,
since finite-dimensional distributions determine joint distribution in [0,1](0,1]+N,
[7] there must exist a, b ≥ 1 and continuous functions (f1, . . . , fa) from [0,1]2 →
R and real numbers s1, s2, . . . , sb ∈ (0,1] such that(

μ(f1), . . . ,μ(fa),Z(s1), . . . ,Z(sb)
)

(A.3)
D	= (

ν(f1), . . . , ν(fa), Y (s1), . . . , Y (sb)
)
.

However, f := ∑a
i=1 αifi is a bounded continuous function on [0,1]2, and by the

given assumption (A.1) we have (μn(f ),Zn(s1), . . . ,Zn(sb)) converges in distri-
bution. Thus,(

a∑
i=1

αiμ(fi),Z(s1), . . . ,Z(sb)

)
D=

(
a∑

i=1

αiν(fi), Y (s1), . . . , Y (sb)

)
,

and since this holds for all α1, . . . , αa ∈ R, by the Cramér–Wold theorem, we have

(
μ(f1), . . . ,μ(fa),Z(s1), . . . ,Z(sb)

) D= (
ν(f1), . . . , ν(fa), Y (s1), . . . , Y (sb)

)
,

which is a contradiction to (A.3). This completes the proof of the proposition. �

APPENDIX B: EMPIRICAL DEGREE PROPORTION

In this section we derive the limiting distribution of the empirical degree propor-
tion (2.9). This follows easily from the results of Diaconis et al. [17]. We include
the proofs here for the sake of completeness.
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B.1. Proof of Proposition 2.1. Let K : [0,1]2 × [0,1]2 �→ [0,1] be K((x1,

y1), (x2, y2)) = 1{(x1 −x2)(y1 −y2) < 0}. Suppose (X1, Y1) ∼ ν and let Fν be the
distribution function of ν. From Diaconis et al. [17] and (2.10), it follows that the
empirical degree proportion κ(Gπn) converges weakly to the law of

W1(X1, Y1) =
∫
[0,1]2

1
{
(X1 − x2)(Y1 − y2) < 0

}
dν(x2, y2)

= ν
([0,X1] × [Y1,1]) + ν

([0, Y1] × [X1,1]).
The limiting degree distribution in (2.11) now follows from the fact that ν has
uniform marginals.

B.2. Proof of Corollary 2.2. When πn is a uniform random permutation, the
limiting permuton is ν = Unif(0,1) × Unif(0,1) and (2.12) follows from Proposi-
tion 2.1 by direct substitution.

To get the density of the limiting random variable, let Z := (1 − U)V + U(1 −
V ) where U,V are independent Unif[0,1]. For z ≤ 1/2, conditioning on U the
distribution function of Z can be calculated as

P(Z ≤ z) =
∫ z

0

z − u

1 − 2u
du +

∫ 1

1−z

z − (1 − u)

2u − 1
du.

Simplifying and differentiating the above expression with respect to z gives the
desired density for z ≤ 1/2. For z > 1/2, the density can be derived similarly. The
density vanishes at the end points, and blows up to infinity at z = 1/2.
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