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ε-STRONG SIMULATION FOR MULTIDIMENSIONAL STOCHASTIC
DIFFERENTIAL EQUATIONS VIA ROUGH PATH ANALYSIS1

BY JOSE BLANCHET, XINYUN CHEN AND JING DONG

Columbia University, Wuhan University and Northwestern University

Consider a multidimensional diffusion process X = {X(t) : t ∈ [0,1]}.
Let ε > 0 be a deterministic, user defined, tolerance error parameter. Under
standard regularity conditions on the drift and diffusion coefficients of X, we
construct a probability space, supporting both X and an explicit, piecewise
constant, fully simulatable process Xε such that

sup
0≤t≤1

∥∥Xε(t) − X(t)
∥∥∞ < ε

with probability one. Moreover, the user can adaptively choose ε′ ∈ (0, ε) so
that Xε′ (also piecewise constant and fully simulatable) can be constructed
conditional on Xε to ensure an error smaller than ε′ with probability one. Our
construction requires a detailed study of continuity estimates of the Itô map
using Lyons’ theory of rough paths. We approximate the underlying Brow-
nian motion, jointly with the Lévy areas with a deterministic ε error in the
underlying rough path metric.
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1. Introduction. Consider the Itô Stochastic Differential Equation (SDE)

(1.1) dX(t) = μ
(
X(t)
)
dt + σ

(
X(t)
)
dZ(t), X(0) = x(0),

where Z(·) is a d ′-dimensional Brownian motion, and μ(·) : Rd → Rd and σ(·) :
Rd → Rd×d ′

satisfy suitable regularity conditions. We shall assume, in particular,
that both μ(·) and σ(·) are Lipschitz continuous so that a strong solution to the
SDE is guaranteed to exist. Additional assumptions on the first- and second-order
derivatives of μ(·) and σ(·), which are standard in the theory of rough paths, will
be discussed in the sequel.

Our contribution in this paper is the joint construction of X = {X(t) : t ∈ [0,1]}
and a family of processes Xε = {Xε(t) : t ∈ [0,1]}, for each ε ∈ (0,1), supported
on a probability space (�,F,P ), and such that the following properties hold:

(T1) The process Xε is piecewise constant, with finitely many discontinuities
in [0,1].

(T2) The process Xε can be simulated exactly and, since it takes only finitely
many values, its path can be fully stored.

(T3) We have that with P -probability one

(1.2) sup
t∈[0,1]

∣∣∣∣Xε(t) − X(t)
∣∣∣∣∞ < ε.

(T4) For any m > 1 and 0 < εm < · · · < ε1 < 1 we can simulate Xεm condi-
tional on Xε1, . . . ,Xεm−1 .

We refer to the class of procedures which achieve the construction of such fam-
ily {Xε : ε ∈ (0,1)} as Tolerance-Enforced Simulation (TES) or ε-strong simula-
tion methods. Throughout the paper, we use ‖ · ‖∞ to denote the max-norm on R

d .
This paper provides the first construction of a Tolerance-Enforced Simula-

tion procedure for multidimensional SDEs in substantial generality. All other
TES or ε-strong simulation procedures up to now are applicable to one dimen-
sional processes or multidimensional processes with constant diffusion matrix [i.e.,
σ(x) = σ ].

Let us discuss some considerations that motivate our study. We first discuss
how this paper relates to the current literature on ε-strong simulation of stochastic
processes, which is a recent area of research. Chen and Huang [6] provides the
construction of Xε satisfying only (T1) to (T3), in one dimension. In particular,
bound (1.2) is satisfied for a given fixed ε0 = ε > 0 and it is not clear how to
jointly simulate {Xεm}m≥1 as εm ↘ 0 applying the technique in [6]. The motivation
of constructing Xε0 for [6] came from the desire to produce exact samples from a
one-dimensional diffusion X(·) satisfying (1.1), and also assuming σ(·) constant.

Chen and Huang [6] were interested in extending the applicability of an algo-
rithm introduced by Beskos and Roberts; see [4]. The procedure of Beskos and
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Roberts, applicable to one-dimensional diffusions, imposed strong boundedness
assumptions on the drift coefficient and its derivative. The technique in [6] enabled
an extension which is free of such boundedness assumptions by using a localiza-
tion technique that allowed to apply the ideas behind the algorithm in [4]; see also
[2] for another approach which eliminates boundedness assumptions. All of these
developments are in the one-dimensional case.

The assumption of a constant diffusion coefficient comes at basically no cost
in generality when considering one-dimensional diffusions because one can al-
ways apply Lamperti’s (one-to-one) transformation. Such transformation allows
to recast the simulation problem to one involving a diffusion with constant σ(·).
Lamperti’s transformation cannot be generally applied in higher dimensions.

Beskos, Peluchetti and Roberts [3] extends the work of [6] in that their algo-
rithms satisfy (T1) to (T4), but also in the context of one dimensional processes.
Pollock, Johansen and Roberts [11] not only provides an additional extension
which allows to deal with one-dimensional SDEs with jumps, but also contains
a comprehensive discussion on exact and ε-strong simulation for SDEs. Property
(T4) in the definition of TES is desirable because it provides another approach at
constructing unbiased estimators for expectations of the form Ef (X), where f (·)
is, say, a continuous function of the sample path X. In order to see this, let us as-
sume for simplicity that f (·) is positive and Lipschitz continuous in the uniform
norm with Lipschitz constant K . Then let T be any positive random variable with
a strictly positive density g(·) on [0,∞) and define
(1.3) Z := I

(
f (X) > T

)
/g(T ).

Observe that

E[Z] = E
[
E[Z|X]]= E

[∫ ∞
0

I
(
f (X) > t

)g(t)

g(t)
dt

]
= E
[
f (X)

]
,

so Z is an unbiased estimator for Ef (X). Therefore, if Properties T(1) to T(4)
hold, it is possible to simulate Z by noting that f (Xε) > T + Kε implies f (X) >

T and if f (Xε) < T − Kε, then f (X) ≤ T . Since (T4) allows to keep simulating
as ε becomes smaller and T is independent of Xε with a positive density g(·), then
one eventually is able to simulate Z exactly.

The major obstacle involved in developing exact sampling algorithms for mul-
tidimensional diffusions is the fact that σ(·) cannot be assumed to be constant.
Moreover, even in the case of multidimensional diffusions with constant σ(·), the
one-dimensional algorithms developed so far can only be extended to the case
in which the drift coefficient μ(·) is the gradient of some function, that is, if
μ(x) = ∇v(x) for some v(·). The reason is that in this case one can represent
the likelihood ratio L(t), between the solution to (1.1) and Brownian motion (as-
suming σ = I for simplicity) involving a Riemann integral as follows:

L(t) = exp
(∫ t

0
μ
(
X(s)
)
dX(s) − 1

2

∫ t

0

∥∥μ(X(s)
)∥∥2

2 ds

)
(1.4)

= exp(v(X(t)))

exp(v(X(0)))
exp
(
−1

2

∫ t

0
λ
(
X(s)
)
ds

)
,
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for λ(x) = �v(x) + ||∇v(x)||22. The fact that the stochastic integral can be trans-
formed into a Riemann integral facilitates the execution of acceptance-rejection
because one can interpret (up to a constant and using localization as in [6]) the ex-
ponential of the integral of λ(·) as the probability that no arrivals occur in a Poisson
process with a stochastic intensity. Such event (i.e., no arrivals) can be simulated
by thinning.

So, our motivation in this paper is to investigate a novel approach that allows to
study ε-strong simulation for multidimensional diffusions in substantial general-
ity, without imposing the assumption that σ(·) is constant or that a Lamperti-type
transformation can be applied. Given the previous discussion on the connections
between exact sampling and ε-strong simulation, and the limitations of the current
techniques, we believe that our results here provide an important step in the devel-
opment of exact sampling algorithms for general multidimensional diffusions. For
example, in contrast to existing techniques, which demand L(t) to be expressed in
terms of a Riemann integral as indicated in (1.4), our results here allow to approx-
imate directly L(t) in terms of the stochastic integral representation [and thus one
does not need to assume that μ(x) = ∇v(x)]. We plan to report on these implica-
tions in future papers.

Our results already allow to obtain unbiased estimator of expectations of sam-
ple path functionals via (1.3). However, it is noted in [3] that the expected number
of random variables required to simulate Z is typically infinite. Pollock, Johansen
and Roberts [11] discusses via numerical examples the practical limitations of
these types of estimators. Rhee and Glynn [12], also proposes unbiased estimators
for the expectation of Lipschitz continuous functions of X(1) using randomized
multilevel Monte Carlo. Nevertheless, their algorithm also exhibits infinite ex-
pected termination time, except when one can simulate the Lévy areas exactly,
which currently can be done only in the context of two-dimensional SDEs using
the results in [9].

Bayer, Friz, Riedel and Schoenmakers [1] also use rough path analysis for
Monte Carlo estimation, but their focus is on connections to multilevel techniques
and not on ε-strong simulation.

In this paper, we concentrate only on what is possible to do in terms of ε-strong
simulation procedures and how to enable the use of rough path theory for ε-strong
simulation. We shall study efficient implementations of the algorithms proposed
in a separate paper. Other research avenues that we plan to investigate, and which
leverage off our development in this paper, involve quantification of model uncer-
tainty using the fact that our ε-strong simulation algorithms in the end are uniform
for cases with a large class of drift and diffusion coefficients.

Finally, we note that in order to build our Tolerance-Enforced Simulation proce-
dure we had to obtain new tools for the analysis of Lévy areas and associated con-
ditional large deviations results for Lévy areas given the increments of Brownian
motion. We believe that these technical results might be of independent interest.

The rest of the paper is organized as follows. In Section 2 we describe the two
main results of the paper. The first of them, Theorem 2.1, provides an error bound



ε -STRONG SIMULATION FOR SDES 279

between the solution to the SDE described in (1.1) and a suitable piecewise con-
stant approximation. The second result, Theorem 2.2, refers to the procedures that
are involved in simulating the bounds, jointly with the piecewise constant approx-
imation, thereby yielding (1.2). Section 3 is divided into two subsections and it
builds the elements behind the proof of Theorem 2.2. As it turns out, one needs to
simulate bounds on the so-called Hölder norms of the underlying Brownian motion
and the corresponding Lévy areas. Section 4 lays out the details of the simulation
of the Brownian motion and an upper bound of its α-Hölder norm and Section 5
lays out the details of the simulation of the Lévy areas and an upper bound of
its 2α-Hölder norm. Section 6 is also divided in several parts, corresponding to
the elements of rough path theory required to analyze the SDE described in (1.1)
as a continuous map of Brownian motion under a suitable metric (described in
Section 2). While the final form of the estimates in Section 6 might be somewhat
different than those obtained in the literature on rough path analysis, the tech-
niques that we use here are certainly standard in that literature. We have chosen to
present the details because the techniques might not be well known to the Monte
Carlo simulation community and also because our emphasis is in finding explicit
constants (i.e., bounds) that are amenable to simulation.

2. Main results. Our approach consists in studying the process X as a trans-
formation of the underlying Brownian motion Z. Such transformation is known as
the Itô–Lyons map and its continuity properties are studied in the theory of rough
paths, pioneered by T. Lyons, in [10]. A rough path is an effective way to sum-
marize an irregular path information. The theory of rough paths allows to define
the solution to an SDE such as (1.1) in a path-by-path basis (free of probability)
by imposing constraints on the regularity of the iterated integrals of the underlying
process Z. Namely, integrals of the form

(2.1) Ai,j (s, t) =
∫ t

s

(
Zi(u) − Zi(s)

)
dZj (u).

The theory results in different interpretations of the solution to (1.1) depending
on how the iterated integrals of Z are interpreted. In this paper, we interpret the
integral in (2.1) in the sense of Itô.

It turns out that the Itô–Lyons map is continuous under a suitable α-Hölder met-
ric defined in the space of rough paths. In particular, such metric can be expressed
as the maximum of the following two quantities:

‖Z‖α := sup
0≤s<t≤1

‖Z(t) − Z(s)‖∞
|t − s|α ,(2.2)

‖A‖2α := sup
0≤s<t≤1

max
1≤i,j≤d ′

|Ai,j (s, t)|
|t − s|2α

.(2.3)

As we shall discuss, continuity estimates of the Itô–Lyons map can be given ex-
plicitly in terms of these two quantities.
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In the case of Brownian motion, as we consider here, we have that α ∈
(1/3,1/2). It is shown in [7], that under suitable regularity conditions on μ(·) and
σ(·), which we shall discuss momentarily, the Euler scheme provides an almost
sure approximation in uniform norm to the solution to the SDE (1.1). Our first re-
sult provides an explicit characterization of all of the (path-dependent) quantities
that are involved in the final error analysis (such as ||Z||α and ||A||2α), the dif-
ference between our analysis and what has been done in previous developments
is that ultimately we must be able to implement the Euler scheme jointly with the
path-dependent quantities that are involved in the error analysis. So, it is not suffi-
cient to argue that there exists a path-dependent constant that serves as a bound of
some sort, we actually must provide a suitable representation that can be simulated
in finite time.

In order to provide our first result, we introduce some notation. Let Dn denote
the dyadic discretization of order n and �n denote the mesh of the discretization.
Specifically, Dn := {tn0 , tn1 , . . . , tn2n} where tnk = k/2n for k = 0,1,2, . . . ,2n and
�n = 1/2n.

Given X̂n(0) = x(0), define {X̂n(t) : t ∈ Dn} by the following recursion:

X̂n
i

(
tnk+1
)= X̂n

i

(
tnk
)+ μi

(
X̂n(tnk ))�n +

d ′∑
j=1

σi,j

(
X̂n(tnk ))(Zj

(
tnk+1
)− Zj

(
tnk
))

(2.4)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X̂n(tnk ))σl,m

(
X̂n(tnk ))Ãn

m,j

(
tnk , tnk+1

)
,

where Ãn
i,i(t

n
k , tnk+1) = Ai,i(t

n
k , tnk+1) = (Zi(t

n
k+1) − Zi(t

n
k ))2/2 − �n/2, and

Ãn
i,j (t

n
k , tnk+1) = 0 for i �= j . We let X̂n(t) = X̂n(�t) where �t = max{tnk : tnk ≤ t}

for t ∈ [0,1]. We denote

Rn
i,j

(
tnl , tnm

) := m∑
k=l+1

{
Ai,j

(
tnk−1, t

n
k

)− Ãn
i,i

(
tnk , tnk+1

)}
,

and for fixed β ∈ (1 − α,2α), write


R := sup
n

sup
0≤s<t≤1,s,t∈Dn

max
1≤i,j≤d ′

|Rn
i,j (s, t)|

|t − s|β�
2α−β
n

.

We notice that when i = j , Rn
i,i(t

n
l , tnm) = 0; when i �= j , Rn

i,j (t
n
l , tnm) =∑m

k=l+1 Ai,j (t
n
k−1, t

n
k ). We also redefine ‖Z‖α and ‖A‖2α as

‖Z‖α := sup
n

sup
0≤s<t≤1,s,t∈Dn

‖Z(t) − Z(s)‖∞
|t − s|α ,

‖A‖2α := sup
n

sup
0≤s<t≤1,s,t∈Dn

max
1≤i,j≤d ′

|Ai,j (s, t)|
|t − s|2α

.
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The new definitions are equivalent to (2.2) and (2.3) since both Z and A are con-
tinuous processes. It is well known that a solution to X can be constructed path-
by-path (see [7] and Section 6). The next result characterizes an explicit bound for
the error obtained by approximating X using X̂n.

THEOREM 2.1. Suppose that there exists a constant M such that ‖μ‖∞ ≤
M , ‖∇μ‖∞ ≤ M and ‖σ (i)‖∞ ≤ M for i = 0,1,2,3, where σ (i) denotes the ith
derivative of σ . If ||Z||α ≤ Kα < ∞, ||A||2α ≤ K2α < ∞, and 
R < KR , we can
compute G explicitly in terms of M , Kα , K2α and KR , such that

sup
t∈[0,1]

∥∥X̂n(t) − X(t)
∥∥∞ ≤ G�2α−β

n .

REMARK. A recipe that explains step-by-step how to compute G in terms of
algebraic expressions involving M,Kα,K2α and KR is given in Procedure A in
Section 2.2.

Using Theorem 2.1, we can proceed to state the main contribution of this paper.

THEOREM 2.2. In the context of Theorem 2.1, there is an explicit Monte Carlo
procedure that allows us to simulate random variables Kα , K2α and KR jointly
with {Z(t) : t ∈ Dn} for any n ≥ 1. Consequently, given any deterministic ε > 0 we
can select n(ε) such that G�

2α−β
n(ε) ≤ ε and then set Xε(t) = X̂n(t) so that

(2.5) sup
t∈[0,1]

∥∥Xε(t) − X(t)
∥∥∞ ≤ ε,

with probability one.

REMARK. An explicit description of the algorithm involved in the Monte
Carlo procedure of Theorem 2.2 is given in Algorithm 2 at the end of Section 5.3,
and the discussion that follows it.

Given {Z(t) : t ∈ Dn(ε)} so that (2.5) holds, the discussion in the remark that
follows Algorithm 2 explains how to further simulate {Z(t) : t ∈ Dn′ } for any n′ >
n(ε). This refinement is useful in order to satisfy the important property (T4) given
in the Introduction. In detail, once Kα , K2α and KR have been simulated then G

has also been simulated and evaluated. Consequently, given any sequence εm <

εm−1 < · · · < ε1 we just need to obtain ni such that G�
2α−β
ni ≤ εi . Then simulate

{Z(t) : t ∈ Dni
} and construct X̂ni (·) according to (2.4). We let Xεi

(t) = X̂ni (t)

and, owing to Theorem 2.1, we immediately obtain

sup
t∈[0,1]

∥∥Xεi
(t) − X(t)

∥∥∞ ≤ εi

with probability one, as desired.
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2.1. On relaxing boundedness assumptions. The construction of X̂n(·) in or-
der to satisfy (2.5) assumes that ‖μ‖∞ ≤ M , ‖μ(1)‖∞ ≤ M and ‖σ (i)‖∞ ≤ M

for i = 0,1,2,3. Although these assumptions are strong, here we explain how to
relax them. Theorem 2.2 extends directly to the case in which μ and σ are Lip-
schitz continuous, with μ differentiable and σ three times differentiable. Since μ

and σ are Lipschitz continuous, we know that X(·) has a strong solution which is
nonexplosive.

We can always construct μM and σM so that μ(i)(x) = μ
(i)
M (x) for ‖x‖∞ ≤ cM

and i = 0,1 and σ (i)(x) = σ
(i)
M (x) for ‖x‖∞ ≤ cM for i = 0,1,2,3. Also we can

construct cM , where cM → ∞ as M → ∞, and ‖μM‖∞ ≤ M , ‖μ(1)
M ‖∞ ≤ M and

‖σ (i)
M ‖∞ ≤ M for i = 0,1,2,3.
For M ≥ 1, we consider the SDE (1.1) with μM and σM as drift and diffusion

coefficients, respectively, and let XM(·) be the corresponding solution to (1.1). We
start by picking some M0 ≥ 1 such that ε < cM0 and let M = M0. Then run Algo-
rithm 2 to produce {X̂n

M(t) : t ∈ [0,1]}, which according to Theorem 2.2 satisfies,

sup
t∈[0,1]

∥∥X̂n
M(t) − XM(t)

∥∥∞ ≤ ε.

Note that only Steps 5 to 8 in Algorithm 2 depend on the SDE (1.1), through
the evaluation of G, which depends on M and so we write GM := G. If
supt∈[0,1] ‖X̂n

M(t)‖∞ ≤ cM −ε, then we must have that X(t) = XM(t) for t ∈ [0,1]
and we are done. Otherwise, we let M ←− 2M and run again only Steps 5 to 8 of
Algorithm 2. We repeat doubling M and re-running Steps 5 to 8 (updating GM )
until we obtain a solution for which supt∈[0,1] ‖X̂n

M(t)‖∞ ≤ cM − ε. Eventually,
this must occur because

lim
M→∞ sup

t∈[0,1]
∥∥XM(t) − X(t)

∥∥∞ = 0

almost surely and X(·) is non explosive.

2.2. The evaluation of G. We next summarize the way to calculate G in terms
of M , Kα , K2α and KR . We write d̄ = max{d, d ′}.

PROCEDURE A. 1. Find δ and Ci(δ) > 0 for i = 1,2,3 that satisfies the fol-
lowing relations:

C1(δ) ≥ C3(δ)δ
2α + Mδ1−α + d̄MKα + d̄3M2K2αδα,

C2(δ) ≥ C3(δ)δ
α + d̄3M2K2α,

C3(δ) ≥ 2

1 − 21−3α

{
MC1(δ) + d̄MC1(δ)

2Kα + d̄2MC2(δ)Kα

+ 2d̄3M2C1(δ)K2α

}
.
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[Refer to the proof of Lemma 6.1 for one particular method to find such Ci(δ)’s.]
2. Set C1 = 2

δ
C1(δ), C2 = 2

δ
(C2(δ) + MC1 + d̄MC1Kα) and

C3 = 2

1 − 21−3α

(
MC1 + d̄MC2

1Kα + d̄2MC2Kα + 2d̄3M2C1K2α

)
.

3. Find δ′ and Bi(δ
′) for i = 1,2,3 that satisfies the following relations:

B1
(
δ′)> B3

(
δ′)δ′2α + 2Mδ′1−α + 2MKα + 4M2K2αδ′α,

B2
(
δ′)> B3

(
δ′)δ′α + 4M2K2α,

B3
(
δ′)> 4

1 − 21−3α

{
MB1
(
δ′)+ MB1

(
δ′2)Kα + MB2

(
δ′)Kα

+ 2M2B1
(
δ′)K2α

}
.

4. Set B = 2
δ′ B1(δ

′).
5. Set G1 = (1 + B)C3.
6. Find δ′′ and C4(δ

′′) such that

Bδ′′α ≤ 2α+β − 2,

C4
(
δ′′)≥ 2

(
1 − 2 + Bδ′′α

2α+β

)−1(
Bd̄3M2KR + 2d̄3M2C1KR

)
.

7. Set C4 = (1 + Bδ′′α)C4(δ
′′3M2KR + 2d̄3M2C1KR)/δ′′.

8. Set G2 = C4 + d̄3M2KR .
9. Set G = G1 + G2.

LEMMA 2.1. Given Kα , K2α , KR and M , Procedure A can be executed.

PROOF. We prove the lemma by providing one particular method to find such
δ and Ci(δ)’s, i = 1,2,3. The method to find δ′, Bi(δ

′)’s, for i = 1,2,3, follows
exactly the same rationale.

Set C1(δ) = d̄M‖Z‖α + 1/2, C2(δ) = d̄3M2‖A‖2α + 1/2 and C3(δ) =
2

1−21−3α (MC1(δ) + d̄MC1(δ)
2‖Z‖α + d̄2MC2(δ)‖Z‖α + d̄2M2‖Z‖α +

2d̄3M2C1(δ)‖A‖α). Then we can pick δ small enough, such that C3(δ)δ
2α +

Mδ1−α + d̄3M2‖A‖2αδα < 1/2 and C3(δ)δ
α < 1/2. �

3. The main idea of the algorithmic development. Based on Theorem 2.2,
our main task is to calculate/simulate the upper bound for ‖Z‖α , ‖A‖2α and 
R ,
respectively. In this section, we will introduce the main idea of our algorithmic
development.

The development can be decomposed into two tasks. The first one is to find an
infinite sum representation of the objects of interest. The second one is to truncate
the infinite sum up to a finite but random level so that the error induced by the
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remaining terms in the summation is suitably controlled. The second task calls for
novel algorithmic constructions. Simulating infinitely many terms is impossible.
We need to find an efficient way to extract enough information on the remaining
terms after the truncation, so that we can obtain an almost sure bound on the con-
tribution of the terms that are not simulated. We next carry out the two tasks one
by one.

3.1. Infinite sum representation of Brownian motion and Lévy area. We start
by introducing a wavelet synthesis of Brownian motion, {Z(t) : 0 ≤ t ≤ 1}, called
the Lévy–Ciesielski construction of Brownian motion [13].

First, we need to define a step function H(·) on [0,1] by

H(t) = I (0 ≤ t < 1/2) − I (1/2 ≤ t ≤ 1).

We then define a family of functions

Hn
k (t) = 2n/2H

(
2n−1t − k + 1

)
for all n ≥ 0 and 1 ≤ k ≤ 2n−1. Set H 0

0 (t) = 1. Then one obtains the following
infinite sum representation of Brownian motion.

THEOREM 3.1 (Lévy–Ciesielski construction). If {Wn
k : 1 ≤ k ≤ 2n−1, n ≥ 0}

is a sequence of independent standard normal random variables, then the series
defined by

(3.1) Z(t) = W 0
0

∫ t

0
H 0

0 (s) ds +
∞∑

n=1

2n−1∑
k=1

(
Wn

k

∫ t

0
Hn

k (s) ds

)

converges uniformly on [0,1] with probability one. Moreover, the process {Z(t) :
t ∈ [0,1]} is a standard Brownian motion on [0,1].

Figure 1 demonstrates the basic idea of the Lévy–Ciesielski construction using
properties of the Brownian bridge. Specifically, as Z(1) ∼ N(0,1), we set Z(1) =
W 0

0 . Conditional on the value of Z(0) = 0 and Z(1), Z(1/2) ∼ N(Z(1)/2,1/4).

FIG. 1. Lévy–Ciesielski construction of Brownian motion on [0,1].
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Thus, we set Z(1/2) = Z(1)/2 + 1/2W 1
1 . In general, conditional on the value of

Z(tn−1
k ) and Z(tn−1

k+1 ), for k = 0,1, . . . ,2n−1,

Z
(
tn2k+1
)∼ N

((
Z
(
tn−1
k

)+ Z
(
tn−1
k+1

))
/2,�n+1

)
.

Thus, we set

Z
(
tn2k+1
)= (Z(tn−1

k

)+ Z
(
tn−1
k+1

))
/2 + �

1/2
n+1W

n
k+1.

Eventually, we will simulate the series up to a finite but random level N1 to
be discussed later. By level, we mean the order of dyadic discretization. As we
are simulating the discretization levels sequentially, we often refer to “time” when
discussing levels.

We next analyze the Lévy area, Ai,j (t
n
k , tnk+1), for 1 ≤ i, j ≤ d ′, n ≥ 1, 0 ≤ k ≤

2n − 1. Using the algebraic property,

Ai,j

(
tnk , tnk+1

)= Ai,j

(
tn+1
2k , tn+1

2k+1

)+ Ai,j

(
tn+1
2k+1, t

n+1
2k+2

)
+ (Zi

(
tn+1
2k+1

)− Zi

(
tn+1
2k

))(
Zj

(
tn+1
2k+2

)− Zj

(
tn+1
2k+1

))
,

we have the following infinite sum representation of Ai,j (t
n
k , tnk+1).

LEMMA 3.1. For n ≥ 1, 0 ≤ k ≤ 2n − 1,

Ai,j

(
tnk , tnk+1

)= ∞∑
h=n+1

2h−n−1∑
l=1

{(
Zi

(
th2h−nk+2l−1

)− Zi

(
th2h−nk+2l−2

))

× (Zj

(
th2h−nk+2l

)− Zj

(
th2h−nk+2l−1

))}
.

The inner summation terms in the expression for Ai,j (t
n
k , tnk+1) motivate the

definition of the following family of processes (Ln
i,j (k) : k = 0,1, . . . ,2n−1,

n ≥ 1):

Ln
i,j (0) := 0,

Ln
i,j (k) := Ln

i,j (k − 1) + (Zi

(
tn2k−1
)− Zi

(
tn2k−2
))(

Zj

(
tn2k

)− Zj

(
tn2k−1
))

for k = 1,2, . . . ,2n−1.
Using this definition and Lemma 3.1, we can succinctly write Ai,j (t

n
k , tnk+1) as

(3.2) Ai,j

(
tnk , tnk+1

)= ∞∑
h=n+1

(
Lh

i,j

(
2h−n(k + 1)

)− Lh
i,j

(
2h−nk

))
.
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3.2. The idea of record breakers. To truncate the infinite sum up to a finite but
random level, we use a strategy called record breakers. Specifically, we first define
a sequence of “record breakers.” We then formulate the “future” information we
need to know as a sequence of “yes or no” questions. Specifically, the yes or no
question is formulated as “will there be a new record breaker?” and answering the
yes/no question is equivalent to simulating a properly defined Bernoulli random
variable.

The definition of the record breakers need to satisfy the following two condi-
tions:

C1. The following event happens with probability one: beyond some random
but finite time, there will be no more record breakers.

C2. By knowing that there are no more record breakers, the contribution of the
terms that we have not simulated yet are well under control (i.e., bounded by a user
defined tolerance error).

We next explain how the above strategy is applied to the Brownian motion and
the Lévy area, respectively.

We have d ′ independent Brownian motions and we will use Wn
i,k for i ∈

{1, . . . , d ′} to denote the (n, k) coefficient in the expansion (3.1) for the ith Brow-
nian motion.

For ‖Z‖α , we say a record is broken at (i, n, k), for 1 ≤ i ≤ d ′, n ≥ 0 and
1 ≤ k ≤ 2n−1, if

∣∣Wn
i,k

∣∣> 4
√

n + 1.

Let N̄1 := max{n ≥ 1 : |Wn
i,k| > 4

√
n + 1 for some 1 ≤ k ≤ 2n−1,1 ≤ i ≤ d ′}. It is

the last time the record breaker happens. The following lemma shows that condi-
tion C1 is satisfied (E[N1] < ∞ implies P(N1 < ∞) = 1).

LEMMA 3.2. There exists an integer valued random variable N1, with
E[N1] < ∞, such that for all n > N1, 1 ≤ k ≤ 2n − 1 and 1 ≤ i ≤ d ′ Wn

i,k ≤
4
√

n + 1.

We next check condition C2. Define V n = max1≤k≤2n−1 |Wn
k |. We have the fol-

lowing auxiliary lemma.

LEMMA 3.3.

‖Z‖α ≤ 22α+1
∞∑

n=0

2−n( 1
2 −α)V n.



ε -STRONG SIMULATION FOR SDES 287

Once we found N1, we have

‖Z‖α ≤ 22α+1
N1∑
n=0

2−n(1/2−α)V n + 22α+3
∞∑

n=N1+1

2−n(1/2−α)
√

n + 1

≤ 22α+1
N1∑
n=0

2−n(1/2−α)V n + 22α+3C
2−1/2(N1+1)(1/2−α)

1 − 2−1/2(1/2−α)
,

where C = maxn≥N1+1{2−n/2(1/2−α)
√

n + 1}.
For the Lévy area, we first notice that when i = j ,

sup
n

sup
0≤s<t≤1,s,t∈Dn

Ai,i(s, t)

(t − s)2α

= sup
n

sup
0≤s<t≤1,s,t∈Dn

(B(t) − B(s))2 − (t − s)2

2(t − s)2α

≤ ‖Z‖2
α + 1

2
,

and

Rn
i,i

(
tnl , tnm

)= 0.

When i �= j , the record breaker is defined for the random walk Ln
i,j ’s. Specifically,

for L, we say a record is broken at (i, j, n, k, k′), for 1 ≤ i, j ≤ d ′, i �= j , n ≥
1,0 ≤ k < k′ < 2n−1, if∣∣Ln

i,j

(
k′)− Ln

i,j (k)
∣∣> (k′ − k

)β
�2α

n ,

where β ∈ (1 − α,2α). Let N̄2 := max{n ≥ 1 : |Ln
i,j (k

′) − Ln
i,j (k)| > (k′ −

k)β�2α
n for some 0 ≤ k < k′ ≤ 2n−1,1 ≤ i, j ≤ d ′, i �= j}. It is the last time the

record breaker happens. The following lemma shows that condition C1 is satis-
fied.

LEMMA 3.4. There exists an integer valued random variable N2, with
E[N2] = o((1 − 2α)−2), such that for all n > N2 and all 0 ≤ l < m ≤ 2n−1 we
have |Ln

i,j (m) − Ln
i,j (l)| ≤ (m − l)β�2α

n for α ∈ (1/3,1/2) and β ∈ (1 − α,2α).

We next check condition C2. The following corollary follows directly from (3.2)
and the definition of Rn

i,j .

COROLLARY 3.1. For i �= j ,

Rn
i,j

(
tnl , tnm

)= ∞∑
h=n+1

(
Lh

i,j

(
2h−nm

)− Lh
i,j

(
2h−nl

))
.
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Then we have the following bounds for ‖A‖2α and 
R based on the N2.

LEMMA 3.5. Suppose that N2 is chosen according to Lemma 3.4. We define


L := max
{

1, max
1≤i,j≤d ′,i �=j

max
n<N2

max
0≤l<m≤2n−1

{ |Ln
i,j (m) − Ln

i,j (l)|
(m − l)β�2α

n

}}
.

Then


R ≤ 2−(2α−β)

1 − 2−(2α−β)

L

and

‖A‖2α ≤ 
R

2

1 − 2−2α
+ ‖Z‖2

α

21−α

1 − 2−α
.

In what follows, we shall explain how to simulate the random numbers (N1 and
N2) jointly with the wavelet construction using the “record breaker” strategy in-
troduced in the previous section. Specifically, we first find all the record breakers
in sequence and then simulate the rest of the process conditional on the informa-
tion obtained by knowing the location of all the (finitely many) record breakers.
The challenge lies in the fact that the probability of success of the Bernoulli trials,
which corresponds to the yes/no questions defined in terms of the record breakers,
is not known to us. We start with the procedure to simulate N1 in Section 4, which
is built on a sandwiching idea. Then conditional on the value of N1, we intro-
duce the procedure to simulation N2 in Section 5 based on an acceptance-rejection
scheme, where the proposal distribution is built on some exponential tilting.

4. Tolerance-enforced simulation of bounds on α-Hölder norms. We first
note that N1 is not a stopping time with respect to the filtration generated by
{(Wn

i,k : 0 ≤ k ≤ 2n − 1,1 ≤ i ≤ d ′) : n ≥ 1}.
For the simplicity of demonstration, we shall focus on the 1-dimensional case.

For d ′ > 1, we apply the same procedure for each Brownian motion. In what fol-
lows in this subsection, we shall drop the subscription i.

We call a pair (n, k) a record-broken-pair if |Wn
k | > 4

√
n + 1. All pairs (both

record-broken-pairs and nonrecord-broken-pairs) can be totally ordered lexico-
graphically, that is, using 2n−1 + k. The distribution of subsequent pairs at which
records are broken is not difficult to compute (because of the independence of
Wn

k ’s). So, using a sequential acceptance/rejection procedure we can simulate
all of the record-broken-pairs. Conditional on these pairs, the distribution of the
{(Wn

k : 0 ≤ k ≤ 2n − 1) : n ≥ 1} is straightforward to describe. Precisely, if (k, n)

is a record-broken-pair, then Wn
k is conditioned on |Wn

k | > 4
√

n + 1, and thus is
straightforward to simulate. Similarly, if (k, n) is not a record-broken-pair, then
Wn

k is conditioned on |Wn
k | ≤ 4

√
n + 1, and also can be easily simulated.
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The simulation of the record-broken-pairs has been studied in [5]. The idea is
to find all the record breakers sequentially until there are no more record breakers.
The challenge lies in sampling the Bernoulli random variable corresponding to the
question “whether there will be no more record breakers in the future.” We take
sampling the first breaker as an example. The probability that there are no more
record breakers beyond 1 is

p(1) :=
∞∏

n=1

2n−1∏
k=0

P
(∣∣Wn

k

∣∣≤ 4
√

n + 1
)
,

which involves evaluating the product of infinite many terms and we do not know
its value in closed form. However, we can find a sequence of upper bound and
lower bounds of p(1), which are defined as

Uh(1) =
h∏

r=1

P
(∣∣Wn(r)

k(r)

∣∣≤ 4
√

�log2 r + 1
)
,

where r = 2n(r)−1 + k(r) and

Dh(1) = (1 − h1−42/2)Uh

respectively. The upper and lower bounds satisfy that Dh(1) < Dh+1(1) < p(1) <

Uh(1) < Uh+1(1) and limh→∞ Dh(1) = p(1) = limh→∞ Uh(1). We also have that
Uh(1)−Uh+1(1) is equal to the probability that the first record breaker happens at
position h. Thus, we can check whether the Bernoulli trial is a success or failure
by updating the upper and lower bounds sequentially. Moreover, if the Bernoulli
trial is a failure (there are more record breakers beyond the current index), we also
know the index of the next record breaker. We synthesize algorithm 2W in [5] for
our purposes next.

REMARK. Observe that for every l = 2n−1 + k ∈ S, we can generate Wn
k con-

ditional on the event {|Wn
k | > 4

√
n + 1}; for other l (i.e., l /∈ S), generate Wn

k given
{|Wn

k | ≤ 4
√

n + 1}. Note that at the end of Algorithm 1 and after simulating Wn
k

for n ≤ N1 one can compute

Kα = 22α+1
N1∑
n=0

2−n(1/2−α)V n + 22α+3C
2−1/2(N1+1)(1/2−α)

1 − 2−1/2(1/2−α)
,

where C = maxn≥N1+1{2−n/2(1/2−α)
√

n + 1}.
5. Tolerance-enforced simulation for bounds on 2α-Hölder norms of Lévy

areas. The simulation of N2, is a lot more complicated, comparing to N1, be-
cause there is fair amount of dependence on the structure of the Ln

i,j (k)’s as one
varies n. Let us provide a general idea of our simulation procedure in order to set
the stage for the definitions and estimates that must be studied first.
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Algorithm 1 Simulate N1 jointly with the record-broken-pairs
Output: A vector S which gives all the indices l = 2n + k such that (n, k) is a
broken-record-pair.
Step 0: Initialize R = 0 and S to be an empty array.
Step 1: Set U = 1, D = 0. Simulate V ∼ Uniform(0,1).
Step 2: While U > V > D, set R ← R + 1 and U ← P(|Wn

k | ≤
4
√�log2 R + 1) × U and D ← (1 − R1−42/2) × U .

Step 3: If V ≥ U , add R to the end of S, that is, S = [S,R], and return to Step 1.
Step 4: If V ≤ D, N1 = �log2 max(S)�.
Step 5: Output S.
End of Algorithm 1

Define

Fn=σ
{(

Wm
i,k : 1 ≤ k ≤ 2m−1) : m ≤ n

}
,

and for the conditional expectation given Fn we write

En[·] := E[·|Fn].
Suppose we have simulated {(Wn

i,k : 0 ≤ k ≤ 2n − 1,1 ≤ i ≤ d ′) : n ≤ N} for some
N and define

τ1(N) = inf
{
n ≥ N + 1 : ∣∣Ln

i,j (m) − Ln
i,j (l)
∣∣> (m − l)β�2α

n

for some 0 ≤ l < m ≤ 2n−1}.
Because of Lemma 3.4 we have that the event {τ1(N) = ∞} has positive probabil-
ity. In what follows, we will explain how to simulate a Bernoulli random variable
with probability of success P(τ1(N) = ∞|FN). If such Bernoulli is a success,
then we have that N2 = N and we would have basically concluded the difficult
part of the simulation procedure (the rest of the process can be simulated under a
series of conditioning events whose probability increases to one as n grows). If the
Bernoulli is a failure (i.e., its value is zero), then we will find τ1(N) and simulte
all the information up to τ1(N). We repeat the above Bernoulli trial with updated
probability of success until we obtain a successful Bernoulli trial.

Now, part of the problem is that Algorithm 1 has been already executed, so
N ≥ N1, in other words, while the random variables {Wn

i,k : 1 ≤ k ≤ 2n−1} are in-
dependent (for fixed n > N ), they are no longer identically distributed. Instead,
Wn

i,k is standard Gaussian conditional on the event {|Wn
i,k| ≤ 4

√
n + 1}. Neverthe-

less, if n is large enough, all of the events {|Wn
i,k| ≤ 4

√
n + 1} will occur with

high probability. So, we shall first proceed to explain how to simulate a Bernoulli
random variable with probability of success P(τ1(n

′) = ∞|Fn′) assuming n′ is a
deterministic number. The procedure actually will produce both the outcome of the
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Bernoulli trial and if such outcome is a failure [i.e., τ1(n
′) < ∞], also the sample

path {
Wm

i,k : 1 ≤ k ≤ 2m−1, n′ < m ≤ τ1
(
n′)}.

Our procedure is based on acceptance / rejection using a carefully chosen pro-
posal distribution for the Wn

i,k’s, n ≥ n′ based on exponential tilting of Ln
i,j (k)’s,

conditional on Fn′ . To this end, we will need to compute the conditional moment
generating function (conditional on Fn′) of Ln

i,j (k)’s and the family of distribu-
tions induced over Wn

i,k’s and Wn
j,k’s under the exponentially tilting. This will be

done in Section 5.1. Then we need some large deviation estimates to bound the
likelihood ratio of a certain randomization procedure. These bounds are developed
in Section 5.2. These are the main elements needed to simulate N2 together with
the wavelet construction. We introduce the actual randomization procedure and the
details of the algorithm in Section 5.3.

5.1. Conditional moment generating functions and associated exponential tilt-
ing. In this section, we characterize the distribution of {(Wn+m

i,k : 1 ≤ k ≤
2n+m−1) : m ≥ 1} under the exponential tilting conditional on Fn.

In order to reduce the length of some of the equations that follow, we write, for
each r ∈ {1,2, . . . ,2n},
(5.1) n

i

(
tnr
) := Zi

(
tnr
)− Zi

(
tnr−1
)
.

Then we have the following recursive relations for n
i (t

n
r )’s.

LEMMA 5.1. For k = 1,2, . . . ,2n−1

n
i

(
tn2k−1
)= 1

2
n−1

i

(
tn−1
k

)+ �
1/2
n+1W

n
i,k,

n
i

(
tn2k

)= 1

2
n−1

i

(
tn−1
k

)− �
1/2
n+1W

n
i,k.

From Lemma 5.1, we can see that

Fn = σ
{
Z
(
tmk′
)− Z

(
tmk
) : 0 ≤ k < k′ ≤ 2m−1,m ≤ n

}
.

Assume that k < k′, we will iteratively compute the conditional moment gener-
ating function as

En

[
exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})]

(5.2)
= En

[
En+1
[
. . .En+m−1

[
exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})]

. . .
]]

.

Recall that, for 1 ≤ k ≤ 2n−1,

Ln
i,j (k) =

k∑
r=1

n
i

(
tn2r−1
)
n

j

(
tn2r

)
.
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We shall start from the expectation of exp(θ0
n+m
i (tn+m

2r−1)
n+m
j (tn+m

2r )) condi-
tional on Fn+m−1.

COROLLARY 5.1. For i �= j ,

En+m−1
[
exp
(
θ0

n+m
i

(
tn+m
2r−1

)
n+m

j

(
tn+m
2r

))]
= (1 − θ2

0 �2
n+m

)−1/2 exp
(
θ1

n+m−1
j

(
tn+m−1
r

)
n+m−1

i

(
tn+m−1
r

))
× exp

(
η1

n+m−1
j

(
tn+m−1
r

)2 + η1
n+m−1
i

(
tn+m−1
r

)2)
,

where

θ1 := θ0
(
1 − θ2

0 �2
n+m+1

)−1
/4, η1 := θ2

0
(
1 − θ2

0 �2
n+m+1

)−1
�n+m/8.

Moreover, define

P ′
n+m,tn+m

r

(
Wn+m

i,r ∈ A,Wn+m
j,r ∈ B

)

= En+m−1[I (Wn+m
i,r ∈ A,Wn+m

j,r ∈ B) exp(θ0
n+m
i (tn+m

2r−1)
n+m
j (tn+m

2r ))]
En+m−1[exp(θ0

n+m
i (tn+m

2r−1)
n+m
j (tn+m

2r ))] ,

then under P ′
n+m,tn+m

r
, and given Fn+m−1, we have that (Wn+m

i,r ,Wn+m
j,r ) follows a

Gaussian distribution with covariance matrix

�
i,j
n+m

(
tn+m+1
r

)= 1

1 − θ2
0 �2

n+m+1

(
1 −θ0�n+m+1

−θ0�n+m+1 1

)
,

and mean vector

μ
i,j
n+m

(
tn+m
r

)= �
i,j
n+m

(
tn+m
r

)⎛⎝ θ0�
1/2
n+m+1

n+m−1
j

(
tn+m−1
r

)
/2

−θ0�
1/2
n+m+1

n+m−1
i

(
tn+m−1
r

)
/2

⎞
⎠ .

So, from Corollary 5.1 we conclude that

En+m−1

[
exp

(
θ0

k′∑
r=k+1

n+m
i

(
tn+m
2r−1

)
n+m

j

(
tn+m
2r

))]

= (1 − θ2
0 �2

n+m+1
)−(k′−k)/2

(5.3)

× exp

(
θ1

k′∑
r=k+1

n+m−1
j

(
tn+m−1
r

)
n+m−1

i

(
tn+m−1
r

))

× exp

(
η1

k′∑
r=k+1

n+m−1
j

(
tn+m−1
r

)2 + η1

k′∑
r=k+1

n+m−1
i

(
tn+m−1
r

)2)
.
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If m ≥ 2, we can continue taking the corresponding conditional expectation given
Fn+m−2. Due to the recursive nature of (5.2) and the linear and quadratic terms
that arise in (5.3), it is convenient to consider

2n+m−1∑
r=1

θ1
(
tn+m−1
r

)
n+m−1

j

(
tn+m−1
r

)
n+m−1

i

(
tn+m−1
r

)
(5.4)

+
2n+m−1∑

r=1

η1
(
tn+m−1
r

)(
n+m−1

j

(
tn+m−1
r

)2 + n+m−1
j

(
tn+m−1
r

)2)
,

where
θ1
(
tn+m−1
r

)= θ1 × I
(
r ∈ {k + 1, . . . , k′}),

η1
(
tn+m−1
r

)= η1 × I
(
r ∈ {k + 1, . . . , k′}).

We also introduce the following notation to simply the presentation of our tilting
parameters. Due to the difference in the recursive relation for n

i (t
n
r ) between odd

and even r’s, we recursively define for l = 2, . . . ,m

θl+
(
tn+m−l
r

)= θl−1
(
tn+m−l+1
2r−1

)+ θl−1
(
tn+m−l+1
2r

)
,

θ l−
(
tn+m−l
r

)= θl−1
(
tn+m−l+1
2r−1

)− θl−1
(
tn+m−l+1
2r

)
,

ηl+
(
tn+m−l
r

)= ηl−1
(
tn+m−l+1
2r−1

)+ ηl−1
(
tn+m−l+1
2r

)
,

(5.5)
ηl−
(
tn+m−l
r

)= ηl−1
(
tn+m−l+1
2r−1

)− ηl−1
(
tn+m−l+1
2r

)
,

ρl

(
tn+m−l
r

)= �n+m−l+2θ
l+(tn+m−l

r )

1 − 2�n+m−l+2η
l+(tm+n−l

r )
,

hl

(
tn+m−l
r

)= �n+m−l+2

(1 − 2�n+m−l+2η
l+(tm+n−l

r ))(1 − ρl(t
n+m−l
r )2)

,

and set

ηl

(
tm+n−l
r

)= ηl+(tm+n−l
r )

4

+ hl(t
m+n−l
r )

8

{
θ l−
(
tm+n−l
r

)2 + 4ηl−
(
tm+n−l
r

)2
+ 4θ l−

(
tm+n−l
r

)
ηl−
(
tm+n−l
r

)
ρl

(
tm+n−l
r

)}
,

θl

(
tm+n−l
r

)= θ l+(tm+n−l
r )

4

+ hl

(
tm+n−l
r

){
θ l−
(
tm+n−l
r

)
ηl−
(
tm+n−l
r

)

+ 1

4
θ l−
(
tm+n−l
r

)2
gl

(
tm+n−l
r

)+ ηl−
(
tm+n−l
r

)2
ρl

(
tm+n−l
r

)}
.
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Finally, we decompose (5.4) into two parts (the cross term and the quadratic term)
by defining

A
(
tn+m−l
r

)= θl−1
(
tn+m−l+1
2r−1

)
n+m−l+1

j

(
tn+m−l+1
2r−1

)
n+m−l+1

i

(
tn+m−l+1
2r−1

)
+ θl−1

(
tn+m−l+1
2r

)
n+m−l+1

j

(
tn+m−l+1
2r

)
n+m−l+1

i

(
tn+m−l+1
2r

)
,

B
(
tn+m−l
r

)= ηl−1
(
tn+m−l+1
2r−1

)(
n+m−l+1

j

(
tn+m−l+1
2r−1

)2 + n+m−l+1
j

(
tn+m−l+1
2r−1

)2)
+ ηl−1

(
tn+m−l+1
2r

)(
n+m−l+1

j

(
tn+m−l+1
2r

)2
+ n+m−l+1

j

(
tn+m−l+1
2r

)2)
,

and

C
(
tn+m−l
r

)= (1 − 2�n+m−l+1η
l+
(
tm+n−l
r

))−1(1 − ρl

(
tm+n−l
r

)2)−1/2
.

Then (5.4) can be written as

2n+m−2∑
r=1

(
A
(
tn+m−2
r

)+ B
(
tn+m−2
r

))
,

and the following result is key in evaluating (5.2).

COROLLARY 5.2. For i �= j , l = 2,3, . . . ,m and r = 1,2, . . . ,2n+m−l

En+m−l

[
exp
(
A
(
tn+m−l
r

)+ B
(
tn+m−l
r

))]
= C
(
tn+m−l
r

)
exp
(
θl

(
tm+n−l
r

)
i

(
tm+n−l
r

)
j

(
tm+n−l
r

))
× exp

(
ηl

(
tm+n−l
r

)(
i

(
tm+n−l
r

)2 + j

(
tm+n−l
r

)2))
.

Moreover, define

P ′
n+m−l+1,tn+m−l+1

r

(
Wn+m−l+1

i,r ∈ A,Wn+m−l+1
j,r ∈ B

)

= En+m−l[I (Wn+m−l+1
i,r ∈ A,Wn+m−l+1

j,r ∈ B) exp(A(tn+m−l
r ) + B(tn+m−l

r ))]
En+m−l[exp(A(tn+m−l

r ) + B(tn+m−l
r ))] ,

then under P ′
n+m−l+1,tn+m−l+1

r
, and given Fn+m−l , we have that (Wn+m−l+1

i,r ,

Wn+m−l+1
j,r ) follows a Gaussian distribution with covariance matrix

�
i,j
n+m−l+1

(
tn+m−l+1
r

)
= 1

1 − ρl(t
m+n−l
r )2

×
⎛
⎝(1 − 2�n+m−l+1η

l+
(
tm+n−l
r

))−1
gl

(
tm+n−l
r

)
gl

(
tm+n−l
r

) (
1 − 2�n+m−l+1η

l+
(
tm+n−l
r

))−1

⎞
⎠ ,
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where gl(t
m+n−l
r ) = �n+m−l+2θ

l+(tn+m−l
r )(1 − 2�n+m−l+2η

l+(tn+m−l
r ))−2, and

mean vector

μ
i,j
n+m

(
tn+m−l+1
r

)= �
1/2
n+m−l+1�

i,j
n+m−l+1

(
tn+m−l+1
r

)

×

⎛
⎜⎜⎝

i

(
tn+m−l
r

)
ηl−
(
tn+m−l
r

)+ 1

2
j

(
tn+m−l
r

)
θ l−
(
tn+m−l
r

)
j

(
tn+m−l
r

)
ηl−
(
tn+m−l
r

)+ 1

2
i

(
tn+m−l
r

)
θ l−
(
tn+m−l
r

)
⎞
⎟⎟⎠ .

Using Corollary 5.2, we conclude that

En+m−l

[
exp

(2n+m−l∑
r=1

(
A
(
tn+m−l
r

)+ B
(
tn+m−l
r

)))]

=
2n+m−l∏

r=1

C
(
tn+m−l
r

)× exp

(2n+m−l−1∑
r=1

(
A
(
tn+m−l−1
r

)+ B
(
tn+m−l−1
r

)))
.

Therefore, combining Corollary 5.1 and repeatedly iterating the previous expres-
sion we conclude that

En

[
exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})]

= (1 − θ2
0 �2

n+m

)−(k′−k)/2
m∏

l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)
(5.6)

× exp

( 2n∑
r=1

θm

(
tnr
)
i

(
tnr
)
j

(
tnr
)+ 2n∑

r=1

ηm

(
tnr
){

i

(
tnr
)2 + j

(
tnr
)2})

.

5.2. Conditional large deviations estimates for Ln
i,j (k). We wish to estimate,

for 1 ≤ i, j ≤ d ′, i �= j , k′ > k and k′, k ∈ {0,1, . . . ,2n+m−1},
Pn

(∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣> (k′ − k

)β
�2α

n+m

)
≤ exp

(−θ0
(
k′ − k

)β
�2α

n+m

)× {En

[
exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})]

+ En

[
exp
(−θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})]}

.

We borrow some intuition from the proof of Lemma 3.4 and select

(5.7) θ0
(
m,k′, k

) := θ0 = γ

(k′ − k)1/2�2α′
n �m

.

We will drop the dependence on (m, k′, k) for brevity. In addition, we pick γ ≤ 1/4
and α′ ∈ (α,1/2) so that

exp
(−θ0
(
k′ − k

)β
�2α

n+m

)= exp
(−γ
(
k′ − k

)β−1/2
�2(α−α′)

n �2α−1
m

)
.
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Our next task is to control the En[exp(θ0{Ln+m
i,j (k′) − Ln+m

i,j (k)})], which is the
purpose of the following result, proved in the Appendix to this section.

LEMMA 5.2. For i �= j , suppose that θ0 is chosen according to (5.7), and n is
chosen such that

(5.8) max
r≤2n

{∣∣i

(
tnr
)∣∣, ∣∣j

(
tnr
)∣∣}≤ �α′

n

and for ε0 ∈ (0,1/2)

(5.9)

∣∣∣∣∣
m∑

r=l+1

i

(
tnr
)
j

(
tnr
)∣∣∣∣∣≤ ε0(m − l)β�2α′

n for all 0 ≤ l < m ≤ 2n

with α′ ∈ (α,1/2), then

En

[
exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})]≤ 4 exp

(
ε0γ
(
k′ − k

)β−1/2)
.

REMARK. It is very important to note that due to Lemma 3.2 we can always
continue simulating the Wn

i,k’s (maybe conditional on {|Wn
i,k| ≤ 4

√
n + 1} in case

n > N1) to make sure that (5.8) holds for some n. Similarly, condition (5.9) can be
simultaneously enforced with (5.8) because of Lemma 3.4. Actually, Lemma 3.2
and Lemma 3.4 indicate that conditions (5.8) and (5.9) will occur eventually for
all n larger than some random threshold. Our simulation algorithms will ultimately
detect such threshold, but Lemma 5.2 does not require that we know that threshold.

As a consequence of Lemma 5.2, using Chernoff’s bound, we obtain the fol-
lowing proposition.

PROPOSITION 5.1. For i �= j , if n is chosen such that (5.8) and (5.9) hold,
then

Pn

(∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣> (k′ − k

)β
�2α

n+m

)
≤ 8 exp

(
−1

2
γ
(
k′ − k

)β−1/2
�2(α−α′)

n �2α−1
m

)
.

5.3. Joint Tolerance-Enforced Simulation for α-Hölder norms and proof of The-
orem 2.2. Define

Cn(m) = {∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣> (k′ − k

)β
�2α

n+m

for some 0 ≤ k < k′ < 2n+m−1,1 ≤ i, j ≤ d ′, i �= j
}
,

and put τ1(n) = inf{m ≥ 1 : Cn(m) occurs}. We write C̄n(m) for the complement
of Cn(m), so that

Pn

(
τ1(n) < ∞)= ∞∑

m=1

P

(
Cn(m) ∩

m−1⋂
l=1

C̄n(l)

)
.
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To facilitate the explanation, we next introduce a few more notation. Let

ωn:n+m := {Wl
i,k : 0 ≤ k ≤ 2n − 1,1 ≤ i ≤ d ′, n < l ≤ n + m

}
.

In addition, define

vn

(
k, k′|m) := 8 exp

(
−1

2
γ
(
k′ − k

)β−1/2
�2(α−α′)

n �2α−1
m

)

× I
(
0 ≤ k < k′ ≤ 2n+m−1)I (m ≥ 1),

bn(m) := ∑
0≤k<k′≤2m+n−1

vn

(
k, k′|m),

qn

(
k, k′|m) := vn(k, k′|m)

bn(m)

and

P i,j,k,k′
n,m (ωn:n+m ∈ ·) = En[I (ωn:n+m ∈ ·) exp(θ0{Ln+m

i,j (k′) − Ln+m
i,j (k)})]

En[exp(θ0{Ln+m
i,j (k′) − Ln+m

i,j (k)})] .

We also denote

ψn

(
m, i, j, k, k′) := logEn

[
exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j

(
k′)})].

Observe that

bn(m) = ∑
0≤k<k′≤2n+m−1

8 exp
(
−1

2
γ
(
k′ − k

)β−1/2
�2(α−α′)

n �2α−1
m

)

≤ 22(m+n)+3 exp
(
−1

2
γ�2(α−α′)

n �2α−1
m

)
.

Thus, bn(m) → 0 as n → ∞. Then we can select any probability mass function
{g(m) : m ≥ 1}, for example, g(m) = e−1/(m − 1)! for m ≥ 1, by assuming that n

is sufficiently large,

g(m) ≥ d ′2bn(m).

Now consider the following procedure which we called Procedure Aux, Aux for
“auxiliar,” which is given for pedagogical purposes, because as we shall see shortly
it is not directly applicable but useful to understand the nature of the method that
we shall ultimately use.

PROCEDURE AUX.
Input: We assume that we have simulated {(Wn

i,k : 0 ≤ k < 2l) : l ≤ n}}.
Output: A Bernoulli F with parameter Pn(τ1(n) < ∞), and if F = 1, also

ωn:τ1(n) = {Wl
i,k : 1 ≤ k ≤ 2l − 1,1 ≤ i ≤ d ′, n < l ≤ τ1(n)

}
conditional on the event τ1(n) < ∞.
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Step 1: Sample M according to g(m).
Step 2: Given M = m sample I and J (I �= J ) uniformly over the set

{1,2, . . . , d ′}. Then, sample K ′,K from qn(k, k′|m).
Step 3: Given M = m, I = i, J = j , K = k, and K ′ = k′, simulate ωn:n+m

from P
i,j,k,k′
n,m (·). Note that simulation from P

i,j,k,k′
n,m (·) can be done according to

Corollary 5.2.
Step 4: Compute

�n

(
m, i, j, k, k′,ωn:n+m

)
= 1/
(
g(m)
(
d ′(d ′ − 1

))−1
qn

(
k, k′|m)

× exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
}− ψn

(
m, i, j, k, k′))),

and

Nn(m) = ∑
1≤i,j≤d ′,i �=j

∑
1≤h<h′≤2n+m−1

I
(∣∣Ln+m

i,j

(
h′)− Ln+m

i,j (h)
∣∣

>
(
h − h′)β�2α

n+m

)
.

Step 5: Simulate U uniformly distributed on [0,1] independent of everything
else and output

F = I

{
U < I

({∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣> (k − k′)β�2α

n+m

}∩ m−1⋂
l=1

C̄n(l)

)

× �n

(
m, i, j, k, k′,ωn:n+m

)
/Nn(m)

}
.

If F = 1, also output ωn:n+m.
End of Procedure Aux

We first notice that when |Ln+m
i,j (k′) − Ln+m

i,j (k)| > (k − k′)β�2α
n+m,

g(m)
(
d ′(d ′ − 1

))−1
qn

(
k, k′|m) exp

(
θ0
{
Ln+m

i,j

(
k′)

− Ln+m
i,j (k)

}− ψn

(
m, i, j, k, k′))> 1.

Thus, �n(m, i, j, k, k′,ωn:n+m) < 1. That is to say the likelihood ration function
is bounded and the Bernoulli random variable F is well defined.

We claim that the output F is distributed as a Bernoulli random variable with
parameter Pn(τ1(n) < ∞). Moreover, we claim that if F = 1, then, ωn:n+M is
distributed according to Pn(ωn:τ1(n) ∈ ·|τ1(n) < ∞). We first verify the claim that
the outcome in Step 5 follows a Bernoulli with parameter Pn(τ1(n) < ∞). In order
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to see this, let Qn denote the distribution induced by Procedure Aux. Note that

Qn

(
U < I

({∣∣Ln+M
i,j

(
K ′)− Ln+M

i,j (K)
∣∣> (K − K ′)β�2α

n+M

}∩ M−1⋂
l=1

C̄n(l)

)

× �n

(
M,I,J,K,K ′,ωn:n+M

)
/Nn(m)

)

= EQn

[
I

({∣∣Ln+M
i,j

(
K ′)− Ln+M

i,j (K)
∣∣> (K − K ′)β�2α

n+M

}∩ M−1⋂
l=1

C̄n(l)

)

× �n

(
M,I,J,K,K ′,ωn:n+M

)
/Nn(m)

]

=
∞∑

m=1

∑
1≤i,j≤d ′

∑
1≤k<k′≤2n+m−1

EQn

[
I

({∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣

>
(
k − k′)β�2α

n+m

}∩ m−1⋂
l=1

C̄n(l)

)

× dPn

dP
i,j,k,k′
n,m

(ωn:n+m) × 1

Nn(m)

]

=
∞∑

m=1

∑
1≤i,j≤d ′

∑
1≤k<k′≤2n+m−1

En

((
I

({∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣

>
(
k − k′)β�2α

n+m

}∩ m−1⋂
l=1

C̄n(l)

))/
Nn(m)

)

=
∞∑

m=1

Pn

(
Cn(m) ∩

m−1⋂
l=1

C̄n(l)

)

= Pn

(
τ1(n) < ∞).

Similarly, for the second claim,

Qn

(
ωn:n+M ∈ A|U < I

(
Cn(M) ∩

M−1⋂
l=1

C̄n(l)

)

× �n

(
M,I,J,K,K ′,ωn:n+M

))

=
∞∑

m=1

EQn

(
ωn:n+m ∈ A,

dP I,J,K,K ′
n,m

dPn

(ωn:n+m)
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× I

(
Cn(m) ∩

M−1⋂
l=1

C̄n(l)

))/
Pn

(
τ1(n) < ∞)

=
∞∑

m=1

Pn

(
ωn:n+m ∈ A,τ1(n) = m

)
/Pn

(
τ1(n) < ∞)

= Pn

(
ωn:n+τ1(n) ∈ A|τ1(n) < ∞).

The deficiency of Procedure Aux is that it does not recognize that n > N1. Let
us now account for this fact and note that conditional on FN1 we have that Wn

i,k’s

are i.i.d. N(0,1) but conditional on {|Wn
i,k| ≤ 4

√
n + 1} for all n > N1. Define

Hn
m = {∣∣Wh

i,k

∣∣≤ 4
√

h + 1 : 0 ≤ k ≤ 2h − 1, n < h ≤ n + m
}
.

In order to simulate PN1(τ1(N1) < ∞) we modify step 3 of Procedure Aux. Specif-
ically, we have

PROCEDURE B.
Input: We assume that we have simulated {(Wl

i,k : 0 ≤ k < 2l) : l ≤ n}. So, the

Wm
i,k’s are i.i.d. N(0,1) but conditional on {|Wm

i,k| < 4
√

m + 1} for all m > n. We
also assume that conditions (5.8) and (5.9) hold in Lemma 5.2; note the discus-
sion following Lemma 5.2 which notes that this can be assumed at the expense of
simulating additional Wm

i,k’s (with {|Wm
i,k| < 4

√
m + 1} if m > N1).

Output: A Bernoulli F with parameter Pn(τ1(n) < ∞,Hn∞), and if F = 1, also

ωn:n+τ1(n) = {Wl
i,k : 1 ≤ k ≤ 2n,1 ≤ i ≤ d ′, n < l ≤ n + τ1(n)

}
conditional on τ1(n) < ∞ and on Hn∞.

Step 1: Sample M according to g(m).
Step 2: Given M = m sample I and J (I �= J ) uniformly over the set

{1,2, . . . , d ′}. Then sample K ′,K from qn(k, k′|m).
Step 3: Given M = m, I = i, J = j , K = k, and K ′ = k′, simulate ωn:n+m

from P
i,j,k,k′
n,m (·). Note that simulation from P

i,j,k,k′
n,m (·) can be done according to

Corollary 5.2. Check if Hn
m occurs. If yes, continue to Step 4; otherwise, go back

to Step 1.
Step 4: Compute

�n

(
m, i, j, k, k′,ωn:n+m

)
= 1/
(
g(m)
(
d ′(d ′ − 1

))−1
qn

(
k, k′|m)

× exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
}− ψn

(
m, i, j, k, k′))),

and

Nn(m) = ∑
1≤i,j≤d ′,i �=j

∑
1≤k<k′≤2n+m−1

I
(∣∣Ln+m

i,j

(
k′)− Ln+m

i,j (k)
∣∣> (k − k′)β�2α

n+m

)
.
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Step 5: Simulate U uniformly distributed on [0,1] independent of everything
else and output

F = I

{
U <

(
I

(
Hn

m ∩ {∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣

>
(
k − k′)β�2α

n+m

}∩ M−1⋂
l=1

C̄n(l)

)
P
(
Hn+m∞

))/
P
(
Hn∞
)

× �n

(
m, i, j, k, k′,ωn:n+m

)
/Nn(m)

}
.

[Notice that P(Hn+m∞ )/P (Hn∞) = P(Hn
n+m) and can be computed in finite steps.]

If F = 1, also output ωn:n+m.
End of Procedure B

Let Q̃n denote the distribution induced by Procedure B. Following the same
analysis as that given for Procedure Aux, we can verify that

Q̃n

(
U <

(
I

(
Hn

m ∩ {∣∣Ln+m
i,j

(
k′)− Ln+m

i,j (k)
∣∣

>
(
k − k′)β�2α

n+m

}∩ M−1⋂
l=1

C̄n(l)

)
P
(
Hn+m∞

))/
P
(
Hn∞
)

× �n

(
m, i, j, k, k′,ωn:n+m

)
/Nn(m)

)
= Pn

(
τ1(n) < ∞|Hn∞

)
.

And if the Bernoulli trial is a success, then, ωn:n+M is distributed according to

Pn

(
ωn:n+τ1(n) ∈ ·|τ1(n) < ∞,Hn∞

)
.

Finally, if τ1(n) = ∞, we may still need to simulate ωn:n+m for any m ≥ 1, but
now, conditional on {τ1(n) = ∞,Hn∞}. Note that

Pn

(
ωn:n+m ∈ A|τ1(n) = ∞,Hn∞

)
= Pn(ωn:n+m ∈ A,τ1(n) = ∞,Hn∞)

Pn(τ1(n) = ∞,Hn∞)

= EnI (ωn:n+m ∈ A,τ1(n) > m,Hn
m)Pn+m(τ1(n + m) = ∞,Hn+m∞ )

Pn(τ1(n) = ∞,Hn∞)
.

Thus, we can sample ωn:n+m from Pn(·) and accept the path with probability

I
(
τ1(n) > m,Hn

m

)
Pn+m

(
τ1(n + m) = ∞,Hn+m∞

)
.
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Algorithm 2 Simulate N1 and N2 jointly with Wn
i,k’s for 1 ≤ n ≤ N0, where N0 is

chosen such that supt∈[0,1] ‖X̂N0(t) − X(t)‖∞ ≤ ε

Input: The parameters required to run Algorithm 1, and Procedures A and B.
These are the tilting parameters θ0’s.
Step 1: Simulate N1 jointly with Wm

i,k’s for 0 ≤ m ≤ N1 using Algorithm 1 (see
the remark that follows after Algorithm 1). Let n = N1.
Step 2: If any of the conditions (5.8) and (5.9) from Lemma 5.2 are not satisfied
keep simulating Wm

i,k’s for m > n until the first level m > n for which conditions
(5.8) and (5.9) are satisfied. Redefine n to be such first level m.
Step 3: Run Procedure B and obtain as output F and if F = 1 also obtain ωn:n+τ(n).
Step 4: If τ(n) < ∞ (i.e., F = 1) set n ←− τ(n) and go back to Step 2. Otherwise,
go to Step 4.
Step 5: Calculate G according to Procedure A and solve for N0 such that
G�

2α−β
N0

< ε.
Step 6: If N0 > n sample ωn:N0 from Pn(·) and sample a Bernoulli random vari-
able, I with probability of success PN0(τ (N0) = ∞,HN0∞ ).
Step 7: If I = 0, go back to Step 6.
Step 8: Output ω0:N0 .
End of Algorithm 2

This clearly can be done since we can easily simulate Bernoulli’s with probability

Pn+m

(
τ(n + m) = ∞,Hn+m∞

)= Pn+m

(
τ1(n + m) = ∞|Hn+m∞

)
Pn+m

(
Hn+m∞

)
.

We summarize the above discussions in Algorithm 2.
We obtain {Wl

i,k : 0 ≤ k < 2l , l ≤ N0,1 ≤ i ≤ d} from Algorithm 2. We have
from recursions in Lemma 5.1 how to obtain

(5.10)
{(

Zi

(
t lr
)− Zi

(
t lr−1
)) : 1 ≤ r ≤ 2l ,1 ≤ l ≤ N0,1 ≤ i ≤ d

}
and then we can compute {X̂N0(t) : t ∈ DN0} using equation (2.4).

REMARK. Observe that after completion of Algorithm 2, one can actually
continue the simulation of increments in order to obtain an approximation with an
error ε′ < ε. In particular, this is done by repeating Steps 4 to 8. Start from Step 4
with n = N0. The value of G has been computed, it does not depend on ε. However,
one needs to recompute N0 := N0(ε

′) such that G�
2α−β
N0

< ε′. Then we can im-
plement Steps 5 to 8 without change. One obtains an output that, as before, can be
transformed into (5.10) via the recursions (5.1), yielding {X̂N0(ε

′)(t) : t ∈ DN0(ε
′)}

with a guaranteed error smaller than ε′ in uniform norm with probability 1.

6. Rough differential equations, error analysis and the proof of Theo-
rem 2.1. The analysis in this section follows closely the discussion from [7]
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Section 3 and Section 7; see also [8] Chapter 10. We made some modifications
to account for the drift of the process and also to be able to explicitly calculate the
constant G. Let us start with the definition of a solution to (1.1) using the theory of
rough differential equations. We first provide a definition of the solution of (1.1)
in a pathwise sense, following [7].

DEFINITION 6.1. X(·) is a solution of (1.1) on [0,1] if X(0) = x(0) and for
almost every sample path {Zj(·) : j = 1,2, . . . , d} it holds∣∣∣∣∣Xi(t) − Xi(s) − μi

(
X(s)
)
(t − s) −

d ′∑
j=1

σi,j

(
X(s)
)(

Zj(t) − Zj(s)
)

−
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X(s)
)
σl,m

(
X(s)
)
Am,j (s, t)

∣∣∣∣∣= o(t − s)

for i = 1,2, . . . , d and 0 ≤ s < t ≤ 1, where Ai,j (·) satisfies

(6.1) Ai,j (r, t) = Ai,j (r, s) + Ai,j (s, t) + (Zi(s) − Zi(r)
)(

Zj(t) − Zj(s)
)

for 0 ≤ r < s < t ≤ 1.

The previous definition is motivated by the following Taylor-type development:

Xi(t + h)

= Xi(t) +
∫ t+h

t
μi

(
X(u)
)
du +

d ′∑
j=1

∫ t+h

t
σi,j

(
X(u)
)
dZj (u)

≈ Xi(t) +
∫ t+h

t
μi

(
X(u)
)
du

+
d ′∑

j=1

∫ t+h

t
σi,j

(
X(t) + μ

(
X(t)
)
(u − t) + σ

(
X(t)
)(

Z(u) − Z(t)
))

dZj (u)

≈ Xi(t) + μi

(
X(t)
)
h +

d ′∑
j=1

σi,j

(
X(t)
)(

Zj(t + h) − Zj(t)
)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X(t)
)
σl,m

(
X(t)
) ∫ t+h

t

(
Zm(u) − Zm(t)

)
dZj (u).

The previous Taylor development suggests defining Ai,j (s, t) := ∫ ts (Zi(u) −
Zi(s)) dZj (u). Depending on how one interprets A(s, t), for example, via Itô or
Stratonovich integrals, one obtains a solution X(·) which is interpreted in the cor-
responding context.
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In order to obtain the Itô interpretation of the solution to equation (1.1) via
definition (6.1), we shall interpret the integrals in the sense of Itô. In addition, as
we shall explain, some technical conditions (in addition to the standard Lipschitz
continuity typically required to obtain a strong solution) must be imposed in order
to enforce the existence of a unique solution to (6.1).

There are two sources of errors when using X̂n in equation (2.4) to ap-
proximate X. One is the discretization on the dyadic grid, but assuming that
Ai,j (t

n
k , tnk+1) is known; this type of analysis is the one that is most common in

the literature on rough paths (see [7]). The second source of error arises due to
the fact that Ai,j (t

n
k , tnk+1) is not known for i �= j . Thus, we divide the proof of

Theorem 2.1 into two steps (two propositions), each dealing with one source of
error.

Similar to X̂n(t), we define {Xn(t) : t ∈ Dn} by the following recursion: given
Xn(0) = X(0),

Xn
i

(
tnk+1
)= Xn

i

(
tnk
)+ μi

(
Xn(tnk ))�n +

d ′∑
j=1

σi,j

(
Xn(tnk ))(Zj

(
tnk+1
)− Zj

(
tnk
))

(6.2)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
Xn(tnk ))σl,m

(
Xn(tnk ))Am,j

(
tnk , tnk+1

)
,

and for t ∈ [0,1], we let Xn(t) = Xn(�t), where in this context �t = max{s ∈
Dn : s ≤ t}.

PROPOSITION 6.1. Under the conditions of Theorem 2.1, we can compute
a constant G1 explicitly in terms of M , ‖Z‖α and ‖A‖2α , such that for n large
enough ∥∥Xn(t) − X(t)

∥∥∞ ≤ G1�
3α−1
n .

The proof of Proposition 6.1 will be given after introducing some definitions
and key auxiliary results. We denote

In
i (r, t) := Xn

i (t) − Xn
i (r) − μi

(
Xn(r)

)
(t − r) −

d ′∑
j=1

σi,j

(
Xn(r)

)(
Zj(t) − Zj(r)

)

and

Jn
i (r, t) := In

i (r, t) −
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
Xn(r)

)
σl,m

(
Xn(r)

)
Am,j (r, t).

The following lemmas introduce the main technical results for the proof of
Proposition 6.1.
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LEMMA 6.1. Under the conditions of Theorem 2.1, there exist constants C1,
C2 and C3 that depend only on M , ‖Z‖α and ‖A‖2α , such that for any large
enough n and r, t ∈ Dn,∥∥Xn(t) − Xn(r)

∥∥∞ ≤ C1|t − r|α,∥∥In(r, t)
∥∥∞ ≤ C2|t − r|2α

and ∥∥Jn(r, t)
∥∥∞ ≤ C3|t − r|3α.

PROOF. For r ≤ s ≤ t , r, s, t ∈ Dn, we have the following important recur-
sions:

In
i (r, t) = In

i (r, s) + In
i (s, t) + (μi

(
Xn(s)

)− μi

(
Xn(r)

))
(t − s)

+
d ′∑

j=1

(
σi,j

(
Xn(s)

)− σi,j

(
Xn(r)

))(
Zj(t) − Zj(s)

)

and

Jn
i (r, t)

= Jn
i (r, s) + Jn

i (s, t) + (μi

(
Xn(s)

)− μi

(
Xn(r)

))
(t − s)

+
d ′∑

j=1

[
σi,j

(
Xn(s)

)− σi,j

(
Xn(r)

)− d∑
l=1

∂lσi,j

(
Xn(r)

)(
Xn

l (s) − Xn
l (r)
)

+
d∑

l=1

∂lσi,j

(
Xn(r)

)
In
l (r, s)(6.3)

+
d∑

l=1

∂lσi,j

(
Xn(r)

)
μi

(
Xn(r)

)
(s − r)

](
Zj(t) − Zj(s)

)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

[
∂lσi,j

(
Xn(s)

)
σl,m

(
Xn(s)

)

− ∂lσi,j

(
Xn(r)

)
σl,m

(
Xn(r)

)]
Am,j (s, t).

We next divide the proof into two parts. We first prove that there exists a small
enough constant δ > 0 and three large enough constants C1(δ), C2(δ) and C3(δ),
all independent of n, such that for |t − r| < δ, ‖Xn(t)−Xn(r)‖∞ ≤ C1(δ)|t − r|α ,
‖In(r, t)‖∞ ≤ C2(δ)|t − r|2α and ‖Jn(r, t)‖∞ ≤ C3(δ)|t − r|3α . We prove it by
induction. First, we have Jn(r, r) = 0 and Jn(r, r + �n) = 0. Suppose the result
hold for all pairs of r0, t0 ∈ Dn with |t0 − r0| < |t − r|. We then pick s ∈ Dn as
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the largest point between r and t such that |s − r| ≤ |t − r|/2. Then we also have
|s +�n − r| > |t − r|/2 and |t − (s +�n)| < |t − r|/2. For simplicity of notation,
we denote d̄ = max{d, d ′}.

As

Xn
i (t) − Xn

i (s) = Jn
i (s, t) + μi

(
Xn(s)

)
(t − s) +

d ′∑
j=1

σi,j

(
Xn(s)

)(
Zj(t) − Zj(s)

)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
Xn(s)

)
σl,m

(
Xn(s)

)
Am,j (s, t),

we have∣∣Xn
i (t) − Xn

i (s)
∣∣

≤ C3(δ)|t − s|3α + M|t − s| + d̄M‖Z‖α|t − s|α + d̄3M2‖A‖2α|t − s|2α

≤ (C3(δ)δ
2α + Mδ1−α + d̄M‖Z‖α + d̄3M2‖A‖2αδα)|t − s|α

≤ C1(δ)|t − s|α
for C1(δ) ≥ C3(δ)δ

2α + Mδ1−α + d̄M‖Z‖α + d̄3M2‖A‖2αδα .
And as

In
i (s, t) = Jn

i (s, t) +
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
Xn(s)

)
σl,m

(
Xn(s)

)
Am,j (s, t),

we have ∣∣In
i (s, t)

∣∣≤ C3(δ)|t − s|3α + d̄3M2‖A‖2α|t − s|2α

≤ (C3(δ)δ
α + d̄3M2‖A‖2α

)|t − s|2α ≤ C2(δ)|t − s|2α

for C2(δ) ≥ C3(δ)δ
α + d̄3M2‖A‖2α .

We now analyze the recursion (6.3) term by term. First,∣∣μi

(
Xn(s)

)− μi

(
Xn(r)

)∣∣≤ MC1(δ)|s − r|α,∣∣∣∣∣σi,j

(
Xn(s)

)− σi,j

(
Xn(r)

)− d∑
l=1

∂lσi,j

(
Xn(r)

)(
Xn

l (s) − Xn
l (r)
)∣∣∣∣∣

≤ MC1(δ)
2|s − r|2α,∣∣∣∣∣

d∑
l=1

∂lσi,j

(
Xn(r)

)
In
l (r, s)

∣∣∣∣∣≤ d̄MC2(δ)|s − r|2α,

d∑
l=1

∂lσi,j

(
Xn(r)

)
μi

(
Xn(r)

)
(s − r) ≤ d̄M2|s − r|
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and∣∣∂lσi,j

(
Xn(s)

)
σl,m

(
Xn(s)

)− ∂lσi,j

(
Xn(r)

)
σl,m

(
Xn(r)

)∣∣≤ 2M2C1(δ)|s − r|α.

Then∣∣Jn
i (r, t)

∣∣
≤ ∣∣Jn

i (r, s)
∣∣+ ∣∣Jn

i (s, t)
∣∣

+ (MC1(δ) + d̄MC1(δ)
2‖Z‖α + d̄2MC2(δ)‖Z‖α + d̄2M2‖Z‖α

+ 2d̄3M2C1(δ)‖A‖α

)|t − r|3α.

Likewise, we have∣∣Jn
i (s, t)

∣∣
≤ ∣∣Jn

i (s, s + �n)
∣∣+ ∣∣Jn

i (s + �n, t)
∣∣

+ (MC1(δ) + d̄MC1(δ)
2‖Z‖α + d̄2MC2(δ)‖Z‖α + d̄2M2‖Z‖α

+ 2d̄3M2C1(δ)‖A‖α

)|t − s|3α

= ∣∣Jn
i (s + �n, t)

∣∣
+ (MC1(δ) + d̄MC1(δ)

2‖Z‖α + d̄2MC2(δ)‖Z‖α + d̄2M2‖Z‖α

+ 2d̄3M2C1(δ)‖A‖α

)|t − s|3α.

Then∣∣Jn
i (r, t)

∣∣
≤ ∣∣Jn

i (r, s)
∣∣+ ∣∣Jn

i (s + �n, t)
∣∣

+ 2
(
MC1(δ) + d̄MC1(δ)

2‖Z‖α + d̄2MC2(δ)‖Z‖α + d̄2M2‖Z‖α

+ 2d̄3M2C1(δ)‖A‖α

)|t − s|3α

≤ {21−3αC3(δ) + 2
(
MC1(δ) + d̄MC1(δ)

2‖Z‖α + d̄2MC2(δ)‖Z‖α

+ d̄2M2‖Z‖α + 2d̄3M2C1(δ)‖A‖α

)}|t − s|3α

≤ C3(δ)|t − s|3α,

for
(
1 − 21−3α)C3(δ) ≥ 2

(
MC1(δ) + d̄MC1(δ)

2‖Z‖α + d̄2MC2(δ)‖Z‖α

+ d̄2M2‖Z‖α + 2d̄3M2C1(δ)‖A‖α

)
.
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Therefore, if we deliberately choose δ, C1(δ), C2(δ) and C3(δ) such that

C1(δ) ≥ C3(δ)δ
2α + Mδ1−α + d̄M‖Z‖α + d̄3M2‖A‖2αδα,

C2(δ) ≥ C3(δ)δ
α + d̄3M2‖A‖2α,

(6.4)

C3(δ) ≥ 2

1 − 21−3α

(
MC1(δ) + d̄MC1(δ)

2‖Z‖α + d̄2MC2(δ)‖Z‖α

+ d̄2M2‖Z‖α + 2d̄3M2C1(δ)‖A‖α

)
.

Then we have, for |t − r| < δ,∥∥Xn(t) − Xn(r)
∥∥∞ ≤ C1(δ)|t − r|α,∥∥In(r, t)
∥∥∞ ≤ C2(δ)|t − r|2α,∥∥Jn(r, t)
∥∥∞ ≤ C3(δ)|t − r|3α.

The existence of δ, C1(δ), C2(δ) and C3(δ), satisfying the system of inequali-
ties (6.4), follows from Lemma 2.1.

We now extend the analysis to the case when |t − r| > δ. For n large enough
(�n < δ/2), if |t − r| > δ, we can always find points si ∈ Dn and r = s0 < s1 <

· · · < sk = t such that max1≤i≤k |si − si−1| < δ and min1≤i≤k |si − si−1| ≥ δ/2.
Then

∣∣Xn
i (t) − Xn

i (r)
∣∣≤ k∑

l=1

∣∣Xn
i (sl) − Xn

i (sl−1)
∣∣≤ kC1(δ)|t − r|α ≤ 2

δ
C1(δ)|t − r|α.

Let C1 = 2
δ
C1(δ) and we can write ‖Xn(t) − Xn(r)‖∞ ≤ C1|t − r|α . Next,

∣∣In
i (r, t)

∣∣≤ k∑
l=1

{∣∣In
i (sl−1, sl)

∣∣+ ∣∣(μi

(
Xn(sl)

)− μi

(
Xn(s0)

))
(sl − sl−1)

∣∣

+
∣∣∣∣∣

d ′∑
j=1

(
σii

(
Xn(sl)

)− σij

(
Xn(s0)

))(
Zj(sl+1) − Zj(sl)

)∣∣∣∣∣
}

≤ k
[
C2(δ)|t − r|2α + MC1|t − r|1+α + dMC1‖Z‖α|t − r|2α]

≤ 2

δ

(
C2(δ) + MC1 + d̄MC1‖Z‖α

)|t − r|2α.

By setting C2 = 2
δ
(C2(δ) + MC1 + d̄MC1‖Z‖α), we have ‖In(r, t)‖∞ ≤ C2|t −

r|2α .
Now following the same induction analysis on Jn

i (s, t) as we did in the case
|t − s| < δ, we have∣∣Jn

i (r, t)
∣∣≤ 2

23α
C3|t − r|3α

+ 2
(
MC1 + d̄MC2

1‖Z‖α

+ d̄2MC2‖Z‖α + 2d̄3M2C1‖A‖α

)|t − r|3α.
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If we choose

C3 = 2

1 − 21−3α

(
MC1 + d̄MC2

1‖Z‖α + d̄2MC2‖Z‖α + 2d̄3M2C1‖A‖α

)
,

then ‖Jn(r, t)‖∞ ≤ C3|t − s|3α . �

LEMMA 6.2. Let x(0) and x̃(0) ∈ Rd be two different vectors. We denote
Xn(t) and X̃n(t) for t ∈ Dn as the nth dyadic approximation defined by (6.2) with
initial value x(0) and x̃(0), respectively. Under the conditions of Theorem 2.1,
there exists a constant B , independent of n, such that for t ∈ Dn,∥∥Xn(t) − X̃n(t) − (Xn(0) − X̃n(0)

)∥∥∞≤ Btα
∥∥Xn(0) − X̃n(0)

∥∥∞.

Moreover, ∥∥Xn(t) − X̃n(t)
∥∥∞ ≤ (1 + B)

∥∥Xn(0) − X̃n(0)
∥∥∞.

PROOF. Let

Yn
i,h(t) = Xn

i (t) − X̃n
i (t)

‖Xn
h(0) − X̃n

h(0)‖∞
.

We define 0/0 = 0.
Then following the recursion (6.2), we have

Yn
i

(
tnk+1
)

= Yn
i

(
tnk
)+ μi(X

n(tnk )) − μi(X̃
n(tnk ))

‖Xn(0) − X̃n(0)‖∞
�n

+
d ′∑

j=1

σi,j (X
n(tnk )) − σi,j (X̃

n(tnk ))

‖Xn(0) − X̃n(0)‖∞
(
Zj

(
tnk+1
)− Zj

(
tnk
))

(6.5)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j (X
n(tnk ))σl,m(Xn(tnk )) − ∂lσi,j (X̃

n(tnk ))σl.m(X̃n(tnk ))

‖Xn(0) − X̃n(0)‖∞

× Am,j

(
tnk , tnk+1

)
.

Then (6.2) and (6.5) together define an recursion to generate Xn, X̃n and Yn.
Following Lemma 6.1, there exists a constant B that depends only on M , ‖Z‖α

and ‖A‖2α , such that ∥∥Yn(t) − Yn(0)
∥∥∞ ≤ Btα.

Thus, ∥∥Xn(t) − X̃n(t) − (Xn(0) − X̃n(0)
)∥∥∞≤ Btα

∥∥Xn(0) − X̃n(0)
∥∥∞,
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and ∥∥Xn(t) − X̃n(t)
∥∥∞ ≤ (1 + B)

∥∥Xn(0) − X̃n(0)
∥∥∞. �

We are now ready to prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. From Lemma 6.1 we have ‖Xn(t) −
Xn(r)‖∞ ≤ C1|t − r|α . By the Arzela–Ascoli theorem, there exits a subsequence
of {Xn} that converges uniformly to some continuous function X on [0,1]. More-
over, we have ‖X(t) − X(r)‖∞ ≤ C1|t − r|α and

∣∣∣∣∣Xi(t) − Xi(r) − μi(X(r) −
d ′∑

j=1

σi,j

(
X(r)
)(

Zj(t) − Zj(r)
)

−
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X(r)
)
σl.m

(
X(r)
)
Am,j (r, t)

∣∣∣∣∣
< C2|t − r|3α.

Therefore, the limit X is a solution to the SDE.
Let Xn,(s)(t;X(s)) := Xn(t − s)|Xn(0) = X(s). Specifically, we have Xn,(0)(t;

X(0)) = Xn(t) with Xn(0) = X(0), and Xn,(t)(t;X(t)) = X(t). Then we can write

Xn(tnm)− X
(
tnm
)= m∑

k=1

(
Xn,(tnk )(tnm;X(tnk ))− Xn,(tnk−1)

(
tnm;X(tnk−1

)))
.

By Lemma 6.2, ‖Xn,(tnk )(tm;X(tnk )) − Xn,(tnk−1)(tm;X(tnk−1))‖∞ ≤ (1 +
B)‖X(tnk ) − Xn,tnk−1(tnk ;X(tnk−1))‖∞. We also have

∣∣Xi

(
tnk
)− X

n,(tnk−1)

i

(
tnk ;X(tnk−1

))∣∣
=
∣∣∣∣∣Xi

(
tnk
)− Xi

(
tnk−1
)− μi

(
X
(
tnk−1
))(

tnk − tnk−1
)

−
d ′∑

j=1

σi,j

(
X
(
tnk−1
))(

Zj

(
tnk
)− Zj

(
tnk−1
))

−
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X
(
tnk−1
))

σl,m

(
X
(
tnk−1
))

Am,j

(
tnk−1, t

n
k

)∣∣∣∣∣
≤ C3
∣∣tnk − tnk−1

∣∣3α
.
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Thus,

∥∥Xn(tnm)− X
(
tnm
)∥∥∞ ≤

m∑
k=1

∥∥Xn,(tnk )(tnm;X(tnk ))− Xn,(tnk−1)
(
tnm;X(tnk−1

))∥∥∞
≤ m(1 + B)C3�

3α
n

≤ (1 + B)C3�
3α−1
n . �

Next, we turn to the analysis of the error induced by approximating the Lévy
area.

PROPOSITION 6.2. Under the conditions of Theorem 2.1, we can compute a
constant G2 explicitly in terms of M , ‖Z‖α , ‖A‖2α and 
R , such that for n large
enough ∥∥X̂n(t) − Xn(t)

∥∥∞ ≤ G2�
2α−β
n ,

where β ∈ (1 − α,2α).

The proof of Proposition 6.2 uses a similar technique as the proof of Proposi-
tion 6.1 and also relies on some auxiliary results. Let

Un
i (s, t) := X̂n

i (t) − X
n,(s)
i

(
t; X̂n(s)

)

+
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X̂n(s)

)
σl,m

(
X̂n(s)

)
Rn

m,j (s, t).

We first prove the following technical result.

LEMMA 6.3. Under the conditions of Theorem 2.1, there exists a constant C4,
that depends only on M , ‖Z‖α , ‖A‖2α and 
R , such that∥∥Un(r, t)

∥∥∞ ≤ C4|t − r|α+β�2α−β
n .

PROOF. For 0 ≤ r < s < t ≤ 1, r, s, t ∈ Dn, we have

Un
i (r, t)

= Un
i (r, s) + Un

i (s, t)

+ [Xn,(s)
i

(
t; X̂n(s)

)− X
n,(r)
i

(
t; X̂n(r)

)− (X̂n
i (s) − X

n,(r)
i

(
s; X̂n(r)

))]

−
d ′∑

j=1

d∑
l=1

d ′∑
m=1

(
∂lσi,j

(
X̂n(s)

)
σl,m

(
X̂n(s)

)

− ∂lσi,j

(
X̂n(r)

)
σl,m

(
X̂n(r)

))
Rn

m,j (s, t).
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From Lemma 6.2,∣∣Xn,(s)
i

(
t; X̂n(s)

)− X
n,(r)
i

(
t; X̂n(r)

)− (X̂n
i (s) − X

n,(r)
i

(
s; X̂n(r)

))∣∣
≤ B|t − s|α∥∥X̂n(s) − Xn,(r)(s; X̂n(r)

)∥∥∞.

From Lemma 6.1,∣∣(∂lσi,j

(
X̂n(s)

)
σl,m

(
X̂n(s)

)− ∂lσi,j

(
X̂n(r)

)
σl,m

(
X̂n(r)

))
Rn

m,j (s, t)
∣∣

≤ 2M2C1|s − r|α
R|t − s|β�2α−β
n

≤ 2M2C1
R|t − r|α+β�2α−β
n .

Therefore,∥∥Un(r, t)
∥∥∞

≤ ∥∥Un(r, s)
∥∥∞ + ∥∥Un(s, t)

∥∥∞ + B|t − s|α∥∥X̂n(s) − Xn,(r)(s; X̂n(r)
)∥∥∞

+ 2d̄3M2C1
R|t − r|α+β�2α−β
n

≤ ∥∥Un(r, s)
∥∥∞ + ∥∥Un(s, t)

∥∥∞ + B|t − s|α∥∥Un(r, s)
∥∥∞

(6.6)

+ B|t − s|α max
i

{∣∣∣∣∣
d ′∑

j=1

d∑
l=1

d ′∑
m=1

∂lσi,j

(
X̂n(r)

)
σl,m

(
X̂n(r)

)
Rn

m,j (r, s)

∣∣∣∣∣
}

+ 2d̄3M2C1
R|t − r|α+β�2α−β
n

≤ (1 + B|t − s|α)∥∥Un(r, s)
∥∥∞ + ∥∥Un(s, t)

∥∥∞
+ (Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n ,

where d̄ = max{d, d ′}.
Like the proof of Lemma 6.1, we divide the proof into two parts. We first

prove that there exist a small enough constant δ > 0 and a large enough con-
stant C4(δ), both independent of n, such that for |t − r| < δ, |Un(r, t)| ≤
C4(δ)|t − r|α+β�

2α−β
n . And we prove it by induction. First we have Un

tnk ,tnk
= 0

and Un
tnk ,tnk+1

= 0. Suppose the bound holds for all pairs r0, t0 ∈ Dn with |t0 − r0| <
|t − r|. We pick s ∈ Dn as the largest point between r and t such that |s − r| ≤
1/2|t − r|. Then we also have |(s + �n) − r| > 1/2|t − r| and |t − (s + �n)| <

1/2|t − r|.∥∥Un(r, t)
∥∥∞ ≤ (1 + B|t − s|α)∥∥Un(r, s)

∥∥∞ + ∥∥Un(s, t)
∥∥∞

+ (Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n

and∥∥Un(s, t)
∥∥∞

≤ (1 + B�α
n

)∥∥Un(s, s + �n)‖∞ + ‖Un(s + �n, t)
∥∥∞
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+ (Bd̄3M2
R + 2d̄3M2C1
R

)|t − s|α+β�2α−β
n

≤ ∥∥Un(s + �n, t)
∥∥∞ + (Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n .

Therefore, ∥∥Un(r, t)
∥∥∞

≤ (1 + Bδα)∥∥Un(r, s)
∥∥∞ + ∥∥Un(s + �n, t)

∥∥∞
+ 2
(
Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n

≤ 2 + Bδα

2α+β
C4(δ)|t − r|α+β�2α−β

n

+ 2
(
Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n .

If we pick δ and C4(δ) such that

Bδα ≤ 2α+β − 2

and (
1 − 2 + Bδα

2α+β

)
C4(δ) ≥ 2

(
Bd̄3M2
R + 2d̄3M2C1
R

)
.

Then ‖Un(r, t)‖∞ ≤ C(δ)|t − r|α+β�
2α−β
n . We next extend the result to the case

when |t − r| > δ. We can always divide the interval [r, t] into smaller intervals
of length less than δ, specifically, for n large enough, we consider r = s0 < s1 <

· · · < sk = t where si ∈ Dn and 1/2δ < |si − si−1| < δ for i = 1,2, . . . , k. Then
k < 2|t − r|/δ ≤ 2/δ and∥∥Un(r, t)

∥∥∞ ≤ (1 + B|s1 − s0|α)∥∥Un(s0, s0)
∥∥∞ + ∥∥Un(s1, s2)

∥∥∞
+ (Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n

≤
k∑

i=1

(
1 + Bδα)∥∥Un(si−1, si)

∥∥∞
+ k
(
Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n

≤ (1 + Bδα)C4(δ)�
2α−β
n

k∑
i=1

|si − si−1|α+β

+ k
(
Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n

≤ (1 + Bδα)C4(δ)|t − r|α+β�2α−β
n

+ 2

δ

(
Bd̄3M2
R + 2d̄3M2C1
R

)|t − r|α+β�2α−β
n

≤ C4|m − k|α+β�2α−β
n

for C4 ≥ (1 + Bδα)C4(δ) + 2(Bd̄3M2
R + 2d̄3M2C1
R)/δ. �
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We are now ready to prove Proposition 6.2.

PROOF OF PROPOSITION 6.2. From Lemma 6.3, we have∥∥Un(0, t)
∥∥∞ ≤ C4t

α+β�2α−β
n .

Then

∣∣X̂n
i (t) − Xn

i (t)
∣∣≤ ∣∣Un

i (0, t)
∣∣+ d∑

j=1

d∑
l=1

d∑
m=1

∣∣∂lσi,j

(
X(0)
)
σl,m

(
X(0)
)∣∣∣∣Rn

m,j (0, t)
∣∣

≤ C4t
α+β�2α−β

n + d̄3M2
Rtβ�2α−β
n

≤ (C4 + d̄3M2
R

)
�2α−β

n . �

7. Numerical implementation. We conducted some numerical experiments.
The goal to is demonstrate that the algorithms are implementable and correct. We
would also like to explain some limitations in our implementation process and
hope these would provide directions for future improvement of the framework
developed here.

1. For values of X(t) : 0 ≤ t ≤ 1 which fluctuate around numerical values
around, say 1 (assuming that drift and diffusion coefficients also take these val-
ues), Procedure A obtains a value of the parameter G of order 103. Thus for a
reasonable level of accuracy, doing the computations implied by this size of G,
one would generate about 20 wavelet levels, which corresponds to about 220 nor-
mal random variables. This amount is manageable in a standard single processor,
but the amount could go out of hand in a standard computing environment if G

is of size, say 100. A potential way to mitigate this issue would be to simulate a
properly scaled down version of the path and scale everything back once we have
simulated the path, or, alternatively, to make this portion of the procedure run in
parallel computing cores.

2. We have some freedom in picking the parameter α ∈ (1/3,1/2) and β ∈
(1 −α,2α), but there is a tradeoff. From Theorem 2.1, we want 2α −β as close to
1/2 as possible (α close to 1/2 and β close to 1 − α). On the other hand, for the
upper bound of ‖Z‖α and due to our procedure for finding N2 (Section 5.2), we
want α to be reasonably small and β to be reasonably large. The point is, even if
the theoretical complexity as ε decreases is driven by Theorem 2.1, we observed
that in practice, given a fixed ε, it might be better to choose α somewhat small, but
within the range (1/3,1/2).

For our numerical experiments, we simulated a 2-dimensional geometric Brow-
nian motion:

dX1(t) = μ1X1(t) dt + σ1X1(t) dB1(t),

dX2(t) = μ2X2(t) dt + ρσ2X2(t) dB1(t) +
√

1 − ρ2σ2X2(t) dB2(t)
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with initial value X1(0) and X2(0). We recognize that this SDE has a closed form
solution; this is useful because we want to compare the output of our method and
the output of an algorithm that does not take advantage of the Euler discretization.
The previous SDE has the following closed form solution:

X1(t) = X1(0) exp
((

μ1 − σ 2
1 /2
)
t + σ1B1(t)

)
,

X2(t) = X2(0) exp
((

μ1 − σ 2
2 /2
)
t + ρσ2B1(t) +

√
1 − ρ2σ2B2(t)

)
.

Note that, the solution to this SDE is a continuous function of the Brownian
motion under the uniform topology; so a Tolerance Enforced Simulation proce-
dure using the closed form expression is much easier to design and, therefore, it
can be used as a benchmark. Note that continuity of solution of the SDE under
uniform norm does not imply that by only controlling the error of the wavelet
approximation to Brownian motion in uniform metric, one can approximate to a
given (deterministic) tolerance the error of the solution to the SDE when apply-
ing the Euler scheme. In order to guarantee that the Euler scheme yields an error
which is bounded by a user defined (deterministic) tolerance with probability one,
one needs to apply our procedure.

Figure 2 provides one numerical illustration of the performance of our algo-
rithm. The light color is the path produced by our algorithm using the Euler scheme
with a random truncation (which captures enough information to enforce a deter-
ministic error in path space). The dark color is the simulation obtained by using a
TES in uniform norm for the closed form expression. We observe that the two are
indeed very close to each other. In particular, the recursively constructed path is
within ε (ε = 0.1) error bound of the true path. In fact, it appears that the constants
are probably pessimistic in the sense that the actual error is much smaller that the
prescribed guaranteed error. It might be worth to optimize the various tuning pa-
rameters in the algorithm, due to its complexity, however, we prefer to leave this
task for future research.

APPENDIX A: PROOFS OF RESULTS IN SECTION 3

We start by recalling the following algebraic property of the Lévy areas: for
each 0 ≤ r < s < t

(A.1) Ai,j (r, t) = Ai,j (r, s) + Ai,j (s, t) + (Zi(s) − Zi(r)
)(

Zj(t) − Zj(s)
)
.

Using this property and a simple use of the Borel–Cantelli lemma we can obtain
the proof of Lemma 3.1.

PROOF OF LEMMA 3.1. We use (A.1) repeatedly. First, note that

Ai,j

(
tnk , tnk+1

)= Ai,j

(
tn+1
2k , tn+1

2k+1

)+ Ai,j

(
tn+1
2k+1, t

n+1
2k+2

)
+ (Zi

(
tn+1
2k+1

)− Zi

(
tn+1
2k

))(
Zj

(
tn+1
2k+2

)− Zj

(
tn+1
2k+1

))
.
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FIG. 2. Simulation of the Geometric Brownian Motion on [0,1] [X1(0) = X2(0) = 1,

μ1 = μ2 = 1, σ1 = σ2 = 0.5, ρ = 0.25].

We continue, this time splitting Ai,j (t
n+1
2k , tn+1

2k+1) and Ai,j (t
n+1
2k+1, t

n+1
2k+2), thereby

obtaining
Ai,j

(
tnk , tnk+1

)
= (Zi

(
tn+1
2k+1

)− Zi

(
tn+1
2k

))(
Zj

(
tn+1
2k+2

)− Zj

(
tn+1
2k+1

))
+ Ai,j

(
tn+2
22k

, tn+2
22k+1

)+ Ai,j

(
tn+2
22k+1, t

n+2
22k+2

)
+ (Zi

(
tn+2
22k+1

)− Zi

(
tn+2
22k

))(
Zj

(
tn+2
22k+2

)− Zj

(
tn+2
22k+1

))
+ Ai,j

(
tn+2
22k+2, t

n+2
22k+3

)+ Ai,j

(
tn+2
22k+3, t

n+2
22k+4

)
+ (Zi

(
tn+2
22k+3

)− Zi

(
tn+2
22k+2

))(
Zj

(
tn+2
22k+4

)− Zj

(
tn+2
22k+3

))
.

Suppose by iterating the previous splitting procedure m times, we have

Ai,j

(
tnk , tnk+1

)= m∑
h=n+1

2h−n−1∑
l=1

[
Zi

(
th2h−nk+2l−1

)− Zi

(
th2h−nk+2l−2

)]

× [Zj

(
th2h−nk+2l

)− Zj

(
th2h−nk+2l−1

)]
(A.2)
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+
2m−n−1∑

l=1

Ai,j

(
tm2m−nk+2l−2, t

m
2m−nk+2l−1

)

+
2m−n−1∑

l=1

Ai,j

(
tm2m−nk+2l−1, t

m
2m−nk+2l

)
.

Then for the (m + 1)th iteration, we have

Ai,j

(
tnk , tnk+1

)

=
m∑

h=n+1

2h−n−1∑
l=1

[
Zi

(
th2h−nk+2l−1

)− Zi

(
th2h−nk+2l−2

)]

× [Zj

(
th2h−nk+2l

)− Zj

(
th2h−nk+2l−1

)]

+
2m−n−1∑

l=1

{
Ai,j

(
tm+1
2(2m−nk+2l−2)

, tm+1
2(2m−nk+2l−2)+1

)

+ Ai,j

(
tm+1
2(2m−nk+2l−2)+1, t

m+1
2(2m−nk+2l−2)+2

)
+ [Zi

(
tm+1
2(2m−nk+2l−2)+1

)− Zi

(
tm+1
2(2m−nk+2l−2)

)]
× [Zi

(
tm+1
2(2m−nk+2l−2)+2

)− Zi

(
tm+1
2(2m−nk+2l−2)+1

)]}

+
2m−n−1∑

l=1

{
Ai,j

(
tm+1
2(2m−nk+2l−1)

, tm+1
2(2m−nk+2l−1)+1

)

+ Ai,j

(
tm+1
2(2m−nk+2l−1)+1, t

m+1
2(2m−nk+2l−1)+2

)
+ [Zi

(
tm+1
2(2m−nk+2l−1)+1

)− Zi

(
tm+1
2(2m−nk+2l−1)

)]
× [Zi

(
tm+1
2(2m−nk+2l−1)+2

)− Zi

(
tm+1
2(2m−nk+2l−1)+1

)]}

=
m+1∑

h=n+1

2h−n−1∑
l=1

[
Zi

(
th2h−nk+2l−1

)− Zi

(
th2h−nk+2l−2

)]

× [Zj

(
th2h−nk+2l

)− Zj

(
th2h−nk+2l−1

)]

+
2m−n∑
l=1

Ai,j

(
tm+1
2m+1−nk+2l−2, t

m+1
2m+1−nk+2l−1

)

+
2m+1−n−1∑

l=1

Ai,j

(
tm+1
2m+1−nk+2l−1

, tm+1
2m+1−nk+2l

)
.

Thus, (A.2) holds by induction.
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We next claim that

2m−n−1∑
l=1

Ai,j

(
tm2m−nk+2l−2, t

m
2m−nk+2l−1

)
(A.3)

+
2m−n−1∑

l=1

Ai,j

(
tm2m−nk+2l−1, t

m
2m−nk+2l

)→ 0

almost surely as m → ∞. To see this note that

P

(∣∣∣∣∣
2m−n−1∑

l=1

Ai,j

(
th2h−nk+2l−2, t

h
2h−nk+2l−1

)∣∣∣∣∣> 1/m

)

≤ m2
2m−n−1∑

l=1

E
[
A2

i,j

(
tm2m−nk+2l−2, t

m
2m−nk+2l−1

)]= m22m−n+1E

∫ �m

0
Z2

i (s) ds

= m22m−n�2
m = 2−nm2�m.

Since
∑∞

m=1 m2�m < ∞, we conclude by Borel–Cantelli’s lemma that, almost
surely, for m large enough∣∣∣∣∣

2m−n−1∑
l=1

Ai,j

(
th2h−nk+2l−2, t

h
2h−nk+2l−1

)∣∣∣∣∣< 1/m.

Thus, we have (A.3) holds almost surely and, therefore, from (A.2), by sending
m → ∞ we obtain the conclusion of the lemma. �

PROOF OF LEMMA 3.2. Let Ni,1 = max{n ≥ 1 : |Wn
i,k| > 4

√
n + 1 for some

1 ≤ k ≤ 2n−1}. Then N1 = maxi{Ni,1}.

E[Ni,1] =
∞∑

n=1

P(Ni,1 ≥ n)

≤
∞∑

n=1

∞∑
m=n

2m−1∑
k=1

P
(∣∣Wm

i,k

∣∣> 4
√

m + 1
)

≤
∞∑

n=1

∞∑
m=n

2m−1 exp(−8m)

≤
∞∑

n=1

exp(−(8 − log 2)n)

1 − exp(−(8 − log 2))

= exp(−(8 − log 2))

(1 − exp(−(8 − log 2)))2 < ∞.
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Thus, E[N ] < ∞. We also notice that E[N1] is independent of our choice of α

and β . �

PROOF OF LEMMA 3.3. For any interval [t, t + δ] ⊂ [0,1], there exists m ∈
Z

+, such that 2−(m+1) ≤ δ ≤ 2−m. We next divide the analysis into two cases.

Case 1. There exist two level m dyadic points tmk and tmk+1, such that [t, t +δ] ⊂
[tmk , tmk+1].

Case 2. There exist three level m dyadic points tmk , tmk+1 and tmk+1, such that
t ∈ [tmk , tmk+1] and t + δ ∈ [tm1 , tmk+2].
In Case 1, using the Lévy–Ciesielski construction, we have

∣∣Z(t + δ) − Z(t)
∣∣≤ 2−mV 0 +

m∑
n=1

2−m+ n−1
2 V n +

∞∑
n=m+1

2− n+1
2 V n.

Since δ ≥ 2−(m+1), we have

|Z(t + δ) − Z(t)|
δα

≤ 22α

(
2−(1−α)m−αV 0 +

m∑
n=1

2−(1−α)m−α+ n−1
2 V n

+
∞∑

n=m+1

2− n+1
2 +α(m+1)V n

)

≤ 22α

(
m∑

n=0

2−(1−α)n+ n
2 V n +

∞∑
n=m+1

2− n
2 +αnV n

)

≤ 22α
∞∑

n=0

2−n( 1
2 −α)V n.

Similar to Case 1, in Case 2 we have∣∣Z(t + δ) − Z(t)
∣∣≤ ∣∣Z(tmk+1

)− Z(t)
∣∣+ ∣∣Z(t + δ) − Z

(
tmk+1
)∣∣

≤ 2

(
V 0 +

m∑
n=1

2−m+ n−1
2 V n +

∞∑
n=m+1

2− n+1
2 V n

)
.

Then

|Z(t + δ) − Z(t)|
δα

≤ 22α+1
∞∑

n=0

2−n( 1
2 −α)V n.

As the interval [t, t + δ] is arbitrarily chosen, we obtain the result. �
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PROOF OF LEMMA 3.4. For i �= j , let Ni,j,2 = max{n : |Ln
i,j (m) − Ln

i,j (l)| >
(m − l)β�2α

n for some 0 ≤ l < m ≤ 2n−1}. Then N2 = max1≤i,j≤d ′,i �=j {Ni,j,2}.
Fix any (i, j) pair, define

Cn = {∣∣Ln
i,j (m) − Ln

i,j (l)
∣∣> (m − l)β�2α

n for some 0 ≤ l < m ≤ 2n−1}.
We will show that the events {Cn : n ≥ 0} occur finitely many times. Note that

(A.4) P(Cn) ≤ ∑
0≤l<m≤2n−1

2P
((

Ln
i,j (m) − Ln

i,j (l)
)
> (m − l)β�2α

n

)
.

Also observe that for fixed m and n, Ln
i,j (m) is the sum of m i.i.d. random vari-

ables, each of which is distributed as (Zi(t
n
1 ) − Zi(t

n
0 ))(Zj (t

n
2 ) − Zj(t

n
1 )) and

E
[
exp
(
θ
(
Zi

(
tn1
)− Zi

(
tn0
))(

Zj

(
tn2
)− Zj

(
tn1
)))]= (1 − θ2�2

n

)−1/2
.

We apply Chernoff’s bound and have

P
((

Ln
i,j (m) − Ln

i,j (l)
)
> (m − l)β�2α

n

)
≤ exp

(
−θ(m − l)β�2α

n − 1

2
(m − l) log

(
1 − θ2�2

n

))
.

Select θ = θ ′(m − l)−1/2�−1
n for θ ′ ∈ (0,1/4)

P
((

Ln
i,j (m) − Ln

i,j (l)
)
> (m − l)β�2α

n

)≤ exp
(−θ ′(m − l)β−1/2�2α−1

n + 1
)
.

Hence,

P(Cn) ≤ ∑
0≤l<m≤2n−1

2 exp
(−θ ′(m − l)β−1/2�2α−1

n + 1
)

(A.5)
≤ 22n exp

(−θ ′2n(1−2α)).
We notice that 2α < 1

E[Ni,j,2] =
∞∑

n=1

P(Ni,j,2 ≥ n)

and

P(Ni,j,2 ≥ n) ≤
∞∑

m=n

P (Cm).

From (A.5), we denote

M := min
{
n : 22n exp

(−θ ′2n(1−2α))< 1/4
}
.

Then M = o((1 − 2α)−2). We also notice that for n ≥ M ,

22(n+1) exp
(−θ ′2(n+1)(1−2α))< (22n exp

(−θ ′2n(1−2α)))2.
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Thus,
∑∞

m=M+k P (Cm) ≤ (1/2)k and

E[Ni,j,2] ≤ M − 1 +
∞∑

n=M

∞∑
m=n

P (Cm) ≤ M.

Thus, E[N2] = o((1 − 2α)−2). �

The proof of Corollary 3.1 follows directly from Lemmas 3.1 and 3.4.

PROOF OF COROLLARY 3.1. Using Lemma 3.1, we obtain that

(A.6) Rn
i,j

(
tnl , tnm

)= m∑
k=l+1

∞∑
h=n+1

(
Lh

i,j

(
2h−n(k + 1)

)− Lh
i,j

(
2h−nk

))
.

On the other hand, due to Lemma 3.4 if n ≥ N2
m∑

k=l+1

∞∑
h=n+1

∣∣Lh
i,j

(
2h−n(k + 1)

)− Lh
i,j

(
2h−nk

)∣∣

≤
m∑

k=l+1

∞∑
h=n+1

(
2−n(k + 1) − 2−nk

)β
�

2α−β
h < ∞

because β < 2α. Thus (by Fubini’s theorem) the order of the summations in (A.6)
can be exchanged and we obtain the result. �

PROOF OF LEMMA 3.5. We start by showing the bound on 
R . By the defini-
tion of 
L, for any n ∣∣Ln

i,j (m) − Ln
i,j (l)
∣∣≤ 
L(m − l)β�2α

n .

Consequently, for any 0 ≤ l < m ≤ 2n−1,

∣∣Rn
i,j

(
tnl , tnm

)∣∣≤ ∞∑
h=n+1

∣∣Lh
i,j

(
2h−nm

)− Lh
i,j

(
2h−nl

)∣∣

≤
∞∑

h=n+1


L(m − l)β2(h−n)β�2α
h = 
L(m − l)β�β

n

∞∑
h=n+1

�
2α−β
h

= 
L

(
tnm − tnl

)β
�2α−β

n

2−(2α−β)

1 − 2−(2α−β)
.

Therefore, we conclude that


R := max
1≤i,j≤d ′ sup

n≥0
sup

0≤s<t≤1,s,t∈Dn

|Rn
i,j (s, t)|

|t − s|β�
2α−β
n

≤ 
L

2−(2α−β)

1 − 2−(2α−β)
.
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Let r(n, l,m) = min{h : |tnm − tnl | ≥ �h}. For simplicity of notation, we define
the following sequence of operators of time:

sh(tnl )= min
{
thk : thk ≥ tnl

}
,

s̄h(tnm)= max
{
thk : thk ≤ tnm

}
for r(n, l,m) ≤ h ≤ n.

Then∣∣Ai,j

(
tnl , tnm

)∣∣
≤ ∣∣Ai,j

(
tnl , sn−1(tnl ))∣∣+ ∣∣Ai,j

(
sn−1(tnl ), s̄n−1(tnm))∣∣+ ∣∣Ai,j

(
s̄n−1(tnm), tnm)∣∣

+ ∣∣Zi

(
sn−1(tnl ))− Zi

(
tnl
)∣∣∣∣Zj

(
s̄n−1(tnm))− Zj

(
sn−1(tnl ))∣∣

+ ∣∣Zi

(
s̄n−1(tnm))− Zi

(
tnl
)∣∣∣∣Zj

(
tnm
)− Zj

(
s̄n−1(tnm))∣∣.

Suppose by iterating the above procedure up to level γ , where r(n, l,m) < γ < n,
we have∣∣Ai,j

(
tnl , tnm

)∣∣
≤

n∑
h=γ+1

∣∣Ai,j

(
sh(tnl ), sh−1(tnl ))∣∣+ ∣∣Ai,j

(
sγ (tnl ), s̄γ (tnm))∣∣

+
n∑

h=γ+1

∣∣Ai,j

(
s̄h(tnm), s̄h−1(tnm))∣∣

+
n∑

h=γ+1

∣∣Zi

(
sh(tnl ))− Zi

(
sh−1(tnl ))∣∣∣∣Zj

(
s̄h−1(tnm))− Zj

(
sh−1(tnl ))∣∣

+
n∑

h=γ+1

∣∣Zi

(
s̄h−1(tnm))− Zi

(
sh(tnl ))∣∣∣∣Zj

(
s̄h(tnm))− Zj

(
s̄h−1(tnm))∣∣.

Then for level γ − 1, as sh−1(sh(tnl )) = sh−1(tnl ) and s̄h−1(s̄h(tnm)) = s̄h−1(tnm) for
h < n, we have∣∣Ai,j

(
tnl , tnm

)∣∣
≤

n∑
h=γ+1

∣∣Ai,j

(
sh(tnl ), sh−1(tnl ))∣∣

+ ∣∣Ai,j

(
sγ (tnl ), sγ−1(sγ (tnl )))∣∣

+ ∣∣Ai,j

(
sγ−1(sγ (tnl )), s̄γ−1(s̄γ (tnm)))∣∣+ ∣∣Ai,j

(
s̄γ−1(s̄γ (tnm)), s̄γ (tnm))∣∣

+ ∣∣Zi

(
sγ−1sγ ((tnl )))− Zi

(
sγ (tnl ))∣∣
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× ∣∣Zj

(
s̄γ−1(s̄γ (tnm)))− Zj

(
sγ−1(sγ (tnl )))∣∣

+ ∣∣Zi

(
s̄γ−1(s̄γ (tnm)))− Zi

(
sγ (tnl ))∣∣∣∣Zj

(
s̄γ (tnm))− Zj

(
s̄γ−1(s̄γ (tnm)))∣∣

+
n∑

h=r(n,l,m)+1

∣∣Ai,j

(
s̄h(tnm), s̄h−1(tnm))∣∣

=
n∑

h=γ

∣∣Ai,j

(
sh(tnl ), sh−1(tnl ))∣∣+ ∣∣Ai,j

(
sγ−1(tnl ), s̄γ−1(tnm))∣∣

+
n∑

h=γ

∣∣Ai,j

(
s̄h(tnm), s̄h−1(tnm))∣∣

+
n∑

h=γ

∣∣Zi

(
sh−1(tnl ))− Zi

(
sh(tnl ))∣∣∣∣Zj

(
s̄h−1(tnm))− Zj

(
sh−1(tnl ))∣∣

+
n∑

h=γ

∣∣Zi

(
s̄h−1(tnm))− Zi

(
sh(tnl ))∣∣∣∣Zj

(
s̄h(tnm))− Zj

(
s̄h−1(tnm))∣∣.

Thus, the following inequality holds by induction:∣∣Ai,j

(
tnl , tnm

)∣∣
≤

n∑
h=r(n,l,m)+1

∣∣Ai,j

(
sh(tnl ), sh−1(tnl ))∣∣+ ∣∣Ai,j

(
sr(n,l,m)(tnl ), s̄r(n,l,m)(tnm))∣∣

+
n∑

h=r(n,l,m)+1

∣∣Ai,j

(
s̄h(tnm), s̄h−1(tnm))∣∣

+
n∑

h=r(n,l,m)+1

∣∣Zi

(
sh−1(tnl ))− Zi

(
sh(tnl ))∣∣∣∣Zj

(
s̄h−1(tnm))− Zj

(
sh−1(tnl ))∣∣

+
n∑

h=r(n,l,m)+1

∣∣Zi

(
s̄h−1(tnm))− Zi

(
sh(tnl ))∣∣∣∣Zj

(
s̄h(tnm))− Zj

(
s̄h−1(tnm))∣∣.

We make the following important observations:

sh−1(tnl )− sh(tnl )=
{

0, if sh−1(tnl )= sh(tnl ),
�h, otherwise,

s̄h(tnm)− s̄h−1(tnm)=
{

0, if sh−1(tnm)= s̄h(tnm),
�h, otherwise,

s̄r(n,l,m)(tnm)− sr(n,l,m)(tnl )=
{

0, if sr(n,l,m)(tnl )= s̄r(n,l,m)(tnm),
�r(n,l,m), otherwise.
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Then
|Ai,j (t

n
l , tnm)|

(tnm − tnl )2α

≤
n∑

h=r+1


R

�2α
h

�2α
r(n,l,m)

+ 
R +
n∑

h=r+1


R

�2α
h

�2α
r(n,l,m)

+
n∑

h=r+1

‖Z‖2
α

�α
h

�α
r(n,l,m)

+
n∑

h=r+1

‖Z‖2
α

�α
h

�α
r

≤ 
R

2

1 − 2−2α
+ ‖Z‖2

α

21−α

1 − 2−α
.

Therefore,

‖A‖2α := max
1≤i≤j≤d ′ sup

n≥1
sup

0≤s<t≤1;s,t∈Dn

|Ai,j (s)|
|t − s|2α

≤ 
R

2

1 − 2−2α
+ ‖Z‖2

α

21−α

1 − 2−α
. �

APPENDIX B: PROOFS OF RESULTS IN SECTION 5

B.1. Proof of results in Section 5.1.

PROOFS OF LEMMA 5.1. We first notice that tn2k = tn−1
k for k = 0,1,2, . . . ,

2n−1. From the Lévy–Ciesielski construction, we have

Zi

(
tn2k−1
)= 1

2

(
Zi

(
tn−1
k−1

)+ Zi

(
tn−1
k

))+ �
1/2
n+1W

n
i,k.

Then

n
i

(
tn2k−1
)= Zi

(
tn2k−1
)− Zi

(
tn−1
k−1

)= 1

2

(
Zi

(
tn−1
k−1

)− Zi

(
tn−1
k

))+ �
1/2
n+1W

n
i,k

and

n
i

(
tn2k

)= Zi

(
tn−1
k

)− Zi

(
tn2k−1
)= 1

2

(
Zi

(
tn−1
k−1

)− Zi

(
tn−1
k

))− �
1/2
n+1W

n
i,k. �

Before we prove Corollary 5.1, we first provide the following auxiliary re-
sult which summarizes basic computations of moment generating functions of
quadratic forms of bivariate Gaussian random variables.

LEMMA B.1. Suppose that Y and Z are i.i.d. N(0,1) random variables, then
for any numbers a1, a2, b, c1, c2 ∈ R define

φ(a, b, c) := E exp
(
a1Y + a2Z + bYZ + c1Y

2 + c2Z
2),
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then we have that if |2ci | < 1 for i = 1,2, and |b| < (1 − 2c1)(1 − 2c2)

φ(a, b, c)

= (1 − 2c1)
−1/2(1 − 2c2)

−1/2(1 − (b(1 − 2c1)
−1/2(1 − 2c2)

−1/2)2)−1/2

× exp
(

a2
1(1 − 2c1)

−1 + a2
2(1 − 2c2)

−1 + 2a1a2b(1 − 2c1)
−1(1 − 2c2)

−1

2(1 − b2(1 − 2c1)−1(1 − 2c2)−1)

)
.

Moreover, if we let

P ′(Y ∈ dy,Z ∈ dz) = P(Y ∈ dy,Z ∈ dz)
exp(a1y + a2z + byz + c1y

2 + c2z
2)

φ(θ;a, b, c)
,

then under P ′(·) we have that (Y,Z) are distributed bivariate Gaussian with co-
variance matrix

�(a, b, c)

= 1

1 − b2(1 − 2c1)−1(1 − 2c2)−1

×
(

(1 − 2c1)
−1 b(1 − 2c1)

−1(1 − 2c2)
−1

b(1 − 2c1)
−1(1 − 2c2)

−1 (1 − 2c2)
−1

)
,

and mean vector

μ(a, b, c) = �(a, b, c)

(
a1
a2

)
.

PROOF. First, it follows easily that E exp(c1Y
2 + c2Z

2) = (1 − 2c1)
−1/2(1 −

2c2)
−1/2, and under the probability measure

P1(Y ∈ dy,Z ∈ dz) = exp(c1y
2 + c2z

2)

E[exp(c1Y 2 + c2Z2)]P(Y ∈ dy)P (Z ∈ dz),

Y and Z are independent with distributions N(1, (1 − 2c1)
−1) and N(1, (1 −

2c2)
−1), respectively. Therefore,

φ(a, b, c) = (1 − 2c1)
−1/2(1 − 2c2)

−1/2E1 exp(a1Y + a2Z + bYZ)

= (1 − 2c1)
−1/2(1 − 2c2)

−1/2

× E
[
exp
{
a1Y(1 − 2c1)

−1/2 + a2Z(1 − 2c2)
−1/2

+ b(1 − 2c1)
−1/2(1 − 2c2)

−1/2YZ
}]

.

Now, given |θ | < 1 define P2(·) via

P2(Y ∈ dy,Z ∈ dz) = P(Y ∈ dy,Z ∈ dz) exp(χyz)

E[exp(χYZ)] .
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Observe that

P(Y ∈ dy,Z ∈ dz) exp(χyz) = 1

2π
exp
(−y2/2 − z2/2 + χyz

)
and

−y2/2 − z2/2 + χyz = −(y, z)�−1

(
y

z

)
/2,

where

�−1 =
(

1 −χ

−χ 1

)
,

and thus

� = 1

1 − χ2

(
1 χ

χ 1

)
.

Therefore, under P2(·), (Y,Z) is distributed bivariate normal with mean zero and
covariance matrix �, with

χ = b(1 − 2c1)
−1/2(1 − 2c2)

−1/2

and we also must have that if |χ | < 1,

E
[
exp(φYZ)

]= (1 − χ2)−1/2 = (1 − (b(1 − 2c1)
−1/2(1 − 2c2)

−1/2)2)−1/2
.

Consequently, we conclude that

φ(a, b, c)

= (1 − 2c1)
−1/2(1 − 2c2)

−1/2(1 − (b(1 − 2c1)
−1/2(1 − 2c2)

−1/2)2)−1/2

× E2
[
exp
(
a1Y(1 − 2c1)

−1/2 + a2Z(1 − 2c2)
−1/2)].

The final expression for φ(a, b, c) is obtained from the fact that

E2
[
exp
(
a1Y(1 − 2c1)

−1/2 + a2Z(1 − 2c2)
−1/2)]

= exp
(
Var2
(
a1Y(1 − 2c1)

−1/2 + a2Z(1 − 2c2)
−1/2)/2

)
.

And P ′(·) is equivalent to a standard exponentially tilting to the measure P2(·)
using as the natural parameter the vector(

a1(1 − 2c1)
−1/2, a2(1 − 2c2)

−1/2),
and thus under P ′(·) the covariance matrix is the same as under P2(·) and the mean
vector is equal to μ(a, b, c). �

We now are ready to provide the proof of Corollary 5.1.
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PROOF OF COROLLARY 5.1. Let us examine the term of the form

n+m
i

(
tn+m
2r−1

)
j

(
tn+m
2r

)
,

for i �= j ,

n+m
i

(
tn+m
2r−1

)
j

(
tn+m
2r

)
= (n+m−1

i

(
tn+m−1
r

)
/2 + �

1/2
n+m+1W

n+m
i,r

)
× (n+m−1

j

(
tn+m−1
r

)
/2 − �

1/2
n+m+1W

n+m
j,r

)
= n+m−1

i

(
tn+m−1
r

)
n+m−1

j

(
tn+m−1
r

)
/4 − �n+m+1W

n+m
i,r Wn+m

j,r

+ �
1/2
n+m+1W

n+m
i,r n+m−1

j

(
tn+m−1
r

)
/2

− �
1/2
n+m+1W

n+m
j,r n+m−1

i

(
tn+m−1
r

)
/2.

Then we have that Corollary 5.1 follows immediately from Lemma B.1. �

Finally, we provide the proof of Corollary 5.2.

PROOF OF COROLLARY 5.2. Recall that for each r ∈ {1,2, . . . ,2n},
n

i

(
tnr
) := (Zi

(
tnr
)− Zi

(
tnr−1
))

.

So

n
i

(
tn2r−1
)= n

i

(
tn−1
r

)
/2 + �

1/2
n+1W

n
i,r ,

n
i

(
tn2r

)= n
i

(
tn−1
r

)
/2 − �

1/2
n+1W

n
i,r .

We perform the first iteration in full detail; the rest are immediate just adjusting
the notation. From Corollary 5.1, we obtain that, for i �= j ,

En+m−1 exp
(
θ0
[
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
])

= exp

(
1

2

k′∑
r=k+1

θ2
0 �n+m+1

4(1 − θ2
0 �2

n+m+1)
i

(
tn+m−1
r

)2

+ 1

2

k′∑
r=k+1

θ2
0 �n+m+1

4(1 − θ2
0 �2

n+m)
j

(
tn+m−1
r

)2)

× exp

(
k′∑

r=k+1

θ0�n+m+1

4(1 − θ2
0 �2

n+m+1)
i

(
tn+m−1
r

)
j

(
tn+m−1
r

))

× (1 − θ2
0 �2

n+m+1
)−(k′−k)/2

.
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Using the definitions in (5.5), we have that the exponential component

1

2

k′∑
r=k+1

θ2
0 �n+m+1

4(1 − θ2
0 �2

n+m+1)
i

(
tn+m−1
r

)2

+ 1

2

k′∑
r=k+1

θ2
0 �n+m+1

4(1 − θ2
0 �2

n+m+1)
j

(
tn+m−1
r

)2

+
k′∑

r=k+1

θ0�n+m+1

4(1 − θ2
0 �2

n+m+1)
i

(
tn+m−1
r

)
j

(
tn+m−1
r

)
is equal to

2n+m−2∑
r=1

[
η1
(
tn+m−1
2r−1

)
i

(
tn+m−1
2r−1

)2 + η1
(
tn+m−1
2r

)
i

(
tn+m−1
2r

)2]

+
2n+m−2∑

r=1

[
η1
(
tn+m−1
2r−1

)
j

(
tn+m−1
2r−1

)2 + η1
(
tn+m−1
2r

)
j

(
tn+m−1
2r

)2]

+
2n+m−2∑

r=1

[
θ1
(
tn+m−1
2r−1

)
i

(
tn+m−1
2r−1

)
j

(
tn+m−1
2r−1

)

+ θ1
(
tn+m−1
2r

)
i

(
tn+m−1
2r

)
j

(
tn+m−1
2r

)]
.

We next expand each of the terms. To simplify the notation, we write

x = Wn+m−1
i,r and y = Wn+m−1

j,r .

Define
√

� = �
1/2
n+m, put u = i(t

n+m−2
r ) and v = j(t

n+m−2
r )

i

(
tn+m−1
2r−1

)= u/2 + √
�x, i

(
tn+m−1
2r

)= u/2 − √
�x,

j

(
tn+m−1
2r

)= v/2 + √
�y, j

(
tn+m−1
2r

)= v/2 − √
�y.

Now, for brevity let us write ηo = η1(t
n+m−1
2r−1 ) and ηe = η1(t

n+m−1
2r ) (“o” is used

for odd, and “e” for even)(
η1
(
tn+m−1
2r−1

)
i

(
tn+m−1
2r−1

)2 + η1
(
tn+m−1
2r

)
i

(
tn+m−1
2r

)2
+ η1
(
tn+m−1
2r−1

)
j

(
tn+m−1
2r−1

)2 + η1
(
tn+m−1
2r

)
j

(
tn+m−1
2r

)2)
= (ηo(u/2 + √

�x)2 + ηe(u/2 − √
�x)2

+ ηo(v/2 + √
�y)2 + ηe(v/2 − √

�y)2)
= 1

4
u2(ηe + ηo) + 1

4
v2(ηe + ηo) + u(ηo − ηe)

√
�x + v(ηo − ηe)

√
�y

+ (ηe + �ηo)�x2 + (ηe + ηo)�y2.
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Likewise, put θo = θ1(t
n+m−1
2r−1 ) and θe = θ1(t

n+m−1
2r )

θ1
(
tn+m−1
2r−1

)
i

(
tn+m−1
2r−1

)
j

(
tn+m−1
2r−1

)+ θ1
(
tn+m−1
2r

)
i

(
tn+m−1
2r

)
j

(
tn+m−1
2r

)
= θo(u/2 + √

�x)(v/2 + √
�y) + θe(u/2 − √

�x)(v/2 − √
�y)

= 1

4
uv(θe + θo) + (θe + θo)�xy + 1

2
v(θo − θe)

√
�x + 1

2
u(θo − θe)

√
�y.

We then collect the terms free of x and y and obtain

u2

4
(ηe + ηo) + v2

4
(ηe + ηo) + uv

4
(θe + θo).

Now the coefficients of x, y, x2, y2 and xy{
u(ηo − ηe) + 1

2
v(θo − θe)

}√
�x +

{
v(ηo − ηe) + 1

2
u(θo − θe)

}√
�y

+ (ηe + ηo)�x2 + (ηe + ηo)�y2

+ (θe + θo)�xy.

And finally we can apply Lemma B.1 to get the corresponding results. �

B.2. Proofs of results in Section 5.2.

PROOF OF LEMMA 5.2. Recalling expression (5.6), we establish the bound
for En[exp(θ0{Ln+1

i,j (k′) − Ln+m
i,j (k)})], for i �= j , by controlling the contribution

of the term

(B.1)
m∏

l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)
,

and the exponential term

(B.2) exp

( 2n∑
r=1

θm

(
tnr
)
i

(
tnr
)
j

(
tnr
)+ 2n∑

r=1

ηm

(
tnr
)(

i

(
tnr
)2 + j

(
tnr
)2))

separately.
We start by analyzing θl and ηl . From Corollary 5.1, we have

θ1 = θ0

4(1 − θ2
0 �2

n+m+1)
and η1 = θ2

0 �n+m+1

8(1 − θ2
0 �2

n+m+1)
.

We notice that 2η1 ≤ θ2
1 �n+m+1 ≤ (5/2)η1.

Let

u = max
{
h : k′ − k > 2h}.
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We also denote

b(l) := min
{
r : θl

(
tn+m−l
r

)
> 0
}

and

b̄(l) := max
{
r : θl

(
tn+m−l
r

)
> 0
}
.

The strategy throughout the rest of the proof proceeds as follows. We have that
the θl(t

n+m−l
r )’s and ηl(t

n+m−l
r )’s, r = 1,2, . . . ,2n+m−l , are nonnegative. We also

have that for l ≤ u ∧ m, the number of positive θl(t
n+m−l
r )’s and ηl(t

n+m−l
r )’s

reduces by about a half at each step l and also the actual value of the positive
θl(t

n+m−l
r )’s and ηl(t

n+m−l
r )’s shrinks by at least 1/2. We will establish that if

m > u, for u < l ≤ m, there are at most two positive θl(t
n+m−l
r )’s and two positive

ηl(t
n+m−l
r )’s and at each step l, their values shrink by more than 2−3/2. Using these

observations we will establish some facts and then use them to estimate (B.1) and
finally (B.2). We now proceed to carry out this strategy.

We first verify the following claims.

CLAIM 1. For l ≤ u, we claim that θl(t
n+m−l
r ), ηl(t

n+m−l
r ) ≥ 0 for all r =

1,2, . . . ,2n+m−l and θl(t
n+m−l
r )’s are equal for r ∈ (b(l), b̄(l)) and we denote

their values as θl . So, following the recursion in (5.5) we have that θl = �l−1θ1. If
θl(t

n+m−l
b(l) ) �= θl(t

n+m−l
b(l)+1 ), then θl(t

n+m−l
b(l) ) < θl(t

n+m−l
b(l)+1 ) = θl , and if θl(t

n+m−l

b̄(l)
) �=

θl(t
n+m−l

b̄(l)−1
), then θl(t

n+m−l

b̄(l)
) < θl(t

n+m−l

b̄(l)−1
) = θl . Likewise, ηl(t

n+m−l
r )’s are equal

for r ∈ (b(l), b̄(l)); we denote their common values as ηl and we have from (5.5)
that ηl = �l−1η1. If ηl(t

n+m−l
b(l) ) �= ηl(t

n+m−l
b(l)+1 ), then ηl(t

n+m−l
b(l) ) < ηl(t

n+m−l
b(l)+1 ), and

if ηl(t
n+m−l

b̄(l)
) �= ηl(t

n+m−l

b̄(l)−1
), then ηl(t

n+m−l

b̄
) < ηl(t

n+m−l

b̄(l)−1
). In other words, at each

step, l for l < u, θl(t
n+m−l
r ) and ηl(t

n+m−l
r ) decay at rate 1/2 if it is not at the

boundary (i.e. r ∈ (b(l), b̄(l))), and the boundary ones (i.e. θl(t
n+m−l
b(l) ), θl(t

n+m−l

b̄(l)
)

and ηl(t
n+m−l
b(l) ), ηl(t

n+m−l

b̄(l)
)), may decay at a faster rate.

We now prove the claim by induction using the recursive relation in (5.5).
The claim is immediate for θ1 and η1. Now suppose it holds for θl(t

n+m−l
r )

and ηl(t
n+m−l
r ), r = 1,2, . . . ,2n+m−l . We next show that the claim holds

for θl+1(t
n+m−l−1
r ), r = 1,2, . . . ,2n+m−l−1, as well. We omit the proof of

ηl+1(t
n+m−l−1
r ) here, as it follows exactly the same line of analysis as

θl+1(t
n+m−l−1
r ).

We divide the analysis into five cases.

Case 1. θl(t
m+n−l
2r−1 ) = θl(t

m+n−l
2r ) and ηl(t

m+n−l
2r−1 ) = ηl(t

m+n−l
2r ). Then

θ l+1+ (tm+n−l
r ) = 2θl(t

m+n−l+1
2r−1 ) and θ l+1− (tm+n−l

r ) = 0. Likewise ηl+1+ (tm+n−l
r ) =

2ηl(t
m+n−l+1
2r−1 ) and ηl+1− (tm+n−l

r ) = 0. From (5.5), we have θl(t
m+n−l−1
r ) =

θl−1(t
m+n−l+1
2r−1 )/2 and ηl(t

m+n−l−1
r ) = ηl−1(t

m+n−l+1
2r−1 )/2.
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Case 2. θl(t
m+n−l
2r−1 ) = 0, θl(t

m+n−l
2r ) > 0 and ηl(t

m+n−l
2r−1 ) = 0, ηl(t

m+n−l
2r ) > 0.

Then we know that 2r = b(l). We also have θ l+1+ (tm+n−l−1
r ) = θl(t

m+n−l
2r ) and

θ l+1− (tm+n−l−1
r ) = −θl(t

m+n−l
2r ). Likewise, ηl+1+ (tm+n−l−1

r ) = ηl(t
m+n−l
2r ) and

ηl+1− (tm+n−l−1
r ) = −ηl(t

m+n−l
2r ). We rewrite the expression for θl+1(t

n+m−l−1
r )

in (5.5) as

θl+1
(
tm+n−l−1
r

)
= θ l+1+

(
tm+n−l−1
r

)1
4

+ ∣∣θ l+1−
(
tm+n−l−1
r

)∣∣
×
{
hl+1
(
tm+n−l−1
r

)∣∣ηl+1−
(
tm+n−l−1
r

)∣∣
+ 1

4
hl+1
(
tm+n−l−1
r

)∣∣θ l+1−
(
tm+n−l−1
r

)∣∣ρl+1
(
tm+n−l−1
r

)
(B.3)

+ hl+1
(
tm+n−l−1
r

)
ηl+1−
(
tm+n−l−1
r

)2 ρl+1(t
m+n−l−1
r )

|θ l+1− (tm+n−l−1
r )|

}

= θl

(
tm+n−l
2r

)× {1

4
+ hl+1

(
tm+n−l−1
r

)
ηl

(
tm+n−l
2r

)

+ 1

4
hl+1
(
tm+n−l−1
r

)
θl

(
tm+n−l
2r

)
ρl+1
(
tm+n−l−1
r

)

+ hl+1
(
tm+n−l−1
r

)
ηl

(
tm+n−l
2r

)2 ρl+1(t
m+n−l−1
r )

θl(t
m+n−l
2r )

}
.

As

θl�n+m−l ≤ θ1�n+m−1 ≤ 1

4
and

ηl�n+m−l ≤ η1�n+m−1 ≤ 1

48
,

then

ρl+1
(
tm+n−l−1
r

)≤ 1
4

1
4

1 − 1
2

1
48

<
1

15

and

hl+1
(
tm+n−l−1
r

)
θl

(
tm+n−l
2r

)≤ 1
4

(1 − 1
2

1
48)(1 − 1

152 )
<

1

3
.

Likewise,

hl+1
(
tm+n−l−1
r

)
ηl

(
tm+n−l
2r

)
< 1/95
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and

ηl

(
tm+n−l
2r

)ρl+1(t
m+n−l−1
r )

θl(t
m+n−l
2r )

< 1/95.

Plug these in (B.3), we have

1

4
θl

(
tm+n−l
2r

)
< θl+1

(
tm+n−l−1
r

)
<

3

10
θl ≤ 3

5
θl+1.

Case 3. θl(t
m+n−l
2r−1 ) > 0, θl(t

m+n−l
2r ) = 0 and ηl(t

m+n−l
2r−1 ) > 0, ηl(t

m+n−l
2r ) = 0.

Then we know that 2r −1 = b̄(l). Following the same line of analysis as in Case 2,
we have

1

4
θl

(
tm+n−l
2r

)
< θl+1

(
tm+n−l−1
r

)
<

3

10
θl ≤ 3

5
θl+1.

Case 4. 0 < θl(t
m+n−l
2r−1 ) < θl(t

m+n−l
2r ) and 0 < ηl(t

m+n−l
2r−1 ) < θl(t

m+n−l
2r ). Then

we know that 2r − 1 = b(l). There exist ξ < 1, such that θl(t
m+n−l
2r−1 ) ≤

ξθl(t
m+n−l
2r ) = ξ�l−1θ1 and ηl(t

m+n−l
2r−1 ) ≤ ξηl(t

m+n−l
2r ) = ξ�l−1η1. From (5.5),

we have

θl+1
(
tm+n−l−1
r

)
≤ θ l+1+

(
tm+n−l−1
r

){1

4
+ hl+1

(
tm+n−l−1
r

)
ηl+1−
(
tm+n−l−1
r

)2 ρl+1(t
m+n−l−1
r )

θ l+1+ (tm+n−l−1
r )

}

+ ∣∣θ l+1−
(
tm+n−l−1
r

)∣∣× {hl+1
(
tm+n−l−1
r

)∣∣ηl+1−
(
tm+n−l−1
r

)∣∣
+ 1

4
hl+1
(
tm+n−l−1
r

)∣∣θ l+1−
(
tm+n−l−1
r

)∣∣ρl+1
(
tm+n−l−1
r

)}
.

As |θ l+1− (tm+n−l−1
r )| ≤ θl and |ηl+1− (tm+n−l−1

r )| ≤ ηl , following the same calcula-
tion as in Case 2, it is easy to check that

θl+1
(
tm+n−l−1
r

)
< θl+1+

(
tm+n−l−1
r

)(1

4
+ 0.01

)
+ ∣∣θ l+1−

(
tm+n−l−1
r

)∣∣× 0.05.

Since θl+1(t
m+n−l−1
r ) + |θ l+1− (tm+n−l−1

r )| = θl , we have

θl+1
(
tm+n−l−1
r

)
< θl

((
1

4
+ 0.01 − 0.05

)
(1 + ξ) + 0.05

)

= 1

2
θl

(
1

2
+ 0.02 + 0.42ξ

)
<

θl

2
= θl+1.

Case 5. θl(t
m+n−l
2r−1 ) > θl(t

m+n−l
2r ) > 0 and ηl(t

m+n−l
2r−1 ) > θl(t

m+n−l
2r ) > 0. Then

we know that 2r = b̄(l). Following the same line of analysis as in Case 4, we have

θl+1
(
tm+n−l−1
r

)
< θl+1.
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We thus prove that the claim holds for θl+1(t
m+n−l−1
r ), r = 1,2, . . . ,2n+m−l−1, as

well.

We have established Claim 1. We now continue with a second claim.

CLAIM 2. For u < l < m, we have at most two positive θl(t
m+n−l
r )’s,

namely θl(t
m+n−l
b(l) ) and θl(t

m+n−l

b̄(l)
). Notice that it is possible that b(l) = b̄(l).

We then claim that if b �= b̄,θl(t
m+n−l
b(l) ) ≤ �l−1θ12−(l−u−1)/2 and θl(t

m+n−l

b̄(l)
) ≤

�l−1θ12−(l−u−1)/2. Similarly, ηl(t
m+n−l
b(l) ) ≤ �l−1η12−(l−u−1)/2 and ηl(t

m+n−l

b̄(l)
) ≤

�l−1η12−(l−u−1)/2. If b(l) = b̄(l), θl(t
m+n−l
b(l) ) ≤ �l−1θ12−(l−u−2)/2, θl(t

m+n−l

b̄(l)
) ≤

�l−1θ12−(l−u−2)/2 and ηl(t
m+n−l
b(l) ) ≤ �l−1η12−(l−u−2)/2, ηl(t

m+n−l

b̄(l)
) ≤

�l−1η12−(l−u−2)/2.

We prove the claim by induction. We shall give the proof of θl(t
m+n−l
r ) only, as

the proof of ηl(t
m+n−l
r ) follows exactly the same line of analysis. For l = u, we

have the following cases:

(i) b̄(l) = b(l) + 2, b(l) is odd. In this case, θl+1(t
m+n−l−1
(b(l)+1)/2) < �lθ1, which

follows from the analysis in Case 4 for l ≤ u. And θl+1(t
m+n−l−1
(b̄(l)+1)/2

) < (3/5)�lθ1,
following the analysis in Case 3 for l ≤ u.

(ii) b̄(l) = b(l) + 2, b(l) is even. In this case, θl+1(t
m+n−l−1
b(l)/2 ) < (3/5)�lθ1,

which follows from the analysis in Case 2 for l ≤ u. And θl+1(t
m+n−l−1
b̄(l)/2

) < �lθ1,
following the analysis in Case 5, for l ≤ u.

(iii) b̄(l) = b(l) + 1, b(l) is odd. In this case, let θ̄l = max{θl(t
m+n−l
b(l) ),

θl(t
m+n−l

b̄(l)
)}. Then following the same analysis as in Case 4 or Case 5 for l ≤ u

[depending on which one of θl(t
m+n−l
b(l) ) and θl(t

m+n−l

b̄(l)
) is smaller], we have

θl+1(t
m+n−l−1
b̄(l)/2

) < θ̄l/2 ≤ �lθ1.

(iv) b̄(l) = b(l) + 1, b(l) is even. In this case, θl+1(t
m+n−l−1
b(l)/2 ) < (3/5)�lθ1,

which follows from the analysis in Case 2 for l ≤ u. And θl+1(t
m+n−l−1
(b̄(l)+1)/2

) <

(3/5)�lθ1, following the analysis in Case 3 for l ≤ u.

Therefore, the claim holds for u + 1. Suppose the claim holds for l ≥ u + 1.
Then when moving from level l to level l + 1, one of the following three cases can
happen:

(a) b̄(l) = b(l)+1 and b(l) is even. In this case, following the analysis in Case 2
and Case 3 for l ≤ u, we have

θl+1
(
tm+n−l−1
b(l)/2

)≤ 3

10
θl

(
tm+n−l
b(l)

)≤ �lθ12−(l−u)/2
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and

θl+1
(
tm+n−l−1
(b̄(l)+1)/2

)≤ 3

10
θl

(
tm+n−l

b̄(l)

)≤ �lθ12−(l−u)/2.

(b) b̄(l) = b(l). In this case, following the analysis in Case 2 or Case 3 for l ≤ u

[depending on whether b(l) is odd or even], we have

θl+1
(
tm+n−l−1
�b(l)/2�

)≤ 3

10
θl

(
tm+n−l
b(l)

)≤ �lθ12−(l−u−1)/2.

(c) b̄(l) = b(l) + 1 and b(l) is odd. In this case, we let θ̄l = max{θl(t
m+n−l
b(l) ),

θl(t
m+n−l

b̄(l)
)}. Then we can use the same analysis as in Case 4 or Case 5 for l ≤ u

[depending on which one of θl(t
m+n−l
b(l) ) and θl(t

m+n−l

b̄(l)
) is smaller] to conclude that

θl+1
(
tm+n−l−1
b̄(l)/2

)
<

1

2
θ̄l ≤ �lθ12−(l−u−1)/2.

We notice that case (c) can happen only once.

We are now ready to control the contribution of the term (B.1). As

�n+m−l+2η
l+
(
tn+m−l
r

)≤ 1/30 and ρl

(
tn+m−l
r

)
< 1/7,

we have when m ≤ u
m∏

l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)

≤
m∏

l=2

2n+m−l∏
r=1

exp
(
4�n+m−l+2η

l+
(
tn+m−l
r

)+ ρl

(
tn+m−l
r

)2)

≤
m∏

l=2

exp
((

16�n+mη1 + (4�n+mθ1)
2

(1 − 8�n+mη1)2

)((
k′ − k

)
�l + 2

))

≤
m∏

l=2

exp
((

11

5

γ 2

k′ − k
�1−2α′

n + 6

5

γ 2

k′ − k
�2−4α′

n

)((
k′ − k

)
�l + 2

))
.

The last inequality follows from Corollary 5.1 that θ1 = θ0/4(1 − θ2
0 �2

n+m), η1 =
θ2

0 �n+m/2(1−θ2
0 �2

n+m), and our choice of θ0 = γ /(k′1/2�2α′
n �m). Then, as (k′ −

k)−1 ≤ 2−m,

m∏
l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)

≤ exp

(
11

5
γ 2

(
m∑

l=2

�l + 2(m − 1)�m

)
+ 6

5
γ 2

(
u∑

l=2

�l + 2(m − 1)�m

))

≤ exp
(

8

25

)
.
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When m > u,

m∏
l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)

≤
m∏

l=2

2n+m−l∏
r=1

exp
(
4�n+m−l+2η

l+
(
tn+m−l
r

)+ ρl

(
tn+m−l
r

)2)

≤
u∏

l=2

exp
((

11

5

γ 2

k′ − k
�1−2α′

n + 6

5

γ 2

k′ − k
�2−4α′

n

)((
k′ − k

)
�l + 2

))

×
m∏

l=u+1

exp
(

11

5

γ 2

k′ − k
�1−2α′

n �
1/2
l−u−2 + 6

5

γ 2

k′ − k
�2−4α′

n �l−u−2

)
.

As (k′ − k)−1 ≤ 2−u,

m∏
l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)≤ exp

{
11

5
γ 2

(
u∑

l=2

�l + 2(u − 1)�u +
m∑

l=u+1

�
1/2
l−2

)

+ 6

5
γ 2

(
u∑

l=2

�l + 2(u − 1)�u +
m∑

l=u+1

�l−2

)}

≤ exp
(

1

2

)
.

For (B.2), we notice that under condition (5.8) and (5.9), we have∣∣∣∣∣
2n∑

r=1

θm

(
tnr
)
i

(
tnr
)
j

(
tnr
)∣∣∣∣∣≤ θ1�m−1ε0

((
k′ − k

)
�m

)β
�2α′

n + 2θ1�m−1�
2α′
n

≤ ε0γ
(
k′ − k

)β−1/2 + 2γ

and ∣∣∣∣∣
2n∑

r=1

ηm

(
tnr
)(

i

(
tnr
)2 + j

(
tnr
)2)∣∣∣∣∣≤ ((k′ − k

)
�m + 2

)
η1�m−12�2α′

n

≤ 2γ 2.

Combining the analysis for (B.1) and (B.2), we have

En exp
(
θ0
{
Ln+m

i,j

(
k′)− Ln+m

i,j (k)
})

≤ exp
(
θ2

0 �2
n+m

(
k′ − k

)+ 1

2
+ ε0γ

(
k′ − k

)β−1/2 + 2γ + 2γ 2
)

≤ 4 exp
(
ε0γ
(
k′ − k

)β−1/2)
. �
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