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AN EPIDEMIC IN A DYNAMIC POPULATION WITH
IMPORTATION OF INFECTIVES
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Consider a large uniformly mixing dynamic population, which has con-
stant birth rate and exponentially distributed lifetimes, with mean population
size n. A Markovian SIR (susceptible → infective → recovered) infectious
disease, having importation of infectives, taking place in this population is
analysed. The main situation treated is where n → ∞, keeping the basic re-
production number R0 as well as the importation rate of infectives fixed, but
assuming that the quotient of the average infectious period and the average
lifetime tends to 0 faster than 1/ logn. It is shown that, as n → ∞, the be-
haviour of the 3-dimensional process describing the evolution of the fraction
of the population that are susceptible, infective and recovered, is encapsulated
in a 1-dimensional regenerative process S = {S(t); t ≥ 0} describing the lim-
iting fraction of the population that are susceptible. The process S grows de-
terministically, except at one random time point per regenerative cycle, where
it jumps down by a size that is completely determined by the waiting time
since the start of the regenerative cycle. Properties of the process S, including
the jump size and stationary distributions, are determined.

1. Introduction. The mathematical theory for the spread of infectious dis-
eases has a long history and is by now quite rich [e.g., Diekmann, Heesterbeek
and Britton (2013)]. One of the more common type of disease models is called
SIR (susceptible → infective → recovered) meaning that individuals are at first
Susceptible. If infected (by someone), they immediately become Infectious (being
able to spread the disease onward). After some time, an infectious individual Re-
covers, which also means that the individual is immune to further infection from
the disease. Such models were originally studied for populations assuming ho-
mogeneous mixing, but during the last few decades considerable effort has been
put into analysing epidemic models in communities which are not homogeneously
mixing but instead may be described using some type of social structure, such
as a community of households [e.g., Ball, Mollison and Scalia-Tomba (1997)] or
a random network describing possible contacts [e.g., Newman (2002)]. The vast
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majority of papers devoted to these types of problems assume a fixed community
and community structure.

In the current paper, we treat the situation where the population is dynamic
in the sense that people die and new individuals are born, or more precisely im-
migrate into the population. Further, we assume that there is also importation of
infectious individuals (randomly in time according to a homogeneous Poisson pro-
cess), implying that the disease never vanishes forever. In order to facilitate analyt-
ical progress, we consider only the case of a homogeneously mixing community,
which in network terminology corresponds to treating the complete network.

Models for recurrent epidemics go back to the deterministic formulations
of Hamer (1906) and Soper (1929). A stochastic treatment was given first in the pi-
oneering work of Bartlett (1956), who considered an SIR model with importation
of both susceptibles and infectives, but without disease-unrelated deaths. An alter-
native model, with disease-unrelated deaths but no importation of infectives, has
been studied extensively [e.g., Nåsell (1999) and the references therein]. Interest
often centres on the time to extinction of infection and the closely-related problem
of the critical community size for an infection to persist in a population.

We consider a Markovian SIR epidemic with demography and importation of
infectives, in which infectious individuals infect new individuals at constant rate
and the infectious period is exponentially distributed. We study limit properties
of the epidemic when the average population size n tends to infinity. Our focus
lies on the case where the limit is taken keeping the basic reproduction number
R0 (i.e., the average number of susceptibles infected by a single infective in an
otherwise fully susceptible population of size n) and the immigration rate of infec-
tives fixed, whereas the quotient of the average infectious period and the average
lifetime tends to 0 faster than 1/ logn. For many infectious diseases, this quotient
typically lies between 10−4 and 10−3, hence supporting this asymptotic regime,
but in the discussion we treat other asymptotic regimes briefly.

Under the above asymptotic regime, all epidemic outbreaks are short, having
duration that tends to 0 in probability as n → ∞. Further, as n → ∞, epidemic
outbreaks are either minor, having size of order op(n), or major, having size of ex-
act order �p(n). It follows that, as n → ∞, the behaviour of the three-dimensional
process describing the evolution of the fraction of the population that are suscep-
tible, infective and recovered, is encapsulated in a one-dimensional regenerative
process S = {S(t); t ≥ 0}, describing the limiting fraction of the population that
are susceptible. During each cycle, the process S makes one down jump, corre-
sponding to the occurrence of a major outbreak, and except for this increases de-
terministically, as minor outbreaks have no effect on S̄(n) in the limit as n → ∞.
[Here, S̄(n) = {S̄(n)(t) : t ≥ 0}, where, for t ≥ 0, S̄(n)(t) = n−1S(n)(t) with S(n)(t)

being the number of susceptible individuals in the population at time t .] Note that
S̄(n) does not converge weakly to S in the Skorohod topology since the sample
paths of S are almost surely discontinuous but those of S̄(n) almost surely con-
tain only jumps of size n−1, so are close to being continuous. Thus, to obtain
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rigorous convergence results, we consider two processes, S̄
(n)
− and S̄

(n)
+ , which co-

incide with S̄(n), except during major outbreaks during which they sandwich S̄(n),
and prove that both S̄

(n)
− and S̄

(n)
+ converge weakly to S in the Skorohod topology

(Theorem 2.1). It then follows that certain functionals of S̄(n) converge weakly to
corresponding functionals of S (Corollary 2.1).

The paper is structured as follows. In Section 2, we define the model and the
limiting regenerative process, give an intuitive explanation of why S approximates
S̄(n) for large n and present the main convergence results. In Section 3, we derive
some properties of the limiting regenerative process: the jump size distribution, the
associated renewal time distribution and the stationary distribution. In Section 4,
we present simulations supporting the convergence result and illustrating various
features of the limiting process. In Section 5, we prove the main results. We end
in Section 6 with a Discussion summarising our results and also exploring briefly
additional questions, such as weak convergence of S̄(n) to S in topologies that are
weaker than the Skorohod topology and other asymptotic regimes.

2. The epidemic model and main results.

2.1. The Markovian SIR epidemic with demography and importation of infec-
tives. We now define the Markovian SIR epidemic with demography and impor-
tation of infectives (SIR-D-I). We consider the process to be indexed by a target
population size n, which we assume is a strictly positive constant. The population
model is an immigration-death process with constant immigration rate and linear
death rate. For t ≥ 0, let N(n)(t) denote the population size at time t . Then N(n)(t)

increases at constant rate μn and decreases at rate μN(n)(t). The population size
hence fluctuates around n, which is assumed to be large.

The Markovian SIR-epidemic on this population is defined as follows. For t ≥ 0,
let S(n)(t), I (n)(t) and R(n)(t) denote the number of susceptibles, infectives and
recovered, respectively, at time t , so S(n)(t) + I (n)(t) + R(n)(t) = N(n)(t). We
assume that I (n)(0) = 0 and that S̄(n)(0) → s0 as n → ∞, where s0 ∈ [0,1] is
constant. [The value of R(n)(0) has no effect on the ensuing epidemic.] A fraction
κn of all births (i.e., immigrants) are infectives and the remaining births are all
susceptibles, so births of infectives occur at rate μnκn and births of susceptibles
occur at rate μn(1 − κn). While infectious, any given infective infects any given
susceptible at rate n−1λn, independently between each distinct pair of individuals.
Thus, approximately, each infective makes infectious contacts at the points of a
homogeneous Poisson process having rate λn, with contacts being with individuals
chosen independently and uniformly from the whole population; a contact with a
susceptible individual results in that individual becoming infected, while a contact
with an infectious or removed individual has no effect. Each infectious individual
recovers and becomes immune at rate γn, implying that the infectious period is
exponentially distributed with rate parameter γn.
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More formally, the process {(S(n)(t), I (n)(t),R(n)(t)) : t ≥ 0} is a continuous-
time Markov chain, with state space Z

3+ and transition intensities given by

q
(n)
(s,i,r),(s+1,i,r) = (1 − κn)nμ,

q
(n)
(s,i,r),(s,i+1,r) = κnnμ,

q
(n)
(s,i,r),(s−1,i,r) = μs,

q
(n)
(s,i,r),(s,i−1,r) = μi,

q
(n)
(s,i,r),(s,i,r−1) = μr,

q
(n)
(s,i,r),(s−1,i+1,r) = n−1λnsi,

q
(n)
(s,i,r),(s,i−1,r+1) = γni,

corresponding to birth of a susceptible, birth of an infective, death of a susceptible,
death of an infective, death of a recovered, infection of a susceptible and recovery
of an infective, respectively.

We study specifically the case where the average population size n tends to
infinity in such a way that:

(a) the total importation rate μnκn of infectives tends to a strictly positive con-
stant μκ , so κnn → κ as n → ∞; and

(b) the infection and recovery rates satisfy λn/γn → R0 > 1 and λn/ logn →
∞ as n → ∞.

For ease of exposition, we assume that n is an integer, so sequences of epidemic
processes are indexed by the natural numbers. However, all of the results of the
paper are easily generalised to the case of a family of epidemic processes indexed
by the positive real numbers.

To conclude, the parameters of the model are: n, the average population size; μ,
where 1/μ is the average lifetime and μn is the population birth rate; λn, where
λn/n is the infection rate; γn, where 1/γn is the average length of the infectious
period; and κn, the fraction of births which are infectious, so μnκn is the birth (or
importation) rate of infectives.

2.2. The limiting process S. Let S̄(n) = {S̄(n)(t) : t ≥ 0}, where S̄(n)(t) =
n−1S(n)(t) is the “fraction” of the population that is susceptible at time t . The
process S = {S(t); t ≥ 0} can be viewed as the limit of S̄(n) as n → ∞ under the
above asymptotic regime. It is a Markovian regenerative process [e.g., Asmussen
(1987), Chapter V], with renewals occurring whenever S(t) = 1/R0. Between each
renewal S(t) increases deterministically according to the differential equation

(2.1) S′(t) = μ
(
1 − S(t)

)
,
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except for one down jump (from above 1/R0 to below 1/R0). This implies that

(2.2) S(u) = 1 − (1 − 1/R0)e
−μu

before the jump (if u denotes the time from the last renewal). The random time T

from a renewal to the jump has distribution specified by

P(T ≤ t) = 1 − exp
[
−μκ

∫ t

0

(
1 − 1

R0S(u)

)
du

]
(t ≥ 0),

with S(u) given by (2.2), so

(2.3) P(T ≤ t) = 1 − e−μκt (R0eμt − R0 + 1
) κ

R0 (t ≥ 0).

The size of the jump is specified by the value S(T −) of the process just prior to the
jump. More precisely, S(T ) = S(T −)(1 − τ(S(T −))), where for s > R−1

0 , τ(s)

is the unique strictly positive solution to the equation [cf. Diekmann, Heesterbeek
and Britton (2013), equation (3.15)]

(2.4) 1 − τ = e−R0sτ .

In epidemic theory, τ(s) is known as the relative fraction infected among the ini-
tially susceptible of an SIR epidemic outbreak in which a fraction s are initially
susceptible and the rest immune. [If s ≤ R−1

0 , then τ = 0 is the only positive
solution of (2.4) and the relative fraction infected by an outbreak is 0.] Hence,
the size of the down jump is S(T −)τ (S(T −)). Note that 1 − u > e−R0su for
u ∈ (0, τ (s)) and 1 − u < e−R0su for u ∈ (τ (s),∞). Thus, τ(s) > 1 − 1

R0s
, since

e−(R0s−1) < 1
R0s

, whence S(T ) < 1/R0. After the down jump, S(t) increases deter-
ministically according to the same differential equation (2.1) until the next renewal
point, so

S(T + t) = 1 − (
1 − S(T )

)
e−μt , 0 ≤ t ≤ μ−1 log

[(
1 − S(T )

)
/(1 − 1/R0)

]
and the inter-renewal time is T +μ−1 log[(1 −S(T ))/(1 − 1/R0)]. Illustrations of
S are given in Section 4.

2.3. Main results and heuristics. We first explain heuristically why S can be
viewed as the limit of S̄(n) as n → ∞ under that asymptotic regime described in
Section 2.1. Suppose that n is large. Then when no infective is present, all that
happens is that individuals die and new ones are born at approximately the same
rate μn. Recovered (immune) individuals that die are replaced by susceptible in-
dividuals, so the fraction of susceptibles increases at rate μ(1 − S̄(n)(t)) which
explains the deterministic growth rate of S.

After an exponentially distributed holding time, with rate parameter μnκn ≈
μκ , an infective immigrates into the community. If the fraction susceptible S̄(n)(t)

is below 1/R0, then the effective reproduction number Re = R0S̄
(n)(t) is strictly
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less than one, implying that, with probability tending to 1 as n → ∞, a large out-
break will not occur, so S̄(n)(t) continues to grow approximately deterministically.
If S̄(n)(t) > 1/R0 when an infective immigrates into the community, then with
approximate probability 1 − 1/(R0S̄

(n)(t)) that infective gives rise to a major out-
break that infects order �(n) susceptibles [cf. Diekmann, Heesterbeek and Britton
(2013), pages 53 and 376]; otherwise, only a minor outbreak, which infects order
o(n) susceptibles, occurs and S̄(n)(t) continues to grow approximately determin-
istically. This explains the distribution for T , the time from a renewal until a down
jump in S, which has time varying intensity given by μκ multiplied by the limiting
major outbreak probability [cf. Bartlett (1956)].

If a major outbreak takes place, the size of the outbreak among the susceptibles
is given approximately by τ(S(T −))S(n)(T −) where S(T −) denotes the limiting
(as n → ∞) fraction susceptible just prior to the outbreak and τ(s) is defined
above [cf. Diekmann, Heesterbeek and Britton (2013), page 60]. The duration of
such a major outbreak is of order �(logn/λn) [cf. Barbour (1975)] which tends to
0 by assumption. Thus, if there is a major outbreak it happens momentarily and,
in the limit as n → ∞, the fraction susceptible after the outbreak, S(T ), satisfies
S(T ) = S(T −)(1 − τ(S(T −)).

Although the above heuristic argument makes it plausible that the normalised
susceptible process S̄(n) converges to the regenerative process S, there are two
complicating factors in making the argument fully rigorous. First, as explained in
Section 1, it is not true that S̄(n) ⇒ S as n → ∞, where ⇒ denotes weak conver-
gence in the space D[0,∞) of right-continuous functions f : [0,∞) → R having
limits from the left (i.e., càdlàg functions), endowed with the Skorohod metric
[e.g., Ethier and Kurtz (1986), Chapter 3]. As explained also in Section 1, we
overcome this problem by considering two processes, S̄

(n)
− and S̄

(n)
+ , which coin-

cide with S̄(n) except during major outbreaks, when they sandwich S̄(n), and show
that S̄

(n)
− ⇒ S and S̄

(n)
+ ⇒ S(·) as n → ∞; see Theorem 2.1. The second complicat-

ing factor is that the results referred to above concerning the probability, size and
duration of a major outbreak are for an epidemic in a static population, whereas
our population is dynamic. The results carry over to our setting because, in the
limit as n → ∞, the time scale of an epidemic outbreak is infinitely faster than
that of demographic change, but proofs need to be adapted accordingly.

Before stating our main theorem, some more notation is required. Recall that
I (n)(t) is the number of infectives at time t in the SIR-D-I epidemic with average
population size n and that we consider epidemics with no infective at time 0, that
is, with I (n)(0) = 0. Let t

(n)
0 = u

(n)
0 = 0. For k = 1,2, . . . , let t

(n)
k = inf{t ≥ u

(n)
k−1 :

I (n)(t) ≥ logn} and u
(n)
k = inf{t ≥ t

(n)
k : I (n)(t) = 0}. Thus, provided n is suffi-

ciently large, the kth major outbreak starts at approximately time t
(n)
k and ends

at time u
(n)
k . [The choice of logn to delineate major outbreaks is essentially arbi-

trary. Our proofs work equally well if logn is replaced by any function g(n) which
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satisfies g(n) → ∞ and n− 1
2 g(n) → 0 as n → ∞.] For t ≥ 0, let

S̄
(n)
− (t) =

⎧⎪⎨
⎪⎩

S̄(n)(t), if t /∈ [
t
(n)
i , u

(n)
i r

)
for some i,

min
t
(n)
i ≤t ′≤u

(n)
i

S̄(n)(t ′), if t ∈ [
t
(n)
i , u

(n)
i r

)
, i = 1,2, . . . ,

and

S̄
(n)
+ (t) =

⎧⎪⎨
⎪⎩

S̄(n)(t), if t /∈ [
t
(n)
i , u

(n)
i r

)
for some i,

max
t
(n)
i ≤t ′≤u

(n)
i

S̄(n)(t ′), if t ∈ [
t
(n)
i , u

(n)
i r

)
, i = 1,2, . . . .

The following theorem is proved in Section 5.1.

THEOREM 2.1. Suppose that limn→∞ S̄(n)(0) = s0. Then, as n → ∞,

S̄
(n)
− ⇒ S and S̄

(n)
+ ⇒ S,

where S(0) = s0.

An immediate consequence of Theorem 2.1 is that suitable functionals of S̄(n)

converge weakly to corresponding functionals of S. For g,h ∈ D[0,∞), let g ≤ h

denote g(t) ≤ h(t) for all t ≥ 0. A functional H : D[0,∞) → R is called mono-
tone if either Hf ≤ Hg for all f,g ∈ D[0,∞) satisfying f ≤ g, or Hf ≤ Hg for
all f,g ∈ D[0,∞) satisfying g ≤ f . The following corollary, which can clearly
be generalised to suitable nonreal-valued functionals, follows immediately from
Theorem 2.1 by using the continuous mapping theorem [e.g., Billingsley (1968)].
For H : D[0,∞) →R, let CH = {f ∈ D[0,∞) : H is continuous at f }.

COROLLARY 2.1. Suppose that limn→∞ S̄(n)(0) = s0, H : D[0,∞) → R is
monotone and P(S ∈ CH) = 1. Then

HS(n) D−→ HS as n → ∞,

where S(0) = s0.

One functional which satisfies the conditions of Corollary 2.1 is the first passage
time functional Ha , defined for given a ∈ (0,1) by

Haf =
{

inf
{
t ≥ 0 : f (t) ≥ a

}
, if f (0) ≤ a,

inf
{
t ≥ 0 : f (t) ≤ a

}
, if f (0) > a.

The functional Ha is clearly monotone and P(S ∈ CHa) = 1; cf. Pollard (1984),
page 124.

Another functional satisfying the conditions of Corollary 2.1 is the occupancy
time functional Ha

t∗ , defined for any given t∗ > 0 and a ∈ (0,1) by

(2.5) Ha
t∗f =

∫ t∗

0
1{f (t)≤a} dt.
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This functional is again clearly monotone. The proof that P(S ∈ CHa
t∗ ) = 1 is given

at the end of Section 5.1.

3. Properties of the limiting process S. We now outline some properties of
the regenerative process S which can be obtained from renewal and regenerative
process theory [e.g., Asmussen (1987), Chapters IV and V]. As described in Sec-
tion 2.2 the stochastic part of the regenerative process is completely specified by
the waiting time T until the down jump, but it can be specified equivalently by the
jump size X = S(T −)−S(T ). Noting that τ(S(T −)) = (S(T −)−S(T ))/S(T −),
it follows from (2.4) that

S(T )

S(T −)
= e−R0(S(T −)−S(T )) = e−R0X,

whence

S(T −) = X

1 − e−R0X
= XeR0X

eR0X − 1
and S(T ) = X

eR0X − 1
,

which can be used to obtain the distribution of the jump size X. The jump size is
strictly less than τ(1), as S(t) < 1 for all t ≥ 0. Hence, for 0 < x < τ(1),

FX(x) = P(X ≤ x)

= P
(
S(T −) ≤ x

1 − e−R0x

)
(3.1)

= P
(
T ≤ −μ−1 log

[
1 − x/(1 − e−R0x)

1 − 1/R0

]) (
using (2.2)

)

= 1 −
[

R0(1 − x − e−R0x)

(R0 − 1)(1 − e−R0x)

]κ[
(R0 − 1)x

1 − x − e−R0x

] κ
R0

.

The lifetime distribution for the renewal process describing successive visits of
S to 1/R0 may be derived as follows. During a cycle, the regenerative process S

starts at 1/R0 and grows deterministically, according to (2.1), until the time T of
the down jump. After this down jump, it again grows deterministically, according
to (2.1), until it reaches 1/R0, when the next renewal occurs. If we change the order
of these two parts, the process starts at S(T ) and grows deterministically until it
reaches S(T −). The lifetime T ∗ hence equals the time it takes for the deterministic
curve defined by (2.1) to travel from S(T ) to S(T −). This time equals

T ∗ = μ−1 log
(

1 − S(T )

1 − S(T −)

)
= μ−1 log

(
eR0X − 1 − X

(1 − X)eR0X − 1

)
.

This is a monotonic increasing function of X, so the renewal time distribution can
be obtained numerically using the expression FX(x) given by (3.1).
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The stationary distribution of S can be obtained using regenerative process
theory [e.g., Asmussen (1987), Chapter V, Section 3]. During a regenerative cy-
cle, the process S traverses s if and only if s lies between S(T ) and S(T −). If it
does, the density for the time spent there is inversely proportional to the deriva-
tive μ(1 − s). Consequently, if we let fS∗(s) denote the density of the stationary
distribution of S, we have

(3.2) fS∗(s) = c

μ(1 − s)
P
(
s ∈ [

S(T ), S(T −)
]) (

1 − τ(1) < s < 1
)
,

where c (= 1/E[T ∗]) is the normalizing constant making this a p.d.f. If s ∈
[1/R0,1), then s ∈ [S(T ), S(T −)] if and only if T > μ−1 log[(1 −R−1

0 )/(1 − s)].
If s ∈ (1 − τ(1),1/R0), then s ∈ [S(T ), S(T −)] if and only if X ≥ g−1(s), where
g : (0, τ (1)) → (1−τ(1),1/R0) is defined by g(x) = x/(eR0x −1). It then follows
using (2.3) and (3.1) that, with s̃ = g−1(s),

fS∗(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c

μ(1 − s)

[
R0(1 − s̃ − e−R0 s̃ )

(R0 − 1)(1 − e−R0 s̃)

]κ[
(R0 − 1)s̃

1 − s̃ − e−R0 s̃

] κ
R0

,

if 1 − τ(1) < s < 1/R0,

c

μ(1 − s)

(
1 − s

R0 − 1

)κ(1− 1
R0

)

Rκ
0 s

κ
R0 , if 1/R0 ≤ s < 1.

In the next section, the density fS∗(s) is calculated numerically and shown to agree
with corresponding empirical values from simulations.

4. Numerical illustrations. We now present briefly some numerical and sim-
ulation results, which illustrate convergence of the epidemic process as well as
properties of the limiting stationary distribution of the fraction susceptible S∗. In
Figure 1, the epidemic is simulated for 100 years in a population of n = 10,000
individuals. In all figures, R0 = 2 implying that the effective reproduction num-
ber Re = R0S̄

(n)(t) is supercritical as soon as the population fraction susceptible
exceeds 1/R0 = 0.5. The average lifetime is 1/μ = 75 years and γ = 50, so the
average length of the infectious period is about 1 week. In the left panels of Fig-
ure 1, κ = 20, so the rate at which new infectives enter the population (μκ) equals
1 per 3.75 years, and in the right panels κ = 200, so new infectives enter the pop-
ulation at rate 22

3 per year. The upper panels show the fraction of the population
that is susceptible over the 100 year period and the lower panels show the corre-
sponding fraction that is infective. Observe that when κ = 20 major outbreaks are
less frequent but larger than when κ = 200, and that there are appreciably more
minor outbreaks when κ = 200. Note also that epidemics are rarer than the impor-
tation rate of infectives suggests, for two reasons. First, major outbreaks can occur
only when S̄(n)(t) > 1/R0 = 0.5, and secondly, when S̄(n)(t) is above this thresh-
old, major outbreaks do not occur each time an infective enters the community. In
the lower left panel of Figure 1, some minor outbreaks caused by importation of
infectives can also be seen.



EPIDEMIC WITH IMPORTATION OF INFECTIVES 251

FIG. 1. Simulation of the SIR-D-I epidemic with n = 10,000 individuals, R0 = 2. In the left panels,
κ = 20 and κ = 200 in the right panels. The average life length is 1/μ = 75 years and mean infec-
tious period is 1/γ ≈ 1 week. The fraction of the population susceptible (upper panels) and infective
(lower panels) is plotted over a 100 year period in both cases. The dashed line in the upper panels
shows the critical fraction susceptible so that the effective reproduction number Re = 1. Note that
the scales for the fraction of the population infective are different in the two lower panels; major
outbreaks are appreciably larger in the left figure.

In Figure 2, realisations of the corresponding limiting processes are plotted.
The same parameter values are used in both figures. The stochastic features of the
epidemic and the limiting process are in agreement, suggesting that the limiting
behaviour has kicked in when n = 10,000. Note that, unlike in Figure 1, there are
no near-vertical lines as outbreaks are now instantaneous.

We now illustrate properties of the stationary distribution of the fraction suscep-
tible S∗, both for the epidemic with n = 1000 and n = 10,000, as well as for the
limiting process. For the three processes, and for three different values of κ , we
simulate the epidemic and limiting processes for 10,000 years and in Figure 3 we
plot bar charts of the relative time spent with specified fraction susceptible. The
processes are simulated over a very long time span so that the empirical distribu-
tion of the fraction susceptible is close to the corresponding stationary distribution.
[Recalling the functional Ha

t∗ defined at the end of Section 2.3, note that by stan-
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FIG. 2. Simulation of the limiting process S for the same parameter values as in the epidemics in
Figure 1.

dard regenerative process theory, for any fixed a ∈ (0,1), 1
t∗ Ha

t∗S
a.s.−→ P(S∗ ≤ a)

as t∗ → ∞ and, by Corollary 2.1, 1
t∗ Ha

t∗ S̄
(n) D−→ 1

t∗ H
a
t∗S as n → ∞.] The val-

ues of μ,γ and R0 are the same as in Figure 1. [Note that the value of γ , and

FIG. 3. Bar charts of the relative time spent with fraction s susceptible for the epidemic (with
n = 1000 and n = 10,000) as well as the limiting process. Also plotted is the stationary distribution
of limiting process fS∗ (s). Parameter values are: average life length equals 1/μ = 75 years, R0 = 2,
mean infectious period 1/γ ≈ 1 week and κ = 1,3 and 100. Bar charts are based on simulation over
10,000 years.
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hence also λ (= R0γ ), is the same for both values of n.] The chosen values of
κ are κ = 1,3 and 100, corresponding to importation of infectious individuals on
average one every 75, 25 and 0.75 years, respectively. In the plots, we have also
computed fS∗(s), the stationary distribution of the limiting process, numerically
as described in Section 3.

It is seen that the bar charts from the epidemics resemble the limiting stationary
distribution fS∗(s), except when n = 1000 and κ = 100. When κ is small, few
outbreaks take place, so even if the outbreaks are large, the population fraction
of susceptibles is close to 1 most of the time, which explains why the stationary
distribution S∗ is concentrated at values close to 1. For moderate values of κ ,
the stationary distribution has positive mass for nearly all s values between 1 −
τ(1) = 0.2032 (the fraction susceptible after a major outbreak starting with the
entire population being susceptible) and 1. The stationary distribution is seen to
be concentrated around 1/R0 when κ is large, owing to the fact that a new major
outbreak occurs quite soon after the population fraction of susceptibles exceeds
1/R0, with the effect that the size of major outbreaks is generally small. These
observations imply that the stationary distribution is not stochastically decreasing
(nor increasing) in κ .

5. Proofs.

5.1. Proof of Theorem 2.1. Let (�,F,P ) be a probability space on which is
defined a homogeneous Poisson process η on (0,∞) having rate μκ and let 0 <

r1 < r2 < · · · denote the times of the points in η. For n = 1,2, . . . , let η(n) denote
the point process with points at 0 < r

(n)
1 < r

(n)
2 < · · · , where r

(n)
k = κ

nκn
rk (k =

1,2, . . .). Let E(n) denote the epidemic process indexed by n. Then η(n) gives the
points in time when infectives immigrate into the population in E(n). We construct
E(n) (n = 1,2, . . .) and S by first conditioning on η.

The process S is constructed as follows. Recall the definition of τ(s) at 2.4. Be-
tween the points of η, S(t) increases deterministically according to the differential
equation (2.1). For k = 1,2, . . . , S has a down jump to S(rk−)[1 − τ(S(rk−))]
at time rk with probability max(1 − (R0S(rk−))−1,0) (independently for succes-
sive k), otherwise S continues to grow according to (2.1). Thus, S can be described
as follows. Let t1 < t2 < · · · be the times of the down jumps of S, so these form a
subset of the points of η. Let

f (x, t) = 1 − (1 − x)e−μt (0 < x < 1, t > 0),

so, for fixed x, the solution of (2.1) with S(0) = x is f (x, t). Let t0 = 0 and sup-
pose that s0 = S(0) is given. Then, for k = 0,1, . . . ,

(5.1) S(t) = f (sk, t − tk) (tk ≤ t < tk+1),
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where, for k = 1,2, . . . , the initial value sk = s̃k(1 − τ(s̃k)), with s̃k = S(tk−) =
f (sk−1, tk − tk−1). The precise definition of the construction of E(n) (n = 1,2, . . .)

is not relevant at this stage.
We prove Theorem 2.1 by first proving the corresponding result for processes

conditioned on η.

LEMMA 5.1. Suppose that limn→∞ S̄(n)(0) = s0. Then, for P-almost all η,

(5.2) S̄
(n)
−

∣∣η ⇒ S and S̄
(n)
+

∣∣η ⇒ S as n → ∞.

In order to prove Lemma 5.1, we need some more notation and an extra lemma
(Lemma 5.2, below). Recall that, for n = 1,2, . . . , we assume I (n)(0) = 0, that
t
(n)
0 = u

(n)
0 = 0 and that, for k = 1,2, . . . , t

(n)
k = inf{t ≥ u

(n)
k−1 : I (n)(t) ≥ logn} and

u
(n)
k = inf{t ≥ t

(n)
k : I (n)(t) = 0}. For n = 1,2, . . . , let s

(n)
0 = S̄(n)(u

(n)
0 ) and, for

k = 1,2, . . . , let s
(n)
k = S̄(n)(u

(n)
k ),

c
(n)
k = min

t
(n)
k ≤t≤u

(n)
k

S̄(n)(t) and c̃
(n)
k = max

t
(n)
k ≤t≤u

(n)
k

S̄(n)(t).

LEMMA 5.2. Suppose that limn→∞ S̄(n)(0) = s0. Then the following hold for
P-almost all η:

(i) For k = 1,2, . . . , u
(n)
k |η D−→ tk , t

(n)
k |η D−→ tk , s

(n)
k |η D−→ sk , c

(n)
k |η D−→ sk

and c̃
(n)
k |η D−→ s̃k as n → ∞.

(ii) For k = 0,1, . . . ,

(5.3) sup
u

(n)
k ≤t<t

(n)
k+1

∣∣S̄(n)(t) − f
(
c
(n)
k , t − u

(n)
k

)∣∣|η D−→ 0 as n → ∞.

(iii) tk → ∞ as k → ∞.

PROOF. See Section 5.2. �

PROOF OF LEMMA 5.1. First, note that since one has weak convergence of a
sequence in R

∞ if and only if, for all k = 1,2, . . . , the restriction of to R
k con-

verges weakly in R
k [see Billingsley (1968), page 19], the Skorohod representation

theorem implies that there exists a version of (S̄(n), n = 1,2, . . . ;S) such that the
convergence in Lemma 5.2 holds almost surely. For that version, let A ∈ F be the
set ω ∈ � such that (i) for k = 1,2, . . . ,

lim
n→∞u

(n)
k (ω) = tk(ω), lim

n→∞ t
(n)
k (ω) = tk(ω), lim

n→∞ s
(n)
k (ω) = sk(ω),

lim
n→∞ c

(n)
k (ω) = sk(ω) and lim

n→∞ c̃
(n)
k (ω) = s̃k(ω);
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(ii) for k = 0,1, . . . ,

(5.4) lim
n→∞ sup

u
(n)
k (ω)≤t<t

(n)
k+1(ω)

∣∣S̄(n)(t,ω) − f
(
s
(n)
k (ω), t − u

(n)
k (ω)

)∣∣ = 0;

and (iii) tk(ω) → ∞ as k → ∞. Then P(A|η) = 1 for P-almost all η.
For g,h ∈ D[0,∞), d(g,h) denotes the distance between g and h in the Sko-

rohod metric [see Ethier and Kurtz (1986), Chapter 3.5]. Let η satisfy P(A|η) = 1.
We show that for all ω ∈ A,

(5.5) lim
n→∞d

(
S̄

(n)
− (ω), S(ω)

) = 0 and lim
n→∞d

(
S̄

(n)
+ (ω), S(ω)

) = 0.

It then follows that, under the Skorohod metric, both S̄
(n)
− |η and S̄

(n)
+ |η converge

almost surely to S, which implies (5.2).
By Proposition 5.3 on page 119 of Ethier and Kurtz (1986), to show that

d(gn, g) → 0 as n → ∞ it is sufficient to show that for each T > 0, there ex-
ists a sequence (λn) of strictly increasing functions mapping [0,∞) onto [0,∞)

so that

(5.6) lim
n→∞ sup

0≤t≤T

∣∣λn(t) − t
∣∣ = 0

and

(5.7) lim
n→∞ sup

0≤t≤T

∣∣g(
λn(t)

) − gn(t)
∣∣ = 0.

For ease of exposition, we now suppress dependence on ω. Fix T ≥ t1 and
let m = max{k : tk ≤ T }, so 1 ≤ m < ∞. Then there exists δ > 0 such that
u

(n)
m < T + δ for all sufficiently large n. For such n, let λ

(n)
− be the piecewise-

linear function joining the points (0,0), (t
(n)
1 , t1), . . . , (t

(n)
m , tm), (T + δ, T + δ),

with λ
(n)
− (t) = t for t > T + δ. Similarly, let λ

(n)
+ be the piecewise-linear function

joining the points (0,0), (u
(n)
1 , t1), . . . , (u

(n)
m , tm), (T + δ, T + δ), with λ

(n)
+ (t) = t

for t > T + δ. [Note that λ
(n)
+ (t) ≤ λ

(n)
− (t) with strict inequality for t ∈ (0, T + δ).]

The functions λ
(n)
− and λ

(n)
+ are strictly increasing and satisfy (5.6), since t

(n)
k → tk

and u
(n)
k → tk as n → ∞ (k = 1,2, . . . ,m). Thus, to complete the proof we show

that

(5.8) lim
n→∞ sup

0≤t≤T

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣ = 0

and

(5.9) lim
n→∞ sup

0≤t≤T

∣∣S(
λ

(n)
+ (t)

) − S̄
(n)
+ (t)

∣∣ = 0.
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Considering (5.8) first, note that for k = 1,2, . . . ,m, since S(λ
(n)
− (t)) is increas-

ing on [t (n)
k , u

(n)
k ] and S̄

(n)
− (t) = c

(n)
k for all t ∈ [t (n)

k , u
(n)
k ),

sup
t
(n)
k ≤t<u

(n)
k

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣

≤ max
{∣∣S(

λ
(n)
−

(
t
(n)
k

)) − c
(n)
k

∣∣, ∣∣S(
λ

(n)
−

(
u

(n)
k

)) − c
(n)
k

∣∣}(5.10)

→ 0 as n → ∞,

since λ
(n)
− (t

(n)
k ) = tk , c

(n)
k → sk = S(tk) and λ

(n)
− (u

(n)
k ) → tk (as u

(n)
k → tk and λ

(n)
−

is continuous), so S(λ
(n)
− (u

(n)
k )) → sk as S is right-continuous.

Also, for k = 1,2, . . . ,m − 1,

sup
u

(n)
k ≤t<t

(n)
k+1

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣ ≤ A(n, k) + B(n, k),

where

A(n, k) = sup
u

(n)
k ≤t<t

(n)
k+1

∣∣S(
λ

(n)
− (t)

) − f
(
s
(n)
k , t − u

(n)
k

)∣∣
and

B(n, k) = sup
u

(n)
k ≤t<t

(n)
k+1

∣∣f (
s
(n)
k , t − u

(n)
k

) − S̄
(n)
− (t)

∣∣.
Now λ

(n)
− (t) ∈ [tk, tk+1) for t ∈ [u(n)

k , t
(n)
k+1), so using (5.1),

A(n, k) = sup
u

(n)
k ≤t<t

(n)
k+1

∣∣f (
sk, λ

(n)
− (t) − tk

) − f
(
s
(n)
k , t − u

(n)
k

)∣∣

≤ sup
u

(n)
k ≤t<t

(n)
k+1

∣∣f (
sk, λ

(n)
− (t) − tk

) − f
(
sk, t − u

(n)
k

)∣∣(5.11)

+ sup
u

(n)
k ≤t<t

(n)
k+1

∣∣f (
sk, t − u

(n)
k

) − f
(
s
(n)
k , t − u

(n)
k

)∣∣.
A simple argument using the mean value theorem shows that, for x ∈ [0,1] and
t, t ′ ≥ 0,

(5.12)
∣∣f (x, t) − f

(
x, t ′

)∣∣ ≤ (1 − x)μ
∣∣t − t ′

∣∣.
Now

sup
u

(n)
k ≤t<t

(n)
k+1

∣∣λ(n)
− (t) − tk − (

t − u
(n)
k

)∣∣

≤ sup
u

(n)
k ≤t<t

(n)
k+1

∣∣λ(n)
− (t) − t

∣∣ + ∣∣tk − u
(n)
k

∣∣
→ 0 as n → ∞,
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as λ
(n)
− satisfies (5.6) and u

(n)
k → tk as n → ∞. It then follows using (5.12) that

the first term on the right-hand side of (5.11) tends to 0 as n → ∞. Also, for
x, y ∈ [0,1] and t ≥ 0,

f (x, t) − f (y, t) = (y − x)e−μt ,

so the second term on the right-hand side of (5.11) tends to 0 as n → ∞, since
s
(n)
k → sk as n → ∞. Thus, A(n, k) → 0 as n → ∞.

Note that S̄
(n)
− (t−) = S̄(n)(t) for t ∈ [u(n)

k , t
(n)
k+1), so (5.4) implies that B(n, k)

also converges to 0 as n → ∞, whence

(5.13) sup
u

(n)
k ≤t<t

(n)
k+1

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣ → 0 as n → ∞.

Combining (5.10) and (5.13) yields that

(5.14) lim
n→∞ sup

u
(n)
1 ≤t<t

(n)
m

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣ = 0.

A similar argument to the derivation of (5.13) yields

lim
n→∞ sup

0≤t<u
(n)
1

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣ = lim
n→∞ sup

t
(n)
m ≤t≤T

∣∣S(
λ

(n)
− (t)

) − S̄
(n)
− (t)

∣∣ = 0,

which together with (5.14) yields (5.8), as required.
The proof of (5.9) is similar to that of (5.8), and hence omitted. �

PROOF OF THEOREM 2.1. We prove the result for S̄
(n)
− . The proof for S̄

(n)
+ is

identical. Recall that if Xn (n = 1,2, . . .) and X are random elements of D[0,∞)

then Xn ⇒ X as n → ∞ if and only if E[f (Xn)] → [f (X)] as n → ∞ for all
bounded, uniformly continuous functions f : D[0,∞) → R [see, e.g., Ethier and
Kurtz (1986), Chapter 3, Theorem 3.1]. Let f : D[0,∞) → R be any such func-
tion. Then Lemma 5.1 implies that, for P-almost all η,

lim
n→∞ E

[
f

(
S̄

(n)
−

)|η] = E
[
f (S)|η]

.

Hence, by the dominated convergence theorem,

lim
n→∞ E

[
f

(
S̄

(n)
−

)] = lim
n→∞ Eη

[
E

[
f

(
S̄

(n)
−

)|η]]
= Eη

[
lim

n→∞ E
[
f

(
S̄

(n)
−

)|η]]
= Eη

[
E

[
f (S)|η]]

= E
[
f (S)

]
.

This holds for all bounded, uniformly continuous f : D[0,∞) → R, so S̄
(n)
− ⇒ S

as n → ∞, as required. �
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Note that (5.5) implies that, for P-almost all η, d(S̄
(n)
− , S)|η p−→ 0 and

d(S̄
(n)
+ , S)|η p−→ 0 as n → ∞. Taking expectations with respect to η and using

the dominated convergence theorem, as in the proof of Theorem 2.1, shows that

d(S̄
(n)
− , S)

p−→ 0 and d(S̄
(n)
+ , S)

p−→ 0 as n → ∞, or, equivalently, that S̄
(n)
−

p−→ S

and S̄
(n)
+

p−→ S as n → ∞.
We end this subsection by showing that the occupancy time functional Ha

t∗ ,
defined at (2.5), satisfies P(S ∈ CHa

t∗ ) = 1. Recall that t1 < t2 < · · · denote the
jump times of S. Let v1 = inf{t ≥ 0 : S(t) = a} and, for k = 2,3, . . . , let vk =
inf{t > vk−1 : S(t) = a}. Let C ∈ F be the set of ω ∈ � such that tk(ω) [and
hence also vk(ω)] tends to ∞ as k → ∞. Then, by Lemma 5.2(iii), P(C) = 1.
We show that if gn ∈ D[0,∞) (n = 1,2, . . .) and limn→∞ d(gn, S(ω)) = 0, then
limn→∞ Ha

t∗gn = Ha
t∗S(ω), for ω ∈ C, whence P(S ∈ CHa

t∗ ) = 1.
Suppose that ω ∈ C. Dropping the explicit dependence of S on ω, since

limn→∞ d(gn, S) = 0, by Proposition 5.3 on page 119 of Ethier and Kurtz (1986),
there exists a sequence (λn) of strictly increasing functions mapping [0,∞) onto
[0,∞) such that

(5.15) lim
n→∞ sup

0≤t≤t∗

∣∣λn(t) − t
∣∣ = 0 and lim

n→∞ sup
0≤t≤t∗

∣∣S(
λn(t)

) − gn(t)
∣∣ = 0.

Now

∣∣Ha
t∗gn − Ha

t∗S
∣∣ =

∣∣∣∣
∫ t∗

0
1{gn(t)≤a} − 1{S(t)≤a} dt

∣∣∣∣ ≤ An + Bn,

where

An =
∫ t∗

0
|1{gn(t)≤a} − 1{S(λn(t))≤a}|dt

and

Bn =
∫ t∗

0
|1{S(λn(t))≤a} − 1{S(t)≤a}|dt.

Let D = [0, t∗] ∩ ({t1, t2, . . .} ∪ {v1, v2, . . .}). Then D has Lebesgue measure
zero and 1{S(λn(t))≤a} − 1{S(t)≤a} → 0 as n → ∞, for t ∈ [0, t∗] \ D, since
limn→∞ λn(t) = t , by the first equation in 5.15, and S is continuous at such t .
Thus, limn→∞ Bn = 0 by the dominated convergence theorem. A similar argu-
ment, using in addition the second equation in 5.15, shows that limn→∞ An = 0.
Thus, limn→∞ Ha

t∗gn = Ha
t∗S, as required.

5.2. Proof of Lemma 5.2. We prove Lemma 5.2 by splitting the SIR-D-I epi-
demic process E(n) into cycles, where now a cycle begins at the end of a major
outbreak and finishes at the end of the following major outbreak. Thus, a cycle
consists of two stages: stage 1, during which the susceptible population grows ap-
proximately deterministically until there are at least logn infectives present; and
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stage 2, comprising the major outbreak caused by these logn infectives, during
which the susceptible population crashes.

Recall that, as n → ∞, the point process η(n), describing immigration times of
infectives in E(n) converges almost surely to the point process η governing times
when down jumps may occur in the limiting process S. Lemma 5.4 considers the
initial stage 1 and shows, using birth-and-death processes that sandwich the pro-
cess of infectives, that for P-almost all η, as n → ∞, for successive importations
of infectives until a major outbreak occurs, the probability a given importation
triggers a major outbreak converges to the probability that the corresponding im-
portation results in a down jump in the limiting process S. Consequently, the time
until there are at least logn infectives in E(n) converges weakly to the time of the
first down jump in S, since η(n) converges almost surely to η. Further, application
of the law of large numbers for density dependent population processes [Ethier and
Kurtz (1986), Chapter 11] shows that up until the first down jump of S, the scaled
process of susceptibles, S̄(n) = n−1S, converges weakly in the uniform metric to S,
since minor epidemics infect order op(n) individuals.

Lemmas 5.5 and 5.6 concern the limiting size and duration of a typical major
outbreak. Lemma 5.5 considers outbreaks in which the initial number of infectives
is of exact order n, for which the above-mentioned law of large numbers is ap-
plicable. This is then used to prove Lemma 5.6, which considers major outbreaks
triggered by logn infectives. Finally, Lemma 5.2 follows easily by induction using
Lemmas 5.4 and 5.6, since E(n) is a strong Markov process.

The proof involves extensive use of birth-and-death processes that bound the
process of infectives in the epidemic model [cf. Whittle (1955)]. We first give
some notation concerning birth-and-death processes and then a lemma concerning
properties of sequences of such processes.

Let Zα,β,k = {Zα,β,k(t) : t ≥ 0} denote a linear birth-and-death process, with
Zα,β,k(0) = k, birth rate α and death rate β . For x > k, let τα,β,k(x) = inf{t > 0 :
Zα,β,k(t) ≥ x}, where τα,β,k(x) = ∞ if Zα,β,k(t) < x for all t > 0. (Throughout
the paper, we adopt the convention that the hitting time of an event is infinite if the
event never occurs.) Let τα,β,k(0) = inf{t > 0 : Zα,β,k(t) = 0} denote the duration
of Zα,β,k . For t ≥ 0, let Bα,β,k(t) denote the total number of births during (0, t] in
Zα,β,k , and let Bα,β,k(∞) denote the total progeny of Zα,β,k , not including the k

ancestors. Further, for x > 0, let τ̂α,β,k(x) = inf{t > 0 : Bα,β,k(t) ≥ x}.

LEMMA 5.3. Suppose that αn = aβn (n = 1,2, . . .), where a > 0 is constant
and logn/βn → 0 as n → ∞.

(a) If a < 1, then:
(i) for all t > 0,

lim
n→∞ P

(
ταn,βn,1(0) > t

) = 0;
(ii) limn→∞ P(ταn,βn,1(logn) = ∞) = 1; and
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(iii) for any c > 0,

ταn,βn,cn�(0)
p−→ 0 as n → ∞.

(b) If a > 1, then:
(i) limn→∞ P(ταn,βn,1(logn) < ταn,βn,1(0)) = 1 − 1

a
,

limn→∞ P(ταn,βn,1(0) < ταn,βn,1(logn)) = 1
a

;

(ii) min(ταn,βn,1(logn), ταn,βn,1(0))
p−→ 0 as n → ∞;

(iii) limn→∞ P(Bαn,βn,1(min{ταn,βn,1(logn), ταn,βn,1(0)}) < n
1
3 ) = 1; and

(iv) for any c > 0,

τ̂αn,βn,logn�(cn)
p−→ 0 as n → ∞.

PROOF. All results of the lemma follow from well-known results of branch-
ing processes, so we only sketch the proof. A linear birth-and-death process is
equivalent to a Markovian branching process, where individuals have exponen-
tial lifetimes during which they give birth at constant rate. First, observe that, by

rescaling time, we have that, for any k, {Zαn,βn,k(t) : t ≥ 0} D= {Za,1,k(βnt) : t ≥ 0},
where D= denotes equal in distribution, and a similar result holds for {Bαn,βn,k(t) :
t ≥ 0}. From this it follows, for any k, x ≥ 0, that ταn,βn,k(x)

D= 1
βn

τa,1,k(x) and

τ̂αn,βn,k(x)
D= 1

βn
τ̂a,1,k(x).

The first part (a < 1) is hence concerned with a subcritical (Markovian) branch-
ing process, with birth rate a and death rate 1 in the rescaled version. State-
ment (a)(i) simply states that extinction occurs before time tβn with probability
tending to 1 as n → ∞, which is obvious as the time horizon tends to infinity.
Statement (a)(ii) states that the branching process does not exceed logn with prob-
ability tending to 1 as n → ∞, which is also obvious as the branching process
is subcritical. Finally, statement (a)(iii) is concerned with the time to extinction
of the subcritical branching process starting with cn� individuals. For the sub-
critical Markovian branching process Za,1,cn�, the time to extinction is known to
be of order Op(logn) (as is easily shown using Markov’s inequality), so, since

ταn,βn,cn�(0)
D= 1

βn
τa,1,cn�(0), the statement follows as logn/βn → 0 as n → ∞.

As for the second scenario where a > 1, the branching process Za,1,1 is su-
percritical. The two statements in (b)(i) follow from the well-known fact that the
extinction probability equals 1/a and if the process does not die out then it grows
exponentially at rate a − 1. Statement (b)(ii) follows from the result that the time
for Za,1,1 to reach a large level g(n) or go extinct is Op(log(g(n)). Turning to
statement (b)(iii), the above rescaling implies that

Bαn,βn,1
(
min

{
ταn,βn,1(logn), ταn,βn,1(0)

})
D= Ba,1,1

(
min

{
τa,1,1(logn), τa,1,1(0)

})
.
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From above, the time for Za,1,1 to reach logn or go extinct is Op(log(logn)), so
the number of births in Za,1,1 before this time is Op(elog(logn)) = Op(logn), and

hence op(n
1
3 ), and statement (b)(iii) follows. Finally, to show statement (b)(iv), we

first rewrite the left-hand side as τ̂a,1,logn�(cn)/βn. The fact that the process starts
with logn� individuals ensures that, as n → ∞, the probability of extinction tends
to 0, so extinction can be neglected and the number of births will reach the value
cn by time Op(logn), implying that the expression tends to 0 in probability. �

Before proceeding, some more notation is required. For k = 1,2, . . . , let χk =
1{S(rk)<S(rk−)} be the indicator function of the event that the kth point in η yields

a down jump in S. For n = 1,2, . . . and k = 1,2, . . . , let w
(n)
k = inf{t ≥ r

(n)
k :

I (n)(t) ≥ logn or I (n)(t) = 0} and χ
(n)
k = 1{I (w

(n)
k )≥logn}.

LEMMA 5.4. Suppose that S̄(n)(0)
p−→ s0 as n → ∞. Then the following hold

for P-almost all η:

(i) For k = 1,2, . . . ,

lim
n→∞ P

(
χ

(n)
k = 1 and χ

(n)
i = 0 for all i < k|η)

= P(χk = 1 and χi = 0 for all i < k|η).

(ii) For k = 1,2, . . . , as n → ∞,

sup
0≤t<w

(n)
k

∣∣S̄(n)(t) − f (s0, t)
∣∣1{χ(n)

k =1 and χ
(n)
i =0 for all i<k}|η

D−→ 0.

(iii) For k = 1,2, . . . , as n → ∞,

w
(n)
k 1{χ(n)

k =1 and χ
(n)
i =0 for all i<k}

D−→ rk1{χk=1 and χi=0 for all i<k}.

PROOF. For ease of presentation, we suppress explicit conditioning on η in the
proof. First, note that P(S(r1−) = R−1

0 ) = 0, since r1 is a realisation of a continu-
ous random variable. Assume without loss of generality that there is no recovered
individual at time t = 0. For t ≥ 0, let S

(n)
0 (t) be the number of susceptibles at time

t under the assumption that the immigration rate for susceptibles is μn(1−κn) and
the immigration rate for infectives is 0, and let S̄

(n)
0 (t) = S

(n)
0 (t)/n. Then, for any

t > 0, application of Theorem 11.2.1 of Ethier and Kurtz (1986) [using the more
general definition of a density dependent family given by equation (11.1.13) of
that book] yields that, for any ε > 0,

(5.16) lim
n→∞ P

(
sup

0≤u≤t

∣∣S̄(n)
0 (u) − f (s0, u)

∣∣ < ε
)

= 1.
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Recall that E(n) denote the epidemic process with average population size n.
Consider the epidemic initiated by the immigration of an infective at time r

(n)
1 in

E(n) and let ŝ
(n)
1 = S̄(n)(r

(n)
1 ). For ease of exposition, translate the time axis of E(n)

so that the origin corresponds to r
(n)
1 . With this new time origin, {I (n)(t) : t ≥ 0}

can be approximated by a linear birth-and-death process {Ĩ (n)(t) : t ≥ 0} having
death rate γn +μ and (random) time-dependent birth rate given by λnS̄

(n)
0 (t). This

approximation ignores depletion in the number of susceptibles owing to infection,
so {Ĩ (n)(t) : t ≥ 0} is an upper bound for {I (n)(t) : t ≥ 0}.

Let ŝ1 = f (s0, r1) and fix ε ∈ (0, ŝ1). Note that, with the change of origin,
S̄

(n)
0 (0) = ŝ

(n)
1 . Then, using (5.16), for any δ ∈ (0,1), there exists t̂ = t̂ (ε, δ) > 0

and n0 = n0(ε, δ) such that

(5.17) P
(

sup
0≤t≤t̂

∣∣S̄(n)
0 (t) − ŝ1

∣∣ <
ε

2

)
≥ 1 − δ

2
for all n ≥ n0.

For n ≥ n0 and 0 ≤ t ≤ t̂ , with probability at least 1 − δ
2 , the process {Ĩ (n)(t) :

t ≥ 0} is bounded below and above by the birth-and-death processes Zα̃−
n (ε),βn,1

and Zα̃+
n (ε),βn,1, respectively, where α̃−

n (ε) = λn(ŝ1 − ε
2), α̃+

n (ε) = λn(ŝ1 + ε
2) and

βn = γn + μ. Further, since limn→∞ α̃−
n (ε)/βn = R0(ŝ1 − ε

2), for all sufficiently
large n, the birth-and-death process Zα̃−

n (ε),βn,1 is bounded below by the birth-and-
death process Zα−

n (ε),βn,1, where α−
n (ε) = R0(ŝ1 − ε)βn. Similarly, for all suffi-

ciently large n, the birth-and-death process Zα̃+
n (ε),βn,1 is bounded above by the

birth-and-death process Zα+
n (ε),βn,1, where α+

n (ε) = R0(ŝ1 + ε)βn.

Suppose first that R0ŝ1 < 1. Then for all ε ∈ (0, ε0), where ε0 = R−1
0 − ŝ1, the

birth-and-death process Zα+
n (ε),βn,1 is subcritical, so by Lemma 5.3(a)(i), for all

t > 0,

(5.18) lim
n→∞ P

(
τα+

n (ε),βn,1(0) ≤ t
) = 1.

Setting t = t̂ shows that, for all sufficiently large n, with probability at least 1 − δ,
{Ĩ (n)(t) : t ≥ 0}, and hence also {I (n)(t) : t ≥ 0}, is bounded above by Zα+

n (ε),βn

throughout its entire lifetime. Thus,

lim inf
n→∞ P

(
χ

(n)
1 = 0

)
≥ lim inf

n→∞ P
(
Zα+

n (ε),βn,1(t) < logn for all t ≥ 0
) − δ

= 1 − δ,

by Lemma 5.3(a)(ii). Hence, since δ ∈ (0,1) is arbitrary,

lim
n→∞ P

(
χ

(n)
1 = 0

) = 1 = P(χ1 = 0).
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Let D(n) = inf{t > 0 : I (n)(t) ≥ logn or I (n)(t) = 0}. Then it follows using (5.18)

that D(n) p−→ 0 as n → ∞.
Suppose instead that R0ŝ1 > 1. Fix ε ∈ (0, ε1), where ε1 = ŝ1 − R−1

0 , and δ ∈
(0,1). Then, similar to above, there exists t1 such that, for all sufficiently large n,
with probability at least 1 − δ

2 , {Ĩ (n)(t) : t ≥ 0} is bounded above and below by
Zα+

n (ε),βn
and Zα−

n (ε),βn
, respectively, throughout the interval [0, t1]. For x > 0, let

τ̃ (n)(x) = inf{t > 0 : Ĩ (n)(t) ≥ x}, τ̃ (n)(0) = inf{t > 0 : Ĩ (n)(t) = 0} and D̃(n) =
inf{t > 0 : Ĩ (n)(t) ≥ logn or Ĩ (n)(t) = 0}. Note that the birth-and-death processes
Zα−

n (ε),βn,1 and Zα+
n (ε),βn,1 are both supercritical. Then, by Lemma 5.3(b)(ii), for

all sufficiently large n, the process {Ĩ (n)(t) : t ≥ 0} is bounded below and above
by Zα+

n (ε),βn
and Zα−

n (ε),βn
, respectively, throughout the interval [0, D̃(n)]. Using

Lemma 5.3(b)(i), it then follows that

lim inf
n→∞ P

(
τ̃ (n)(logn) < τ̃ (n)(0)

)
≥ lim inf

n→∞ P
(
τα−

n (ε),βn,1(logn) < τα−
n (ε),βn,1(0)

) − δ(5.19)

= 1 − 1

R0(ŝ1 − ε)
− δ

and

lim sup
n→∞

P
(
τ̃ (n)(logn) < τ̃ (n)(0)

)
≤ lim sup

n→∞
P
(
τα+

n (ε),βn,1(logn) < τα−
n (ε),βn,1(0)

) − δ(5.20)

= 1 − 1

R0(ŝ1 + ε)
− δ.

Letting both ε and δ converge down to 0 in (5.19) and (5.20) yields

lim
n→∞ P

(
τ̃ (n)(logn) < τ̃ (n)(0)

) = 1 − 1

R0ŝ1
(5.21)

= P(χ1 = 1).

Further, using Lemma 5.3(b)(ii), it follows that

(5.22) D̃(n) p−→ 0 as n → ∞.

Recall that {Ĩ (n)(t) : t ≥ 0} is an upper bound for {I (n)(t) : t ≥ 0}. We now
show that the probability that the two processes coincide over [0, D̃(n)] converges
to 1 as n → ∞. In {Ĩ (n)(t) : t ≥ 0} births occur at time-dependent rate λnS̄

(n)
0 (t),

whilst in {I (n)(t) : t ≥ 0} infections occur at time-dependent rate λnS̄
(n)(t). Now

S̄
(n)
0 (t) ≥ S̄(n)(t) for all t ≥ 0, almost surely, so the two processes can be coupled
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by using an independent sequence U1,U2, . . . of independent and identically dis-
tributed random variables that are uniformly distributed on (0,1), with the ith
birth in {Ĩ (n)(t) : t ≥ 0} (which occurs at time ti say) yielding an infection in
{I (n)(t) : t ≥ 0} if and only if Ui ≤ S̄(n)(ti)/S̄

(n)
0 (ti).

For n = 1,2, . . . and t > 0, let B̃(n)(t) be the total number of births in
{Ĩ (n)(t) : t ≥ 0} during (0, t]. Recall that the probability that {Ĩ (n)(t) : t ≥ 0}
is sandwiched between the supercritical birth-and-death processes Zα+

n (ε),βn
and

Zα−
n (ε),βn

throughout [0, D̃(n)] converges to 1 as n → ∞. It then follows using
Lemma 5.3(b)(iii) that

(5.23) lim
n→∞ P

(
B̃(n)(D̃(n)) ≥ n

1
3
) = 0.

Also, since D̃(n) p−→ 0 as n → ∞, it follows using (5.17) that, for any ε > 0,

(5.24) lim
n→∞ P

(
S̄

(n)
0 (t) > ŝ1 − ε for all t ∈ [

0, D̃(n)]) = 1.

Suppose that B̃(n)(D̃(n)) < n
1
3 and, for fixed ε ∈ (0, ŝ1), S̄

(n)
0 (t) > ŝ1 − ε

2 for all

t ∈ [0, D̃(n)]. Then S(n)(ti) ≥ S
(n)
0 (ti) − n

1
3 , for i = 1,2, . . . , B̃(n)(D̃(n)), so if p

(n)
i

denotes the probability that the ith birth in {Ĩ (n)(t) : t ≥ 0} yields an infection in
{I (n)(t) : t ≥ 0}, then

p
(n)
i = S(n)(ti)

S
(n)
0 (ti)

≥ 1 − n
1
3

S
(n)
0 (ti)

≥ 1 − n− 2
3

ŝ1 − ε
,

whence

B̃(n)(D̃(n))∏
i=1

p
(n)
i ≥

(
1 − n− 2

3

ŝ1 − ε

)B̃(n)(D̃(n))

≥
(

1 − n− 2
3

ŝ1 − ε

)n
1
3

≥ 1 − n− 1
3

ŝ1 − ε

→ 1 as n → ∞.

Thus, recalling (5.23) and (5.24), the probability that {I (n)(t) : t ≥ 0} and
{Ĩ (n)(t) : t ≥ 0} coincide over [0, D̃(n)] converges to 1 as n → ∞, which, together
with (5.21), yields

lim
n→∞ P

(
χ

(n)
1 = 1

) = 1 = P(χ1 = 1),

and, together with (5.22), yields

D(n) p−→ 0 as n → ∞.
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We have thus proved parts (i) and (iii) of the lemma for k = 1. Note that, since
P(χk = 0 for all k = 1,2, . . .) = 0, when reverting to the original time axis, the
probability that the total number of individuals infected during [0,w

(n)
1 ] in E(n) is

less than n
5
12 tends to 1 as n → ∞, which combined with (5.16) proves part (ii)

when k = 1. Parts (i), (ii) and (iii) for k > 1 follow easily by induction since the
processes {(S(n)(t), I (n)(t)) : t ≥ 0} (n = 1,2, . . .) and S satisfy the strong Markov
property.

�

Before proceeding, we state some well-known facts about the final outcome
of the deterministic general epidemic [e.g., Andersson and Britton (2000a) Chap-
ter 1.4]. For t ≥ 0, let s(t) and i(t) denote respectively the density of suscep-
tibles and infectives at time t , so (s(t), i(t)) are determined by the differential
equations

(5.25)
ds

dt
= −R0si,

di

dt
= R0si − i,

with initial condition (s(0), i(0)) = (s0, i0), where s(0) > 0 and i(0) > 0. Note
that time is scaled so that the recovery rate is 1. Then s(t) decreases with t ,
limt→∞ i(t) = 0 and limt→∞ s(t) = s∞(s0, i0), where s∞(s0, i0) is the unique so-
lution in (0,1) of

s∞ = s0e−R0(s0+i0−s∞).

Note that s∞ is continuous in (s0, i0) and s∞(s0, i0) → s∞(s0,0) as i0 ↓ 0, where
[recall (2.4)]

s∞(s0,0) =
{
s0, if R0so ≤ 1,

s0
(
1 − τ(s0)

)
, if R0so > 1.

In the following two lemmas, there is no importation of infectives in the process
{(S(n)(t), I (n)(t)) : t ≥ 0}, though births of susceptibles still occur at the same rate
μn(1 − κn). For t ≥ 0, let Ī (n)(t) = n−1I (n)(t).

LEMMA 5.5. Suppose that (S̄(n)(0), Ī (n)(0))
p−→ (s0, i0) as n → ∞, where

s0 > 1
R0

and i0 > 0. Let u
(n)
1 = inf{t > 0 : I (n)(t) = 0}. Then, as n → ∞:

(i) S̄(n)(u
(n)
1 )

p−→ s∞(s0, i0),

(ii) u
(n)
1

p−→ 0.

PROOF. For n = 1,2, . . . and t > 0, let S̃(n)(t) = S(n)(t/γn) and Ĩ (n)(t) =
I (n)(t/γn). Let X(n) = {X(n)(t) : t ≥ 0}, where X(n)(t) = (S̃(n)(t), Ĩ (n)(t)). The
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process X(n) is a continuous-time Markov chain with transition intensities

q
(n)
(s,i),(s+1,i) = n

[
(1 − κn)μ

γn

]
,

q
(n)
(s,i),(s−1,i) = n

[
μ

γn

s

n

]
,

q
(n)
(s,i),(s−1,i+1) = n

[
R0

s

n

i

n
+

(
λn

γn

− R0

)
s

n

i

n

]
,

q
(n)
(s,i),(s,i−1) = n

[
i

n
+ μ

γn

i

n

]
,

corresponding to a birth of a susceptible, a death of a susceptible, an infection of a
susceptible, and a recovery or death of an infective, respectively.

The transition intensities are written in the above form to indicate that the
family of processes {X(n) : n = 1,2, . . .} is asymptotically density dependent, as
defined by Pollett (1990). Let E be any compact subset of [0,∞)2. Recall that
κn → 0, γn → ∞ and λn

γn
→ R0 as n → ∞. Hence, as n → ∞, each of (1−κn)μ

γn
,

sup(x,y)∈E
μ
γn

x, sup(x,y)∈E(λn

γn
− R0)xy and sup(x,y)∈E

μ
γn

y converges to 0. It fol-
lows that the conditions of Theorem 3.1 in Pollett (1990) are satisfied, whence, for
any ε > 0 and any t > 0,

(5.26) lim
n→∞ P

(
sup

0≤u≤t

∣∣∣∣1

n
X(n)(t) − x(t)

∣∣∣∣ < ε

)
= 1,

where x(t) = (s(t), i(t)) is the solution of the deterministic general
epidemic (5.25) having initial condition (s(0), i(0)) = (s0, i0). Write s∞ for
s∞(s0, i0). There exists ε0 > 0 such that R0(s∞ + ε0) < 1, since otherwise
limt→∞ i(t) would be strictly positive. Given ε ∈ (0, ε0), choose ε′ > 0 so that

(5.27) ε′ R0(s∞ + ε0)

1 − R0(s∞ + ε0)
<

ε

8
.

There exists t1 > 0 such that i(t1) < ε′ and s(t1) ∈ [s∞, s∞ + ε
3). Then (5.26)

implies that

lim
n→∞ P

(∣∣∣∣1

n
S̃(n)(t1) − s∞

∣∣∣∣ <
ε

2

)
= 1 and lim

n→∞ P
(

1

n
Ĩ (n)(t1) <

3

2
ε′

)
= 1,

so, reverting to the original time scale and letting tn = t1/γn,

(5.28) lim
n→∞ P

(∣∣S̄(n)(tn) − s∞
∣∣ <

ε

2

)
= 1 and lim

n→∞ P
(
Ī (n)(tn) <

3

2
ε′

)
= 1.

Observe that, whilst S̄(n)(tn + t) ≤ s∞ + ε, the process {I (n)(tn + t) : t ≥ 0} is
bounded above by the birth-and-death process Z

α̃n,βn, 3
2 ε′n�, where βn = γn + μ
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and α̃n = (s∞ + ε)λn. Now α̃n/βn → R0(s∞ + ε) as n → ∞, so, for all suf-
ficiently large n, Z

α̃n,βn, 3
2 ε′n� is in turn bounded above by Z

αn,βn, 3
2 ε′n�, where

αn = R0(s∞ + ε0)βn.
Recall that Bα,β,k(∞) and τα,β,k(0) denote the total number of births in and the

extinction time of Zα,β,k , respectively. Then

E
[
Bαn,βn,1(∞)

] = R0(s∞ + ε0)

1 − R0(s∞ + ε0)
,

and, recalling (5.27), application of the strong law of large numbers yields

(5.29) lim
n→∞ P

(
1

n
B

αn,βn, 3
2 ε′n�(∞) <

ε

4

)
= 1.

Also, Lemma 5.3(a)(iii) implies that

(5.30) τ
αn,βn, 3

2 ε′n�(0)
p−→ 0 as n → ∞.

Recall that {S(n)
0 (t) : t ≥ 0} denotes the process that describes the number of

susceptibles in the absence of any infectives and suppose that S
(n)
0 (0) = S(n)(tn).

For t ≥ 0, let B
(n)
0 (t) and D

(n)
0 (t) be the total number of births and deaths, respec-

tively, during (0, t] in {S(n)
0 (t) : t ≥ 0}. Using (5.16) and the fact that B

(n)
0 (t) has a

Poisson distribution with mean nμt(1 − κn), there exists t̂ = t̂ (ε) > 0 such that

(5.31) lim
n→∞ P

(
B

(n)
0 (t̂) <

nε

4

)
= 1 and lim

n→∞ P
(
D

(n)
0 (t̂) <

nε

4

)
= 1.

The processes {(S(n)(tn + t), I (n)(tn + t)) : t ≥ 0} and Z
αn,βn, 3

2 ε′n� can be cou-

pled so that I (n)(tn + t) ≤ Z
αn,βn, 3

2 ε′n�(t) whilst S̄(n)(tn + t) ≤ s∞ + ε. The first
equations in (5.28) and (5.31) imply that

lim
n→∞ P

(
sup

0≤t≤t̂

S̄(n)(tn + t) ≤ s∞ + ε
)

= 1,

so (5.30) implies that, with probability tending to 1 as n → ∞, the coupling holds
thoughout the lifetime of Z

αn,βn, 3
2 ε′n�. Recall that u

(n)
1 = inf{t > 0 : I (n)(t) = 0}.

The coupling implies that u
(n)
1 − tn ≤ τ

αn,βn, 3
2 ε′n�, so part (ii) of the lemma fol-

lows from (5.30), since tn → 0 as n → ∞. Further, S(n)(u
(n)
1 ) is at most the sum

of S(n)(tn) and the number of births in (tn, u
(n)
1 ], and at least the difference be-

tween S(n)(tn) and the sum of the number of susceptible deaths in (tn, u
(n)
1 ] and

B
αn,βn, 3

2 ε′n�(∞), so (5.28), (5.29) and (5.31) imply that

lim
n→∞ P

(
s∞ − ε < S̄(n)(u(n)

1

)
< s∞ + 3

4
ε

)
= 1,

proving part (i) of the lemma, since ε ∈ (0, ε0) can be arbitrarily small. �
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LEMMA 5.6. Suppose that I (n)(0) = logn� (n = 1,2, . . .) and S̄(n)(0)
p−→

s0 as n → ∞, where s0 > 1
R0

. Let u
(n)
1 = inf{t > 0 : I (n)(t) = 0},

c
(n)
1 = min

0≤t≤u
(n)
1

S̄(n)(t) and c̃
(n)
1 = max

0≤t≤u
(n)
1

S̄(n)(t).

Then, as n → ∞:

(i) S̄(n)(u
(n)
1 )

p−→ s0(1 − τ(s0)), where the function τ(s) is defined at (2.4);

(ii) u
(n)
1

p−→ 0;

(iii) c
(n)
1

p−→ s0(1 − τ(s0)) and c̃
(n)
1

p−→ s0.

PROOF. Before giving the formal proof, we outline the main steps in the proof
of part (i); the proofs of parts (ii) and (iii) being straightforward. Recall that E(n)

denotes the epidemic process indexed by n. For t > 0, let B(n)(t) be the total
number of infections in E(n) during (0, t]. For θ ∈ (0,1), let τ

(n)
θ = inf{t > 0 :

B(n)(t) ≥ θs0n}. Then, for all sufficiently small θ , limn→∞ P(τ
(n)
θ < ∞) = 1 and

S̄(n)(τ
(n)
θ )

p−→ s0(1 − θ), as n → ∞, since in the limit the time scale of the epi-
demic process is infinitely faster than that of the demographic process. Also, by
sandwiching the process of infectives between birth-and-death processes, we show
that there exist i+(θ) > i−(θ) > 0 such that

lim
n→∞ P

(
i−(θ) < Ī (n)(τ (n)

θ

)
< i+(θ)

) = 1,

where i−(0+) = i+(0+) = 0. Application of Lemma 5.5(i), but with initial
condition (S̄(n)(0), Ī (n)(0)) = (S̄(n)(τ

(n)
θ ), i+(θ)) and also with initial condition

(S̄(n)(0), Ī (n)(0)) = (S̄(n)(τ
(n)
θ ), i−(θ)), and exploiting the continuity properties of

s∞ yield part (i) of the lemma.
Turning to the formal proof, fix θ ∈ (0,1) such that s0(1 − 3θ)R0 > 1. Then,

whilst S̄(n)(t) ≥ s0(1 − 2θ), {I (n)(t) : t ≥ 0} is bounded below by the birth-and-
death process Zα̃n(θ),βn,logn�, where α̃n(θ) = λns0(1 − 2θ) and βn = γn + μ.
Now α̃n(θ)/βn → R0s0(1 − 2θ) as n → ∞, so, for all sufficiently large n,
Zα̃n(θ),βn,logn� is in turn bounded below by Zαn(θ),βn,logn�, where αn(θ) =
R0s0(1 − 3θ)βn.

Define {S̄(n)
0 (t) : t ≥ 0} as in the proof of Lemma 5.4. For t ≥ 0, let B

(n)
0 (t)

and D
(n)
0 (t) be the total number of births and deaths, respectively, during (0, t] in

{S(n)
0 (t) : t ≥ 0}. As at (5.31), but note that S̄

(n)
0 (0) is different here, for any ε > 0

there exists t̂ (ε) > 0 such that

lim
n→∞ P

(
B

(n)
0

(
t̂ (ε)

)
<

nε

4

)
= 1 and

(5.32)

lim
n→∞ P

(
D

(n)
0

(
t̂ (ε)

)
<

nε

4

)
= 1.
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Also, since S̄(n)(0)
p−→ s0 as n → ∞,

(5.33) lim
n→∞ P

(∣∣S̄(n)(0) − s0
∣∣ <

ε

2

)
= 1.

Observe that, if τ
(n)
θ ≤ t̂ (ε), |S̄(n)(0) − s0| < ε

2 ,B
(n)
0 (t̂(ε)) < nε

4 and

D
(n)
0 (t̂(ε)) < nε

4 , then

(5.34) S̄(n)(τ (n)
θ

) ≤ s0(1 − θ) + 3

4
ε,

obtained by making S̄(n)(0) and B
(n)
0 (t̂(ε)) as large as possible and assuming no

susceptible dies during [0, τ
(n)
θ ], and

(5.35) min
0≤t≤τ

(n)
θ

S̄(n)(t) ≥ s0 − 3

4
ε − n−1B(n)(τ (n)

θ

)
,

obtained by making S̄(n)(0) as small as possible, D
(n)
0 (t̂(ε)) as large as possible

and assuming no susceptible is born during [0, τ
(n)
θ ].

Recall that, whilst S̄(n)(t) ≥ s0(1−2θ), {I (n)(t) : t ≥ 0} is bounded below by the
birth-and-death process Zαn(θ),βn,logn�, so τ

(n)
θ ≤ τ̂

(n)
αn(θ),βn,logn�(s0θn), provided

S̄(n)(t) ≥ s0(1 − 2θ) throughout [0, τ
(n)
θ ]. Now τ̂

(n)
αn(θ),βn,logn�(s0θn)

p−→ 0 as

n → ∞, by Lemma 5.3(b)(iv), so P(τ̂
(n)
αn(θ),βn,logn�(s0θn) < t̂(ε)) → 1 as n → ∞,

for any ε > 0. Setting ε = s0θ in (5.35), using (5.32), (5.33) and noting that

n−1B(n)(τ
(n)
θ )

p−→ s0θ as n → ∞, shows that

lim
n→∞ P

(
min

0≤t≤τ
(n)
θ

S̄(n)(t) ≥ s0(1 − 2θ)
)

= 1,

so

(5.36) τ
(n)
θ

p−→ 0 as n → ∞.

Further, since for any ε > 0, P(τ
(n)
θ < t̂(ε)) → 1 as n → ∞, it follows from (5.32)–

(5.35) that, for any ε > 0,

lim
n→∞ P

(
s0(1 − θ) − ε < S̄(n)(τ (n)

θ

)
< s0(1 − θ) + ε

) = 1,

so

(5.37) S̄(n)(τ (n)
θ

) p−→ s0(1 − θ) as n → ∞.

It is straightforward to couple the jump processes of {(I (n)(t),B(n)(t)) : t ≥
0} and {Zαn(θ),βn,logn�(t),Bαn(θ),βn,logn�(t) : t ≥ 0} to show that I (n)(τ

(n)
θ )

st≥
Zαn(θ),βn,logn�(τ̂ (n)

θ ), where τ̂
(n)
θ = τ̂

(n)
αn(θ),βn,logn�(s0θn) and

st≥ denotes stochasti-
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cally greater than. Further, recalling that Zαn(θ),βn,logn� has the same distribution

as {ZR0(1−3θ),1,logn�(βnt) : t ≥ 0} and noting that βnτ̂
(n)
θ

a.s.−→ ∞ as n → ∞, it
follows using Nerman (1981), Theorem 5.4, that

Zαn(θ),βn,logn�(τ̂ (n)
θ )

Bαn(θ),βn,logn�(τ̂ (n)
θ )

a.s.−→ 1 − 1

R0s0(1 − 3θ)
as n → ∞.

Thus, since n−1Bαn(θ),βn,logn�(τ̂ (n)
θ )

p−→ s0θ as n → ∞,

(5.38) lim
n→∞ P

(
Ī (n)(τ (n)

θ

)
> i−(θ)

) = 1,

where

i−(θ) =
[
1 − 2

R0s0(1 − 3θ)

]
s0θ.

A similar argument using an upper bounding birth-and-death process yields that

(5.39) lim
n→∞ P

(
Ī (n)(τ (n)

θ

)
< i+(θ)

) = 1,

where

i+(θ) =
[
1 + 2

R0s0(1 − 3θ)

]
s0θ.

Exploiting the strong Markov property of {(S(n)(t), I (n)(t)) : t ≥ 0}, (5.37)–
(5.39) and Lemma 5.5(i) imply that, for any ε > 0,

lim
n→∞ P

(
s∞

(
s0(1 − θ), i−(θ)

) − ε < S̄(n)(u(n)
1

)
< s∞

(
s0(1 − θ), i+(θ)

) + ε
) = 1.

Letting θ ↓ 0, noting that i−(0+) = i+(0+) = 0 and using the continuity proper-
ties of s∞, yield that, for any ε > 0,

lim
n→∞ P

(∣∣S̄(n)(u(n)
1

) − s0
(
1 − τ(s0)

)∣∣ < ε
) = 1,

proving part (i) of the lemma. Part (ii) follows immediately using (5.36),
(5.37), (5.39) and Lemma 5.5(ii). Part (iii) is an easy consequence of parts (i)
and (ii) and (5.32). �

PROOF OF LEMMA 5.2. The lemma follows easily by induction using Lem-

mas 5.4 and Lemmas 5.6. First, note Lemma 5.4(i) and (iii) imply that t
(n)
1 |η D−→ t1

as n → ∞, and Lemma 5.4(i) and (ii) imply that (5.3) holds for k = 0 and

S̄(n)(t
(n)
1 −)|η p−→ s̃1 as n → ∞. Lemma 5.6(ii) then yields that u

(n)
1 |η D−→ t1 as

n → ∞, Lemma 5.6(i) yields that s
(n)
1 |η D−→ s1 as n → ∞, and Lemma 5.6(iii)

yields that c
(n)
1 |η D−→ s1 and c̃

(n)
1 |η D−→ s̃1 as n → ∞. Now {(S(n)(t), I (n)(t)) : t ≥

0} satisfies the strong Markov property, so, since S̄(n)(u
(n)
1 )|η p−→ s1 as n → ∞,
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the above argument can be repeated for k = 2,3, . . . . Part (iii) is immediate, since
{t1, t2, . . .} ⊆ {r1, r2, . . .}, where r1, r2, . . . are the times of the points in η. �

6. Discussion. In the paper, it is proved that for an SIR epidemic in a dynamic
population (whose size fluctuates around n), in which there is importation of in-
fectives at a constant rate, the normalised process of susceptibles converges to a
regenerative process S as n → ∞. Further, properties of the limiting process S are
derived. The asymptotic regime considered is for the situation when the rate of
importation of infectives κμ and the basic reproduction number R0 remain con-
stant with n, whereas the average length of the infectious period 1/γn converges
to 0 faster than 1/ logn (in most real-life epidemics, the ratio of average infectious
period and average lifetime lies between 10−4 and 10−3).

An alternative to the sandwich argument used in this paper is to consider con-
vergence of S̄(n) to S in topologies that are weaker than the Skorohod topology.
Skorohod (1956) introduced four topologies on D[0,1], called J1 (which corre-
sponds to what we have called the Skorohod toplogy), J2,M1 and M2. The topol-
ogy M2 is weaker than both M1 and J2, which are both weaker than J1. It follows
from Skorohod (1956), Section 2.2, and Whitt (2002), Chapter 12.9 (which con-

siders extensions of topologies from D[0, T ] to D[0,∞)) that S̄(n)(ω)
M2−→ S(ω)

[i.e., S̄(n)(ω) converges to S(ω) in the topology M2 as n → ∞] if and only if

sup
t1≤t≤t2

S̄(n)(t,ω) → sup
t1≤t≤t2

S(t,ω) and

(6.1)
inf

t1≤t≤t2
S̄(n)(t,ω) → inf

t1≤t≤t2
S(t,ω),

as n → ∞, for all t1 < t2 which are continuity points of S(ω), and that S̄(n)(ω)
M1−→

S(ω) if and only if

(6.2) ν
[a,b]
[t1,t2]

(
S̄(n)(ω)

) → ν
[a,b]
[t1,t2]

(
S(ω)

)
,

as n → ∞, for all t1 < t2 which are continuity points of S(ω) and almost all a < b,
where, for f ∈ D[0,∞), ν

[a,b]
[t1,t2](f ) denotes the number of crossings of the interval

[a, b] made by {f (t) : t1 ≤ t ≤ t2}. One can prove that S̄(n) converges weakly to S

in both the topologies M1 and M2 as n → ∞. For each topology, one first proves
the corresponding result for processes conditioned on the limiting immigration
process η, via a similar result to Lemma 5.2 and the Skorohod representation the-
orem, and then argue exactly as in the proof of Theorem 2.1. For convergence in
the topology M2, Lemma 5.2 suffices in order to show (6.1). For convergence in
the topology M1, in order to show (6.2) one also has to show that, with proba-
bility tending to 1 as n → ∞, S̄(n) does not upcross the interval [a, b] for almost
all a < b during any major outbreak, which can be done using arguments similar
to those used in the proofs of Lemmas 5.5 and 5.6, on noting that (5.26) implies



272 F. BALL, T. BRITTON AND P. TRAPMAN

that the probability that S̄(n) has such an upcrossing during the body of a major
outbreak tends to 0 as n → ∞. The process S̄(n) does not converge weakly to S

in the topology J2, as, like J1, convergence in this topology is not possible if the
sample paths of S̄(n) are close to being continuous during a down jump.

Other asymptotic regimes could of course also be considered. For example, if
the importation rate of infectives grows with n, then there will always be infec-
tives present in the population resembling an endemic situation. If the duration of
an infectious period remains fixed (or at least grows slower than logn), then the
duration of a single outbreak will be long and the typical time horizon will not go
beyond the first outbreak. A more complicated and interesting scenario seems to
be for the asymptotic situation treated in the current paper, but where the epidemic
is initiated with a fraction 1/R0 of the population susceptible and a large enough
number of infectives. It then seems as if an endemic equilibrium will stabilize, but
determining and proving this rigorously remains an open problem. For large but
finite n, it is possible for the process to get stuck in an endemic situation near the
end of a major outbreak (with states similar to those just described). Eventually,
the epidemic leaves this endemic state and returns to the behaviour of the limit-
ing process. In Figure 4, such a simulation is presented. The parameter values are
n = 100,000, μ = 1/75, κ = 1 (so the importation rate of infectives is one per
75 years), R0 = 2 and γ = 2 (so the average infectious period is 6 months). The
left and right plots show the fraction of the population that are susceptible and
infective, respectively, as functions of time. A quasi-endemic phase lasts roughly
from years 1300 to 3000. Observe that major outbreaks become smaller prior to
the process entering the quasi-endemic phase and fluctuations in the number of in-
fectives increase in amplitude prior to the end of the quasi-endemic phase. Beside
studying other asymptotic regimes, it could be of interest to increase realism in
the model, for example, by relaxing exponential distributions of infectious periods
and lifetimes and allowing for a latent state [cf. Andersson and Britton (2000b),
who consider epidemics with importation of susceptibles only] or by having some

FIG. 4. Plot of an epidemic exhibiting quasi-endemic behaviour.
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population structure, such as network or households [see the challenges in Pellis
et al. (2015) and Ball et al. (2015)].
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