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ONE-DIMENSIONAL RANDOM WALKS WITH SELF-BLOCKING
IMMIGRATION

BY MATTHIAS BIRKNER1 AND RONGFENG SUN2

Johannes Gutenberg-Universität Mainz and National University of Singapore

We consider a system of independent one-dimensional random walkers
where new particles are added at the origin at fixed rate whenever there is no
older particle present at the origin. A Poisson ansatz leads to a semi-linear lat-
tice heat equation and predicts that starting from the empty configuration the
total number of particles grows as c

√
t log t . We confirm this prediction and

also describe the asymptotic macroscopic profile of the particle configuration.

1. Introduction: Model and results. Consider the following model of ran-
dom walks with self-blocking immigration (RWSBI) at the origin. Let ηx(t) be the
number of particles at position x ∈ Z at time t ≥ 0. Particles perform indepen-
dent continuous-time random walks on Z with jump rate 1 and jump increments
following a probability kernel (ax)x∈Z with

(1.1)
∑
x

xax = 0 and σ 2 := ∑
x

x2ax ∈ (0,∞).

In addition, at rate γ > 0 new particles attempt to “immigrate” at the origin 0 but
are only successful if there is currently no other particle at 0. The system starts with
no particles at time 0, that is, ηx(0) ≡ 0. See Remark 1.3 below for a discussion of
the formal construction.

This system shows interesting self-organized behavior: It possesses an intrinsi-
cally defined “correct” growth rate and when particles are added to the system at
a lower (resp., higher) rate than this correct rate, there is more (resp., less) vacant
time at the origin, which results in more (resp., less) particles added, and the sys-
tem is thus driven back toward the correct rate of addition of particles. The task
is thus to identify this correct asymptotic rate at which particles are added to the
system.

Obviously, more and more particles will be added to the system as time pro-
gresses and once created these perform independent random walks, which sug-
gests hydrodynamic limit type arguments and results. While hydrodynamic limits
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for interacting particle systems is a vigorous area of current research, it seems that
our system is somewhat special in this framework, and that there is presently no
readily applicable general theory to analyse its long-term behavior: It combines
a “Kawasaki type” dynamics, namely the motion of particles which preserves
total mass, and a very localized “Glauber-type” dynamics, namely the immigra-
tion mechanism which creates new mass, in a nontrivial and nonperturbative way.
There is recent interest in extending hydrodynamic limits to models where non-
trivial interactions among particles occur only in a very small part of the space, for
example, Chen and Fan [4] study systems of walks in bounded domains where pair-
wise annihilation only happens at the boundary. Thus far, our analysis of RWSBI
fits these efforts though our approach and the model details are quite different
from [4]. Arguably, RWSBI is of a very special form, yet we believe that at this
stage, with no general approach available, a detailed analysis of special cases is
warranted.

Finally, we note that RWSBI first appeared in the literature as a caricature
system for the analysis of a system of critically branching random walks with a
density-dependent feedback; cf. Remark 1.4 below.

It is well known (see, e.g., [8], Chapter 1) that equilibrium states for systems of
independent random walks are products of Poisson distributions. A Poisson ansatz
leads to the heuristics that the particle density E[ηx(t)] ≈ ρx(t), where ρx(t) is the
unique solution of the following ODE system, a semilinear discrete heat equation
(the form of the nonlinearity in the first line of (1.2) arises by assuming η0(t) to be
Poisson distributed with mean E[η0(t)]):

∂tρx(t) = Lrwρx(t) + γ δ0(x) exp
(−ρ0(t)

)
, t ≥ 0, x ∈ Z,

(1.2)
ρx(0) ≡ 0, x ∈ Z,

where Lrw is the adjoint of the generator of the random walk given in (1.1), with
(Lrwf )x := ∑

y ax−y(fy − fx).
Denote the total mass of ρ·(t) by

(1.3) R(t) := ∑
x∈Z

ρx(t) =
∫ t

0
γ exp

(−ρ0(s)
)
ds.

We have for t → ∞ (see [2], Lemma 17, and also Lemma A.1 in Appendix A)

ρ0(t) = 1

2
log t − log log t + log(

√
2πγ/σ) + o(1),(1.4)

R(t) =
[
σ

(
2

π

)1/2√
t log t

](
1 + o(1)

)
.(1.5)

Furthermore (cf. Lemma A.4 below),
1

log t
ρ[σ√

ty](t) −→
t→∞ ρ̃(y) := 1

2π

∫ 1

0

1√
s(1 − s)

e−y2/(2s) ds

(1.6)
= 1√

2π

∫ ∞
|y|

e−z2/2 dz, y ∈ R.
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Our main result is that the Poisson ansatz is indeed valid. The asymptotic behav-
ior of the total number of particles in the system, as well as the particle distribution
in space, agree with the behavior of ρ·(t) under the Poisson ansatz.

THEOREM 1.1. Let the model of random walks on Z with self-blocking im-
migration at the origin be defined as above, and recall R(t) from (1.3) and (1.5).
Almost surely, the total number of particles in the system satisfies

lim
t→∞

1

R(t)

∑
x

ηx(t) = 1.(1.7)

Using Theorem 1.1, we can further show that the “shape of the particle cloud,”
(ηx(t))x∈Z, follows the prediction from the Poisson ansatz.

THEOREM 1.2. For any nonnegative bounded continuous function f ∈
Cb,+(R), a.s. we have

lim
t→∞

1

σ
√

t log t

∑
x

ηx(t)f

(
x

σ
√

t

)
=

∫
R

f (y)ρ̃(y) dy,(1.8)

where ρ̃(y) = 1√
2π

∫ ∞
|y| e−z2/2 dz, as in (1.6).

REMARK 1.3. 1. Starting from any finite initial condition, it is straightforward
to construct the system η explicitly by using suitable Poisson processes, for exam-
ple, as in Section 2 below; note that the total number of immigrated particles up to
time t is dominated by a rate γ Poisson process, in particular the total number of
particles is a.s. finite uniformly in any bounded time interval.

For a formal definition and suitable state space that allows infinite configura-
tions, see [2], Section 3.1, and compare also the arguments in [2], Section 2.2, for
the construction of the transition semigroup and a representation of η as a Poisson
process-driven SDE system (a similar construction appears in [7]).

2. A much weaker version of (1.7) was previously shown in [2], Proposition 8,
via the relative entropy method [10], namely that for any ε > 0,

(1.9)
∑
x∈Z

ηx(t) = o
(
t1/2+ε) in probability as t → ∞.

3. For the analogous system consisting of symmetric simple random walks on
Z

2, a Poisson ansatz predicts ρ0(t) = log log t − log log log t − log(2π) + o(1)

and R(t) ∼ (2πt log log t)/ log t ; cf. [2], Remark 13. Using the techniques from
Section 3, it is fairly straightforward to establish a corresponding upper bound
for the total number of particles in the two-dimensional system in probability. It
appears that in order to strengthen this bound to control the a.s. behavior and also to
provide a matching lower bound using arguments parallel to those from Section 4,
a very detailed study of the vacant time fluctuations of suitably tuned Poisson
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systems of two-dimensional random walks with immigration will be required. We
defer this question to future research.

REMARK 1.4 (Relation to self-catalytic branching random walks, [2], Chap-
ter 2). Let SCBRW(b) be a system of self-catalytic critical binary branching ran-
dom walks on Z

d where each particle independently performs a random walk with
kernel (1.1) and in addition while there are k − 1 other particles at its site, it splits
in two or disappears with rate b(k), where b : N0 → [0,∞) is a branching rate
function (when b is a linear function, this is a classical system of independent
branching random walks). Starting from a homogeneous initial condition, say a
Poisson field on Z

d with constant intensity, the long-term behavior of such sys-
tems exhibits a dichotomy between persistence (i.e., convergence to a nontrivial
shift-invariant equilibrium) and clustering (i.e., local extinction combined with in-
creasingly rare regions of diverging particle density), depending on the branching
rate function b and the spatial dimension d . For general b and d ≤ 2, it is believed
([2], Conjecture 1) but not rigorously known that clustering occurs. It is known
(see, e.g., [2], Lemma 8) that in this case clustering is equivalent to the local di-
vergence as time t → ∞ of the configuration under the so-called Palm distribution
(which re-weights configurations at time t proportional to the number of particles
at the origin).

By a comparison result for the semigroups of SCBRW(b) with respect to con-
vex order for different b’s (cf. [2], Theorem 1 and Corollary 1), it suffices to con-
sider the special case b = bsing with bsing(k) = 1{k=1}, that is, particles branch
only if there is no other particle present at their site. The Palm distribution of
SCBRW(bsing) has a stochastic representation ([2], Proposition 5): It consists of
the original SCBRW(bsing) plus one special space–time path, which itself is drawn
from the law of the time-reversed random walk, along which new particles immi-
grate at rate 1 but only when there is no other, older particle already present at this
site; the special path and the immigrating particles have an interpretation as the
family decomposition for a focal particle picked at the origin at time t . While this
is conceptually appealing, it appears currently still too complex to allow a rigorous
analysis of its long-time behavior.

Thus, we consider the following simplification or caricature, originally pro-
posed by Anton Wakolbinger: Replace the random walk special path by a constant
path and disallow branching away from the special path but keep the immigration
mechanism along it unchanged. This yields RWSBI, our present object of study.
In this sense, Theorems 1.1 and 1.2 corroborate Conjecture 1 from [2] in a quanti-
tative way and in fact suggest that the typical number of particles under the Palm
distribution of SCBRW(bsing) should diverge like log t in d = 1. However, undoing
the caricature steps to convert our findings into an actual proof of this conjecture
will require new arguments, which is currently a work in progress [3].
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The rest of the paper is organized as follows. Section 2 introduces and analyzes
Poisson systems of random walks with immigration at the origin. The upper (resp.,
lower) bounds in Theorems 1.1 and 1.2 are proved in Section 3 (resp., Section 4)
by suitable coupling and comparison with the Poisson system of random walks.
In Appendix A, we derive the asymptotics (1.4)–(1.5), while in Appendix B, we
derive an estimate for k-event “correlation functions” for Poisson processes.

2. Poisson systems of random walks. The key tool in our proof is an auxil-
iary Poisson system of random walks, η̃ = (η̃x(t))x∈Z,t≥0, where particles immi-
grate at x = 0 at time-dependent rate β(t), for some suitable β : [0,∞) → (0,∞).
Once arrived, they follow independent continuous-time random walks with jump
rate 1. By coupling such a Poisson system with random walks with self-blocking
immigration (RWSBI), in particular, by coupling the times when the origin is va-
cant in each process, we can obtain bounds on the number of particles added to the
RWSBI in terms of the Poisson system. We will choose β(t) to be perturbations of
the rate γ e−ρ0(t) dictated by the Poisson ansatz in (1.2).

We note that the system of random walks η̃ can be characterized as a Poisson
point process � on the set S of all càdlàg paths

⋃
t≥0{ζ : [t,∞) → Z} (denote the

starting time of ζ by τζ ), with intensity measure

ν(dζ ) = β(τζ ) dτζP
(
X ∈ dζ(· − τζ )

)
,(2.1)

where X = (Xt)t≥0 is the rate 1 continuous time random walk as specified in (1.1),
starting at X0 = 0. Then

η̃x(t) = �
({

ζ : ζ(t) = x
})

, x ∈ Z
d, t ≥ 0,

in particular, η̃x(t) is Poisson distributed with mean
∫ t

0 β(u)px(t − u)du, and

P
(
η̃x(t) = 0

) = exp
[
−

∫ t

0
β(u)px(t − u)du

]
,

where

(2.2) px(s) := P(Xs = x).

Apart from the number of particles added to the system by time t , we will also be
interested in the amount of time at which the origin is vacant, that is,

Ṽs,t :=
∫ t

s
1{η̃0(r)=0} dr, 0 ≤ s ≤ t.

We collect below results on the Poisson systems of random walks which we
will need later. To prove the upper (resp., lower) bound in Theorems 1.1 and 1.2,
it turns out that the appropriate choice of immigration rate β(t) for the Poisson
system η̃ is

(2.3) β(+ε)(t) := (1 + ε)γ e−ρ0(t) resp. β(−ε)(t) := (1 − ε)γ e−ρ0(t),

where ε > 0 is chosen sufficiently close to 0, and ρ0(t) is as in (1.2). We will let
η̃(±ε) denote the respective Poisson system, and Ṽ

(±ε)
s,t its vacant time at the origin.
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LEMMA 2.1. Let η̃(±ε) be the Poisson system of random walks with immigra-
tion rate β(±ε) for some ε ∈ (0,1). Then∑

x η̃
(±ε)
x (t)

R(t)
→ 1 ± ε a.s. as t → ∞,(2.4)

where Rt = ∑
x ρx(t) = [σ( 2

π
)1/2√t log t](1 + o(1)) as defined in (1.3), and

Ṽ
(+ε)
0,t

R(t)
→ 0 a.s. as t → ∞.(2.5)

LEMMA 2.2. Let η̃(−ε) be the Poisson system of random walks with immigra-
tion rate β(−ε) for some ε ∈ (0,1). Then there exists t0 > 0, c > 0 such that for all
t/2 ≤ s < t with t ≥ t0, we have

E
[
Ṽ

(−ε)
s,t

] ≥ c(t − s)t−
1−ε

2 .(2.6)

If ξ ∈ (1−ε
2 ,1), then there exists b ∈ (0,∞) such that for every k ∈ N, there exist

t0,C ∈ (0,∞) so that for all s, t with t0 ≤ t/2 ≤ s ≤ t − t ξ ,

E
[(

Ṽ
(−ε)
s,t −E

[
Ṽ

(−ε)
s,t

])k] ≤ Ct−bk
E
[
Ṽ

(−ε)
s,t

]k(2.7)

(we can choose b = (ξ − 1−ε
2 )/48).

This shows that the vacant time Ṽ
(−ε)
s,t is concentrated around its mean with high

probability.
We now give the proofs of Lemmas 2.1 and 2.2. The proof of Lemma 2.2 is

of independent interest, but is quite involved and, therefore, can be read after the
proof of Theorems 1.1 and 1.2 in Sections 3 and 4.

PROOF OF LEMMA 2.1. Recalling (2.3), we have

ρ̃(±ε)
x (t) := E

[
η̃(±ε)

x (t)
] =

∫ t

0
β(±ε)(s)px(t − s) ds

= (1 ± ε)

∫ t

0
γ e−ρ0(t)px(t − s) ds = (1 ± ε)ρx(t).

In particular, E[∑x η̃
(±ε)
x (t)] = (1±ε)

∑
x ρx(t) = (1±ε)R(t). Since

∑
x η̃

(±ε)
x (t)

is nothing but a time-changed Poisson process with mean (1±ε)R(t), (2.4) follows
immediately.

To prove (2.5), note that β(±ε)(t) ∼ 1±ε√
2π

σ t−1/2 log t by (1.4), and hence

E
[
Ṽ

(+ε)
0,t

] =
∫ t

0
e−ρ̃

(+ε)
0 (u) du =

∫ t

0
e−(1+ε)ρ0(u) du

≤ 1 + C

∫ t

1

(logu)1+ε

u(1+ε)/2 du ≤ 2Ct(1−ε)/2(log t)1+ε.
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For any δ > 0, by Markov inequality and the asymptotics of R(t) in (1.5),

P
(
Ṽ

(+ε)
0,t > δR(t)

) ≤ E[Ṽ (+ε)
0,t ]

δR(t)
≤ C′

tε/4

for all t sufficiently large. By Borel–Cantelli, along the sequence of times tn = cn

for any c > 1, we then have lim supn→∞ Ṽ
(+ε)
0,cn /R(cn) ≤ δ almost surely. Since

Ṽ
(+ε)
0,s ≤ Ṽ

(+ε)
0,t for s ≤ t , together with the asymptotics of R(t) given in (1.5), we

obtain

lim sup
t→∞

Ṽ
(+ε)
0,t

R(t)
≤ lim sup

n→∞
Ṽ

(+ε)
0,cn

R(cn−1)
≤ δ

√
c.

Since δ > 0 can be chosen arbitrarily, (2.5) then follows. �

PROOF OF LEMMA 2.2. Using the asymptotics of ρ0(·) given in (1.4), (2.6)
holds because

E
[
Ṽ

(−ε)
s,t

] =
∫ t

s
e−E[η̃(−ε)

0 (u)] du =
∫ t

s
e−(1−ε)ρ0(u) du

≥
∫ t

s
u− 1−ε

2 du = 2

1 + ε

(
t

1+ε
2 − s

1+ε
2

)
≥ c(t − s)t−

1−ε
2 .

Next, we prove the centered moment bound (2.7). To lighten notation, we will
drop the dependence on ε in the remainder of the proof and write Ṽs,t = Ṽ

(−ε)
s,t ,

η̃0 = η̃
(−ε)
0 , etc. Note

E
[(

Ṽs,t −E[Ṽs,t ])k]
(2.8)

= k!
∫

· · ·
∫

s≤u1<···<uk≤t

E

[
k∏

i=1

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))]
duk · · ·du1.

The idea to estimate (2.8) is the following. When the ui’s are close, the contribution
to the integral is small due to the restricted range of integration; when the ui’s
are far apart, we can use the decorrelation of the Poisson system as quantified by
Lemma B.1. We thus group ui’s into blocks as follows, where each block contains
consecutive ui’s that are close to each other, and different groups are far apart.

We group the time points u1, . . . , uk into blocks that are separated from each
other by at least tδ , with δ = 2

3(ξ − 1−ε
2 )(> 0). A block structure is determined by

� ∈ {1,2, . . . , �k/2
}, and � pairs of indices gi, hi with

1 ≤ g1 < h1 < g2 < h2 < · · · < g� < h� ≤ k.
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Let B(g,h) denote the set of all �u := (u1, . . . , uk) with s ≤ u1 < · · · < uk ≤ t , such
that for each 1 ≤ i ≤ �, Ji := [gi, hi] ∩N is a block of indices with

ur+1 − ur ≤ tδ for all r ∈ [gi, hi − 1] ∩N and

min{ugi
− ugi−1, uhi+1 − uhi

} > tδ,

where u0 := −∞, uk+1 := +∞. Indices in the set J0 := {1, . . . , k} \ (J1 ∪· · ·∪J�)

are the blocks of singletons, that is, for each i ∈ J0, ui is separated from all the
other uj ’s by at least tδ .

Now consider a fixed block structure as determined by � and g1, h1, . . . , g�, h�,
and let (u1, . . . , uk) ∈ B(g,h). Write

k∏
i=1

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))
(2.9)

=
�∏

m=0

∏
i∈Jm

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))
.

To apply Lemma B.1, for each block Jm with 1 ≤ m ≤ �, we need to rewrite the
product of the centered indicators as linear combinations of centered indicators.
More precisely, for each 1 ≤ m ≤ �, we write∏

i∈Jm

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))
= ∑

J ′
m⊂Jm

(−1)|Jm\J ′
m|1

(
η̃0(ui) = 0, i ∈ J ′

m

) ∏
i∈Jm\J ′

m

P
(
η̃0(ui) = 0

)
= ∑

J ′
m⊂Jm

(−1)|Jm\J ′
m|(1(η̃0(ui) = 0, i ∈ J ′

m

)
(2.10)

− P
(
η̃0(ui) = 0, i ∈ J ′

m

)) ∏
i∈Jm\J ′

m

P
(
η̃0(ui) = 0

)
+ ∑

J ′′
m⊂Jm

(−1)|Jm\J ′′
m|
P
(
η̃0(ui) = 0, i ∈ J ′′

m

) ∏
i∈Jm\J ′′

m

P
(
η̃0(ui) = 0

)
,

where we centered the indicator function 1(η̃0(ui) = 0, i ∈ J ′
m), and P(η̃0(ui) =

0, i ∈ J ′
m) is interpreted to be 1 if J ′

m = ∅. Note that for blocks of singletons, that
is, i ∈ J0, the indicator function is already centered and there is no constant term
as in (2.10), which is why the singleton blocks are separated from the other blocks
J1, . . . , J�.

Applying (2.10) for indices in blocks J1, . . . , J� in (2.9), and expanding and
grouping terms, we can then rewrite (2.9) as a sum of

±A
(
Ĵ , �J ′, �J ′′, �u),
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where Ĵ ⊂ {1, . . . , �} determine the blocks for which we choose a centered in-
dicator function (instead of a constant) from the expansion in (2.10), and �J ′ =
(J ′

1, . . . , J
′
�), �J ′′ = (J ′′

1 , . . . , J ′′
� ), with J ′

m,J ′′
m ⊂ Jm as in (2.10) for each block Jm.

More precisely,

A
(
Ĵ , �J ′, �J ′′, �u)

= ∏
i∈J0

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))
× ∏

m∈Ĵ

((
1
(
η̃0(ui) = 0, i ∈ J ′

m

)
− P

(
η̃0(ui) = 0, i ∈ J ′

m

)) ∏
i∈Jm\J ′

m

P
(
η̃0(ui) = 0

))
(2.11)

× ∏
m∈{1,...,�}\Ĵ

(
P
(
η̃0(ui) = 0, i ∈ J ′′

m

) ∏
i∈Jm\J ′′

m

P
(
η̃0(ui) = 0

))

= ∏
i∈J0

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))
× ∏

m∈Ĵ

(
1
(
η̃0(ui) = 0, i ∈ J ′

m

) − P
(
η̃0(ui) = 0, i ∈ J ′

m

))
× ∏

m∈{1,...,�}\Ĵ
P
(
η̃0(ui) = 0, i ∈ J ′′

m

) × ∏
i∈J̆

P
(
η̃0(ui) = 0

)
,

where in the last line, J̆ := ⋃
m∈Ĵ (Jm \ J ′

m) ∪ ⋃
m∈{1,...,�}\Ĵ (Jm \ J ′′

m).

The sign corresponding to a given choice of Ĵ , �J ′, �J ′′ is

(−1)
∑

m∈Ĵ |Jm\J ′
m|+∑

m∈{1,...,�}\Ĵ |Jm\J ′′
m|

.

Using Lemma B.1, we can bound the expectation of the product of centered
indicator functions in (2.11) by

E

[∏
i∈J0

(
1
(
ξ(Ei) = 0

) − P
(
ξ(Ei) = 0

))
× ∏

m∈Ĵ

(
1
(
ξ(Fm) = 0

) − P
(
ξ(Fm) = 0

))]
(2.12)

≤ Ct−δ(|J0|+|Ĵ |)/8 × ∏
i∈J0

P
(
η̃0(ui) = 0

) × ∏
m∈Ĵ

P
(
η̃0(ui) = 0, i ∈ J ′

m

)
,

where ξ is a Poisson point process on the random walk paths space with intensity
measure ν given by (2.1), with β(t) = β(−ε)(t); and

Ei := {
random walk paths ζ : with ζ(ur) = 0

}
, r ∈ J0,
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Fm := {
random walk paths ζ : with ζ(ur) = 0 for some r ∈ J ′

m

}
, m ∈ Ĵ .

Let us reorder and relabel the sets (Ei)i∈J0 and (Fm)m∈Ĵ by (Ẽi)1≤i≤|J0|+|Ĵ |,
where each Ẽi is of the form {ζ : ζ(ur) = 0 for some r ∈ J̃i} for some distinct
index set J̃i ⊂ {1, . . . , k}, and elements of J̃1 being smaller than those of J̃2, etc.

To see how does (2.12) follow from Lemma B.1, note that for any I ⊂
{1,2, . . . , |J0| + |Ĵ |},

ν

(⋂
i∈I

Ẽi

)
= ν

(
ζ : for each i ∈ I, ζ(ur) = 0 for some r ∈ J̃i

)
=

∫ t

0
β(−ε)(v)P(Xur = 0 for some r ∈ J̃i for each i ∈ I |Xv = 0) dv

≤
(

C′

tδ/2

)|I |−1 ∫ t

0
β(−ε)(v)P(Xur = 0 for some r ∈ J̃1|Xv = 0) dv

≤
(

C′

tδ/2

)|I |−1 ∫ t

0
β(−ε)(v)

∑
r∈J̃1

P(Xur = 0|Xv = 0) dv

=
(

C′

tδ/2

)|I |−1 ∑
r∈J̃1

E
[
η̃0(ur)

] = (1 − ε)

(
C′

tδ/2

)|I |−1 ∑
r∈J̃1

ρ0(ur)

≤ C

(tδ/4)|I |−1 ,

where we applied the local central limit theorem in the first inequality, noting
that the random walk returns to the origin at least |I | − 1 times over intervals
of length at least tδ , and we applied (1.4) to bound ρ0(ur) in the last inequality.
For any I1, . . . , In ⊂ {1, . . . , |J0| + |Ĵ |} with |I1|, . . . , |In| ≥ 2 and I1 ∪ · · · ∪ In =
{1,2, . . . , |J0| + |Ĵ |}, we then have

n∏
j=1

ν

(⋂
i∈Ij

Ẽi

)
≤ Cn(t−δ/4)∑n

i=1 |Ii |−n

≤ min
{
Cn(t−δ/4)|J0|+|Ĵ |−n

,
(
Ct−δ/4)n}.

Substituting these bounds into (B.1), where the first bound is used for 1 ≤ n ≤
|J0|+|Ĵ |

2 , and the second bound is used for n >
|J0|+|Ĵ |

2 , it is then easily seen that
(2.12) follows [note that we only need to consider (2.12) for the case |J0|+|Ĵ | ≥ 2,
since otherwise the inequality is trivial].

Having verified (2.12), we can then apply (2.11) to bound

E
[
A
(
Ĵ , �J ′, �J ′′, �u)]
≤ Ct−δ(|J0|+|Ĵ |)/8

∏
i∈J0∪J̆

P
(
η̃0(ui) = 0

) ∏
m∈Ĵ

P
(
η̃0(ui) = 0, i ∈ J ′

m

)
(2.13)
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× ∏
m∈{1,...,�}\Ĵ

P
(
η̃0(ui) = 0, i ∈ J ′′

m

)
≤ Ct−δ|J0|/8

∏
i∈J0∪J ′

0

P
(
η̃0(ui) = 0

)
,

where J ′
0 contains the smallest index from each block Jm, 1 ≤ m ≤ �.

Therefore, following the discussion after (2.10), we have

∫
· · ·

∫
B(g,h)

E

[
k∏

i=1

(
1
(
η̃0(ui) = 0

) − P
(
η̃0(ui) = 0

))]
duk · · ·du1

≤ Ct−δ|J0|/8
∑

Ĵ , �J ′, �J ′′

∫
· · ·

∫
B(g,h)

∏
i∈J0∪J ′

0

P
(
η̃0(ui) = 0

)
duk · · ·du1

(2.14)
≤ C′t−δ|J0|/8tδ(|J1|+···+|J�|−�)

E[Ṽs,t ]|J0|+�

= C′t−δ|J0|/8
(

tδ

E[Ṽs,t ]
)k−|J0|−�

E[Ṽs,t ]k,

where C′ contains combinatorial factors that depend only on k, but not on s and t

(and we used |J1| + · · · + |J�| = k − |J0| in the last line).
Since E[Ṽs,t ] ≥ c(t −s)t− 1−ε

2 ≥ ctξ− 1−ε
2 by (2.6) and the assumption on s and t ,

the term in (2.14) is bounded by

C′′t−δ|J0|/8t (δ−ξ+ 1−ε
2 )(k−|J0|−�)

E[Ṽs,t ]k.(2.15)

Note that δ − ξ + 1−ε
2 < 0, k − |J0| − � ≥ 0, and � ≤ (k − |J0|)/2 (since each

block Jm, 1 ≤ m ≤ �, contains at least two indices). Thus, when |J0| ≥ k/4, we
can bound (2.15) by

C′′t−kδ/32
E[Ṽs,t ]k,(2.16)

whereas when |J0| < k/4 (and hence k − |J0| − � ≥ k/4), we can bound (2.15) by

C ′′t−k(ξ− 1−ε
2 −δ)/4

E[Ṽs,t ]k.(2.17)

Either way, we find that the bound in (2.14) can be bounded by C′′t−bk
E[Ṽs,t ]k for

some C′′ depending only k, and b > 0 depending only on ξ and ε.
Since for given k there are only finitely many choices for � and g1, h1; . . . ;

g�,h�, summing over all possible B(g,h) then yields the claimed bound (2.7) with
b = δ/32 = (ξ − 1−ε

2 )/48. �
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3. Upper bounds in Theorems 1.1 and 1.2. Here is the basic idea for the
upper bound on the system of random walks with self-blocking immigration
(RWSBI), η = (ηx(t))x∈Z,t≥0. Let η̃(+ε) be the Poisson system of random walks
introduced in Section 2. We then attempt to add extra particles (labeled as η̂ parti-
cles) to the Poisson system η̃(+ε) at the origin with rate γ provided that the origin
is vacant under η̃(+ε), and these attempted additions are coupled with those in the
η system. In particular, a particle added in the η system can be coupled either to
an η̂ particle added at the same time if the origin is vacant under η̃(+ε), or to a
particle in the η̃(+ε) system if the origin is occupied under η̃(+ε). This coupling
constructs the η particles as a subset of the η̃(+ε) and η̂ particles, for which explicit
calculations can be carried out.

3.1. Coupling with the Poisson system. We now formulate precisely the cou-
pling between the Poisson system η̃(+ε), the system of particles η̂(+ε) added during
the times when η̃(+ε) is vacant at the origin, and the true RWSBI system η.

Suppose that the Poisson system η̃(+ε) has been constructed. Let 0 < T1 < T2 <

· · · be the times of an independent rate γ Poisson point process on [0,∞). At each
time Ti , we add a particle at the origin to the η̂(+ε) system if the origin is vacant
under η̃(+ε). The successfully added particles then perform independent random
walks. We now construct the η system from η̃(+ε) and η̂(+ε) as follows:

• At time T1, the origin is either occupied by a particle in the Poisson system
η̃(+ε), or a particle is added at the origin to the η̂(+ε) system. In either case, we
add a particle to η at the origin, which follows the same random walk as the
particle (pick one if there is more than one) at the origin in the union of η̃(+ε)

and η̂(+ε).
• Assume that by time Tk for some k ≥ 1, particles have been added to η in such a

way that each particle in η is coupled to a distinct particle in the union of η̃(+ε)

and η̂(+ε). We now attempt to add a particle at time Tk+1 to η that preserves this
coupling condition.
− If the origin is occupied at time Tk+1 under η, then no particle is added to η.
− If the origin is vacant at time Tk+1 under η, we note that it is either occupied

under the Poisson system η̃(+ε), or a particle is added at the origin to the
η̂(+ε) system. In either case, the origin is occupied by particles in the union
of η̃(+ε) and η̂(+ε), and none of these particles could have been coupled with
any particle in η. We then add a particle at the origin to η, which follows
the same random walk as a corresponding particle in the union of η̃(+ε) and
η̂(+ε) at the origin.

From the above inductive construction of η, it is clear that each particle in η

is coupled to a distinct particle in the union of η̃(+ε) and η̂(+ε), and hence almost
surely,

(3.1) ηx(t) ≤ η̃(+ε)
x (t) + η̂(+ε)

x (t) for all x ∈ Z, t ≥ 0
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and in particular

(3.2)
∑
x

ηx(t) ≤ ∑
x

η̃(+ε)
x (t) + ∑

x

η̂(+ε)
x (t) for all t ≥ 0.

3.2. Proof of Theorem 1.1 (upper bound). By (3.2), for any ε > 0, we have

lim sup
t→∞

1

R(t)

∑
x

ηx(t) ≤ lim sup
t→∞

1

R(t)

∑
x

η̃(+ε)
x (t)

+ lim sup
t→∞

1

R(t)

∑
x

η̂(+ε)
x (t),

where the first term equals 1 + ε by (2.4). The second term equals 0 because by
construction, conditioned on η̃(+ε),

∑
x η̂

(+ε)
x (t) is a time-changed Poisson process

with mean γ Ṽ
(+ε)
0,t , and Ṽ

(+ε)
0,t /R(t) → 0 a.s. as t → ∞ by (2.5). Therefore,

lim sup
t→∞

1

R(t)

∑
x

ηx(t) ≤ 1 + ε,

which gives the desired upper bound if we let ε ↓ 0.

3.3. Proof of Theorem 1.2 (upper bound). By (3.1), for any ε > 0 and any
bounded nonnegative continuous function f ∈ Cb,+(R), we have

1

σ
√

t log t

∑
x∈Z

ηx(t)f

(
x

σ
√

t

)
≤ 1

σ
√

t log t

∑
x∈Z

η̃(+ε)
x (t)f

(
x

σ
√

t

)
(3.3)

+ ‖f ‖∞
∑

x η̂
(+ε)
x (t)

σ
√

t log t
.

Since R(t) ∼ σ( 2
π
)

1
2
√

t log t by (1.5), the second term tends to 0 as t → ∞ as
shown above in the proof of Theorem 1.1, and hence almost surely,

lim sup
t→∞

1

σ
√

t log t

∑
x∈Z

ηx(t)f

(
x

σ
√

t

)
(3.4)

≤ lim sup
t→∞

1

σ
√

t log t

∑
x∈Z

η̃(+ε)
x (t)f

(
x

σ
√

t

)
.

Denote �t := ∑
x∈Z η̃

(+ε)
x (t)f ( x

σ
√

t
). First, we note that

E[�t ]
σ
√

t log t
= (1 + ε)

∑
x∈Z

ρx(t)

σ
√

t log t
f

(
x

σ
√

t

)

−→
t→∞ (1 + ε)

∫
R

f (y)ρ̃(y) dy =: M,
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where the convergence follows from Lemma A.4 and a Riemann sum approxi-
mation of the integral. To show that �t/(σ

√
t log t) converges a.s. to the same

limit M , we note that �t is a weighted sum of independent Poisson random vari-
ables with mean mt := E[�t ] = (M + o(1))σ

√
t log t , and each individual weight

is uniformly bounded by ‖f ‖∞. By elementary large deviation estimates for Pois-
son random processes, for any δ > 0, we have

P
(|�t − mt | ≥ δmt

) ≤ C1e
−C2mt ≤ C1e

−C3
√

t log t ,

and hence by Borel–Cantelli, �t/mt → 1 a.s. along the time sequence tn =
(logn)2. To extend it to all t ↑ ∞, by Borel–Cantelli, it suffices to show that for
each δ > 0,

(3.5)
∞∑

n=1

P

(
sup

t∈[tn,tn+1]
|�t − �tn | ≥ δmtn

)
< ∞.

Note that tn+1 − tn ∼ 2 logn/n, and supt∈[tn,tn+1] |�t − �tn | can be bounded in

terms of the number of particles added to the η̃(+ε) system during the time inter-
val [tn, tn+1] (which is Poisson distributed), plus the number of particles in η̃

(+ε)
tn

which have unusually large displacements (of order
√

tn) during [tn, tn+1] (note
that these displacements are independent). Elementary large deviation estimates
then give (3.5).

In conclusion, the RHS of (3.4) converges a.s. to (1 + ε)
∫
R

f (y)ρ̃(y) dy. Since
ε > 0 can be arbitrary, this implies the desired upper bound in Theorem 1.2.

4. Lower bounds in Theorems 1.1 and 1.2. Here is the basic strategy for
the lower bound on the system of random walks with self-blocking immigration
(RWSBI), η = (ηx(t))x∈Z,t≥0. Let η̃ := η̃(−ε) be a Poisson system of random walks
with immigration rate β(−ε) as introduced in Section 2. To get a lower bound on
the η system, we will construct an auxiliary system of η̂ particles, where particles
are added at rate at most γ and only when the origin is vacant under η̂, and η̂

particles may be killed from time to time. Such an η̂ system will be embedded as
a subset of the η system. To have explicit control on the rate at which particles
are added in the η̂ system, which will lead to a lower bound on η, we couple η̂

with the Poisson system η̃ in such a way that each particle added to η̂ is coupled
with a particle in η̃ (albeit starting at a different time), so that when we attempt
to add a new particle to η̂, the origin being vacant under η̃ ensures that it is also
vacant under η̂. We can then bound from below the rate at which η̂ particles are
added in terms of the vacant time (at the origin) of the Poisson system η̃, which can
be estimated explicitly. This strategy will be made more precise in the following
subsections.
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4.1. Coupling of one-dimensional random walks. We will need the following
result, which shows that for two random walks X and Y starting respective at x ∈ Z

and 0 at time 0 with |x| � 1, there is a coupling between X and Y such that with
high probability, the coupling is successful in the sense that X and Y coalesce
and become a single walk before time τ0 := inf{t ≥ 0 : X(t) = 0}. Furthermore,
whether the coupling is successful or not is independent of (X(τ0 + t))t≥0.

LEMMA 4.1. For n ∈ N, let Xn and Yn be two rate 1 continuous time random
walks on Z with increment distribution (ax)x∈Z as specified in (1.1), starting re-
spectively at xn and 0 at time 0. Then there exists a coupling between Xn and Yn

with a coupling time Tn, such that:

(i) Either Tn ≤ τ
Xn

0 := inf{t ≥ 0 : Xn(t) = 0} and Xn(t) = Yn(t) for all t ≥
Tn, in which case we call the coupling successful; or Tn = ∞ and we call the
coupling unsuccessful;

(ii) The event Fn := {Tn ≤ τ
Xn

0 } is measurable w.r.t. Yn and (Xn(t))0≤t≤τ
Xn
0

,

and on its complement {Tn = ∞}, (Xn(τ
Xn

0 + t))t≥0 is independent of Yn and
(Xn(t))0≤t≤τ

Xn
0

.

(iii) If |xn| → ∞ as n → ∞, then P(Fn) → 1.

Furthermore, when p is symmetric, the coupling can be chosen such that the joint
dynamics of (Xn(t), Yn(t))t≥0 is Markovian.

REMARK 4.1. When Xn and Yn are simple symmetric random walks on Z,
there is a simple Markovian coupling such that the coupling is successful with
probability 1 for all n ∈ N.

If Xn(0) is even, then we let Xn and Yn jump simultaneously but in opposite
directions until the first time that the two walks meet, and from this time on they
perform identical jumps. This ensures that Xn and Yn coalesce before Xn hits 0.
If Xn(0) is odd, then we wait for the first jump by either Xn or Yn, when the
difference becomes even, and then couple as before.

PROOF OF LEMMA 4.1. Without loss of generality, we may assume that
xn → ∞.

When p is symmetric, we can couple Xn and Yn such that they take opposite
steps [simply putting Yn(t) := xn − Xn(t)] until they get close (i.e., either they
meet or exchange order), and then run them as independent random walks until
either they meet or Xn hits 0, whichever happens first. In the first case, we set the
meeting time to be Tn and let the two walks move together afterward; in the second
case, we just set Tn = ∞.

In the general case, we can still couple Xn and Yn such that they take “es-
sentially” opposite steps until they get close by a suitable coupling to Brownian
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motion, and then proceed as above. To implement this strategy, let

τ
Yn

1/2 := inf
{
t ≥ 0 : Yn(t) ≥ xn/2

}
and

τ
Xn

1/2 := inf
{
t ≥ 0 : Xn(t) ≤ xn/2

}
.

By Donsker’s invariance principle, as xn → ∞,

(4.1)

((
x−1
n Yn

(
x2
nt

))
t≥0, x

−2
n τ

Yn

1/2

) =⇒
n→∞

(
(Bt )t≥0, τ1/2

)
,((

x−1
n Xn

(
x2
nt

))
t≥0, x

−2
n τ

Xn

1/2

) =⇒
n→∞

(
(1 − Bt)t≥0, τ1/2

)
,

where (Bt )t≥0 is a Brownian motion with E[B2
t ] = σ 2t and τ1/2 := inf{t ≥ 0 : Bt ≥

1/2}. By Skorohod’s representation theorem, we can couple (Xn)n≥1 and B , and
also (Yn)n≥1 and B , first possibly on different probability spaces, such that in both
lines of (4.1) the convergence holds almost surely. Then, using regular versions of
the conditional distribution given B on both probability spaces together with the
same Brownian motion, we can construct copies of (Xn)n≥1, (Yn)n≥1 and B on
the same probability space such that the convergence in both lines of (4.1) holds
simultaneously almost surely. We will use this coupling, which forces Xn and Yn

to take essentially opposite steps.
Since τ

Xn

1/2 and τ
Yn

1/2 are stopping times, we may resample (Xn(t))t≥τ
Xn
1/2

and

(Yn(t))t≥τ
Yn
1/2

[conditional on Xn(τ
Xn

1/2), respectively on Yn(τ
Yn

1/2)] independently of

their past and of each other without changing the law of Xn, resp. Yn. Assume this
resampling from now on, and let

τXn,Yn := inf
{
t ≥ τ

Xn

1/2 ∨ τ
Yn

1/2 : Xn(t) = Yn(t)
}
.

On the event τXn,Yn ≤ τ
Xn

0 = inf{t ≥ 0 : Xn(t) = 0}, we set the coupling time
Tn = τXn,Yn and resample Yn to be equal to Xn from time Tn onward. The coupling
is then successful.

On the event τ
Xn

0 < τXn,Yn , we set Tn = ∞ and the coupling is unsuccessful,
and we do not make any further modification of Xn and Yn.

With the above coupling, properties (i) and (ii) in Lemma 4.1 are clearly satis-
fied. To verify (iii), we need to show that under our coupling,

(4.2) P
(
τXn,Yn ≤ τ

Xn

0

) → 1 as |xn| → ∞.

Note that the above probability does not change if we assume (Xn(t))t≥τ
Xn
1/2

and

(Yn(t))t≥τ
Yn
1/2

are coalescing random walks starting respectively at the space–

time points (Xn(τ
Xn

1/2), τ
Xn

1/2) and (Yn(τ
Yn

1/2), τ
Yn

1/2), where under our coupling,

(x−1
n Xn(τ

Xn

1/2), x
−2
n τ

Xn

1/2) and (x−1
n Yn(τ

Yn

1/2), x
−2
n τ

Yn

1/2) converge almost surely to the
same space–time point (1/2, τ1/2). Therefore, by the weak convergence of coa-
lescing random walks to coalescing Brownian motions (proved in [9], Section 5,
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for discrete time random walks and is easily seen to hold also in continuous time),
(x−1

n Xn(x
2
nt))

t≥x−2
n τ

Xn
1/2

and (x−1
n Yn(x

2
nt))

t≥x−2
n τ

Yn
1/2

converge to the same Brown-

ian motion W starting at 1/2 at time τ1/2, and the rescaled time of coalescence,
x−2
n τXn,Yn , converges to τ1/2. In particular, the probability that (Xn(t))t≥τ

Xn
1/2

hits

0 before meeting (Yn(t))t≥τ
Yn
1/2

tends to 0 as n tends to infinity. This implies (4.2)

and the claim in (iii). �

4.2. Coupling with the Poisson system. We now formulate precisely the cou-
pling between the true system η, the Poisson system η̃ := η̃(−ε) with immigration
rate β(−ε)(t) = (1 − ε)γ e−ρ0(t), and the auxiliary system η̂ as outlined at the start
of this section. To simplify notation, in the remainder of the subsection, we will
drop (−ε) from the superscript and simply write η̃ instead of η̃(−ε).

Let t0 = 0 < t1 < t2 < t3 < · · · , and consider the time intervals In =
(t3n−3, t3n−2], I ′

n = (t3n−2, t3n−1], I ′′
n = (t3n−1, t3n]. The precise values of the tn’s

will be determined later in (4.4), with |In| = |I ′
n| � |I ′′

n |. We will attempt to add
exactly one η̂ particle in each time interval In, which will be coupled with the
first η̃ particle added during the time interval I ′′

n , with the coupling prescribed in
Lemma 4.1.

More precisely, let (Ñt )t≥0 be a Poisson process with rate β(−ε), which deter-
mine the times when particles are added to η̃, and let (Nt )t≥0 be an independent
Poisson process with rate γ , which determines the times when we might attempt to
add particles to η̂ and η. Start with η̃·(0) = η·(0) = η̂·(0) ≡ 0, and as an inductive
hypothesis, assume that particles have been added to η̃, η and η̂ up to time t3(n−1)

for some n ≥ 1, such that the following properties hold:

(a) The paths of all added η̃ particles have been sampled to time ∞, while the
path of each added η particle has been sampled till its first return to the origin after
time t3(n−1), and the same for each η̂ particle unless it has been killed earlier;

(b) Each η̂ particle is coupled to a distinct η particle so that they follow the
same path till the time of death of the η̂ particle. In particular, there are always
more η particles at the origin than η̂ particles;

(c) Each η̂ particle added during the time interval Ik , for any k ≤ n − 1, is
either killed at its first return to the origin after time t3k , or it lives forever and is
successfully coupled as in Lemma 4.1 to an η̃ particle added during the subsequent
time interval I ′′

k ;
(d) As a consequence of (c), at any time t ≥ t3(n−1), if one of the η̂ particles

added before time t3(n−1) is at the origin, then so is one of the η̃ particles added
before time t3(n−1).

We now add particles to η̃, η and η̂ in the time intervals (t3(n−1), t3n] as follows:

• Add particles to η̃ during the time interval In ∪ I ′
n according to the Poisson pro-

cess Ñ , with particle trajectories sampled to time ∞ according to independent
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random walks. Evolve existing η and η̂ particles further till their first return to
the origin after time t3n.

• Let

T̂n := inf
{
t ∈ In : η̃0(t) = 0,�Nt = 1

}
,

T̃n := inf
{
t ∈ I ′′

n : �Ñt = 1
}
,

where inf∅ := ∞. If T̂n = ∞, then no η̂ particles are added during (t3(n−1), t3n],
and η and η̃ particles are added independently according to their own rules until
time t3n, and their paths are sampled such that property (a) above continues to
hold by t3n;

• If T̂n < ∞, then we add an η̂ particle at the origin at time T̂n. If the origin is
occupied in η at time T̂n, then we let the added η̂ particle follow the same path
Xn as one of the η particles at the origin chosen at random. If the origin is vacant
in η at time T̂n, then we also add an η particle at time T̂n and let both particles
follow the same random walk Xn, sampled independently of everything else till
its first return to the origin after time t3n. (Should the η̂ particle be killed later in
the construction, we understand that the η particle will be unaffected.)

• Continue to add η and η̃ particles independently according to their own rules
until time t3n ∧ T̃n, and sample their paths so that property (a) continues to
hold by t3n. If T̃n = ∞, then kill the added η̂ particle at time τn := inf{t ≥ t3n :
Xn(t) = 0}.

• If T̃n < ∞, then add an η̃ particle at the origin at time T̃n and sample its path Yn

according to the conditional law of Yn, conditioned on (Xn(t))T̃n≤t≤τn
, so that

(Xn,Yn) follows the law of the coupled random walks (Xn,Yn) in Lemma 4.1.
Denote

En := {T̂n < ∞, T̃n < ∞ and Xn and

Yn are coupled successfully as in Lemma 4.1}.
If the coupling is successful, then let the added η̂ particle live forever, otherwise
kill it at time τn = inf{t ≥ t3n : Xn(t) = 0}.

• Continue to add η and η̃ particles independently according to their own rules till
time t3n, with their trajectories sampled so that property (a) continues to hold
by t3n.

We note a subtle point in the above coupling, namely that we need to show that
the η̃ particles added at times (T̃n)n∈N are indeed distributed as independent ran-
dom walks. This is true because by construction, conditioned on Xn(T̃n) for n ∈N

with T̂n, T̃n < ∞, the η̂ particle trajectories (Xn(t))T̃n≤t≤τn
are jointly independent,

while the path Yn of each η̃ particle coupled to Xn depends only on (Xn(t))T̃n≤t≤τn

by Lemma 4.1.
It is clear that properties (a)–(d) above continue to hold after adding all particles

up to time t3n, and hence by induction, they hold for all time. In particular, by the
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coupling between η and η̂, for all n ∈ N, we have

∑
x∈Z

ηx(t3n) ≥ ∑
x∈Z

η̂x(t3n) ≥
n∑

j=1

1Ej
=

n∑
j=1

1{T̂j<∞,T̃j<∞}1Ej
.(4.3)

To prove the lower bounds in Theorems 1.1 and 1.2, we will use the following
choice of (ti)i∈N:

t3n = ε2 n2

(log(n ∨ 3))2 and

(4.4)
t3n+2 − t3n+1 = t3n+1 − t3n = ε2(n + 1)1−ε/2, n ≥ 0.

The choice of ti is motivated by the fact that from (1.5), the time until the nth
particle appears in the true system should be of order n2/(logn)2. Note that (4.4)
implies

(4.5)
∑

n:t3n≤t

1 ∼
t→∞ (

√
t log t)/2ε.

REMARK 4.2. When the random walk jump kernel p(·) is symmetric, we
can use the Markovian coupling of random walks guaranteed by Lemma 4.1 to
construct the coupled η̃, η̂ and η particle systems jointly as a Markov process, with
the use of labels to distinguish whether a particle is an η̃, η̂ or η particle, or it has
multiple labels due to the coupling.

Spelling out the generator of such a system is straightforward, though lengthy,
so we do not make it explicit here. Briefly, at a time T̂n < ∞, if the origin is empty
in the η system, we add a particle Xn with label “η&η̂”; while if the origin is
occupied in η but empty in η̂, we change the label of one of the η particles to “η&η̂”
(and call this the Xn particle). The Xn particle evolves as a free random walk until
time T̂n ∧ t3n. If T̂n < t3n, then we add a particle Yn with label “η̃,” and Xn and
Yn then evolve jointly as a Markov process according to the Markovian coupling
from Lemma 4.1 until either they meet (at which time the particles merge and
henceforth evolve as a free random walk with label “η&η̂&η̃”), or the Xn particle
visits the origin before meeting Yn (from this time the Xn particle evolves as a
free random walk with label “η” and the Yn particle evolves independently as a
free random walk with label “η̃”). If T̂n ≥ t3n, then we change the label of the Xn

particle to “η” at time t3n. In between, all other particles (with their labels) evolve
independently, and additions of η, respectively, η̃ particles are executed according
to their respective rules.

4.3. Proof of Theorem 1.1 (lower bound). First, we note that the number of
particles added to the Poisson system η̃ during the time interval I ′′

n , which we
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denote by M̃n, is a Poisson random variable with mean

E[M̃n] =
∫ t3n

t3n−1

β(−ε)(s) ds =
∫ t3n

t3n−1

σ(1 − ε)√
2π

log s√
s

(
1 + o(1)

)
ds

∼
n→∞

2σ(1 − ε)√
2π

(
√

t3n − √
t3n−1) log t3n

∼ 4σ
ε(1 − ε)√

2π
,

where we used the form of β(−ε) given in (2.3), the asymptotics for ρ0(t) given in
(1.4), and the choice of (ti)i∈N given in (4.4). Therefore,

P(T̃n < ∞) = P(M̃n > 0) = 1 − e−E[M̃n] −→
n→∞ 1 − e

−4σ
ε(1−ε)√

2π .

Since (M̃n)n∈N are independent, almost surely, we have

(4.6)
n∑

j=1

1{T̃j<∞} ∼
n→∞ n

(
1 − e

−4σ
ε(1−ε)√

2π
)
.

Next, we observe that on each time interval In, conditioned on the Poisson sys-
tem η̃,

P(T̂n = ∞|η̃) = e
−γ Ṽt3n−3,t3n−2 ,

where by (2.6),

E[Ṽt3n−3,t3n−2] ≥ c(t3n−2 − t3n−3)t
−(1−ε)/2
3n−2 ≥ cε2n1−ε/2t

−(1−ε)/2
3n

= cε1+εnε/2(logn)1−ε

for some c > 0. By the moment bound in Lemma 2.2 for (Ṽt3n−3,t3n−2 −
E[Ṽt3n−3,t3n−2])k for a sufficiently large even k (note that the conditions are ful-
filled), we can apply Markov’s inequality and Borel–Cantelli to conclude that a.s.,
Ṽt3n−3,t3n−2/E[Ṽt3n−3,t3n−2] → 1, and hence {Ṽt3n−3,t3n−2 > nε/2/2} occurs for all
large enough n. Therefore, a.s.,

∑
n P(T̂n = ∞|η̃) < ∞, and hence almost surely,

(4.7) {T̂j < ∞} occurs for all j sufficiently large.

Lastly, we consider the events Ej in (4.3). In our coupling construction of η̃,
η and η̂, let Fn denote the σ -algebra generated by: the Poisson point process Ñ

up to time T̃n ∧ t3n and the trajectories of the η̃ particles added before that time,
as well as the Poisson point process N up to time T̂n ∧ t3n−2 and the trajectories
of the η̂ particles added before that time. Then (Fn)n∈N defines a filtration, with
{T̃n < ∞, T̂n < ∞} ∈ Fn, and En ∈ Fn+1. Furthermore, since |I ′

n| → ∞, on the
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event {T̂n < ∞, T̃n < ∞}, the path Xn of the η̂ particle added at time T̂n satisfies
|Xn(T̃n)| → ∞ in probability as n → ∞. Therefore, by Lemma 4.1,∣∣P(En|Fn) − 1{T̂n<∞,T̃n<∞}

∣∣
≤ 1{T̂n<∞,T̃n<∞}

∣∣P(Xn and Yn are successfully coupled) − 1
∣∣(4.8)

−→
n→∞ 0.

Note that (4.6) and (4.7) imply

n∑
j=1

1{T̂j<∞,T̃j<∞} ∼
n→∞

n∑
j=1

1{T̃j<∞} ∼
n→∞ n

(
1 − e

−4σ
ε(1−ε)√

2π
) −→ ∞ a.s.,

which together with (4.8) gives

(4.9)
n∑

j=1

P(Ej |Fj ) ∼
n→∞

n∑
j=1

1{T̂j<∞,T̃j<∞} ∼
n→∞

n∑
j=1

1{T̃j<∞} −→ ∞ a.s.

On the other hand, by the second Borel–Cantelli lemma ([5], (4.11)),∑n
j=1 1Ej∑n

j=1 P(Ej |Fj )
−→
n→∞ 1 a.s. on

{ ∞∑
j=1

P(Ej |Fj ) = ∞
}
,

which event is seen to have probability 1 by (4.9). Therefore, we also have

n∑
j=1

1Ej
∼

n→∞
n∑

j=1

P(Ej |Fj ) ∼
n→∞

n∑
j=1

1{T̃j<∞}
(4.10)

∼
n→∞ n

(
1 − e

−4σ
ε(1−ε)√

2π
)

a.s.

Since t3j = ε2 j2

(log j)2 , by (4.3) and (4.5), this implies

∑
x

ηx(t) ≥ ∑
j :t3j≤t

1Ej
∼

t→∞

√
t log t/2ε∑
j=1

1Ej

(4.11)

∼
t→∞

√
t log t

2ε

(
1 − e

−4σ
ε(1−ε)√

2π
)

a.s.

Letting ε ↓ 0 then gives the desired lower bound on
∑

x ηx(t) in Theorem 1.1.

4.4. Proof of Theorem 1.2 (lower bound). The lower bound on the rate at
which η particles arrive readily leads to a lower bound on the spatial distribution of
these particles at time t , since once an η particle arrives, it evolves independently
from all other particles.
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First, note that it suffices to verify Theorem 1.2 for f ∈ Cb,+(R) with a uni-
formly bounded derivative f ′, since Theorem 1.1 on the convergence of the total
mass of the measure

∑
x ηx(t)δx

σ
√

t log t
implies that it suffices to verify Theorem 1.2 for

f ∈ Cb,+(R) with compact support, and any such f can then be approximated in
supremum norm by functions in Cb,+(R) with bounded derivatives.

Let us recall our construction of η̂ in Section 4.2. For each n ∈ N, an η̂ particle
is added at time T̂n and then follows a random walk Xn and lives forever, provided
that T̂n < ∞, T̃n < ∞, and Xn can be successfully coupled to the random walk
Yn that governs the motion of the η̃ particle added at time T̃n. Then analogous to
(4.11), for any f ∈ Cb,+(R), almost surely

lim inf
t→∞

1

σ
√

t log t

∑
x

ηx(t)f

(
x

σ
√

t

)

≥ lim inf
t→∞

1

σ
√

t log t

∑
n:t3n≤t

1Enf

(
Xn(t)

σ
√

t

)
.

We can replace 1En above by 1{T̃n<∞}, since by (4.10) and (4.5), we have

1

σ
√

t log t

∣∣∣∣ ∑
n:t3n≤t

1Enf

(
Xn(t)

σ
√

t

)
− ∑

n:t3n≤t

1{T̃n<∞}f
(

Xn(t)

σ
√

t

)∣∣∣∣
= 1

σ
√

t log t

∑
n:t3n≤t

(1{T̃n<∞} − 1En)f

(
Xn(t)

σ
√

t

)

≤ ‖f ‖∞
σ
√

t log t

( ∑
n:t3n≤t

1{T̃n<∞} − ∑
n:t3n≤t

1En

)
−→
t→∞ 0.

For any η̂ particle that gets killed, let us extend its path Xn beyond its death by an
independent random walk, and for n with T̂n = ∞, we let Xn be an independent
random walk starting from t3n−2. We then have

lim inf
t→∞

1

σ
√

t log t

∑
x

ηx(t)f

(
x

σ
√

t

)
(4.12)

≥ lim inf
t→∞

1

σ
√

t log t

∑
n:t3n≤t

1{T̃n<∞}f
(

Xn(t)

σ
√

t

)
.

Note that the space–time shifted random walks (Wn(s))s≥0 := (Xn(T̃n + s) −
Xn(T̃n))s≥0, n ∈ N, are i.i.d. and independent of the Poisson process Ñ that de-
termines the times when a particle is added to η̃. We can then use (Wn)n∈N and Ñ

to construct another Poisson system of random walks ξ̃ with the same distribution
as η̃. More precisely, for each n ∈ N with T̃n < ∞, we add a ξ̃ particle at the origin
at time T̃n which follows the trajectory (Wn(s− T̃n))s≥T̃n

= (Xn(s)−Xn(T̃n))s≥T̃n
.

For all other times t with �Ñt = 1, we add a ξ̃ particle at the origin at time t , which
follows an independent random walk trajectory.
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We claim that a.s., the RHS of (4.12) does not change if we replace the trajec-
tories of the η̂ particles therein by those of the ξ̃ particles added at times (T̃n)n∈N.
Indeed, the absolute difference arising from such a replacement (before taking
lim inft→∞) is∣∣∣∣ 1

σ
√

t log t

∑
n:t3n≤t

1{T̃n<∞}
(
f

(
Xn(t)

σ
√

t

)
− f

(
Xn(t) − Xn(T̃n)

σ
√

t

))∣∣∣∣
≤ ‖f ′‖∞

σ
√

t log t

∑
n:t3n≤t

1{T̃n<∞} min
{
‖f ‖∞,

|Xn(T̃n)|
σ
√

t

}
(4.13)

≤ ‖f ′‖∞
σ
√

t log t

∑
n:t3n≤t

min
{
‖f ‖∞,

sups∈[0,t3n−t3n−3] |X̂n(s)|
σ
√

t

}
,

where X̂n is the random walk obtained from Xn by shifting its starting time to 0,
which are i.i.d. and independent of Ñ . If we denote the minima in (4.13) by Un,t ,
then by Doob’s L2 maximal inequality for X̂n,

E[Un,t ] ≤ 2

σ
√

t
E
[
X̂2

t3n−t3n−3

] 1
2 = 2

√
t3n − t3n−3 ≤ C

√
n√

t logn
.

Therefore, using (4.5),

(4.14)
‖f ′‖∞

σ
√

t log t

∑
n:t3n≤t

E[Un,t ] ≤ C′‖f ′‖∞
t log t

(
√

t log t)
3
2 −→

t→∞ 0.

Since (Un,t )n∈N are independent random variables uniformly bounded by ‖f ‖∞,

a standard fourth moment calculation applied to ‖f ′‖∞
σ
√

t log t

∑
n:t3n≤t (Un,t −E[Un,t ]),

together with Markov inequality and Borel–Cantelli, show that this sequence con-
verges a.s. to 0 along the times (t3N)N∈N (and hence also along t ↑ ∞). Together
with (4.14), this implies that the bound in (4.13) converges a.s. to 0 as t → ∞, and
hence we can replace the η̂ particle trajectories in the RHS of (4.12) by those of
the ξ̃ particles added at times (T̃n)n∈N.

We now make one more reduction, namely that including all particles in the
ξ̃ system (not just those added at times T̃n) only introduces a small ε-dependent
error. More precisely,

1

σ
√

t log t

∣∣∣∣ ∑
n:t3n≤t

1{T̃n<∞}f
(

Xn(t) − Xn(T̃n)

σ
√

t

)
− ∑

x

ξ̃x(t)f

(
x

σ
√

t

)∣∣∣∣
≤ ‖f ‖∞

σ
√

t log t

∣∣∣∣∑
x

ξ̃x(t) − ∑
n:t3n≤t

1{T̃n<∞}
∣∣∣∣

−→
t→∞ ‖f ‖∞

∣∣∣∣( 2

π

)1/2
(1 − ε) − 1

2εσ

(
1 − e

−4σ
ε(1−ε)√

2π
)∣∣∣∣ =: Aε
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by the a.s. asymptotics for
∑

x ξ̃x(t) in Lemma 2.1 and the a.s. asymptotics for∑
n:t3n≤t 1{T̃n<∞} given in (4.10) and (4.11). Note that the limit Aε above tends to

0 as ε ↓ 0.
By the successive reductions we have made, we have thus shown that a.s.,

lim inf
t→∞

1

σ
√

t log t

∑
x

ηx(t)f

(
x

σ
√

t

)
(4.15)

≥ lim inf
t→∞

1

σ
√

t log t

∑
x

ξ̃x(t)f

(
x

σ
√

t

)
− Aε,

where the above limit for the ξ̃ system equals (1 − ε)
∫
R

f (y)ρ̃(y) dy by the same
argument as that in Section 3.3 for the η̃(+ε) system. Letting ε ↓ 0 then completes
the proof of the a.s. lower bound in Theorem 1.2.

APPENDIX A: ASYMPTOTICS OF A SEMILINEAR LATTICE HEAT
EQUATION

This section is adapted from [2], Section 3.6.1, for ease of reference and the
reader’s convenience.

We consider the long-time behavior of the solution of the following inhomoge-
neous heat equation on Z (which reduces to (1.2) upon choosing α = 1):

∂tρx(t) = Lrwρx(t) + γ δ0(x) exp
(−αρ0(t)

)
, t ≥ 0, x ∈ Z,

(A.1)
ρx(0) ≡ 0,

where γ,α > 0 are parameters, and Lrw is the generator of a rate 1 continuous
time random walk X on Z, whose jump increments follow the probability kernel
(a−x)x∈Z with mean 0 and variance σ 2, as specified in (1.1).

REMARK A.1. 1. In integral form (sometimes called “Duhamel’s principle”),
(A.1) reads

(A.2) ρx(t) = γ

∫ t

0
px(t − s) exp

(−αρ0(s)
)
ds, x ∈ Z, t ≥ 0,

where px(t) = P0(X(t) = x) is the transition probability of a continuous-time ran-
dom walk with generator Lrw.

2. Let ρ be the solution of (A.1). Then ϑx(t) := αρx(t) solves ∂tϑx(t) =
Lrwϑx(t) + γ ′δ0(x) exp(−ϑ0(t)) with γ ′ := γα, hence it suffices to consider the
case α = 1.

3. (A.1) [and hence also (1.2)] has a unique solution: Let ρ(1), ρ(2) be solutions,
then
∂

∂t

∑
x

(
ρ(2)

x (t) − ρ(1)
x (t)

)2 = 2
∑
x

(
ρ(2)

x (t) − ρ(1)
x (t)

)
Lrw

(
ρ(2)· (t) − ρ(1)· (t)

)
x

+ 2γ
(
ρ

(2)
0 (t) − ρ

(1)
0 (t)

)(
e−αρ

(2)
0 (t) − e−αρ

(1)
0 (t)) ≤ 0,
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noting that
∑

x fx(Lrwf )x ≤ 0 for any f ∈ �2(Z), and (a − b)(e−αa − e−αb) ≤ 0
for any a, b ∈ R. Hence, ρ(1) ≡ ρ(2).

LEMMA A.1. Let ρ be the solution of (A.1). Then ρ0(t) is increasing in t ,
and as t → ∞,

ρ0(t) = 1

α

{
1

2
log t − log log t + log(

√
2πγα/σ)

}
+ o(1),(A.3)

∑
x

ρx(t) = γ

∫ t

0
e−αρ0(s) ds ∼ σ

α

(
2

π

)1/2√
t log t.(A.4)

PROOF. Assume w.l.o.g. α = 1; cf. Remark A.1. We see from (A.2) for x = 0
that ρ0(t) is the solution of the functional equation

(A.5) f (t) =
∫ t

0
γp0(t − s) exp

(−f (s)
)
ds, t ≥ 0.

Let us call a function ϕ̄ : Zd ×R+ → R+ with ϕ̄·(0) ≡ 0 a strict supersolution
to (A.1) if it solves

∂t ϕ̄x(t) = Lrwϕ̄x(t) + γ rϕ̄(t)δ0(x), t ≥ 0, x ∈ Z

(A.6)
with an rϕ̄(t) > exp

(−ϕ̄0(t)
)
.

Then we see that ϕ̄0(t) ≥ ρ0(t) for all t ≥ 0: Indeed, ψx(t) := ϕ̄x(t)−ρx(t) solves

∂tψx(t) = Lrwψx(t) + γ
(
rϕ̄(t) − e−ρ0(t)

)
δ0(x)

and ψ0(t) > 0 for small t . Assume that t0 := inf{t : ψ0(t) < 0} < ∞. Then we
would have ψ0(t0) = 0 by continuity, but also ψx(t0) ≥ 0 for all x. To see this,
observe that ψx(t), x �= 0 has a representation (ψ solves the heat equation away
from 0, consider ψ0(t) as exogenous input)

ψx(t) =
∫ t

0
ψ0(t − s)Px(T0 ∈ ds) +Ex

[
ψX(t)(0);T0 > t

]
(= Ex

[
ψX(t∧T0)

(
t − (t ∧ T0)

)])
,

where T0 := inf{s : Xs = 0} (see Lemma A.3). Hence, ψx(t0) ≥ 0 for all x because
ψ(0) ≡ 0 and ψ0(s) ≥ 0 for 0 ≤ s ≤ t0 by definition. Consequently, Lrwψ0(t0) ≥
0 and we conclude that γ −1∂tψ0(t0) ≥ rϕ̄(t0) − e−ρ0(t0) > exp(−ϕ̄0(t0)) −
exp(−ρ0(t0)) = 0 in contradiction to the definition of t0.

We can construct a supersolution to (A.1) from a strict subsolution to (A.5):
Assume f : [0,∞) →R satisfies

(A.7) f (t) <

∫ t

0
γp0(t − s) exp

(−f (s)
)
ds for t ≥ 0.
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Then

(A.8) ϕ̄x(t) :=
∫ t

0
γpx(t − s) exp

(−f (s)
)
ds

solves

∂t ϕ̄x(t) = Lrwϕ̄x(t) + γ exp
(−f (t)

)
δ0(x)

and in particular ϕ̄0(t) > f (t), hence exp(−f (t)) > exp(−ϕ̄0(t)).
Similarly, if ϕ is a strict subsolution we have ϕ

0
(t) ≤ ρ0(t) for all t ≥ 0 and

such a ϕ can be constructed analogously from a supersolution f̄ to (A.5).
Observe that the solution ρ of (A.1) has the property that ρ0(t) is an increasing

function: Obviously, ∂tρ0(t) > 0 for t small. Assume that t0 := inf{t : ∂tρ0(t) <

0} < ∞. Then by continuity ∂tρ0(t0) = 0. We have for x ∈ Z \ {0} by the represen-
tation given in Lemma A.3

∂tρx(t0) = lim
h

1

h

[∫ t0

0
ρ0(t0 − s)Px(T0 ∈ ds) −

∫ t0−h

0
ρ0(t0 − h − s)Px(T0 ∈ ds)

]

= lim
h

∫ t0−h

0

1

h

(
ρ0(t0 − s) − ρ0(t0 − h − s)

)
Px(T0 ∈ ds)

+ lim
h

1

h

∫ t0

t0−h
ρ0(t0 − s)Px(T0 ∈ ds)

≥
∫ t0

0
∂tρ0(t − s)Px(T0 ∈ ds) + ρ0(0)︸ ︷︷ ︸

=0

Px(T0 ∈ dt)

dt

∣∣∣
t=t0

> 0,

because ∂tρ0(t) > 0 in [0, t0) and supp(Lx(T0)) = R+, and we applied Fatou’s
lemma in the first inequality. Thus,

∂2
t ρ0(t0) = ∑

x

ax

(
∂tρx(t0) − ∂tρ0(t0)

) − ∂tρ0(t0)γ exp
(−ρ0(t0)

)
> 0,

contradicting the definition of t0.

LEMMA A.2. Assume α = 1.

(i) For C < log(
√

2πγ/σ) there exists a K > 0 such that

f (t) :=
⎧⎨⎩

1

2
log t − log log t + C, if t ≥ K,

−1, if 0 ≤ t < K,

is a strict subsolution for (A.5).
(ii) For C > log(

√
2πγ/σ), there exist K,K ′ > 0 such that

f̄ (t) :=
⎧⎨⎩

1

2
log t − log log t + C, if t ≥ K,

K ′, if 0 ≤ t < K,

is a strict supersolution for (A.5).
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PROOF. This is a straightforward computation using the local central limit
theorem, p0(t) ∼ (2πσ 2t)−1/2. Here are some details:

(i) Let e−C = (1 + 3ε)/(
√

2πγ/σ) with ε > 0 small. We have p0(t) ≥ (1 −
ε)/

√
2πσ 2t for t ≥ t0(ε). For f as in (i) and any t ≥ K ∨ t0(ε), we estimate∫ t

0
p0(t − s)γ e−f (s) ds

≥
∫ t−K

K
p0(t − s)e−Cγ

log s√
s

ds

≥ 1 + ε

2π

∫ t−K

K

log s√
s(t − s)

ds = 1 + ε

2π

∫ 1−K/t

K/t

log t + logu√
u(1 − u)

du

≥ 1 + ε

2π

{
log t

[∫ 1

0

1√
u(1 − u)

du − 4
√

2K/t

]
+

∫ 1

0

logu√
u(1 − u)

du

}
.

Observing that
∫ 1

0 (u(1−u))−1/2 du = π and
∫ 1

0 (u(1−u))−1/2 logudu ∈ (−∞,0)

we see that there exists n(= n(ε)) ≥ 1 such that for all K ≥ 1∫ t

0
γp0(t − s)e−f (s) ds ≥ 1 + ε/2

2
log t > f (t) whenever t ≥ nK.

On the other hand for t0(ε) ≤ K < t < nK , we have∫ t

0
γp0(s) exp

(−f (t − s)
)
ds

≥ γ (1 − ε)√
2πσ 2

∫ t

t−K

1√
u

du ≥ γ (1 − ε)√
2πσ 2

∫ nK

(n−1)K
u−1/2 du

= γ (1 − ε)
√

2

σ
√

π

(√
nK − √

(n − 1)K
) ≥ γ

2σ

√
K

2πn

and f (t) ≤ log(nK). So we just have to chose K ≥ 1 so big that γ
2σ

√
K

2πn
>

log(nK).
(ii) Can be treated similarly. �

PROOF OF LEMMA A.1, CONTINUED. Constructing ϕ̄ and ϕ as in (A.8) from
the functions f and f̄ given in Lemma A.2, with ϕ ≤ ρ ≤ ϕ̄, we see easily that

(A.9) ρ0(t) ∼ 1

2
log t as t → ∞.

But we need a finer result, namely ρ0(t) = 1
2 log t − log log t + log(

√
2πγ/σ) +

o(1). We use Laplace transforms to strengthen the asymptotics (A.9):
Denoting ξ(t) := γ exp(−ρ0(t)) we can write (A.5) as ρ0 = p0 ∗ ξ , after taking

Laplace transforms this reads

(A.10) ρ̂0(λ) = p̂0(λ)̂ξ(λ), λ > 0.
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We have p̂0(λ) ∼ (2σ 2λ)−1/2 as λ ↓ 0. From (A.9) and a Tauberian theorem (see,
e.g., [6], Chapter XIII.5, Theorem 4), we conclude that ρ̂0(λ) ∼ 1

2λ
log(1/λ), hence

ξ̂ (λ) ∼ σ(2λ)−1/2 log(1/λ) for λ ↓ 0. Invoking the Tauberian theorem in the other
direction, we get

γ exp
(−ρ0(t)

) = (
σ(2π)−1/2t−1/2 log t

)(
1 + o(1)

)
.

Equation (A.3) follows by taking logarithms. Observe that the use of the Tauberian
theorem is justified because ρ0, and hence also ξ , are monotone functions. Finally,
observe that

∫
(log s)/

√
s ds = 2

√
s log s − 4

√
s to obtain (A.4). �

LEMMA A.3. Let ψ·(0) : Z → R and ψ0(·) : R+ → R be given real-valued
continuous functions and define ψ on Z×R+ as the solution of the heat equation
corresponding to Lrw away from 0 with given boundary behavior, that is, ψ solves

∂tψx(t) = Lrwψx(t), x ∈ Z \ {0}, t ≥ 0.

Then ψ has the stochastic representation

ψx(t) = Ex

[
ψX(t∧T0)

(
t − (t ∧ T0)

)]
,

where (X(t))t≥0 is a continuous-time random walk on Z with generator Lrw and
T0 := inf{s > 0 : X(s) = 0} the hitting time of the origin.

LEMMA A.4. Let ρ be the solution of (A.1). Then uniformly in x ∈ R, we
have the following convergence:

1

log t
ρ[σ√

tx](t) −→
t→∞

1

2π

∫ 1

0

1√
s(1 − s)

e−x2/(2s) ds

(A.11)
=: ρ̃(x) = 1 − �

(|x|),
where �(a) := 1√

2π

∫ a
−∞ e−z2/2 dz.

PROOF. By (A.3), we have exp(−αρ0(t)) = (σ (log t)/γ
√

2πt)(1+o(1)), and
by the local CLT, p[σ√

tx](t) = (2πσ 2t)−1/2(e−x2/2 + o(1)) uniformly in x ∈ R.
Thus, by (A.2),

1

log t
ρ[σ√

tx](t)

= γ

log t

∫ t

0

log s

γ
√

2πs

1√
2π(t − s)

e−tx2/2(t−s) ds + o(1)

= 1

2π

∫ t

0

log t + log(s/t)

log t

(
(s/t)(1 − s/t)

)−1/2
e−x2/2(1−s/t) ds

t
+ o(1)

= 1

2π

∫ 1

0

1√
(1 − u)u

e−x2/2u du + o(1),
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where we substituted u = 1 − s/t in the last line.
To prove the identity in (A.11), substituting 1/s = z and then z− 1 = y, we find

1

2π

∫ 1

0

1√
s(1 − s)

e
−x2
2s ds

= 1

2π

∫ ∞
1

(
z−1(1 − z−1))−1/2 exp

(−x2

2
z

)
dz

z2

= 1

2π

∫ ∞
1

1

z
√

z − 1
exp

(−x2

2
z

)
dz

= 1

2π
e−x2/2

∫ ∞
0

exp
(−x2

2
y

)
1√

y(y + 1)
dy

= 1

2π
e−x2/2f̂

(
x2/2

)
,

where f̂ is the Laplace transform of f (t) = 1/((y + 1)
√

y). A table of Laplace
transforms (e.g., [1], Formula 29.3.114) shows that f̂ (z) = 2πez(1 − �(

√
2z)).

�

APPENDIX B: CORRELATION FUNCTIONS FOR POISSON
VACANT EVENTS

In this section, we compute the correlation function for the events that a Poisson
point process is vacant on each of k given sets. This is used to prove Lemma 2.2 on
the centered moments of the origin’s vacant time for a Poisson system of random
walks.

LEMMA B.1. Let (S,B) be a measurable space, ξ a Poisson point pro-
cess on S with intensity measure ν. Then for k ∈ N, E1,E2, . . . ,Ek ∈ S with
ν(E1), . . . , ν(Ek) < ∞, and M ∈N∪ {0},

E

[
k∏

i=1

(
1
(
ξ(Ei) = 0

) − P
(
ξ(Ei) = 0

))]

= e−∑k
i=1 ν(Ei)

∞∑
n=1

1

n!
∑

I1,...,In⊂{1,...,k}
|I1|,...,|In|≥2

I1∪···∪In={1,...,k}

(−1)
∑n

j=1 |Ij | n∏
j=1

ν

( ⋂
�∈Ij

E�

)
(B.1)

= e−∑k
i=1 ν(Ei)

M∑
n=1

1

n!
∑

I1,...,In⊂{1,...,k}
|I1|,...,|In|≥2

I1∪···∪In={1,...,k}

(−1)
∑n

j=1 |Ij | n∏
j=1

ν

( ⋂
�∈Ij

E�

)
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+ e−∑k
i=1 ν(Ei)RM+1

(
2k max

1≤i<j≤k
ν(Ei ∩ Ej)

)
,(B.2)

where |RM+1(x)| ≤ 2k |x|M+1

(M+1)!e
|x|.

REMARK B.1. Lemma B.1 allows us to control the k-point correlation func-
tion quantitatively in terms of ν(Ei ∩ Ej), 1 ≤ i < j ≤ k. This result should be
well known, but we sketch the proof below for completeness and lack of a precise
reference.

PROOF OF LEMMA B.1. Since P(ξ(B) = 0) = e−ν(B) for any set B ∈ B, we
have

E

[
k∏

i=1

(
1
(
ξ(Ei) = 0

) − P
(
ξ(Ei) = 0

))]

= ∑
I ′⊂{1,...,k}

(−1)k−|I ′|
P

(
ξ

(⋃
�∈I ′

E�

)
= 0

) ∏
j /∈I ′

P
(
ξ(Ej ) = 0

)
= ∑

I ′⊂{1,...,k}
(−1)k−|I ′| exp

[
−ν

(⋃
�∈I ′

E�

)
− ∑

j /∈I ′
ν(Ej )

]
(B.3)

= e−∑k
i=1 ν(Ei)

∑
I ′⊂{1,...,k}

(−1)k−|I ′| exp
[
−ν

(⋃
�∈I ′

E�

)
+ ∑

j∈I ′
ν(Ej )

]

= e−∑k
i=1 ν(Ei)

∑
I ′⊂{1,...,k}

(−1)k−|I ′| exp
[ ∑
I⊂I ′,|I |≥2

(−1)|I |ν
(⋂

�∈I

E�

)]
,

where we used the inclusion-exclusion principle in the last line.
Note that when we Taylor expand the rightmost exponential in (B.3), the zeroth

order term is
∑

I ′⊂{1,...,k}(−1)k−|I ′| = 0. For a fixed I ′ ⊂ {1, . . . , k} and n ∈N, the
nth order term of the Taylor expansion for the exponential is∑

I ′⊂{1,...,k}
(−1)k−|I ′| 1

n!
∑

I1,...,In⊂I ′
|I1|,...,|In|≥2

(−1)|I1|+···+|In|
n∏

j=1

ν

( ⋂
�∈Ij

E�

)

= 1

n!
∑

I1,...,In⊂{1,...,k}
|I1|,...,|In|≥2

(−1)
∑k

j=1 |Ij | n∏
j=1

ν

( ⋂
�∈Ij

E�

) ∑
I ′⊂{1,...,k}

I ′⊃I1∪···∪In

(−1)k−|I ′|

= 1

n!
∑

I1,...,In⊂{1,...,k}
|I1|,...,|In|≥2

I1∪···∪In={1,...,k}

(−1)
∑n

j=1 |Ij | n∏
j=1

ν

( ⋂
�∈Ij

E�

)
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since whenever I1 ∪ · · · ∪ In �= {1, . . . , k}, the summation over I ′ gives 0. This
proves (B.1).

To check (B.2), let φ(I ′) := ∑
I⊂I ′,|I |≥2(−1)|I |ν(

⋂
�∈I E�). Note that∣∣φ(

I ′)∣∣ ≤ 2k max
1≤i<j≤k

ν(Ei ∩ Ej).

Applying the bound |ex −∑M
n=0

xn

n! | ≤ |x|M+1

(M+1)!e
|x| to eφ(I ′) in (B.3) then gives (B.2).

�
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